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1. Summary

The aim of this project is to prove Gromov’s theorem on groups of polynomial
growth. In order to do so, we will follow the original proof from Mikhail Gro-
mov [Gro81], in which he introduced a convergence for metric spaces, called the
Gromov-Hausdorff convergence, that is now widely used in geometry. With this in
mind, one of the objectives of the project will also be to study this convergence.

It is worth noting that an alternative simpler proof has been found by Bruce
Kleiner [Kle10], though it still relies on Tits alternative, a theorem that Gromov’s
proof uses too. Later, Terence Tao and Yehuda Shalom [ST10] provided a more
fundamental proof based on the work of Kleiner. However, for this project we will
not study such proofs.
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2. Introduction

For the scope of this project, we will consider a finitely generated group Γ with
generators γ1, ..., γk. Each element γ ∈ Γ can be represented as a word γe1

i1
· · · γer

ir
,

and we call the number
∑r

j=1 |ej| the length of the word. With this, we can define
a norm ∥γ∥ as the minimal length of the words representing γ, and we set the
length of the identity element e ∈ Γ as ∥e∥ = 0.

This norm has some obvious properties: ∥γ∥ = ∥γ−1∥ since it is defined as the
sum of the absolute values of the exponents, and ∥γµ∥ ≤ ∥γ∥+ ∥µ∥.

Example 2.1.

(1) Let Γ be a free Abelian group of rank 2 generated by γ1, γ2. Any element γ ∈ Γ

can be represented as a word γe1
1 γe2

2 , with e1, e2 ∈ Z. Then ∥γ∥ = |e1|+ |e2|.

(2) Now let Γ be a free group of rank 2 generated by γ1, γ2. Since it is not
Abelian, a word γ ∈ Γ can be represented as γe1

i1
· · · γek

ik
, where ij = 1, 2 for

any j = 1, ..., k, k ∈ Z≥0, and e1, ..., ek ∈ Z≥0. The norm of γ is
∑k

j=1 |ej|.
This example is useful to show that the triangle inequality is not an equality:
consider γ = γ1γ2 and µ = γ−1

2 γ1, we have that both ∥γ∥ = 2 = ∥µ∥, but we
have that ∥γµ∥ =

∥∥γ1γ2γ−1
2 γ1

∥∥ = ∥γ2
1∥ = 2.

Definition 2.2. (Polynomial growth). We say that a finitely generated group
Γ with generators γ1, ..., γk has polynomial growth if there exist two constants
C, d ∈ R>0 such that for all balls B(r) of radius r ≥ 1, |B(r)| ≤ Crd.

Example 2.3. Finitely generated Abelian groups have polynomial growth. Con-
sider an Abelian group A = ⟨a1, ..., ak | aiaj = ajai ∀i, j = 1, ..., k⟩, we define An as
the set of all possible words a±1

i1
· · · a±1

in
. Since A is Abelian, this can be rewritten
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as An =
{
ae11 · · · aekk | ai ∈ A,

∑k
i=1 |ei| = n

}
. Then,

|An| ≤

∣∣∣∣∣
{
e1, ..., ek ∈ Z |

k∑
i=1

|ei| = n

}∣∣∣∣∣
≤ 2k

∣∣∣∣∣
{
e1, ..., ek ∈ Z≥0 |

k∑
i=1

ei = n

}∣∣∣∣∣
= 2k

(
n+ k − 1

k − 1

)
= O

(
2knk−1

)
.

Hence, it has polynomial growth.

Definition 2.4. (Nilpotent group, nilpotency class). We say that a finitely gener-
ated group N is nilpotent if it has a lower central series terminating in the trivial
subgroup in finitely many steps, i.e.

N = N0 ▷ N1 ▷ ... ▷ Nn = {1}, [Ni, N ] = Ni+1

The smallest such n is called the nilpotency class (or just class to abbreviate if
there is no possible confusion).

One can also see a nilpotent group N of class n as a group with a central extension,

1 → Z(N) → N → N ′ → 1

Where Z(N) denotes the centre of N (the subgroup of all elements which commute
with all elements of N) and N ′ is a nilpotent group of class n− 1

Example 2.5. Finitely generated nilpotent groups have polynomial growth. To
prove it, we will use induction on the nilpotency class s. First suppose that N is
a nilpotent group of class 2, then we can consider

1 → Z(N) → N
π−→ A → 1

where A is of class 1, i.e. Abelian. We can consider N generated by some elements
of z1, ..., zk ∈ Z(N) and some ã1, ..., ãℓ such that through the projection π they
give the generators of A, i.e. π(ãi) = ai ∈ A. To simplify notation, we will abuse
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notation and talk about ai. Notice that, by nilpotency, [ai, aj] ∈ Z(N).
Now, given a word g = w1 · · ·wn, with wi ∈ {z1, ..., zk, a1, ..., aℓ}, we can rearrange
the zi’s and move them to the beginning, because they are in the centre and
commute with every other element. This means that we can write

g = ze11 · · · zekk aj1 · · · ajr

where
∑

|ei|+ r = n. Now we rearrange the ai’s, but in this case we have to pay
a price, since [ai, aj] = zij ∈ Z(N), for each swap of ai’s we have to add some zj.
This gives,

g = ze11 · · · zekk zi1j1 · · · zimjma
f1
1 · · · afℓℓ

with
∑

|ei|+
∑

|fj| ≤ n. We have to compute how many zi’s we have added: since
g has length n, each we have to move each ai at most n positions, giving n new zij’s,
and since we can have at most n ai’s, in total we add less than n2 zij’s. Rearranging
the zij’s we end up with something of the form zg1212 · · · zg1k1k zg2323 · · · zg(k−1)k

(k−1)k , and by the
previous discussion,

∑
|gij| ≤ n2. Thus, in total

∑
|ei|+

∑
|fj|+

∑
|gij| ≤ n2+n,

and arguing as in the Abelian example, we get a polynomial for the growth of N .

Now, suppose that N is of class s and that N ′ is of class s − 1 with polynomial
growth.

1 → Z(N) → N
π−→ N ′ → 1

In this case N = ⟨z1, ..., zk, φ̃1, ..., φ̃ℓ⟩ with π(φ̃i) = φi ∈ N ′.
Given g = w1 · · ·wn, with wi ∈ {z1, ..., zk, φ1, ..., φℓ} (again abusing notation), we
can rearrange the terms of the centre of the group to get g = ze11 · · · zekk φj1 · · ·φjr ,
with

∑
|ei| ≤ n. Since φj1 · · ·φjr ∈ N ′, which has polynomial growth, the number

of terms with length less than n, because there are at most n φji ’s, is a polynomial
on n. This again gives us that N has polynomial growth.

Proposition 2.6. Let Γ be a finitely generated group and Γ′ ⊂ Γ a subgroup of
finite index. Then, Γ has polynomial growth.

Proof. Let Ψ be the intersection of the conjugates γ−1Γ′γ in Γ, then Ψ is obviously
a finitely generated normal subgroup of finite index in Γ.
For now, suppose that the proposition is true for normal subgroups of finite index
of Γ. By hypothesis, there exist C, d ∈ R>0 such that |BΓ′(r)| ≤ Crd, where BΓ′(r)

denotes the ball of radius r in Γ′. Then, |BΨ(r)| ≤ Crd, i.e. the normal subgroup
Ψ has polynomial growth, then Γ has polynomial growth.
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It only remains to prove the statement when Γ′ happens to be a normal subgroup
of finite index. Let U = {µ1, ..., µm} be a system of representatives of Γ/Γ′, and
let {γ1, ..., γk} = G0 be a system of generators of Γ′. Consider V = U ∪G, where
G = {µ−1

i γµi | µi ∈ U, γ ∈ G0, notice that V is a system of generators of Γ.

Let N > 0 be an integer large enough so that the following finite collection of
conditions is satisfied:

µs
iµ

t
j = µf(si,tj)wsi,tj,

where s = ±1, t = ±1 and wsi,tj is a word of length ≤ N on G. If α =

µ−1
i γµi ∈ G, with γ ∈ G0 and µi ∈ U , then αµj = µ−1

i γµiµj = µ−1
i γµf(i,j)wi,j =

µ−1
i µf(i,j)α

′wi,j = µf(−i,f(i,j))w−i,f(i,j)α
′wi,j, where α′ ∈ G. Thus, αµj has form µrw

where w is a word of length ≤ 2N + 1 on G.

Let g ∈ Γ be a word of length ≤ n represented in the system of generators V . Take
the first occurrence of a µ±1

j from the right and move it left until it meets another
occurrence of a µ±1

i . In this process, we have only crossed elements of T ∪T−1, each
one, by the previous consideration, inserting a word of length ≤ 2N+1 on T to the
right. Now, µ±1

i µ±1
j = µrw±i,±j, thus it inserts a word w±i,±j of length ≤ N , and

we can continue doing the same with µk. Repeating this process iteratively results
into a representation of g by a word µw0, where µ ∈ U and w0 is a word of length
≤ nN + n(2N + 1). Thus, if |B′

Γ(n)| ≤ Cnd, then |BΓ(n)| ≤ mC((3N + 1)n)d.
Which shows that if Γ′ has polynomial growth, then Γ has polynomial growth
too.

Theorem 2.7. (Gromov’s theorem). A finitely generated group Γ has polynomial
growth if and only if Γ contains a nilpotent subgroup of finite index.

To simplify the writing, we usually say that a group Γ is almost nilpotent if it
contains a nilpotent subgroup of finite index. Notice that the previous proposition
and examples imply the right to left implication of the theorem. The following
sections are dedicated to introduce the concepts needed for the proof of the other
implication, and in the last section we will prove it.
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3. Properties of the growth

The norm defined in the introduction enables us to define a left invariant metric
on Γ, given by

dist(α, β) =
∥∥α−1β

∥∥.
Indeed, given g ∈ Γ, then

dist(gα, gβ) =
∥∥(gα)−1gβ

∥∥ =
∥∥α−1g−1gβ

∥∥ =
∥∥α−1β

∥∥ = dist(α, β).

The next objective is to relate the growth of a group to the growth of its subgroups.
For now, consider Γ′ ⊂ Γ a subgroup and the left action of Γ′ on Γ. Define
X = Γ/Γ′ and f : Γ → X the natural projection.

Definition 3.1. Let x, y ∈ X, the distance on X is defined as dist(x, y) =

infα,β dist(α, β), where α ∈ f−1(x), β ∈ f−1(y).

Notice that since the distance on Γ is left invariant, the left action of Γ′ on Γ is an
isometry, therefore, the distance on X is a well-defined metric on X.

The following properties are trivial for Γ and thus, when passing to X, they are
preserved.

Proposition 3.2. (Connectivity). X = Γ/Γ′ has the following (and equivalent)
properties,

(i) For any two points x, y ∈ X such that dist(x, y) = m, with m ∈ Z≥0, there
exist m + 1 points, x = x0, x1, ..., xm = y, such that dist(xi, xi+1) = 1 for
i = 0, ...,m− 1.

(ii) Consider a ball B(m) ∈ X of radius m ∈ Z≥0, and consider its ε-neighbourhood
Uε(B(m)) with ε ∈ Z≥0. Then Uε(B(m)) is the ball of radius m+ε concentric
to B(m).

The following corollary is an immediate application of this proposition.
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Corollary 3.3. If X is infinite, then each ball of radius r ∈ Z≥0 contains, at least,
r + 1 elements.

Definition 3.4. Let Γ be a finitely generated group, we denote growth(Γ) as the
lower bound of d ∈ R≥0 such that

|B(r)| ≤ const · rd, r ≥ 1.

Remark 3.5. Do not confuse growth(Γ) with the growth type of Γ. The latter
refers to the growth rate, i.e. polynomial, exponential, subexponential, etc. The
former refers to the power of the radius that satisfies the polynomial relation in
the definition.

Moreover, if the group has a faster growth rate than polynomial, d = ∞.

Finally, with these results, we get the following important lemma.

Lemma 3.6. (Splitting lemma). If Γ′ ⊂ Γ is a finitely generated subgroup of
infinite index, then

growth(Γ′) ≤ growth(Γ)− 1

Proof. By connectivity, each ball B(r) of radius r ∈ Z≥0 contains, at least, r + 1

elements a0, ..., ar ∈ Γ such that f(ai) ̸= f(aj) for i ̸= j. Consider B′(r) = B(r)∩Γ′

and its translations by ai, i ∈ {0, ..., r}, B′(r)ai. These translations are all in B(2r),
since each ai has at most length r. Moreover, they are all disjoint: suppose that
there exist β ∈ B′(r)ai, B

′(r)aj for i ̸= j, then we can write β = xai = yaj for some
x, y ∈ B′(r). Since ai ̸= aj, x ̸= y, but then f(ai) = f(xai) = f(yaj) = f(aj),
arriving at a contradiction.

With these two properties, we deduce that

|B(2r)| ≥ (r + 1)|B′(r)|.
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Let growth(Γ) = d, i.e. |B(r)| ≤ Crd for some non-negative constant C. Then,

|B′(r)| ≤ |B(2r)|
r + 1

≤ C(2r)d

r + 1
≤ C(2r)d

r
= C2drd−1 = C ′rd−1,

with C ′ = C2d. Therefore growth(Γ′) ≤ d− 1 = growth(Γ)− 1.

Definition 3.7. (Regular growth). Denote by b(r) the number of elements of a ball
in Γ, in other words, b(r) = |B(r)| for r ∈ Z≥0. Suppose that growth(Γ) = d < ∞.
We say that a number r is i-regular, i ∈ Z>0, if it satisfies the following conditions:

(i) log b(2−jr) ≥ log b(r)− j(d+ 1) log 2, for j = 1, ..., i.

(ii) log b(2jr) ≤ log b(r) + 16j+1(d+ 1), for j = 1, ..., i.

Lemma 3.8. (Regularity lemma). There exist a sequence (ri) tending to ∞ as
i → ∞ such that each ri is i-regular.

Proof. Consider the sequence r′k = 2k. Since growth(Γ) = d, we have

b(r′k) ≤ const · (r′k)d = const · 2kd

for some C ∈ R>0. Thus, applying the logarithm on both sides, we get

log b(r′k) ≤ C + kd log 2,

Where C = log(const). This implies that there is an infinite subsequence ri = 2ki

that satisfies (i). To see this, suppose that (i) is not satisfied, then for all k, we
can find some jk = 1, ..., k such that

log b(2−jkr′k) < log b(r′k)− jk(d+ 1) log 2.

Where jk depends obviously on k. Therefore, for each k we have,

log b(r′k) > log b(2−jkr′k) + jk(d+ 1) log 2

log b(2k) > log b(2k−jk) + jk(d+ 1) log 2.

Using this last inequality recursively for each k, we can write

log b(2k) > k′(d+ 1) log 2
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where k′ is of the order of k, since in each step the contribution to the term
(d+ 1) log 2 is jk and the exponent gets reduced by jk too. This would contradict
the growth of Γ.

Now we want to see that this subsequence also satisfies (ii). We begin by proving
the following inequality, which holds for any finitely generated group, disregarding
its growth,

b(5r) ≤ (b(4r))2

b(r)
(1)

for r ≥ 1.

Consider a maximal system of points γ1, γ2, ... ∈ B(3r) such that the distance
between any two is at least 2r + 1. By construction, the balls of radius r centred
at each point do not intersect with each other, and that the balls of radius 2r

centred at each point cover B(3r). By connectivity, the balls of radius 4r centred
at these points cover B(5r). This, with the fact that since the balls of radius r

are contained in B(4r) and the total number of their points is less than b(4r),
inequality (1) holds.

To simplify notation, let ℓ(r) = log b(r). Then we can write (1) as

ℓ(5r) ≤ 2ℓ(4r)− ℓ(r).

If r is a multiple of 4 then,

ℓ(6r) ≤ ℓ

(
5r +

5r

4

)
≤ 2ℓ(5r)− ℓ(r),

and therefore
ℓ(6r) ≤ 4ℓ(4r)− 3ℓ(r).

Similarly,

ℓ(8r) ≤ ℓ

(
6
6

r

)
≤ 16ℓ(4r)− 15ℓ(r).

Thus, for any r divisible by 16,

ℓ(2r) ≤ 16ℓ(r)− 15ℓ(r/4).

Applying the inequality j times,

ℓ(2jr) ≤ 16j (ℓ(r)− ℓ(r/4)) + ℓ(r/4).
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Using inequality (i) we get ℓ(r)− ℓ(r/4) ≤ 2(d+ 1) log 2, so we can write the last
inequality as

ℓ(2jr) ≤ 16j+1(d+ 1) + ℓ(r/4) ≤ 16j+1(d+ 1) + ℓ(r),

proving inequality (ii).
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4. The algebraic lemma

The following lemma will play a major role in the proof of Gromov’s theorem.

Lemma 4.1. (Algebraic lemma). Let Γ be a finitely generated group of polynomial
growth, and let L be a Lie group with finitely many connected components. Suppose
that for each finitely generated infinite subgroup Γ′ ⊂ Γ there is a subgroup ∆ ⊂ Γ′

of finite index in Γ′ such that for every p ∈ Z>0 there is a homomorphism ∆ → L

such that its image contains at least p elements. Then Γ is almost nilpotent.

For the proof of this lemma, we will use the following Milnor-Wolf theorem [Mil68],
[Wol68] that gives the growth of solvable groups.

Theorem 4.2. (Milnor-Wolf). A finitely generated solvable group Γ has exponen-
tial growth unless Γ is almost nilpotent.

Moreover, we will use the following two properties:

Proposition 4.3. (Jordan [Jor78]). For each Lie group L with finitely many
components, there is a number q such that every finite subgroup in L contains an
Abelian subgroup of index at most q.

Proposition 4.4. (Tits’ alternative [Tit72]). Let L be a lie group with finitely
many components and let G ⊂ L be any finitely generated subgroup. Then there
are only two possibilities:

(i) G contains a free group of rank 2. In this case G has exponential growth.

(ii) G is almost solvable. In this case G has exponential growth unless it is almost
nilpotent.

With this we can prove two lemmas that will be used for the proof of the algebraic
lemma.

13



Lemma 4.5. Let L be a Lie group with finitely many components, and let G be
any finitely generated group. Suppose that for every number p ∈ Z>0 there is a
homomorphism G → L such that its image is finite and has at least p elements.
Then G contains a subgroup G′ ⊂ G of finite index such that the commutator
subgroup [G′, G′] ⊂ G′ has infinite index and, therefore, G′ admits a non-trivial
homomorphism in Z.

Proof. Take q from Jordan’s proposition and G′ ⊂ G the intersection of all sub-
groups of G of index at most q, then clearly G′ has finite index and satisfies the
properties oof the lemma.

Lemma 4.6. Let Γ be a finitely generated group of polynomial growth. Then the
commutator subgroup [Γ,Γ] is also finitely generated.

Proof. It is sufficient to show that the kernel ∆ ⊂ Γ of any surjective homomor-
phism g : Γ → Z is finitely generated. Let γ0, ..., γk ∈ Γ be a system of generators
of Γ such that

g(γ0) = z0, where z0 denotes the generator in Z
γi ∈ ∆, i = 1, ..., k.

Let ∆m ⊂ ∆ be the group generated by {γj
0γiγ

−j
0 , where i = 1, ..., k and j =

−m, ...,m. Obviously ∆m ⊂ ∆m+1 and ∪∞
m=0∆m = ∆.

If for some m ∆m = ∆m+1, then ∆ = ∆m which is finitely generated, so the proof
is finished.

Suppose that this is not the situation, then there is a sequence αm ∈ ∆, m ≥ 0 such
that each αm is of the form γm

0 γiγ
−m
0 or γ−m

0 γiγ
m
0 for some i = 1, ..., k and αm is

not contained in the group generated by α0, ..., αm−1. Now consider the products
β(ε0, ..., εm) = αε0

o · · ·αεm
m , where εi = 0, 1. Since β(ε0, ..., εm) = β(µ0, ..., µm)

implies ε0 = µ0, ..., εm = µm, there are 2m+1 different β’s. Now, ∥β∥ ≤ ∥α0∥ +

· · ·+ ∥αm∥ ≤ (m+1)(2m+1), since αm is of the form γm
0 γiγ

−m
0 or γ−m

0 γiγ
m
0 , both

of length ≤ (2m+ 1). Thus, for the ball B((m+ 1)(2m+ 1)) in Γ, one has

|B((m+ 1)(2m+ 1))| ≥ 2m+1,

which contradicts the polynomial growth of Γ.
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Proof of lemma 4.1. By the splitting lemma (3.6), we can use induction and as-
sume that all finitely generated subgroups of Γ of infinite index are almost nilpo-
tent. Let ∆ ⊂ Γ be a subgroup of finite index such that for every p ∈ Z>0 there is
a homomorphism ∆ → L such that its image contains at least p elements.

If every one of these homomorphisms has a finite image, then, using lemma 4.5
we get a subgroup ∆′ ⊂ ∆ of finite index such that the commutator [∆′,∆′] ⊂ ∆′

has infinite index. If there is a homomorphism with infinite image, using Tit’s
alternative on this image we get ∆′ ⊂ ∆ with the same property.

Now, using lemma 4.6, [∆′,∆′] is finitely generated and by induction it is almost
nilpotent. Then Γ is almost solvable and, by Milnor-Wolf’s theorem, Γ is almost
nilpotent.

For the proof of Gromov’s theorem, though, we will use a weaker version of the
lemma that is stated as the following obvious corollary.

Corollary 4.7. Let Γ be a finitely generated group of polynomial growth, and let
L be a Lie group with finitely many connected components. Suppose that either for
each finitely generated infinite subgroup Γ′ ⊂ Γ there is a subgroup ∆ ⊂ Γ′ of finite
index in Γ′ such that for every p ∈ Z>0 there is a homomorphism ∆ → L such
that its image contains at least p elements or that ∆ is Abelian. Then Γ is almost
nilpotent.
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5. Topological transformation groups

The following theorem will be very important in the proof of Gromov’s theorem.
It will be applied to the limit of the sequence of groups that we will construct in
section 7.

Theorem 5.1. (Montgomery-Zippin). Let Y be a finite dimensional, locally com-
pact, connected and locally connected metric space. If the group L of isometries of
Y is transitive on Y , then L is a Lie group with finitely many connected compo-
nents.

Recall that a group action, in this case the group of isometries L, is transitive if
it has only one orbit, i.e. it exists some y ∈ Y such that L · y = Y .

The theorem is an immediate application of the first corollary from section 6.3. of
[MZ55].

Corollary 5.2. (Localization lemma). Let Y be a finite dimensional, locally com-
pact, connected and locally connected metric space, let U ⊂ Y be a non-empty
open set and let p ∈ Z>0, then there exists a positive ε such that if ℓ : Y → Y is a
non-trivial isometry such that dist(u, ℓ(u)) ≤ ε, with u ∈ U , then ℓ generates in L

a subgroup of order at least p.
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6. Limits of metric spaces

We now are going to introduce the convergence of metric spaces mentioned in
the summary of the project, the Hausdorff-Gromov convergence. Let Z be a space
with a metric δ, and let X, Y ⊂ Z be two subsets, we define the Hausdorff distance
Hδ(X, Y ), as the lower bound of all numbers ε > 0 such that the ε-neighbourhood
of X contains Y and vice versa.

Definition 6.1. Let X, Y be two arbitrary metric spaces with metrics δX , δY
respectively and let Z be their disjoint union. A metric δ on Z is called admissible
if its restrictions to X and Y yield the original metrics of X and Y , i.e. δ|X = δX
and δ|Y = δY .

With this, we can define a distance between two metric spaces, the Hausdorff
distance H(X, Y ), defined as the lower bound infδ H

δ(X, Y ) where δ runs over all
admissible metrics on Z = X ⊔ Y .

This definition has to be adapted if the spaces are not compact, what we do is use
reference points in each of the two spaces. For two metric spaces X, Y with distinct
points x ∈ X and y ∈ Y , we define H̃((X, x), (Y, y)) as the minimum of all ε > 0

such that: there exists an admissible metric δ on X ⊔Y such that δ(x, y) < ε, that
the ball Bx(1/ε) of radius 1/ε centred at x is contained in the ε-neighbourhood of
Y with respect to δ and that By(1/ε) is contained in the ε-neighbourhood of X
with respect to δ.

Definition 6.2. (Proper space). A metric space X is called proper if for each
point x0 ∈ X, the distance function x → dist(x0, x) is a proper map X → R, i.e.
each closed ball of finite radius in X is compact.

Definition 6.3. A sequence of spaces Xj with distinct points xj ∈ Xj converges
to (Y, y), and we write (Xj, xj) −−−→

j→∞
(Y, y) if lim H̃((Xj, xj), (Y, y)) = 0.

Definition 6.4. A family {Xj}j∈J of compact metric spaces is called uniformly
compact if their diameters are uniformly bounded and one of the following (equiv-

17



alent) conditions holds:

(i) For each ε > 0 there is a number N = N(ε) such that each space Xj, j ∈ J ,
can be covered by N balls of radius ε.

(ii) For each ε > 0 there is a number M = M(ε) such that in each space Xj,
j ∈ J , one can find at most M disjoint balls of radius ε

Theorem 6.5. (Compactness criterion). Let (Xj, xj)j∈Z>0 be a sequence of proper
metric spaces with distinct points xj ∈ Xj, j ∈ Z>0. If for each r ≥ 0 the cor-
responding family of balls {Bj(r)}j∈Z>0 is uniformly compact, then there is a sub-
sequence (Xjk , xjk)k∈Z>0 with limk→∞ jk = ∞ which converges to a proper metric
space (Y, y).

Proof. We will fix an arbitrary r and without loss of generality we can assume
that all Xj are compact and that {Xj}j∈Z>0 is uniformly compact.

Take the sequence εi = 2−i and let Ni ∈ N be the number such that each Xj can
be covered by Ni balls of radius εi. Let Ai be the set of all finite sequences of the
form (n1, ..., ni), 1 ≤ nℓ ≤ Nℓ with 1 ≤ ℓ ≤ i, and let pi : Ai+1 → Ai be the natural
projection. We will now construct, for each space Xj, maps I ij : Ai → Xj such
that:

(a) The balls of radius εi centred at the points of the image of I ij cover Xj, which
we will denote by "I ij forms a εi-net in Xj" for short.

(b) For each a ∈ Ai+1, i ∈ Z>0, the point I i+1
j (a) is contained in the ball of radius

2εi centred at I ij(pi(a)).

To construct these maps I ij, first we cover Xj by N1 balls of radius ε1 and we take
I1j as any bijective map from A1 to the set of centres of these balls. Then we cover
each ball of radius ε1 with N2 balls of radius ε2, and we take I2j as a map from
A2 to the set of centres of these balls so that (n1, n2) goes to the centre of a ball
which we used to cover the ball of radius ε1 centred at I1j (n1), and so on.

With this construction, properties (a) and (b) are obvious. Now denote by A the
union ∪∞

i=1Ai and let Ij : A → Xj be the map corresponding to all I ij, i ∈ Z>0.
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We denote by F ′ the space of all bounded functions f : A → R with the norm
∥f∥ = supa∈A |f(a)|, and by F ⊂ F ′ the set which consists of all functions that
satisfy both of the following equalities:

1. If a ∈ A1 ⊂ A, then 0 ≤ f(a) ≤ supj DiamXj.

2. If a ∈ Ai for some i > 1, then |f(a)− f(pi−1(a))| ≤ 2εi−1.

Now define a map hj : Xj → F ′ given by (hj(x))(a) = dist(x, Ij(a)), x ∈ Xj,
a ∈ A, with the distance being the distance relative to the metric in Xj. The
property (a) ensures that hj is isometric, and the property (b) ensures that the
image of hj is contained in F .

Therefore, if the family {Xj} is uniformly compact we have just proved that there
is a compact metric space F such that each Xj can be isometrically embedded into
F .

We will use the following fact: if F is a compact metric space with a metric δ, then
the space of all compact subsets of F is a compact space relative to the Hausdorff
distance Hδ.

Now, we identify each Xj with its image hj(Xj) ⊂ F and we take a subsequence
Xjk which converges to a compact set Y ⊂ F , i.e. limk→∞Hδ(Xj, Y ) = 0, where δ

is the metric associated to the norm ∥f∥ in F ⊂ F ′ previously mentioned. Then,
clearly by definition, H(Xjk , Y ) also converges to 0 when k → ∞, proving the
criterion.

The definition of convergence of a sequence of spaces (Xj, xj) to (Y, y) uses the
modified Hausdorff distance, this means that there exists a system of metrics δj in
the unions Xj⊔Y such that for any given ε > 0 the three properties of convergence
hold for almost all j: δj(xj, y) < ε, Bxj

(1/ε) is contained in the ε-neighbourhood
of Y with respect to δj and By(1/ε) is contained in the ε-neighbourhood of Xj

with respect to δj. If we fix these δj then we say that the convergence is definite
and we denote it by

(Xj, xj) ⇒
j→∞

(Y, y).

With this, we say that a sequence of points x′
j ∈ Xj converge to a point y′ ∈ Y if
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limj→∞ δj(x
′
j, y

′) = 0. In particular, the reference points xj converge to y.

Definition 6.6. (Convergence of maps). Given a sequence (Xj, xj) ⇒
j→∞

(Y, y)

and a system of maps fj : Xj → Xj, we say that the maps fj converge to a map
f : Y → Y if for each r ≥ 0 and ε > 0 there is a number µ = µ(r, ε) > 0 and an
integer N = N(r, ε) such that, for all j ≥ N , if the points x′ ∈ Bxj

(r) ⊂ Xj and
y′ ∈ By(r) ⊂ Y satisfy δj(x

′, y′) ≤ µ then δj(fj(x
′), f(y′)) ≤ ε.

Lemma 6.7. (Isometry lemma). Let (Xj, xj) ⇒
j→∞

(Y, y) with Y a proper space.

Let fj : Xj → Xj be isometries such that distj(xj, fj(xj)) ≤ C, where C is a
constant that does not depend on j and distj is the distance relative to the metric
δj. Then there is a subsequence (Xjk , xjk) such that the maps fjk converge to an
isometry Y → Y .

Proof. Let (εi) be a sequence with limi→∞ εi = 0 and εi ≤ 1/4, and let (ri) be
a sequence such that ri+1 ≥ ri + C + 1. Taking a subsequence if needed, we
can assume that, for all j, δj(xj, y) ≤ εj, that the ball By(rj) is contained in the
εj-neighbourhood of Xj and that the ball Bxj

(rj + C + 1/2) is contained in the
εj-neighbourhood of Y .

For all i, choose a finite εi-net in By(ri) (recall, that means choose a finite number
of balls of radius εi that cover By(ri)), denote by Ei the union of these balls for
each i. Now we construct a system of maps gij : Ei → Ei+1 as follows: let e ∈ Ei

and choose x ∈ Xj such that δj(e, x) ≤ εj, thus x ∈ Bxj
(ri + 1/2) and, since

distj(xj, fj(xj)) ≤ C, fj(x) ∈ Bxj
(ri + C + 1/2). Now choose x′ ∈ Y such that

δj(x
′, x) ≤ εj, then x′ ∈ By(ri+1). Take as gij(e), any point e′ ∈ Ei+1 such that

dist(x′, e′) ≤ εi+1.

There exists a sequence j1, ..., jk, ... such that for each i = 1, 2, ... the map gijk
does not depend on k for k ≥ i, i.e. for any two sufficiently large k, ℓ we have
gijk = gijℓ . Then, clearly the corresponding sequence fjk converges to an isometry
g : Y → Y .

Corollary 6.8. If each Xj is homogeneous, i.e. the group of all isometries of Xj

is transitive, then Y is homogeneous.
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Proof. We have to prove that for any two elements of Y , one can find an isometry
that sends one element to the other. It is sufficient to prove that given y′ ∈ Y ,
there is an isometry that sends y to y′. Let (x′

j) with x′
j ∈ Xj be an arbitrary

sequence which converges to y′. Take a system of isometries fj : Xj → Xj such
that fj(xj) = x′

j, then, by the lemma, we can assume that (fj) converges to an
isometry g : Y → Y , and g(y) = y′.
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7. Limits of discrete groups

In this section, we will construct a sequence of groups out of a group with poly-
nomial growth Γ that converges to a space Y such that its group of isometries
satisfies the condition of the Algebraic lemma 4.1. Firstly, we introduce a general
construction: let X be any metric space with a metric dist, we denote by γX,
γ > 0, the metric space X with a new metric

distnew = λ · dist.

With this, we are ready to introduce the "main construction": Let Γ be a group
of polynomial growth with system of generators γ1, ..., γk and with the metric
dist defined in section 3. Let {ri}i∈Z>0 be a sequence of i-regular numbers such
that limi→∞ ri = ∞, which exists by the regularity lemma 3.8, and let e ∈ Γ be
the identity element. Consider the sequence (Γi, ei), where Γi = r−1

i Γ as in the
general construction explained above, and ei = e. By definition of regularity and
since each Γi is a proper space, the family of r-balls in (Γi) is uniformly compact,
and by the compactness criterion 6.5, there is a convergence subsequence. To
simplify notation and avoid double subscripts, from now on, we will assume that
the sequence (Γi, ei) itself converges to a space (Y, y).

As commented in section 5, we will apply the Montgomery-Zippin theorem to the
space Y . In order to be able to apply it, we need to check that the conditions of
the theorem are satisfied by Y .

Proposition 7.1. The limit space Y has the following properties:

(i) Y is locally compact.

(ii) Y is connected and locally connected. Moreover, each ball in Y is connected
and path-connected.

(iii) The group L of all isometries of Y is transitive on Y .

(iv) Y is finite dimensional.

Proof. (i) is obvious since Y is a proper space by the compactness criterion 6.5.
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(ii) Let disti denote the new metric in Γi and dist denote the metric in the limit
space Y . By connectivity 3.2, for any two points α, β ∈ Γi, there is a point γ ∈ Γi

such that

disti(α, γ) ≤
1

2
disti(α, β) + r−1

i

disti(γ, β) ≤
1

2
disti(α, β) + r−1

i .

Then, passing to the limit, for any two points y1, y2 ∈ Y there exists a point x ∈ Y

such that
dist(y1, x) = dist(x, y2) =

1

2
dist(y1, y2)

This proves the connectivity of Y , and moreover, it shows that any two points
y1, y2 ∈ Y can be joined by a curve of length dist(y1, y2).

(iii) This is immediate by the corollary 6.8 of the isometry lemma, since each space
Γi is obviously homogeneous (if α, β ∈ Γi, then one can find an isometry g defined
as g(γ) = βα−1γ such that gα = β, and it is an isometry since the metric is left
invariant).

(iv) By the inequality (i) of the regularity condition, for j ≤ i, each ball of radius
1/2 in Γi can be covered by Nj balls of radius 2−j+1, where Nj = 2j(d+1) and d is
the growth of Γ. Then, passing to the limit, for each j ∈ Z>0, one can cover every
ball of radius 1/2 in Y by Nj balls of radius 2−j+1. This means that the Hausdorff
dimension of Y is at most d + 1, and thus Y is finite dimensional (check chapter
VII of [HW15] for the definition of Hausdorff dimension and properties).

Theorem 7.2. The group L of all isometries of Y is a Lie group with finitely
many components.

Proof. It is an immediate application of the theorem of Montgomery-Zippin 5.1,
since Y satisfies all the conditions of the theorem.
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8. Proof of Gromov’s theorem

With the results of the preceding sections, we are almost ready to prove the left
to right implication of the theorem. We need two more short results.

We begin with a general construction: let Γ be an arbitrary group with a fixed
system of generators and the associated metric. We define,

D(γ, r) = sup
β

dist(γβ, β),

where γ ∈ Γ, r ∈ R≥0, and β ∈ B(r), where B(r) is the ball of radius r in Γ

centred at the identity.

Now take a subgroup Γ′ ⊂ Γ generated by γ1, ..., γk and we define,

D(Γ′, r) = sup
1≤j≤k

D(γj, r).

Proposition 8.1. If the function D(Γ′, r), r ∈ R≥0, is bounded, then Γ′ contains
an Abelian subgroup of finite index.

Proof. If D(Γ′, r) is bounded as r → ∞, then so is D(γ, r) for any γ ∈ Γ′. Then
the conjugacy class of γ, {β−1γβ | β ∈ Γ}, is finite and so the centralizer of Γ,
CΓ({γ}) = {β ∈ Γ | β−1γβ = γ} ⊂ Γ′ has finite index.

Now, suppose that D(Γ′, r) is unbounded, but for a divergent sequence ri the ratio
r−1
i D(Γ′, ri) converges to zero.

Lemma 8.2. (Displacement lemma). For each ε > 0 there is a sequence αi, with
i ∈ Z>0, such that

lim
i→∞

r−1
i D(α−1

i Γ′αi, ri) = ε,

where D(α−1Γ′α, r) = sup1≤j≤k D(α−1γjα, r).

Proof. By connectivity 3.2 of Γ, for any integer m we have,

D(Γ′, r +m) ≤ D(Γ′, r) + 2m.
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Moreover, clearly for any α ∈ Γ and r ≥ 0,

D(α−1γ′α, r) ≤ D(γ′, r + ∥α∥).

Therefore,
D(α−1Γ′α, r) ≤ D(Γ′, r) + 2∥α∥. (2)

We are assuming that D(Γ′, r) is unbounded (as a function of r), so the function
D(α−1Γ′α, r) is unbounded as a function of α when fixing r.

Now, if r is sufficiently large, r−1
i D(Γ′, ri) → 0 implies that, for all ε > 0,

D(Γ′, ri) < εri.

On the other hand, for some µ ∈ Γ,

D(µ−1Γ′µ, ri) > εri.

Using connectivity and (2), we deduce that there is an αi ∈ Γ such that∣∣D(α−1
i Γ′αi, ri)− εri

∣∣ ≤ 2.

Proof of the left to right implication of Gromov’s theorem. Let Γi as in the con-
struction in section 7. The group Γ acts isometrically on each Γi since the metric
is left invariant. Moreover, if γi ∈ Γ satisfy r−1

i ∥γi∥ ≤ C < ∞ for every i ≥ 1, then
the isometries γ̃i : Γi → Γi satisfy the condition of the isometry lemma 6.7, and
to simplify notation, passing onto a subsequence if necessary, we can assume that
these isometries converge to an isometry ℓ : Y → Y (where Y is the converging
space described in section 7).

Now let Γ′ ⊂ Γ be an arbitrary subgroup and let γ ∈ Γ′. Then, taking each γi = γ

we get an isometry ℓγ : Y → Y and so we can construct a map Γ′ → L, where L

is the isometry group of Y , which is obviously a homomorphism. Notice that the
kernel of this homomorphism consists of all γ ∈ Γ′ such that

lim
i→∞

r−1
i D(γ, ri) = 0,

which exists since the isometries γ̃i = γ̃ : Γi → Γi converge to ℓ = ℓγ.
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To prove the theorem, consider a subgroup Γ′ ⊂ Γ generated by γ′
1, ..., γ

′
k. We want

to apply the Algebraic lemma, in fact we will apply corollary 4.7. Notice that, by
7.2, the assumption on the group of isometries L of the Algebraic lemma (and the
corresponding corollary) is already fulfilled. This means that it only remains to
find a subgroup ∆ ⊂ Γ′ of finite index in Γ′ such that either ∆ is Abelian or that
for every p ∈ Z>0 there is a homomorphism ∆ → L such that its image contains
at least p elements.

If the homomorphism γ → ℓγ constructed above has infinite image, the proof is
finished, because Γ′ satisfies the conditions.

Now assume that it does not have an infinite image, then the kernel Γ′′ ⊂ Γ′ of
the homomorphism γ → ℓγ has finite index in Γ′. By definition of Γ′′ we have

lim
i→∞

r−1
i D(γ, ri) = 0, γ ∈ Γ′′.

We now have two possibilities. If the function D(Γ′′, r), r ∈ R≥0, is bounded then
proposition 8.1 tells us that there is an Abelian ∆ ⊂ Γ′′ ⊂′ of finite index and the
proof is finished. If the function D(Γ′′, r), r ∈ R≥0, is unbounded but

lim
i→∞

r−1
i D(Γ′, ri) = 0,

we fix an ε and, by the displacement lemma 8.2 we get a suitable sequence αi =

αi(ε) ∈ Γ. With this, we can construct a new isometric action from Γ′′ to Γi. First,
we send γ to γi = α−1

i γαi and then we take the left action by γi on Γi. For each
generator γ′

1, ..., γ
′
k ∈ Γ′′ the translations γji = α−1

i γ′
jαi : Γi → Γi satisfy

lim
i→∞

sup disti(γji(ei), ei) ≤ ε,

where, as in section 7, disti denotes the modified distance in Γi, ei = e ∈ Γi

and j = 1, ..., k. Then, we can apply the isometry lemma 6.7 and so for each j

the sequence γji, i → ∞, converges to an isometry ℓj : Y → Y , so we obtain a
homomorphism (for each ε), A(ε) : Γ′′ → L. We have to prove that, when ε > 0

is small, then the image of A(ε) is sufficiently large. Displacement lemma 8.2 says
that for some γ′

j,
lim
i→∞

r−1
i D(α−1

i γ′
jαi, ri) = ε.

By definition,
r−1
i D(α−1

i γ′
jαi, ri) = sup

β
disti(γji(β), β),
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where β ∈ Bei(1) ⊂ Γi (as usual, Bei(1) ⊂ Γi is the ball of radius 1 centred at ei).
Hence, for the limit ℓj = A(ε)(γ′

j) we have

sup
y′

dist(ℓj(y′), y′) = ε,

where y′ ∈ By(1) ⊂ Y . Then, the localization lemma 5.2 ensures that for every
p ∈ Z≥0 there is some ε > 0 such that this isometry ℓj generates a subgroup of
order at least p in L. This finishes the proof.
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