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ABSTRACT
Arguably, the main challenge of nucleation theory is to accurately evaluate the work of formation of a critical embryo in the new phase, which
governs the nucleation rate. In Classical Nucleation Theory (CNT), this work of formation is estimated using the capillarity approximation,
which relies on the value of the planar surface tension. This approximation has been blamed for the large discrepancies between predictions
from CNT and experiments. In this work, we present a study of the free energy of formation of critical clusters of the Lennard-Jones fluid
truncated and shifted at 2.5σ using Monte Carlo simulations, density gradient theory, and density functional theory. We find that density
gradient theory and density functional theory accurately reproduce molecular simulation results for critical droplet sizes and their free ener-
gies. The capillarity approximation grossly overestimates the free energy of small droplets. The incorporation of curvature corrections up to
the second order with the Helfrich expansion greatly remedies this and performs very well for most of the experimentally accessible regions.
However, it is imprecise for the smallest droplets and largest metastabilities since it does not account for a vanishing nucleation barrier at
the spinodal. To remedy this, we propose a scaling function that uses all relevant ingredients without adding fitting parameters. The scaling
function reproduces accurately the free energy of the formation of critical droplets for the entire metastability range and all temperatures
examined and deviates from density gradient theory by less than one kBT.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0142533

I. INTRODUCTION

Crystallization, condensation, and cavitation are phase tran-
sitions that govern a myriad of practical applications and natural
phenomena.1–5 They are initiated by thermal fluctuations that lead
to the formation of a nano-sized embryo of the new phase. In order
to grow and for the phase transition to proceed, the size of the
embryo must be sufficiently large to overcome the free energy cost
of forming a surface. The thermodynamic principles of such pro-
cesses were explained in the seminal work of Gibbs.6 Together with
the theory to describe the kinetics developed by Volmer and Weber,7
Farkas,8 Becker and Döring,9 and Zeldovich,10 among others, estab-
lished the basis of Classical Nucleation Theory (CNT), which still
today leads our current understanding of nucleation phenomena.
According to CNT, the rate of formation of embryos in the new

phase per unit volume (J), called the nucleation rate, is described
by the following formula:

J = K exp(−W/kBT), (1)

where W is the work of formation of the critical embryo, kB is
Boltzmann’s constant, T is the temperature, and K is a kinetic
pre-factor.

Since nucleation is an activated process, the pressure of a
vapor can be increased far above the saturation pressure, and the
temperature of a liquid can be decreased well below the melting
temperature before condensation or crystallization occurs. In ther-
modynamic theory, there is a limit to the degree of metastability
that can be achieved called the spinodal (Fig. 1), beyond which
the system becomes intrinsically unstable and phase transition is a
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FIG. 1. Phase diagrams and isotherms for the Lennard-Jones fluid truncated and shifted at 2.5σ, calculated from the PeTS equation of state, in T − ρ space (left) and P − ρ
space (right). The global phase diagram is represented by black curves, namely, the binodal (full black curve), the spinodals (dashed black curves), and the critical point (black
dot). The colored curves correspond to isotherms: the green curve corresponds to T = 0.900, the gray corresponds to T = 0.741, and the blue corresponds to T = 0.625.
The continuous region on the isotherms corresponds to the metastable vapor and coexisting stable bulk liquid, while the dotted region consists of the metastable liquid and
unstable states.

spontaneous process. For a pure fluid, the thermodynamic spinodal
can be defined as the state of diverging isothermal compressibil-
ity.11 Upon approaching the spinodal, the nucleation barrier and
the critical size are expected to go to zero, and the nucleation time
becomes extremely short.1 Therefore, these states are mostly studied
indirectly.12–14

150 years after the pioneering work of Gibbs,6 nucleation phe-
nomena keep fascinating scientists. The theoretical developments
struggle to keep up with the increasingly accurate results from
simulations and experiments that measure the nucleation rates of
different substances and types of phase transitions.15–25 Arguably,
the main challenge of nucleation theory is to accurately estimate the
work of formation for the critical embryo. Since the nucleation rate
depends exponentially on this quantity, a small error will cause the
predicted nucleation rate to deviate by orders of magnitude from
experimental results or simulations.1

For pure fluids, CNT is qualitatively correct.26 However, it does
not account for the expected vanishing of the nucleation barrier
at the spinodal, and the predicted rates show systematic deviations
from experiments, with errors reaching 20 orders of magnitude for
the simple case of argon condensation.27 CNT assumes that the
incipient embryo of the new phase is spherical and that its properties
are identical to those of the bulk macroscopic stable phase, including
the value of the surface tension of the planar vapor–liquid surface.
This is referred to as the capillarity approximation, and it has been
the main suspect in the problems of CNT.5

To overcome the limitations of CNT, several routes have been
pursued to provide more accurate estimates of the work of forma-
tion. Density gradient theory (DGT) assumes that thermodynamic
properties depend on density gradients in addition to the local
thermodynamic state. It obtains density profiles that minimize a
constrained functional for the total Helmholtz energy.28 Its compu-
tational simplicity and robustness make DGT attractive. However,
it is only the first order approximation to the full classical density
functional theory (DFT).29 The accuracy and predictive ability of
DGT has, therefore, been questioned, in particular at the highest
metastabilities.30 Using full DFT has been touted as a promising

alternative.31,32 In previous studies, DFT has been used with great
success to estimate a range of important interfacial properties, such
as surface tensions33–36 and adsorption isotherms.37 The perfor-
mance of DFT is limited by a lack of knowledge about the exact func-
tional to extremize34 and knowledge about the real intermolecular
potential, even for simple substances like argon38 or water.39

For many applications, it is impractical and too time-
demanding to use DGT or full DFT to calculate the work of
formation.5,40 This motivates the development of simple correc-
tions to CNT that maintain the inherent simplicity of the theory.
Among the most successful are the curvature corrections of the pla-
nar surface tension. The second order curvature expansion of the
surface tension is called the Helfrich expansion, where the coeffi-
cients of the first- and second-order corrections are given by the
Tolman length and rigidity constants, respectively. The challenge of
using this approach has been to evaluate the magnitude of the cor-
rections. There have even been controversies about the sign of the
leading-order correction, the Tolman length.41–48

Recently, it was shown how the Tolman length and rigidity con-
stants can be calculated using DGT49–52 or DFT.53,54 Incorporating
the curvature corrections into nucleation theory has been shown
to significantly improve agreement with experimental results for
water.49 It has also solved some of the inconsistencies that arise when
CNT is extended to multi-component systems.52 The ultimate test
of the accuracy of this curvature-corrected CNT (c-CNT) should be
performed using a model system where all the relevant ingredients
and properties are as much as possible under control. In this context,
the Lennard-Jones (LJ) fluid stands out because it is a simple poten-
tial that can be implemented in simulations and has been extensively
studied in the literature.55

In this work, we have performed a comprehensive study of
droplets in the Lennard-Jones fluid truncated and shifted at 2.5σ,
combining umbrella sampling Monte Carlo simulations, DGT, and
DFT to test the accuracy of the curvature-corrected CNT. The focus
has been to evaluate the work of formation of liquid droplets for a
wide range of conditions from the binodal to the spinodal and at
different temperatures. We show that DFT and DGT yield similar

J. Chem. Phys. 158, 114108 (2023); doi: 10.1063/5.0142533 158, 114108-2

© Author(s) 2023

 09 D
ecem

ber 2024 16:09:00

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

results that are in excellent agreement with the molecular simulation
results. Remarkably, c-CNT reproduces very accurately the results
from simulations, DGT, and DFT for all temperatures and moderate
degrees of metastability.

Since the c-CNT is based on the Helfrich expansion, which
is a Taylor expansion around the planar surface, it does not give
a vanishing nucleation barrier at the spinodal, unless by chance.
This hampers its precision at high metastabilities and for sufficiently
small embryos. We mend this shortcoming by formulating a scal-
ing expression for the nucleation barrier that incorporates both the
coefficients of the Helfrich expansion and the requirement of vanish-
ing nucleation barriers at the spinodals as corrections to CNT. We
demonstrate that the modified theory gives an excellent representa-
tion of the work of formation that differs from the predictions from
DGT by less than one kBT for the entire metastability range and all
temperatures examined.

II. THEORY
Consider a metastable vapor at temperature T and chemical

potential μ. For a spherical critical cluster, the work of formation
is given by the formally exact relation,6,56

W = 16πγ3

3(ΔP)2 , (2)

where γ is the surface tension of the cluster with the surface of
tension as a dividing surface. The Laplace pressure is defined as

ΔP = Pℓ(T, μ) − Pv(T, μ), (3)

i.e., the pressure difference between the (stable) bulk liquid and the
(metastable) bulk vapor having the same intensive properties (T, μ).
The calculation of the work of formation thus requires the evaluation
of two main ingredients: the pressure difference ΔP and the surface
tension γ.

ΔP is the difference in bulk thermodynamic properties. It can
be related to the surface tension through the Laplace relation,

ΔP = 2γ
R

. (4)

Here, R is the radius of the critical cluster at the surface of
tension.51,57 In this work, the quantities R, γ (with no subscript) are
always associated with the surface of tension.

For nucleation in an open system, the formation of a critical
droplet will increase the number of particles in the volume compared
to the homogeneous metastable vapor. One definition of the excess
number of particles is58

ΔN = −(∂W
∂μ
)

T
, (5)

which is independent of the dividing surface.
For a given metastable phase (T, μ), Eqs. (2)–(4) constitute

three equations for four properties. The closure of this system of
equations is obtained by specifying a relation between γ and R. The
closures considered in this work are detailed in Secs. II B–II F.

A. Equation of state
To calculate ΔP in Eq. (2) for condensation from a metastable

vapor, one needs an equation of state (EoS) that is accurate for
the stable liquid and the metastable vapor. For the Lennard-Jones
fluid truncated and shifted at 2.5σ, LJTS(2.5σ), the PeTS equation
of state by Heier et al.59 satisfies this criterion. (Note that an EoS
of similar accuracy was also developed for the even-shorter-ranged
Lennard-Jones spline potential,60 but for this potential simulations
of droplets are missing.) We have verified the accuracy of PeTS in
predicting the binodal by performing Gibbs ensemble Monte Carlo
simulations61,62 for the three temperatures studied here (see the
supplementary material).

B. The capillarity approximation and classical
nucleation theory

The classical nucleation theory (CNT) formula for the nucle-
ation barrier is obtained from Eq. (2) by using the capillarity approx-
imation, which assumes that the surface tension γ is the same as that
of the bulk liquid with a planar interface γ0,

WCNT =
16πγ3

0

3(ΔP)2 . (6)

Accordingly, the ratio of the exact work of formation of a spherical
critical droplet to that of the CNT-approximation is

W
WCNT

= ( γ
γ0
)

3

. (7)

Consequently, W/WCNT → 1 in the planar limit (ΔP → 0), and this
is often interpreted as the work of formation from CNT being exact
in the limit of large droplets. At the same time,

W −WCNT =
16π

3(ΔP)2 (γ
3 − γ3

0), (8)

= 16π
3(ΔP)2 ((γ0 + αΔP + ⋅ ⋅ ⋅ )3 − γ3

0), (9)

= 16π
3

3γ2
0α

ΔP
+O(1), (10)

where α = (∂γ/∂ΔP)T . Therefore, if the surface tension has a non-
zero derivative with respect to ΔP in the planar limit, the absolute
error of CNT for the work of formation can be substantial for large
droplets. More generally, the difference in work of formation from
two theories will diverge upon approaching the binodal if the two
theories predict differing values of γ0 or ∂γ/∂(ΔP) at the binodal
(or both). This must be kept in mind when comparing theories close
to the binodal. But obviously, the relative error (W −WCNT)/WCNT
goes to zero at the binodal, as expected for the thermodynamic limit.

C. Density gradient theory
Density gradient theory (DGT) models the grand free energy

at the state defined by (T, μ, V) by the following functional of the
density profile:

Ω[ρ(r)] = ∫ (
κ
2
(∇ρ(r))2 + aEoS(ρ(r)) − μρ(r)) dr. (11)
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The influence parameter κ is a positive parameter, usually fit-
ted to reproduce the planar surface tension, and aEoS(ρ) is the
Helmholtz energy density (per volume) of a fluid with uniform den-
sity ρ at the specified temperature. The function aEoS(ρ) = −PEoS(ρ)
+ μEoS(ρ)ρ is calculated from the PeTS EoS. We used the constant
influence parameter κ = 2.7334 (in reduced, LJ-units) suggested by
Heier et al.,59 which was shown to reproduce planar surface tension
simulations almost within their error bars.

The grand canonical functional is stationary for a system at a
fixed temperature T, volume, and chemical potential μ. The nec-
essary conditions for a stationary point of Eq. (11) are provided
by the Euler–Lagrange equations, δΩ[ρ(r)]/δρ(r) = 0. To solve the
Euler–Lagrange equations for DGT, we used the approach described
in Ref. 51.

D. Density functional theory
Heier et al.59 derived a density functional theory (DFT) for

the LJTS(2.5σ) fluid based on a weighted density average (WDA)
approach.34 To arrive at a formulation that is consistent with
Barker–Henderson perturbation theory63 as represented by the PeTS
EoS, the functional used the White Bear fundamental measure the-
ory (FMT) for the hard sphere contribution.64 Density functional
theory models the grand free energy at the state defined by (T, μ, V)
by the following functional of the density profile:

Ω[ρ(r)] = A[ρ(r)] − ∫ ρ(r)μ dr, (12)

where A[ρ(r)] is the Helmholtz energy functional. For the
LJTS(2.5σ) fluid, the Helmholtz energy has contributions from the
hard-sphere reference (FMT), dispersion (disp), and an ideal gas
(id) term,

βA[ρ(r)] = ∫ (ΦFMT(nFMT(r)) +Φdisp(ndisp(r)) +Φid(ρ(r))) dr,

(13)

where Φ is the reduced Helmholtz energy density, and n(r) is a
weighted density. The weighted densities are calculated via convolu-
tions with the density profiles. For the contribution from FMT, the
weights are listed in Ref. 65. The weighted density for the dispersion
term is given by

ndisp(r) = ∫ dr′ ρ(r′)ωdisp(r − r′), (14)

where ωdisp is a weight function of a sphere with diameter φdBH,

ωdisp(r) = Θ(φdBH − ∣r∣)
4π
3 (φdBH)3 . (15)

Here, Θ is the Heaviside function, dBH is the temperature dependent
Barker–Henderson diameter,63 and φ is a parameter that depends
on the potential range. Using the WDA approach, the dispersion
contribution is a function of the dispersion term from the EoS as
follows:

Φdisp(ndisp(r)) = ndisp(r)FEoS,disp(ndisp(r)), (16)

where F is the specific reduced Helmholtz energy.

The profiles from DFT can be obtained by solving the
Euler–Lagrange equations, δA[ρ(r)]/δρ(r) = μ. This can be effi-
ciently accomplished by using the convolution theorem to solve the
convolution integrals in Fourier space with cosine and sine trans-
forms, for both the planar and spherical geometries.65,66 In addition,
convergence of the overall equation system can be accelerated by use
of Anderson mixing.67

Sauer and Gross34 regressed the φ parameter to surface tension
data of n-alkanes and found that φ = 1.3862 gave good results for
most fluids. For the short ranged LJTS(2.5σ) fluid, Heier et al. had
to use a smaller value of φ = 1.21 to achieve agreement with the sim-
ulation results for the surface tension;68 this is also the value used in
this work.

For both DFT and DGT, the bulk behavior is governed by the
underlying EoS, i.e., PeTS. Since the work of formation of a droplet
(bubble) in DGT will be zero at the vapor (liquid) spinodal of the
EoS, the location of this spinodal may severely affect the prediction
of free energies of small clusters. Although non-local DFT yields
more realistic density profiles than DGT,55 they have been found
to yield similar free energy predictions54 in the planar limit. In this
work, we will also compare them for small droplets.

Of interest to the current work is the behavior of mean field
theories, such as DGT and DFT, close to the spinodal. Wilemski and
Li30 studied in detail the scaling behavior of density gradient the-
ory and mean field density functional theory. Both of these theories
always predict that the work of formation vanishes at the spinodal,
whereas the excess number of particles [Eq. (5)] of the critical cluster
diverges to infinity. The mean field theories predict that the equimo-
lar radius Re and the equimolar surface tension γe both diverge to
infinity upon approaching the spinodal. For the surface of tension,
however, γ→ 0, R→ 0 at the spinodal, whereas ΔP goes to a finite
value.

E. The Helfrich expansion and c-CNT
The Helfrich expansion is based on a quadratic expansion of

the surface tension in terms of the curvature 1/R around the planar
limit,

γ(R) = γ0 − 2γ0δ/R + ks/R2, (17)

where δ is the Tolman length, and ks = 2k + k̄ is the spherical rigidity,
with k and k̄ being the bending and Gaussian rigidity, respec-
tively. All these coefficients can be computed using either DGT or
DFT.50,51,54 Such an expansion can be performed for an arbitrary
choice of dividing surface, but in this work, we use the surface of
tension.

The Helfrich expansion can be viewed as a second-order
refinement of the zeroth-order capillarity approximation γ(R) = γ0.
Incorporating this expansion into CNT, one obtains a curvature
corrected expression for the work of formation of critical clusters,52

Wc−CNT ≈
4πγ0R2

CNT

3
(1 − 6δ

RCNT
) + 4πks, (18)

where

RCNT =
2γ0

ΔP
, (19)
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is the CNT prediction for the radius of the critical cluster. The phys-
ical significance of this curvature corrected CNT is corroborated by
its success in improving the predictions of classical nucleation theory
for the experimental nucleation rates of water50 and water-alcohol
mixtures.52 In this work, we shall perform a more stringent test of
the accuracy of this formula for the LJTS(2.5σ) using the values of
the coefficients calculated from DGT according to the procedure of
Ref. 51.

F. Scaling function for the work of formation
Since the pioneering work of McGraw and Laaksonen on scal-

ing relations,26 there is increasing evidence suggesting that the work
of formation of critical clusters normalized by the CNT predic-
tion, f ≡W/WCNT , may be a universal function of the degree of
metastability, depending only weakly on the temperature and on
the details of the intermolecular potential.69–73 Accordingly, many
expressions for this scaling function f have been proposed in the
literature,69,72,74–79 where the degree of metastability is typically
expressed either in terms of the difference in chemical potential Δμ
or the Laplace pressure ΔP. This scaling function should fulfill at
least two requirements. First, CNT is expected to be valid at the bin-
odal when the size of the critical cluster goes to infinity, such that
f (0) = 1. Second, the work of formation of the critical cluster should
be zero at the spinodal, such that f (ΔPsp) = 0, where ΔPsp represents
the difference in bulk pressures between the stable and metastable
phases at the spinodal.

The most straightforward scaling function fulfilling these two
requirements is the linear function f (ΔP) = 1 − ΔP/ΔPsp, proposed
(in terms of Δμ) by Talanquer.69 Along the same lines, different
linear and parabolic scaling functions have been proposed in the
literature.72,74–79 In fact, the c-CNT expression, Eq. (18), can be
rewritten as

f c−CNT(ΔP) ≡ Wc−CNT

WCNT
= 1 − 3δ

γ0
ΔP + 3ks

4γ3
0

ΔP2. (20)

However, c-CNT is derived using only the Helfrich expansion,
and although it predicts a vanishing of the nucleation barrier,
this does not necessarily agree with the location of the thermody-
namic spinodal (i.e., at ΔPsp, where the isothermal compressibility
diverges).

A very similar parabolic scaling function was recently pro-
posed by Kashchiev79 based on the nucleation theorem and using
the assumption that the equimolar critical cluster radius only differs
from the CNT prediction by the Tolman length. The main differ-
ence is that the second order term is obtained by imposing that the
free energy of the critical cluster must vanish at the vapor spinodal,
instead of using the value of the spherical rigidity. In fact, Kaschiev’s
expression can be recovered assuming that the scaling function is
parabolic and using f (0) = 1, f (ΔPsp) = 0, and the value of Tolman
length δ as conditions to evaluate the coefficients.

We can formulate a more accurate expression for the scaling
function f (ΔP), using all the ingredients that we know, namely, (i)
f (0) = 1, (ii) the slope at the binodal given by the Tolman length
δ, (iii) the spherical rigidity ks, (iv) zero work of formation at the
vapor spinodal f (ΔPv

sp) = 0, and (v) at the liquid spinodal f (ΔPℓ
sp)

= 0. Instead of using ks to specify the second derivative at the bin-
odal, it is more convenient to use it to enforce the location of the

maximum of the work of formation. We have enforced that the
maximum of f occurs at

ΔPm =
2δγ2

0

ks
, (21)

namely, the same maximum as obtained from Eq. (20). An accurate
scaling function that satisfies these five conditions is a fourth-order
polynomial in the Laplace pressure,

f (ΔP) = (ΔP − ΔPℓ
sp)(ΔP − ΔPv

sp)(1 + bΔP + c(ΔP)2)
ΔPℓ

spΔPv
sp

, (22)

b = −3δ
γ0
+ 1

ΔPv
sp
+ 1

ΔPℓ
sp

, (23)

c = −(3bΔPm + 2)ΔPm + (ΔPℓ
sp + ΔPv

sp)(2bΔPm + 1) − ΔPℓ
spΔPv

spb
4(ΔPm)3 − 3(ΔPℓ

sp + ΔPv
sp)(ΔPm)2 + 2ΔPℓ

spΔPv
spΔPm

.
(24)

The first two factors in the numerator of Eq. (22) warrant that
the work of formation vanishes at both spinodals. The coefficients of
the parabolic third factor are obtained from the slope at the binodal
given by the Tolman length and the location of the maximum of the
work of formation at ΔPm.

In Sec. IV, we will show that Eq. (22) accurately reproduces
results from simulations, DGT, and DFT. The proposed scaling
function in Eq. (22) is a modification of the Helfrich expansion so
that the surface tension goes to zero at the right location of the spin-
odals while maintaining the correct behavior in the binodal limit
described by the Tolman length and the spherical rigidity.

III. SIMULATION DETAILS
In order to test the accuracy of c-CNT and of the proposed

scaling relation, we have performed umbrella sampling Monte
Carlo simulations to calculate the free energy of critical droplets of
the LJTS(2.5σ) fluid at two different temperatures: T = 0.625 and
T = 0.900. Monte Carlo simulations in the NPT ensemble were
implemented in a cubic box with periodic boundary conditions,
using a self-developed code based on the algorithms described
in Refs. 80 and 81. Simulations were performed with typically
N = 4000 particles for the largest supersaturations and N = 10 000
for small supersaturations. In the MC simulations, each trial move
consisted either of an attempted particle displacement or a trial vol-
ume change, chosen at random. The maximum displacement for
both types of MC moves was adjusted to give a 50% acceptance ratio.
A MC step is defined as N + 1 trial moves.

Liquid clusters were identified using the ten Wolde–Frenkel
cluster criterion,81 where a molecule is classified as liquid-like if it
has at least five neighbors within a distance smaller than the Still-
inger radius rc, corresponding to the first minimum in the radial
distribution function of the liquid at the desired temperature.

The number of liquid-like molecules in the largest liquid clus-
ter nℓ was used as a reaction coordinate in the harmonic umbrella
biasing potential,

Wb(nℓ) =
1
2

kn(nℓ − n0)2, (25)
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where kn and n0 set the width and location of the window. A total
of 15–40 windows located at intervals of 20–150 molecules with
typical values of kn = 0.005 − 0.02 were simulated at each temper-
ature and pressure. For each window, 500k MC steps were used for
equilibration, followed by 500k MC steps used for production. To
speed up the simulations, a staging scheme was implemented, where
a short trajectory of 25 MC steps was performed without bias and
then accepted with a probability given by exp(−βΔWb(nℓ)), where
ΔWb(nℓ) is the difference in biasing potential before and after the
trajectory. At each temperature and pressure, we also performed an
unbiased simulation to obtain the cluster size distribution P(n) of
all clusters. In each window, the probability distribution function of
the largest cluster sizePℓ(nℓ)was recorded. The weighted histogram
analysis method described in Ref. 82 was then used to reconstruct
the free energy from the umbrella sampling simulations, joining the
different windows. In order to obtain the free energy of any cluster
size, βΔG(n), from the probability distribution of the largest cluster
Pℓ(nℓ), we used the formula

βΔG(n) = − ln( Pℓ(nℓ)
Pℓ(nmin)

) − lnP(nmin), (26)

where nmin is the size that we used to match the two distributions
(typically nmin = 5). Figure 5 in the supplementary material shows
a typical example of the reconstructed free energy landscape for
T = 0.900 and p = 0.037. The location and value of the maximum
of the reconstructed free energy βΔG(n) provide the size ΔN and
energy of formation of the critical cluster W.

For T = 0.900, simulations were performed in the pressure
range of 0.034 25 ≤ P ≤ 0.039 and for T = 0.625 in the range of
0.0028 ≤ P ≤ 0.078. For pressures smaller than that, the critical clus-
ter size was too large to be simulated. For pressures larger than those
values, the system was too close to the spinodal, and many clusters
were formed spontaneously, hampering a reliable reconstruction of
the barrier. Therefore, the range of nucleation barriers accessible
through our umbrella sampling simulations is in the range of 20–150
kBT. Details from the simulations, such as the work of formation and
the number of particles, are included in the supplementary material.

Simulation results for a third intermediate temperature
T = 0.741 were also included in our comparison. For that tempera-
ture, we took advantage of the results of ten Wolde and Frenkel,81

who also used umbrella sampling to calculate the free energy at
P = 0.007 83, and then used thermodynamic integration to obtain
the nucleation barrier at other pressures.

IV. RESULTS AND DISCUSSION
We next discuss the results. The numerical values of the simu-

lation results are listed in the supplementary material. All properties
are reported in reduced Lennard-Jones units. Conversion formulas
for real fluids are listed in Table I of Ref. 83.

A. Comparison of theories and simulation results
Figures 2–4 compare the number of particles and the work

of formation predicted from all theories considered in this work

FIG. 2. Comparison of theories and sim-
ulations for T = 0.625 as a function of
the Laplace pressure ΔP, where the
x axes are delimited by the binodal
on the left and the vapor spinodal on
the right. The simulation uncertainties,
estimated following Ref. 82, are shown
with error bars. Helfrich coefficients were
computed with DGT.
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FIG. 3. Comparison of theories with
simulation data from ten Wolde and
Frenkel81 for T = 0.741 as a function of
the Laplace pressure ΔP, where the x
axes are delimited by the binodal on the
left and the vapor spinodal on the right.
Helfrich coefficients were computed with
DGT.

FIG. 4. Comparison of theories and sim-
ulations for T = 0.900 as a function of
the Laplace pressure ΔP, where the
x axes are delimited by the binodal
on the left and the vapor spinodal on
the right. The simulation uncertainties,
estimated following Ref. 82, are shown
with error bars. Helfrich coefficients were
computed with DGT.
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against simulations for the temperatures T = 0.625, T = 0.741, and
T = 0.900. The x axes start from the binodal and end at the vapor
spinodal for each temperature.

All theories, namely, DGT, DFT, CNT, and c-CNT (labeled
“Helfrich expansion” in Figs. 2–4), and the scaling function, repro-
duce the excess particle number in the critical cluster ΔN obtained in
the simulations, mostly within the simulation uncertainty. Although
the excess number of particles is closely related to the work of for-
mation through Eq. (5), in the simulations, it is calculated directly
from the number of molecules in the critical cluster identified by
the ten Wolde-Frenkel cluster criterion. Therefore, the fact that a
theory can reproduce both the work of formation and the excess
number of particles represents a stringent validation as well as an
excellent consistency check of the simulations. Mean field theories,
such as DFT and DGT, predict a diverging excess number of parti-
cles upon approaching the spinodal.30 This is not shown in Figs. 2–4
[panel (a)] since this divergence only occurs very close to the spin-
odal. However, note that none of the theories predict zero excess
particle number at the spinodal; this is most evident from Fig. 3,
panel (a).

For the work of formation, DGT and the proposed spinodal
scaling relation are in closest agreement with the molecular simu-
lation results. This can be seen by comparing the work of formation
ratio W/WCNT and the value of W −WDGT [Figs. 2–4, panels (c) and
(d)] to the simulations.

The excellent match of the simulations and DGT with a
temperature-independent influence parameter is remarkable, con-
sidering that the uncertainty of the planar surface tension values
for the LJTS(2.5σ) fluid is on the order of several percent (cf. the
supplementary material). Intuitively, one might expect DFT to give
results that are closer to simulations than DGT. After all, DGT is
only the first approximation to DFT. It should be kept in mind, how-
ever, that the exact functional to minimize in DFT is unknown, and
the functional presented in Sec. II D represents only an approxi-
mation. A fitting parameter is needed in both theories to reproduce
surface tensions from molecular simulations.

Stephan et al.55 showed that although the surface tension of the
planar vapor-interface is accurately represented by both DFT and
DGT, the theories give density and pressure tensor profiles that devi-
ate from molecular simulation results. One theory did not show any
clear advantage over the other (see Figs. 2–6 in Ref. 55). These dis-
crepancies do not seem to influence the curvature dependence of
the surface tension to a large degree, since both theories reproduce
the work of formation from umbrella sampling simulations with
impressive accuracy.

The c-CNT that uses the Helfrich expansion is also remark-
ably accurate when measuring the deviation in units of kBT for
the droplet sizes studied in this work [Figs. 2–4, panel (d)]. Still,
the deviation from simulations is only sligthly outside the simu-
lation error bars at the largest metastabilities, as seen in Fig. 2.
Only the CNT approximation results in large deviations from the
simulations.

With the exception of CNT, all theories predict that the sur-
face tension increases with metastability at low, positive values of
ΔP, reaches a maximum, and then decreases monotonically toward
the spinodal. In practice, homogeneous nucleation only occurs for
metastabilities where W < 100kBT; for higher barriers, the nucle-
ation rate is generally too low to be observable. For nearly all droplets

for which W < 100kBT, the theories predict that the surface tension
is lower than the planar surface tension for the LJTS(2.5σ) fluid.

The theories that only use the properties of the surface tension
associated with the binodal, namely, CNT and the Helfrich expan-
sion, differ markedly at high supersaturations from the theories that
incorporate the spinodal. CNT does not predict a spinodal at all,
whereas the Helfrich expansion predicts spinodals at significantly
higher metastabilities than the PeTS EoS. Both theories, therefore,
predict a positive work of formation W at the PeTS spinodal, which
is largest for the lowest temperatures [compare Figs. 2–4 (panel d)
for the three temperatures]. For CNT, this overprediction persists
to the metastabilities of the simulations, showing clearly that CNT
overpredicts the free energy of small droplets and that this is most
severe at low temperatures and/or high metastabilities.

Figures 2–4 [panel (c)] illustrate that DFT and DGT yield very
similar shapes of the ratio W/WCNT = (γ/γ0)3, where γ0 was calcu-
lated from the corresponding theory. For the value of W [Figs. 2–4
panel (d)], DGT performs slightly better than DFT in reproducing
the simulation results. One possible reason is the different values of
γ0 from the two theories (cf. Table I), as well as the different Hel-
frich coefficients δ, k, k̄. That the curves WCNT −WDGT in panel (d)
diverge to infinity at the binodal follows from Eqs. (8)–(10), since the
Tolman length of DGT is negative. We also see that WDFT −WDGT
diverges when approaching the binodal, where the divergence is to
∞ or −∞ depending on the sign of γDFT

0 − γDGT
0 .

Although we have not compared to molecular simulation
results for bubbles, we have included a comparison between
the theories and methods used in this work for bubbles in the
supplementary material. This comparison shows that the perfor-
mance of the theories discussed above applies to the bubble branch
as well. Remarkably, the proposed scaling function Eq. (22) repro-
duces almost exactly the predictions of DGT both for bubbles and
droplets in the entire range of metastabilities. The supplementary
material also includes versions of Figs. 2–4, where the quantities
are plotted as functions of the supersaturation ratio P/Psat, which is
commonly used as a measure of metastability in nucleation theory.

B. The Tolman length and rigidity constants
We will next compare our estimates of the Tolman length to

those of van Giessen and Blokhuis,84 who determined the Tolman
length δ of the LJTS(2.5σ) fluid at T = 0.900 from bulk pressures
of large liquid drops via molecular dynamics simulations. Using the
planar surface tension γ∞0 as a boundary condition in their anal-
ysis, they found δ = −0.100σ or δ = −0.0845σ depending on how
they calculated the bulk pressures. This deviates somewhat from the
value determined by DGT and DFT (cf. Table I). In fact, the values
of the Tolman length we find, −0.067 36 from DGT and −0.058 28
from DFT, are closer to those estimated by Wilhelmsen et al.,50

namely, δ = −0.074σ. Wilhelmsen et al. used another implementa-
tion of DGT with a less accurate equation of state.50 This shows that
the coefficients in the Helfrich expansion are sensitive toward the
underlying thermodynamic description of the bulk fluid.

For T = 0.625, the simulation results for the largest droplets
yield values of the surface tension that are higher than the pla-
nar value (Fig. 2), which is consistent with a negative Tolman
length. To our knowledge, this is the first time this has been
shown by umbrella sampling simulations. The regime with surface
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TABLE I. Planar surface tension and Helfrich coefficients for the LJTS(2.5σ) fluid.

γ0 δ k k̄ 2k + k̄

T = 0.625

DGT 0.732 11 −0.081 26 −0.322 32 0.192 49 −0.452 16
DFT 0.715 81 −0.072 81 −0.323 49 0.200 50 −0.446 47

T = 0.700

DGT 0.585 99 −0.078 29 −0.323 00 0.189 84 −0.456 16
DFT 0.580 60 −0.070 32 −0.336 53 0.204 46 −0.468 59

T = 0.741

DGT 0.509 38 −0.076 35 −0.323 10 0.188 45 −0.457 75
DFT 0.507 58 −0.068 40 −0.341 72 0.205 52 −0.477 92

T = 0.800

DGT 0.403 18 −0.073 18 −0.322 17 0.186 09 −0.458 24
DFT 0.404 30 −0.065 01 −0.345 78 0.205 16 −0.486 39

T = 0.900

DGT 0.235 23 −0.067 36 −0.313 89 0.178 93 −0.448 85
DFT 0.237 23 −0.058 28 −0.338 83 0.197 00 −0.480 67

T = 1.000

DGT 0.088 27 −0.064 58 −0.281 11 0.158 62 −0.403 59
DFT 0.088 89 −0.054 40 −0.296 58 0.169 26 −0.423 90

tensions that are higher than the surface tension of the planar surface
was only reachable at the lowest temperatures. This is because the
critical cluster size corresponding to the maximum and the required
number of particles in the simulation volume increase quickly with
temperature.

Interestingly, the value of the spherical rigidity ks = 2k + k̄
appears to be approximately independent of temperature for T ≤ 0.9,
with ks ∼ −0.45 for DGT (cf. Table I). This is in line with the findings
by Wilhelmsen et al.50 How the W/WCNT curve varies with temper-
atures is therefore strongly connected to the value of the Tolman
length.

C. Discussion of a possible influence of capillary
wave contributions to the planar surface tension

For T = 0.900, van Giessen and Blokhuis84 calculated the pla-
nar surface tension of the LJTS(2.5σ) fluid for increasingly large
systems (up to box sizes of 50σ × 50σ × 100σ) and extrapolated to
the thermodynamic limit. This yielded the value γ∞0 = 0.227 774,
which is 3.2% lower than the value from DGT, γDGT

0 = 0.235 23,
and 4% lower than the value from DFT, γDFT

0 = 0.237 23. We have
attempted to refit the influence parameter of DGT to the presumably
more accurate value from van Giessen and Blokhuis84 and found
that this removes the good agreement between DGT and the simu-
lations shown in Fig. 4 (cf. Fig. 4 in the supplementary material).
One possible reason for this is the larger influence of capillary
waves on large surfaces. Using the formulation of Planková et al.,85

capillary waves are expected to decrease the surface tension γ
according to

γbare

γ∞0
= 1 + 3

8π
T
Tc

1
2.72

, (27)

where Tc is the critical temperature, and Tc = 1.085 for LJTS(2.5σ).
The capillary wave contribution to the surface tension is the largest
close to the critical point, with a limiting value of γbare/γ∞0 = 1.044
at the critical temperature. For T = 0.900, this ratio equals 1.0364,
which is in reasonable agreement with γDGT

0 /γ∞0 = 1.0327. This may
support the conclusions of Planková et al.,85 namely, that the small
length scales of critical droplets tend to inhibit capillary waves, and
it is therefore the bare surface tension that is relevant. It also seems
to support the findings of Checa et al.,86 which indicate that DFT
only captures fluctuations at length scales of (10 ± 2)σ and that large
capillary waves must be separately accounted for.

V. CONCLUSIONS
In this work, we have performed a careful analysis of the

work of formation of critical clusters of the truncated and shifted
Lennard-Jones fluid LJTS(2.5σ) at three different temperatures and
a wide range of pressures from the binodal to the spinodal. We have
performed Monte Carlo umbrella sampling simulations and used
density gradient theory (DGT) and density functional theory (DFT)
to study the work of formation and the size of critical clusters. The

J. Chem. Phys. 158, 114108 (2023); doi: 10.1063/5.0142533 158, 114108-9

© Author(s) 2023

 09 D
ecem

ber 2024 16:09:00

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

aim was to test the accuracy of classical nucleation theory (CNT)
and curvature corrected CNT (c-CNT). c-CNT relies on the Helfrich
expansion, which is a second order expansion of the surface tension
in curvature around the planar limit, where the first order correction
is the Tolman length and the second order correction is the rigidity
constants.

We have found that both DGT and DFT reproduce the simula-
tion results with remarkable accuracy. As expected, since CNT uses
the capillarity approximation, it overpredicts the nucleation barrier
at high supersaturations and fails to predict a vanishing nucleation
barrier at the spinodal. Remarkably, c-CNT reproduces accurately
the results from molecular simulations at all temperatures and for
most of the experimentally accessible region. This provides a solid
confirmation of the validity of c-CNT, using a model system like the
LJTS(2.5σ), with a simple intermolecular potential, and for which
the equation of state and relevant properties have been characterized
accurately by simulations.

The Tolman lengths from both DGT and DFT were found to
be negative. Moreover, the second-order correction of the surface
tension, the spherical rigidity, was found to be nearly independent
of temperature. At the lowest temperature investigated, the work
of formation from umbrella sampling simulations revealed a region
where the surface tension is higher than the value of the planar
vapor–liquid surface. This strongly suggests that the Tolman length
is negative, in line with the predictions from DGT and DFT.

The molecular simulations for T = 0.900 were shown to be
in agreement with capillary wave theory, suggesting that the
capillary wave contributions to the planar surface tension must
be removed before using it to tune DGT/DFT when modeling
droplets. This warrants further investigation of the size-dependence
of the surface tension for other temperatures, e.g., T = 0.625 and
T = 0.741, and for other fluids to investigate whether this finding is
general.

The only regime where c-CNT deviates from simulations is for
the smallest droplets at the highest metastabilities in the vicinity of
the spinodal. In fact, c-CNT mispredicts the location of the spinodal,
identified as the vanishing of the nucleation barrier. This is expected,
since c-CNT is based on a curvature expansion around the planar
limit, i.e., at the binodal.

In order to solve this limitation, we have formulated a new
scaling function that, in addition to the leading order curvature
corrections (i.e., Tolman length and rigidity constants), also uses
the location of the vapor and liquid spinodals. The resulting fourth
order polynomial reproduces with excellent accuracy the results
from simulations, DGT and DFT, in the whole range of studied
temperatures and degrees of metastability, from the binodal to the
spinodal. It also reproduces, with remarkable accuracy, the DGT and
DFT predictions for the bubble branch.

Our results suggest that both c-CNT and the new scaling func-
tion constitute accurate yet simple models to accurately predict
nucleation rates and solve the limitations of CNT. Here, we have
confirmed this for the work of formation of droplets. However, the
new scaling function is expected to be equally accurate for bubbles
and could also possibly be extended to crystallization. Therefore,
the proper incorporation of curvature corrections and the location
of the spinodals might open the door to quantitatively accurate
predictions of nucleation rates for other substances and a wide range
of problems of scientific and technological interest.

SUPPLEMENTARY MATERIAL

The supplementary material contains a comparison of the pre-
dictions of the different theories on the bubble branch; a comparison
between simulations and theories for critical droplets for T = 0.900
when refitting the influence parameter of DGT to reproduce the
planar surface tension from van Giessen and Blokhuis;84 a table
with all the simulation results; a validation using Gibbs ensemble
Monte Carlo simulations of the PeTS EoS for the three temperatures
studied in this work; a comparison of the calculated surface ten-
sions from DFT and DGT against the simulation results by Vrabec
et al.;68 and an alternative representation of Figs. 2–4 in terms of the
supersaturation.

ACKNOWLEDGMENTS
This work received funding from the Norwegian Research

Council, Project No. 328679. A.A., Ø.W., and M.H. acknowledge
funding from the Research Council of Norway (RCN), the Cen-
ter of Excellence Funding Scheme, Project No. 262644, PoreLab.
D.R. acknowledges funding from the Spanish government through
Grant Nos. PGC2018-098373-B-I00 and PID2021-126570NB-I00
(MINECO/FEDER, UE).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Ailo Aasen: Conceptualization (equal); Data curation (equal); Inves-
tigation (equal); Writing – original draft (equal); Writing – review &
editing (equal). Øivind Wilhelmsen: Conceptualization (equal);
Investigation (equal); Supervision (equal); Writing – review & edit-
ing (equal). Morten Hammer: Data curation (equal); Investigation
(equal); Writing – review & editing (equal). David Reguera: Con-
ceptualization (equal); Data curation (equal); Investigation (equal);
Supervision (equal); Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
within the article and its supplementary material.

REFERENCES
1P. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton Univer-
sity Press, Princeton, 1996).
2A. Laaksonen, V. Talanquer, and D. W. Oxtoby, Annu. Rev. Phys. Chem. 46, 489
(1995).
3D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworth-
Heinemann, Oxford, 2000).
4K. F. Kelton and A. L. Greer, Nucleation in Condensed Matter (Elsevier,
Amsterdam, 2010).
5H. Vehkamäki, Classical Nucleation Theory in Multicomponent Systems
(Springer-Verlag, Berlin, 2006).

J. Chem. Phys. 158, 114108 (2023); doi: 10.1063/5.0142533 158, 114108-10

© Author(s) 2023

 09 D
ecem

ber 2024 16:09:00

https://scitation.org/journal/jcp
https://doi.org/10.1146/annurev.pc.46.100195.002421


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

6J. W. Gibbs, The Scientific Papers of J. Willard Gibbs (Ox Bow Press, London,
1993).
7M. Volmer and A. Weber, Z. Phys. Chem. 119U, 277 (1926).
8L. Farkas, Z. Phys. Chem. 125U, 236 (1927).
9R. Becker and W. Döring, Ann. Phys. 416, 719 (1935).
10Y. B. Zeldovich, Zh. Teor. Eksp. Fiz. 12, 525 (1942).
11P. Aursand, M. A. Gjennestad, E. Aursand, M. Hammer, and Ø. Wilhelmsen,
Fluid Phase Equilib. 436, 98 (2017).
12A. Linhart, C. C. Chen, J. Vrabec, and H. Hasse, J. Chem. Phys. 122, 144506
(2005).
13E. S. Loscar, E. E. Ferrero, T. S. Grigera, and S. A. Cannas, J. Chem. Phys. 131,
024120 (2009).
14E. S. Loscar, C. G. Ferrara, and T. S. Grigera, J. Chem. Phys. 144, 134501 (2016).
15E. M. Dunne, H. Gordon, A. Kürten, J. Almeida, J. Duplissy, C. Williamson,
I. K. Ortega, K. J. Pringle, A. Adamov, U. Baltensperger, P. Barmet, F. Benduhn,
F. Bianchi, M. Breitenlechner, A. Clarke, J. Curtius, J. Dommen, N. M. Donahue,
S. Ehrhart, R. C. Flagan, A. Franchin, R. Guida, J. Hakala, A. Hansel, M. Hein-
ritzi, T. Jokinen, J. Kangasluoma, J. Kirkby, M. Kulmala, A. Kupc, M. J. Lawler,
K. Lehtipalo, V. Makhmutov, G. Mann, S. Mathot, J. Merikanto, P. Miettinen, A.
Nenes, A. Onnela, A. Rap, C. L. S. Reddington, F. Riccobono, N. A. D. Richards,
M. P. Rissanen, L. Rondo, N. Sarnela, S. Schobesberger, K. Sengupta, M. Simon,
M. Sipilä, J. N. Smith, Y. Stozkhov, A. Tomé, J. Tröstl, P. E. Wagner, D. Wimmer,
P. M. Winkler, D. R. Worsnop, and K. S. Carslaw, Science 354, 1119 (2016).
16G. C. Sosso, J. Chen, S. J. Cox, M. Fitzner, P. Pedevilla, A. Zen, and A.
Michaelides, Chem. Rev. 116, 7078 (2016).
17T. Karmakar, P. M. Piaggi, and M. Parrinello, J. Chem. Theory Comput. 15,
6923 (2019).
18G. Menzl, M. A. Gonzalez, P. Geiger, F. Caupin, J. L. F. Abascal, C. Valeriani,
and C. Dellago, Proc. Natl. Acad. Sci. U. S. A. 113, 13582 (2016).
19C. Duan, R. Karnik, M.-C. Lu, and A. Majumdar, Proc. Natl. Acad. Sci. U. S. A.
109, 3688 (2012).
20P. M. Winkler, G. Steiner, A. Vrtala, H. Vehkamäki, M. Noppel, K. E. J.
Lehtinen, G. P. Reischl, P. E. Wagner, and M. Kulmala, Science 319, 1374 (2008).
21J. Zhou, Y. Yang, Y. Yang, D. S. Kim, A. Yuan, X. Tian, C. Ophus, F. Sun, A. K.
Schmid, M. Nathanson, H. Heinz, Q. An, H. Zeng, P. Ercius, and J. Miao, Nature
570, 500 (2019).
22A. E. S. Van Driessche, N. Van Gerven, P. H. H. Bomans, R. R. M. Joosten, H.
Friedrich, D. Gil-Carton, N. A. J. M. Sommerdijk, and M. Sleutel, Nature 556, 89
(2018).
23E. B. Moore and V. Molinero, Nature 479, 506 (2011).
24J. R. Espinosa, C. Vega, C. Valeriani, and E. Sanz, J. Chem. Phys. 144, 034501
(2016).
25K. E. Blow, D. Quigley, and G. C. Sosso, J. Chem. Phys. 155, 040901 (2021).
26R. McGraw and A. Laaksonen, Phys. Rev. Lett. 76, 2754 (1996).
27K. Iland, J. Wölk, R. Strey, and D. Kashchiev, J. Chem. Phys. 127, 154506 (2007).
28E. Magnanelli, Ø. Wilhelmsen, D. Bedeaux, and S. Kjelstrup, Phys. Rev. E 90,
032402 (2014).
29R. Evans, in Fundamentals of Inhomogeneous Fluids, edited by D. Henderson
(Marcel Dekker, New York, 1992).
30G. Wilemski and J.-S. Li, J. Chem. Phys. 121, 7821 (2004).
31D. W. Oxtoby and R. Evans, J. Chem. Phys. 89, 7521 (1988).
32D. W. Oxtoby, Annu. Rev. Mater. Res. 32, 39 (2002).
33X. C. Zeng and D. W. Oxtoby, J. Chem. Phys. 94, 4472 (1991).
34E. Sauer and J. Gross, Ind. Eng. Chem. Res. 56, 4119 (2017).
35J. F. Lutsko, J. Chem. Phys. 134, 164501 (2011).
36J. C. Barrett, J. Chem. Phys. 124, 144705 (2006).
37J. Eller and J. Gross, Langmuir 37, 3538 (2021).
38B. Jäger, R. Hellmann, E. Bich, and E. Vogel, J. Chem. Phys. 135, 084308 (2011).
39P. Rehner and J. Gross, J. Chem. Eng. Data 65, 5698 (2020).
40Ø. Wilhelmsen and A. Aasen, Chem. Eng. Sci. 248, 117176 (2022).
41Y. A. Lei, T. Bykov, S. Yoo, and X. C. Zeng, J. Am. Chem. Soc. 127, 15346
(2005).
42I. Sanchez-Burgos, P. M. De Hijes, P. Rosales-Pelaez, C. Vega, and E. Sanz,
Phys. Rev. E 102, 062609 (2020).

43N. Bruot and F. Caupin, Phys. Rev. Lett. 116, 056102 (2016).
44A. Tröster, M. Oettel, B. Block, P. Virnau, and K. Binder, J. Chem. Phys. 136,
064709 (2012).
45K. M. Bal and E. C. Neyts, J. Chem. Phys. 157, 184113 (2022).
46M. N. Joswiak, R. Do, M. F. Doherty, and B. Peters, J. Chem. Phys. 145, 204703
(2016).
47P. Rosales-Pelaez, I. Sanchez-Burgos, C. Valeriani, C. Vega, and E. Sanz,
Phys. Rev. E 101, 022611 (2020).
48J. Diemand, R. Angélil, K. K. Tanaka, and H. Tanaka, Phys. Rev. E 90, 052407
(2014).
49Ø. Wilhelmsen, D. Bedeaux, and D. Reguera, J. Chem. Phys. 142, 171103
(2015).
50Ø. Wilhelmsen, D. Bedeaux, and D. Reguera, J. Chem. Phys. 142, 064706 (2015).
51A. Aasen, E. M. Blokhuis, and Ø. Wilhelmsen, J. Chem. Phys. 148, 204702
(2018).
52A. Aasen, D. Reguera, and Ø. Wilhelmsen, Phys. Rev. Lett. 124, 045701 (2020).
53E. M. Blokhuis and A. E. van Giessen, J. Phys.: Condens. Matter 25, 225003
(2013).
54P. Rehner, A. Aasen, and Ø. Wilhelmsen, J. Chem. Phys. 151, 244710 (2019).
55S. Stephan, J. Liu, K. Langenbach, W. G. Chapman, and H. Hasse,
J. Phys. Chem. C 122, 24705 (2018).
56A. Obeidat, J.-S. Li, and G. Wilemski, J. Chem. Phys. 121, 9510 (2004).
57J. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon Press,
Oxford, 1984).
58T. L. Hill, Thermodynamics of Small Systems (Courier Dover Publications, New
York, 2002).
59M. Heier, S. Stephan, J. Liu, W. G. Chapman, H. Hasse, and K. Langenbach,
Mol. Phys. 116, 2083 (2018).
60T. Van Westen, M. Hammer, B. Hafskjold, A. Aasen, J. Gross, and Ø.
Wilhelmsen, J. Chem. Phys. 156, 104504 (2022).
61A. Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987).
62M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford
University Press, 2017).
63J. A. Barker and D. Henderson, J. Chem. Phys. 47, 4714 (1967).
64R. Roth, R. Evans, A. Lang, and G. Kahl, J. Phys.: Condens. Matter 14, 12063
(2002).
65R. Stierle, E. Sauer, J. Eller, M. Theiss, P. Rehner, P. Ackermann, and J. Gross,
Fluid Phase Equilib. 504, 112306 (2020).
66M. Hammer, G. Bauer, R. Stierle, J. Gross, and Ø. Wilhelmsen, J. Chem. Phys.
158, 104107 (2023).
67J. Mairhofer and J. Gross, Fluid Phase Equilib. 444, 1 (2017).
68J. Vrabec, G. K. Kedia, G. Fuchs, and H. Hasse, Mol. Phys. 104, 1509 (2006).
69V. Talanquer, J. Chem. Phys. 106, 9957 (1997).
70V. K. Shen and P. G. Debenedetti, J. Chem. Phys. 114, 4149 (2001).
71M. Müller, L. G. MacDowell, P. Virnau, and K. Binder, J. Chem. Phys. 117, 5480
(2002).
72I. Kusaka, J. Chem. Phys. 118, 5510 (2003).
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