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I developed my Bachelor Thesis during an Erasmus semester at Technische Uni-
versität München, which was supervised by Professor Gregor Kemper and was
titled Introduction to p-adic numbers. The p-adic numbers, denoted by Qp, play a
huge role in Algebraic Number Theory and Arithmetic Geometry, and they are
the most important example of a non-Archimedean field. By a non-Archimedean
field we mean a field with a non-Archimedean valuation, that is, a multiplicative
norm verifying the ultrametric property.

During this period I became aware that the peculiar topological properties of
spaces with a non-Archimedean metric made impossible to directly apply some of
the familiar notions in real and complex analysis. I also discovered that different
theories of analytic functions over non-Archimedean fields had been developed,
although at that time they appeared too complicated to understand. The Master
Thesis seemed like a good opportunity to explore this exciting subject.

In this Master Final Project I have studied Berkovich spaces, which is one of
the existing approaches to non-Archimedean geometry, a branch that deals with
analytic spaces over non-Archimedean fields. Let us first give some context on
p-adic geometry and the necessity to develop such a theory of analytic spaces.

Any norm gives rise to a metric space by setting the distance between two
elements as the norm of their difference. In the case of a metric space induced by
a non-Archimedean norm, the topological space is totally disconnected. For this
reason, when we try to develop a theory of analytic functions similar that for the
complex case (i.e., the Archimedean case), we encounter some notorious problems.

For example, the notion of continuity does not work as in the classical case.
We can see an example of this situation in the Archimedean case: it is an easy
exercise in undergraduate topology to prove that Q is totally disconnected with
the induced topology from R. Consequently, the following function f : Q→ Q is
continuous:

f (x) =

{
1 if x ≤

√
2

0 if x >
√

2

We have an analogous example in the p-adic numbers: one can easily verify
that due to the ultrametric property the following function on Qp is also continu-
ous:

g(x) =

{
1 if |x|p ≤ 1

0 if |x|p > 1
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Another problem is the definition of an analytic function. The usual notion
is that a function is analytic if it can locally be expressed as a convergent power
series. However, since (again due to the ultrametric property) both sets

{x ∈ Qp | |x|p ≤ 1} {x ∈ Qp | |x|p > 1}

are open, the function g defined above is locally constant, and therefore analytic
on the whole space in this sense. According to John Tate in [Arizona], the correct
intuition is that a function is analytic on an a disc if it is given by a convergent
power series on that disc. Notice that this is a much restrictive condition than
asking the function to have a power series expansion in a neighbourhood of every
point. Even though with this global definition now the function g is not analytic in
Qp, in the non-Archimedean setting every open ball (which is also topologically
closed) is a disjoint union of smaller balls. Therefore we will have many func-
tions that we think of them as analytic without a clear way to verify this global
definition.

A further difficulty is analytic continuation. Due to total disconnectedness, an
analytic function that extends the one given to a bigger domain will certainly not
be unique in most cases. This can clearly be seen in the example above

In the first half of the 20th century there were some attempts to overcome
these obstacles, among which is worth mentioning the theory of functions of one
variable by Marc Krasner in the 1940s. The first big theory on non-Archimedean
analysis was presented in 1961 by John Tate in the Harvard seminar "Rigid Analytic
Spaces". Motivated by topics on elliptic curves over local fields, he developed this
theory under the influence of Grothendieck’s works on Algebraic Geometry, and
as a matter of fact he received help from him and Serre. Over the next decades
the formalisation of this theory was simplified , the theory was further developed
and numerous applications were found, including a generalisation of the initial
problem from Tate to other abelian varieties.

As we will see in this work, Tate’s theory has a lot of ideas in common with
the theory of schemes, since mainly we build local parts of the global spaces,
called affinoid spaces, and then glue them to form rigid spaces. The idea is to
consider power series with coefficients in our non-Archimedean field k, and take
the Banach k-algebra of those converging in the unit ball. Then we quotient this
algebra by some ideal and take the set of maximal ideals. This is the underlying
set of an affinoid space. These local spaces have a natural topology that is also
totally disconnected, however the sheaf of analytic functions of the space (and
therefore in particular analytic continuation) is developed with respect to another
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kind of topological structure called Grothendieck topologies, which allows only
certain coverings by elements of this structure.

In 1990 Vladimir Berkovich presented a refinement of rigid analytic spaces
in his book "Spectral theory and analytic geometry over non-Archimedean fields". He
considered a generalisation of the algebras in rigid geometry and he set the space
to be the set of multiplicative seminorms on that algebra that extend the given
valuation in k (what is called the Berkovich spectrum). We can give this space a
topology with better properties, and after we construct these local spaces and
we globalise them following the same approach as in Tate’s theory, we obtain an
analytic space that still has good topological properties, such as local compactness,
local connectedness and local path-connectedness.

Despite initially being a very specialised subject, Berkovich spaces are still
actively studied and have a strong presence in different research topics, such as
the Langlands conjectures, Potential Theory or Tropical Geometry. For example,
in the latter Berkovich theory allows us to understand better tropical varieties,
which in turn can be used to determine the implicit equation of a variety given in
parametric terms.

The structure of this work is divided into three parts. We start with a chap-
ter with two different sections of preliminaries. In the first one we review the
construction of the p-adic numbers and its topological properties, and we give
the construction of the most important example of a complete, non-Archimedean
and algebraically closed field, Cp, the analogous of the complex numbers in the
Archimedean case. The second section is an introduction to schemes, which is of
course a huge topic, so we have given the minimal material that will allow us to
understand better the ideas in Berkovich theory. A central feature in modern ge-
ometry is to study the spacial objects locally from a better understood theory. Fa-
miliar examples are topological, differentiable and differential manifolds. Schemes
and Berkovich analytic spaces also present this quality. As we will see, the connec-
tion between both is very deep, and one should be familiar with the main ideas in
the Algebraic Geometry of schemes before entering the non-Archimedean world.
The section on schemes in this work includes the spectrum of a commutative ring
and its sheaf of functions (i.e., affine schemes), schemes and schemes of locally
finite type over a field. As we will see, algebraic varieties in the usual (undergrad-
uate) sense can be considered as schemes of this class, where the set of functions
defined on open subsets have the structure of finite a k-algebra. We will later use
this fact to categorically associate to every algebraic variety (and more generally a
scheme of locally finite type) an analytic space.
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In the second chapter we introduce the Berkovich spectrum of a Banach normed
commutative ring, which is the core idea in Berkovich spaces. This goes as follows:
we consider a ring that is complete with respect to a submultiplicative norm , and
we take the set of all seminorms (i.e., norms where nonzero elements need not
have nonzero norm) that are bounded by the given norm on the ring, and we give
this set a natural topology. This topological space is the Berkovich spectrum of
the ring, and it is the analogous of the set of prime ideals of a ring along with the
Zariski topology. We will define the affine space over a non-Archimedean field k
as the set of multiplicative seminorms on the ring of polynomials that extend the
norm in k (note that the ring of polynomials over a normed ring does not have
a canonical norm associated), following the same philosophy as in schemes. We
will see that we can cover this affine space by compact balls of increasing radii,
where each ball is the Berkovich spectrum of the ring of power series with a certain
radius of convergence.

In the case of the one dimensional affine space, the associated seminorm to
every point corresponds to a nested sequence of discs in k, and depending on
the convergence of this sequence we have four distinct types of points, inducing
different behaviours on the associated seminorm.

In the last part we study Berkovich’s analytic spaces. First we present the local
parts and then we glue them together. The local charts are called affinoid spaces,
which are locally ringed spaces where the topological space is the Berkovich spec-
trum of an affinoid algebra, the analogous of which in Algebraic Geometry is the
spectrum of the ring of polynomials modulo an ideal. However, studying the ring
of functions is significantly more elaborated. We start by taking certain closed sub-
sets of the affinoid space together with their algebra of analytic functions, called
affinoid domains, that are characterised by the same universal property as open
subschemes. We define a Grothendieck topology of affinoid domains, where the
algebra of functions of every affinoid domain is an assignment verifying the ax-
ioms of a sheaf in this G-topology. Then we extend this sheaf on closed sets that
can be finitely covered by affinoid domains, and finally we have the sheaf on the
topology of the space by taking inverse limits.

Following the same procedure as in differential structures, we define a local
chart as an open subset together with an isomorphism to an open subset of an
affinoid space, and then an analytic atlas as a set of local charts with a natural
compatibility condition on the intersection of charts. Finally, an analytic space is
a locally ringed space with an equivalence class of atlases.

These non-Archimedean analytic spaces have many interesting properties. We
only show some of the topological features that are related to the initial motivation
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of the theory, and then jump to the relation with Algebraic Geometry, also known
as GAGA after the paper by Jean-Pierre Serre Géométrie Algébrique et Géométrie
Analytique [Serre], where he proves similar statements for varieties over the com-
plex numbers. In this section we see the associated analytic space to an algebraic
variety, and then state some results that say that some important properties of a
variety are preserved by its analytification.

We have also included a section on rigid geometry. Even though this subject
probably deserves an entire thesis on its own, once we have studied Berkovich’s
spaces we can present the basic ideas in Tate’s geometry in an accessible way, and
show the close relationship between the two approaches.

Initially, the idea for this project was to converge in a study of the structure
of non-Archimedean algebraic curves, following the article article On the structure
of non-Archimedean analytic curves by M. Baker, S. Payne and J. Rabinoff. In this
paper first they define the skeleton of a curve as follows: first we take its analyti-
fication X and consider the set of type 2 points V (one of the possible type of
points in the classification of seminorms in the affine space) such that X \ V is a
disjoint union of balls and annuli (which are affinoid domains). For each of these
connected components, we define its skeleton in such a way that it is a strong
deformation retraction of the domain and it can be seen as a real interval or ray.
The skeleton of the curve is the union of V and the skeleton of its balls and annuli.
We can visualise this skeleton as a graph (or more precisely a one dimensional
affine polyhedral complex), with set of vertices V and edges the skeleton of its
components. Next, one studies the semistable formal models of X, which are defined
using formal schemes. Finally, there is a theorem establishing a bijection between
the set of vertices and the set of semistable formal models of X. As remarked by
the authors, semistable formal models can be simplified using schemes instead of
formal schemes, and our idea was to restate and prove the theorem in the context
of schemes. However, due to external causes we have had to advance the deadline
of the thesis submission and we have decided to exclude this part.

The main reference for Berkovich theory is still his book published in 1990
[Ber90]. The present work corresponds to the first three chapters. Berkovich style
of writing is very concise, and for someone unfamiliar with this subject it is def-
initely not an accessible introduction. Luckily, there are some annotations on the
first two chapters [Jon16] and some course notes [Jon], both available online and
written by Professor Mattias Jonsson, that do explain Berkovich theory in a more
plain language and have served as complementary resources to learn this theme.
For the section on the affine line, a very detailed reference we have followed is the
book [BR10].
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The canonical introduction to rigid geometry is [BGR], and Berkovich himself
points at some of its results when giving some proofs. The book contains a very
detailed study of non-Archimedian valuation theory and strictly affinoid algebras,
which appears directly in Berkovich theory, but also some results on rigid spaces
(especially in affinoid domains) have their correspondent result in Berkovich the-
ory that can be proven in the same way. For this reason I strongly believe that
when studying Berkovich spaces one has to eventually work with this book.
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Chapter 1

Preliminaries

1.1 The field Cp

Throughout some parts of this work we will be working with a non-Archimedean,
complete and algebraically closed field. The aim of this section is to provide a
construction of the most natural example, Cp. Roughly speaking, if Qp is the
analogous of R, then Cp is the equivalent of C. We start with a brief review of
the construction of Qp, leaving [Kob, § 1] or [Neu, § 2] as references for further
details. From now on p is a fixed prime number.

Definition 1.1. Let m ∈ Z, m ̸= 0, and let ordp(m) be the highest power of p that divides
m. For any rational number q = a

b , gcd(a, b) = 1, we set ordp(q) = ordp(a)− ordp(b)
and ord(0) = ∞. We define the map on Q

|q|p = p−ordp(q)

Definition 1.2. Let K be a field. A valuation or absolute value ∥∥ on K is a map ∥ · ∥ :
K → R satisfying

i ∥x∥ ≥ 0 for all x ∈ K and ∥x∥ = 0 if and only if x = 0.

ii) For all x, y ∈ K, ∥xy∥ = ∥x∥ · ∥y∥

iii) For all x, y ∈ K, ∥x + y∥ ≤ ∥x∥+ ∥y∥

We say that a valuation ∥ · ∥ is non-Archimedean if for any x, y ∈ K, ∥x + y∥ ≤
max{∥x∥, ∥y∥}.

One shows that | · |p is a non-Archimedean valuation in Q. We now consider
the same completion process that we use to construct R form Q. That is, we

1
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take the ring R of Cauchy sequences in Qp modulo the ideal m of sequences that
converge to 0 and we set

Qp := R/m

It is easily seen that if a Cauchy sequence does not converge to zero then it is
a unit by taking the inverse of almost all of its terms, obtaining, up to a finite
number of terms, a Cauchy sequence. Therefore m is a maximal ideal and Qp is a
field. There is a canonical injection Q ↪→ Qp by sending an element a ∈ Q to the
constant sequence (a, a, ...).

As one should expect, Qp is indeed complete, that is, every Cauchy sequence in
Qp converges to an element in Qp. Moreover, if a ∈ Qp and (an)n is a representative
of a, we can extend the valuation | |p on Q to Qp by setting |a|p = limn→∞ |an|p.
This limit exists as (|an|)n is a real Cauchy sequence due to to the reverse triangle
inequality |∥a∥ − ∥b∥| ≤ ∥a − b∥, and clearly extends the p-adic valuation in Q.
Moreover, by construction Q is dense in Qp.

As discussed in the introduction, the p-adic valuation induces a metric space
that due to the ultrametric property presents some peculiar properties. We now
state and proof the properties we are interested in:

Proposition 1.3. Let K be a field with a non-Archimedean valuation. We denote by
B(a, r) the open ball of radius r and center a (i.e., the set of points at distance strictly less
than r with respect to a), and by B(a, r) the closed ball of radius r and center a.

i) If b ∈ B(a, r), then B(a, r) = B(b, r). This means that every point contained in an
open ball is its center. The same is true for closed balls

ii) Every ball B(a, r), B(a, r), r ̸= 0 is open and closed, and has an empty boundary.

iii) Any two open balls (of positive radius) are either disjoint or contained in one another.
The same is true for closed balls.

Proof. Taking x, b ∈ B(a, r), we have |x− b| = |x + a− a− b| ≤ max{|a− b|, |x−
a|} < r and therefore B(a, r) ⊆ B(b, r) and also B(a, r) ⊆ B(b, r) . Switching a and
b we obtain the other inclusion, which proves i). For ii), every ball B(a, r) is open
by definition. To show it is also closed, we need to prove that its complement

B(a, r)c = {x ∈ K | |x− a| ≥ r}

is open. So assume y ∈ B(a, r)c and s < r, we have that for every z ∈ B(y, s),
|a − z| ≤ max{|a − y|, |y − z|} = | · |a − y| ≥ r, and therefore B(y, s) ⊆ B(a, r)c,
which means that B(a, r)c is open. Now if we denote by X the closure of the set X
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and ∂X its boundary, it follows from X = ∂X ∪ Xo that if every ball is open and
closed its boundary has to be empty. Lastly, to see iii), we have that if two open
balls B(a, r), B(b, s) are not disjoint then exists x ∈ B(a, r) ∩ B(b, s). Assuming
s < r, by i

B(a, r) = B(x, r) ⊆ B(x, s) = B(b, s)

Recall that a topological space (X, τ) is not connected if it can be expressed
as the union of two open sets X = U ∪ V such that U, V ̸= ∅ and U ∩ V = ∅.
We define the connected component of a point x ∈ X as the biggest connected
subspace of X that contains x. For non-archimedean valuations we have:

Proposition 1.4. Let K be a field with a non-Archimedean valuation, then the connected
component of any point x ∈ K is the set {x}. In other words, K is totally disconnected.

Proof. Let x ∈ K, we will show that if a set S contains x and another point y, then
S is not connected. Let r = |x− y|, we write

S = (S ∩ B(x, r/2)) ∪ (S ∩ (K \ B(x, r/2)))

This is a disjoint union, where x is in S ∩ B(x, r/2) but not y, and y is in S ∩ (K \
B(x, r/2)) but not x, and both sets are open and closed in S. This proves S is not
connected.

Next we consider Qp, the algebraic closure of Qp. We recall that for any field
there exists an algebraic closure, which is unique up to isomorphism ([Lang, §
5.2]), however we still need to indicate how the norm is extended. The existence
and uniqueness is given by following theorem:

Theorem 1.5 ([BGR, § 3.2.4, Theorem 2] ). Let K be a complete field with with respect
to a non-Archimedean valuation ∥ · ∥ and let L be an algebraic extension of K. Then there
is a unique valuation ∥ · ∥L on L that extends ∥ · ∥ on K, i.e., ∥x∥L = ∥x∥ for all x ∈ K.

In our setting we can explicitly give this valuation using the norm map:

Definition 1.6. Let K|F be a finite algebraic field extension. Given α ∈ K, we consider
the endomorphism x 7→ αx for any x ∈ K. Let Tα denote the associated matrix, we define

NK|F(α) = det(Tα)

Notice that NK|F(α) ∈ F.
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Proposition 1.7 ([Kob, § 3.2, Theorem 11]). Let K be a finite extension of Qp of degree
m. Then the map defined by

|α|p =
∣∣NK|Qp(α)

∣∣1/m
p

is a valuation on K that extends | · |p on Qp.

The computation of the norm of an element only depends on its minimal poly-
nomial, hence in particular all the Galois conjugates of an element have the same
valuation. Indeed, consider α ∈ K an element with degree n > 0, that is, its monic
irreducible polynomial over Qp f (X) = Xn + a1Xn−1 + ... + an has degree n. Then
the matrix of Tα in the basis {1, ..., αn−1} is

0 0 0 ... 0 −an

1 0 0 ... 0 −an−1

0 1 0 ... 0 −an−2
...

...
0 0 0 ... 1 −a1


and therefore

NQp(α)|Qp(α) = (−1)na1 =
n

∏
i=1

αi

with αi conjugates of α1 = α over Qp, where the last equality follows from f (X) =

∏i(X− αi).

Now let K be a Galois extension of Qp containing α, and assume ∥ · ∥ is a
valuation in K extending | · |p and let σ ∈ Gal(K|Qp) with σ(α) = α′. Then the
map ∥x∥′ = ∥σ(x)∥ is clearly a valuation in K, hence by Theorem 1.5 the two
valuations agree, and therefore ∥α∥ = ∥σ(α)∥ = ∥α′∥. Thus, conclude that all the
Qp conjugates of α have the same absolute value. In addition, since NQp(α)|Qp(α) ∈
Qp we have

|NQp(α)|Qp(α)|p = ∥NQp(α)|Qp(α)∥ = ∥∏
i

αi∥ = ∥α∥n =⇒ ∥α∥ = |NQp(α)|Qp(α)|
1/n
p

By the uniqueness of the extended valuation, this method allows us to calculate
the valuation of an element in an algebraic extension of Qp of infinite degree. Qp

is an instance of an infinite algebraic extension. To see this, it suffices to show
that the polynomial f (X) = Xn − p is irreducible in Qp for all n > 0. A simple
argument with valuations shows that f is irreducible in Qp if and only if it is
irreducible in Zp, and f is irreducible in Zp by Eisenstein criterion.

With Qp equipped with this extended valuation we still have not reached Cp,
for in the algebraic process of algebraic closure we have lost completion:
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Theorem 1.8 ([Kob, § 3.3, Theorem 12]). Qp is not complete.

Thus, we have to repeat the completion process again. The resulting field is
Cp. Indeed, it is a complete field and moreover:

Proposition 1.9 ([Kob, § 3.3, Theorem 13]). Cp is algebraically closed.

1.2 Schemes

Even though in the development of Berkovich Theory we will not be working
directly with schemes, analytic spaces also belong to the category of locally ringed
spaces. Moreover, there are multiple concepts in Berkovich Theory that have their
analogue in the theory of schemes, which helps us understand better the mo-
tivation of some definitions. For this reason we will define affine schemes and
schemes, following [Har, § 2.2]. After that we will introduce schemes of locally
finite type, which will later allow us to establish a connection between algebraic
varieties and analytic spaces.

1.2.1 Affine schemes

We start form the spectrum of a ring, which in early Algebra courses we have
seen as a topological space. We shall recall this construction. Let A be a commu-
tative and unitary ring (we will always deal with such rings unless we specify the
contrary). As a set, Spec(A) is the set of all primes ideals of A. Let S ⊆ A be a
subset of A, we define V(S) ⊆ Spec(A) as the set of all prime ideals containing S.

From this definition immediately follows:

Lemma 1.10. i) If S ⊆ A and a is the ideal generated by S, then V(S) = V(a)

ii) If a and b are two ideals of A, then V(ab) = V(a) ∪V(b).

iii) If {ai}i∈I is a set of ideals of A, then V(∑i ai) =
⋂

i V(ai).

iv) V((0)) = Spec(A) and V(A) = ∅.

From this lemma we can set a topology on Spec(A), called the Zariski topology,
where V(a) are its closed sets.

Remark 1.11. Let k be an algebraically closed field, by Hilbert Nullstellensatz
every maximal ideal of k[X1, ..., Xn] is of the form (X − a1, ..., X − an) for some
(a1, ..., an) ∈ kn. Not all the prime ideals are of this form, for in the Zariski topology
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of the affine space a subset is irreducible if and only if its ideal is prime. Therefore
there is a (continuous) embedding kn ↪→ Spec(k[X1, ..., Xn]), meaning that we can
consider the latter as an affine space "with more points".

The next step is to equip Spec(A) with a sheaf of rings, called the structure
sheaf. Let us review the basic definitions:

Definition 1.12. i) Let X be a topological space. A presheaf O of rings on X consists
of the following data:

1. For every open subset U ⊆ X, a ring O(U).

2. For every inclusion of open subsets V ⊆ U, a ring homomorphism ρU,V :
O(U)→ O(V)

satisfying the following conditions:

1. For every open subset U ⊆ X, ρU,U = idO(U).

2. If W ⊆ V ⊆ U are open subsets of X, then ρU,W = ρV,W ◦ ρU,V .

ii) A presheaf on X is a sheaf if for every U ⊆ X and every open covering U =
⋃

Ui,

1. If f , g ∈ O(U) and ρU,Ui( f ) = ρU,Ui(g) for all i ∈ I then f = g

2. If there are fi ∈ O(Ui) such that ρUi ,Ui∩Uj( fi) = ρUj,Ui∩Uj( f j) then there
exists f ∈ O(U) such that ρU,Ui( f ) = fi for all i ∈ I.

iii) Let O is a sheaf of rings on X and p ∈ X. The stalk Op of O at p is the direct limit
of O(U) for every p ∈ U, with the restriction maps given by ρU,V . In this case, this
is equivalent to saying that Op is the ring of germs of sections at p. More precisely,

Op =

⊔
p∈U

O(U)

 / ∼

where ∼ is the equivalence relation defined as follows: for any f ∈ O(U), g ∈
O(V), f ∼ g if there is W ⊆ U ∩V such that ρU,W( f ) = ρV,W(g). An element in
Op is therefore a germ ⟨U, s⟩ with s ∈ O(U). This concept is quite natural when
we think of germs of C∞ functions on a differentiable manifold.

We will define the structure sheaf following the approach in [AGII, § 1].

Let us first introduce a very useful notation. Let A be a ring and let x ∈
Spec(A) be a prime ideal p. We denote K(p) := Frac(A/p), and for any f ∈ A
let f (p) be the image of f under the canonical homomorphism A → K(p). Then
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if J ⊆ A is an ideal, V(J) = {x ∈ Spec(A) | f (x) = 0 ∀ f ∈ J}, which is the
same expression we have when defining the usual vanishing locus of an ideal in
Algebraic Geometry. We can also define the distinguished open sets of Spec(A),
which are given by D( f ) := {x ∈ Spec(A) | f (x) ̸= 0} for every f ∈ A. For every
open subset U = Spec(A) \V(S),

U = Spec(A) \V(S) = Spec(A) \
⋂
f∈S

V( f ) =
⋃
f∈S

D( f )

and therefore the distinguished open sets form a basis of the topology in Spec(A).

Recovering Remark 1.11 and denoting X = Spec(k[X1, ..., Xn]), we can view
every element f in k[X1, ..., Xn] as a function on X:

f : X →
⊔

x∈X

K(x) x 7→ f (x)

Even more, if x is a maximal ideal of the form (x− a1, ..., x− an), then K(x) ∼= k
and it is clear that f (x) = f (a1, ..., an), where the right hand side is the evaluation
of f in (a1, ..., an) in the usual sense.

We want the structure sheafO of the spectrum of an arbitrary ring to generalise
this relation between the ring of polynomials and its spectrum. Therefore we set
O(Spec(A)) = A. Moreover, there is a bijection between the prime ideals in A f

and the prime ideals in A not containing f , and therefore D( f ) is the spectrum of
A f . Hence, we define O(D( f )) = A f . This assignment is well defined in view of
the following lemma:

Lemma 1.13 ([AGII, § 1.1 Lemma 1.12]).

D( f ) ⊆
n⋃

i=1

D(gi) ⇐⇒ ∃m ≥ 1, ai ∈ A such that f m = ∑ aigi

Hence, if D( f ) ⊆ D(g) then f m = ag and there is a canonical map Ag → A f

given by b/gn 7→ ban/(ag)n = ban/ f mn. In particular, if D( f ) = D(g) we can
identify A f and Ag, and therefore the sheaf assignment is well defined. Moreover,
this canonical homomorphism gives us the restriction maps. We therefore have
the structure presheaf at the level of distinguished open sets. [AGII, § 1.1, Lemma
1.13] ensures that it also verifies the two conditions for a presheaf to be a sheaf. In
addition, in this setting the stalks can be easily computed: if x = p ∈ Spec(A),

Ox = lim−→
D( f )

f (x) ̸=0

O(D( f )) = lim−→
f∈A\p

A f = Ap
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Given a basis β of a topological space and a β-sheaf, that is, an assignment that
verifies the properties of a sheaf for open subsets and coverings in β, then there is
a natural way to define a sheaf that extends the given β-sheaf:

Proposition 1.14 ([AGII, Apendix I, Proposition 7]). Every β-sheaf extends canoni-
cally to a sheaf on all open sets. If F , F ′ are two sheaves, every collection of maps

ϕ(Uα) : F (Uα)→ F ′(Uα)

for all Uα ∈ β that commutes with restrictions extends uniquely to a map ϕ : F → F ′.

We still denote by O the sheaf on Spec(A) that extends the β-sheaf (here β is
the basis of distinguished open sets) defined above. With this notation,

Definition 1.15. The spectrum of a ring A is the pair (Spec(A),O)

We now want to abstract this pair (Spec(A),O) into an appropriate category,
which will allow us to say that the correspondence that assigns to every ring
A its spectrum is functorial. With this purpose in mind we have the following
definitions:

Definition 1.16. i) A ringed space is a pair (X,OX), where X is a topological space
and OX is a sheaf of rings on X

ii) A morphism of ringed spaces from (X,OX) to (Y,OY) is a pair ( f , f #), where
f : X → Y is a continuous function and f # : OY → f∗OX is a sheaf homomorphism
(i.e., a natural transformation between the two presheafs). Here f∗OX is the sheaf
on Y defined by f∗OX(U) = OX( f−1(U)).

iv) A ringed space (X,OX) is a locally ringed space if the stalk OX,p is a local ring for
every p ∈ X.

The morphisms in this category follow from the next series of observations.

A sheaf homomorphism φ : O → O′ induces a morphism on every stalk
φp : Op → O′p. Indeed, if ⟨U, s⟩ ∈ Op represents a germ at p, with s ∈ O(U), then
⟨U, φ(s)⟩ ∈ O′p. It is easy to see that this map is well defined due to the naturality
of sheaf homomorphisms. As a matter of fact, a sheaf homomorphism is an iso-
morphism if and only if it every induced morphism of stalks is an isomorphism,
see [Har, § 2.1, Proposition 1.1]).

Now given ( f , f #) a morphism of ringed spaces from (X,OX) to (Y,OY) and
p ∈ X, by the argument above we have a homomorphism OY, f (p) → f∗OX, f (p).
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Moreover, f induces a homomorphism f∗OX, f (p) → OX,p given by ⟨V, s⟩ 7→
⟨ f−1(V), s⟩ for V ⊆ Y and s ∈ f∗OX(V) = OX( f−1(V)), which is again clearly well
defined. Thus, we have that ( f , f #) induces a homomorphism f #

p : OY, f (p) → OX,p.

Recall that if A and B are local rings with mA and mB their maximal ideals,
respectively, a local ring homomorphism from A to B is a ring homomorphism
φ : A→ B such that φ−1(mB) = mA.

Definition 1.17. A morphism of locally ringed spaces (X,OX), (Y,OY) is a morphism
of ringed spaces ( f , f #) such that for every p ∈ X the induced homomorphism f #

p :
OY, f (p) → OX,p is a local homomorphism of local rings.

By the computation of the stalks above, (Spec(A),O) is a locally ringed space.
We are now ready to give the definition of schemes.

Definition 1.18. An affine scheme is a locally ringed space (X,OX) that is isomorphic,
to the spectrum of some ring. A scheme is a locally ringed space in which every point has
a neighbourhood U such that (U, (OX)|U) is an affine scheme.

A morphism of schemes is therefore a morphism of locally ringed spaces. Im-
portantly,

Proposition 1.19 ([Har, § 2.2, Proposition 2.3]). Let A, B be rings. If φ : A → B is a
homomorphism, then φ induces a natural homomorphism of locally ringed spaces

( f , f #) : (Spec(B),OSpec(B))→ (Spec(A),OSpec(A))

Conversely, any morphism of locally ringed spaces from Spec(B) to Spec(A) is induced
by a homomorphism of rings φ : A→ B as in the case before.

Proof. It is worth sketching a proof of this result. The morphism of topological
spaces is given by f (p) = φ−1(p) for every p ∈ B, which is continuous since for any
ideal a ⊆ A, f−1(V(a)) = V(φ(a)). To define f #, notice that by Proposition 1.14
it suffices to give the homomorphisms OSpec(A)(D(a)) → f∗OSpec(B)(D(a)) with
a ∈ A and D(a) ⊆ Spec(A). Since f−1(D(a)) = D(φ(a)) ⊆ Spec(B), that means
a homomorphism Aa → Bφ(a), which is canonically given by the localisation of
φ. One checks that f # satisfies the required conditions, obtaining a morphism
of locally ringed spaces ( f , f #). Conversely, given ( f , f #) : (Spec(B),OSpec(B)) →
(Spec(A),OSpec(A)) a morphism of affine schemes, since OSpec(A)(Spec(A)) = A,
f # gives us a ring homomorphism φ : A → B. One shows that the induced
morphism of affine schemes is again ( f , f #).

Therefore the Spec functor is an equivalence between the category of affine
schemes and the opposite category of commutative rings.
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1.2.2 Schemes of locally finite type

In Chapter 3 we will associate an analytic space to every algebraic variety (in
the sense of [Har, § 1]). This will be formalised in the language of schemes of
locally finite type over a field. We start by assigning a scheme to every algebraic
variety. As one might expect this is done using a functor, however the category
involving schemes is not the one we have just constructed:

Definition 1.20. Let S be a fixed scheme. A scheme over S is a scheme X together with a
morphism X → S. If X, Y are schemes over S, a morphism form X to Y is a morphism of
schemes f : X → Y such that the following diagram commutes:

X Y

S

f

We denote by Sch(S) the category of schemes over S. If A is a ring, we call a scheme over
A an object in Sch(A) := Sch(Spec(A)).

The motivation behind this idea is that among all the morphisms between
schemes we want to filter those "coming from geometry". Let us illustrate this with
an example. Take S = Spec(Q̄). Since a field has no proper ideals other than 0,
geometrically S is a single point and therefore we should expect its group of auto-
morphisms to be trivial. However, any non trivial homomorphism in Gal(Q̄|Q) in-
duces a non-trivial automorphism on S. The definition above avoids this probem.
If in this example we consider S as a scheme over S with the trivial automorphism
id : S → S, now a non-trivial element in Gal(Q|Q) is not a morphism of schemes
over S as the diagram does not commute.

Now we can assign every variety over an algebraically closed field k a scheme
over k:

Proposition 1.21 ([Har, § 2.2, Proposition 2.6]). Let k be an algebraically closed field.
Let Var(k) be the category of varieties over k. Then there is a fully faithful functor
t : Var(k)→ Sch(k).

As shown in the proof, for every variety V the underlying set in the topological
space of t(V) is the set of nonempty irreducible closed subsets of V, and closed
sets in this space are subsets of the form t(Y), where Y is a closed subset of V.

Next we define schemes of locally finite type. Recall that given a homomor-
phism of rings f : A→ B, B is called a finite A-algebra if B is finitely generated as
a A-module.
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Definition 1.22. A morphism f : X → Y is locally of finite type if there exists a covering
of Y by open affine subsets Vi = Spec(Bi) such that f−1(Vi) can be covered by open affine
subsets Uij = Spec(Aij) and Aij is a finite Bi-algebra. If, in addition, each f−1(Vi) can be
covered by a finite number of the Uij, the morphism is of finite type. We say that a scheme
over a ring A is of locally finite type if its structural morphism is locally of finite type.

Our interest in this type of schemes relies on the fact that through the functor t
of the last Proposition, every algebraic variety over an algebraically closed field k
is a scheme of locally finite type over k, since an algebraic variety can be covered in
a finite number of affine subvarieties, hence t(V) can be covered in a finite number
of affine schemes of the type Spec(Ai) with Ai a finitely generated k-algebra.

We have another concept that has its analogue in the theory of analytic spaces:

Definition 1.23. i) An open subscheme of a scheme X is a scheme U, the topological
space of which is an open subset of X, and whose structure sheaf OU is isomorphic
to the restriction OX|U of the structure sheaf of X.

ii) A morphism of locally ringed spaces f : X → Y is called an open immersion if f is
a homeomorphism of X onto an open subset of Y, and the map f−1OY → OX is an
isomorphism.

Open subschemes (and more generally open immersions) satisfy the following
universal property:

Proposition 1.24. Let X be a scheme and U ⊆ X an open subscheme. A morphism of

schemes f : Y → X has a unique factorization f : Y
f ′−→ U i−→ X if and only if f (X) ⊆ U.

Proof. Only the reverse implication is nontrivial. If f (X) ⊆ U, then as a set map
f = f ′ ◦ i. Now applying the functor i−1 to the map f #OY → f∗OX we obtain a
function OU → f ′∗OY. Taking this map as f ′#, we have f = f ′ ◦ i at the level of
schemes.

We also need to define separated and proper schemes for the GAGA theorems
in analytic spaces. In the Zariski topology two open subsets always intersect, and
therefore in particular the topology is not Hausdorff. The Hausdorff condition
eliminates the possibility of a sequence having two limits, and the intuition behind
the separation axiom is to prevent this phenomenon from happening. We can
state this by saying that if two continuous functions agree on a dense subset,
they should agree on the whole domain, or equivalently that the set where the
two functions agree is closed. One shows that an algebraic variety X verifies the
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separation axiom if and only if the diagonal {(x, x) ∈ X × X | x ∈ X} is a closed
subset in X× X.

If separation is the equivalent of the Hausdorff condition, properness is the
equivalent of compactness. A very convenient property of compact spaces is that
they have closed images under continuous maps, however our topology is too
weak for this to hold, in the sense that there are separated varieties (which are
thought of as Hausdorff) where every open covering admits a finite subcovering
that do not verify this condition. We will now introduce these two concepts in the
theory of schemes, which require to define the fiber product of two schemes.

Definition 1.25. Let S be a scheme and let X, Y be schemes over S. We define the fiber
product of X and Y over S, denoted by X×S Y as the inverse limit of these three elements
with their structural morphisms. More precisely, X ×S Y is a scheme together with mor-
phisms p1 : X×S Y → X, p2 : X×S Y → Y such that the following diagram commutes:

X×S Y X

Y S

with the following universal property: for every scheme Z with morphisms f : Z → X,
g : Z → Y with the same commutative diagram there exist a unique φ : Z → X ×S Y
such that f = p1 ◦ φ and g = p2 ◦ φ.

By first showing that if X = Spec(A), Y = Spec(B) and S = Spec(R) (and
therefore A, B are R-algebras) then X ×S Y = Spec(A ⊗R B), and then carefully
using gluing arguments one shows that the fiber product of any two schemes X, Y
over a scheme S always exist ([Har, § 2.3, Theorem 3.3]).

Now we can define the separation axiom. We will first need the analogous of
a closed subset and the diagonal of a space.

Definition 1.26. i) A closed immersion is a morphism of schemes f : Y → X such
that it induces a homeomorphism of sp(Y) (the underlying topological space of Y)
onto a closed subset of sp(X), and so that the induced map of sheaves f # : OX →
f∗OY is surjective.

ii) let f : X → Y be a morphism of schemes. The diagonal morphism is the unique
morphism X → X ×Y X such that its composition with both projections p1, p2 :
X×Y X → X, is the identity on X.
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iii) We say that the morphism f is separated, or equivalently that X is separated over
Y, if the diagonal morphism is a closed immersion. A scheme is separated if it is
separated over Spec(Z).

Finally, we have the properness condition:

Definition 1.27. A morphism of schemes f : X → Y is proper if it is of finite type and
if for every Y′ → Y the canonical map X ×Y Y′ → Y′ is closed (i.e., the image of a closed
subset is closed).
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Chapter 2

The Berkovich spectrum

This second chapter is divided into two distinct parts. In the initial one we
introduce the Berkovich spectrum of a Banach ring, which is the central idea in
Berkovich theory. One of the advantages of Berkovich theory with respect to
other theories of non-Archimedean analytic spaces it that is it also deals with
Archimedean and trivial valuations, and for this reason in the first part we will
present the subject in full generality, starting with some preliminaries on norms
and seminorms. The second part is dedicated to the study of the spectrum of
convergent power series over a field with a non-Archimedean valuation, which
will later define our space.

We have noticed that for some reason there is little agreement in the literature
about the terminology on norms and valuations. We will follow the conventions
used in [Tem].

2.1 Seminormed groups and rings

Definition 2.1. Let A be an abelian group. A seminorm on A is a map | · | : A → R+

such that

i) |a + b| ≤ |a|+ |b| for all a, b ∈ A

ii) |0| = 0

iii) | − a| = |a| for all a ∈ A

A seminorm is non-Archimedean if it satisfies the strong triangle inequality or ultrametric
property, that is, for any a, b ∈ A we have |a + b| ≤ max{|a|, |b|}.

15
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It is immediate to see, and it is in fact the definition of norm given in some
literature (e.g., [Ber90, § 1.1], [BGR, § 1.1.1]), that the conditions i), ii) can be
replaced by |a− b| ≤ |a|+ |b|.

Another important remark is that if | · | is not Archimedean and a, b ∈ A with
|a| > |b|, then |x + y| = max{|x|, |y|} = |x|, for |x + y| ≤ max{|x|, |y|} = |x| =
|x + y− y| ≤ max{|x + y|, |y|} = |x + y|.

When the kernel of the seminorm is trivial, that is, when |a| = 0 if an only
if a = 0, we say that the seminorm is a norm. We can consider the category of
seminormed abelian groups, where the morphisms are given by the following
definition:

Definition 2.2. Let (A, | · |A, (B, | · |B) be seminormed abelian groups and f : A → B
a group homomorphism, we say that f is bounded if there is C > 0 such that | f (a)|B ≤
C|a|A for all a ∈ A.

In particular, (A, | · |) and (A, ∥ · ∥) are isomorphic if there is C > 0 such that
|a| ≤ C∥a∥ and ∥a∥ ≤ C|a| for all a ∈ A. In this case we say that ∥∥ and | | are
equivalent.

For any subgroup H of a seminormed abelian group (A, | · |), there is an in-
duced seminorm, called residue seminorm, on A/H given by

∥a + H∥ = inf
h∈H
|a + h|

Given f : A→ B a bounded group homomorphism, we say that f is admissible
if A/ker( f ) with the residue seminorm is isomorphic to Im( f ) with the seminorm
induced from B, that is, if there is a constant C > 0 such that

1
C

inf
h∈Ker( f )

∥a + h∥A ≤ ∥ f (a)∥B ≤ C∥a∥A ≤ C inf
h∈ker( f )

∥a + h∥A

Moreover, a seminorm | · | on a group A induces a pseudo-metric (where the
distance of two distinct points need not be zero) given by d(a, b) = |a− b|. The
induced seminormed topology is the weakest topology for which the balls

Ba,r = {x ∈ A | |x− a| < r}

are open. Clearly the operations on A are then continuous, and also that the space
is T0 (that is for any two distinct points there is an open sets containing one point
but not the other) if and only if the seminorm is a norm. Two seminorms are
equivalent if and only if their induced seminormed topologies coincide.
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In addition, bounded homomorphisms are continuous with respect to the
seminorm topologies. Indeed, a bounded homomorphism f : (A, ∥ · ∥1) → (B, ∥ ·
∥2) verifies ∥ f (x) − f (y)∥1 = ∥ f (x − y)∥ ≤ C∥x − y∥2. However, the converse
is not true in general. For example, let k be a field and A = k[T]. Given two
positive real numbers α < α′, we define the norms ∥ · ∥, ∥ · ∥′ on A given by
∥∑k≥0 akTk∥ = max{αk | ak ̸= 0}, and the same for ∥ · ∥′. It is easy to see that
the map (A, ∥ · ∥) → (A, ∥ · ∥′) induced by the identity is bounded, and therefore
continuous, however its inverse is continuous and not bounded if α < 1.

As usual, we say that a seminormed group A is complete if every Cauchy se-
quence in A converges to an element in A. Importantly,

Proposition 2.3 ([BGR, § 1.1.7, Proposition 3]). If G is complete and H is a subgroup
of G, then G/H is complete.

Generalising the completion process we have seen in the previous chapter we
have

Definition 2.4. A completion (or separated completion) of a seminormed group A is a
pair (Â, i) satisfying

i) Â is a complete normed group.

ii) i : A→ Â is an isometric homomorphism

iii) i(A) is dense in Â

Proposition 2.5. Every seminormed group A admits a completion

Proof. As in classical valuation theory, we show that the group of equivalence
classes of Cauchy sequences in A modulo the subgroup of sequences converging
to 0 is complete. Let this group be denoted by B and let i be the natural inclusion
A → B. Then (B, i) satisfies the three properties except that B is a normed group,
in case the seminorm of A has a non-trivial kernel. If | · | denotes the extended
seminorm in B, we set Â := B/ker(| · |) equipped with the residue norm. Â is now
clearly normed and by the previous proposition it is complete. The composition
with the projection gives us the desired map i.

Given a ring we can extend the notion of a seminorm and norm so that the
multiplication is continuous with respect to the topology we have just defined:
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Definition 2.6. 1. A seminorm on a ring A is a seminorm on the additive group of A
such that |ab| ≤ |a| · |b| for all a, b ∈ A. If we instead have an equality we say that
| · | is a semivaluation or multiplicative seminorm on A. Similarly, if | · | is a norm
on the additive group of A we talk about norms and valuations.

2. Let (A, | · |) be a seminormed ring and M an A-module. A seminorm on M is an
additive seminorm ∥∥ such that there exists C > 0 verifying ∥am∥ ≤ C|a|∥m∥ for
all a ∈ A, m ∈ M.

We can adapt the definitions of bounded homomorphisms, seminorm topolo-
gies and separated completions we have just given for seminormed groups to
seminormed rings and modules.

Example 2.7. 1. The trivial seminorm of a ring A, | · |0, is the map sending
every element a ∈ A \ {0} to 1 ∈ R. It is immediate to see that | · |0 is power
multiplicative if and only if A has no nilpotent elements, and that it is a
valuation if and only if A is a domain.

2. The n-adic norm in Q can also be defined if n is not prime by setting, for
any q ∈ Q, |q|dn = with d the minimal d ∈ Z such that qnd ∈ Z(n) (Z(n)

is the localisation of Z with respect to the multiplicative closed subset of
all integers coprime to n). However, this norm is a valuation if and only
if n is prime, e.g., |153|15 = 15−3 ≤ 15−2 = |3 · 15|15|5 · 15|15. Moreover, if
n = pm1

1 ...pmk
k and Qn denotes the completion of Q with respect to the n-adic

norm, using the Chinese residue theorem one shows that

Qn =
k⊕

i=1

Zpi

3. Another generalisation of the p-adic valuation on Q is to take 0 < ε < 1 and
set |pn a

b |p,ε := εn. It should be clear that every | · |p,ε is equivalent to the usual
| · |p = | · |p, 1

p
, in the sense that a sequence in Q is a Cauchy sequence with

respect to | · |p,ε if and only if it is a Cauchy sequence with respect to | · |p.
Thus, the completion of Q with respect to | · |p,ε is Qp for any 0 < ε < 1.
Similarly, the usual absolute value, which will be denoted as | · |∞, can be
generalised by |x|∞,ε = |x|ϵ, which is again equivalent to | · |∞. Ostrowski
theorem provides an exhaustive list of norms in Q:

Theorem 2.8 ([Kob, § 1.2, Theorem 1]). Every non-trivial norm on Q is equiva-
lent to | · |p for some prime p or for p = ∞.

Unlike in classical valuation theory, in Berkovich theory it is important to
distinguish between equivalent valuations.
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4. Let (A, ∥ · ∥) be a normed ring, for every a ∈ A the spectral seminorm is
defined as

ρ(a) := lim
n→∞
∥an∥1/n

The existence of this limit is ensured by Fekete’s lemma, which states that
for a real subadditive sequence (we say that a real sequence xn is subadditive
if xn+m ≤ xn + xm), the limit xn/n exists and it is equal to infn xn/n. We can
apply it here to the sequence 1

n log(∥an∥) Thus,

ρ(a) = inf
n
∥an∥1/n

This norm is therefore bounded by ∥ · ∥ and it is power-multiplicative, that
is, ρ(am) = ρ(a)m for all a ∈ A and every m > 0. Moreover, for any other
power multiplicative norm | · | in A bounded by ∥ · ∥ we have |a| = |an|1/n ≤
∥an∥1/n, hence taking the limit we conclude that ρ it is the maximal power
multiplicative norm bounded by ∥ · ∥.

2.2 Banach rings and the Berkovich spectrum

As in any theory of analytical spaces, we will be working with power series
over some field or ring, and for this reason we need our base ring to be complete:

Definition 2.9. A Banach ring A is a complete normed ring, or equivalently the homo-
morphism A → Â is an isomorphism.

We have some useful results involving ideals and topology in a Banach ring:

Lemma 2.10. Let A be a Banach ring. Then:

i) The closure of an ideal is an ideal.

ii) The set of invertible elements is open.

iii) Every maximal ideal m is closed.

Proof. i) is trivial using that A is a metric space and the operations are continuous
(as a matter of fact, this result holds in any topological ring).

ii) First we claim that if h, x ∈ A, x is invertible and ∥h∥ < 1
2∥x−1∥ , then x + h

is invertible. To show this we first notice that ∥x−1h∥ ≤ ∥x−1∥ · ∥h∥ ≤ 1
2 < 1.

Therefore ∑k≥0(−x−1h)k converges and it is the inverse of 1+ x−1h. Thus, x + h =

x(1 + x−1h) is invertible since it is the product of two invertible elements.
Now let G(A) be the set of invertible element of A and let x ∈ G(A). Then by

the previous claim B(x, 1
2∥x−1∥ ) ⊆ G(A), i.e, G(A) is open.
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iii) By i) the closure m of m is an ideal, and since m is maximal we either
have m = m or m = A. However the latter is not possible for the set of invertible
elements is open, and therefore is an open neighbourhood of 1 not contained in
m.

Example 2.11. 1. For instance, every domain is a Banach ring with respect to
the trivial norm, for the only Cauchy sequences are those that are eventually
constant and equal to 0.

2. Z with the usual absolute value is also a Banach ring.

3. Let r = (r1, ..., rn) be a tuple of positive real numbers and (A, | · |) a normed
ring, we can define a norm in A[X1, ..., Xn] as∥∥∥∥ ∑

i∈Nn

aiXi
∥∥∥∥

r
= ∑

i∈Nn

|a|ri

where we used the notation Xi := Xi1
1 ...Xin

n . The completion of (A[X1, ..., Xn], ∥ ·
∥r) is denoted by A{r−1X}, and it is the set of power series in Â with polyra-
dius of convergence r, meaning

A{r−1X} =
{ ∞

∑
i∈Nn

aiXi ∈ Â[[X1, ..., Xn]] | ∥ ∑
i∈Nn

aiXi∥r < ∞
}

Notice that every element in A{r−1X} defines a function on the subset of
elements z = (z1, ..., zn) ∈ An with |zi| < ri for all i.

4. If A is a Banach ring and a is a closed ideal, then A/a is a Banach ring (with
the residue seminorm). Indeed, we know that in a metric space the distance
between a closed set and a point is zero if and only if the point lies in the
set. Hence, taking into account that the residue norm can be expressed (by
definition) as ∥ f + a∥ = d( f , a), if a is closed then the residue seminorm is a
norm. The completion condition follows from Proposition 2.3.

Next we define the Berkovich spectrum of a Banach ring, which as we will
later see is the space of our geometry.

Definition 2.12. The spectrum (or Berkovich spectrum) of a Banach ring (A, ∥∥) is the
setM(A) of all bounded semivaluations | |x on A, i.e., | |x ≤ C∥∥ for some C > 0. We
topologiseM(A) with the weakest topology such that the maps

| f | :M(A)→ R+ | |x 7→ | f |x

are continuous for all f ∈ A.
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Remark 2.13. If the norm ∥ · ∥ on A is a valuation, then it is easy to see that C = 1:
for every n > 0, | f |nx = | f n|x ≤ ∥ f n∥ = ∥ f ∥n =⇒ | f |x ≤ C1/n∥ f ∥, and the result
follows from letting n→ ∞.

We will use the notation | f (x)| = | f |x. It is clear that px := Ker(| |x) is a
prime ideal for any x ∈ M(A), and therefore A/Ker(| · |x) is a valued domain.
The completed field of fractions of this ring is called complete residue field of x,
denoted as H(x). Given f ∈ A, we will denote f (x) the image of f under the
natural map A → H(x).

Remark 2.14. There is a canonical map ker :M(A) → Spec(A) given by x 7→ px,
which is continuous since for any ideal a ⊆ A

ker−1({p ∈ Spec(A) | a ⊆ p}) =
⋂
f∈a
{x ∈ M(A) | | f (x)| = 0}

But we can establish a more concrete analogy betweenM(A) and Spec(A):

1. A useful intuition onM(A) is the following: we define a character of A as a
nonzero bounded homomorphism fromA to a valued field k. Two characters
χ′ : A → k′, χ′′ : A → k′′ are said to be equivalent if there exists a character
χ : A → k and embeddings k ⊆ k′, k ⊆ k′′ such that the following diagram
commutes:

A

k′′ k k′

χ′
χ

χ′′

Now for every | · |x ∈ M(A), the map A → H(x) defined by f 7→ f (x)
is a character of A, and if χ : A → k is a character then f 7→ |χ( f )| is
a semivaluation in M(A). It is immediate that two equivalent characters
define the same semivaluation on A, conversely if two characters define the
same semivaluation then they are equivalent as they both factor through
the character A → H(x). In particular, this last character is the minimal
representative of its equivalence class. Thus, M(A) is the set of equivalent
characters of A.

2. Similarly, Spec(A) is the set of equivalence classes of algebraic characters of
A, where an algebraic character is a nonzero homomorphism A → k and
the equivalence of algebraic characters is defined in the same way as before.
In this case, a prime ideal p ⊆ A corresponds to the algebraic character
A → Frac(A/p), and an algebraic character χ : A → k corresponds to the
prime ideal χ−1(0).
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Therefore we can say thatM(A) is the valued version of Spec(A).

The assignment A 7→ M(A) can be stated as a contravariant functor from the
category of Banach rings (the morphisms are given by bounded ring homomor-

phisms) to the category of topological spaces, where every A f−→ B is sent to the
continuous map given by

M(B)→M(A) | · | 7→ (a 7→ | f (a)|)

This map is well defined since f is bounded, and the continuity follows directly
from the definitions.

The spectrum of a Banach ring satisfies the following three properties:

Theorem 2.15. The spectrumM(A) of a nonzero Banach ringA is a nonempty, compact
and Hausdorff space.

Proof. First we show the separation property. Let | |1, | |2 ∈ M(A) and let f ∈ A
and t ∈ R such that | f |1 < t < | f |2. Then

U1 = {| · | ∈ M(A) | | f | < t} U2 = {| · | ∈ M(A) | | f | > t}

are, by definition of the topology, open, and also disjoint sets satisfying | · |1 ∈ U1,
| · |2 ∈ U2. Thus,M(A) is Hausdorff.

For the compactness, if we take the real interval [0, ∥ f ∥] with the subspace
topology, then the assignment | · |x → (| f |x) f∈A defines an embedding

M(A) ↪→ P := ∏
f∈A

[0, ∥ f ∥]

where P is given the product topology. By Tychonoff’s theorem we have that P is
compact, and we also have that this embedding is a closed map. Thus, the image
ofM(A) is closed in P, and therefore compact. Hence,M(A) is compact.

Finally we show thatM(A) is nonempty. We can first make some assumptions
on A:

1. A is a field. If not, let m be a maximal ideal and take the field A/m. Then
the projection to the quotient (as a normed ring with the residue norm)
is a bounded homomorphism, and therefore considering the induced map
M(A/m)→M(A) it suffices to show thatM(A/m) ̸= ∅.

2. The norm ∥ · ∥ on A is a minimal, i.e., if | · |′ is a seminorm on A and
| f |′ ≤ ∥ f ∥ for all f ∈ A, then ∥ · ∥ = | · |′. We can use Zorn Lemma to
produce a minimal seminorm, and then take the separated completion of A.
As before, it is enough to show that the spectrum of A with respect to this
minimal norm is not empty.
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3. The norm on A is power multiplicative. If not, we take the separated com-
pletion of A with respect to the spectral norm.

Now we claim that this norm ∥ · ∥ is multiplicative, that is, ∥ · ∥ ∈ M(A). Note
that, since A is a field, it suffices to show that ∥ f ∥−1 = ∥ f−1∥ for all f ∈ A, for in
that case

∥ f g∥ = ∥ f−1g−1∥−1 ≥ (∥ f−1∥ · ∥g−1∥)−1 = ∥ f g∥

and we have the other inequality by definition. Assume ∥ f ∥−1 < ∥ f−1∥, and let
r = ∥ f−1∥−1 (and therefore ∥ f ∥ > r ) and A′ = A{rT}. We see that, due to power
multiplicity, in A′ we have∥∥∥∥∑

i≥0

(
1
f

T
)i ∥∥∥∥′ = ∑

i≥0
(r/r)i = ∞

hence f − T is not invertible in A′. We can then consider A′′ = A′/( f − T), where
the residue seminorm ∥ · ∥′′ induces a seminorm in A. Then ∥ f ∥′′ = ∥T∥′ = r <

∥ f ∥, contradicting the minimality of ∥ · ∥.

Example 2.16. 1. In the case of a valuation field (k, ∥ · ∥), the norm is already
multiplicative, so ∥ · ∥ ∈ M(k). Even more, M(k) = {∥ · ∥}, because if
| · | ∈ M(k) then | f | ≤ ∥ f ∥ for all f ∈ k by definition, and therefore also
| f |−1 = | f−1| ≤ ∥ f ∥−1 = ∥ f−1∥ (recall that |1| = 1 since |1| = |12| = |1| · |1|),
from which it follows ∥ f ∥ ≤ | f |.

2. Take the Banach ring (Z, | · |∞). The absolute vale is the largest norm that can
be defined on Z, for |n| ≤ n|1| = |n|∞, and the same for | − n| = |n|. Since
Ker(| · |x) is a prime ideal of Z for every x ∈ M(Z), we have the following
cases:

i) Ker(| · |x) = (p) for some prime p. By the example above the induced
seminorm on Z/pZ is the trivial seminorm, and therefore

|m|x =

{
1 if m ̸∈ (p)

0 if m ∈ (p)

ii) Ker(| · |x) = (0). In this case the norm can be extended to Q by
multiplicativity, and therefore by Ostrowski theorem | · |x = | · |p,ε or
| · |x = | · |∞,ε (notice that it is important to distinguish between equiva-
lent semivaluations).

We give two more results on the spectrum of a ring. The first one is that the
units are characterized by the spectrum:
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Proposition 2.17. Let A be a Banach ring. Then f ∈ A is a unit if and only if | f |x ̸= 0
for all | · |x ∈ M(A)

Proof. If f is a unit and | · |x ∈ M(A) is a multiplicative norm, then 1 = |1| =
| f (x) f−1(x)| = | f (x)| · | f−1| =⇒ | f (x)| ̸= 0. Conversely, if f ∈ A is not a
unit then it is contained in a maximal ideal m (by Zorn Lemma). Then A/m is a
Banach ring, and thereforeM(A/m) is not empty. Then as we have seen the map
A → A/m inducesM(A/m)→M(A). An element | · |x in the image of this map
satisfies | f (x)| = 0.

Another important result states that the spectral norm can be computed in
terms of the elements inM(A):

Proposition 2.18. Let A be a Banach ring. Then for every element f ∈ A,

ρ( f ) = max
x∈M(A)

| f (x)|

Proof. The maximum is well defined as it is the supremum of a continuous func-
tion over a compact set. Now for any x ∈ M(A) and f ∈ A, we have | f |x =

| f n(x)|1/n ≤ ∥ f n∥1/n, and therefore taking the limit we obtain ρ( f ) ≥ maxx∈M(A) | f (x)|.
For the other inequality, let r > maxx∈M(A) | f (x)| we define the Banach ring

A{rT} := {g = ∑
k≥0

akTk ∈ A[[T]] | g := ∑
k≥0
∥ak∥r−k < ∞}

We have |T|x ≤ ∥T∥ = r−1 for every | · |x ∈ M(A{rT}), and therefore | f T|x <

1 for every f ∈ A (by definition of r), which implies that |1 − f T|x ̸= 0. By
Proposition 2.17, 1− f T is invertible, which is necessarily equal to ∑k≥0( f T)k. In
particular, ∑k≥0 ∥ f k∥r−k converges. Thus, ρ( f ) = limk ∥ f k∥1/k < r.

2.3 The affine space

Definition 2.19. Let A be a Banach ring and C an A-algebra. We define the analytic
spectrumM Spec(C) of C as the set of real semivaluations on C that are bounded on A,
that is, the restriction of any | · |x ∈ M Spec(C) on A is bounded by the norm on A.

As usual, we giveM Spec(C) the weakest topology such that the maps

M Spec(C)→ R+ | · |x 7→ | f |x

with f ∈ A are continuous.

Definition 2.20. The n-dimensional affine space over a Banach ring A is

An
A :=M Spec(A[T1, ..., Tn])
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Proposition 2.21. One has

An
A =

⋃
r∈Rn

+

M(A{r−1T)})

In particular, An
A is locally compact.

Proof. First, every | · |x ∈ M(A{r−1T)}) is a semivaluation whose restriction to
A[T1, ..., Tn] is bounded on A, and therefore | · |x ∈ An

A. Conversely, if | · |x ∈ An
A

we can take r > |T|x (meaning ri > |Ti|x), and extend | · |x to a semivaluation in
A{r−1T)} as ∣∣ ∑

k≥0
akTk∣∣ := lim

m→∞
|

m

∑
k=0

akTk|x

which defines an element inM(A{r−1T)}).

We will refer to M(A{r−1T)}) as the closed disc of polyradius r, and denote
it by E(0, r).

We can extend the notation H(x) to denote the completed field of fractions of
A[T1, ..., Tn]/Ker(| · |x) for x ∈ An

A.

If k is a valuation field, there is an embedding kn ↪→ An
k that sends every a ∈ Kn

to the semivaluation defined by | f |a := | f (a)|. For k = C with an Archimedean
valuation, we can make use of Gelfand-Mazur theorem:

Theorem 2.22 ([Rud, § 10, Theorem 10.14]). Let A be a Banach algebra over C which
is also a field. Then A ∼= C.

Then the emdedding presented above is surjective, since for any element x ∈
An

C, H(x) is a Banach algebra over C and a field, and therefore by Gelfand-Mazur
theorem H(x) ∼= C. Hence, the kernel of x is a maximal ideal of C[T1, ..., Tn], and
by Hilbert Nullstellensatz it is defined by a point in Cn.

In view of this discussion, one can define a sheaf of analytic functions on
An

C analogous to complex analytic spaces, where an analytic function on a subset
U ⊆ An

A is a map
f : U →

⊔
x∈U

H(x)

that sends every point x ∈ U to an element f (x) in H(x) that is a local limit of
rational functions (see [Ber90, § 1]). This approach is also valid for the analyti-
fication of a variety, however for more general spaces we need to follow another
construction.
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2.4 Classification of points in A1
k

Unlike in the last example, in the affine space over a Banach field with a non-
Archimedean valuation the map k ↪→ An

k is not surjective. When studying Banach
rings with non-archimedian norms, some interesting properties appear. For ex-
ample, due to the ultrametric property a sequence (an)n is a Cauchy sequence if
and only if limn ∥an − an+1∥ = 0. In particular, a series ∑k≥0 ak is convergent if
and only if an → 0.

In the case of valued rings, a useful result is that the valuation is non-Archimedean
if and only if |n| ≤ 1 for all natural n > 0 ([Neu, § 2.3, Proposition 3.6]). As a
consequence, if A is a Banach ring A with a non-Archimedean norm, a semi-
valuation in M(A) has to be non-Archimedean, as otherwise we would have
1 < |n| ≤ ∥n∥ ≤ 1.

We will now classify the points in A1
k . In what follows we fix k a complete

field with a non-trivial and non-Archimedean valuation. In this section we further
assume that k is algebraically closed, and as we will see later this covers the general
case up to a certain action of the Galois group.

In view of Proposition 2.21 to study the affine space it is crucial to understand
E(0, r) :=M(k{r−1T}), the spectrum of

k{r−1T} = {∑
k≥0

akTk | lim
k
|ak|rk = 0}

with the non-Archimedean multiplicative norm given by

∥∑
i≥0

akTi∥ = max
i
{|ai|ri}∥

The following result is known as Gauss Lemma:

Lemma 2.23 ([BGR, § 1.5.3, Corollary 2]). The norm defined above is a valuation.

We should keep in mind the following observations:

Remark 2.24. 1. For any x ∈ E(0, r), if c ∈ k then |c|x = ∥c∥ = |c|. This is
because |c|x ≤ ∥c∥ and |c|−1

x = |c−1|x ≤ |c−1| = |c|−1, from which follows
the other inequality.

2. Since k is algebraically closed any polynomial in k[T] is the product of linear
terms, and therefore a multiplicative norm | · | in k[T] is determined by |T−
a| for a ∈ k. And since k[T] is dense in k{r−1T}, a multiplicative seminorm
in k[T] determines a seminorm in k{r−1T}.



2.4 Classification of points in A1
k 27

3. Let D(0, r) be the set of elements a in k such that |a| ≤ r, any z ∈ D(0, r) and
f = ∑k≥0 aiTi ∈ k{r−1T} the series ∑i aizi is convergent since limi |aizi| ≤
limi |ai|ri = 0 and therefore f (z) is a well-defined element in k.

Next, for each subdisc D(a, s) ⊆ D(0, r), we define the supremum norm

[ f ]D(a,s) := sup
z∈D(a,s)

| f (z)|

This norm is clearly bounded by the norm in k{r−1T} and also multiplicative due
to the Maximum Modulus Principle in Non-Archimedean analysis, which using
our notation can be stated as

Proposition 2.25 ([BGR, § 5.1.4, Proposition 3]). Let f (T) = ∑i≥0 aiTi ∈ k{r−1T}.
Then

[ f ]D(a,s) = sup
i
|ai|si

More generally, for any sequence of descending (or nested) discs x = {D(ai, ri)}i≥1,
that is, D(ai+1, ri+1) ⊆ D(ai, ri) ⊆ D(0, r) we can consider

[ f ]x = lim
i→∞

[ f ]D(ai ,ri)

The classification of points is given by the following result:

Theorem 2.26. For every x ∈ E(0, r) there exists a nested sequence of discs D(a1, r1) ⊇
D(a2, r2) ⊇ ... such that

| f |x = lim
i→∞

[ f ]D(ai ,ri)

If this sequence has a nonempty intersection, then either

i) The intersection is a single point, and in that case | f |x = | f (a)|x for every f ∈
k{r−1T}

ii) The intersection is a closed disc D(a, s) and | f |x = [ f ]D(a,s) for every f ∈ k{r−1T}.

Proof. Let x ∈ E(0, r) and consider the family of discs

F = {D(a, |T − a|x) | a ∈ D(a, r)}

where we allow ri = 0. We claim that F is totally ordered by containment. To
prove this, let a, b ∈ D(0, r) and |T − a|x ≥ |T − b|x. Then

|a− b| = |a− b|x = |(T − b)− (T − a)|x ≤ max{|T − b|x, |T − a|x} = |T − a|x



28 The Berkovich spectrum

with an equality if |T− a| > |T− b|. In particular, b ∈ D(a, |T− a|x) and D(b, |T−
b|x) ⊆ D(a, |T − a|x).

Now put s = infa∈D(0,r) |T− a|x and take a sequence of points ai ∈ D(0, r) such
that ri = |T − ai|x satisfy limi ri = s. We claim that

|T − a|x = lim
i
[T − a]D(ai ,ri)

for all a ∈ D(0, r). By definition of s we have |T − a|x ≥ s, therefore we have two
cases.

If s = |T − a|x then by the previous reasoning ri = |T − ai|x ≥ |ai − a|, and
therefore a ∈ D(ai, ri). Hence by definition

|T − a|x = sup
z∈D(ai ,ri)

|z− a| = ri

Since limi ri = r, the claim is true. And if |T − a|x > s, then for every ai such
|T − a| > |T − ai|, which holds for all but a finite number, we have |a − ai| =
|T − a| > |T − ai| = ri, hence

|T − a|D(ai ,ri) = sup
z∈D(ai ,ri)

|z− ai| = |a− ai| = |T − a|x

Therefore the claim is true as well. As noted previously, | f |x for any f ∈ k{r−1T}
is determined by the value on the polynomials T − a, hence we have

| f |x = lim
i
| f |D(ai ,ri)

for every f ∈ k{r−1T}.

Now suppose F has a nonempty intersection and let a be a point in this inter-
section. Then as we have seen

|T − a|x = lim
i→∞
|T − a|D(ai ,ri) ≤ lim

i→∞
ri = s

and since by definition of s we have |T− a|x ≥ s, we obtain |T− a|x = s. Thus, the
disc D(a, s) is a minimal element in F (where s might be 0 and therefore the disc
is a unique point). Furthermore, taking ai = a for all i we obtain ri = |T− a|x = s,
and therefore | f |x = | f |D(0,s)). If s = 0, it gives | f |x = | f (a)|.

Recall that the value group |k∗| of k is defined as

|k∗| = {|a| | a ∈ k∗ = k \ {0}} ⊆ R+
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Definition 2.27. Let x ∈ E(0, r), with the associated nested sequence {D(ai, ri)}i given
in last theorem.

1. We say that x is of Type 1 if there is a ∈ D(0, r) such that | f (x)| = | f |a| := | f (a)|
for all f ∈ k{r−1T}. That is, s = limi ri = 0. Notice that the completion of k
ensures that a ∈ k.

2. We say that x is of Type 2 if the corresponding nested sequence with nonempty
intersection satisfies s = limi ri and s ∈ |k∗|. By the theorem above | f |x = | f |D(a,r),
and D(a, r) is called a rational disc.

3. We say that x is of Type 3 if the corresponding nested sequence with nonempty
intersection satisfies s = limi ri and s ̸∈ |k∗|. By the theorem above | f |x = | f |D(a,r),
and D(a, r) is called an irrational disc.

4. We say that x is of Type 4 if the corresponding nested sequence has empty intersec-
tion. In this case we still have s > 0, for if s = 0 the completion of k implies that
the intersection is not empty.

The existence of Type 4 depends on whether the field k allow the existence of
empty nested sequences:

Definition 2.28. A non-Archimedean field k is called spherically complete if every nested
sequence has a nonempty intersection.

Proposition 2.29. Cp is not spherically complete

Proof. Let 0 < s < 1 and (ri)i a decreasing sequence converging to s and s < ri ≤ 1
for all i ≥ 0. Since the algebraic closure Q of Q is countable, we can enumerate the
elements in Q∩D(0, 1) as {αj}j≥0. We then inductively build the nested sequence
as follows. Set D(a1, r1) = D(α1, r1). Assume D(ai, ri) has been defined and let ji
be the least index with αj ∈ D(ai, ri). Since ri > ri+1, D(ai, ri) \D(αji , ri+1) ̸= ∅, so
if we choose an element ai+1 in it we have αji ̸∈ D(ai+1, ri+1). By this construction,
αj ̸∈ D(ai+1, ri+1) with j ≤ ji, from which follows that

⋂
i D(ai, ri) contains no

elements in Q.
Now if z ∈ Cp and z ∈ ⋂

i D(ai, ri), then z is the center of every open ball
and D(z, s) ⊆ ⋂

i D(ai, ri). Since Q is dense in Cp, D(z, s) contains elements in Q,
contradiction. Thus, ∩iD(ai, ri) = ∅.

It can be shown that every non-Archimedean field L is contained in an alge-
braically closed and spherically complete field, whose absolute value extends the
one on L (see [Escassut, § 7]).

There is a more intrinsic classification of points, equivalent to the one we have
just defined.
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Definition 2.30. Let x ∈ A1
k , we define its local ring as

Rx := { f
g
∈ k(T) | f , g ∈ k[T] |g|x ̸= 0}

We can naturally extend | · |x to Rx. We denote by |R∗x| its value group. We also define

Ox = { f ∈ Rx | | f |x ≤ 1} mx = { f ∈ Rx | | f |x < 1}

and k̃x := Ox/mx its residue field.

Proposition 2.31. Let x ∈ E(0, r). Then | · |x is a seminorm and not a norm if and only
if x is of type 1. Moreover,

i) x is of Type 1 if and only if Rx ⊊ k(T), |R∗x| = |k∗| and k̃x = k̃.

ii) x is of Type 2 if and only if Rx = k(T), |R∗x| = |k∗| and k̃x ∼= k̃(α), where α is
transcendental over k̃.

iii) x is of Type 3 if and only if Rx = k(T), |k∗| ⊊ |R∗x| and k̃x = k̃.

iv) x is of Type 4 if and only if Rx = k(T), |R∗x| = |k∗| and k̃x = k̃.

Proof. Since the possibilities for the triple (Rx, |R∗x|, k̃x) are mutually exclusive we
only need to prove the direct implication. The statement for points of Type 1 are
trivial.

If x is of Type 2 and | f |x = | f |D(a,r), it is clear that | f | = 0 if and only if f = 0,
i.e., Rx = k(T). From the maximum modulus principle in non-Archimedean
analysis there exists z ∈ D(a, r) such that | f |x = | f (z)|, from which follows |R∗x| =
|k∗|. Now let c ∈ k such that |c| = r and let α be the reduction in k̃x of 1

c (T − a),
one shows that α is transcendent over k̃ and that k̃x = k̃(α).

If x is of Type 3 and | f |x = | f |D(a,r) then as before Rx = k(T), and since
|T − a|x = r we have the strict inclusion. Note that for f = g/h ∈ k(X), g, h can
be expressed in the basis (T − a)i, hence the fact that r ̸∈ |k∗| gives |g|x = |bi|ri,
|h|x = |cj|rj where bi, cj are coefficients of g, h, respectively. Thus, if | f |x = 1 then
i = j and therefore f ≡ bi/cj (mod mx).

Finally, if x is of Type 4 and {D(an, rn)} is the corresponding nested sequence
with empty intersection, for every nonzero g ∈ k[T] there is an m such that
D(am, rm) does not contain any zero of g. Now we need a result proven in [BR10,
§ A.10, Corollary A.19] using Newton polygons, which states that if g ∈ k[T] has
no zeros in D(a, z), then |g(z)− g(a)| < |g(a)| and |g(z)| = |g(a)|. Hence, |g(z)| is
constant in D(am, rm), and since the sequence is nested we have |g|x = [g]D(am,rm) ∈
|k∗|. In particular |g|x ̸= 0, and consequently Rx = k(T) and |R∗x| = |k∗|. Now let
f = g/h ∈ k(T) with | f |x = 1, as before there exists m such that |g|x = [g]D(am,rm)
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and |h|x = [h]D(am,rm), and since | f |x = 1 we necessarily have |g|x = |h|x. By the
mentioned result we can write

|g− g(am)|x ≤ [g− g(am)]D(am,rm) < |g(am)| = [g]D(am,rm) ≤ |g|x

The same goes for h, therefore

| f − g(am)/h(am)|x < 1

This proves k̃x = k̃.

2.5 Not algebraically closed case

Here we will state the result that indicates how to deal with valued fields that
are not algebraically closed by reducing to the algebraically closed case. We will
not cover this in full detail, but we need to introduce some definitions.

The discussion of the first chapter about extending the valuation in Qp can be
generalised to an arbitrary field k with a non-Archimedean valuation. In partic-
ular, we can consider ka the algebraic closure of k and k̂a its completion, with an
extended valuation.

We start with an important construction. Let (A, | · |) be a normed ring with a
non-Archimedean norm and (M, ∥ · ∥M) and (N, ∥ · ∥N) normed A-modules. We
provide the tensor product of M and N with a seminorm defined as

∥x = ∑
i

mi ⊗ ni∥ := inf(max ∥mi∥M∥ni∥N)

where the infimum ranges over all the representations of x = ∑i mi ⊗ ni.
The separated completion of this seminormed A-module is called the com-

pleted tensor product of modules, and it is denoted M⊗̂AN.
It is easy to see that M⊗̂N is an Â-module. In [BGR, § 2.1.7] we can find some

important results on this completed tensor. Among those, we have the following
universal property:

Proposition 2.32 ([BGR, § 2.1.7, Proposition 1]). Let A be a normed ring and L, M, N
be A-modules. The bilinear map τ : L×M → L⊗̂M defined by (x, y) 7→ x⊗̂y (where
x⊗̂y is the image of x⊗ y in L⊗̂M) satisfies the following property:

Let Φ : L×M→ N be a bounded bilinear map (a A bilinear map ε : M× N → L is
bounded if there is C > 0 such that ∥ε(m, n)∥ ≤ C∥m∥ · ∥n∥) into the complete normed
module N. Then there is a unique bounded A-linear map φ : L⊗̂M → N such that
Ψ = φ ◦ τ.
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As usual, if two A-modules verify this property then they are isomorphic.
Another important result that is proven using completed tensor products is that
any linear map between Banach k-algebras is bounded if and only if is continuous
(see [BGR, § 2.1.8, Proposition 2]).

Next we have the notion of base extension, which is given by the following
lemma:

Lemma 2.33. Let k be a field and let ka denote its algebraic closure. If A = k{r−1T},
then A⊗̂k̂a is isomorphic to k̂a{r−1T}.

Proof. We will check that the latter verifies the universal property of the completed
tensor product. Let P be a Banach k-space and φ : k̂a × A → P be a bilinear
bounded morphism, and let τ : k̂a × A → V be the bounded homomorphism
given by τ(x, T) 7→ xT. We now define the map ψ : k̂a{r−1T} → P as ψ(∑i xiTi) =

∑i φ(x, Ti). It is clear that φ = ψ ◦ τ, and one checks that ψ is well defined and a
bounded homomorphism.

Then the Galois group of the extension ka|k acts on k̂a{r−1T} by

γ

(
∑
i≥0

aiTi

)
= ∑

i≥0
γ(ai)Ti

which induces an action onM(k̂a{r−1T}) by | f (γ(x))| = |γ( f )(x)|.

Proposition 2.34 ([Ber90, § 1.3 Corollary 1.3.6]). Let k be a valued field and A be a
k-Banach algebra. Then

M(A⊗̂k̂a)/Gal(ka|k) ∼=M(A)

We can use the same classification of points we have seen for the algebraically
closed case, since it is easy to see that Gal(ka|k) maps discs to discs, preserving
the radii and therefore also points of the same type.

2.6 The topology on E(0, 1)

In this section we will summarize the results in [BR10, § 1.4] in order to pro-
vide an intuition on how E(0, 1) looks like by studying its topology. The idea
is to represent the E(0, 1) as a type of metric graph called an R-tree. The same
discussion applies for E(0, r) when r is in the value group of k.

We denote by ζGauss ∈ E(0, 1) the point to which the norm associated is
supz∈D(0,1) | f (z)|. It is clear that | f |ζGauss ≥ | f |x for all f ∈ k{T} for all x ∈ E(0, 1).
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We then define a partial order in E(0, 1) so that x ≤ y if | f |x ≤ | f |y for all f ∈ k{T}.
If ζa,r corresponds to the type 2 or 3 point associated to the disc D(a, r), then

Lemma 2.35. We have ζa,r ≤ ζa′,r′ if and only if D(a, r) ⊆ D(a′, r′)

Proof. We see that

D(a, r) ⊆ D(a′, r′) ⇐⇒ sup
z∈D(a,r)

|z− a′| ≤ r′ ⇐⇒ [T − a′]ζa,r ≤ r′

hence, if D(a, r) ̸⊆ D(a′, r′) then [T − a′]ζa,r > r′ = [T − a′]ζa′ ,r′
, i.e., ζa,r ̸≤ ζa′,r′ .

The converse follows from the definitions.

This result can be generalised:

Lemma 2.36. Let x, y ∈ E(0, 1) \ {ζGauss} with the corresponding associated sequences
of discs {D(ai, ri)}i{D(a′i, r′i)}i. Then x ≤ y if and only if for every k > 0, there are
m, n ≥ k such that D(am, rm) ⊆ D(an, rn).

Proof. Let Di = D(ai, ri), D′i = D(a′i, r′i), we have that for every f ∈ k{T}

| f |x = inf
i
[ f ]Di | f |y = inf

i
[ f ]D′i

Now if for every k > 0 there exist m, n such that Dm ⊆ D′n, then for any ε > 0

| f |x ≤ [ f ]Dm ≤ [ f ]D′n = | f |+ ε

Since f , ε were arbitrary, we have x ≤ y.
Conversely, assume x ≤ y and let k ≥ 1. We define h := T − a′k+1. Since {D′j}j

is strictly decreasing, we have [h]D′k+1
= r′k+1 < r′k, and therefore [h]D′k+1

≤ r′k − ε

for some ε > 0. On the other hand, for m big enough

[h]D′k+1
≥ |h|y ≥ |h|x ≥ [h]Dm − ε

Thus, [T − a′k+1]Dm ≤ r′k, and since D′k = D(a′k, r′k) = D(a′k+1, r′k), we can take
n = k.

From this lemma we easily deduce how the points are distributed under this
relation:

Proposition 2.37. With the partial order defined above, ζGauss is the maximal point in
E(0, 1) and points of Type 4 and of Type 1 are minimal.

Proof. If x is a point of type 1, then y ≤ x if and only if x = y, and x ≤ y if and
only if x ∈ D(ai, ri) for all i. Similarly, if x is a point of type 4 then y ≤ x if and
only if x = y.



34 The Berkovich spectrum

Now we want to topologically give E(0, 1) as a particular type of graph, called
R-tree. The procedure has more to do with graphs than with Berkovich’s theory,
so we only state the definitions and main results that allow us to do so.

Definition 2.38. 1. An R-tree is a metric space (T, d) such that for any two points
x, y ∈ T there is a unique arc [x, y] in T joining x to y, and this arc is a geodesic
segment, that is, it is the image of an isometric embedding α : [a, b]→ T.

2. We say that a point x ∈ T is ordinary if T \ {x} has two components, otherwise it
is called a branch point.

Let diam : E(0, 1) → R+ given by diam(x) = infa∈D(0,1) |T − a|x. Then if x ∨ y
is the least upper bound of x, y we have

Lemma 2.39 ([BR10, § 1.4, Lemma 1.12]). The metric

d(x, y) = 2diam(x ∨ y)− diam(x)− diam(y)

makes E(0, 1) an R-tree,

Definition 2.40. Let (T, d) be an R-tree.

1. Let p ∈ T. For any x, y ∈ T \ {p}, we say x ∼ y if the unique geodesic segments
from p to x and p to y share a common initial segment.

2. An equivalence class is called a tangent vector at p. A point x in the equivalence
class v⃗ is said to represent v⃗.

3. If v⃗ is a tangent vector at p ∈ T, we set

Bp (⃗v) = {x ∈ T \ {p} | x represents v⃗}

We define the weak topology on T as the topology generated by the sets Bp (⃗v).

Proposition 2.41 ([BR10, § 1.4, Corollary 1.13]). E(0, 1) is homeomorphic to the weak
topology on the R-tree (E(0, 1), d).

As a matter of fact, there is a one to one correspondence between the different
branches emerging from the Gauss point with the elements of the residue field k̃
of k. Each branch splits into infinitely many branches at each point of Type 2 (but
not at points of Type 3) repeating the pattern. Every branch terminates at a point
of Type 1 or Type 4.

Finally,

Corollary 2.42 ([BR10, § 1.4, Corollary 1.14]). E(0, 1) is uniquely path connected.

Taking into account this discussion, we can sketch a draw of how E(0, 1) looks
like:
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Figure 2.1: Representation of E(0, 1). Source: [BR10, § 1.4, Figure 1]
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Chapter 3

Analytic spaces

In this chapter we present the construction of Berkovich analytic spaces. The
idea is similar to that of of schemes: first we will define affinoid spaces, which
are the analogous to affine schemes. Just like affine schemes are essentially the
spectrum of a ring with a structural sheaf, an affinoid space is the Berkovich
spectrum of an affinoid algebra, which we will now define, along with its own
structural sheaf. Both affine schemes and affinoid spaces are objects in the category
of locally ringed spaces. Later, affine schemes are glued together to form schemes,
and in a similar way gluing affinoid spaces give rise to analytic spaces.

After that we have included an introduction to rigid geometry. As explained
in the introduction, Berkovich spaces were historically developed after Tate’s rigid
geometry. Therefore understanding the latter gives us deep insights on the for-
mer, and we have presented some of the main ideas on rigid geometry that show
the connection between Berkovich theory and the theory of schemes in Algebraic
Geometry.

3.1 Affinoid algebras

In this first section we introduce k-affinoid algebras, with k being a fixed non
trivially valued field with a non-Archimedean valuation. In short, an affinoid
algebra is the k-algebra k{r−1

1 T1, ..., r−1Tn}, which should now be thought as the set
of analytic functions on M(k{r−1T}), modulo some ideal. This notion is already
present in rigid geometry, however only the case r = 1 is considered. Following
[Ber90], we will refer to this case as strictly affinoid algebras.

Definition 3.1. A k-affinoid algebra A is a Banach k-algebra such that there is an admis-
sible surjective homomorphism α : k{r−1

1 T1, ..., r−1
n Tn} → A.

37
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Let
√
|k∗| := {z1/n | z ∈ |k∗|, n ≥ 1}. We say that A is strictly affinoid if we

can choose ri ∈
√
|k∗|. One can show ([BGR, § 6.1.5, Theorem 4]) that A is strictly

affinoid if and only if we can choose ri = 1.

Example 3.2. i) Let kr denote the set of formal power series ∑i=+∞
i=−∞ aiTi such

that |ai|ri → 0 as |i| → ∞, with ai ∈ k. Then kr is a commutative Banach
k-norm with respect to the multiplicative norm ∥ f ∥ = supi |ai|ri, and a k-
affinoid algebra by the isometric isomorphism

k{rT1, r−1T2}/(T1T2 − 1)
∼=−→ kr T1 7→ T T2 7→ T−1

If r ̸∈
√
|k∗| then for any f = ∑i∈Z aiTi there is a unique j for which |aj|ri is

maximal. We can assume that |aj| = 1 and that j = 0, and therefore we can
write f = 1 + h with |h| < 1. Thus, f is invertible with f−1 = ∑i≥0(−h)i.
Hence, kr is a field.

ii) More generally, if r = (r1, .., rn) is k-free, that is, if rα1
1 · ... · r

αn
n ∈ |k| with

αi ∈ Z then αi = 0 for all i, we define

kr = { ∑
ν∈Zn

aνTν | lim
|ν|→∞

|aν|r
ν = 0}

which is again a field by the same argument. Inductively one shows that
kr ∼= kr1⊗̂...⊗̂krn .

Remark 3.3. Not every k-Banach algebra is a k-affinoid algebra. For example, take
A := { f ∈ k{T1, T2} | f (0, T2) ∈ k}, which is a subalgebra in k{T1, T2}. We take a

an ideal in A generated by the elements T1Ti
2, with i ≥ 0. Assume that a is finitely

generated. Then T1, T1T2, ...., T1Ts
2 generate a, and we have

T1Ts+1
2 =

s

∑
i=0

fiT1Ti
2

which yields

Ts+1
2 =

s

∑
i

fi(0, T2)Ti
2

which is a k-linear relation between powers of T2, contradiction. Therefore A is
not Noetherian, hence it is not k-affinoid.

As in the previous chapter, here we also have the notion of base extension,
given by a similar result. The proof again consists of checking on the universal
product of complete tensor products.
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Lemma 3.4. Let X be a k-Banach algebra. Then X⊗̂kr is isomorphic to the kr-Banach
algebra

V := { f =
∞

∑
i=−∞

xiTi | xi ∈ X, lim
|i|→0
∥x∥ri = 0}

Some important results on k-affinoid algebras can be reduced to the strictly
affinoid case, the main reference being [BGR], Chapter 5,6. The following propo-
sition indicates the specific technique to go from general affinoid algebras to the
strict case:

Proposition 3.5. i) Let X be a k Banach algebra and r ̸∈
√
|k∗|. A sequence of

bounded homomorphism of k- Banach algebras X → Y → Z is admissible and exact
if and only if the corresponding sequence of kr-Banach algebras X⊗̂kr → Y⊗̂kr →
Z⊗̂kr is exact and admissible.

iii) For any k-affinoid algebra A there is a field K = Kr1,...,rn such that A⊗̂K is strictly
affinoid.

Proof. Let φ : X → Y be an admissible homomorphism of k Banach algebras,
and denote φr : X⊗̂kr → Y⊗̂kr the induced homomorphism. It is clear that
ker(φr) ∼= ker(φ)⊗̂kr, and similarly Im(φr) = Im(φ)⊗̂kr, from which follows the
first statement.

For ii), if A is not strictly k-affinoid and k{r−1
1 T, ..., r−1

n T} is an admissible
epimorphism, after reordering the variables we can assume that there is 1 ≤ m ≤ n
such that ri is a Q linear combination of

√
|k∗|, r1, ..., rm, for i > m. Now we can

set K0 := k and then inductively Ki = Ki−1⊗̂kri for all i = 1, ..., m. By i), the map
Ki{r−1T} → A⊗̂Ki is an admissible homomorphism. Then defining K := Kr1,...,rm

we have that ri ∈
√
|K∗| for all i = 1, ..., n, and K{r−1} → A is an admissible

homomorphism, i.e., A⊗ K is a strictly k-affinoid algebra.

For instance, in [BGR, § 6.1.1, Proposition 3] we have that a strictly affinoid
algebra is Noetherian and all of its ideals are closed. Using this fact, the reduction
trick can be applied to show:

Proposition 3.6. A k-affinoid algebra is Noetherian, and all of its ideals are closed.

Proof. It suffices to see that it if A⊗̂kr is Noetherian and all of its ideals are closed,
then A has the same properties.

Let a be an ideal in A, we claim that a = (a · A⊗̂kr) ∩ A. One inclusion is
clear. Since A⊗̂kr is Noetherian, let f1, ..., fn ∈ A⊗̂kr be generators of a · (A⊗̂kr).
In particular we can write

fi =
ni

∑
j=0

hi,jgi,j
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for some hi,j ∈ a and gi,j ∈ A⊗̂kr. Then any f ∈ a · (A⊗̂kr) ∩A can be expressed
as

f =
n

∑
i=1

ai fi =
n

∑
i=1

ai ∑
j

hi,jgi,j ai ∈ A⊗̂kr

Now if π : A⊗̂kr → A denotes the canonical projection, we have

f = π( f ) = ∑
i,j

π(aigi,j)hi,j ∈ a

In particular, a is generated by hi,j. Now both A and a · (A⊗̂kr) are closed in A⊗̂kr,
hence a = a · (A⊗̂kr) ∩ A is closed in A.

Remark 3.7. We can use this result to show that not every k-Banach algebra is a
k-affinoid algebra. For example, take A := { f ∈ k{T1, T2} | f (0, T2) ∈ k}, which is
a subalgebra of k{T1, T2}. We take a an ideal in A generated by the elements T1Ti

2,
with i ≥ 0. Assume that a is finitely generated. Then T1, T1T2, ...., T1Ts

2 generate a,
and we have

T1Ts+1
2 =

s

∑
i=0

fiT1Ti
2

which yields

Ts+1
2 =

s

∑
i

fi(0, T2)Ti
2

which is a k-linear relation between powers of T2, contradiction. Therefore A is
not Noetherian, hence it is not k-affinoid.

Another easy consequence of the last proposition is that finite modules over
affinoid algebras are complete:

Definition 3.8. Let A be a k-affinoid algebra. We say that a Banach A-module M is finite
if it admits an admissible surjective homomorphism from a free module An equipped with
the norm

∥(a1, ..., an)∥ = max
i
|ai|

Note that An is a k-affinoid algebra. Indeed, the admissible epimorphism
k{r−1

1 T1, ..., r−1
m → A} induces the admissible epimorphism k{s−1

ij Tij → An}, where
0 ≤ i ≤ n, 0 ≤ j ≤ m and sij = ri.

If ModB
A denotes the category of finite Banach A-modules (with morphisms

given by bounded linear maps) and ModA is the category of finite A-modules, we
have:

Proposition 3.9. The forgetful functor ModB
A →ModA is an equivalence of categories.
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Proof. First we show that the functor is fully faithful by proving that any linear

map between finite A-modules is bounded. Before that, notice that if L
φ−→ M

ψ−→ N
are normed A modules, φ is an admissible homomorphism and ψ ◦ φ is bounded,
then ψ is bounded. Now taking An and φ epimorphism, A with basis e1, .., en, and
defining C := maxi ∥ei∥, we have ∥ψ ◦ φ( f )∥ = ∥∑i aiψ ◦ φ(ei)∥ ≤ C∥ f ∥.

Now let M be a finite A-module with epimorphism π : An → M. Since An is
a k-affinoid algebra, its ideals are closed, therefore An/ker(π) is complete. This
proves that the functor is essentially surjective.

3.2 Affinoid domains

We want to develop an analogue for affine schemes , so that A becomes the
ring of global analytic functions on the spectrum of A. We first consider closed
subsets of our space with its algebra of analytic functions, defined by a universal
property similar to open subschemes.

Definition 3.10. Let A be a k-affinoid algebra and X = M(A). An affinoid domain
is a pair (V,AV) where V ⊆ X is a closed subset and AV is a k-affinoid algebra with
a bounded homomorphism of k-algebras φ : A → AV satisfying the following universal
property: given a bounded homomorphism of affinoid k-algebras A → B such that the
image ofM(B) lies in V, there is a unique bounded homomorphism AV → B such that
the diagram

A AV

B

φ

commutes.

If we take the spectrum of AV , we recover V:

Proposition 3.11 ([Ber90, § 2.2, Proposition 2.2.4]). Let V ⊆ X be an affinoid domain.
ThenM(AV) ∼= V. In particular, AV is uniquely determined by V.

We have three important examples of affinoid domains. In all cases the corre-
sponding proposition is proven in the same way.

Definition 3.12 (Rational domain). Given f1, ..., fn, g ∈ A without a common zero in
X, and p1, ..., pn ∈ R∗+, we define

X(p−1 f
g
) := {x ∈ X | | fi(x)| ≤ pi|g(x)| i = 1, ..., n}
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Proposition 3.13. X(p−1 f
g ) is an affinoid domain with

AV =
A{p−1

1 T1, ..., p−1
n Tn}

(gTi − fi)

with the residue seminorm, that is,

AV = { ∑
ν∈Zn

aν(
f
g
)ν | aν ∈ A lim

|ν|→∞
aν pν = 0}

Proof. We will show that the elements defined above verify the universal property
of affinoid domains. Given a bounded homomorphism φ : A → B of affinoid
k-algebras such thatM(B) ⊆ X(p−1 f

g ), first we claim that we can define elements
in B bi = φ( fi)/φ(g). The condition φ∗ : M(B) ⊆ M(AV) means that |φ( fi)|y ≤
pi|φ(g)|y for all y ∈ M(B). If φ(g) is not a unit in B, then by Proposition 2.17
there is x ∈ M(B) such that |φ(g)(x)| = 0, and therefore |φ( fi)(x)| = 0 for all
i, hence f1, ..., fn, g cannot generate the unit ideal of A (as otherwise taking the
norm φ∗(x) on ∑i ai fi + ag = 1 would yield an absurd), which is a contradiction
as f1, ..., fn, g do not have any common zero. Thus, we can take bi = φ( fi)/φ(g).

Now for any h = ∑i aiTi ∈ A{p−1
1 T1, ..., p−1

n Tn} we define

Φ(h) = ∑
i

φ(ai)b
i1
1 ...bin

n

One checks that this is a well defined element in B and that it is the unique map
extending φ. Then the desired map is given by the universal property of the
quotient ring.

Definition 3.14 (Weierstrass domain). Given f1, ..., fn ∈ A and p1, ..., pn ∈ R∗+, we
define

X(p−1 f ) := {x ∈ X | | fi(x)| ≤ pi i = 1, ..., n}

Proposition 3.15. X(p−1 f ) is an affinoid domain with

AV =
A{p−1

1 T1, ..., p−1
n Tn}

( fi − f j)

with the residue seminorm, that is,

AV = { ∑
ν∈Zn

+

aν f ν | aν ∈ A lim
|ν|→∞

aν pν = 0}
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Definition 3.16 (Laurent domain). Given f1, ..., fn, g1, ..., gm ∈ A and p1, ..., pn, q1, ..., qm ∈
R∗+, we define

X(p−1 f , qg−1) := {x ∈ X | | fi(x)| ≤ pi, |gj(x)| ≥ qj i = 1, ..., n j = 1, ..., m}

Proposition 3.17. X(p−1 f , qg−1) is an affinoid domain with

AV =
A{p−1

1 T1, ..., p−1
n Tn, q1S1, ..., qmSm}

( fi − Ti, gjSj − 1)

with the residue seminorm, that is,

AV = { ∑
ν,µ∈Zn+m

+

aνµ f νµ | aνµ ∈ A lim
|ν|+|µ|→∞

aνµ pνq−µ = 0}

These three types of affinoid domains are closed under preimage and intersec-
tion:

Proposition 3.18 ([BGR, § 7.2.3, Proposition 6, Proposition 7]). i) Let φ : A →
B be a map between affinoid k-algebras and φ :M(B)→M(A) the induced map.
Then if V is a Weierstrass (resp. Laurent, rational, affinoid) domain in M(A),
φ−1(V) is also a domain of the same type, represented by the homomorphism B →
B⊗̂AV .

ii) If V1, ..., Vn are Weierstrass (resp. Laurent, rational), then V1 ∩ ... ∩Vn is a domain
of the same type.

Remark 3.19. i) We have Weierstrass =⇒ Laurent =⇒ Rational. The first
implication is trivial, whereas the second follows from the last statement of
the proposition above, for

X(p−1 f , q−1g−1) =
⋂

i

X(p−1
i

fi

1
) ∩

⋂
j

X(qj
1
gj
)

ii) Given x ∈ M(A), by definition of the topology of M(A), we can assume
that an open neighbourhood of x is of the form

U = {y ∈ M(A) | | fi(x)| < pi |gj(x)| > qj}

and therefore choosing p′i, q′j such that | fi(x)| < p′i < pi and |gi(x)| > q′i > qi.
Then x ∈ X((p′)−1 f , (q′)−1g) ⊆ U, that is, the Laurent neighbourhoods of x
form a basis of closed neighbourhoods of x.

A nontrivial fact is the Gerritzen-Grauert theorem:

Theorem 3.20 ([Tem05, Theorem 3.1]). Any affinoid domain is a finite union of rational
domains.
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3.3 Tate acyclicity theorem and G-topologies

So far we have assigned to certain closed subsets of our space its algebra of
analytic functions. Does this assignment, restricted to affinoid domains, verifies
the axioms of a sheaf? The answer is partially positive and it is provided by
Tate’s acyclicity theorem. First we need to know how to deal with intersections of
affinoid domains:

Proposition 3.21. i) If U, V ⊆ X are affinoid domains, then U ∩ V is an affinoid
domain with AV∩U = AV⊗̂AU

ii) If X =M(A), Y =M(B) and V ⊆ X is an affinoid domain, and f : Y → X is a
morphism, then f−1(V) is an affinoid domain with algebra B⊗̂AV .

Proof. We only need to combine the universal properties of affinoid domains and
tensor products. Let U, V ⊆ M(A) be affinoid domains and let A → B be a
bounded homomorphism of k-algebras such thatM(B) ⊆ U∩V. Then by the uni-
versal property of affinoid domains there are unique bounded homomorphisms
AV → B and AU → B, hence by the universal property of completed tensor
products there is a unique bounded homomorphism AU⊗̂AV → B verifying the
required commutative diagram. The second statement is proven similarly.

Now let A be a k-affinoid and let V = {Vi}i∈I be a finite cover of X =M(A)
by affinoid domains. By the previous result, Vi ∩Vj is an affinoid domain for any
i, j ∈ I, therefore we obtain restriction maps AVi → AVi∩Vj . Therefore, for a given
A-module M we have the following sequence

0→ M→∏
i∈I

M⊗̂AVi → ∏
i,j∈I

M⊗̂AVi∩Vj →∏
i∈I

M⊗̂AVi∩Vj∩Vk → ... (3.1)

Then Tate’s acyclicity theorem, the proof of which we won’t include as it is
very long and involves arguments on Čech cohomology, can be stated as follows:

Theorem 3.22 ([Ber90, § 2.2, Theorem 2.2.5]). The sequence (3.1) is exact and admis-
sible.

Remark 3.23. If we consider a cover of an affinoid domain AV and we take M =

AV , exactness at AV says that if f ∈ AV and f|Vi
= 0 for all i, then f = 0, where f|Vi

denotes the image of f under the inclusion AV ↪→ AV⊗̂AVi . Moreover, exactness
at ∏iAVi implies that if fi ∈ AVi and fi |Vi∩Vj

, then there is f ∈ AV such that
fi = f|Vi

.
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So by the last remark, the assignment V 7→ AV is a sheaf if, roughly speaking,
the topology on M(A) consisted of affinoid domains and all the coverings were
finite. This motivates the notion of Grothendieck topology, or G-topology, which
we will not present in full generality, but instead we will restrict it to a convenient
setting.

Definition 3.24. Let X be a set. A Grothendieck topology τ on X consists of:

i) A collection S of subsets of X, called admissible open sets of X

ii) A family {Cov(U)}U∈S of coverings, where an element in Cov(U is a covering
{Ui}i∈I of U by sets in S.

In addition, the following conditions are verified:

1. If U, V ∈ S, U ∩V ∈ S

2. U ∈ S =⇒ {U} ∈ Cov(U)

3. If U ∈ S, {Ui}i∈I ∈ Cov(U), and {Vij}j∈Ji ∈ Cov(Ui) for i ∈ I, then {Vij}i,j ∈
Cov(U).

4. If U, V ∈ S with V ⊆ U, and if {Ui} ∈ Cov(U), then {Ui ∩V}i∈I ∈ Cov(V).

Notice that in general the arbitrary union of admissible open sets is not an
admissible open set, therefore the system of admissible open sets does not form a
topology on X. A more detailed discussion of G-topologies can be found in [BGR,
§ 9.1].

Defining an admissible open set as an affinoid domain in X and an admissible
cover as a finite set of affinoid domains, by the previous results we have a G-
topology, called the weak G-topology. Thus, the assignment V 7→ AV is a sheaf of
k-affinoid algebras on the weak G-topology.

We can define another G-topology, called special, on X by taking S as a closed
subsets of X that can be expressed as a finite union of affinoid domains, and an
admissible cover as a finite cover by admissible open sets. Using cohomological
arguments, we can extend the sheaf we have defined on the weak G-topology to
the special G-topology:

Proposition 3.25 ([Ber90, § 2.2, Corollary 2.2.6]). For V ∈ S, let V = {Vi}i∈I be a
finite cover by affinoid domains. Let

AV := ker

(
∏

i
AVi →∏

i,j
AVi∩Vj

)
Then
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i) The commutative Banach k-algebra AV does not depend on the covering V .

ii) The assignment V 7→ AV is a sheaf of Banach k-algebras on the special G-topology
on X.

With this notation, AV is not in general a k-affinoid algebra. More specifically,

Proposition 3.26 ([Ber90, § 2.2, Corollary 2.2.6]). V is an affinoid domain if and only
if AV is a k-affinoid algebra and the canonical map V 7→ M(AV) is bijective.

3.4 Affinoid spaces

Let A be a k-affinoid algebra and X =M(A). We can equip the space X with
a structure sheaf of k-algebras by setting, for any open U ⊆ X,

OX(U) = lim
←−
AV

where the inverse limit is taken over all special subsets V ⊆ U, directed under
inclusion. Using acyclicity theorem it is not difficult to see that this assignment is
indeed a sheaf. Note that we take the limit in the category of k-algebras, therefore
we should not expect OX(U) to be normed.

Proposition 3.27. The stalk at each point x ∈ X is the direct limit

OX,x = lim
→
OX(W)

taken over all neighbourhoods of x is a local ring with maximal ideal

mx = { f ∈ OX,x | | f (x)| = 0}

Proof. It suffices to check that every element in OX,x \ mx is invertible. So let
⟨g, W⟩ be a germ in OX,x, with W an affinoid Laurent neighbourhood of x and
g ∈ AW such that |g(x)| ≥ r ̸= 0. Then g is a unit in the canonical projection
AW → AW{r−1T}/(gT − 1).

The locally ringed space that we obtain is called a k-affinoid space.

The functor A 7→ M(A) from the category of affinoid algebras to the category
of affinoid spectra is full but not faithfull. Indeed, given 0 < p < q < 1, p, q ̸∈√
|k∗|, the identity is a bijection between the k-affinoid algebras kp and kq, however

it is not bounded.
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For this reason we define a morphism of affinoid spaces as a morphism of
locally ringed spacesM(A)→M(B) that is induced from a bounded homomor-
phism of k-affinoid algebras B → A. With this definition, the category of affinoid
spaces is equivalent to the opposite category of affinoid algebras.

As we will now see, affinoid spaces are locally connected.
First we have that connected components are Weierstrass domains:

Remark 3.28. Since the prime ideals of the product A× B of two rings A, B are of
the type p× B and A× q for p ⊆ A, q ⊆ B prime ideals, the spectrum of A× B is
the disjoint union of the spectrum of A and B.

Now let X = U ∪W with V, W disjoint affinoid domains, we have A ∼= AV ×
AW , and therefore

U = {x ∈ X | |(0, 1)|x = 0} = {x ∈ X | |(0, 1)|x ≤
1
2
}

which is a Weierstrass domain, and the same is true for V.

Proposition 3.29. Let X =M(A) be a k-affinoid algebra. A basis of the topology of X
is the set of open connected subsets that are the union of countably many compact subsets.

Proof. Let U be an open neighbourhood of a point x ∈ X, and let V = X(p−1 f
g )

be a rational domain that is a neighbourhood of X. Choose a sequence 0 < ε0 <

ε1 < ... < 1 and consider Vn = X((εn p)−1 f
g ) ⊆ Vn+1. Let Wn be a connected

component of Vn, we have W1 ⊆W2 ⊆ .... Then Wn is a Weierstrass (and therefore
rational) domain contained in the topological interior of Wn+1. The set

⋃∞
n=1 Wn

is a connected open neighbourhood of X that is the union of countably many
compact subsets and contained in U.

3.5 Analytic spaces

Now that we have affinoid spaces, we glue them together to construct analytic
spaces. Therefore this construction is analogous to gluing together affine schemes
to build schemes or the charts in a differentiable manifold.

Berkovich introduced two different approaches to define analytic spaces. The
first one in [Ber90, § 3], which is the one we will give, is conceptually clearer as
within the given material it mimics in a more straightforward way some familiar
constructions. The second one, presented in [Ber93], is more general than the first
one, however the cases where the first approach is not convenient are out of the
scope of this project.
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We begin with the notion of quasiaffinoid space, which is essentially an open
subset of an affinoid space:

Definition 3.30. i) A k-quasiaffinoid space is a pair (U, φ) consisting of a locally
ringed space U and an open immersion φ of U onto a k-affinoid space.

ii) A closed subset of a k-quasiaffinoid space V ⊆ U is called an affinoid domain if φ is
an affinoid domain in X. The corresponding k-affinoid algebra is denoted by AV .

iii) A morphism of k-quasiaffinoid spaces (U, φ) → (V, ψ) consists of a morphism of
locally ringed spaces θ : U → V such that for any pair of affinoid domains U′ ⊆ U,
V ′ ⊆ V with θ(U′) ⊆ Int(V ′/V), the induced homomorphism BV′ → AU′ is
bounded. In this case, this morphism is defined for all U′ and V ′ with θ(U′) ⊆ V

iv) A k-quasiaffinoid space which is isomorphic to a pair (U, φ : U → X) with X a
strictly k-affinoid is called a strictly k-quasiaffinoid space.

Now we define an atlas, where the charts are given by quasiaffinoid spaces:

Definition 3.31. i) Let X be a locally ringed space. A k-analytic atlas on X is a
collection of pairs (Ui, φi), called charts of the atlas, satisfying:

i) Each Ui is an open subset of X and X =
⋃

i Ui.

ii) Each φi is an open immersion of Ui in a k-affinoid space.

iii) The induced morphism of locally ringed spaces φj φ
−1
i : φi(Ui ∩Uj)→ φj(Ui ∩

Uj) is an isomorphism of k-quasiaffinoid spaces for each i, j ∈ I.

ii) Given an open subset U ⊆ X and an open immersion φ of U in a k-affinoid space,
then we say that (U, φ) is compatible with the atlas {(Ui, φi)}i∈I if each morphism
φj φ

−1
i as defined above is an isomorphism of k-quasiaffinoid spaces. Two atlases are

compatible if every chart is compatible with the other atlas. An equivalence class of
k-analytic atlases defines a k-analytic space structure on X.

Finally, we define the morphisms in the category of k-analytic spaces in the
natural way:

Definition 3.32. Let X, Y be two k-analytic spaces and f : X → Y a morphism of
locally ringed spaces, then f is a morphism of k-analytic spaces if there exists an atlas
{(Ui, φi)}i∈I of X and an atlas {(Vj, ψj)}i∈J of Y such that ψj f φ−1

i : φi(Ui) → ψj(Vj)

is a morphism of quasiaffinoid spaces, for all i, j.

We have proven that an analytic space is locally connected. We also have that
it is locally pathwise connected:
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Theorem 3.33. Every k-analytic space that is connected is path-wise connected.

Proof. We will sketch the proof. Let X be a k-analytic space. First, every point has
an affinoid neighbourhood, hence we can assume X is affinoid, and after some
work we can further assume X is the unit disc En

k (0, 1) :=M(k{T1, ..., Tn}). Now
we show that X is path-wise connected by induction. The case n = 1 was done
in the previous chapter (it is homeomorphic to an R-tree. For n > 1, we consider
the projection map π : En

k (0, 1) → En−1
k (0, 1) defined in the obvious way, and

one shows that the fiber over x ∈ M(Tn) is isomorphic to E1
H(x). Now we take

y0, y1 ∈ En
k (0, 1), and let xi = π(yi). We connect yi with the Gauss point in E1

H(xi)
,

and then connect x0, x1 via the path γ using the inductive hypothesis. Now we
use the continuous section σ : En−1

k → En
k of π that maps xi to the Gauss point in

E1
H(x). Then σ ◦ γ is a path connecting the two Gauss points.

3.6 The analytification of a variety

One of the great accomplishments of Berkovich theory is that it establishes
a connection with Algebraic Geometry (known as GAGA), similar to what was
achieved by Serre in complex numbers To every algebraic variety, and more gen-
erally to every scheme of locally finite type over k we can associate it an analytic
space that preserves important properties of the given scheme. Unfortunately, the
proofs of the results are not accessible with the given material in this work.

Let Ank be the category of k-analytic spaces and let X be a scheme of locally
finite type over k. Consider the functor

Φ : Ank → Set X 7→ Hom(X, X)

where Hom(X, X) is taken on the category of locally ringed spaces.

Theorem 3.34. The functor Φ is represented by a k-analytic space Xan together with a
morphism φ : Xan → X.

Notice that we equivalently require that every morphism of locally ringed
spaces f : Y → X factors uniquely as

Y X

Xan

f

∃!g φ
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Even though the statement is not easy to prove, we do have a procedure to
obtain the analytic space of a scheme:

Remark 3.35. If X = Spec(k[T1, ..., Tn]) then Xan is the affine space as defined in
Chapter 1, with the canonical map φ given by the kernel map | · | 7→ ker(| · |).
If X = Spec(A) with A a finitely generated k-algebra, then as a set Xan is the
collection of semivaluations on A that extend the given norm in k. And if X is an
arbitrary scheme covered by affine schemes {Xi}, then Xan is obtained by gluing
together the corresponding Xan

i

We can summarize some of the GAGA results in the following proposition:

Proposition 3.36 ([Ber90, § 3.4, Proposition 3.4.6, Theorem 3.4.8]). Let X be a scheme
of locally finite type over k and Xan the analytic space associated to it. Then

i) Xan is Haussdorf (respectively compact, arc-connected) if and only if X is separated
(respectively proper, connected).

ii) Let ψ : X → Y be a morphism of schemes of finite type over k and ψan : Xan → Yan

its analytification. Then ψ is injective (respectively surjective, open immersion,
isomorphism, separated) if and only if ψ an has the same property.

3.7 Rigid Geometry

Berkovich theory can be seen as an improvement over Tate’s theory of analytic
spaces. We will give some of its main ideas here, which will help us gain insight
on how rigid geometry acts as a transition from the theory of schemes to Berkovich
spaces. One can find all the details and proofs in [BGR, § 7,8,9].

Let k be a field with a nontrivial non-Archimedean valuation, ka its algebraic
closure and let Tn := k{T1, ..., Tn} be a Tate algebra. It is clear that every f ∈ Tn

defines a function in Bn(ka) := {(a1, ..., an) ∈ kn
a | maxi |a|i ≤ 1} by a 7→ f (a). On

the other hand, f can also be seen as a function on the set Max(Tn) of maximal
ideals of Tn defining, for every m ∈ Max(Tn), f (x) as the image of f under the
canonical map Tn → Tn/m. Since Tn/m is a finite algebraic extension of k, it can
embedded in ka and therefore f (m) can be identified with an element of ka. The
first thing we want to show is that these two perspective essentially coincide. Note
the similarity with our discussion in the section of schemes.

From algebraic number theory we know that the embedding Tn/m is not
unique, more precisely f (m) as an element of ka is determined up to Galois con-
jugation. Hence, if Γ denotes the Galois group over k, f ∈ Tn is a function on
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Max(Tn) with values in ka/Γ. It is clear that Γ is an isometry on ka, and therefore
| f (m)| is well defined, and in particular | f (m)| = 0 if and only if f ∈ m.

Now let x ∈ Bn(ka), the isomorphism theorem on the epimorphism

hx : Tn → k f 7→ f (x)

means that ker(hx) is a maximal ideal for every hx, and therefore we have a canon-
ical map τ : Bn(ka)→ Max(Tn) given by x 7→ ker(hx).

We say that the two interpretations of the elements in Tn are the same in the
following sense:

Proposition 3.37. For all f ∈ Tn the following diagram commutes:

Bn(ka) ka

Max(Tn) ka/Γ

f

τ

f

Proof. Let x ∈ Bn(ka), the map hx defined above induces an injection i : Tn/ker(hx) ↪→
ka verifying f (x) = hx( f ) = i ◦ f (ker(hx)).

Another key aspect is to understand the set Max(Tn) and the map τ. For that
we have the following result:

Proposition 3.38. The map τ : Bn(ka)→ Max(Tn) is surjective and the fibers are finite.
Moreover, τ induces a bijection Bn(ka)/Γ→ Max(Tn).

Proof. Let m ∈ Max(Tn) be a maximal ideal, since Tn/m is a finite algebraic ex-
tension of k, there is continuous embedding Tn/m ↪→ ka, which induces a contin-
uous homomorphism φ : Tn → ka with kernel m. If a1, ..., an are the images of
T1, ..., Tn by φ, then by continuity we have φ = hx with x = (a1, ..., an). Hence,
τ(x) = ker(hx) = m, i.e., τ is surjective.

As we have just seen, the points in τ−1(m) correspond one-to-one with the
different embeddings Tn/m ↪→ ka, and there is a finite number of them. Further-
more, if x = (a1, ..., an), y = (b1, ..., bn) ∈ Bn(ka) we have τ(x) = τ(y) if and only if
there is an isomorphism k(x) ∼= k(y) such that ai 7→ bi for all i, and since any such
isomorphism extends to a k-automorphism in ka, we have that τ(x) = τ(y) if and
only if there is γ ∈ Γ such that γ(x) = y.
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We see that when k is algebraically closed, then τ is a bijection.

Now We can define a Zarisky topology on Max(Tn), where the closed subsets
are of the form

V(a) = {x ∈ Max(Tn) | f (x) = 0 ∀ f ∈ a}

for some ideal a ∈ Tn.

The functions in Tn give rise to functions on V(a) by restriction, and it can be
shown that two elements f , g ∈ Tn restrict to the same function in V(a) if and
only if f ≡ g (mod rad(a)). That naturally leads to the notion of strictly affinoid
algebra, that is, the quotient of a Tate algebra over an ideal, with the residue
seminorm.

Following the same procedure as before, we can view the elements in A :=
Tn/a as functions on the set of maximal ideals of A. We call this pair an affinoid
variety:

Definition 3.39. A strictly k-affinoid space (or variety) is a pair (Max(A),A), where A
is a strictly k-affinoid algebra. A morphism of strictly k-affinoid spaces φ : (Max(A), A)→
(Max(B), B) is a pair (σ∗, σ) where σ : B→ A is a homomorphism of k-algebras and σ∗

is the induced map Max(A)→ Max(B) given by m 7→ σ−1(m).

Recall that the norm on a direct product of rings is given by ∥(x1, ..., xn)∥ =

maxi{|xi|}. We consider the topology in Bn(k) as the metric topology induced by
the norm in kn, which we can use to give a topology in Max(Tn) through the map
τ : Bn(k)→ Max(Tn):

Definition 3.40. The canonical topology in Max(Tn) is the quotient topology via the map
τ : Bn(k)→ Max(Tn).

The fundamental problem with this topology is that, since kn is totally discon-
nected due to the ultrametric property, so is the canonical topology. Moreover,
its basis can be expressed in terms of subsets that strongly resemble the ones in
Berkovich topology:

Proposition 3.41 ([BGR] 7.2.1 Corollary 2). i) For every f ∈ Tn and every α > 0,
the following subsets are open in Max(Tn) in the canonical topology:

{x ∈ Max(Tn) | f (x) ̸= 0}

{x ∈ Max(Tn) | | f (x)| ≤ α}

{x ∈ Max(Tn) | | f (x)| = α}

{x ∈ Max(Tn) | | f (x)| ≥ α}
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ii) The open subsets
{x ∈ Max(Tn) | | fi(x)| ≤ 1}

for f1, .., fn ∈ Tn form a basis of the canonical topology of Tn.

For a general strictly k-affinoid algebra A, we define the canonical topology in
Max(A) as the quotient topology via the surjection τ−1(A)→ A. One checks that
the statement of the last proposition holds for the canonical topology in Max(A)

by replacing the elements f , fi ∈ Tn by f , fi ∈ A.

We also have the notion of affinoid subdomain:

Definition 3.42. Let A be a strictly k-affinoid algebra. A subset U ⊆ Max(A) is an
affinoid subdomain if there is a map A → AU of strictly k-affinoid algebras such that the
image of the induced map Max(AU)→ Max(A) is contained in U, and is universal with
respect to this property (as in affinoid domains in Berkovich theory)

The results we have given for affinoid domains still hold in this context, and
they are proven essentially in the same way. In particular, Laurent, Weierstrass
and rational domains also exist as examples of affinoid subdomains, although the
definitions have to be modified:

Definition 3.43. i) Given A a strictly k-affinoid algebra, let f1, ..., fn, g1, ..., gm ∈ A
and X = Max(A). We set

X( f1, ..., fn, g−1
1 , ..., g−1

m ) := {x ∈ X | | fi(x)| ≤ 1 |gj(x)| ≥ 1}

If A⟨T, T−1⟩ denotes the ring of strictly convergent power series (i.e., Laurent series
with coefficients tending to 0 as their index tends to±∞), then X( f1, ..., fn, g−1

1 , ..., g−1
m )

together with the canonical map A→ A⟨T, T−1⟩/(T − f , gT − 1) is an open sub-
domain of X, called Laurent domain (if m ̸= 0) and Weierstrass domain (if m = 0).

ii) Rational domains are defined as

X(
f1

g
, ...,

fn

g
) := {x ∈ X | | fi(x)| ≤ |g(x)|}

where f1, ..., fn, g ∈ A without a common zero. X( f1
g , ..., fn

g ) together with the
canonical map A → A⟨T⟩/(gT − f ) is an open subdomain of X, called rational
domain

Importantly, we also have Tate’s acyclicity theorem: the assignment of an affi-
noid subdomain to its algebra of functions verifies the axioms of a sheaf, provided
that the coverings are finite.
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If A is a strictly k-affinoid algebra, every m ∈ Max(A) defines a semivaluation
in A by a 7→ |a(m)|. We therefore have a map Max(A)→M(A), which is clearly
injective. Even more, the set of elements inM(A) that are of this way is dense:

Proposition 3.44. Let k be a non-trivially valued field and A a strictly k-affinoid algebra.
Then the image of the canonical map Max(A)→M(A) is dense isM(A)

Proof. Let x0 ∈ M(A) and U an open neighbourhood. Without loss of generality
we can assume it is of the form

U = {x ∈ M(A) | | fi(x)| < ai i = 1, ..., n |gj(x)| > bj j = 1, ..., m}

for fi, gj ∈ A. Since the value group of k is dense in R+, we can choose pi, qj ∈√
|k∗| such that | fi(x)| < pi < ai and |gj(x)| > qj > bj for all i, j. Now if |ci|1/ki :=

pi, then | fi(x)| > pi ⇐⇒ | f ki
i c−1

i (x)| < 1, and similarly for the other inequalities.
Thus, we can assume U is of the form

U = {x ∈ M(A) | | fi(x)| < 1 |gj(x)| > 1}

with f1, ..., fn, g1, ..., gm ∈ A.
We now choose p′i, q′i ∈

√
|k∗| such that | fi(x)| < pi < 1 and |gj(x)| > qj > 1

for all i, j and consider the strictly k-affinoid algebra

B := A{(p′1)
−1S1, ..., (p′n)

−1Sn, (q′1)
−1T1, ..., (q′m)

−1Tm}/( f i− Si, gjTj − 1)

which admits a map A → B. The image of the induced map φ : B →M(A) is

{x ∈ M(A) | | fi(x)| < p′i |gj(x)| > q′j ∀i, j} ⊆ U

In particular, x0 lies in this image and B ̸= ∅. Hence, Max(B) ̸= ∅ and the image
of a maximal ideal of B under φ is in U, i.e., U ∩Max(A) ̸= ∅. Thus, Max(A) is
dense inM(A).

Thus, we see that in Berkovich’s theory we have filled the underlying set of the
rigid points (the maximal ideals of a strictly k-affinoid algebra) with more points
and we have put in it the canonical topology (or the closed subsets of the canonical
topology), obtaining better topological properties.

Remark 3.45. In [Ber90, § 2.2], Berkovich initially defines strictly affinoid domains
for a strictly k-affinoid algebra A as the closure of the image of an affinoid subdo-
main of Max(A) under the map Max(A)→M(A). Later, he proves that with this
definition strictly affinoid domains are affinoid domains in the sense we defined
in, and that if the affinoid algebra associated to an affinoid domain is a strictly
k-affinoid algebra, then the affinoid domain is a strictly affinoid domain.
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Now if we try to define of analytic functions on the canonical topology, due
to the fact that it is totally disconnected the gluing axiom of a sheaf cannot be
satisfied except for trivial cases. Moreover, we have seen that affinoid subdomains
form a basis of this topology. Again motivated by Tate’s acyclicity theorem, the
solution consists of defining a G-topology, called weak G-topology, where admis-
sible open sets are affinoid subdomains, and admissible covers are finite covers by
affinoid subdomains.

We say that the covering
⋃

i∈J Vj is a refinement of the covering
⋃

i∈I Ui if there
is a map τ : J → I such that Vj ⊆ Uτ(j) for all j ∈ J. One can define another
G-topology:

Definition 3.46. Let X be a stricly affinoid space. The strong G-topology on X is given
as:

i) An admissible open is a subset U ⊆ X such that there is a (not necessarily finite)
covering U =

⋃
i Ui by affinoid subdomains. Moreover, for all morphism of strictly

k-affinoid spaces φ : Z → X such that φ(Z) ⊆ U, the covering (φ−1(Ui))i∈I of Z
admits a refinement that is a finite covering of Z by affinoid subdomains.

ii) A covering V =
⋃

i Vi of an admissible open V ⊆ X is admissible if for all mor-
phism of strictly k-affinoid spaces φ : Z → X such that φ(Z) ⊆ V, the covering
(φ−1(Vi))i∈I of Z admits a refinement that is a finite covering of Z by affinoid
subdomains.

The advantage of working with the strong G-topology is that it is finer than
the Zariski topology:

Proposition 3.47 ([Bosch, § 5.1, Corollary 9]). All Zariski open subsets are admissible,
and all Zariski coverings are admissible coverings

Moreover, the strong G-topology has the following remarkable property, which
solves the issue of total disconnectedness:

Proposition 3.48 ([BGR, § 9.1.4, Proposition 8]). Let X be a strictly k-affinoid space.
Then the following are equivalent:

i) X is connected with respect to the Zariski topology.

ii) X is connected with respect to the weak G-topology.

iii) X is connected with respect to the strong G-topology.
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The sheaf we have defined on the weak G-topology can be extended to the
strong G-topology:

Proposition 3.49 ([Bosch, § 5.2, Corollary 5]). Let X be a strictly affinoid k-space. Any
sheaf on X with respect to the weak G-topology admits a unique extension with respect to
the strong G-topology.

Finally, we glue together strictly affinoid spaces with the strong G-topology to
define a rigid analytic space:

Definition 3.50. i) A G-ringed k-space is a pair (X,OX), where X is a G-topological
space and OX is a sheaf of k-algebras on it. (X,OX) is called a locally G-ringed
k-space if, in addition, all stalks OX,x are local rings.

ii) A rigid-analytic space over k is a pair (X,OX) consisting of a locally ringed G-
topologized space such that there is a covering X =

⋃
i Ui where each open subspace

(Ui,OX|Ui) is isomorphic to a strictly affinoid space.

In this category of locally ringed G-spaces we can also consider fiber products,
and one can show that the fiber product of two rigid spaces always exist ([BGR,
§ 9.3.5]). Then one defines the notions of separated spaces, proper spaces and
many others as with schemes. Moreover, in the theory of analytic rigid spaces it
is also possible to assign to every algebraic variety (or more generally a scheme
of locally finite type) a rigid analytic space in a very similar way as in Berkovich
spaces (see [BGR, § 9.3.4]). In [Ber90, § 3.3] Berkovich also develops a functorial
assignment between strictly k-analytic spaces and rigid spaces, which has many
good properties similarly to the GAGA theorems in Proposition 3.36.
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