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I found myself in the position of that child in a story who noticed a bit of string
and - out of curiosity - pulled on it to discover that it was just the tip of a very

long and increasingly thick string... and kept bringing out wonders beyond
reckoning.

Benoît Mandelbrot





Abstract

Root-finding algorithms have historically been employed to solve numerically nonlinear
equations of the form f(x) = 0. Newton’s method, one of the most well-known techniques,
started being analyzed as a dynamical system in the complex plane during the late 19th
century. This thesis explores the dynamics of damped Traub’s methods Tp,δ when applied
to polynomials. These methods encompass a range from Newton’s method (δ = 0) to
Traub’s method (δ = 1). Our focus lies in investigating various topological properties of
the basins of attraction, particularly their simple connectivity and unboundedness, which
are crucial in identifying a universal set of initial conditions that ensure convergence to all
roots of p. While the former topological properties are already proven for Newton’s method
(δ = 0), they remain open for δ ̸= 0. We present results that contribute to addressing
this gap, including a proof for cases where δ is close to 0 and for the polynomial family
pd(z) = z(zd − 1).

Resum

Els algoritmes de cerca d’arrels han estat històricament utilitzats per resoldre numèricament
equacions no lineals de la forma f(x) = 0. El mètode de Newton, una de les tècniques
més conegudes, va començar a ser analitzat com a sistema dinàmic al pla complex a
finals del segle XIX. Aquesta tesi explora la dinàmica dels mètodes de la família Traub
parametritzada Tp,δ aplicada a polinomis. Aquests mètodes inclouen un ventall des del
mètode de Newton (δ = 0) fins al mètode de Traub (δ = 1). El nostre enfocament rau a
investigar diverses propietats topològiques de les conques d’atracció, particularment la seva
simple connectivitat i la no acotació, que són crucials per identificar un conjunt universal
de condicions inicials que assegurin la convergència a totes les arrels de p. Mentre que
aquestes propietats topològiques ja estan demostrades pel mètode de Newton (δ = 0),
romanen obertes per a δ ̸= 0. Presentem resultats que contribueixen a abordar aquest
problema obert, incloent-hi una demostració per casos on δ és proper a 0 i per a la família
de polinomis pd(z) = z(zd − 1).
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Chapter 1

Introduction

Solving nonlinear equations of the form f(x) = 0 is a common challenge in various scientific
fields, spanning from biology to engineering. When algebraic manipulation is not feasible,
iterative methods become necessary to determine solutions. Newton’s method is a well-
known approach, derived from linearizing the equation f(x) = 0. Its iterative expression is
given by:

xn+1 = xn − f(xn)

f ′(xn)
, n ≥ 0.

In the late 19th century, E. Schröder and A. Cayley introduced the exploration of Newton’s
method as a dynamical system. The objective was to comprehend the behavior and effec-
tiveness of chosen initial conditions across the entire complex plane. During this period,
Cayley successfully addressed the quadratic case [1], but solving the cubic case required an
additional effort. For polynomials of degree greater than 2, the boundaries of the basins
of attractions are fractal curves. These curves divide the plane into an infinite number of
connected components, making their identification challenging without the aid of modern
tools, see Figure 1.

Over the past few decades, numerous researchers have suggested various iterative ap-
proaches aimed at enhancing Newton’s method [2]. One prevalent strategy for devising
new methods involves directly combining existing techniques and subsequently modifying
them to minimize the count of functional evaluations. For example, if we apply Newton’s
method twice while keeping the derivative constant in the second step, we derive Traub’s
method [3]. A specific type of root-finding algorithms, called the damped Traub’s family,
was first introduced in the papers [4, 5]. Its iterative expression is given by:

xn+1 = yn − δ
f(yn)

f ′(xn)
, n ≥ 0. (1.1)

where yn = xn− f(xn)
f ′(xn)

is a Newton’s step and δ is the damping parameter. Notice that δ = 0
corresponds to Newton’s method and δ = 1 to Traub’s method. Newton’s method converges
quadratically for simple roots of a polynomial when the initial guess is sufficiently close to
the desired root. On the other hand, Traub’s method exhibits cubic (local) convergence. It
is worth noting that each iteration of Traub’s method requires more computations compared
to Newton’s method.

Roughly speaking, when we have a good estimate of the solutions to the equation f(x) = 0,
iterative methods tend to work well. However, challenges arise when the number of solutions
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2 CHAPTER 1. INTRODUCTION

Figure 1: Dynamical planes of Newton’s method for two cubic polynomials are depicted. On the left, we
observe the Newton map associated with the cubic polynomial P (z) = z3 − 1. On the right, we observe the
Newton map associated with the cubic polynomial Q(z) = z(z − i)(z − 1). In both cases, distinct colors
mean different basins of attraction.

of f is large or when we lack control over these solutions. This is particularly problematic
when selecting initial conditions to initiate the algorithm. In such situations, the study
of dynamical systems becomes valuable. By examining the topological characteristics of
the immediate basins of attraction associated with the solutions of f(x) = 0, we can gain
valuable insights and aid in addressing these challenges. An illustration of this is provided
by J. Hubbard, D. Schleicher, and S. Sutherland in [6]. In their work, the authors used
some topological results of the basins of attraction to construct a universal and explicit set
of initial conditions denoted as Sd. This set, depending only on the polynomial’s degree,
allows Newton’s method to find all roots of a polynomial. The existence of the set Sd, is
guaranteed by the following key properties of the immediate basins of attractions for the
Newton’s method.

Theorem 1. Let p be a polynomial of degree d ≥ 2. Assume that p(α) = 0 and let Np be
the corresponding Newton’s map. Then, the immediate basin of attraction of α, denoted as
A∗(α), is a simply connected unbounded set.

A natural question that comes up now is whether we can create a set similar to Sd for
Traub’s method. If this were possible, it would provide a way to find all the roots of a
polynomial with improved convergence speed. Specifically, as previously noted, for simple
roots of the polynomial, the local convergence order would be cubic instead of quadratic,
leading to faster convergence. To achieve this, proving an equivalent to Theorem 1 for
Traub’s method, will provide the necessary tools for building the Sd like-set. In a recent
study [7], Theorem 1 was proved for Traub’s method under certain additional assumptions.
To be precise, the researchers successfully established the following theorem:

Theorem A. Let p be a polynomial of degree d ≥ 2. Assume that p satisfies one of
the following conditions:

(a) d = 2, or

(b) it can be written in the form pn,β(z) := zn − β for some n ≥ 3 and β ∈ C.

Suppose that p(α) = 0 and consider damped Traub’s map Tp,δ(z) := Np(z)− δ
p(Np(z))
p′(z) with

δ ∈ [0, 1]. Then A∗
δ(α) is a simply connected unbounded set.
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Figure 2: Dynamical planes of Traub’s method for two cubic polynomials are depicted. On the left, we see
the Traub map associated with the cubic polynomial P (z) = z3 − 1. On the right, we observe the Traub
map associated with the cubic polynomial Q(z) = z(z − i)(z − 1). In both cases, the basins of attractions
are shown in orange.

Researchers also propose a conjecture claiming that the result remains true for every class
of polynomials, supported by numerical evidences and conceptual insights. In fact, observe
that the skeleton of the Julia set obtained for Traub’s method is strongly related to the one
generated by Newton’s method, see Figures 1 and 2.

This thesis aims to explore the effectiveness of the damped Traub’s family as a root-
finding algorithm and seeks to comprehend and replicate the proof of Theorem A. Our
contribution to this method involves analyzing the behavior of the damped Traub’s family
when the damping factor is close enough to zero by considering the method as a singular
perturbation. We have been successful in proving the unbounded nature of the immediate
basins of attractions for this case, see Theorem 17. When considering δ close to zero, the
damped Traub’s method is closely related to Newton’s method, see (1.1), thus, handling
δ values closer to 0 may simplify matters compared to dealing with δ values significantly
distant from 0.

Furthermore, we focus on investigating the simple connectivity and unboundedness of
the immediate basins of attractions specifically for third-degree polynomials, achieving some
findings concerning the distribution of both the free critical points and the fixed points
that are not roots for the damped Traub’s method under the condition that δ is close to
zero, see Theorems 18 and 19. As we will soon discover, understanding and gaining control
of these points is extremely valuable for analyzing the topological characteristics of the
immediate basins of attraction. These findings represents little progress towards proving
that the immediate basins of attraction for the damped Traub’s method are unbounded
and simply connected.

Finally, we conclude our research by examining Traub’s method applied to the family
pd(z) = z(zd−1). We have proven the unboundedness of the immediate basins of attraction
for specific values of d, see Theorem 20, and we present evidences suggesting that this
unboundedness holds for all values of d. This family is particularly interesting because,
for Halley’s root-finding algorithm, it was found that for d = 5, the immediate basin
of attraction of z = 0 is bounded (Jordi Canela, personal communication). Therefore,
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proving that this is not the case for Traub’s method would support the conjecture that the
immediate basins of attraction of Traub’s method are unbounded for any polynomial.

We have structured the thesis in seven different chapters. Chapter 2 serves as an in-
troduction to key concepts in complex analysis and holomorphic dynamics, presenting the
Fatou and Julia sets alongside essential tools needed for the thesis. Chapter 3 delves into
the examination of Newton’s method (δ = 0) as a root-finding algorithm, culminating in
the proof of Theorem 1. Subsequently, Chapter 4 study the local dynamics of the damped
Traub’s method, presenting fundamental results of the method and proving Theorem A.
In Chapter 5 we prove the unbounded nature of the immediate basins of attraction of the
damped Traub’s method for δ close enough to zero and we give some results concerning the
distribution of both the free critical points and the fixed points that are not roots for the
damped Traub’s method applied to cubic polynomials under the condition that δ is close
to zero.

In Chapter 6, we study the Traub’s method applied to the family pd(z) = z(zd − 1),
proving the unboundedness of the immediate basins of attraction for specific values of d and
presenting evidences suggesting that this unboundedness holds for all values of d. Finally,
Chapter 7 presents the conclusions drawn from the thesis’s investigations.

We would like to note that all the images in the document were generated using a Python
software developed by the thesis author. For additional details about the software, please
check Appendix A.



Chapter 2

Preliminary Results

In this chapter, we outline some of the fundamental concepts of complex analysis, crucial for
our project as they will be consistently referenced. Following this, we delve into the realm of
holomorphic dynamics, where we introduce basic notation. Understanding rational iteration
and exploring the Fatou and Julia sets becomes necessary for studying the dynamics of any
root-finding algorithm. Finally, we conclude the chapter by providing an introduction of
Blaschke products, which will be needed for Chapter 4.

2.1 Complex Analysis

Let us begin by defining the primary object of study in complex analysis: holomorphic
functions.

Definition 1. Let Ω ⊆ C be an open set. The map f : Ω → C is holomorphic at z0 ∈ C if
the limit

lim
z→z0

f(z)− f(z0)

z − z0
,

exists. If the limit exists for every z ∈ Ω, then the function is holomorphic in Ω. Moreover,
if Ω = C, we say that the the map is entire.

Let us proceed by outlining some well-known results regarding holomorphic maps, which
will be systematically employed throughout this master’s thesis.

Theorem 2 (Liouville Theorem, Theorem 3.4 in [8]). If f : C → C is a bounded entire
function, then f is constant.

Theorem 3 (Isolated zeros, Corollary 3.9 in [8]). Let Ω ⊆ C be an open set and f : Ω → C
a non-zero holomorphic map. Then, for each z0 ∈ Ω such that f(z0) = 0, there is an integer
n ≥ 1 such that f(z) = (z − z0)

ng(z), with g holomorphic and g(z0) ̸= 0.

Theorem 4 (Maximum Modulus Principle, Theorem 3.11 in [8]). Let D ⊆ C be a
domain and f : D → C a holomorphic map such that there is a point a ∈ D such that
|f(a)| ≥ |f(z)| for every z ∈ D, then f is constant.

To conclude this section, we present the Koebe distortion Theorem, which will be needed in
proving that the immediate basins of attraction of Newton’s method are unbounded sets.

Remark 1. Given an annulus centered at z0, A = {z ∈ C : r < |z − z0| < R}, there exists
a unique conformal map ϕ, up to rotation, such that ϕ(A) = {z ∈ C : r < |z| < 1}. The
constant r remains invariant under conformal mappings, thus enabling us to define the
modulus of A as mod(A) := −log(r)/2π.

5



6 CHAPTER 2. PRELIMINARY RESULTS

Theorem 5 (Koebe Distortion Theorem, Theorem 2.6 in [9]). Let U ⊂ C and V ⊂ C
be two topological disks such that U ⊂ V . Consider ϕ : V → C a conformal map and let
A = V \ U be an annulus with modulus m. Then, there exists a constant C = C(m), only
depending on m such that for every x, y, z ∈ U ,

1

C
|ϕ′(x)| ⩽ |ϕ(y)− ϕ(z)|

|y − z|
⩽ C|ϕ′(x)|.

A direct consequence of this theorem, which is frequently utilized in complex dynamics, is
the following:

Theorem 6. Let U ⊂ C and V ⊂ C be two topological disks such that U ⊂ V . Consider
ϕ : V → C a conformal map, a ∈ U and let A = V \ U be an annulus with modulus m.
Then, there exists a constant k = k(m, a) −−−−→

m→∞
1 such that

D(ϕ(a), k diam(ϕ(U))) ⊂ ϕ(U).

2.2 Rational Iteration

Let us denote Ĉ = C∪{∞} the extended complex plane or Riemann sphere. To obtain
a metric in Ĉ, identify C with R2 and consider the stereographic projection π : Ĉ → S2,
which is a bijection between the extended plane and the unit sphere S2. Using this bijection,
one can define the chordal metric in Ĉ, see [10] for details.

Definition 2. A rational map R : Ĉ → Ĉ is a function of the form R(z) = P (z)/Q(z),
where P and Q are polynomials, not both being the zero polynomial. The degree of R is
defined as

deg(R) = max {deg(P ),deg(Q)} ,

where deg(P ) and deg(Q) denote the standard degrees of polynomials.

Evidently, rational maps are holomorphic functions in Ĉ. The theorem stated below
provides a comprehensive characterization of rational maps, establishing the result that
every holomorphic function admits a representation as a rational map.

Theorem 7. Let f : Ĉ → Ĉ be a map in the Riemann sphere. Then, f is a rational map if
and only if f holomorphic.

Proof. From left to right is clear. Assume f is a non-constant holomorphic map. Since f is
holomorphic, 1/f is holomorphic on Ĉ. Considering that zeros of holomorphic functions are
isolated, both zeros and poles of f are isolated. Let p0, . . . , pn and q0, . . . , qm the zeros and
the poles of f respectively and α0, . . . , αn, β0, . . . , βm the multiplicities. Define a function
g as

g(z) := f(z)
(z − q0)

β0 · · · (z − qm)βm

(z − p0)α0 · · · (z − pn)αn
.

For z ̸= pj and z ̸= qj , g is the product of two holomorphic maps, thus it is holomorphic.
For z = pj , there exist a holomorphic function h such that f(z) = (z− pj)

αjh(z), h(pj) ̸= 0,
thereby

g(z) = h(z)
(z − q0)

β0 · · · (z − qm)βm

(z − p0)α0 · · · ̂(z − pj)
αj

· · · (z − pn)αn

,
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and g is the product of two holomorhpic maps in z = pj , thus it is holomorphic in pj .
Applying a similar reasoning when z = qj , one obtains that g is indeed entire. Furthermore,
as 1/f is holomorphic, employing a similar reasoning, 1/g is also entire. Therefore, by
applying Liouville’s theorem to either g or 1/g, whichever is bounded, we conclude that g
is constant. Consequently, f is a rational map. In fact,

f(z) = C
(z − p0)

α0 · · · (z − pn)
αn

(z − q0)β0 · · · (z − qm)βm
.

The theorem stated above allows us to denote rational maps and holomorphic maps
interchangeably from now on.

2.3 Local Theory

Let us continue by introducing the fundamentals of local theory. In order to comprehensively
analyze any dynamical system on a global scale, it is crucial to thoroughly understand the
simplest orbits, fixed points, and periodic orbits.

Definition 3. Let f : Ĉ → Ĉ be a holomorphic map. The orbit of a point z0 ∈ Ĉ is given
by

O(z0) = {zn := fn(z0)}n≥0 = {z0, f(z0), fn(z0), ...}.

Definition 4. Let f : Ĉ → Ĉ be a holomorphic map. A point z = z0 is a fixed point if
f(z0) = z0 (resp. periodic of period p if fp(z0) = z0 for some p ≥ 1 and fn(z0) ̸= z0 for
all n < p).

Definition 5. Let z0 ∈ C, U neighborhood of z0 and f : U → C a holomorphic function
such that f(z0) = z0. We say that z0 is stable if ∀ε > 0, ∃δ > 0 such that ∀z ∈ D(z0, δ),
fn(z) ∈ D(z0, ε). Furthermore,

(a) z0 is attracting if it is stable and ∃ε > 0 such that ∀z ∈ D(z0, ε), f
n(z)

n→∞−−−→ z0.

(b) z0 is repelling if it is attracting for f−1.

Definition 6. Let f : C → C be a holomorphic function and z0 ∈ C be a p-periodic fixed
point. We say that it is attracting (resp. repelling) if it is attracting (resp. repelling) as
a fixed point of fp.

Definition 7. Let f : C → C be a holomorphic function and z0 ∈ C be a fixed point. The
value λ = f ′(z0) is called the multiplier of f at z0. If z0 is a p-periodic fixed point and
zi = f i(z0), i = 0, 1, . . . , p− 1, the multiplier of the periodic orbit is defined as

λ = (fp)′(z0) =

p−1∏
k=0

f ′(zk).

Let us provide a theorem concerning holomorphic functions that enables us to determine
whether a periodic fixed point is attracting or repelling based on the derivative at that
periodic fixed point.

Theorem 8. Let f : C → C be a holomorphic function, z0 ∈ C be a p-periodic fixed point
and λ its multiplier. Then,
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(a) If |λ| < 1 then z0 is attracting.

(b) If |λ| > 1 then z0 is repelling.

Proof. Let us prove the case when p = 1; the general case is analogous, considering z0 as a
fixed point of fp.

(a) By definition of holomorhpic map,

lim
z→z0

|f(z)− f(z0)|
|z − z0|

= |f ′(z0)|.

Since |f ′(z0)| < 1, there exists ρ ∈ R such that |f ′(z0)| < ρ < 1. Then, on some neighbour-
hood of z0, |f(z)− f(z0)| ≤ ρ|z − z0|. Therefore, since f(z0) = z0, iterating we obtain that
|fn(z)− z0| ≤ ρn|z − z0|, and consequently, fn(z) −−−→

n→∞
z0.

To prove (b), employ a similar argument to see that z0 is attracting for f−1.

Definition 8. A point z0 ∈ C is a superattracting fixed point if f ′(z0) = 0.

The criteria provided above will be very useful in numerous instances for determining
whether a periodic point is attracting or repelling. However, in some cases, there are points
for which we cannot determine a priori whether they attract nearby orbits or repel them.
For such cases, we can classify them as:

Definition 9. Let f : C → C be a holomorphic function, z0 ∈ C be a p-periodic fixed point
and λ its multiplier. We say that z0 is

(a) Rationally neutral if |λ| = 1 and λn = 1 for some integer n.

(b) Irattionally neutral if |λ| = 1 but λn is never 1.

We will observe that we have a certain level of control over the dynamics near attracting or
repelling fixed points. Indeed, in a neighborhood of an attracting (resp. superattracting)
fixed point, the map looks like g(ζ) = λζ (resp. g(ζ) = ζp). For attracting fixed points, this
result is known as Koenigs linearization Theorem, while for superattracting fixed points, it
is known as Böttcher’s Theorem (see [11], Chapter II). Prior to stating these results, let us
introduce the concept of conjugacy

Definition 10. Let U and V be open sets of C and f : U → U , g : V → V two holomorphic
map. We say that f is (conformally) conjugate to g if there is a conformal map ϕ : U → V
such that g = ϕ ◦ f ◦ ϕ−1, that is, such that

ϕ(f(z)) = g(ϕ(z)).

We can interpret the previous definition as a change of coordinates between the functions f
and g. This definition implies that the iterates fn and gn are also conjugate. Therefore, we
can transform a dynamical problem on f into a more manageable dynamical problem on
g. It’s worth noting that the conjugation respects the fixed point, meaning that f fixes a
point z0 if and only if g fixes ϕ(z0). Moreover, the multipliers at the corresponding fixed
points are equal.

Theorem 9 (Koenigs linearization Theorem). Let z0 ∈ C, U neighborhood of z0 and
f : U → C be a holomorphic function such that z0 is an attracting fixed point with multiplier
0 < |λ| < 1. Then there is a conformal map ζ = ϕ(z) of a neighborhood of z0 onto a
neighborhood of z0 which conjugates f to the linear function g(ζ) = λζ. The conjugating
function is unique, up to multiplication by a nonzero scale factor.
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Proof. We can assume that z0 = 0; otherwise, we can conjugate with the translation
τ(z) = z − z0. Define ϕn(z) := λ−nfn(z) and observe that ϕn satisfies

ϕn ◦ f = λ−nfn+1(z) = λϕn+1.

Then, if ϕn → ϕ uniformly in compact sets of U , ϕ ◦ f = λϕ, so ϕ ◦ f ◦ ϕ−1 = λζ, and
ϕ is the desired conjugacy. To show convergence, observe that for δ > 0 small, since
f(z) = λz +O(z2), there exists a constant C > 0 such that

|f(z)− λz| ≤ C|z|2, |z| ≤ δ.

Thus, |f(z)| ≤ |λ||z|+ C|z|2 ≤ (|λ|+ Cδ)|z|, and by induction, if |λ|+ Cδ < 1, we have
that

|fn(z)| ≤ (|λ|+ Cδ)n|z|, |z| ≤ δ.

Hence, choosing δ > 0 so small that ρ = (|λ|+ Cδ)2/|λ| < 1, we obtain that

|ϕn+1(z)− ϕn(z)| =
∣∣∣∣fn(f(z))− λfn(z)

λn+1

∣∣∣∣ ≤ C|fn(z)|2

|λ|n+1
≤ ρnC|z|2

|λ|
, |z| ≤ δ.

Therefore, ϕn converge uniformly for |z| ≤ δ and the conjugation exists. Moreover, ϕ(0) = 0,
since ϕ(f(0)) = λϕ(0) implies that ϕ(0)(1−λ) = 0. To prove uniqueness, suppose ϕ1, ϕ2 are
both conjuations satisfying the theorem. Consider the holomorphic function Φ := ϕ−1

2 ◦ ϕ1.
This function satisfies that λΦ(z) = Φ(λz). Suppose Φ(z) = a1z + a2z

2 + · · · . Comparing
terms, we obtain that aiλ

i = λai. Hence, ai = 0 ∀i ≥ 2 and thus Φ(z) = a1z, i.e.,
ϕ1(w) = a1ϕ2(w).

Remark 2. The existence of a conjugation map for a repelling fixed point follows directly
from the attracting case. Assume f(z) = z0 + λ(z − z0) + · · · where |λ| > 1. Then
f−1(z) = z0 + (z − z0)/λ+ · · · has an attracting fixed point at z0 and Koenigs linearization
Theorem can be applied.

Theorem 10 (Böttcher’s Theorem). Let z0 ∈ C, U neighborhood of z0 and f : U → C
be a holomorphic function such that z0 is a superattracting fixed point,

f(z) = z0 + ap(z − z0)
p + · · · , ap ̸= 0, p ≥ 2.

Then there is a conformal map ζ = ϕ(z) of a neighborhood of z0 onto a neighborhood of 0
which conjugates f(z) to ζp. The conjugating function is unique, up to multiplication by a
(p− 1)th root of unity.

Proof. We can assume that z0 = 0; otherwise, we can conjugate with the translation
τ(z) = z − z0. For |z| small, f(z) = apz

p + O(zp+1) and there exists C > 1 such that
|f(z)| ≤ C|z|p. A simple computation by induction shows that

|fn(z)| ≤ (C|z|)pn , |z| ≤ δ,

so fn(z)
n→∞−−−→ 0. By making a change of variable w = cz, where cp−1 = 1/ap, we have

conjugated f to the form f(w) = wp + · · · . Therefore we may assume ap = 1. We want to
find a conjugation map ϕ(z) = z + · · · such that ϕ(f(z)) = ϕ(z)p, which is equivalent to
the condition that ϕ ◦ f ◦ ϕ−1 = ζp. Let us define

ϕn(z) = fn(z)p
−n

= (zp
n
+ · · · )p−n

= z(1 + · · · )pn ,
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which is well defined in a neighborhood of the origin. The family ϕn satisfy

ϕn−1 ◦ f = (fn−1 ◦ f)p−n+1
= ϕp

n.

Then, if ϕn → ϕ uniformly in compact sets of U , ϕ ◦ f = ϕp, so ϕ ◦ f ◦ ϕ−1 = ζp, and ϕ is
the desired conjugacy. To show convergence, observe that

ϕn+1

ϕn
=

(
ϕ1 ◦ fn

fn

)p−n

= (1 +O(|fn|))p−n
= 1 +O(p−n)O(|z|pnCpn) = 1 +O(p−n).

Hence, if |z| ≤ 1/C, the product

∞∏
n=1

ϕn+1

ϕn

converges uniformly on compact sets and the conjugation exists. To prove uniqueness,
suppose ϕ1, ϕ2 are both conjugations satisfying the theorem. Consider the holomorphic
function Φ := ϕ2 ◦ ϕ1. This function satisfies that Φ(zp) = Φ(z)p. Observe that

Φ(zp) = c1z
p + ckz

kp + · · · , and

Φ(z)p = cp1z
p + pcp−1

1 ckz
p+k−1 + · · ·

with pk > p + k + 1. Comparing terms, we obtain that cp−1
1 = 1 and ck = 0 ∀k ≥ 2.

Therefore, Φ(z) = c1z, i.e., ϕ1(w) = c1ϕ2(w) with c1 a (p− 1)th rooth of unity.

2.4 Critical points and Basins of Attraction

Critical points are a fundamental concept in the study of the stable behavior of the dynamics
of any rational maps. Let us review some basic concepts.

Definition 11. Let R : Ĉ → Ĉ be a rational map. A point c ∈ C is a critical point if
R′(c) = 0. The value w = R(c) is called critical value.

For rational maps, the number of critical points is controlled by a finite number, precisely
2d− 2 if deg(R) = d. Let us introduce some notation before stating the result.

Definition 12. Let z0 ∈ C, U open neighborhood of z0 and f : U → C be a holomorphic
function. The valency of f at z0, denoted as vf (z0), is defined as the integer k such that
the limit

lim
z→z0

f(z)− f(z0)

(z − z0)k

exists, is finite and is non-zero. In particular, the valency of f at z0 is the number of
solutions of f(z) = f(z0) at z0.

The concept of critical points is closely related to injectivity. In fact, R is injective near z0
if and only if vR(z0) = 1. In that case, by definition of valency, the limit limz→z0

R(z)−R(z0)
z−z0

exists, is finite, and is non-zero, meaning that R′ has neither a zero nor a pole. Therefore,
we have found an equivalent definition of a critical point. A point z is a critical point of R
if R fails to be injective in any neighborhood of z.

Additionally, since R is injective in some neighborhood of any point in C at which R′
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has neither a zero nor a pole; we have that for all but a finite set of z, vR(z) = 1 and,
consequently, ∑

z

[vR(z)− 1] < ∞

This sum gives us a measure of the number of multiple roots of R (and the difficulties in
defining R−1), and its actual value is given by the Riemann-Hurwitz formula:

Theorem 11 (Riemann-Hurwitz formula, Theorem 2.7.1 in [10]). For any non-constant
rational map R, ∑

z

[vR(z)− 1] = 2deg(R)− 2

The terms in the sum are only non-zero when z is a critical point so this provide us with
an estimate of the number of critical points of R.

Corollary 1. A rational map R : Ĉ → Ĉ of degree d has at most 2d− 2 critical points.

If we think of vR(z)− 1 as the multiplicity of a critical point z, a rational map of degree d
has ecactly 2d− 2 critical points. This result will be crucial in the future, not only due to
the estimate but also because we will see that any attracting cycle of Fatou components
contains at least one critical point. Thus, the number of attracting cycles of a rational map
of degree d will be at most 2d− 2. Let us continue by introducing the concept of basin of
attraction.

Definition 13. Let R : Ĉ → Ĉ be a rational map and z0 ∈ Ĉ be an attracting fixed point
of R. We define the basin of attraction of z0 as

AR(z0) := A(z0) = {z ∈ Ĉ : Rn(z)
n→∞−−−→ z0}.

We denote by A∗(z0) the connected component of A(z0) containing z0, and we refer to it as
the immediate basin of attraction.

Proposition 1. Let R : Ĉ → Ĉ a rational map and z0 ∈ Ĉ be an attracting fixed point of
R. Then, A(z0) is an open set.

Proof. Let w ∈ A(z0). There exists ε > 0 and n0 ∈ N such that Rn(w) ∈ D(z0, ε)
for every n ≥ n0. Let δ := dist(Rn0(w), ∂D(z0, ε)), and let us define the open set
V := D(Rn0(w), δ/2) ⊆ D(z0, ε). By the continuity of R, given the open set V , there exists
an open set W such that w ∈ W and Rn0(W ) ⊆ V . Therefore, Rn0(W ) ⊆ D(z0, ε), and we
have found a neighborhood of w contained in the basin of attraction, thus being an open
set.

2.5 The Fatou and Julia sets

Let us introduce two sets that divide the Riemann sphere into two regions with completely
different dynamic behaviors: the Fatou set and the Julia set.

Definition 14. Let G = {gλ : U → C, λ ∈ Λ} be a family of holomorphic functions defined
in an open set U ⊂ C, and let Λ be a parameter space. We say that G is a normal family
in U if every sequence {gλ}λ ⊆ G contains a subsequence that converges uniformly on
compact sets of U .
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Usually, when given a rational map R, we will work with the family of iterates of holomorphic
maps {Rn}.

Definition 15. Let R : Ĉ → Ĉ be a rational map. The Fatou set F(R) of R is defined
as the set of points z0 ∈ Ĉ such that {Rn} is a normal family in some neighborhood of z0.
The Julia set J (R) is the complement of the Fatou set.

By definition, F(R) is an open set and J (R) is closed. Observe that the Fatou set can
be understood as the stable set, as points nearby in the Fatou set behave similarly under
iteration, while the Julia set can be understood as the unstable set, as points nearby in the
Julia set behave very differently under iteration.

Example 1. Consider R(z) = z2. Then Rn(z) = z2
n converges to 0 in D(0, 1) and to

∞ in Ĉ \ D(0, 1). Hence, both sets belong to the Fatou set, while the Julia set is exactly
the unit circle {z ∈ C : |z| = 1}. Otherwise, if z0 were in the unit circle and in the Fatou
set, Rn would be normal in a neighborhood of z0. But this neighborhood would have points
converging to 0 and to ∞ under iteration, leading to a contradiction with the map being
holomorphic.

Before stating some properties about the Fatou and Julia sets, let us present a result that
shows the importance of critical points in the behavior of any dynamical system.

Proposition 2. Let R : Ĉ → Ĉ be a rational map of degree d ≥ 2, and let z0 ∈ C be an
attracting periodic point, then the immediate basin of attraction A∗(z0) contains at least
one critical point. In particular the number of attracting cycles is at most 2d− 2.

Proof. Suppose first that z0 is an attracting fixed point. Let U0 = D(z0, ε) be a small disk
given by the Koenigs linearization Theorem such that R(U0) ⊂ U0. If A∗(z0) does not
contain any critical point, there exists a well-defined conformal branch f of R−1 such that
f(z0) = z0. Hence, U1 := f(U0) is simply connected, and U0 ⊂ U1. Proceeding in the same
manner, we construct Un+1 := f(Un) and extend f analytically to Un+1. If the procedure
does not terminate, we obtain a sequence of analytic functions fn : U0 → Un omitting J (R)
since

⋃
n f

n(U0) ⊂ A∗(z0). This is a contradiction since z0 is a repelling fixed point for f ,
so the family fn cannot be normal in any neighborhood of z0. Thus, we eventually reach a
Un to which we cannot extend f . Consequently, there is a critical point c ∈ A∗(z0) such
that R(c) ∈ Un.
If z0 is an attracting periodic point with period n > 1, this argument shows that A∗(z0)
contains a critical point of Rn. Since (Rn)′(z) =

∏
k R

′(Rk(z)), A∗(z0) must also contain a
critical point of R.
Finally, from Corollary 1 it is immediate to see that the number of attracting cycles is at
most 2d− 2.

Let us state some of the most important properties regarding the Fatou and Julia sets
(see [11] for a general overview of this topic). Before proceeding, let us mention Montel’s
Theorem, which will be useful in proving some of the properties.

Theorem 12 (Montel’s Theorem, Theorem 3.2 in [11]). Let G be a family of holomorphic
functions on a domain D. If there are three fixed values that are omitted by every g ∈ G,
then G is a normal family.

Theorem 13. Let R : Ĉ → Ĉ be a rational map of degree d ≥ 2. The following properties
regarding the Fatou and Julia sets hold:

(a) F(R) and J (R) are completely invariant sets.
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(b) For every k ≥ 1, F(Rk) = F(R) and J (Rk) = J (R).

(c) The Julia set is non-empty, J (R) ̸= ∅.

(d) Blow-up property: Let z0 ∈ J (R) and let U be a neighborhood of z0. Then,⋃
nR

n(U) omits at most two values.

(e) Attracting periodic points and their basins of attraction belong to the Fatou set.

(f) Repelling periodic points belong the Julia set.

(g) int(J (R)) = ∅ or J (R) = Ĉ.

(h) Let z0 ∈ J (R). The set of all preimages of z0 is dense in J (R).

(i) J (R) contains no isolated points, that is, J (R) is a perfect set.

(j) Repelling periodic points are dense in J (R).

Proof. (a) Since F(R) = Ĉ \ J (R), it is enough to prove the result for one of the two
sets; for instance, the Fatou set. We need to see that for z0 ∈ F(R), R(z) ∈ F(R)
and R−1(z) ⊂ F(R). Since z0 ∈ F(R), there exists a neighborhood U of z0 such
that {Rn−1}n is normal in U . As R is holomorphic, R(U) is an open neighborhood
of R(z0). By selecting the subsequence {Rnk}k in R(U) and utilizing the fact that
{Rnk−1}k is a subsequence in U which converges uniformly on compact sets of U , we
deduce that {Rnk}k = {R(Rnk−1)}k converges uniformly on compact sets of R(U).
Consequently, {Rn}n is normal in R(U), implying that R(z0) ∈ F(R).
Let us prove now that R−1(z) ⊂ F(R). Given z0 ∈ F(R), there exists a neighborhood
U of z0 such that {Rn+1}n is normal in U . Let w0 be the preimage of z0 under R,
denoted as w0 = R−1(z0). As R is continuous, R−1(U) is an open neighborhood of
w0. Employing a similar argument as before, since {Rn+1}n is normal in U , {Rn} is
normal in R−1(U), implying that R−1(z0) ⊂ F(R). This concludes that the Fatou
set is completely invariant, and consequently, so is the Julia set.

(b) As before, it is enough to prove the result for the Fatou set. To show that F(R) ⊆
F(Rk), simply observe that if {Rn}n is normal in a neighborhood of z0 ∈ F(R), then
the subsequence {Rnk}n is also normal in the same neighborhood. Conversely, let us
first fix k = 2. Then, there exists a neighborhood of z0 ∈ F(R2) such that {R2n}n is
normal. By the previous property, {R2n+1}n is also normal. We can express this as:

{Rn}n = R ∪ {R2n}n ∪ {R2n+1}n,

Hence, every subsequence of {Rn}n has an infinite number of elements from both
{R2n}n and {R2n+1}n that are normal. Therefore, {Rn} is normal. The general
result is deduced by the following equality:

{Rn}n = R ∪ · · · ∪Rk−1 ∪ {Rkn}n ∪ · · · ∪ {Rkn+(k−1)}n.

This concludes that F(R) = F(Rk) and therefore J (R) = J (Rk).

(c) Suppose J (R) = ∅. Then {Rn}n is a normal family on all Ĉ, and so there exists
a subsequence {nk} such that Rnk converge to some analytic function f : Ĉ → Ĉ
uniformly in compact sets. Using Theorem 7, f is a rational map. If f is constant,
then the image of Rnk is eventually contained in a small neighborhood of the constant
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value, which is impossible since Rn covers Ĉ. If f is not constant, applying the same
reasoning, eventually Rnk has the same number of zeros as f , which is impossible
since Rn has degree dn −−−→

n→∞
∞.

(d) The result is a direct consequence of Montel’s Theorem.

(e) Let us prove the case when z0 is a fixed point of R; the general case is analogous,
considering z0 as a fixed point of Rp. Since A(z0) is an open set (Proposition 1), for
each z ∈ A(z0) and for any neighborhood U ⊂ A(z0) of z0, Rn(z)

n→∞−−−→ z0. Then,
{Rn}n is a normal family in U , and thus z ∈ F(R).

(f) Let us prove the case when z0 is a fixed point of R; the general case is analogous,
considering z0 as a fixed point of Rp. Let U be a neighborhood of the repelling
fixed point z0. Then, iterating , ∀z ∈ U \ {z0} escape from U , at least initially. If
z0 ∈ F(R), there exist a subsequence {Rnk} that converge uniformly on compact sets
to some holomorphic function g with g(z0) = z0. In particular, since g is continuous,
limz→z0 g(z) = z0, which is impossible due to the fact that z0 is a repelling fixed
point, and in a neighborhood of it, the iterates are moving away from it.

(g) Suppose int(J (R)) ̸= ∅. Then, there exists a neighborhood of z0 ∈ int(J (R)),
U ⊂ J (R). Since the Julia set is completely invariant,

⋃
nR

n(U) ⊂ J (R), but by
the blow-up property,

⋃
nR

n(U) omits at most two points. Therefore, since the Julia
set is closed

Ĉ = Ĉ \ {a, b} ⊂
⋃
n

Rn(U) ⊂ J (R) = J (R)

(h) Let w ∈ J (R) and U be a neighborhood of w. We want to see that U contain
any preimage of z0. By the blow-up property,

⋃
nR

n(U) omits at most two points,
meaning that there exist n0 ∈ N such that z0 ∈ Rn0(U). If z0 happens to be one
of those two omitted points, there exists an infinite sequence {zk}k → z0 such that
every zk is the image of some point in U .

(i) Let z0 ∈ J (R) and select z1 ∈ J (R) such that z1 ̸= z0. By the last property, there
exist a sequence {wn}n → z1 such that Rn(wn) = z1. Since the Julia set is invariant,
{wn}n ⊂ J (R), and thus z0 is not an isolated point in the Julia set.

(j) Suppose there is an open disk U , such that U ∩ J (R) ̸= ∅ and that contains no fixed
points of any Rm. We may assume that U contains no poles of R nor critical values
of R, since by Corollary 1, there is a finite number of them. Consider two different
branches f1, f2 of R−1 in U . Then, since Rm(z) = z admits no solutions in U ,

gn :=
Rn − f1
Rn − f2

· z − f2
z − f1

omits the values 0, 1 and ∞ in U . By Montel’s Theorem, the family {gn}n is normal
in U and so is {Rn}n, which is a contradiction due to the fact that U ∩ J (R) ̸= ∅.
Thus periodic points are dense in J (R). Since there are only a finite number of
attracting or neutral cycles, and since J (R) is perfect, the repelling cycles are dense.
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2.6 Blaschke Products

Blaschke products will play a crucial role in Chapter 4 when proving Theorem A(a). This
tool will enable us to introduce a symmetry that aids in controlling the critical points of
the Traub’s map.

Definition 16. Let {an}n be a sequence in D(0, 1) \ {0} such that
∑∞

n=1(1− |an|) < ∞.
The function

B(z) =
∞∏
n=1

|an|
an

(
an − z

1− anz

)
(2.1)

is called a Blaschke product.

The assumption
∑∞

n=1(1− |an|) < ∞ is necessary for the product to be well-defined. To
prove this fact, let us announce an auxiliary lemma.

Lemma 1. Let Ω ⊂ C be an open set and let fn be a sequence of holomorphic functions
in Ω. If

∑∞
n=1 |1 − fn| converge uniformly in compact sets of Ω, then

∏∞
n=1 fn converge

uniformly in compact sets of Ω.

Proof. Let K ⊂ Ω be a compact set. Since 1 + x ≤ exp(x) for every x ∈ R, we have that∣∣∣∣∣
N∏

n=1

fn

∣∣∣∣∣ =
∣∣∣∣∣
N∏

n=1

fn − 1 + 1

∣∣∣∣∣ ≤
N∏

n=1

(1 + |1− fn|) ≤ exp

(
N∑

n=1

|1− fn|

)
≤ C,

for C > 0. Now, if N > M , we have that∣∣∣∣∣
N∏

n=1

fn −
M∏
n=1

fn

∣∣∣∣∣ =
∣∣∣∣∣
M∏
n=1

fn

∣∣∣∣∣
∣∣∣∣∣

N∏
n=M+1

fn − 1

∣∣∣∣∣ ≤ C

[
N∏

n=M+1

(1 + |fn − 1|)− 1

]
≤

≤C

[
exp

(
N∑

n=M+1

|fn − 1|

)
− 1

]
−−−−→
M→∞

0.

Thus,
∏N

n=1 fn forms a uniformly Cauchy sequence, and consequently converges uniformly
in compact sets of Ω, as desired.

Therefore, to establish the well-definedness of the Blaschke product under the condition∑∞
n=1(1− |an|) < ∞, it suffices to see that

∑∞
n=1 |1−Bn(z)| < ∞. Indeed, for |z| < r < 1

|1−Bn(z)| =
∣∣∣∣1− |an|

an

(
an − z

1− anz

)∣∣∣∣ = ∣∣∣∣(1− |an|)(an + z|an|)
(1− anz)an

∣∣∣∣ ≤
≤ (1− |an|)

|an|+ |z||an|
(1− |an||z|)|an|

≤ 2

1− r
(1− |an|).

Hence,
∑∞

n=1 |1−Bn(z)| < ∞ and by the previous lemma, we conclude that the Blaschke
products are well-defined.

We introduce another useful result regarding Blaschke products without presenting a
proof, as the argument involves Hardy spaces, which is beyond the scope of this project.

Proposition 3 (Proposition 2.6 in [8]). Let B be the Blaschke product defined in (2.1).
Then, |B(z)| ≤ 1 in D(0, 1) and |B(z)| = 1 in ∂D(0, 1). Additionally, the zeros of B are
precisely the points {an}n.





Chapter 3

Newton’s method

In this chapter, we will introduce Newton’s method by presenting its key results. This
will serve as a foundation for our exploration of Traub’s method, as some of the results
we establish here may also apply to Traub’s method, while others may differ significantly.
Indeed, in the damped Traub’s method presented in equation (1.1), we observe that δ = 0
corresponds to Newton’s method and δ = 1 corresponds to Traub’s method. Therefore, we
may occasionall employ arguments of continuity by letting δ → 1, asserting that a property
holds if it holds for δ = 0. Moreover, we will see that the unboundedness and simple
connectivity of the basins of attraction hold for Newton’s method, exploring a practical
numerical application to illustrate the significance of this result. We will conclude this
chapter with a result that establishes a relationship between the number of accesses to
infinity in a basin of attraction and the number of critical points within each basin.

3.1 Local Dynamics of the map Np

Recall that if p is a polynomial of degree d ≥ 2, the Newton’s map applied to p is defined as

Np(z) := z − p(z)

p′(z)
.

Let us announce some facts about Newton’s method for polynomials [12].

Proposition 4. Let p be a polynomial of degree d ≥ 2. The following properties regarding
the Newton’s map hold:

(a) A point z = α is a root of p if and only if it is a fixed point of Np.

(b) The simple roots of p are superattracting fixed points of Np, while multiple roots are
attracting fixed points of Np.

(c) The point z = ∞ is the only repelling fixed point of Np.

Proof. (a) If z = α is a root of p of multiplicity m ≥ 1, then there exists a polynomial q
of degree d−m such that p(z) = (z − α)mq(z) and q(α) ̸= 0. Then,

Np(z) = z − (z − α)q(z)

mq(z) + (z − α)q′(z)
, (3.1)

and thus Np(α) = α. Conversely, if z = α is a fixed point of Np, we have that
p(α)/p′(α) = 0, and therefore z = α is a root of p.

17
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(b) Let z = α be a root of p of multiplicity m ≥ 1. Then, there exist a polynomial q
of degree d−m such that p(z) = (z − α)mq(z) and q(α) ̸= 0. Taking derivatives in
(3.1), we obtain that

N ′
p(z) = 1− mq(z)2 + (z − α)2[q′(z)2 − q(z)q′′(z)]

[mq(z) + (z − α)q′(z)]2
,

and finally,

N ′
p(α) = 1− mq(α)2

m2q(α)2
= 1− 1

m
.

Therefore, 0 < N ′
p(α) < 1 if z = α is a multiple root, and N ′

p(α) = 0 if it is a simple
root.

(c) Let us first prove that z = ∞ is a fixed point. Observe that the map Np is a quotient
with zp′ − p in the numerator, which has degree d and p′ in the denominator, which
has degree d− 1. Therefore,

Np(∞) = lim
z→∞

Np(z) = ∞,

and thus z = ∞ is a fixed point. To see its character as a fixed point, let U be a
neighborhood of z = ∞ and let V be a neighborhood of z = 0. Consider the map
ϕ : U → V such that ϕ(z) = 1/z. Let us analyze the character of the origin of the
conjugate map Ñp(z) = ϕ(Np(ϕ

−1(z))) = 1
Np(1/z)

. Observe that

Ñp(z) =
zp′(1/z)

p′(1/z)− zp(1/z)
.

Taking derivatives of the last expression, we have:

Ñ ′
p(z) =

p(1/z)p′′(1/z)

(p′(1/z)− zp(1/z))2
,

where

p(1/z) =

∑d
k=0 akz

d−k

zd
, p′(1/z) =

∑d
k=0 kakz

d−k+1

zd
and

p′′(1/z) =

∑d
k=0 k(k − 1)akz

d−k+2

zd
.

Hence,

Ñ ′
p(z) =

(
∑d

k=0 akz
d−k)(

∑d
k=0 k(k − 1)akz

d−k)

(
∑d

k=0(k − 1)akzd−k)2
,

and thus Ñ ′
p(0) =

d
d−1 > 1. Therefore, we conclude via conjugation that z = ∞ is a

repelling fixed point.

We have seen that simple roots of the polynomial are superattracting fixed points of Np.
This means that the local convergence of the method is very rapid, since by Böttcher’s
Theorem, the algorithm is locally conjugated to z → zk for some k > 1. In fact, the local
order of convergence for Newton’s method is quadratic.



3.2. ON THE BASINS OF ATTRACTION OF Np 19

Proposition 5. Let f : D ⊂ C → C be a holomorphic function in a domain D and let
z = α be a simple root of f(z) = 0. If z0 is close enough to z = α, then Newton’s method
converge to z = α quadratically, that is, ∃M > 0 such that for k sufficiently large,

|zk+1 − α| ≤ M |zk − α|2,

where zk+1 = zk − f(zk)/f
′(zk).

Proof. Let ek = zk − α. By using Taylor expansion around α,

f(zk) = f(α+ ek) = f(α) + f ′(α)ek +
1

2
f ′′(α)e2k +O(e3k) = f ′(α)[ek + Ce2k +O(e3k)],

and

f ′(zk) = f ′(α+ ek) = f ′(α) + f ′′(α)ek +O(e2k) = f ′(α)[1 + 2Cek +O(e2k)].

Now, since z = α is a simple root of f , f ′(α) ̸= 0, so taking zk close enough to α, f ′(zk) ̸= 0
and,

f(zk)

f ′(zk)
= [ek + Ce2k +O(e3k)][1 + 2Cek +O(e2k)]

−1

= [ek + Ce2k +O(e3k)][1− 2Cek +O(e2k)] = ek − Ce2k +O(e3k).

Hence,

zk+1 = zk −
f(zk)

f ′(zk)
= α+ Ce2k +O(e3k),

and choosing M = C, we obtain the desired equation:

|zk+1 − α| ≤ M |zk − α|2.

In Section 2.4, we highlighted the importance of critical points in understanding the
dynamical plane of a map. In our case, if all roots of p are simple, then we observe that

N ′
p(z) =

p(z)p′′(z)

(p′(z))2
,

and the critical points of Newton’s method correspond to both the zeros of p and the zeros
of p′′. The former are superattracting fixed points (see Proposition 4(b)), while the latter
are the so-called free critical points, since they are not linked to any prescribed dynamics.
Hence, if d represents the degree of the polynomial, then Np has a total of 2d− 2 critical
points, consisting of d zeros of p and d− 2 zeros of p′′.

3.2 On the Basins of Attraction of Np

Leveraging the properties we have just explored regarding Newton’s method, particularly
noting that z = ∞ is the only repelling fixed point, several topological results regarding
the immediate basins of attraction of Np can be established (see Figure 3 for a visual
illustration).
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Figure 3: Dynamical planes of Newton’s method for two polynomials are depicted. On the left, we observe
the Newton map associated with the quartic polynomial P (z) = z4 − 1. On the right, we observe the
Newton map associated with the quintic polynomial Q(z) = z5− (0.2+ i)z4− (0.3i)z3− (0.5−0.1i)z2+0.1z.

Theorem 14. Let p be a polynomial of degree d ≥ 2. Assume that p(α) = 0 and let Np be
the corresponding Newton’s map. Then, A∗(α) is a simply connected unbounded set.

Proof. To establish the unboundedness of the sets, suppose that A∗(α) is bounded and let
C(Np) denote the set of critical points of Np. Given that #C(Np) = 2d− 2 ≤ ∞, we can
select two distinct points z0 and z1 from A∗(α)\{α} such that Np(z1) = z0 and these points
can be connected by a curve γ0 such that γ0 ⊂ A∗(α) \

⋃
n≥1N

n
p (C(Np) ∩ A∗(α)). Now,

let U0 and V0 be two topological disks such that U0 ⊂ V0, γ0 ⊂ U0 i V0 ∩ C(Np) = ∅. Let
h1 denote the local branch of N−1

p such that N−1
p (z0) = z1. This branch can be extended

to all of U0 since it does not contain critical points of Np. Repeating the argument, we can
define the local branches of N−n

p inductively, denoted as hn, such that we can establish a
curve connecting zn := hn(z0) with zn+1, denoted as γn := hn(γ0), along with two open
sets Un := hn(U0) and Vn := hn(V0).

Note that γn ⊂ A∗(α) for every n ∈ N. This is evident from the induction process, as
γ0 ⊂ A∗(α) is clear, suppose that γn ⊂ A∗(α) but γn+1 ̸⊂ A∗(α). In such a scenario, a point
of γn+1 would lie within the Julia set. However, since Np(γn+1) = γn ⊂ A∗(α) ⊂ F(Np)
and the Fatou set is invariant (Theorem 13(a)), we conclude that γn+1 ⊂ F(Np). This leads
to a contradiction since the Fatou set and the Julia set are disjoint. Thus, γn+1 ⊂ A∗(α).
Let γ =

⋃
n γn.

Since A∗(α) is bounded, by the Bolzano-Weierstrass theorem, the sequence {zn}n contains
a converging subsequence, i.e., {znk

}k → ζ ∈ ∂A∗(α) ⊂ J (Np). Now, consider the open
set Unk

containing znk
and znk+1

. We claim that its diameter tends to zero. Assuming the
claim, we have |znk+1

−Np(znk+1
)| = |znk+1

− znk
| → 0. Therefore, there exists a finite fixed

point on the boundary of the immediate basin of attraction, i.e., in the Julia set. Since the
only fixed point in the Julia set is z = ∞, we reach a contradiction by assuming that A∗(α)
was bounded. Hence, A∗(α) is an unbounded set.

To conclude the argument regarding unboundedness, let us prove the claim. By con-
tradiction, suppose there exists a subsequence {nkj}j and η > 0 such that diam(Unkj

) > η

as nkj → ∞. According to Theorem 6, there exists a constant 0 < k < 1, independent of
hn, such that D(zn, k diam(Un)) ⊂ Un for all n ∈ N. Consequently, Unkj

contains a disk of
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Figure 4: Dynamical planes of Newton’s method for two polynomials and their respective Sd sets are
depicted. On the left, we observe the Newton map associated with the quartic polynomial P (z) =
z4 − 1. The required number of circles for P is s = 1, with a radius of r = 2.247, and comprising
N = 47 points. On the right, we observe the Newton map associated with the quintic polynomial
Q(z) = z5 − (0.2 + i)z4 − (0.3i)z3 − (0.5− 0.1i)z2 + 0.1z. The required number of circles for Q is s = 1,
with a radius of r = 2.283, and comprising N = 67 points.

radius kη for every j ∈ N. Therefore, for sufficiently large j, there exists 0 < ε < kη such
that

D(ζ, ε) ⊂
⋂
j

Unkj
=
⋂
j

hnkj
(U0).

Thus, N
nkj
p (D(ζ, ε)) ⊂ U0, and the family N

nkj
p is normal. Otherwise, by the blow-up

property (Theorem 13(d)), N
nkj
p omits at most two values, which contradicts the fact that

N
nkj
p (D(ζ, ε)) ⊂ U0. Consequently, ζ ∈ F(Np) ∩ J (Np), which is a contradiction since the

Fatou set and the Julia set are disjoint.

We leave the proof of the simple connectivity to the reader since it is beyond the scope of
our analysis. The details can be found in [13] (Theorem 14).

This topological result serves as the cornerstone for proving the existence of a universal and
explicit set of initial conditions denoted as Sd. This set, depending only on the polynomial’s
degree, enable the Newton’s method to find all roots of a polynomial. Specifically:

Theorem 15 (Theorem 1 in [6]). For every d ≥ 2, there is a set Sd consisting of at most
1.11 d log2d points in C such that for every polynomial of degree d and each of its roots,
there is a point s ∈ Sd in the basin of the chosen root.

For a polynomial of degree d, the set Sd will consist of s = ⌈0.26632log d⌉ circles with
N = ⌈8.32547d log d⌉ points on each. The set is given by

Sd = {rv exp(ivj) | 1 ⩽ v ⩽ s , 0 ⩽ j ⩽ N − 1},

where rv := (1 +
√
2)
(
d−1
d

) 2v−1
4s and vj :=

2πj
N . Note that Sd comprises Ns points, and the

needed number of circles is not excessively high. For example, for polynomials of degree
d ≤ 42, s = 1; for polynomials of degree d ≤ 1835, s = 2, and so forth. For a visual
representation and an example illustrating how the algorithm operates, see Figure 4.
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3.2.1 Accesses to infinity

The objective of this section is to present a result that establishes a relationship between
the number of accesses to infinity in a basin of attraction and the number of critical points
within each basin. Let us begin by providing a generalization of the Riemann-Hurwitz
formula, previously stated in Theorem 11, for the scenario where R : U → V is a rational
map and U, V are domains in Ĉ.

Theorem 16 (Riemann-Hurwitz formula, Theorem 5.4.1 in [10]). Let R : U → V be a
rational map, deg(R) = d and U, V domains in Ĉ. Then,

C(R) = χ(V )d− χ(U),

where χ is the Euler characteristic and C(R) the number of critical points counted with
multiplicity.

In particular, let us define mα as the number of critical points of Np in A∗(α), counted with
multiplicity. Thus, we have dα = 1 +mα, since the basin of attraction is simply connected,
implying that χ(A∗(α)) = 1.
We have proved that z = ∞ lies on the boundary of every immediate basin of attraction
of the roots, which is an important property for finding all roots of a polynomial. Then,
within each immediate basin, there exist simple arcs connecting the root to infinity. A
homotopy class of such curves is referred to as an access to infinity.

Proposition 6. Each immediate basin of attraction Uα of a root α, has exactly mα accesses
to infinity.

Proof. To simplify the notation, we will omit the index α and write U instead of Uα, and
m instead of mα. Since U is simply connected (Theorem 14), there exists a conformal
isomorphism ϕ : D(0, 1) → U , uniquely normalized by two conditions; ϕ(0) = α and
ϕ′(0) > 0. The map f := ϕ−1 ◦Np ◦ ϕ, f : D(0, 1) → D(0, 1) is holomorphic and has the
same degree of Np due to the conjugation, i.e., deg(f) = d = 1 +m. The map extends
by reflection to a holomorphic self-map of Ĉ, i.e., a rational map of degree m+ 1 which
we still denote by f . Then, f has exactly m+ 2 fixed points on Ĉ, counting multiplicities.
Among them, there are the (super)-attracting fixed points 0 and ∞ which attract all of
D(0, 1) and Ĉ \D(0, 1) respectively, and m additional fixed points ξ1, . . . , ξm which must
necessarily be on S1.
Since D(0, 1) and Ĉ \D(0, 1) are completely invariant, it follows that f cannot have critical
points on S1 (otherwise the images of S1 could be non simple curves, contradicting the
invariance stated). Therefore, restricted to S1, f is a covering map of degree m + 1.
Moreover, all f ′(ξi) are positive and real, otherwise, the orbit of ξi would leave S1. The
points ξi are repelling fixed pints, since if they were not, they would be either attracting or
parabolic, and would attract points outside S1. In particular, the m fixed points on S1 are
distinct (otherwise f ′(ξi) = 0).
Assume that U is locally connected (the general case can be found in [6]). The conformal
isomorphism ϕ : D(0, 1) → U extends continuously to the boundary, then the m fixed
points of f on ∂D(0, 1) will map to m fixed points of Np on ∂U . A fixed point of Np must
be either a root of p, which is not in ∂U , or the only other fixed point of Np, ∞. Hence,
the domain U will extend out to ∞ in m different directions.

It is worth noting that the roots of the polynomials are always critical points of the Newton’s
method. Thus, we always have, at least, one access to infinity for any of the roots. In some
cases, where other critical points apart from the zeros of the polynomials are within the
basin of attraction, there may be more than one access to infinity, see Figure 3.



Chapter 4

Traub’s method

In this chapter, we will introduce Traub’s method by presenting its key results regarding its
local dynamics. Our objective is to prove Theorem A, which confirms the unboundedness
and simple connectivity of the immediate basins of attraction for Traub’s method for a
specific family of polynomials. To address this theorem using Traub’s method, different
techniques than the ones used in Theorem 14 must be employed, as z = ∞ may not be the
only repelling fixed point, unlike in Newton’s method. Thus, we will start by presenting
fundamental properties of the damped Traub map, culminating in the proof of Theorem A.

4.1 Local Dynamics of the family Tp,δ

Recall that if p is a polynomial of degree d ≥ 2, the damped Traub’s map applied to p is
defined as

Tp,δ = Np(z)− δ
p(Np(z))

p′(z)
.

where Np is the Newton’s map and δ ∈ C. For our purposes, it will suffice to consider
δ ∈ [0, 1]. Let us begin by observing that fixed points of the method do not necessarily
correspond to zeros of the polynomial, as is the case with Newton’s method (see Proposition
4(a)). While it is true that roots of the polynomial are fixed points, the converse is not
always true, see Figure 5 for a visual illustration.

Proposition 7. Let p be a polynomial of degree d ≥ 2 and δ ∈ [0, 1]. The following
properties regarding the damped Traub’s map hold:

(a) If z = α is a root of p, then z = α is a fixed point of Tp,δ. The converse is not
necessarily true.

(b) The simple roots of p are superattracting fixed points of Tp,δ, while multiple roots are
attracting fixed points of Tp,δ.

(c) The point z = ∞ is a repelling fixed point of Tp,δ.

Proof. (a) If z = α is a root of p of multiplicity k ≥ 1, then there exists a polynomial q
of degree d− k such that p(z) = (z − α)kq(z) and q(α) ̸= 0. Then,

Tp,δ(z) = z − p(z)

p′(z)
− δ

(Np(z)− α)kq(Np(z))

p′(z)
. (4.1)

23
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Figure 5: On the left, we illustrate the dynamical plane of Traub’s method applied to the cubic polynomial
P (z) = (z2 + 0.25)(z − 0.439). Basins of attraction corresponding to roots of the polynomial are shown
in orange. It is notable that Tp,1 exhibits an attracting fixed point located at ζ ≈ 0.155, whose basin is
depicted in blue, that does not correspond to any root of P . On the right, we present the dynamical plane
of Newton’s method applied to P . Here, it is evident that there are no fixed points other than the roots.

Some computations show that

p(z)

p′(z)
=

(z − α)q(z)

kq(z) + (z − α)q′(z)
,

(Np(z)− α)k =

(
(z − α)((k − 1)q(z) + (z − α)q′(z))

kq(z) + (z − α)q′(z)

)k

.

(4.2)

Hence, from (4.1) and (4.2) we get

Tp,δ(z) = z −B1(z)(z − α)− δB2(z)q(Np(z))(z − α). (4.3)

where

B1(z) =
q(z)

kq(z) + (z − α)q′(z)
,

B2(z) =
[(k − 1)q(z) + (z − α)q′(z)]k

(kq(z) + (z − α)q′(z))k+1
.

Now, trivially, Tp,δ(α) = α.

(b) Taking the derivative in expression (4.3) we have that

T ′
p,δ(z) = 1−B′

1(z)(z − α)−B1(z)− δ[B2(z)q(Np(z))]
′(z − α)− δB2(z)q(Np(z)).

Evaluating at z = α, since Np(α) = α, we have that

T ′
p,δ(α) = 1−B1(α)− δB2(α)q(α) = 1− 1

k
− δ

(
k − 1

k

)k 1

k
.
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Thus, if k = 1 then z = α is a superattracting fixed point of Tp,δ since T ′
p,δ(α) = 0. If

k ≥ 2, z = α is an attracting fixed point of Tp,δ if and only if |T ′
p,δ(α)| < 1. Observe

that

|T ′
p,δ(α)| < 1 ⇐⇒

∣∣∣∣∣k − 1

k
− δ

(
k − 1

k

)k 1

k

∣∣∣∣∣ < 1 ⇐⇒
∣∣∣∣δ − kk

(k − 1)k−1

∣∣∣∣ < kk+1

(k − 1)k
.

Since δ ∈ [0, 1], and kk

(k−1)k−1 > 1 for k ≥ 2, we have that

|T ′
p,δ(α)| < 1 ⇐⇒ δ >

kk

(k − 1)k−1
− kk+1

(k − 1)k
=

−kk

(k − 1)k
,

Consequently, |T ′
p,δ(α)| < 1 for every δ ∈ [0, 1], indicating that z = α is an attracting

fixed point of Tp,δ.

(c) Let us first prove that z = ∞ is a fixed point. We claim that there exists a polynomial
r(z) of degree d2 − 2d such that

Tp,δ = z − p(z)

p′(z)
− δ

[p(z)]2r(z)

[p′(z)]d+1
.

To see the claim, first, observe that

p′(z) =
d∑

i=1

pi(z), where pi(z) =
d∏

k=1,k ̸=i

(z − αk).

Then,

p(Np(z)) =

d∏
i=1

(
z − p(z)

p′(z)
− αi

)
=

1

[p′(z)]d

d∏
i=1

[(z − αi)p
′(z)− p(z)]

=
1

[p′(z)]d

d∏
i=1

[(z − αi)
d∑

k=1

pk(z)− p(z)] =
1

[p′(z)]d

d∏
i=1

(z − αi)
d∑

k=1,k ̸=i

pk(z).

Let us define pk,i =
∏d

j=1,j ̸=i,k(z − αj) and r(z) =
∏d

i=1

∑d
k=1,k ̸=i pk,i(z)

∗. Then,

p(Np(z)) =
1

[p′(z)]d

d∏
i=1

(z − αi)
2

d∑
k=1,k ̸=i

pk,i(z) =
[p(z)]2

[p′(z)]d
r(z).

Therefore, we obtain that

Tp,δ(z) =
z[p′(z)]d+1 − p(z)[p′(z)]d − δ[p(z)]2r(z)

[p′(z)]d+1
.

Let us compute the leading term of the numerator and denominator. Since p′ has
degree d − 1 with leading coefficient equal to d and r(z) has degree d2 − 2d with
leading coefficient equal to (d− 1)d, we have that

Tp,δ(z) =
[dd+1 − dd − δ(d− 1)d]zd

2
+ · · ·

dd+1zd2−1 + · · ·
∗Notice that deg(r)=d(d− 2) = d2 − 2d.



26 CHAPTER 4. TRAUB’S METHOD

Hence, if δ ≠ dd/(d− 1)d−1, which never occurs since δ ∈ [0, 1] and dd/(d− 1)d−1 > 1,
we have that

Tp,δ(∞) = lim
z→∞

Tp,δ(z) = ∞.

and thus z = ∞ is a fixed point. To see its character as a fixed point, let U be a
neighborhood of z = ∞ and let V be a neighborhood of z = 0. Consider the map
ϕ : U → V such that ϕ(z) = 1/z. Let us analyze the character of the origin of the
conjugate map T̃p,δ(z) = ϕ(Tp,δ(ϕ

−1(z))) = 1
Tp,δ(1/z)

. Some computations shows that

T̃p,δ(z) = z
dd+1 + · · ·

[dd+1 − dd − δ(d− 1)d] + · · ·
,

and consequently,

T ′
p,δ(∞) = T̃ ′

p,δ(0) =
dd+1

dd+1 − dd − δ(d− 1)d

Thus z = ∞ is a repelling fixed point of Tp,δ if and only if |T ′
p,δ(∞)| > 1. Observe

that

|T ′
p,δ(∞)| > 1 ⇐⇒

∣∣∣∣dd+1 − dd − δ(d− 1)d

dd+1

∣∣∣∣ < 1 ⇐⇒
∣∣∣∣δ − dd

(d− 1)d−1

∣∣∣∣ < dd+1

(d− 1)d
.

As seen before, this condition always holds for δ ∈ [0, 1], implying that z = ∞ is a
repelling fixed point of Tp,δ.

We heavily rely on the fact that δ ∈ [0, 1] to establish the last result. Indeed, if we consider
δ ∈ C, the outcome changes drastically. Multiple roots may become repelling fixed points,
and z = ∞ may become an attracting fixed point. In the last case, the immediate basins of
attraction for the roots of a polynomial cannot be unbounded, thus the result we are at-
tempting to prove would not hold. Nevertheless, δ ∈ [0, 1] does not fall within this set of bad
parameters. A comprehensive investigation into the behavior when δ ∈ C can be found in [7].

We have seen that simple roots of the polynomial are superattracting fixed points of
Tp,δ. This means that the local convergence of the method is very rapid, since by Böttcher’s
Theorem, the algorithm is locally conjugated to z → zk for some k > 1. In fact, the local
order of convergence for Traub’s method (δ = 1) is cubic.

Proposition 8. Let f : D ⊂ C → C be a holomorphic function in a domain D and let
z = α be a simple root of f(z) = 0. If z0 is close enough to z = α, then Traub’s method
(δ = 1) converge to z = α in a cubic manner, that is, ∃M > 0 such that for k sufficiently
large,

|zk+1 − α| ≤ M |zk − α|3,

where zk+1 = Nf (zk)− f(Nf (zk))/f
′(zk).

Proof. Let ek = zk − α. By using Taylor expansion around α,

f(zk) = f(α+ ek) = f(α) + f ′(α)ek +
1

2
f (2)(α)e2k +

1

3!
f (3)(α)e3k +O(e4k)

= f ′(α)[ek + c1e
2
k + c2e

3
k +O(e4k)],
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and

f ′(zk) = f ′(α+ ek) = f ′(α) + f (2)(α)ek +
1

2
f (3)(α)e2k +O(e3k) (4.4)

= f ′(α)[1 + 2c1ek + 3c2e
2
k +O(e3k)]. (4.5)

Now, since z = α is a simple root of f , f ′(α) ̸= 0, so taking zk close enough to α, f ′(zk) ̸= 0
and,

f(zk)

f ′(zk)
= [ek + c1e

2
k + c2e

3
k +O(e4k)][1 + 2c1ek + 3c2e

2
k +O(e3k)]

−1

= [ek + c1e
2
k + c2e

3
k +O(e4k)][1− 2c1ek + (8c21 − 6c2)e

2
k +O(e3k)]

= ek − c1e
2
k + (2c21 − 2c2)e

3
k +O(e4k).

(4.6)

Then, by (4.6)

yk := zk −
f(zk)

f ′(zk)
= α+ c1e

2
k + (2c2 − 2c21)e

3
k +O(e4k).

Again, by using Taylor expansion around α,

f(yk) = f(α) + f ′(α)(yk − α) +
1

2
f (2)(α)(yk − α)2 +O((yk − α)3)

= f ′(α)[c1e
2
k + (2c2 − 2c21)e

3
k +O(e4k)].

Dividing the last expression by (4.4), we have that

f(yk)

f ′(yk)
= [c1e

2
k + (2c2 − 2c21)e

3
k +O(e4k)][1 + 2c1ek + 3c2e

2
k +O(e3k)]

−1

= [c1e
2
k + (2c2 − 2c21)e

3
k +O(e4k)][1− 2c1ek + (8c21 − 6c2)e

2
k +O(e3k)]

= c1e
2
k + (2c2 − 4c21)e

3
k +O(e4k).

Finally,

zk+1 = yk − δ
f(yk)

f ′(zk)
= α+ c1e

2
k + (2c2 − 2c21)e

3
k − δ[c1e

2
k + (2c2 − 4c21)e

3
k] +O(e4k)

= α+ (1− δ)c1e
2
k + [(4δ − 2)c21 + (2− 2δ)c2]e

3
k +O(e4k).

Thus, for δ ̸= 1, the convergence is quadratic, but for δ = 1, selecting M = 2c21, we have
that

|zk+1 − α| ≤ M |zk − α|3.

As previously observed in the preceding sections, critical points are the key tool for
understanding the dynamical plane of Tp,δ. We noted that for a polynomial with all roots
being simple, Newton’s method (δ = 0) has 2d− 2 critical points, given that N ′

p is a map
of degree d. Indeed,

N ′
p(z) =

p(z)p′′(z)

(p′(z))2
.

The free critical points are those given by the zeros of p′′. When considering δ ̸= 0, the
degree of the map Tp,δ changes drastically from d to d2, thus the number of critical points
increases to 2d2 − 2. The following proposition provides a precise description of the critical
points of Tp,δ.
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Proposition 9. Let p be a polynomial of degree d with all its roots being simple, and assume
δ ∈ (0, 1]. Then, the critical points of Tp,δ can be classified as follows:

(a) The zeros of p. If p(α) = 0 then α is a critical point with multiplicity 1 for δ ̸= 1 and
multiplicity 2 for δ = 1.

(b) The zeros of p′. If p′(β) = 0 then β is a critical point with multiplicity d.

(c) The zeros of p′′. If p′′(γ) = 0 then γ is a critical point and its multiplicity depends on
different derivatives of p at γ.

(d) Critical points that do not belong to any of the above cases. There are as many as

(i) d(d− 1) if δ ̸= 1.

(ii) d(d− 2) if δ = 1.

Proof. As previously noted in section 2.4, the critical points of Tp,δ are given by the solution
of T ′

p,δ(z) = 0 and eventually the poles of Tp,δ. Observe that

T ′
p,δ(z) =

p(z)p′′(z)

[p′(z)]2
− δ

p′(Np(z))
p(z)p′′(z)

p′(z) − p(Np(z))p
′′(z)

[p′(z)]2


=

p′′(z)

[p′(z)]2

[
p(z)− δ

p′(Np(z))p(z)

p′(z)
+ δp(Np(z))

]
.

(a) Let z = α be a zero of p. By Proposition 4(a), p(Np(α)) = p(α) = 0 and clearly
T ′
p,δ(α) = 0. To check the multiplicity as a critical point, since p′(Np(α)) = p′(α) and

N ′
p(α) = 0, some computations show that

T ′′
p,δ(α) =

p′′(α)

[p′(α)]2
[
p′(α)− δp′(α)

]
=

p′′(α)

p′(α)
(1− δ) and T ′′′

p,1(α) ̸= 0.

Therefore, z = α is a critical point with multiplicity 1 for δ ̸= 1 and multiplicity 2 for
δ = 1.

(b) Let z = β be a zero of p′. In Proposition 7(c), we noted the existence of a polynomial
r of degree d2 − 2d such that

Tp,δ(z) =
z[p′(z)]d+1 − p(z)[p′(z)]d − δ[p(z)]2r(z)

[p′(z)]d+1
.

Observe that Tp,δ fails to be injective in any neighborhood of z = β, thus it is a
critical point of the map. To check the multiplicity as a critical point, observe that
poles of Tp,δ are preimages of z = ∞ of multiplicity d+1, hence they have multiplicity
d as critical points.

(c) Let z = γ be a zero of p′′. Clearly T ′
p,δ(γ) = 0, thus z = γ is a critical point of

Tp,δ. The multiplicity as a critical point depends on higher derivatives of p at z = γ.
Indeed, if p′′(γ) = 0,

T ′′
p,δ(γ) =

p′′′(γ)

[p′(γ)]2

[
p(γ)− δ

p′(Np(γ))p(γ)

p′(γ)
+ δp(Np(γ))

]
.
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(d) Let us discuss the remaining critical points. As previously mentioned, the degree of the
map Tp,δ is d2 for δ ̸= 0. Hence, the total number of critical points is 2d2−2. Suppose
first that δ ≠ 1. In that case, we have already computed d+d(d−1)+(d−2) = d2+d−2
critical points corresponding to the zeros of p, p′ and p′′. Hence, there are still
2d2 − 2 − (d2 + d − 2) = d(d − 1) extra critical points left. If δ = 1, the zeros of p
have multiplicity 2 instead of 1, thus the number of extra critical points remaining is
2d2 − 2− (d2 + 2d− 2) = d(d− 2).

4.2 On the Basins of Attraction of the family Tp,δ

The objective of this chapter is to prove Theorem A, which confirms the unboundedness
and simple connectivity of the immediate basins of attraction for Traub’s method for a
specific family of polynomials. This topological results regarding the basins of attraction
would serve as a cornerstone for proving the existence of a Sd-like set, similar to the one
provided for Newton’s method, for finding all the roots of a polynomial, see Theorem 15.
Let us recall Theorem A:

Theorem A. Let p be a polynomial of degree d ≥ 2. Assume that p satisfies one of
the following conditions:

(a) d = 2, or

(b) it can be written in the form pn,β(z) := zn − β for some n ≥ 3 and β ∈ C.

Suppose that p(α) = 0 and consider Tp,δ with δ ∈ [0, 1]. Then A∗
δ(α) is a simply connected

unbounded set.

4.2.1 The quadratic case

In this section, we assume that p is a monic polynomial of degree 2. We will observe that if
p has only one root, i.e., is of the form p(z) = (z−α)2, the result is straightforward. Let us
assume for the moment that p(z) = (z−α1)(z−α2), α1 ̸= α2. To study this case, consider
the Möbius transformation

h(z) =
z − α2

z − α1
,

that sends α1, α2 and ∞ to ∞, 0 and 1, respectively. Hence, a simple computation shows
that the operator Tp2,δ is conjugated to the map

Gδ(z) = (h ◦ Tp2,δ ◦ h−1)(z) = z2
z2 + 2z + (1− δ)

(1− δ)z2 + 2z + 1
.

Indeed,

h(Tp2,δ(z)) = h

(
[z2 − α1α2][2z − (α1 + α2)]

2 − δ[z2 − 2zα1 + α2
1][z

2 − 2zα2 + α2
2]

[2z − (α1 + α2)]3

)

=
[z2 − α1α2][2z − (α1 + α2)]

2 − δ[z2 − 2zα1 + α2
1][z

2 − 2zα2 + α2
2]− α2[2z − (α1 + α2)]

3

[z2 − α1α2][2z − (α1 + α2)]2 − δ[z2 − 2zα1 + α2
1][z

2 − 2zα2 + α2
2]− α1[2z − (α1 + α2)]3

=
[z − α2]

2[(z − α2)
2 + 2(z − α1)(z − α2) + (1− δ)(z − α1)

2]

[z − α1]2[(z − α1)2 + 2(z − α1)(z − α2) + (z − α2)2(1− δ)]
= Gδ

(
z − α2

z − α1

)
= Gδ(h(z)).
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We will find that working with the map Gδ instead of Tp2,δ will be advantageous, as several
key results can be derived from this map. It will allow us to have a significant control over
the critical points due to a symmetry provided by Gδ. Let us explore this aspect.

Lemma 2. If δ ∈ [0, 1], then Gδ is a Blaschke product.

Proof. Suppose first that δ = 1. Notice that G1(z) = z3 z+2
1−2z , and G1 is clearly a Blaschke

product (see Definition 16). Assume δ ≠ 1. The zeros of Gδ are z = 0 (double) and
z = ζ±(δ), where ζ±(δ) = −1 ±

√
δ. Moreover, the poles of Gδ are given by z = w±(δ)

where w±(δ) = ζ±/(1− δ). Then,

Gδ(z) = z2
(z − ζ+)(z − ζ−)

(1− δ)(z − w+)(z − w−)
= z2

(z − ζ+)(z − ζ−)

ζ+ζ−(z − 1/ζ+)(z − 1/ζ−)

= z2
(

z − ζ+
1− zζ+

)(
z − ζ−
1− zζ−

)
.

Thus, Gδ is a Blaschke product (check Definition 16).

Lemma 3. Let δ ∈ [0, 1] and let τ(z) = 1/z. Then, Gδ is symmetric with respect to τ ,
meaning that for every z ∈ Ĉ we have:

Gδ(z) = (τ−1 ◦Gδ ◦ τ)(z).

Proof. A simple computation shows that

(τ−1 ◦Gδ ◦ τ)(z) = τ−1(Gδ(1/z))) = τ−1

(
1

z2
1 + 2z + (1− δ)z2

(1− δ) + 2z + z2

)
= z2

z2 + 2z + (1− δ)

(1− δ)z2 + 2z + 1
= Gδ(z).

These results enable us to demonstrate the existence of a well-defined one-dimensional
δ-parameter plane for the family Gδ, as well as provide significant control over the critical
points. Let us state the result.

Lemma 4. Let Gδ be the Blaschke product previously defined and assume δ ∈ (0, 1]. The
following statements hold:

(a) The map Gδ has 6 critical points, counted with multiplicity.

(b) The critical points of Gδ are:

(i) For δ ̸= 1, z = 0, z = −1 (double), z = ∞ and z± = c±(δ), where

c±(δ) =
−(2 + δ)±

√
(2 + δ)2 − 4(1− δ)2

2(1− δ)
.

Moreover,

lim
δ→1

c+(δ) = 0 and lim
δ→1

c−(δ) = ∞

(ii) For δ = 1, three double critical points, z = 0, z = −1 and z = ∞.
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(c) The orbit of all critical points except for c± is prescribed. More precisely, Gδ(0) = 0,
Gδ(∞) = ∞, Gδ(−1) = 1 and Gδ(1) = 1. In particular, z = 0 and z = ∞ are
superattracting fixed points.

(d) We have that Gδ(x) ̸= x for all x ∈ (0,∞) \ {1} and G′
δ(x) > 0 for all x ∈ (0,∞).

(e) The critical points c±(δ) satisfy c+(δ) = 1/c−(δ). Moreover, their orbits are symmetric
with respect to τ(z) = 1/z, i.e. they satisfy Gn

δ (c+(δ)) = 1/Gn
δ (c−(δ)).

Proof. (a) Recall that the total number of critical points is determined by 2d− 2, where
d represents the degree of the map. As Gδ has degree 4, the total number of critical
points is 6.

(b) Observe that G′
δ is given by

G′
δ(z) = 2z(1 + z)2

(1− δ)z2 + (2 + δ)z + (1− δ)

[(1− δ)z2 + 2z + 1]2
. (4.7)

(i) Suppose δ ≠ 1. According to Lemma 3, since z = 0 is a critical point with multi-
plicity 1, z = ∞ also becomes a critical point with multiplicity 1. Furthermore,
z = −1 is evidently a critical point of multiplicity 2, while the two remaining
critical points arise from solving the degree 2 equation of the numerator:

c±(δ) =
−(2 + δ)±

√
(2 + δ)2 − 4(1− δ)2

2(1− δ)
.

(ii) Suppose δ = 1. In that case,

G′
1(z) =

6z2(1 + z)2

(2z + 1)2
.

Thus, z = 0 and z = −1 are evidently critical points of G1 with multiplicity
2. Applying Lemma 3 once more, it follows that z = ∞ must also be a critical
point of multiplicity 2.

(c) Verifying Gδ(0) = 0, Gδ(1) = 1, and Gδ(−1) = 1 involves straightforward calculations.
To establish Gδ(∞) = ∞, note that the numerator has degree 4 while the denominator
has degree 2, thereby indicating that

Gδ(∞) = lim
z→∞

Gδ(z) = ∞.

To observe that z = 0 and z = ∞ are superattracting fixed points, simply note that
the character of the fixed point is preserved under conjugation. Since α1 and α2 are
simple roots of p(z), they are superattracting fixed points of Tp,δ (check Proposition
7(b)). Therefore, h(α2) = 0 and h(α1) = ∞ are superattracting fixed points of Gδ.

(d) Assume Gδ(x) = x. Then,

x4 + (1 + δ)x3 − (1 + δ)x2 − x = 0.

The solutions are given by x = 0, x = 1 and x± = 1
2(−δ ±

√
δ + 4

√
δ − 2). Note

that for every δ ∈ (0, 1], x± < 0, particularly implying that Gδ(x) ̸= x for every
x ∈ (0,∞) \ {1}. To verify that G′

δ(x) > 0 for every x ∈ (0,∞), according to (4.7),
this is equivalent to determine for which δ ∈ R the following holds:

(1− δ)x2 + (2 + δ)x+ (1− δ) > 0, x ∈ (0,∞).

Since the inequality holds for δ ∈ (0, 1] (our case of interest), we can conclude that
G′

δ(x) > 0 for every x ∈ (0,∞).
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Figure 6: Parameter plane of Gδ for δ ∈ C. We assign colors on a scale from orange (indicating fast
convergence) to blue (indicating slow convergence) to parameter values δ where the orbit of c+ converges
either to 0 or ∞, the superattracting fixed points. Parameter values δ for which the critical orbit exhibits
distinct behavior are colored in red. The central orange region containing δ = 1 represents K. It is worth
noting that δ = 0 lies on the boundary of K.

(e) Indeed, the equality c+(δ) = 1/c−(δ) follows from a simple computation. Furthermore,
according to Lemma 3, Gδ exhibits symmetry with respect to τ(z) = 1/z. Thus,

Gδ(c+) =
1

Gδ(1/c+(δ))
=

1

Gδ(c−(δ))
.

The preceding result indicates that the orbit of all critical points except for c± is determined
(either as fixed or pre-fixed points), and the map exhibits symmetric orbits with respect
to τ(z) = 1/z for the points c±. Consequently, there exists only one free critical point.
Therefore Gδ defines a well-defined one-dimensional δ-parameter plane depending on the
dynamical behaviour of the critical orbit {Gn

δ (c+(δ))}, see Figure 6. We assign colors on a
scale from orange (indicating fast convergence) to blue (indicating slow convergence) to
parameter values δ where the orbit of c+ converges either to 0 or ∞, the superattracting
fixed points. Parameter values δ for which the critical orbit exhibits distinct behavior are
colored in red.

Let us define K as the region comprising parameter values δ for which c+ lies within
the immediate basin of attraction of 0 for Gδ. This region is commonly referred to as a
hyperbolic component. More precisely, using the symmetry given in Lemma 3,

K = {δ ∈ C : c+(δ) ∈ A∗
Gδ

(0)} = {δ ∈ C : c−(δ) ∈ A∗
Gδ

(∞)}.

In particular, the central orange region containing δ = 1 depicted in Figure 6, represents
K. However, since it has not been proved that K is simply connected, we define K as the
connected component of K that includes δ = 1. With all these results established, we are
now prepared to prove Theorem A(a).
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Proof of Theorem A(a). Let us start considering the case where p(z) = (z − α)2. In this
scenario,

Tp,δ(z) = Np(z)−
p(Np(z))

p′(z)
=

z + α

2
− δ

( z+α
2 − α)2

2(z − α)
=

z + α

2
− δ

z − α

8
.

Furthermore, for every z ∈ C, we have T ′
p,δ(z) = 1/2− δ/8. Then, all points in C converge

to α under iteration if and only if |T ′
p,δ(z)| < 1, which is equivalent to |δ − 4| < 8. Given

that for every δ ∈ [0, 1] the inequality is satisfied, A∗(α) = C and the result holds.

Now, consider p(z) = (z − α1)(z − α2) with α1, α2 ∈ C, α1 ̸= α2. The case δ = 0
has already been addressed in Theorem 14. Therefore, we focus on δ ∈ (0, 1]. Recall
that by defining h(z) = (z − α2)/(z − α1), the map Tp,δ is conjugate to Gδ. Moreover,
h(α1) = ∞, h(α2) = 0 and h(∞) = 1. Consequently, proving the unboundedness of the
immediate basins of attraction for Tp,δ is equivalent to proving that 1 ∈ ∂A∗

Gδ
(0)∩∂A∗

Gδ
(∞).

According to Lemma 4(c,d), x = 1 is a fixed repelling point for G, and there are no other
critical points in x ∈ (0,∞) except for x = 1. This implies that no other Fatou compo-
nents may emerge in (0,∞) except for the corresponding basins of attractions that we are
studying. Moreover, since x = 0 and x = ∞ are superattracting fixed points and there are
no other fixed points apart from those mentioned, it is evident that 1 ∈ ∂A∗

Gδ
(0)∩∂A∗

Gδ
(∞).

Regarding the simple connectivity, let us begin by proving it for δ = 1 (Traub’s method).
According to Lemma 4(b,c), G1 exhibits three double critical points at z = 0, z = −1, and
z = ∞. Additionally, G1(−1) = 1, and as previously established, 1 ∈ ∂A∗

Gδ
(0) ∩ ∂A∗

Gδ
(∞).

Consequently, neither A∗
G1

(0) nor A∗
G1

(∞) contain additional critical points apart from
z = 0 and z = ∞. Therefore, it can be seen that the local Böttcher coordinates defined in
a neighborhood of the points z = 0 and z = ∞ can be extended to the entire immediate
basin of attraction, implying that both basins are simply connected.

This concludes the proof for Traub’s method. If one wishes to extend the result to
δ ∈ (0, 1], it suffices to demonstrate that (0, 1] ⊂ K and then observe that the simple
connectivity is preserved for all parameters within the same hyperbolic component (see
[9]).

4.2.2 The case zn − β

The objective of this section is to prove Theorem A(b). Let us consider the family of
polynomials pn,β(z) := zn − β for some n ≥ 3 and β ∈ C. Firstly, observe that if β ̸= 0,
the map Tpn,β ,δ is conjugate to the map Tpn,1,δ via η(z) = z n

√
1/β. Hence, to examine the

dynamics of Tpn,β ,δ, it suffices to consider two cases: pn,1(z) = zn − 1 and pn,0(z) = zn. We
can summarize this observation in the following lemma:

Lemma 5. Let β ∈ C \ {0}, δ ∈ [0, 1] and let η(z) = z n
√
1/β. Then, for every z ∈ Ĉ,

Tpn,β ,δ(z) = (η−1 ◦ Tpn,1,δ ◦ η)(z).

Proof. First, let us compute the general form for the map Tpn,β ,δ. Note that

Npn,β
(z) =

(n− 1)zn + β

nzn−1
and pn,β(Npn,β

(z)) =
[(n− 1)zn + β]n − βnnzn(n−1)

nnzn(n−1)
.
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Figure 7: Dynamical planes of Traub’s method for a cubic and a quartic polynomial. On the left, we see
the Traub map associated with the cubic polynomial p3,1(z) = z3 − 1. On the right, we observe the Traub
map associated with the quartic polynomial p4,1(z) = z4 − 1. In both cases, the basins of attractions are
shown in orange.

Hence,

Tpn,β ,δ(z) = Npn,β
(z)− δ

pn,β(Npn,β
(z))

p′n,β(z)

=
nn(n− 1)zn

2
+ βnn(1 + δ)zn(n−1) − δ[(n− 1)zn + β]n

nn+1zn2−1

(4.8)

Now, a simple computation shows that

Tpn,1,δ(η(z)) =
nn(n− 1)zn

2
(1/β)n + nn(1 + δ)zn(n−1)(1/β)n−1 − δ[(n− 1)zn(1/β) + 1]n

nn+1zn2−1(1/β)n(1/β)−1/n

=

(
1

β

) 1
n nn(n− 1)zn

2
+ βnn(1 + δ)zn(n−1) − δ[(n− 1)zn + β]n

nn+1zn2−1

= η(Tpn,β ,δ(z)).

Upon observing visual representations of the damped Traub’s method applied to the family
pn,1 for various values of n, we noticed a symmetry in the basins of attraction, as illustrated
in Figure 7. Specifically, the maps Tpn,1,δ exhibit symmetry with respect to a rotation by
an nth-root of unity. We can summarize this observation in the following lemma:

Lemma 6. Let ϕ(z) = ξz with ξn = 1. Then, for every z ∈ Ĉ

Tpn,1,δ(z) = (ϕ ◦ Tpn,1,δ ◦ ϕ−1)(z).

Proof. Taking into account that (ξ)n
2
= (ξn)n = 1 and ξn(n−1) = ξn

2
ξ−n = (ξn)−1 = 1, a

straightforward computation using the general form of Tpn,β ,δ given in (4.8) reveals that

Tpn,1,δ(ϕ(z)) =
nn(n− 1)zn

2
ξn

2
+ nn(1 + δ)zn(n−1)ξn(n−1) − δ[(n− 1)znξn + 1]n

nn+1zn2−1ξn2−1

= ξ
nn(n− 1)zn

2
+ nn(1 + δ)zn(n−1) − δ[(n− 1)zn + 1]n

nn+1zn2−1
= ϕ(Tpn,1,δ(z))
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With all these results established, we are now prepared to prove Theorem A(b).

Proof of Theorem A(b). According to Lemma 5, given that the map Tpn,β ,δ is conjugate to
Tpn,1,δ when β ̸= 0, it suffices to consider only two cases: pn,1(z) = zn − 1 and pn,0(z) = zn.
For the latter case, using (4.8) with β = 0, we obtain:

Tpn,0,δ(z) =

(
n− 1

n

)(
1− δ

(n− 1)n−1

nn

)
z.

Furthermore, for every z ∈ C, we have that

T ′
pn,0,δ(z) =

(
n− 1

n

)(
1− δ

(n− 1)n−1

nn

)
.

Then, all points in C converge to z = 0 under iteration if and only if |T ′
pn,0,δ

(z)| < 1. A
simple computation shows that the inequality holds for δ ∈ [0, 1], thus A∗(0) = C, and the
result follows for this case.

Now, let us consider the case pn,1(z) = zn − 1 and begin by proving the simple con-
nectivity of the immediate basins of attraction. From Lemma 6, the immediate basins of
attraction of the roots of pn,1 are symmetric with respect to a rotation by an nth root of
unity. Therefore, either all the basins are simply connected or they are all multiply con-
nected. Suppose that they are multiply connected. We claim that all the immediate basins
of attraction have to surround the unique pole of the map Tpn,1,δ, which is z = 0. Otherwise,
we could choose a curve γ ⊂ F(Tpn,1,δ) such that 0 ̸∈ Int(γ) and there exists w ∈ Int(γ) such
that w ∈ J (Tpn,1,δ). By Theorem 13(h), since z = 0 is the only pole of Tpn,1,δ and z = ∞
is a repelling fixed point, there exists ŵ arbitrarily close to w, in particular, ŵ ∈ J (Tpn,1,δ),
such that Tm

pn,1,δ
(ŵ) = 0 for some m > 0, i.e., Tm+1

pn,1,δ
(ŵ) = ∞. Considering the map

g := Tm
pn,1,δ

: Int(γ) → Ĉ, we find that |g(γ)| is bounded but |g(Int(γ))| is unbounded, lead-
ing to a contradiction with the Maximum Modulus Principle. Therefore, all the immediate
basins of attraction surround z = 0, and since they are all symmetric with respect to a rota-
tion by an nth root of unity, the basins would intersect each other, leading to a contradiction.

Let us prove the unboundedness of the basins of attraction. Recall that the case δ = 0
has already been proven in Theorem 14, so let us assume δ ∈ (0, 1]. Firstly, observe that
if x ∈ R, then Tpn,1,δ(x) ∈ R, so the real line is forward invariant under Tpn,1,δ. Moreover,
since x = 1 is a simple root of pn,1, according to Proposition 7(b), x = 1 is a superattracting
fixed point for Tpn,1,δ. If we can prove that for every x > 1 we have 1 < Tpn,1,δ(x) < x, we
can conclude that [1,∞) ⊂ A∗(1). Additionally, due to the symmetry of the immediate
basins of attraction of Tpn,1,δ with respect to a rotation by an nth root of unity (Lemma 6),
the result follows.
The inequality Tpn,1,δ(x) < x is equivalent to

pn,1(x) + δpn,1(Npn,1(x))

p′n,1(x)
> 0.

Since pn,1(x) = xn − 1 and p′n,1(x) = nxn−1, we have that for every x > 1, pn,1(x) > 0 and
p′n,1(x) > 0. Now, observe that if we can show that Npn,1(x) > 1 when x > 1, we are done,
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since in that case, we will have pn,1(Npn,1(x)) > 0, and the inequality holds. Notice that

Npn,1(x) =
(n− 1)xn + 1

nxn−1
> 1 ⇐⇒ xn−1((n− 1)x− n) + 1 > 0.

Note that if x > 1 and n ≥ 3, then (n− 1)x− n > −1, and thus the inequality holds.
To conclude the proof, we need to show that 1 < Tpn,1,δ(x) when x > 1. Indeed, we will
prove that the equation 1 = Tpn,1,δ(x) has either a single positive root of multiplicity three
at x = 1 (in the case where δ = 1) or two roots (in the case where δ ∈ (0, 1)): a simple root
x = x0 < 1 and a double root at x = 1. This imply that Tpn,1,δ(x) > 1 when x > 1 since

lim
x→∞

Tpn,1,δ(x) = ∞.

The equation 1 = Tpn,1,δ(x) can be written as

(n− 1)xn + 1− δpn,1(Npn,1(x))

nxn−1
= 1 ⇐⇒ pn,1(Npn,1(x)) =

1

δ

[
(n− 1)xn − nxn−1 + 1

]
.

(4.9)

Now, observe that

pn,1(Npn,1(x)) =

(
(n− 1)xn + 1

nxn−1

)n

− 1 =
1

nnxn2−n

[
((n− 1)xn + 1)n − nnxn

2−n
]
,

thus, (4.9) is equivalent to

((n− 1)xn + 1)n =
nn

δ

[
(n− 1)xn

2 − nxn
2−1 + (1 + δ)xn

2−n
]
.

We can expand the left hand side of the equation as

((n− 1)xn + 1)n = (n− 1)nxn
2
+ n(n− 1)n−1xn

2−n +An(x), (4.10)

where

An(x) =
n∑

j=2

(
n

j

)
(n− 1)n−jxn

2−nj .

Finally, if we set

Sδ,n(x) := (n− 1)

(
nn

δ
− (n− 1)n−1

)
xn

2 − nn+1

δ
xn

2−1

+

(
nn(1 + δ)

δ
− n(n− 1)n−1

)
xn

2−n −An(x),

equation (4.9) rewrites as Sδ,n(x) = 0. To conclude the proof, as mentioned before, let us
see that the equation has either a single positive root of multiplicity three at x = 1 (in
the case δ = 1) or two roots (in the case where δ ∈ (0, 1)): a simple root x = x0 < 1 and
a double root at x = 1. For that reason, let us compute the derivatives of Sδ,n at x = 1.
First, taking derivatives in (4.10), observe that:

An(1) = nn − (n− 1)n−1(2n− 1),

A′
n(1) = (n− 1)

[
nn+1 − 2n2(n− 1)n−1

]
,

A′′
n(1) = n2(n− 1)2

[
nn − (n− 1)n−2(2n2 − n− 2)

]
.
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Therefore,

Sδ,n(1) = nn − (n− 1)n−1(2n− 1)−An(1),

S′
δ,n(1) = (n− 1)

[
nn+1 − 2n2(n− 1)n−1

]
−A′

n(1),

S′′
δ,n(1) =

nn+1(n− 1)

δ

(
δn2 − δn+ 1− δ

)
− n2(n− 1)n(2n2 − n− 2).

Hence, Sδ,n(1) = S′
δ,n(1) = 0 and S′′

1,n(1) = 0 but S′′
δ,n(1) > 0 for every δ ∈ (0, 1).

Descartes’s Rule of Signs states that the number of positive roots of a polynomial is
either equal to the number of sign changes between consecutive (nonzero) coefficients or
less than it by an even number. In our case, Sδ,n exhibits three sign changes, indicating the
presence of either 1 or 3 positive real solutions, accounting for multiplicity.

For δ = 1, it is evident that x = 1 is the unique triple positive root. When δ ∈ (0, 1), x = 1
becomes a double root, and Sδ,n presents a minimum at that point. Given that Sδ,n(0) = −1
and limx→∞ Sδ,n(x) = ∞, the remaining simple positive root must lie at x = x0 < 1.





Chapter 5

The method as Singular Perturbation

In this chapter, our aim is to take little steps towards the primary ambitious objective of
the project; proving the unboundedness and simple connectivity of the immediate basins of
attraction for the damped Traub’s method. We will prove the unboundedness nature of
the immediate basins of attraction when δ is close enough to zero. Additionally, we will
provide control for both the free critical points and the fixed points that are not roots
for the damped Traub’s method applied to cubic polynomials when δ is sufficiently close to 0.

Observe that for δ close enough to zero we can formulate damped Traub’s method as
a singular perturbation of Newton’s method. Roughly speaking, a family of maps is called a
singular perturbation if it is defined by a base family (called the unperturbed family and
for which we have a deep understanding of the dynamical plane) plus a local perturbation,
that is, a perturbation which has a significant effect on the orbits of points in some part(s)
of the dynamical plane, but a very small dynamical relevancy on other regions [14].

After the perturbation, the maps have a higher degree compared to the original fam-
ily, indicating an increase in the family’s criticality. This introduces additional critical
points that require analysis. In our case, Newton’s method is the unperturbed well-known
family, already studied in Chapter 3, and p(Np(z))/p

′(z) is the local perturbation. The
details of the additional critical points arising from this perturbation are outlined in Propo-
sition 9. It is important to observe that the singular perturbation occurs over the Julia set,
as it involves adding additional preimages of z = ∞ to the zeros of p′(z). Observe that the
poles of the map Tp,δ, i.e., the zeros of p′(z), belongs to the Julia set, since they map to
z = ∞, which is a repelling fixed point (at least for δ ∈ [0, 1]).

5.1 On the Basins of Attraction of Tp,δ when δ ≈ 0

We can use the fact that the basins of attraction for Newton’s method are unbounded and
simply connected to prove that the basins of attraction for the damped Traub’s method are
also unbounded when δ is close enough to 0. To establish the result, we will first present
some auxiliary results.

Lemma 7. Let p(z) = adz
d + · · · a1z + a0 be a polynomial of degree d ≥ 2. Let qj be

the zeros of p′(z) = 0, i.e., the poles of both the damped Traub’s map, Tp,δ, and Newton’s
map, Np. Consider the compact K = D(0, R) \ ∪jD(qj , ε) where R > 0 and ε > 0 are
positive fixed constants. Then, for every z ∈ K, there exists a constant CR,ε such that
|p(Np(z))/p

′(z)| ≤ CR,ε.

39
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Proof. Let z ∈ K. Since disks of radius ε centered at the zeros of p′ are excluded of K,
there exists a positive value η > 0 such that |p′(z)| > η. Since |z| ≤ R,

|p(z)| ≤ |adzd|+ · · ·+ |a1z|+ |a0| ≤ |ad|Rd + · · · |a1|R+ |a0| := R′.

Hence,

|Np(z)| ≤ |z|+
∣∣∣∣ p(z)p′(z)

∣∣∣∣ ≤ R+
R′

η
:= M.

Therefore,∣∣∣∣p(Np(z))

p′(z)

∣∣∣∣ ≤ |adNp(z)
d|+ · · ·+ |a1Np(z)|+ |a0|

η
≤ |ad|Md + · · ·+ |a1|M + |a0|

η
:= CR,ε.

Lemma 8. Let p be a polynomial of degree d ≥ 2. Let qj be the zeros of p′(z) = 0, i.e.,
the poles of both the damped Traub’s map, Tp,δ, and Newton’s map, Np, and let z = α
be a zero of p, i.e., an attracting fixed point for both Np and Tp,δ. Consider the compact
K = D(0, R) \ ∪jD(qj , ε

′) where R > 0 and ε′ > 0 are positive fixed constants such that
α ∈ K. Then, the following statements hold:

(a) There exists a compact K ′ ⊂ K such that K ′ ⊂ A∗
Np

(α), α ∈ K ′ and ∂K ′ ∩ ∂K ̸= ∅,
satisfying that for every z ∈ K ′, there is a unique M ∈ N such that: ∀ε > 0,
NM

p (z) ∈ D(α, ε/2)

(b) For the given ε > 0 and for δ small enough, the following property holds: ∀z ∈ K ′,
|NM

p (z)− TM
p,δ(z)| < ε/2. In particular, TM

p,δ(z) ∈ D(α, ε).

Proof. (a) The existence of such a compact is guaranteed by the fact that A∗
Np

(α) is
an open set, unbounded and simply connected, check Proposition 1 and Theorem
14. Since z = α is an attracting fixed point for Np, the existence of M ∈ N is also
guaranteed.

(b) To prove the result, let us first establish the following claim: For δ small enough,

∀r > 0,∃ρ > 0 such that if |z1 − z2| < ρ =⇒ |Np(z1)− Tp,δ(z2)| < r.

To prove the claim, observe that, using Lemma 7 in the last inequality,

|Np(z1)− Tp,δ(z2)| ≤ |Np(z1)−Np(z2)|+ δ

∣∣∣∣p(Np(z))

p′(z)

∣∣∣∣ ≤ |Np(z1)−Np(z2)|+ δCR,ε′ .

Hence, since Newton’s map is continuous in K (in particular it is also in K ′), there
exists ρ > 0 such that if |z1 − z2| < ρ, then |Np(z1) − Np(z2)| < r/2. By choosing
δ = r

2CR,ε′
, we obtain the desired bound.

Now, let z ∈ K. To prove the result, we proceed as follows:

(i) Using the claim with z1 := NM−1
p (z) and z2 := TM−1

p,δ (z), there exists ηM > 0 and
δM > 0 such that if |NM−1

p (z)−TM−1
p,δ (z)| < ηM , then |NM

p (z)−TM
p,δM

(z)| < ε/2.

(ii) Again, using the claim with z1 := NM−2
p (z) and z2 := TM−2

p,δ (z), there exists
ηM−1 > 0 and δM−1 > 0 such that if |NM−2

p (z) − TM−2
p,δ (z)| < ηM−1, then

|NM−1
p (z)− TM−1

p,δM−1
(z)| < ηM .
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(iii) Iterating the algorithm, we obtain sequences {ηM−i}M−3
i=0 , {δM−i}M−3

i=0 satisfying
that if |NM−i−1

p (z)−TM−i−1
p,δ (z)| < ηM−i, then |NM−i

p (z)−TM−i
p,δi

(z)| < ηM−i+1.

(iv) We conclude the algorithm with the existence of η2 > 0 and δ2 > 0 such that if
|Np(z)− Tp,δ2(z)| < η2, then |N2

p (z)− T 2
p,δ2

(z)| < η3.

Finally, to ensure that |Np(z)− Tp,δ(z)| < η2, we just need to take δ1 =
η2

CR,ε′
, since,

according to Lemma 7, we have that

|Np(z)− Tp,δ1(z)| = δ1

∣∣∣∣p(Np(z))

p′(z)

∣∣∣∣ ≤ δ1CR,ε′ .

Therefore, by selecting δ = min{δ1, . . . , δM}, we obtain that for every z ∈ K:

|TM
p,δ(z)−NM

p (z)| < ε/2.

In particular, for every z ∈ K,

|TM
p,δ(z)− α| ≤ |TM

p,δ −NM
p (z)|+ |NM

p (z)− α| ≤ ε.

These auxiliaries result allows us to state that the basins of attraction of Tp,δ are unbounded
when δ is sufficiently small.

Theorem 17. Let p be a polynomial of degree d ≥ 2. Assume that p(α) = 0 and let Tp,δ be
the corresponding damped Traub’s map. Then, for δ close enough to zero, A∗

Tp,δ
(α) is an

unbounded set.

Proof. First, observe that for δ close enough to zero (indeed for every δ ∈ [0, 1]), z = ∞
is a repelling fixed point for Tp,δ (see Proposition 7). By Koenigs linearization Theorem
(Theorem 9), in a neighborhood of z = ∞, say D(∞, ε), Tp,δ is locally conjugated to
g(ζ) = λζ, where λ is the multiplier of z = ∞. Notice that, if λ ∈ C, since |λ| > 1, points
near z = ∞ tend to move away in a spiral shape, and if λ ∈ R, since |λ| > 1, points near
z = ∞ tend to move outward in a radial manner.

Let us define R := 1
ε and consider the compact K := D(0, R) \ ∪jD(qj , ε

′) where qj
are the poles of Tp,δ, i.e., the zeros of p′(z) = 0, and ε′ > 0 is a positive fixed constant. We
can assume that α ∈ K. If not, we can choose a smaller value for ε (increasing the value of
R) to ensure that α ∈ K, making the neighborhood where the Koenigs coordinates apply
smaller. Since z = α is an attracting fixed point for both Np and Tp,δ, there exists η1, η2 > 0
such that D(α, η1) ⊂ A∗

Np
(α) and D(α, η2) ⊂ A∗

Tp,δ
(α). Setting η = min{η1, η2}, we have

that D(α, η) ⊂ A∗
Np

(α) ∩ A∗
Tp,δ

(α). According to Lemma 8(a), there exists a compact
K ′ ⊂ K such that K ′ ⊂ A∗

NP
(α), α ∈ K ′ and ∂K ′ ∩ ∂K ≠ ∅, satisfying that for every

z ∈ K ′, there is a unique M ∈ N such that, for every z ∈ K ′, NM
p (z) ∈ D(α, η/2) ⊂ D(α, η).

Moreover, since the basins of attraction of Newton’s method are unbounded and simply
connected (Theorem 14) there exists a ray τ connecting the fixed point z = α and z = ∞,
included in A∗

Np
(α). This ray can be chosen such that its restriction to K is included in K ′.

From now own, any reference to τ will indicate the ray extending from the point z = α to
the boundary of the set K. Then, according to Lemma 8(b), for δ small enough and z ∈ K ′,
TM
p,δ(z) ∈ D(α, η), indicating that z ∈ A∗

Tp,δ
(α). Then, either τ ⊂ K ′ ⊂ A∗

Tp,δ
(α) or there

exists w ∈ J (Tp,δ) ∩K ′. In the last case, since w ∈ K ′, TM
p,δ(w) ∈ D(α, η), in contradiction

with w ∈ J (Tp,δ). Therefore, τ ⊂ K ′ ⊂ A∗
Tp,δ

(α).
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Figure 8: A sketch of the proof for Theorem 17.

By construction, observe that ∂D(0, R) = ∂D(∞, ε), hence, the ray τ , which ends at
∂D(0, R), connects with the spiral (or the line in case λ ∈ R) that extends towards z = ∞.
Thus, we found a ray that connects the fixed point z = α to z = ∞, which is contained
within A∗

Tp,δ
(α). This proves that the immediate basin of attraction for the damped Traub’s

method is unbounded when δ is close enough to zero. Figure 8 depicts a sketch of the proof.

5.2 Free Critical Points of Tp,δ applied to Cubic Polynomials

In order to study the damped Traub’s method applied to cubic polynomials, we will consider
the family

pa(z) = z(z − 1)(z − a), a ∈ C.

Studying the family pa will provide valuable insights into the behaviour of Traub’s method
when applied to cubic polynomials (see Figure 9 for a visual illustration of Tpa,1 for different
values of a). In this section, our objective is to establish control over the free critical points
of the method. As seen in previous chapters, having good control of those is necessary
to understand the behavior of the dynamical plane. Consequently, gaining control over
the critical points of the damped Traub’s method when applied to cubic polynomials will
provide valuable insights toward achieving our objective.

In Proposition 9, we provided a detailed classification of the critical points for Traub’s
method. Note that for d = 3, in addition to the free critical point originated from Newton’s
method (δ = 0), i.e., the zero of p′′a, which is z = (a+ 1)/3, there are either three new free
critical points for δ = 1, or six new free critical points for δ ∈ (0, 1).
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Figure 9: Dynamical planes of Traub’s method for two polynomials are depicted. On the left, we observe
the Traub’s map associated with the cubic polynomial p2(z) = z(z − 1)(z − 2). On the right, we observe
the Traub’s map associated with the cubic polynomial p1+i(z) = z(z − 1)(z − (1 + i)).

Let us begin by presenting the formulas for our method applied to pa. Observe that:

Npa(z) = z − pa(z)

p′a(z)
= z − z3 − (1 + a)z2 + az

3z2 − 2(1 + a)z + a
=

z2(2z − 1− a)

3z2 − 2(1 + a)z + a
,

pa(Npa(z)) =
(z − 1)2z2(z − a)2(2z − 1)(−a+ 2z − 1)(2z − a)

(3z2 − 2(1 + a)z + a)3
.

Therefore, the expression for damped Traub’s method applied to pa is given by:

Tpa,δ(z) = Npa(z)− δ
pa(Npa(z))

p′a(z)
=

=
z2(−a+ 2z − 1)[(3z2 + 2(−1− a)z + a)3 + δ(z − 1)2(2z − 1)(a− 2z)(z − a)2)]

(3z2 + 2(−1− a)z + a)4
.

When δ is sufficiently small, we can treat the method as a singular perturbation and
accurately describe the positions of the six new free critical points. At the end, controlling
these points is equivalent to managing the solutions of a specific perturbed equation,
T ′
p,δ(z) = 0. In [15], such arguments are used to study the connectivity of Fatou components

for maps within a family of singular perturbations. We use some concepts from the paper
to provide a precise description of the free critical points.

Theorem 18. Let pa(z) = z(z − 1)(z − a) with 0 ̸= a ̸= 1, i.e., pa has simple roots. Let δ
be sufficiently close to 0, and let ξ = e

2πi
3 . Among the six new critical points, three of them

are situated near one pole of Tpa,δ, while the remaining three are near the other pole. More
precisely, by considering z± the poles of Tpa,δ, the new six free critical points z+

δ,ξj
, z−

δ,ξj
are

given by,

z+
δ,ξj

= z+ + ξj
[Qa(z+)]

1
3

z+ − z−
δ

1
3 +O

(
δ

1
3

)
,

z−
δ,ξj

= z− + ξj
[Qa(z−)]

1
3

z− − z+
δ

1
3 +O

(
δ

1
3

)
.
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where j ∈ {0, 1, 2} and

Qa(z) := 3z4(−a+ 2z − 1)2 − 2(a+ 1)z2(−a+ 2z − 1)p′a(z)

+ a[p′a(z)]
2 − pa(z)(2z − 1)(2z − a)(−a+ 2z − 1).

(5.1)

Proof. Let us begin by deriving the equation that needs to be solved to find the new free
critical point. In proposition 9 we saw that

T ′
pa,δ(z) =

p′′a(z)

[p′a(z)]
2

[
pa(z)− δ

p′a(Npa(z))pa(z)

p′a(z)
+ δpa(Npa(z))

]
.

Setting the second part equal to zero gives us the zeros of pa as critical points, as well as
the six new free critical points. Indeed,

0 = pa(z)− δ
p′a(Npa(z))pa(z)

p′a(z)
+ δpa(Npa(z)) ⇐⇒

p′a(z)pa(z) = δ
[
p′a(Npa(z))pa(z)− pa(Npa(z))p

′
a(z))

]
.

Some computations shows that

p′a(z)pa(z) = δ

[(
3z4(2z − 1− a)2

[p′a(z)]
2

− 2(a+ 1)z2(2z − 1− a)

p′a(z)
+ a

)
pa(z)

− [pa(z)]
2(2z − 1)(2z − 1− a)(2z − a)

[p′a(z)]
2

]
.

After removing the zeros of pa as critical points, we are left with the degree six equation
for the new free critical points:

[p′a(z)]
3 = δQa(z), (5.2)

where Qa is the polynomial defined in (5.1). Observe that p′a(z) = (z − z+)(z − z−) where
z± = 1

3

(
a+ 1±

√
a2 − a+ 1

)
and z± coincides with the unique two poles of Tpa . Hence,

equation (5.2) becomes

(z − z+)
3(z − z−)

3 = δ Qa(z).

In order to avoid problems with the determinations of the 3 roots, within the proof we
assume that δ is of the form δ = re2πiθ where r > 0 and θ ∈ [0, 1) is fixed. In particular,
when we write δ → 0 we are taking a radial limit by making r → 0. Consider U a sufficiently
small neighborhood of z+. Since z− ̸∈ U , for δ close enough to 0, there are three solutions
of the equation bifurcating from z = z+. They are fixed points of the operators

Λδ,ξj (z) = z+ + ξj
[Qa(z)]

1
3

z − z−
δ

1
3 = z+ +Ra,j(z) δ

1
3 .

Note that Λδ,ξj are well-defined in U , since Qa(z+) ̸= 0. Indeed,

Qa(z+) =
4

729

(
1 + a+

√
1− a+ a2

)(
−1− a+ 2

√
1− a+ a2

)
×
[
4a4 − 3a2

√
1− a+ a2 + 4

(
1 +

√
1− a+ a2

)
−a
(
5 + 3

√
1− a+ a2

)
+ a3

(
−5 + 4

√
1− a+ a2

)]
,
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so, Qa(z+) = 0 ⇐⇒ a = 1, which contradicts the fact that 0 ̸= a ̸= 1. Hence Qa(z+) ̸= 0.
Therefore, Rj is holomorphic and since z− ̸∈ U , it is bounded in U . Additionally, we have
that Λδ,ξj (z) → z+ as δ → 0.

We can approximate the solutions z+
δ,ξj

by Λδ,ξj (z+). Indeed,

|z+
δ,ξj

− Λδ,ξj (z+)| = |Λδ,ξj (z
+
δ,ξj

)− Λδ,ξj (z+)|

≤ sup
w∈[z+

δ,ξj
,z+]

|Λ′
δ,ξj (w)||z

+
δ,ξj

− z+| = |δ|
1
3 sup
w∈[z+

δ,ξj
,z+]

|R′
a,j(w)||z+δ,ξj − z+|.

Observe that for δ close enough to 0, there are no poles of R′
a,j in U . Indeed,

R′
a,j(z) =

1
3 [Qa(z)]

− 2
3 Q′

a(z)(z − z−)− [Qa(z)]
1
3

(z − z−)2
.

Since z− ̸∈ U and Qa(z) ̸= 0 in U , R′
a,j has no poles in U , so it is bounded by a constant,

say K. It follows that ∣∣∣∣∣∣∣
z+
δ,ξj

− z+ − ξj [Qa(z+)]
1
3

z+−z−
δ

1
3

δ
1
3

∣∣∣∣∣∣∣ < K|z+
δ,ξj

− z+|.

Finally, since limδ→0K|z+
δ,ξj

− z+| = 0, we obtain that

z+
δ,ξj

= z+ + ξj
[Qa(z+)]

1
3

z+ − z−
δ

1
3 +O

(
δ

1
3

)
.

Using a similar argument, it can be shown that

z−
δ,ξj

= z− + ξj
[Qa(z−)]

1
3

z− − z+
δ

1
3 +O

(
δ

1
3

)
.

However, it is necessary to ensure the well-definition of the operators by verifying that
Qa(z−) ̸= 0. Indeed,

Qa(z+) =− 4

729
(−1− a+

√
1− a+ a2)(1 + a+ 2

√
1− a+ a2)

×
[
−4a4 − 3a2

√
1− a+ a2 + a(5− 3

√
1− a+ a2)

+4(−1 +
√

1− a+ a2) + a3(5 + 4
√

1− a+ a2)
]
,

so, Qa(z−) = 0 ⇐⇒ a = 0, which contradicts the fact that 0 ̸= a ̸= 1.

The preceding theorem enables us to achieve precise control over the free critical points
for the method when δ is sufficiently close to 0. Furthermore, we can also provide precise
control over the fixed points of the method that are not roots. The following theorem
provides this description.

Theorem 19. Let pa(z) = z(z − 1)(z − a) with 0 ̸= a ̸= 1, i.e., pa has simple roots. Let
δ be sufficiently close to 0, and let ξ = e

2πi
3 . There are six fixed points of Tpa apart from

the roots of pa and z = ∞, with three of them situated near one pole of Tpa,δ, while the
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Figure 10: A closer look at Figure 11(f) reveals a critical point enclosed within the blue region, indicating
that is in the basin of attraction of z = 2, whereas previously it belonged to the basin of attraction of z = 1
(green region).

remaining three are near the other pole. More precisely, by considering z± the poles of Tpa,δ,
the six fixed points z+

δ,ξj
, z−

δ,ξj
are given by,

z+
δ,ξj

= z+ + ξj
[Ra(z+)]

1
3

z+ − z−
δ

1
3 +O

(
δ

1
3

)
,

z−
δ,ξj

= z− + ξj
[Ra(z−)]

1
3

z− − z+
δ

1
3 +O

(
δ

1
3

)
.

where j ∈ {0, 1, 2} and Ra(z) = z(z − 1)(z − a)(a− 2z)(2z − 1)(−a+ 2z − 1).

Proof. We will start by proving that Tpa,δ has six fixed points apart from the roots of pa
and z = ∞. Some computations reveal that the equation Tpa,δ(z) = z is equivalent to:

pa(z)[p
′
a(z)]

3 = −δ [pa(z)]
2 (2z − a− 1)(2z − a)(2z − 1).

After removing the roots of pa, we are left with the six-degree equation to solve:

[p′a(z)]
3 = (z − z−)

3(z − z+)
3 = δRa(z).

Finally, the rest of the proof follows a similar line of reasoning as that already seen in
Theorem 18. It is important to recall that to apply this reasoning, the key point is ensuring
that the operators Λδ,ξj are well-defined. For this purpose, we need to verify that Ra(z±) ̸= 0.
Indeed, Ra(z+) = 0 ⇐⇒ a = 1 and Ra(z−) = 0 ⇐⇒ a = 0, which contradicts the fact
that 0 ̸= a ̸= 1.

These results provide us with a precise description of the positions of the six new free
critical points and also for the new fixed points, i.e., the fixed points that are not roots for
δ close enough to 0. While we are uncertain about how these points will be distributed as
δ → 1, we can still calculate them numerically to gain some insights. Figure 11 illustrates
the evolution of these points as δ → 1 for a = 2. In Figure 11(a),(b) and (c), observe how
the points are distributed in accordance with the third roots of δ, as described in Theorems
18 and 19. Moreover, Figure 11(f), reveals a critical point enclosed within the blue region,
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indicating that is in the basin of attraction of z = 2, whereas previously it belonged to
the basin of attraction of z = 1 (green region), see Figure 11(e). Take a look at Figure
10 to see, in detail, that for δ = 0.99, the critical point belongs to the basin of attraction
of z = 2 (blue region) instead of belonging to the basin of attraction of z = 1 (green
region). This means that for some value of δ ∈ (0.7, 0.99), the critical point is part of the
Julia set. Consequently, using the damped Traub’s method might not help in proving the
unboundedness and simple connectivity of the immediate basins of attractions for Traub’s
method (δ = 1). This is because such continuity arguments (δ → 1) as the ones saw when
proving Theorem A will not apply. Instead, when using Traub’s method (δ = 1), it should
be treated as a single root-finding algorithm rather than considering the entire family of
methods.
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(a) δ = 0.01 (b) δ = 0.1

(c) δ = 0.3 (d) δ = 0.5

(e) δ = 0.7 (f) δ = 0.99

Figure 11: Dynamical plane of damped Traub’s method applied to p2(z) = z(z − 1)(z − 2), for different
values of δ. White crosses corresponds to the new fixed points while black crosses corresponds to the free
critical points.



Chapter 6

Traub’s method applied to z(zd − 1)

In this Chapter we aim to examine Traub’s method applied to the family pd(z) = z(zd − 1).
We will prove that the immediate basins of attraction for this method are unbounded for
specific values of d, and we will present evidences suggesting that this result extends to
all values of d. This family is particularly interesting because, for Halley’s root-finding
algorithm, it was found that for d = 5, the immediate basin of attraction of z = 0 is
bounded (Jordi Canela, personal communication), see Figure 12 for a visual inspection of
this fact. Therefore, proving that this is not the case for Traub’s method would support
the conjecture that the immediate basins of attraction of Traub’s method are unbounded.

While Halley’s root-finding algorithm is beyond the scope of this research, we will present its
iterative scheme to provide the reader with an understanding of the method. The Halley’s
iterative expression is given by:

xn+1 = xn − 2f(xn)f
′(xn)

2[f ′(xn)]2 − f(xn)f ′′(xn)
, n ≥ 0.

6.1 On the Basins of Attraction of Tpd,1 where pd(z) = z(zd − 1)

Let us start by presenting the formulas for the Traub’s method applied to pd. Observe that:

Npd(z) = z − pd(z)

p′d(z)
=

dzd+1

(d+ 1)zd − 1
,

pd(Npd(z)) =
[dzd+1]d+1 − dzd+1[(d+ 1)zd − 1]d

[(d+ 1)zd − 1]d+1
.

Therefore, the expression for Traub’s method applied to pd is given by:

Tpd,1(z) = Npd(z)−
pd(Npd(z))

p′d(z)
=

d(d+ 1)z2d+1[(d+ 1)zd − 1]d − [dzd+1]d+1

[(d+ 1)zd − 1]d+2
. (6.1)

Observe that the polynomial pd is closely related to the family of polynomials studied in
Chapter 4, specifically pd,β(z) = zd − β. The research conducted in [7] proved the unbound-
edness and simple connectivity of the immediate basins of attraction for these polynomials.
Notably, the zeros of both polynomials are quite similar, including the dth-roots of unity
and a new additional root at z = 0. The goal is to prove the unboundedness nature of the
basins of attraction for this family.
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Figure 12: On the left, we illustrate the dynamical plane of Traub’s method applied to the polynomial
p5(z) = z(z5−1). Notice that, apparently, the immediate basins of attractions of the method are unbounded
sets. On the right, we present the dynamical plane of Halley’s method applied to p5. Observe that the
immediate basin of attraction of z = 0 (purple region) is, apparently, a bounded set.

As observed in Chapter 4 with the polynomials pd,β , the method Tpd,1 also exhibits symme-
try with respect to a rotation by a dth-root of unity. We can summarize this observation in
the following lemma:

Lemma 9. Let ϕ(z) = ξz with ξd = 1. Then, for every z ∈ Ĉ

Tpd,1 = (ϕ ◦ Tpd,1 ◦ ϕ
−1)(z).

Proof. Since ξd+1 = ξ, a straightforward computation using the formula of Tpd,1 given in
(6.1) reveals that

Tpd,1(ϕ(z)) =
d(d+ 1)ξz2d+1[(d+ 1)zd − 1]d − [dξzd+1]d+1

[(d+ 1)zd − 1]d+2

= ξ
d(d+ 1)z2d+1[(d+ 1)zd − 1]d − [dzd+1]d+1

[(d+ 1)zd − 1]d+2
= ϕ(Tpd,1(z)).

Before discussing the unboundedness of the basins of attraction, we will introduce another
lemma that will be useful for this purpose. By leveraging the symmetry of the method, we
can prove the following:

Lemma 10. The lines z = re
kπi
d , r > 0 and k = 0, 1, . . . , 2d − 1, are forward invariant

under Tpd,1.

Proof. Since ekπi = (−1)k, a straightforward compution using the formula of Tpd,1 given in
(6.1) reveals that

Tpd,1(re
kπi
d ) =

d(d+ 1)r2d+1e
kπi
d [(d+ 1)rd(−1)k − 1]d − dd+1r(d+1)2(−1)kde

kπi
d

[(d+ 1)rd(−1)k − 1]d+2
=

= e
kπi
d

[
d(d+ 1)r2d+1[(d+ 1)rd(−1)k − 1]d − dd+1r(d+1)2(−1)kd

[(d+ 1)rd(−1)k − 1]d+2

]
.
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Now, let us prove that for d ∈ {3, 4, 5}, the immediate basins of attraction of Tpd,1 are
unbounded sets. We will present evidences suggesting that the result extends to all values
of d after the prove.

Theorem 20. Let pd(z) = z(zd − 1) with d ∈ {3, 4, 5}. Suppose pd(α) = 0 and consider
Tpd,1. Then, A∗

Tpd,1
(α) is an unbounded set.

Proof. First, observe that if p(α) = 0, then α is either a dth-root of unity or α = 0. Let us
first consider the case where α is a dth-root of unity. According to Lemma 9, the immediate
basins of attraction for the roots of pd are symmetric with respect to a rotations by a
dth-root of unity. Therefore, it suffices to prove the unboundedness for x = 1; the result
will then follow for all other dth roots of unity.

Observe that if x ∈ R, then Tpd,1(x) ∈ R, so the real line is forward invariant under
Tpd,1. Moreover, since x = 1 is a simple root of pd, according to Proposition 7(b), x = 1 is
a superattracting fixed point under Tpd,1. If we can prove that for every x > 1, we have
1 < Tpd,1(x) < x, we can conclude that [1,∞) ∈ A∗

Tpd,1
(1).

The inequality Tpd,1(x) < x is equivalent to

pd(x) + pd(Np(x))

p′d(x)
> 0.

Since pd(x) = x(xd − 1) and p′d(x) = (d+ 1)xd − 1, we have that for every x > 1, pd(x) > 0
and p′d(x) > 0. Now, observe that if we can show that Npd(x) > 1 when x > 1, we are done,
since in that case, we will have pd(Npd(x)) > 0, and the inequality holds. Notice that

Npd(x) =
dxd+1

(d+ 1)xd − 1
> 1 ⇐⇒ xd(dx− (d+ 1)) > −1.

Since dx− (d+ 1) > −1 for every x > 1 and d > 2, the inequality holds.
Let us now prove the inequality 1 < Tp,1(x). First, observe that different techniques must
be employed than those used to prove Theorem A(b). In this case, Descartes’s Rule of
Signs cannot be used because, when writing Tpd,1 as a polynomial, we notice many changes
of signs, which increase as d increases. We employ the following argument. The inequality
1 < Tpd,1(x) can be written as Qd(x) > 0, where Qd is defined as

Qd(x) := d(d+ 1)x2d+1[(d+ 1)xd − 1]d − [dxd+1]d+1 − [(d+ 1)xd − 1]d+2. (6.2)

To establish our result, it is sufficient to show that all the derivatives Q
(ℓ)
d (x) evaluated at

x = 1 are either positive or zero (with at least one positive derivative). In that case, given
that Qd(1) = 0, this would imply that:

Qd(x) =

(d+1)2∑
ℓ=1

1

ℓ!
Q

(ℓ)
d (1)(x− 1)ℓ > 0.

To easily compute the derivatives of Qd, we rewrite the expression given in (6.2) using the
Binomial expansion:

Qd(x) = d(d+ 1)

d∑
k=0

(−1)k
(
d

k

)
(d+ 1)d−kx(d+1)2−dk − dd+1x(d+1)2

−
d+2∑
k=0

(−1)k
(
d+ 2

k

)
(d+ 1)d+2−kxd

2+2d−dk.
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Now, to arrange the polynomials in ascending order of degree, we apply the change of
variables j = d− k in the sums. This allows us to take derivatives using recursion formulas:

Qd(x) = d(d+ 1)
d∑

j=0

(−1)d−j

(
d

d− j

)
(d+ 1)jxdj+2d+1 − dd+1x(d+1)2

−
d∑

j=−2

(−1)d−j

(
d+ 2

d− j

)
(d+ 1)j+2xdj+2d.

Therefore,

Q
(ℓ)
d (x) = d(d+ 1)

d∑
j=0

(−1)d−j

(
d

d− j

)
(d+ 1)j(dj + 2d+ 1)!

(dj + 2d+ 1− ℓ)!
x2d+2d+1−ℓ

− dd+1 (d+ 1)2!

((d+ 1)2 − ℓ)!
x(d+1)2−ℓ

−
d∑

j=−1

(−1)d−j

(
d+ 2

d− j

)
(d+ 1)j+2(dj + 2d)!

(dj + 2d− ℓ)!
xdj+2d−ℓ.

Evaluating at x = 1, we obtain a formula to compute Q
(ℓ)
d (1) for every value of d:

Q
(ℓ)
d (1) = d(d+ 1)

d∑
j=0

(−1)d−j

(
d

d− j

)
(d+ 1)j(dj + 2d+ 1)!

(dj + 2d+ 1− ℓ)!

− dd+1 (d+ 1)2!

((d+ 1)2 − ℓ)!

−
d∑

j=−1

(−1)d−j

(
d+ 2

d− j

)
(d+ 1)j+2(dj + 2d)!

(dj + 2d− ℓ)!
.

(6.3)

You can find the (d+ 1)2 values of Q(ℓ)
d (1) for d = 3, 4, 5 in Appendix B. Notice that in

each case, the first two derivatives are zero, while the remaining ones are greater than 0.
As a result, A∗

Tpd,1
(1) is unbounded, and due to the previously mentioned symmetry, the

immediate basin of attraction for every dth-root of unity is also unbounded.

Now assume that α = 0. By Lemma 10, the lines z = re
kπi
d , r > 0 and k = 0, 1, . . . , 2d− 1,

are forward invariant under Tpd,1. Consider only the lines that do not cross the dth roots
of unity, i.e., z = re

(2k+1)πi
d , r > 0 and k = 0, 1, . . . , d− 1. In that case, we have that

Tpd,1

(
re

(2k+1)πi
d

)
= e

(2k+1)πi
d

[
d(d+ 1)r2d+1(−1)d[(d+ 1)rd + 1]d − dd+1r(d+1)2(−1)d

(−1)d+2[(d+ 1)rd + 1]d+2

]
=

= e
(2k+1)πi

d

[
d(d+ 1)r2d+1[(d+ 1)rd + 1]d − dd+1r(d+1)2

[(d+ 1)rd + 1]d+2

]
:= e

(2k+1)πi
d Rd(r).

Then, if we can prove that for every r > 0, we have 0 < Rd(r) < r, we can conclude that
A∗

Tpd,1
(0) is an unbounded set for every d. In that case, we can also state that A∗

Tpd,1
(0)

has at least d accesses to infinity.



6.1. ON THE BASINS OF ATTRACTION OF Tpd,1 WHERE pd(z) = z(zd − 1) 53

Since the denominator of Rd is always positive for every r > 0, the inequality 0 < Rd(r) is
equivalent to

d(d+ 1)r2d+1[(d+ 1)rd + 1]d − dd+1r(d+1)2 > 0. (6.4)

Expanding the last expression using the Binomial expansion, we obtain that inequality
(6.4) becomes

d(d+ 1)
d∑

j=0

(
d

d− j

)
(d+ 1)jrdj+2d+1 − dd+1r(d+1)2 > 0.

Finally, arranging terms,

d(d+ 1)
d−1∑
j=0

(
d

d− j

)
(d+ 1)jrdj+2d+1 + d[(d+ 1)d+1 − dd]r(d+1)2 > 0.

Notice that, since (d+1)d+1 − dd > 0 for every positive integer d, we obtain that inequality
holds for every r > 0.
The inequality Rd(r) < r can be written as Sd(r) < 0, where Sd is defined as

Sd(r) := d(d+ 1)r2d+1[(d+ 1)rd + 1]d − dd+1r(d+1)2 − r[(d+ 1)rd + 1]d+2.

Using the Binomial expansion, we can rewrite the last expression:

Sd(r) = d(d+ 1)

d−1∑
j=0

(
d

d− j

)
(d+ 1)jrdj+2d+1 + d[(d+ 1)d+1 − dd]r(d+1)2−

−
d∑

j=−2

(
d+ 2

d− j

)
(d+ 1)j+2rdj+2d+1.

Now, arranging terms,

Sd(r) = [d((d+ 1)d+1 − dd)− (d+ 1)d+2]r(d+1)2 −
0∑

j=−2

(
d+ 2

d− j

)
(d+ 1)j+2rdj+2d+1+

+
d−1∑
j=0

[
d(d+ 1)

(
d

d− j

)
(d+ 1)j −

(
d+ 2

d− j

)
(d+ 1)j+2

]
rdj+2d+1.

Observe that d((d+ 1)d+1 − dd)− (d+ 1)d+2 = −(d+ 1)d+1 − dd+1 < 0 and

d(d+ 1)

(
d

d− j

)
(d+ 1)j −

(
d+ 2

d− j

)
(d+ 1)j+2 = (d+ 1)j+1

[
d!d− (d+ 2)!(d+ 1)

(d− j)!j!

]
< 0.

Hence, all the coefficients of the polynomial Sd are negative. Therefore, we can conclude
that for r > 0, Sd(r) < r, which completes the proof.

Note that the proof does not heavily depend on the fact that d ∈ {3, 4, 5}. Indeed, we have
been able to prove that A∗

Tpd,1
(0) is an unbounded set for every value of d. The restriction

to specific values of d is required only for the immediate basins of attraction of the dth
roots of unity. Proving that the values of Q(ℓ)

d (1) are positive using the formula given in
(6.3) appears to be complex, and we have not been able to establish it rigorously. However,
by fixing a positive integer d and calculating the values of Q(ℓ)

d (1), we observed values on
the order of 1040 for d = 5. This observation suggests that the result may hold for any
positive integer d.





Chapter 7

Conclusions

In 2022, under the guidance of Xavier Jarque i Ribera, I began my exploration into holomor-
phic dynamics for my bachelor’s thesis. Our research focused on the dynamics of Newton’s
method when applied to polynomials. We investigated the techniques used to prove the
simple connectivity and unboundedness of the immediate basins of attraction, which are
crucial for identifying a universal set of initial conditions that ensure convergence to all
roots of a polynomial. This master’s thesis continues that research by exploring the family
of damped Traub’s methods, Tp,δ, when applied to polynomials. This family includes both
Newton’s (δ = 0) and Traub’s method (δ = 1).

The initial goal of the project, though ambitious, was to prove the simple connectiv-
ity and unboundedness of the family for every δ, focusing on Traub’s method (δ = 1), for
every polynomial. This project was inspired by a research published in 2023 by my advisor
and his colleagues [7], in which they established the former topological properties for certain
polynomial families and conducted extensive numerical explorations, which support the
conjecture. Motivated by their findings, we embarked on the journey to prove the main
result. In the first iteration, we concentrated on studying the result for a generic cubic
polynomial. We made progress in controlling the free critical points of the method and the
fixed points that are not roots when δ is close to zero, see Theorems 18 and 19. Addition-
ally, we identified that the continuity arguments (δ → 1) used in [7] will not apply in our case.

We continue examining the scenario where δ is close to zero. In this context, the damped
Traub’s method becomes closely related to Newton’s method. Thus, managing δ values
that are closer to zero can simplify the analysis compared to dealing with δ values that
are significantly different from zero. In this case, we have successfully proven the simple
connectivity and unboundedness of the immediate basins of attraction for every polynomial,
see Theorem 17. For this purpose, we leverage the fact that the immediate basins of
attraction in Newton’s method possess these topological properties.

Our contribution concludes with the study of the family Tpd,1, where pd(z) = z(zd−1). This
family is particularly interesting because, in the context of Halley’s root-finding algorithm,
it has been found that for d = 5, the immediate basin of attraction of z = 0 is bounded
(Jordi Canela, personal communication). See Figure 12 for a visual representation of this
finding. Therefore, demonstrating that this is not the case for Traub’s method would
support the conjecture that the immediate basins of attraction for Tp,δ are unbounded.
We have successfully proven this result for d ∈ {3, 4, 5}, see Theorem 20. In fact, we have
proven a more general result: the immediate basin of attraction of zero is unbounded for
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Traub’s method regardless of the value of d, which is the basin of primary interest.

However, the assumption on d is necessary when considering the basins of attraction
of the roots of unity. The proof depends on showing that a certain sum, which depends on
d, is always positive. Despite these values being on the order of 1040 we were surprisingly
unable to prove this in full generality. Nevertheless, from a philosophical point of view, we
have established the result for every d. By fixing a value of d, we can compute the sum and
observe that it is indeed positive.

In summary, although we have not been able to prove the simple connectivity and unbound-
edness of the method Tp,δ for every polynomial, we have made some progress towards this
goal, including some results that supports the fact. Our findings indicate that analyzing the
topological properties of this method is not a straightforward work and that a comprehensive
proof will require different approaches from those used in [7].

Finally, I would like to use this paragrap as not only the closing of this thesis, but
perhaps the closing of my brief mathematical career. When I began my mathematics degree
in 2018, I did not fully understand what mathematics truly entailed. We were taught
that mathematics involves computing things, like derivatives, integrals, and differential
equations, but I soon realized that this is only the tip of the iceberg. Mathematics is about
understanding, reasoning, and connecting concepts and ideas that defines how the world
works, sometimes complicated and abstract, and sometimes computable and tangible. In
the final stages of my bachelor’s degree, I delved into the field of holomorphic dynamics
under the guidance of Xavier Jarque i Ribera, completing my thesis on the dynamics of
Newton’s method. Initially, I was captivated by the fractal images produced by simple
mathematical principles. As I explored further, I realized the deep mathematical concepts
underlying these images and their numerous connections to yet-to-be-discovered (for me)
ideas. This experience underscored the beauty of mathematics—how a new discovery can
unveil a web of relationships and connections, much like solving a vast, intricate puzzle with
over a thousand pieces, often with similar colors that make it challenging to distinguish
each part. However, once the puzzle is complete, everything falls into place and makes sense.
With this master’s thesis I place the final piece in my mathematical puzzle, concluding my
learning on this topic, with, at my point of view, a good understanding of the field, but with
much to learn and discover yet. In any case, I am really glad to contribute with four new
minor results to the mathematical community. While these results, nor my mathematical
career, may not change the world, they have definitely influenced the way I think and view
life.



Appendix A

Source code

All the images presented in the master’s thesis were created using Python. The scripts can be
accessed on a GitHub repository at the following link: https://github.com/davidrosado4/damped-
traub.
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Appendix B

Derivatives values

In this Appendix, we present the values of the derivatives of Qd defined in Theorem 20 for
d = 3, 4, 5 evaluated at x = 1. These values are computed using the formula provided in
the theorem’s proof. Recall that Qd has degree (d+ 1)2.

ℓ Q
(ℓ)
3 (1) ℓ Q

(ℓ)
3 (1)

1 0 9 945 200 793 600

2 0 10 8 514 296 985 600

3 11 664 11 62 808 605 798 400

4 622 080 12 372 764 793 139 200

5 18 545 760 13 1 722 543 401 779 200

6 394 009 920 14 5 847 919 773 696 000

7 6 498 636 480 15 13 034 898 100 224 000

8 86 496 802 560 16 14 373 956 653 056 000

Table B.1: Values of the derivatives for Q3 evaluated at x = 1.
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ℓ Q
(ℓ)
4 (1) ℓ Q

(ℓ)
4 (1)

1 0 13 125 143 704 719 953 920 000

2 0 14 1 749 961 432 670 330 880 000

3 307 200 15 22 009 281 284 205 895 680 000

4 27 340 800 16 247 743 451 355 284 684 800 000

5 1 423 872 000 17 2 477 650 225 424 313 139 200 000

6 55 522 713 600 18 21 791 843 893 519 309 209 600 000

7 1 772 686 540 800 19 166 234 063 305 649 206 067 200 000

8 48 402 308 505 600 20 1 078 985 666 423 078 417 203 200 000

9 1 158 068 059 545 600 21 5 800 681 646 784 071 663 616 000 000

10 24 632 292 077 568 000 22 24 820 521 271 003 466 072 064 000 000

11 469 786 375 618 560 000 23 79 308 816 951 551 331 336 192 000 000

12 8 071 340 586 946 560 000 24 168 312 140 180 184 528 912 384 000 000

25 178 006 646 457 266 395 152 384 000 000

Table B.2: Values of the derivatives for Q4 evaluated at x = 1.

ℓ Q
(ℓ)
5 (1) ℓ Q

(ℓ)
5 (1) ℓ Q

(ℓ)
5 (1)

1 0 13 5.51× 1023 25 1.23× 1039

2 0 14 1.51× 1025 26 1.43× 1040

3 8.44× 106 15 3.86× 1026 27 1.51× 1041

4 1.12× 109 16 9.27× 1027 28 1.43× 1042

5 8.88× 1010 17 2.09× 1029 29 1.20× 1043

6 5.40× 1012 18 4.44× 1030 30 8.83× 1043

7 2.75× 1014 19 8.82× 1031 31 5.54× 1044

8 1.23× 1016 20 1.64× 1033 32 2.89× 1045

9 4.91× 1017 21 2.85× 1034 33 1.20× 1046

10 1.79× 1019 22 4.62× 1035 34 3.76× 1046

11 6.04× 1020 23 6.94× 1036 35 7.81× 1046

12 1.89× 1022 24 9.64× 1037 36 8.10× 1046

Table B.3: Values of the derivatives for Q5 evaluated at x = 1.
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