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Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona





INDEX

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CHAPTER

1 Global introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Medical imaging in the management of cancer . . . . . . . . . . . . 2
1.1.2 Current clinical imaging markers and limitations . . . . . . . . . . . 7

1.2 Development of new imaging markers . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Clinical outcomes and validation process . . . . . . . . . . . . . . . 11
1.2.2 Hand-crafted features and radiomics . . . . . . . . . . . . . . . . . 13
1.2.3 Learned representations and artificial intelligence . . . . . . . . . . 14
1.2.4 Machine learning methods and survival analyses . . . . . . . . . . . 16
1.2.5 Measurements of performance . . . . . . . . . . . . . . . . . . . . . 20

1.3 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1 Brief introduction to MRI . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.2 Anatomical images . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.3 Dixon technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.4 Perfusion MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.5 Diffusion sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.6 Multi-parametric MRI and the special role of

neuroradiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Hypothesis and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Supervisor Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Study 1 - Precise enhancement quantification in post-operative MRI as an
indicator of residual tumor impact is associated with survival in patients
with glioblastoma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Study 2 - An accessible deep learning tool for voxel-wise classification of
brain malignancies from perfusion MRI . . . . . . . . . . . . . . . . . . . . 49

ii



4.3 Study 3 - Whole-body Magnetic Resonance Imaging as a Treatment Re-
sponse Biomarker in Castration-resistant Prostate Cancer with Bone Metas-
tases: The iPROMET Clinical Trial . . . . . . . . . . . . . . . . . . . . . . 62

5 Global discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Bridging the gap between research
and clinical practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.1 The need for collaborative research . . . . . . . . . . . . . . . . . . 69
5.1.2 Implementation and cost-effectiveness . . . . . . . . . . . . . . . . . 70

5.2 Inherent limitations of reference valuesground truth . . . . . . . . . . . . . 71
5.3 Prospects of artificial intelligence in medicine . . . . . . . . . . . . . . . . . 72

5.3.1 Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.2 Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.3 Multi-modal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.4 Bias and privacy concerns . . . . . . . . . . . . . . . . . . . . . . . 74

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

iii



LIST OF FIGURES

FIGURE

1 Current role of imaging in cancer management . . . . . . . . . . . . . . . . . . 3
2 Potential imaging applications to improve prostate cancer management . . . . . 6
3 Visual and manual biomarkers for cancer evaluation . . . . . . . . . . . . . . . 8
4 Biomarker development roadmap and challenges . . . . . . . . . . . . . . . . . 10
5 Radiomics features and machine learning marker discovery . . . . . . . . . . . . 13
6 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7 Potenital applications of machine and deep learning in cancer . . . . . . . . . . 17
8 Magnetization components during relaxation processes in MRI . . . . . . . . . . 24
9 Perfusion DSC MRI signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10 Diffusion MRI signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iv



LIST OF ABBREVIATIONS

ADC Apparent Diffusion Coefficient

AI Artifical Intelligence

AUC Area Under the Curve

CI Confidence Interval

C-Index Concordance Index

CNN Convolutional Neural Networks

CR Complete Response

CT Computed Tomography

ctDNA circulating tumour DNA

DCE Dynamic Contrast Enhanced

DNA Deoxyribonucleic Acid

DSC Dynamic Susceptibility Contrast

DTI Diffusion Tensor Imaging

DWI Diffusion-Weighted Imaging

FF Fat Fraction

FN False Negative

FP False Positive

FPR False Positive Rate

GBM Glioblastoma Multiforme

HR Hazard Ratio

IBSI Image Biomarker Standardization Ini-
tiative

IP In Phase

IQR Inter-Quartile Range

IVIM Intra-Voxel Incoherent Motion

KM Kaplan-Meier

mCRPC metastatic Castration-Resistant
Prostate Cancer

mHNPC metastatic Hormone-Näıve
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Global introduction

CHAPTER 1

Global introduction

1.1 Motivation

Generally speaking, cancer can be described as a malignant growth stemming from malfunc-

tioning or damaged cells, that prevents the cell from repairing itself while also preventing the

normally-occurring cell death and promoting cell division, which leads to an uncontrolled

growth of rogue cells that can eventually spread and invade other healthy organs, a process

called metastasis. Among the causes of cancer, ageing, environmental agents and certain

personal habits, like sedentarism, are known to increase cancer risk, but the root cause of

the disease is usually unknown, which poses difficulties in preventing and treating it [1].

The characteristics of each tumour depend on the primary organ where the cells come

from, the disrupted genes and further mutations it may develop, its microenvironment, the

stage and aggressiveness, the resistance to previous treatments received and many other fac-

tors, which depicts the complexity of this disease [2]. The last decades have been a revolution

in the understanding of cell biology and genetic alterations, which has led to better cancer

diagnosis and therapies, overall increasing the survival rates. New therapeutic approaches

guided by such biological mechanisms, such as targeted therapies and immunotherapy [3],

have emerged towards personalized medicine, the ideal paradigm in which the specific con-

dition of each patient is known and would be treated accordingly with specific treatments.

But the advent of new treatments implies facing new challenges as well.

For example, the guidelines for the evaluation of cancer treatment from radiological im-

ages were updated to a newer version to include the assessment under immunotherapy [4].

Since then, atypical patterns of response have been identified following such guidelines on

medical images, such as pseudoprogression and hyperprogression [5–7]. That warrants the

further investigation and revision of evaluation methods on radiology for newer treatments,
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Global introduction

in which the doctorand has participated. Unfortunately, many novel therapeutic strategies

appear to be beneficial to only part of the patients [8, 9], with newer paths for cancer to

acquire resistance.

This has prompted a race to understand cancer evolution under certain treatments, so

that resistance mechanisms can be overcome. In fact, cancer is still one of the leading causes

of death worldwide, with increasing incidence rates amounting to roughly 20 million new

cases in 2022 and an estimate of 35 million new cases for the year 2050 [10]. That highlights

the importance of devising and improving tools for cancer research, especially in the identi-

fication of responding patients to specific treatments, that translate to better healthcare.

The so-called “omics” approaches, that is, the analysis of large arrays of variables, have

brought the study of biology to new levels, with genomics, transcriptomics, proteomics and

metabolomics to process the genome, RNA sequences, proteins and biochemistry profiles,

respectively. In cancer, the combination of those into a multi-omic study is hoped to help

characterizing and classifying tumours better, and reveal new biological cell pathways to

create new drugs or improve current ones [2]. In recent years, advances in image processing

techniques applied to radiological images were proposed as a new “omics”, radiomics, to

take into account multiple metrics derived from images. The further development of those

methods into deep learning and artificial intelligence have been postulated as tools that can

revolutionize medical imaging, specifically enhancing our ability to understand, detect early,

and treat cancer.

1.1.1 Medical imaging in the management of cancer

Medical imaging techniques are able to provide anatomical and functional information of the

human body without invasive interventions, which support medical decisions in a rapid and

convenient way. As such, medical images play a key role in various medical procedures, from

routine inspections, diagnosis of traumatic injuries and guidance of surgical or therapeutical

procedures to the detection and monitoring of diseases. In the management of cancer disease,

medical images are involved in all steps of the process, namely: screening of the otherwise

healthy population for early detection of cancer; diagnosis and estimating the extent of the

disease after cancer has been detected; therapeutical procedures, in which imaging usually

plays a support role; and monitoring during therapy with regular follow-up checks [11], as

pictured in Figure 1.
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Figure 1: Summary of imaging modalities and applications within the different tasks in the man-
agement of cancer. US: ultrasound. MRI: magnetic resonance imaging. CT: computed tomography.
Figure adapted from [12].

Imaging techniques

Markers based on medical imaging have the potential to capture unique information, such as

the spatial distribution, metabolic or functional activity of cancer inside the body at different

times along treatment. Depending on the mechanism of image generation, different types

of imaging or modalities can be identified, including computed tomography (CT), nuclear

imaging modalities and magnetic resonance imaging (MRI).

CT is an ionizing modality that relies on the attenuation of X-rays traversing through the

body to obtain an image, giving contrast between the tissues by their capacity to absorb the

rays. Multiple acquisitions at different angles will then be reconstructed into a 3-dimensional

volume. The main advantages of CT are its relatively low cost to operate and maintain, its

fast speed, its flexible field-of-view and its high spatial resolution. The values in a CT scan

are standardised to Houndsfield units, which allows to quantify and compare between scans,

an important aspect from an analytical point of view. Among the negative points of CT

scans are exposing the patients to ionizing radiation and the limited tissue contrast, espe-

cially within soft tissues or specific conditions. CT is defined as a standard-of-care imaging

protocol in many clinical situations, including screening and follow-up of patients during

cancer treatment, particularly when dealing with metastatic disease, as CT allows to image

the whole body in a fast way.

Nuclear imaging is a whole medical discipline on its own, based on capturing the ra-

dioactivity of a tracer with affinity for a certain tissue or body function. It encompasses two
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important modalities for cancer imaging: positron emission tomography (PET) and single

photon emission computed tomography (SPECT), with PET being preferred for its higher

spatial resolution. The basic working principle is through the use of a tracer injected in the

bloodstream, composed of a radionuclide attached to a specific ligand molecule that will bind

target body tissues, usually tumoral cells expressing a given protein or demanding a high

supply of glucose. During a window of time, the decay of the radionuclide can be detected

through emitted photons (SPECT) or particles (PET). Standardised measurements can be

estimated as uptake of the metabolite molecule or activity measured at the region of interest,

relative to the tissue and patient characteristics. The sensitivity and specificity of nuclear

imaging greatly vary on the tracer and the affinity towards the desired target, which in many

cases depends on the histological type of cancer.

Nuclear magnetic resonance refers to the capacity of certain atomic nuclei to absorb en-

ergy of a specific frequency when in a strong magnetic field, and contrast between tissues

can be captured from the subsequent relaxation processes. In this thesis, special focus will

be given to MRI techniques, which will be further elaborated in following sections.

Although the imaging technique of choice would depend on the type of cancer, images

typically acquired for the evaluation of cancer are anatomical CT or MRI, every two or three

months for assessing treatment response [11], with nuclear medicine being more common

in routine clinical use. Each modality provides different and complementary information

and data from multiple scanners or multiple contrasts would ideally be acquired; however

acquiring multi-modal image data needs to be cost-effective and practical to be implemented

in standard clinical healthcare. Therefore, prior experience in clinical studies is warranted

to build guidelines and ultimately regulations and protocols to perform the most informative

scans in each scenario.

Screening

Routine screening of the population, especially of those individuals susceptible of higher risk

of cancer like those with Li-Fraumeni syndrome [13] or BRCA gene mutations [14], the elderly

or regular smokers [15], is critical for the early detection of the disease. An early detection

facilitates the therapy and the surgical removal of tumours, effectively increasing the survival

rate [11]. The screening procedure depends on the cancer type, but may take into account

multiple sources of information: imaging evidence, specific marker levels in blood tests and

biopsy results. An example of a screening imaging technique for the detection of breast cancer
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is mammography, which is widely implemented in many countries, significantly reducing the

mortality [16]. However, a number of cancers are still mainly detected in an advanced state,

such as pancreatic or ovarian cancer, and other times, the screening procedure is a long

process involving biopsies and histopathology assays, like for prostate or colorectal cancer

[17]. Because of that, cost-effective imaging techniques can make a difference in preventing

cancer deaths, as well as future potential markers in the blood, such as circulating tumour

DNA, cells or metabolites.

Diagnosis

When cancer is suspected from symptomatology or imaging evidence, a formal diagnosis

should be carried out. The type of cancer and its degree of malignancy must be assessed

to determine the severity of the disease and the next steps. For that, medical imaging

is essential in locating the disease within the body and they are often the first source of

information, since image acquisition and evaluation is relatively fast. Images can provide

enough information for an initial diagnosis [18, 19], and also guide biopsies, to confirm it

via histological analysis of the tissue sample. Because biopsies are invasive procedures, with

associated risks and longer evaluation times, a large research effort is focused on obtaining

accurate and reliable diagnostic markers from medical images imaging [20]. There are a

number of potential benefits from imaging at this stage, such as reducing the number of

unnecessary surgeries and providing complementary diagnostic and prognostic information,

as seen in Figure 2.

Staging, grading and prognosis

Following diagnosis, the treatment for a certain type of cancer may depend upon how devel-

oped and how spread is the disease within the body. Staging and grading refer to established

procedures that categorize the disease in a scale from benign or less aggressive to a high-

risk malignancy, based on imaging, histopathological, molecular and genetic evidences [11,

21]. All of the information known about the type of cancer and the patient’s condition is

combined for a prognostic assessment. That provides the expected likelihood of survival or

disease relapse and will determine the treatment options and whether careful monitoring is

necessary.

Restaging and evaluation of the prognosis may be repeated when different therapies or pro-

cedures take place, such as surgical removal of cancer tissue and the response to specific

treatments. For those reasons, finding prognostic factors is a primordial research focus to

allow not only assessing the risks of diseases and choosing the best therapy option, but also
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Figure 2: Current procedures when detecting and diagnosing prostate cancer. Limitations are
highlighted with a warning sign. Potential improvements from imaging are marked with a plus
sign. Figure reproduced from [17].

establishing reference values of mortality. That itself enables identifying high-risk subpop-

ulations and validating therapeutic methods and drugs. To those ends, multiple sources of

data are necessary to evaluate the full extent of the disease and medical images provide the

ideal means of analysing cancer inside the body that can inform the prognosis.

Monitoring of treatment response

Once a patient starts receiving treatment, the evolution of the patient’s condition must be

carefully and frequently monitored to determine if it is responding, that is, if the therapy is

still effective. Follow-up checks with acquisition of medical images are a standard practice

for patients with advanced cancer or receiving some therapy prior to the main treatment

(i.e., neoadjuvant treatment), as opposed to the total resection of cancer, for which other

markers must be used.

The variables used for assessing response include any symptoms associated with the dis-

ease, blood test analyses, possible drug secondary effects, and mainly biomarkers of response

specific to the cancer type. A biomarker of response can be defined as a quantifiable param-

eter related to the underlying biophysiological properties and conditions of a disease that

is able to capture and indicate changes induced by a successful treatment [22]. Therefore,

established response biomarkers are usually the primary guidance to patient monitoring dur-

ing treatment, and essential in testing the effectiveness of new drugs under development.
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The Response Evaluation Criteria In Solid Tumours (RECIST) version 1.1 [4], based on

medical imaging, is the standard method for evaluating treatment response in clinical trials

and patient care follow-up. It establishes four categories of response based on measuring the

change in diameter of certain lesions during treatment, and its limitations will be presented

in the following section.

1.1.2 Current clinical imaging markers and limitations

In the clinical setting, medical images are visually inspected and assessed by radiologists,

receiving specialized training during years of career experience. In the context of cancer, es-

tablished imaging biomarkers are based on visual assessments [23] and manual annotations

are the reference method to evaluate the effectiveness of cancer treatments. The specific

markers from images and the steps and rules to apply them are collected and integrated into

different guidelines defined for specific cancer types or subtypes, based on prior evidence.

Some prominent guidelines for response assessment are the RECIST criteria [4]; the Re-

sponse Assessment in Neuro-Oncology (RANO) cancer in the central nervous system [21];

and the Positron Emission Tomography Response Criteria in Solid Tumours (PERCIST)

for evaluating PET images [24]. Other derived guidelines provide additional measurements

for limiting cases, such as the METastasis Reporting and Data System for Prostate Cancer

(MET-RADS-P), for evaluating advanced prostate cancer [25].

A common property of those guidelines is that they all rely on the manual delineation or

measurement of the tumour size in order to evaluate the response based on changes in size

during treatment. For example, the RECIST criteria establishes a defined number of target

lesions measured at the start of treatment and at every follow-up. For soft tissue lesions,

the diameter along the longest axis is measured in the axial plane, of up to two per organ

and up to five in total. There are some exceptions to these rules, as for instance regarding

lymph nodes, and some lesions are considered non-measurable, like lesions smaller than 10

mm and osteoblastic bone lesions as evaluated on CT scans [24, 25]. The change in number

of lesions and in size of measurable target lesions will determine the response of the patient

in four categories, from complete response to progressive disease, as indicated in Figure 3.

Treatment response assessment after surgical removal of cancer is only performed by

imaging if there is remaining tumour. Such is the case of lesions in the brain, for which only
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Figure 3: Examples of manual and visual assessments of radiological images for monitoring re-
sponse to treatment, estimating prognosis and diagnosing cancer disease. The blue human shape
was used under license from Servier.

partial resection may be achieved in order to preserve important brain regions, necessary for

life and normal functioning. In that case, the percentage of tumour resection and measures

or patterns such as the thickness of residual tumour [26–29] are useful prognostic factors to

guide further medical decisions (Figure 3). However, they are based on a subjective visual

evaluation of images and therefore subject to higher variability and lower interpretability

and reproducibility. To that end, some studies also suggested quantifying the volume of

remaining disease [30].
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Visual inspection of medical imaging can facilitate non-invasive cancer diagnosis, sup-

porting medical decisions. Initial diagnosis based on radiological images can guide surgical

procedures and accelerate the access to therapy [18]. However, the visual interpretation of

medical images can be challenging in some cases, when malignancies have a similar appear-

ance [31], as seen in Figure 3. Those situations may require the consensus of a board of

expert radiologists and, ultimately, undergoing surgery to obtain a tissue sample and deter-

mine the nature of the cancer in question.

In effect, there are a number of limitations inherent to current manual and visual ap-

proaches. The lesions selected for monitoring may be different depending on which physician

evaluates the patient, which introduces a source of variability. In addition, the diameter and

selected lesions alone may not be completely representative of the disease and some lesions

cannot be currently evaluated by RECIST, such as osteoblastic bone tumours. Estimat-

ing the percent of tumour resected after surgery and finding patterns on medical images

to diagnose cancer depend on the visual interpretation of radiologists, therefore suffering

from variability and a degree of subjectivity. Those aspects hinder the generalization and

validation of techniques for cancer management across studies, making it difficult to find

reproducible, consistent and robust methods that can become globally useful metrics and

markers of response, ultimately leaping from research to real clinical applications and ad-

vancing patient healthcare.

Medical images have the potential to characterize cancer, or at the very least, provide

complementary information to support medical decisions, in an objective way. The compu-

tational analysis of medical images allows for quantitative measures of the whole tumour

volume, including its intensity, texture and morphology. Machine learning algorithms and

statistical models have been previously shown to relate imaging features with the underly-

ing tumour biology [32] for a better characterization of cancer. Furthermore, mathematical

models based on neural networks have recently experienced a surging development in im-

age processing tasks, opening new opportunities for computational tools in medical scenarios.

Given the need for a better characterization of cancer from medical imaging, in this work

we defined three objectives to explore potential markers derived from MRI for three main

applications in the management of cancer patients, the estimation of prognosis, the diagnosis

of cancer and the monitoring of treatment effectiveness.
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1.2 Development of new imaging markers

To find novel markers of clinical value, a measurement, metric or feature must be proposed

based on previously established biomarkers or formulating a hypothesis on the working prin-

ciple of the proposed feature [23]. Next, a study should be designed to prove the hypothesis

or the improvement compared to other markers. In the study design, a population of refer-

ence should be carefully chosen so that no biases would later affect the results, along with an

estimated number of data samples, in this case patients’ data, that enables enough statistical

power.

Data must then be gathered, organized, cleaned and pre-processed, taking note of the

criteria for inclusion and exclusion of patients in the study. When the data is ready, the

desired feature is extracted or computed, depending on the initial formulation, and then

analysed. The analysis can include observing the proposed feature value distribution and

variability, looking for possible unaccounted biases or trends.

Figure 4: Process and challenges in developing imaging biomarkers, where they must go through
a validation process (gap 1) and a feasibility process (gap 2) to finally reach clinical use. Figure
reproduced from [33].
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Finally, it must be demonstrated that the new feature performs the task for which it was

conceived. For that, it can be compared to existing markers and it can also be statistically

associated with clinical variables, depending on the hypothesized application of the feature.

For that, the existence of a ground truth or, alternatively, a gold standard is of high relevance

to compare against a reference. Eventually, for a biomarker to reach clinical use, it must be

technically, clinically and practically feasible, as shown in Figure 4.

1.2.1 Clinical outcomes and validation process

In the process of validating new features as biomarkers, clinical outcomes can be used in

several ways, acting as reference metrics or as the output of regression models. For instance,

in a clinical application, we may be interested in relating measured features like size and

intensity of a cancer lesion of a patient with the well-being of the patient or the effectiveness

of a given treatment. Survival times are well-established and generalized clinical endpoints

used to validate the effectiveness of new drugs within clinical trials, and therefore are key

for the discovery of biomarkers. Some of them include:

• Overall survival (OS): for each patient, it is defined as the time elapsed from the start

of a specific treatment to the time of death or, alternatively, to the last recorded date

known for the patient (in that case, the data is considered “censored”). The OS is

an absolute measure of a patient’s well-being, meaning that it is not specific to one

treatment, given that one patient may receive multiple treatments that influence the

OS, and it does not make assumptions about the cause of death of a patient, which

may or may not be directly caused by the disease. However that may seem inaccurate,

it is also absolute and unambiguous to implement, which is why OS is considered the

main endpoint to evaluate and approve new drugs presented to the major regulatory

agencies. However, collecting the OS usually takes a relatively long time and hence

not always possible to use.

• Progression-free survival (PFS): it is defined as the time from the start of a specific

treatment to the moment when clinical disease progression is detected, or death. If

none of the events happens, then the last date is used as censored data. Compared to

OS, the disease progression can be more difficult to assess and there is some degree of

inter-observer variability. The PFS is a very common endpoint variable in comparing

therapies and evaluating markers with predictive value of response (before receiving

treatment). Because it captures the moment when the disease relapses or worsens

within a line of therapy, it relates closer to the effectiveness of that specific drug or
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procedures than OS. But because it also takes into account deaths, it is ultimately a

proxy for OS, in case the latter is unavailable.

• Time to progression (TTP): it is defined as the time elapsed from the start of a specific

treatment to the moment when clinical disease progression is detected, with deaths

accounting as censored data. It is regarded as similar to PFS, but this endpoint

assumes the disease progression as the only factor to determine treatment effectiveness,

as deaths might not be necessarily caused by the disease under study. Because time

to death is considered the most reliable reference in cancer, PFS as a proxy for OS

is usually preferred to TTP, though arguably, TTP may be less affected by events

unrelated to the disease, especially in smaller cohorts.

Regarding the radiological assessment of medical images, the RECIST v1.1 criteria is the

reference guideline to study changes in the size of specific target lesions to determine the

response to the treatment in cancer patients. Four categories are used to stratify patients

according to the degree of response, which can be used as a clinical outcome variable:

• Complete response (CR) when all lesions completely heal and disappear.

• Partial response (PR) with at least a 30% decrease in sum of the longest diameter of

the lesions from start of treatment (baseline) and no new lesions appear.

• Progressive disease (PD) is defined as an increase of at least 20% in the total sum of

the longest diameters compared to the lowest measurement (nadir), with an absolute

increase of at least 5 mm or the development of new lesions.

• Stable disease (SD) if changes do not meet the criteria of other categories.

Following those guidelines, a binary stratification can be made such as responding patients

(CR and PR) and non-responding patients (SD and PD).

Additionally, the histological analysis of a tumour sample from biopsies is often consid-

ered the gold standard technique in the diagnostic process, which determines the specific

classification of the cancer with high accuracy. The type of pathology identified, such as

tumour type, grade or molecular characteristics, can be used as a label for classification

models. Similarly, measures of the healthy and tumour regions, such as cellularity and the

presence of certain biological structures, such as blood vessels from biopsy samples, can be

used to further explain and validate the results obtained from medical images.
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1.2.2 Hand-crafted features and radiomics

Image processing and computer vision problems involve tasks such as detection of specific

objects, segmentation of structures and quantification of certain characteristics of objects

from an image (features), allowing to automate the tasks or make them as convenient as

possible in a vast range of applications involving images, e.g., satellite imagery, manufac-

turing quality inspection, self-driving cars and microscopy image analysis. So-called expert

systems that support medical procedures have already been implemented in the radiology

field, such as computer-aided diagnosis, surgery and radiation therapy tools.

Traditionally, solutions to specific tasks could be solved by means of hand-crafted fea-

tures. Those can be regarded as manually designed filters that capture a specific pattern in

an image or as an ad-hoc combination of image operations to detect or measure a specific

object in images. Some common processing methods include image morphological opera-

tions, connected component analysis, convolutions with filters and transformations. Those

methods provide derived maps and segmentations, but also extract intensity and spatial

information, namely intensity distribution, texture and shape features.

Hand-crafted features are easy to interpret because their formulation follows a logic to

capture a given trend or pattern in an image. However, that also means that they may be

limited when trying to describe more complex structures. Additionally, the extraction of

features usually depends on some manual parameters that should be set in accordance to

the characteristics of the input images, such as resolution and noise, and therefore careful

data inspection and pre-processing may be needed.

Figure 5: Representation of a radiomics pipeline, with the extraction of intensity and texture
features from the region of interest and the final modelling or machine learning for diagnosis or
associations with patient survival.

Traditionally, interpreting medical images involves describing a pathology’s appearance,
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shape, and size. Radiomics takes this concept a step further [34]. It involves extracting

and analysing a large number of these features from radiological images, similar to other

fields that deal with extensive and personalised data, such as gene analysis in genomics. Ra-

diomics variables typically include first-order statistics of the image intensity distribution,

second-order or texture features, shape features such as sphericity and additional features

from filters like wavelets. Those features are typically used in conjunction with machine

learning to establish relationships with clinical outcomes, existing biomarkers or other tu-

mour features from histological samples of molecular characterization [35]. An example of

that is shown in Figure 5.

Studies including radiomics features have been mainly carried out on CT scans, as this

is the most commonly performed imaging technique in cancer patients both for diagno-

sis and follow-up. Initially, there were controversial results regarding their robustness [36].

Nevertheless, several efforts have been pursued to improve reproducibility, such as the Im-

age Biomarker Standardization Initiative (IBSI) [37] guidelines and some studies dedicated

to the application of methods to minimise the variability of radiomics features were per-

formed to improve their reproducibility [38–41]. In the study by Ligero et al. [42], where

the doctorand participated, the robustness of the features was improved by means of im-

age pre-processing and batch effect correction methods, a significant contribution to the field.

Radiomics features have been shown to correlate with the underlying tumour biology

[32, 40, 41, 43] and, in recent studies, they have been associated with clinical outcomes of

patients [44, 45], highlighting the potential of radiomics to capture information from medical

images for clinical purposes.

1.2.3 Learned representations and artificial intelligence

In recent years, there has been a rapid development of models that have achieved impressive

performance on high-level tasks, such as language comprehension and image segmentation,

which readily prompted the label “artificial intelligence”. Artificial intelligence or AI can

be broadly defined as the ability of an automated system to perform a task at the level of

a human, with machine learning regarded as a subfield of AI. A common aspect of recent

successful AI models is that they are based on neural networks, referring to a type of math-

ematical model that resembles brain neuron connections. Neural networks used in AI are

often referred to as deep learning models due to their complex, layered architecture. These

are characterised by multiple nodes, hosting functions, and weighted connections between
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them through chained layers of nodes (Figure 6).

Although the conception of the perceptron and neural networks dates from circa 1960

[46], only recently those models started showing human-like performance on tasks like image

recognition, for which the availability of large datasets and ever more powerful computer

resources and the development of training optimization strategies may have been key. As of

today, neural networks are witnessing a revolution in their development and application.

Figure 6: Graphic example of a neural network showing the interconnected nodes from the input
to the output. In the hidden layers, deep CNNs can learn complex object shapes. Figure adapted
from [47].

Neural networks are fitted end-to-end iteratively usually via the gradient direction that

minimizes the error or loss function. Even though deep learning is used to perform a re-

gression or classification just like machine learning methods, there are some key differences:

firstly, neural networks can self-configure to obtain relevant features from the input, instead

of using hand-crafted features; secondly, non-linear functions can be introduced in the nodes,

such as the step or arc-tangent functions; and thirdly, neural networks can learn complex

representations of the input.
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The concept of deep learning may refer to the type of features found: in the first layers,

low-level features are detected, such as edges, texture or simple shapes, while in deeper lay-

ers the model can combine previous features into more detailed and specific shapes, or even

recognizable objects [47], as depicted in Figure 6.

One particularly successful type of deep learning architecture for image analysis is the

Convolutional Neural Network (CNN). CNNs include convolution layers in their architec-

ture, which can be regarded as self-configuring convolution filters, and have demonstrated

high performance for varying image processing tasks, like detection, segmentation, image

synthesis and style transfer, but also applied to medical problems successfully [48, 49]. On

generative text-to-image tasks, diffusion models have shown greater performance than CNN-

based models. Similarly, a recent type of network unit called transformer has surpassed

older architectures for natural language processing. Although transformers were originally

thought for text inputs, vision transformers have been implemented by splitting an image

into a sequence of patches. This has resulted in promising tools for the automated analysis

of digitalized histological data [50–52]. However, for pure image tasks such as segmentation,

convolutional layers still play a major role [53].

Possibly one of the most severe setbacks of deep learning architectures is interpreting what

the model is inferring from the input and explaining the learned representation. That has

prompted researchers to look for methods that enable a better understanding of the relation

between the inputs and outputs of deep models, a topic coined as “explainability” [54]. The

usual way to evaluate the models focus on how important the parts of the input are with

respect to the output, called attribution. However, complete and interpretable explanations

of what the model captures are still largely missing and remains a topic of active research

[55]. This is a current necessity to build the confidence of researchers, physicians and patients

for the potential implementation of AI in medical scenarios.

1.2.4 Machine learning methods and survival analyses

Machine learning can be broadly seen as a set of methods and algorithms that enable feature

extraction, transformation, reduction and selection, and modelling of the features for regres-

sion or classification tasks. A common way to categorize machine learning methods is into

supervised and unsupervised approaches. Unsupervised methods refer to those algorithms

that adjust to the input data, without specific labels assigned, so that patterns can be cap-
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Figure 7: Schematic of the potential applications of machine learning and artificial intelligence in
medical imaging for all phases of cancer management. Figure reproduced from [56].

tured for, e.g., clustering, dimension reduction and visualization. In contrast, if the data

used as input has a known associated label or outcome that we would like to predict, that

is referred to as supervised learning. These include regression and classification methods,

which will be used in this work to find associations of potential biomarkers with clinical

variables, as seen in Figure 7. Specific methods will be further discussed in the next section.

A simple example would be to fit a model such as a linear regression, in which the output

is defined as a linear combination of each input multiplied by an unknown weight, and

the fitting of the weights or training is achieved following a function such as the difference

between the estimated output and the actual true value (the error, loss or cost function,

depending on the exact definition). In this process, a subset of data is commonly used for

training, and another subset is withheld for testing the performance of the fitted model on

unseen data. Some common models will be introduced next.

Logistic regression

The logistic regression is one of the called generalized linear models that performs a linear

combination of input features to relate them to an output variable in binary form or a

categorical 2-class variable, which would be unsuitable to fit using a linear regression. The

logistic regression employs the logarithm of the odds (log-odds), based on the probability for

the binary output variable. In Equation 1, p is the probability for the output variable, given
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the linear combination of coefficients β and n input variables x, and solving for p reveals a

logistic or sigmoid function.

ln(
p

1− p
) = β0 + β1x1 + · · ·+ βnxn (1)

Random Forests

They are a combination of decision trees. In a decision tree, an input passes through a series

of nodes (leaves of a tree) where a binary decision is made (branching) towards predicting an

output, with the optimal condition and threshold for decisions determined during training.

Random forests combine multiple trees with random subpopulations and parameters to make

the final result from an ensemble, making it more robust than single trees. They also provide

a measure of importance for input features, which is helpful as feature selection. Although

not as simple as a single decision tree, random forests can be still be interpreted or visualized.

Support Vector Machines

Support vector machines (SVM) consider each sample as a vector of N input features in

an N-dimensional space, mapping them using a defined kernel, and finding the decision

boundary or hyperplane with the maximum margin between the classes given for supervised

classification. That is done using the closest vectors to the boundary for each class (called

support vectors). This algorithm is therefore useful when the problem requires finding the

largest distance between classes and, since the data can be mapped in different ways by

defining the kernel, it can handle non-linear relationships.

Kaplan-Meier survival

The Kaplan-Meier (KM) method estimates the probability of survival as a function of time

within a population, allowing to compare the survival with respect to an event (progression

or death) among different populations. The survival probability Ŝ at a given time t is given

as the product of the chance of surviving at time t with the chances at any previous times

ti < t (Equation 2).

Ŝ =
∏
i:ti≤t

(1− di
ni

) (2)

Where di is the number of events and ni the number of surviving individuals at time ti. A

well-known feature of the Kaplan-Meier analysis is that the probability can be plotted against
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time, effectively obtaining survival curves representing the time elapsed for specific events

within a population or populations, useful to visually compare the difference in survivals,

usually coupled with the log-rank statistical test.

Hazard funtion and hazard ratio

In contrast to the survival function, the hazard function or rate estimates the risk of a

progression or death at time t, i.e. it gives the number of expected events. The survival

function and the hazard function are related to each other, and the hazard can be obtained

by taking the negative logarithm of the survival function. The hazard function formulation

is given in Equation 3 with the same notation used for survival in Equation 2.

Ĥ =
∑
i:ti≤t

(
di
ni

) (3)

The hazard ratio (HR) is a common parameter used as measure of the biomarkers to

capture prognosis, and it is defined as the hazard rate of the population under study relative

to the rate of a population of reference or control, making it independent of time. E.g., for

an HR of 2, that population has twice the risk than the reference, and for an HR of 0.5, half

the risk (an HR equal or close to 1 would mean no difference).

Cox regression

Also known as the Cox proportional hazards model, it defines a hazard function h(t) as a

function of input features xi, with coefficients βi, with respect to a baseline hazard h0, which

corresponds to the model with nulled features (Equation 4).

h(t) = h0(t)e
β1x1+···+βnxn (4)

From the Cox model, the coefficients are usually reported as eβi , which effectively provides

the estimated HRs for each of the input features, allowing to directly associate each feature

with a relative risk of progression or death. If βi = 0, then eβi = HRi = 1 and the feature

xi would not contribute as a hazard to the model. It must be noted that the eβi in the Cox

model depends on the units of xi, therefore attention should be given to the units and the

confidence intervals when interpreting the HRs.
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1.2.5 Measurements of performance

In the development of new methods, determining their performance is at the core of the

process, as it will be the basis for its potential implementation. In the case of markers

of prognosis, the performance can be regarding its ability, at the baseline of treatment, to

identify patients that will experience lower and higher survival rates or, in other words,

the survival risks associated with the numerical value of the marker. To measure response

to therapy, survival data can also be used as outcome, but this time measuring after the

treatment has started to see if the changes or values are associated with different survival

rates. In case of diagnostic purposes, the marker should be able to accurately differentiate

among pathologies, according to the ground truth, usually given by histological analysis from

biopsies.

Common data distribution, correlation and statistical tests

The distribution of variables can be explored as a preliminary analysis and to further consider

data assumptions and transformations. However, trends and differences among populations

discovered by simple stratification of patients can already be relevant for medical applica-

tions. When considering the means between two groups, a common statistical test using

the t-distribution is the Student’s t-test, with the null hypothesis being that the two sam-

ples have identical means. It assumes normally distributed data and equal variances, so an

alternative is the Welch’s t-test for unequal variances or small populations where a normal

distribution cannot be assumed.

When establishing associations between two continuous variables, correlation analyses

are helpful in providing the strength of the association and further proof for cause-effect

relationships, in specific cases. They test the null hypothesis that there is no relationship

between the two variables. Pearson’s correlation tests the linear relationship between two

variables and assumes normal data and equal variance, whereas Spearman and Kendall

correlations use ranks or ordered data to establish a relationship, handling non-normal data.

Classification metrics

When predicting a binary classification, there are four possible cases: a true positive (TP),

when the predicted value and the truth are positive; a true negative (TN), when the pre-

dicted value and the truth are negative; a false positive (FP), when the predicted value is

positive and the truth is negative; and a false negative (FN), when the predicted value is

negative and the truth is positive. These values can be conveniently summarized in what is
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called the confusion matrix or table. From those, some derived metrics provide useful in-

formation regarding classification problems. The precision or positive predictive value gives

the predicted TP relative to the all predicted as positive:

precision =
TP

TP + FP
(5)

The sensitivity or true positive rate (TPR) gives the fraction of the predicted TP relative

to all the actual positives:

sensitivity = TPR =
TP

TP + FN
(6)

The specificity, on the other hand, provides the fraction of predicted TN with respect to

all actual negatives. It is related to the false positive rate (FPR) as FPR=1-specificity.

specificity =
TN

TN + FP
(7)

These metrics can be reported together or combined, given that a trade-off is usually

reached between sensitivity and specificity for imperfect classifiers. The accuracy calculates

the ratio between all correctly predicted samples over the total samples, giving a general

performance overview:

accuracy =
TP + TN

TP + TN + FP + FN
(8)

Classification models are typically trained to perform in a balanced way in the trade-off

between specificity and sensitivity, and for that the Youden’s index is an example of the

threshold value used for classification that would give the maximum sum of specificity and

sensitivity. However, in specific scenarios, one of those may be more relevant to maximize

because of real-life consequences; for instance, in the detection of cancer, we may prefer a

high sensitivity over specificity, even if the number of false positives is high, so as not to

leave any cancer patient undetected.

Area under the ROC curve and concordance index

The Receiver Operating Characteristic (ROC) curve is a visual interpretation of the perfor-

mance of a binary classifier, with the TPR on the y-axis against the FPR on the x-axis. For

each possible value of a feature or variable that can be used for classification, the TPR and

FPR are drawn in the graph in a monotonically increasing curve. A perfect classifier would

show a 100% TPR and 0% FPR, with the maximum area under the ROC curve value of 1

(area relative to the area of the perfect square under the curve). For imperfect classifiers, the
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ROC curve shows the trade-off between TPR and FPR (or alternatively, between specificity

and sensitivity) for every possible value to apply the binary classification and the area under

the ROC curve (ROC-AUC) would remain below 1, with the reference AUC of 0.5 for a

random binary classifier.

The concordance index or C-Index can be seen as a generalization of the AUC-ROC for

survival models with censored data, and measures the ability of the model to correctly rank

the patients in the correct order of survival, given the risk scores [57].

1.3 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) stands out from other imaging techniques in that it uses

non-ionizing radiation, innocuous for patients, and it offers a wide range and flexibility for

imaging contrasts that makes it possible to image virtually any body part, especially soft

tissue, given high water and fat content. Those different contrast images can be manu-

ally configured in the form of “pulse sequences”. To better understand its potential and

limitations, a brief introduction will be given next.

1.3.1 Brief introduction to MRI

Descriptions of nuclear magnetic resonance can be found in the literature regarding the

quantum mechanics point of view, helpful in understanding the properties of a single nucleus,

as well as classical mechanics descriptions, convenient considering a region of nuclei with

similar characteristics. In this synthesis, only an overview will be given as a gentle approach

to the topic. Magnetic resonance refers generally to a physical phenomenon, which can be

used for spectroscopy and imaging, the latter referred to as MRI. Magnetic resonance can

be observed in nuclei with spin (non-zero spin, such as H1 protons), a property analogous

to the angular momentum and that gives the nuclei a magnetic moment [58]. Magnetic

resonance is usually tuned for protons because of their high natural abundance, especially in

water molecules in the human body; therefore, protons will be considered as the magnetic

resonance target from here on.

In a magnetic resonance experiment, first the spins are exposed to an external magnetic

field B0 which causes them to align with it, creating a net magnetization M0 in the same

direction, given a slightly higher number of spins in a low energy state (oriented in paral-

lel) than high energy state (antiparallel) in equilibrium; the number in excess depending

on magnetic field strength, number of spins ρ and temperature T , following a Boltzmann

distribution (Equation 9). The spins precess about the external magnetic field axis with
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a characteristic frequency ω0 associated to the energy difference between the two states,

called resonance or Larmor frequency, and that is specific of the nuclei and dependent on

the external magnetic field strength (Equation 10, where γ is the gyromagnetic ratio).

M0 ∝
ργ2B0

T
(9)

ω0 = γB0 (10)

An oscillating magnetic field in the form of an electromagnetic pulse applied for a given

time provides energy and perturbs the spins from the equilibrium (excitation). For this

to happen, the pulse and the protons must be in resonance, that is, at the same Larmor

frequency. Because it is in the radio range for protons, the pulse is also called radiofrequency

or RF pulse. In Equation 11, the rate of change in magnetization M can be described as the

cross product with the perceived magnetic field B, given by both the external field and the

RF pulse.

dM

dt
= M× γB (11)

Assuming the external magnetic field follows the z direction, the observed net magnetiza-

tion will spiral down to a given angle, typically set at 90º to the transversal plane, on which

the transversal component of the magnetization, Mxy can be measured. The magnetization

cannot be directly measured in the longitudinal direction because of the presence of the

external magnetic field. In Equation 12, the Mxy component is treated as a complex signal

for convenience, as the spins rotate in the xy plane.

Mxy(t) = M0e
−iω0t (12)

When the pulse stops, the magnetization returns to the equilibrium state undergoing

relaxation, during which a coil can be used to detect the induced current from the transversal

component of the magnetization. Relaxation can be described according to two independent

processes at different rates.

The longitudinal (T1 or spin-lattice) relaxation, describing the recovery of the longitudi-

nal component Mz of the net magnetization to its equilibrium value, due to spins returning

to a lower energy state. This is associated with an exchange of energy between the spins and

surrounding media or material, hence the name spin-lattice, which depends on the nature of

the sample. The rate at which the signal is recovered can be described by the time constant

T1 (Equation 13).
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Mz(t) = Mz(0) +M0(1− e
− t

T1 ) (13)

The transversal (T2 or spin-spin) relaxation describes the decay of the transversal mag-

netization component Mxy, called spin-spin because of local interactions with magnetic fields

of surrounding spins. The magnitude of the transversal component is given by the sum of

many individual spin magnetizations precessing in phase. Given the thermal random walk

of molecules, a spin will experience local variations in the magnetic field, eventually leading

to dephasing. The magnetization of spins oriented in opposite directions will cancel out and

the transversal signal is eventually lost.

The rate at which the decay in magnetization occurs is given by the time constant T2

(Equation 14). The (faster) transversal relaxation with additional spin dephasing caused by

magnetic inhomogeneities is referred to as T2-star (T2*).

Mxy(t) = Mxy(0)e
− t

T2 (14)

Figure 8: In this figure, the behaviour of the magnetization components is depicted during the
relaxation processes, after the magnetization is tipped to the transversal plane during excitation,
assuming an external magnetic field in the z direction. In (a), the recovery of the longitudinal
magnetization Mz towards the equilibrium value M0, due to spin-lattice interactions. The rate is
characterised by the time constant T1. In (b), the loss of transversal magnetization, due to spin-
spin interactions. The rate is characterised by the time constant T2. Figure adapted from [58].

Longitudinal and transverse relaxation processes are described by time constants T1 and

T2, respectively, which define the time it takes to recover and lose, respectively, a portion
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of magnetization and that depend on each compound or body tissue sampled (Figure 8).

Therefore, by choosing the time we let the longitudinal magnetization recover (repetition

time or TR) and at which time to induce the magnetic resonance signal that will be mea-

sured in the transverse plane (echo time or TE), we can obtain images showing higher or

lower signal difference based on the different T1 and T2 relaxation times of different tissues

(giving so-called T1-weighted [T1w] and T2-weighted [T2w] images, while proton density

aims to measure maximal signal from the number of spins in each region).

So far, it has been described where the measured signal comes from, but not how it

becomes an actual image. In the receiving coil, an oscillating current is generated propor-

tional to the number of spins, by the oscillating magnetic field caused by precession during

relaxation from all the excited sample together. By applying a gradient field over the back-

ground magnetic field that changes the precession frequency with spatial location along the

magnetic field axis, we can effectively select a plane that will be excited at a time.

Similarly, spatial gradients that slightly change the frequency and phase of precession on

the other axes within the plane can be used. In Equation 15, the received signal Sreceive is

described as a sum of the transveral magnetization component mxy for every position x,y in

a plane, which depends on the phase ϕ, which varies with time t.

Sreceive(t) =

∫∫
x,y

mxy(x, y)e
−ϕ(x,y,t)dxdy (15)

ϕ =

∫ t

0

∆ω(x, y, τ)dτ (16)

ω(x, y, t) = γ(B0 +Gx(t)x+Gy(t)y) (17)

The frequency can be seen as the time rate of change of phase, or conversely, phase

as the integral of frequency (Equation 16). By applying gradients that vary the magnetic

field with spatial position, for instance Gx = ∂Bx

∂x
in the x direction, we induce a change in

frequency related to each x position, and similarly in the y direction (Equation 17); if we

let the gradient over time, we keep changing the phase (Equation 18), thereby encoding the

signal with varying frequencies ans phases that correspond to spatial locations.

ϕ = γ

∫ t

0

[B0 +Gx(τ)x+Gy(τ)y] dτ = ω0t+ γ

[∫ t

0

Gx(τ)dτ

]
x+ γ

[∫ t

0

Gy(τ)dτ

]
y (18)
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If we let kx = γ
2π

∫ t

0
Gx(τ)dτ , then along time t we are moving in the kx direction (Equa-

tion 19) in the frequency domain. The signal in the receiver is then modulated with this

information, from which the frequency components can be extracted. These are arranged

in a matrix called k-space, that corresponds to the Fourier transform of the desired image

in the spatial domain. Therefore, an image can be obtained by applying the inverse Fourier

transform.

Sreceive(t) =

∫∫
x,y

mxy(x, y)e
−iω0te−i2π[kxx+kyy]dxdy (19)

There are multiple steps involved in the generation of images from the frequency infor-

mation, with different approches specific of the acquisition, such as fast dynamic images

that acquire only a portion of the k-space to save time and reconstruction algorithms that

perform filtering and other signal processing. Those go beyond the scope of this work.

But it is important to note that there exist numerous MRI pulse-sequences and derived

parametric maps, with some of them exclusively used for research purposes or highly spe-

cialized areas of study. This is in part because research MRI scanners and software allow a

higher degree of customization of pulse-sequences than the clinical counterparts.

One drawback of MRI in general is that the measured intensity, although proportional to

the number of spins, cannot be directly interpreted with a physical meaning. Furthermore,

each scanner has a specific calibration, field homogeneity and electronics, where the induced

signal is amplified, filtered and transformed, making it difficult to compare and generalize

image intensities among scans.

A common approach to circumvent that issue is to consider the intensity relative to some

other signal, usually from a given tissue of reference, or deriving quantitative maps. For some

MR images, it is possible to derive interpretable metrics that reflect body tissue properties of

interest and that allow their quantification and comparison. Those sequences deserve special

attention, as they are powerful tools in the management of cancer. These sequences include

the Dixon water and fat separation, perfusion and diffusion MRI and will be introduced

next.

1.3.2 Anatomical images

The most basic anatomical sequences may be T1w and T2w images, but still essential for

radiological interpretation and for building more complex MRI experiments. Anatomical
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images allow to identify known structures of the body, as well as locate injuries or lesions,

and provide a reference to spatially align other sequences and, consequently, these sequences

are always at the core of any MRI study.

Pathological tissues can often be seen in anatomical images as regions with abnormal

intensity values relative to their healthy counterparts, sometimes with a specific pattern,

shape or appearance that help radiologists identify and diagnose them.

An intra-venous contrast agent can also be employed to obtain additional information.

Contrast products like gadolinium show paramagnetic properties which will favour the spin

relaxation processes when passing though the organ vasculature under study. This way, with

respect to the same T1w, contrast-enhanced T1w will show hyperintense areas where the

contrast has infiltrated, within vessels and extravascular spaces. That information can be

very valuable to identify structures and characterize cancer based on the vascularity, i.e.

highly irrigated tumours and abnormal vessels may be a cancer phenotype associated with

higher aggressiveness.

1.3.3 Dixon technique

The contribution of both water and fat to MRI signal is an important aspect to consider

in the imaging of organs and diseases, including cancer. In the interpretation of MRI of

protons, it is assumed that a majority of signal comes from water. Therefore, the signal

arising from fat, if not properly taken into account, can confound or significantly hinder

the detection of lesions or the differentiation between benign and malignant tissues. To this

end, there exist several common methods of fat signal suppression, such as inverse recovery

and fat saturation techniques. But since malignant tissues do not generally accumulate fat,

acquiring the information on the fat content could also be valuable, especially in organs or

specific conditions that contain adipose tissues.

The sequences based on the Dixon method [59] take advantage of the chemical shift

between protons in water and fat molecules. Chemical shift refers to the slight differences

in the resonance frequency of nuclei in different molecules caused by electron clouds of the

molecule atoms responding to the external magnetic field with opposing local magnetic fields,

an effect called shielding. Those differences will depend on the molecule where the nucleus

resides, making it possible to detect different compounds in a sample by means of measuring

the frequencies, forming the basis of nuclear magnetic spectroscopy.
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For imaging of the body, most protons reside in either water or fat molecules. Knowing

the difference in frequency between fat and water molecules, Dixon methods are based on

acquiring images at precisely the times when the spins of water are in phase (IP) with those

of fat and when they are completely out of phase (OOP), then theoretically pure water signal

W and fat signal F images can be derived from the magnitude and phase of those complex

images (Equation 20 and Equation 21).

IP = |W + F | (20)

OOP = |W − F | (21)

The Dixon methods provide a means to separate signals for water and fat and calculate

water and fat fraction maps, which is advantageous for diseases or conditions involving fat

in tissues such as the liver, muscle and bone, but also pancreas, spleen, testes and others

[60]. The main challenge when separating water and fat components is the water-fat swap

artifacts as a consequence of local field inhomogeneities. Modern Dixon techniques with

additional acquisitions, phase unwrapping methods and even deep learning methods have

been proposed to solve this issue [61].

1.3.4 Perfusion MRI

The main focus of study of perfusion techniques is the properties of the vasculature in the

tissues. The most widely used sequences are dynamic susceptibility contrast (DSC) and

dynamic contrast enhanced (DCE), both consisting of a dynamic acquisition during the pas-

sage of a contrast agent dose, called bolus. In DCE, T1w images are acquired over a few

minutes, where slower permeability of the contrast into tissues can be observed. In DSC,

T2*w images are acquired over a short time, focusing on the one-time passage of the bolus

through the vessels.

The dynamic sequence can then be mathematically modelled, estimating measures of the

blood flow and blood volume, among others from DSC; and permeability, vascular and tissue

fractions from DCE. Specifically, signal S from a DSC experiment is proportional to the T2*

decay as follows:

S ∝ e−
TE
T2∗ (22)

With 1
T2∗

= R2∗ representing the relaxation rate. In a dynamic acquisition, a signal S(t)
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is acquired at discrete time points t during the passing of the contrast agent through the

tissues, which favours relaxation. The concentration of contrast agent C(t) can be assumed

to be proportional to the change in relaxation rate ∆R2∗(t), which can be obtained as follows:

Ct ∝ ∆R2∗t = R2∗t −R2∗0 = −TE

T2∗
ln

St

S0

(23)

The curve of ∆R2∗ over time shows a smooth, momentary loss of signal corresponding

to the passage of contrast (fig:dsc). The relative cerebral blood volume (rCBV) would be

proportional to the area under the ∆R2∗ curve. The percentage of signal recovery (PSR)

can be defined as the ratio of the recovered signal after contrast has passed over the baseline

signal, as follows

PSR =
Sr − Smin

Sb − Smin

∗ 100 (24)

Where Smin is the minimum peak point reached by the perfusion curve, Sb is the base-

line perfusion signal before contrast bolus arrival and Sr is the recovered signal after bolus

passage. The rCBV and PSR are both common parameters in the study of DSC perfusion

MRI in cancer [62–64].

Figure 9: Dynamic T2*w signal from DSCMRI, with intensity normalized to the white matter and
time in seconds. The contrast medium causes a temporary loss of signal. The area is proportional
to the blood volume in the vasculature and the recovered signal Sr relative to the minimum and
baseline signals Smin and Sb are related to vascular permeability and leakage.

Given that one important mechanism for the development and growth of malignant cells

is the generation of new, distinct vasculature and the disruption of normal vessels and blood
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flow, perfusion MRI is a commonly acquired sequence, especially for breast cancer and brain

pathologies. The perfusion-derived parameters have shown to have diagnostic value and to

differentiate between different tumour grades and types. In general, increased blood flow and

volume are indicative of higher angiogenesis, which would point towards malignant processes,

while a reduction in those could be a sign of working treatment [65].

1.3.5 Diffusion sequences

Diffusion MRI takes advantage of the sensitivity of MRI to interactions and motion of wa-

ter protons at the molecular level. Similar to the spatial localization gradients of MRI, a

diffusion gradient can be used to label water protons that will experience Brownian motion

within different compartments of the living tissues (e.g.: within cells, in the extracellular

matrix, along axons, etcetera) for a given time. After that time, an opposite gradient would

reverse the effects of the first gradient should the molecules be completely static, except

the protons experience random walk motion. Some water molecules in a confined space

would travel a small overall distance and therefore most of the signal can be recovered in

that case. Others, however, are less restricted by obstacles and can diffuse further away,

which means a larger general dephasing of spins and an overall signal loss in that imaged

region. Given that the diffusivity of the water causes a loss of signal, diffusion MRI enables

estimating the diffusivity within the body regions, with units of area over time. Further-

more, diffusion data can be acquired sensitive to different directions, giving rise to diffusion

tensor imaging (DTI), mainly explored in the central nervous system for neural tractography.

That loss of signal will be increased by the magnitude, duration and spacing of the

diffusion gradients, yielding diffusion-weighted imaging (DWI). The parameters defining the

gradients along with the gyromagnetic ratio are combined for convenience into a single factor

called the b-value b, with inverse units to those of the ADC [66]. Relative to the baseline

signal S0, the signal decay due to diffusion as a function of the b-value is proportional to the

negative exponential of the decay rate given by diffusivity D (Equation 25).

S = S0e
−bD (25)

The diffusivity is typically averaged over three orthogonal diffusion directions as a total

apparent diffusion coefficient (ADC), as seen in Figure 10. For this model, acquiring at

least two images with different b-value allows to find the ADC, which holds for a range of

b ∼ [50, 1000]s/mm2. In very short and very long diffusion time regimes, additional effects

may be taken into account that deviate from a pure exponential, such as vascular pseudo-
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Figure 10: The decay in the diffusion T2w signal, in logarithmic scale, relative to no diffusion
weighted, with respect to the b-value. The decay can be approximated as a mono-exponential with
the rate given by the ADC.

diffusion and non-Gaussian diffusion. Moreover, advanced diffusion experiments allow for

the modelling of tissue diffusivity to enable the association of biological properties to the

acquired MRI signals. Assuming a certain tissue microstructure, the signal can be modelled

as a mixture of a number of compartments that have distinct water diffusivity, such as vas-

cular, intracellular and extracellular components, e.g., intravoxel incoherent motion (IVIM)

[67]. Those methods remain mostly investigational, although have shown promising results

for clinical applications [68–71].

In particular, the ADC has been extensively explored, especially in cancer disease, as it

is simple to obtain and provides an estimate of the water diffusivity within the tissues. A

very common trait of many tumours is that the cellularity increases as a result of a high

growth rate of malignant cells. Therefore, the diffusivity is expected to be lower in areas

with highly packed cells and so it is for the ADC, generally regarded as a proxy for cellularity

[72]. The role of the ADC in cancer comes across multiple organs of the body and spans all

main clinical imaging tasks, namely, diagnosis, differentiation, treatment response prediction,

monitoring and prognosis and DWI is routinely acquired in neurological applications, as it

helps characterizing tissues [35, 73]. However, the ADC is a global estimate of diffusivity,

which is sensitive not only to cellularity, but also to other tissue properties, i.e. cells or

regions with different intrinsic diffusivity, like oedema, haemorrhage, necrosis, fat, different

cell sizes and the specific structural arrangement of the tissues [74–76].
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1.3.6 Multi-parametric MRI and the special role of

neuroradiology

Despite the fact that MRI allows acquiring multiple contrasts, multiparametric MRI may

not be possible to apply in every case. Besides possible redundant information, the total

scan time is a crucial factor when designing MRI sequences and acquisition protocols for

the clinical practice. An MRI scan of a joint may take ten minutes, while a whole-body

scan may take sixty minutes. Thus, scan time should be minimized whenever possible to

prevent patient discomfort, maximize data acquisition and efficiency. That is to say, MRI

studies usually include just the specific sequences that have been shown useful for a given

exploration. Likewise for cancer imaging, because the disease can manifest in a wide range of

forms and body organs, different acquisitions and spatial and time constraints would apply

in every case.

It is important to mention here that there may be an exception to the rule. Imaging of the

brain typically comprises multiple acquisitions, including T1w, with and without contrast,

T2w, proton density, perfusion and diffusion quantitative sequences, among others. The

importance of the brain for the function of the human body, its differentiated soft tissues

and functional areas, its contained size and regular shape all enable acquiring rich datasets

where MRI shines, allowing the subsequent development of studies and methods that pave

the way for their use in other body parts. Such is the position of brain imaging that it stands

in its own medical field of neuroradiology.

That implies that many of the common MRI techniques and methods of acquisition,

processing and analysis had originally been developed for brain applications, which later got

adapted to other body regions. Some examples include registration [77, 78], segmentation

[79–81] and imaging and modelling [67, 82–85] methods. As many of the mentioned acqui-

sitions are common on multiple body regions, the latest methods developed on brain today

could be applied in the imaging of the body tomorrow. Even though imaging of each body

organ is ultimately specialized to specific MRI sequences that optimize the scan time, each

and every sequence can be a valuable source of information. Multiparametric MRI has shown

the potential to build supporting and processing tools [86], as well as better evaluating can-

cer disease in clinical guidelines incorporating multi-modal images [21, 25], pointing at the

importance of acquiring and exploring comprehensive datasets for advancing MRI imaging

in healthcare.
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CHAPTER 2

Hypothesis and Objectives

2.1 Hypothesis

The clinical management of cancer disease relies on radiological images for critical tasks like

diagnosis, prognosis and assessment of response to the treatment. The current reference

methods of image analysis involve visual inspection, manual annotations and a degree of

subjectivity which inherently limit the characterization and evaluation of cancer for those

three tasks.

The development of computerized features from medical images has been an active re-

search topic for years, especially within the field of neuroradiology, showing the potential of

MRI for characterizing cancer disease. However, further development and validation of novel

imaging markers are still needed to address the multiple clinical needs related to a complex

disease.

For this work, it was hypothesized that MRI-derived markers could improve over current

assessments of the medical images in three identified scenarios in the management of cancer

disease, specifically:

• The residual tumour after surgery can be objectively quantified from MRI and be

useful for estimating prognosis in patients with malignant primary brain tumours (i.e.,

brain glioblastoma). The time elapsed from surgery to MRI can affect or confound the

estimation of residual tumour.

• The use of the complete dynamic profile of perfusion MRI data can be used for the

differential diagnosis of brain malignancies, and it can improve over existing methods.

• The metrics derived from whole-body MRI in bone metastases associate with the re-

sponse of the patients to the treatment. The MRI-derived metrics of bone metastases

can capture underlying biology traits of tumours.
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2.2 Objectives

To test the hypotheses, three objectives were defined:

• Objective 1: To extract computerized metrics from post-surgical MRI and study

their prognostic value in patients with brain glioblastoma, and to explore the effect of

the time elapsed from surgery to the MRI scan on the prognosis evaluation.

• Objective 2: To develop and validate a method to process all time-points from dy-

namic perfusion MRI for brain tumour diagnosis, differentiating between the three most

common brain malignancies and comparing the performance with existing metrics.

• Objective 3: To study MRI-derived data during treatment of bone metastases for

the evaluation of response, exploring the combination of imaging features and their

relation to histological evidence.
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CHAPTER 3

Supervisor Report

Dr. Raquel Pérez López, Principal Investigator of the Radiomics Group, Vall d’Hebron

Institute of Oncology; and Dr. Carles Majós Torró, Medical Doctor in the Department

of Radiology, University Hospital of Bellvitge, as directors of the doctoral thesis entitled

“Development and validation of cancer markers based on multiparametric MRI and machine

learning” and, in accordance with the provisions of art. 35 of the Doctorate regulation at

the University of Barcelona, state the following:

REPORT

In this thesis, Alonso Garcia Ruiz has focused on enhancing cancer disease assessment

through the application of machine learning methods to leverage MRI for improved diagnosis

and treatment response evaluation in cancer patients.

The hypothesis posits that current prognosis, diagnosis, and treatment response determi-

nation can benefit from recent developments in quantifiable metrics extracted from medical

images. To explore this, three comprehensive studies were conducted, proposing novel meth-

ods to enhance brain tumour diagnosis, evaluate residual brain tumours post-surgery, and

improve response assessment in patients with advanced cancer and bone metastases. The

results demonstrate significant contributions to the field, particularly from clinical and prac-

tical perspectives.

These studies have been published in high-impact scientific journals, including one quar-

tile 1 journal (Scientific Reports, IF 3.8) for Study 1 and two decile 1 journals (Cell Report

Medicine, IF 11.7, and European Urology, IF 25.3) for Studies 2 and 3, meeting the Univer-

sity of Barcelona’s criteria for thesis submission as a compilation of scientific articles.
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In all studies, Alonso appears as first author, although he declares equal contributions

with fellow authors in Study 1 and Study 2. In Study 1, Alonso was responsible for data in-

spection, image processing, feature extraction, definition of new features, statistical analyses

and manuscript drafting. In Study 2, Alonso was in charge of data collection from public

databases, data inspection, image processing, building, training and testing of classification

models, statistical analyses and manuscript drafting.

None of the studies in this thesis were used implicitly or explicitly in any other thesis.

Throughout these investigations, Alonso Garcia Ruiz has shown adeptness in overcom-

ing challenges and adaptability in implementing new methodologies, such as deep learning

techniques. His research process has been marked by thorough literature review, innovative

technique development, critical thinking, and rigorous methodology.

This thesis represents the achievement of primary objectives, yet Alonso Garcia Ruiz has

also contributed to other activities, co-authoring additional publications and presenting at

conferences, demonstrating interdisciplinary interest and a continuous pursuit of knowledge.

Considering the aforementioned achievements, we hereby express our approval to be consid-

ered for a PhD in Biomedicine from the University of Barcelona.

Signed

Raquel Pérez López Carles Majós Torró
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4.1 Study 1

Precise enhancement quantification in post-operative

MRI as an indicator of residual tumor impact is

associated with survival in patients with glioblastoma

Scientific Reports (2021), Vol 11, Page 95. Impact Factor (quartile): 3.8 (Q1)

Authors and affiliations: Alonso Garcia-Ruiz1, Pablo Naval-Baudin2, Marta Ligero1,

Albert Pons-Escoda2, Jordi Bruna3, Gerard Plans3, Nahum Calvo2, Monica Cos2, Carles

Majós2,3, Raquel Perez-Lopez1,4.

1. Radiomics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.

2. Department of Radiology, Institut de Diagnòstic Per La Imatge (IDI), Bellvitge Uni-

versity Hospital, Barcelona, Spain.

3. Neuro Oncology Unit, Institut d’Investigacio Biomedica de Bellvitge (IDIBELL), Barcelona,

Spain.

4. Department of Radiology, Vall d’Hebron University Hospital, Barcelona, Spain.

This study corresponds to objective 1 of the thesis. This work aimed to find markers

of prognostic value in the post-surgery MRI as indicators of remaining tumour in patients

with brain glioblastoma. The study proposed a new metric and explored radiomics and

multivariate regression models to associate them to patient survival. Additionally, the effect

of the time elapsed between surgery to the MRI scan was also investigated.

The PhD candidate was in charge of data inspection, image processing, feature extraction,

definition of new features, statistical analyses and manuscript drafting.
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Precise enhancement 
quantification in post‑operative 
MRI as an indicator of residual 
tumor impact is associated 
with survival in patients 
with glioblastoma
Alonso Garcia‑Ruiz1,7, Pablo Naval‑Baudin2,7, Marta Ligero1, Albert Pons‑Escoda2,3, 
Jordi Bruna3,4, Gerard Plans3,5, Nahum Calvo2, Monica Cos2, Carles Majós2,3,8 &  
Raquel Perez‑Lopez1,6,8*

Glioblastoma is the most common primary brain tumor. Standard therapy consists of maximum 
safe resection combined with adjuvant radiochemotherapy followed by chemotherapy with 
temozolomide, however prognosis is extremely poor. Assessment of the residual tumor after surgery 
and patient stratification into prognostic groups (i.e., by tumor volume) is currently hindered by 
the subjective evaluation of residual enhancement in medical images (magnetic resonance imaging 
[MRI]). Furthermore, objective evidence defining the optimal time to acquire the images is lacking. 
We analyzed 144 patients with glioblastoma, objectively quantified the enhancing residual tumor 
through computational image analysis and assessed the correlation with survival. Pathological 
enhancement thickness on post‑surgical MRI correlated with survival (hazard ratio: 1.98, p < 0.001). 
The prognostic value of several imaging and clinical variables was analyzed individually and combined 
(radiomics AUC 0.71, p = 0.07; combined AUC 0.72, p < 0.001). Residual enhancement thickness and 
radiomics complemented clinical data for prognosis stratification in patients with glioblastoma. 
Significant results were only obtained for scans performed between 24 and 72 h after surgery, raising 
the possibility of confounding non‑tumor enhancement in very early post‑surgery MRI. Regarding 
the extent of resection, and in agreement with recent studies, the association between the measured 
tumor remnant and survival supports maximal safe resection whenever possible.

Abbreviations
AUC   Area under the curve
CI  Confidence interval
DSC  Dynamic susceptibility contrast
EPMR  Early post-operative magnetic resonance
HR  Hazard ratio
IDH  Isocitrate dehydrogenase
KPS  Karnofsky performance status
LR  Likelihood ratio
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PSR  Percentage of signal recovery
rCBV  Relative cerebral blood volume
ROI  Region of interest
OS  Overall survival
VOI  Volume of interest
W  Weighted

Glioblastoma is the most common primary brain  tumor1. Although some treatments prolong survival, the 
prognosis of patients with glioblastoma is very poor, e.g. 2-year survival of 26.5%2. Standard of care therapy 
consists of maximum safe resection combined with adjuvant radiochemotherapy followed by chemotherapy with 
temozolomide. The extent of tumor resection is a relevant prognostic factor in this patient  population3–9. Albert 
et al.established that the extent of resection should be evaluated with a magnetic resonance imaging (MRI) scan 
performed shortly after surgery, as inflammatory reparative changes can result in benign non-tumor contrast 
enhancement that can be misinterpreted as tumor  remnants10. This is widely accepted in clinical practice, and 
most guidelines recommend performing early postoperative magnetic resonance (EPMR) to evaluate the extent 
of resection. Some guidelines suggest performing the EPMR scan within the first 72 h after surgery, while others 
are more restrictive and state with 48 h11–13. However, these recommendations rely on the experience and opinion 
of experts, rather than on formal clinical evidence. To the best of our knowledge, an in-depth evaluation of the 
optimal time range to perform the EPMR scan has not yet been described. An objective numerical assessment 
of the residual tumor enhancement to support this would allow identification of the optimal timing to evalu-
ate the enhancement in the EPMR, and thus, the timing at which it is most informative for patient prognosis.

There is no consensus about the extent of resection to stratify prognostic groups. Some studies suggest 
an “all-or-nothing”  approach8 in which complete resection should be achieved to improve patient survival. 
However, others suggest that it is possible to stratify several prognostic groups according to ranges of tumor 
 resection3–7,9,10,14,15, namely < 75%, 75–95%, 95–100% and total resection.

An objective numerical evaluation of the residual tumor would allow analysis of a continuous range of values 
instead of subjective qualitative assessment, and help identify the best approach in regards to therapy and prog-
nosis, while also being readily applicable and comparable between centers and studies. In this study, we focus 
on the enhancing residual tumor only. While there may be also non-enhancing residual tumor, a recent study 
has demonstrated an association between the post-operative enhancement volume and  survival16. Therefore, 
it may be possible to identify additional prognosis value using more extensive image analysis of the enhancing 
tumor remnant in the post-surgical MRI. To this end, we focused on the post-surgical MRI and investigated 
radiomics and perfusion imaging features as an alternative evaluation to the extent of resection, which requires 
paired pre- and post-surgical MRI.

Image processing and radiomics extract quantifiable features from body tissues using characterization algo-
rithms on the image spatial data. Radiomics is a lively topic of research that is shaping medical image assessment 
and interpretation, providing crucial information regarding tumor biology including  glioblastomas17,18.

In this study, our goals were to develop a tool to facilitate the quantification of enhancing post-surgery 
residual tumor in patients with glioblastoma and analyze whether precise quantification of the area of contrast 
enhancement by image processing and radiomics could improve the patient´s prognostic evaluation. With this 
objective data, we also assessed the time range from surgery to the EPMR scan for an optimal association of 
residual tumor and overall survival (OS), to provide quantitative evidence for the optimal time range to perform 
the EPMR scan after surgery.

Results
A total of 144 patients were included in the study (92 [64%] men, 52 [36%] women); median age of all patients 
was 59 years (range 20–77 years). Population demographics are described in Supplementary Table S1.

Correlation of post‑operative enhancement with survival. The enhancement thickness was calcu-
lated as the 3D distance transform of the segmented tumor, and mean and maximum values were determined. 
The mean and maximum enhancement thickness correlated with OS with a hazard ratio (HR) of 1.98 (95% 
CI 1.36–2.90, p < 0.001) and 1.11 (95% CI 1.05–1.17, p < 0.001), respectively (Table  1). Mean and maximum 
thickness also correlated significantly with progression-free survival (PFS) with HR of 2.01 (95% CI 1.35–3.12, 
p < 0.001) and 1.08 (95% CI 1.03–1.14, p = 0.004), respectively.

The survival rate of patients with a mean thickness of 1.4 mm or more was 47% after 12 months, whereas 
survival of patients with a mean thickness less than 1.4 mm was 78% (p < 0.001, Fig. 1, left panel). Similarly, the 
survival rate of patients with a maximum thickness of 8 mm or more was 55% after 12 months, whereas survival 
of patients with maximum thickness of less than 8 mm was 80% after 12 months (p = 0.0012, Fig. 1, right panel).

The volume of enhancement was also associated with OS, with an HR of 1.04 (95% CI 1.01–1.07, p = 0.009), 
however there was no significant association with PFS (HR 1.02, 95% CI 0.99–1.05, p = 0.19). A previously 
reported threshold of 12 mL16 resulted in unbalanced subpopulations: patients with enhancement volume greater 
than 12 mL (n = 10) had a survival rate of 20% at 12 months, while patients with volume less than 12 mL 
(n = 134) had a survival rate of 75% at 12 months (Supplementary Fig. S1). Despite the different survival rates, 
Kaplan–Meier analysis did not yield a significant difference (p = 0.1).

Survival prediction for time between surgery and the EPMR scan. We analyzed the population 
in terms of the time elapsed between surgery and the EPMR scan according to the following groups: within 
24 h (n = 26), from 24 up to 48 h (n = 51), from 48 up to 72 h (n = 42), and 72 h or more (n = 25). The mean and 
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maximum thickness of enhancement were significantly associated with survival in patients with an EPMR scan 
performed between 24 and 72 h after surgery (p < 0.05, adjusted for multiple test comparisons, Table 1). There 
was no association between thickness and OS when the EPMR was performed within 24 h of surgery or more 
than 72 h after. In Supplementary Fig. S2, the HR and the confidence intervals of each subgroup are shown for 
comparison, and the Kaplan–Meier curves are shown in Supplementary Fig. S3.

Prognostic value of perfusion sub‑analysis. Dynamic susceptibility contrast (DSC) data were available 
for 113 patients (113/144, 78%). When the entire population was analyzed, patients with a relative cerebral blood 
volume in the 99th percentile (rCBV-99) above 8.26 had worse survival (p = 0.05, Supplementary Table S2), with 
a survival rate of 50% after 12 months, compared to a 75% rate in patients below this threshold (Supplementary 
Fig.  S4). A maximum percentage of signal recovery (PSR) above 112% defined patients with lower survival 
(p < 0.001, Supplementary Table S2), with a 50% survival rate after 12 months, compared to an 80% rate for 
patients below the threshold (Supplementary Fig. S4).

We also analyzed the perfusion data in terms of the time between surgery and the EPMR scan, according to 
within the first 24 h (n = 22), between 24 and 48 h (n = 37), between 48 and 72 h (n = 33) and 72 h or later (n = 21). 
rCBV-99 predicted survival when the EPMR scan was performed 24 to 48 h post-surgery (p = 0.004 adjusted for 
multiple test comparisons, Supplementary Table S2); for patients with a rCBV-99 above 7.93, the survival rate 
was 20% after 12 months, compared to 70% for those below this threshold (Supplementary Fig. S4). The maxi-
mum PSR predicted survival when the EPMR scan was performed 24 to 72 h post-surgery (p < 0.001, adjusted 
for multiple test comparisons, Supplementary Table S2), with a survival rate of 20% after 12 months for patients 
above a 111% threshold and a rate of 80% for patients below this threshold (Supplementary Fig. S4). Neither 
the rCBV-99 nor PSR had prognostic value when the EPMR scan was performed within 24 h of surgery. When 

Table 1.  Univariate Cox model of the enhancement thickness (mean and maximum) for overall survival, for 
the entire population and by subgroup according to time elapsed between surgery and the MRI. P-values were 
adjusted for multiple test comparison. N number of observations, SD standard deviation, mm millimetres, h 
hour, HR hazard ratio, CI confidence interval, LR likelihood ratio.

Variable Group

Distribution Cox regression

n Mean SD HR 95% CI p-value

Mean thickness (mm)

All 144 1.18 0.44 1.98 1.36–2.90  < 0.001

 < 24 h 26 1.25 0.57 1.19 0.59–2.39 0.44

24–48 h 51 1.18 0.39 3.00 1.24–7.24 0.03

48–72 h 42 1.16 0.44 3.30 1.30–8.40 0.03

 ≥ 72 h 25 1.21 0.51 2.40 0.74–7.72 0.16

Maximum thickness (mm)

All 144 7.16 3.27 1.11 1.05–1.17  < 0.001

 < 24 h 26 6.98 3.54 1.02 0.91–1.14 0.56

24–48 h 51 7.41 3.23 1.21 1.08–1.36 0.005

48–72 h 42 6.92 3.05 1.19 1.04–1.36 0.02

 ≥ 72 h 25 7.16 3.81 1.08 0.96–1.21 0.21

Figure 1.  Kaplan–Meier survival curves for the enhancement thickness analysis, according to high and low 
mean (left) and maximum (right) thickness. Censored data are indicated with tick marks.
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the scan was performed more than 72 h after surgery, the rCBV-99 showed significantly different survival rates 
(p = 0.011), albeit with unbalanced subgroups.

Prognostic value of the radiomics signature. The population with measurable enhancement segmen-
tation (129/144, 90%; see “Methods” for details) was analyzed to determine the prognosis of the clinical endpoint 
of OS ≥ 2 years (long; 36/129, 28%) or OS < 2 years (short; 93/129, 72%). The population was randomly split into 
training (92/129, 70%) and test (37/129, 30%) sets, with balanced distribution of survival in both sets (26/92, 
28% of long survivors in the training; 10/37, 27% of long survivors in the test set) (Supplementary Table S3).

Twelve radiomics variables were selected in the training set using minimum-redundancy-maximum-relevance 
and stepwise regression (Supplementary Table S4). This radiomics signature predicted short and long survival 
groups with an AUC of 0.73 (0.60–0.86 p < 0.001) in the training set and an AUC of 0.71 (0.55–0.88 p = 0.01) in 
the test set. Receiver operating characteristic (ROC) curves and Kaplan–Meier curves of the training and test 
sets are presented in Supplementary Fig. S5.

Combining quantitative imaging and clinical data for predicting survival. The multivariate logis-
tic model including all imaging features (mean enhancement thickness, DSC, radiomics) and clinical data (age, 
postoperative KPS) yielded the highest prognostic capacity for predicting long and short survival (AUC 0.72, 
95% CI 0.61–0.83, p < 0.001, Fig. 2). In the multivariate Cox model including all of these parameters, the mean 
thickness and age were retained as independent prognostic factors (Supplementary Table S5).

Discussion
Radiological visual assessment of the remaining tumor after surgery is the standard of care in oncology clinical 
practice, and should be performed with an MRI rapidly after the surgical procedure. The extent of resection is 
a well-known prognostic factor in  glioblastomas4,5,8, though inter-reader reproducibility is limited and hinders 
comparisons between centers and studies.

In this study, we identified a method to facilitate the quantification of the remaining tumor using a processing 
pipeline of multi-sequence MRI scans. By automatic registration and subtraction of T1w and T1wC images, it 
is possible to optimally isolate the enhancing areas from confounding post-operative changes. This method was 
also conceived by Ellingson et al.16, although they reported only the enhancement volume and did not analyze 
the influence of time to the EPMR, to measure post-surgery residual enhancing tumor. Moreover, we analyzed 
and internally validated a multivariate prognostic model including quantified residual tumor, perfusion, radiom-
ics and clinical variables in an effort to improve the prognostic performance of residual tumor enhancement.

In our population, the quantification of the residual enhancement thickness after surgery shows a continuous 
association with OS and PFS (HR of 1.98 and 2.01 respectively, for mean enhancement thickness) that outper-
forms the subjective assessment of a dichotomous thin-or-thick tumor  remnant3. Our findings also showed that 
the enhancement thickness had a stronger association with survival compared to the enhancement volume, 
suggesting the value of further investigation of this metric.

Figure 2.  ROC of different prognostic models: perfusion variables (99th percentile cerebral blood volume 
[rCBV], maximum percentage of signal recovery [PSR]), mean thickness of enhancement and all variables 
(perfusion, thickness, age, Karnofsky performance status [KPS] and radiomics) together for predicting survival 
(left panel). The model with clinical variables age and KPS is shown in the right panel for clarity.
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The combination of the enhancement thickness, perfusion, radiomics and clinical data into a predictive 
model showed slightly better performance (AUC 0.72) for distinguishing patients with short and long survival 
compared to thickness alone, compared to the univariate perfusion or the clinical models. When analyzed in 
separate groups, age and KPS yielded the lowest AUC (0.59), followed by rCBV and PSR (0.60), thickness (0.61) 
and radiomics (0.71). Therefore, in our population, radiomics variables performed better when applied in a 
dichotomous patient longer-or-shorter survival model, while the other variables added only marginal value. 
However, when correlating with specific patient survival, enhancement thickness alone demonstrated mean-
ingful prognostic value, with higher mean thickness (as a continuous variable) associated with poorer survival 
(HR of 1.98 [95% CI 1.36–2.90, p < 0.001]). Both the enhancement thickness and the radiomics signature can be 
automatically calculated from the enhancement mask. Although further work is needed to facilitate the imple-
mentation of these assays in clinical practice, these results show the potential application of quantitative data 
from EPMR T1w and T1wC for supporting medical decisions.

We also explored the impact of the time between surgery and the MRI scan for quantifying the residual 
tumor. According to the National Comprehensive Cancer Network guideline, the early post-surgery MRI scan 
should be performed within the first 72 h after  surgery19. Other guidelines are more restrictive and suggest that 
the scan be performed within the first 24 to 48 h after  surgery12,13,20. The rationale for earlier imaging is that 
after 72 h post-surgery, inflammatory reparative changes result in benign non-tumor contrast enhancement that 
could be misinterpreted as tumor  remnant10. Correspondingly, in our study we found no significant association 
between the measured enhancement and OS in the group of patients with EPMR scans performed more than 
72 h after surgery.

Interestingly, we found no association between the enhancement thickness and survival when the MRI was 
acquired within the first 24 h after surgery. Although the sample size of this subpopulation was small (n = 26 
patients), there was no visible trend towards the strong association found for the next time range. We hypothesize 
that immediately after surgery, intra-cavity transudation leads to non-tumor enhancement. Accordingly, Smets 
et al. showed that contrast transudation could appear in the very early postoperative MRI scans of  glioblastomas6. 
Thereafter, the tissues may repair so that the enhancement corresponds to the real tumor remnants. Nevertheless, 
other possible explanations for this lack of association include the presence of surgical products that may affect 
MRIs performed soon after surgery.

We further explored whether features describing tissue vasculature from the DSC would differentiate the 
enhancement corresponding to post-surgery residual tumor and inflammation. Interestingly, 99th percentile 
rCBV and maximum PSR are indicators of bad prognosis when the residual tumor was assessed in an EPMR 
performed more than 24 h post-surgery. Accordingly, associations between recurrent tumor and higher rCBV 
values have been previously  reported21. However, this correlation is strongest between 24 to 48 h but was not 
present for scans acquired before 24 h or after 72 h.

Taken together, these findings suggest that the enhancement thickness is representative of the remaining 
tumor when the MRI scan is acquired from 24 to 72 h after surgery, however there may be some confounders 
(i.e., non-tumor contrast enhancement) when the EPMR is acquired too early (during the first day after surgery) 
or too late (more than 4 days after surgery). Further studies are needed to better ascertain the importance of the 
number of days after surgery in measuring the remaining tumor tissue and elucidating the biological explana-
tion behind such a phenomenon.

The prognostic value of the extent of resection is widely accepted by the scientific community. Nevertheless, 
there is no consensus about the threshold of the extent of resection that can influence survival. Some authors 
have suggested an “all-or-nothing”  approach8. In this setting, no debulking surgery should be pursued when 
the tumor involves critical brain areas. Other studies however, suggest that a smaller extent of tumor resection 
could also positively impact patient  survival3–7. In agreement with this, we found a correlation between residual 
tumor extent and patient survival. This supports maximal safe tumor resection with the knowledge that it could 
improve patient survival even in cases of partial tumor resection.

In our population, the radiomics analysis of the enhancement area including texture features, allows for 
identification of patients with long and short survival. As previously shown, radiomics features inform tumor 
heterogeneity and are indicators of tumor aggressiveness in  glioblastoma22–24. We have explored several other 
variables to evaluate their clinical utility. While all quantitative imaging data (radiomics, thickness, DSC) provide 
relevant information that complements clinical data (age and KPS), we found the enhancing tumor thickness 
and radiomics to have high prognostic value and only T1w and T1wC are required to calculate them, thus sim-
plifying the implementation.

This study has a number of potential limitations. Firstly, as a retrospective study, isocitrate dehydrogenase 
(IDH) mutation status data were available for 54 patients, only one of whom (2%) had an IDH mutation. This 
low incidence rate may be explained by the relatively old age of our population, as IDH-mutant glioblastoma has 
been reported to correlate with younger  age25. In addition, only glioblastomas treated with maximal safe resec-
tion were included in our study. Newly diagnosed IDH-mutant glioblastoma tend to present with a more diffuse 
infiltrative pattern than IDH-wildtype glioblastoma, likely leading to a biopsy instead of a maximal safe resection, 
and IDH-mutant glioblastomas progressing after a previous known IDH-mutant low-grade  astrocytoma26 were 
also not included in our study. Therefore, there may be confounders in patients for whom IDH status is missing, 
although as the rate of IDH mutant in glioblastoma is 10% in the general  population27 compared to approximately 
2% in our population, we believe this did not significantly affect our results.

Secondly, in this analysis we focus on the post-surgical residual enhancing tumor and certain drugs may be 
administered perioperatively that can affect the enhancement on post-surgery T1wC scans (i.e., glucocorticoids 
or antiangiogenic drugs such as bevacizumab). We confirmed that bevacizumab was not administered prior to 
EPMR in any patients. Glucocorticoids might have been administered in cases with extensive edema, which could 
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have influenced the characteristics of post-contrast MRI. Nevertheless, glucocorticoids are avoided as much as 
possible in our hospital to prevent this drug from affecting the histological interpretation of biopsy samples.

Thirdly, given the observational retrospective nature of this study, standardization of all the image acquisition 
parameters was not possible. Therefore, all images were homogenously normalized in intensity and resampled 
to minimize variability. Additionally, DSC scans without contrast preload and acquisition at 1.5 T may result in 
leakage effects, hence leakage correction methods were applied to avoid confounders. Additionally, the method 
used requires input (semi-automatic segmentation) from an experienced radiologist who supervises the enhance-
ment mask. This might induce some segmentation variability. However, the thickness is calculated as the mean 
value of the distance transform, and thus it is possible that an average value smooths out small differences in 
segmentations, making it more robust. Lastly, we performed an internal validation, though applying the prog-
nostic models to an external dataset would confirm its performance.

It is noteworthy to mention that there may still be non-enhancing residual tumor, which is out of the scope 
of the current analysis. Therefore, as future work, combining other sequences such as T2w and FLAIR (Fluid-
Attenuated Inversion Recovery) may be useful to delineate additional areas of residual tumor with a potential 
role in patient  prognosis28,29, although at the expense of a more complex pipeline.

Additionally, novel MRI techniques using chemical exchange saturation transfer (CEST) imaging have been 
reported to correlate with response to treatment and survival. With CEST MRI, pulses off the water resonance 
frequency are absorbed by proteins that then transfer the energy to water through chemical exchange, lowering 
the signal. Derived signal maps such as amide proton transfer (APT) and nuclear Overhauser effect (NOE) are 
both reported to correlate with survival in gliomas and  glioblastomas30–32, even in a sub-cohort of IDH-wildtype 
patients. While the number of patients evaluated in these studies is small, they showed similar HRs as those 
reported in our study. This highlights the potential of CEST MRI and its radiomics analysis, and merits further 
research. In combination with the relevant variables proposed in this study, a thorough imaging signature could 
provide major insight into patient response.

In conclusion, in patients with glioblastoma multiforme, objective quantification of the area of enhancement 
in the tumor bed after surgery, in an EPMR scan performed between 24 and 72 h after surgery provides relevant 
information on the remaining tumor and relevant prognostic information. The MRI processing pipeline defined 
in this study is an easy and rapid method for a more accurate evaluation of the post-surgery residual tumor, that 
could be implemented in routine clinical practice.

Methods
Ethical approval. The Research Ethics Committee of the Hospital Universitari de Bellvitge revised and 
approved this study, in compliance with applicable regulatory requirements and the International Conference 
on Harmonization Guidelines on Good Clinical Practice (ICH GCP). For this retrospective study, informed 
consent was waived by the Research Ethics Committee of the Hospital Universitari de Bellvitge.

Study population and design. We evaluated data from 160 consecutive patients with primary glioblas-
toma multiforme who underwent maximum safe resection surgery between February 2009 and December 2017 
at the Hospital Universitari de Bellvitge, Spain, and who had an early post-surgery MRI scan (i.e., within the 
first week after surgery). Data on isocitrate dehydrogenase (IDH) 1/2 mutation status were available in 54 out of 
160 patients (33%)33. Only one patient (1/54, 2%) had an identified IDH mutation. To be eligible for the analysis, 
patients had to have been treated with adjuvant radiotherapy plus concomitant and post-radiotherapy temozo-
lomide (i.e., Stupp protocol)2 (144/160, 90%).

MRI scan protocol and image pre‑processing. The earliest post-surgery MRI scan per patient was col-
lected, including T1-weighted before (T1w) and after intravenous contrast administration (T1wC), and dynamic 
susceptibility contrast (DSC) images. Approximately half of the MRI scans were acquired with a 1.5  T MR 
magnet Intera (Philips Healthcare, Best, The Netherlands) and half with a 1.5 T MR magnet Achieva (Philips 
Healthcare, Best, The Netherlands) with the following parameters for T1w: spin-echo; TE 15 ms; TR 540 ms; flip 
angle 90°; matrix size 256 × 256  mm2; slice thickness 5 mm.

A single MRI scan was performed with a 3 T MR unit (Achieva; Philips Healthcare, Best, The Netherlands), 
gradient-echo; TE 4 ms; TR 9 ms; flip angle 8º; matrix size 672 × 672  mm2; slice thickness 1 mm.

Regarding DSC, all acquisitions were gradient-echo without bolus preload; a total of 10 baseline points were 
collected before the pass of contrast with the following protocol: in the 1.5 T Intera MR unit (scans from 2009 to 
2015) PRESTO sequence; TE 25 ms; TR 17 ms; flip angle 7°; matrix size 128 × 128 mm2; slice thickness 3.5 mm; 
dynamic acquisitions 40. In the 1.5 T Achieva MR unit (from 2015 to 2917) TE 40 ms; TR 1522–1642 ms; flip 
angle 75º; matrix size 128 × 128 mm2; slice thickness, 4–5 mm; dynamic acquisitions 60.

A single MRI scan was performed with a 3 T MR unit (Achieva; Philips Healthcare, Best, The Netherlands), 
echo planar sequence; TE 40 ms; TR 1618 ms; flip angle 75º; matrix size 128 × 128  mm2; slice thickness 4 mm; 
dynamic acquisitions 40.

The pre-processing of images for homogenization included N4 bias field  correction34 and intensity normaliza-
tion with Nyul’s method as adapted by  Shah35,36.

Enhancement mask definition and thickness quantification. The T1w and T1wC images with dif-
ferent slice spacing (1/144 = 1% of the scans) were resampled to 5 mm for consistency and robustness. The T1w 
was registered to the T1wC with the rigid transformation tool of 3DSlicer v4.1037. The T1w signal intensity was 
normalized to that of the  T1Cw28. A 3D enhancement map was obtained by T1w-T1wC subtraction. The area of 
enhancement within and around the tumor bed was delineated by an experienced radiologist (P.N.B), blinded 
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Figure 3.  Pipeline of the applied methods. Registration is performed with the contrast-T1w scan as the 
reference image and the radiomics features are extracted from the contrast-T1w. The thickness is calculated 
from the 3D distance transform of the volume of interest, depicted as a colormap.
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to the clinical outcome, using the 3DSlicer semi-automatic delineation tools (thresholding and morphological 
operations).

The 3D distance transform of the volume of interest (VOI) was then calculated. The distance transform 
provides the Euclidean distance in millimeters of every voxel within the VOI to its nearest VOI  boundary38. We 
calculated the mean and the maximum values of the 3D distance transform as measures of the enhancement 
mask thickness for each patient (Fig. 3), as well as the total volume of the VOI.

Perfusion MRI sub‑analysis. The DSC temporal volumes were processed with the DSCMRIAnalysis mod-
ule of  3DSlicer37,39, the curves were leakage-corrected with the Boxerman–Schmainda–Weiskoff  method40 and 
the rCBV were obtained. The DSC volumes were then registered to the T1wC images for co-alignment with the 
enhancement masks. The temporal curves of the DSC were first analyzed to remove noisy and low-signal curves 
from the mask. For this purpose only, the curves were low-pass filtered, normalized between − 1 and 0, and then 
those that reflected the bolus  arrival41,42 were selected by resemblance to a Gaussian distribution (Supplementary 
Fig. S6). Once the DSC curves had been filtered, the original non-normalized DSC values were analyzed.

Relative cerebral blood volume. An ROI within the white matter contralateral to the tumor was deline-
ated in each MRI and the relative cerebral blood volume (rCBV) map was normalized to this ROI. To retrieve the 
tumor hot-spot, we calculated the 99th percentile of the rCBV (rCBV-99) and the maximum percentage of signal 
recovery (PSR) from the enhancement mask selected curves. The rCBV-99 and not the maximum was calculated 
to avoid extreme outlier values of the rCBV. The PSR was calculated as described by Cha et al.42.

Radiomics feature extraction and robustness. Radiomics extraction was performed with Pyradiom-
ics v2.1.2 for  Python43, with image resampling of 1 mm isotropic voxels and fixed binarization to 10 levels of bin-
width, as has been suggested to maximize radiomics  reproducibility44–46. Ninety-four radiomics features were 
extracted from the enhancement mask applied to the T1wC images, including first-order (n = 19) and second-
order from texture Grey-Level Co-occurrence Matrix (n = 24), Grey-Level Run-Length Matrix (n = 16), Grey-
Level Size-Zone Matrix (n = 16), Neighboring-Grey-Tone Difference Matrix (n = 5) and Grey-Level Dependence 
Matrix (n = 14) (Supplementary Table S6). Feature description and compliance with image biomarker standardi-
zation initiative guidelines is publicly available in the package  documentation43. We also studied the variability of 
radiomics when changing the extraction parameters voxel size and bin width, and when the most robust features 
(i.e., < 20% coefficient of variation) were selected for further analysis (54 out of 94 [57%] radiomics features, see 
Supplementary Methods).

Radiomics feature selection and analysis. Patients with measurable enhancement segmentation 
(129/144, 90%) were eligible for this analysis. For clarification, these patients may present gross total resec-
tion, however benign reactive enhancement has been reported by some authors up to 72 h after  surgery3,6,16,47. 
The patients were split into ‘training’ (70%) and ‘test’ (30%) sets for internal validation, with balanced survival 
distribution in both sets. Patient characteristics of the sets are presented in Supplementary Table S3. The radi-
omics features were normalized according to the mean value and standard deviation of the training set. From 
the 54 robust features of the previous section, further selection was performed in the training set by minimum-
redundancy–maximum-relevance48,49 plus stepwise regression. The logistic regression model with the selected 
variables was then internally validated in the test set.

Statistical analysis. Log-rank analysis on Kaplan–Meier data and Cox proportional hazards regression 
models were used to evaluate the association of the analyzed variables with survival.

For dichotomized survival analysis, the population was split according to lower or higher than 2-year overall 
survival (< 2 years, ≥ 2 years respectively, Supplementary Table S1). Censored patients with a survival shorter 
than the defined endpoint were excluded. These survival groups were defined for logistic regression models and 
to obtain the area under the curve (AUC) of the receiver operating characteristic (ROC) curve. A threshold for 
each independent variable was calculated from the regression models from the maximum sum of sensitivity and 
specificity (Youden’s index). The postoperative Karnofsky performance status (KPS) was dichotomized as < 90 
and ≥ 90.

To assess how the time from surgery to the EPMR scan affects the residual tumor quantification, sub-analyses 
of survival prediction were performed based on the time elapsed between surgery and the EPMR scan. The 
patients were split into four subpopulations according to the time between surgery and the MRI scan (< 24, 24 
to < 48, 48 to < 72 and ≥ 72 h). Multiple comparison tests were adjusted with the Benjamini–Hochberg method, 
and p-values were considered statistically significant below 0.05.

The thickness analysis was done in-house with Matlab R2015a (Mathworks). Radiomics selection and statisti-
cal analysis were performed with R Statistical Software v3.5.150.

Received: 12 March 2020; Accepted: 9 December 2020

References
 1. Ostrom, Q. T. et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United 

States in 2011–2015. Neuro Oncol. 20, 1–86. https ://doi.org/10.1093/neuon c/noy13 1 (2018).



9

Vol.:(0123456789)

Scientific Reports |          (2021) 11:695  | https://doi.org/10.1038/s41598-020-79829-3

www.nature.com/scientificreports/

 2. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996. https 
://doi.org/10.1056/NEJMo a0433 30 (2005).

 3. Majos, C. et al. Early post-operative magnetic resonance imaging in glioblastoma: Correlation among radiological findings and 
overall survival in 60 patients. Eur. Radiol. 26, 1048–1055. https ://doi.org/10.1007/s0033 0-015-3914-x (2016).

 4. Kuhnt, D. et al. Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme 
with high-field intraoperative MRI guidance. Neuro Oncol. 13, 1339–1348. https ://doi.org/10.1093/neuon c/nor13 3 (2011).

 5. Bloch, O. et al. Impact of extent of resection for recurrent glioblastoma on overall survival: Clinical article. J. Neurosurg. 117, 
1032–1038. https ://doi.org/10.3171/2012.9.JNS12 504 (2012).

 6. Smets, T., Lawson, T. M., Grandin, C., Jankovski, A. & Raftopoulos, C. Immediate post-operative MRI suggestive of the site and 
timing of glioblastoma recurrence after gross total resection: A retrospective longitudinal preliminary study. Eur. Radiol. 23, 
1467–1477. https ://doi.org/10.1007/s0033 0-012-2762-1 (2013).

 7. Krivoshapkin, A. L. et al. Automated volumetric analysis of postoperative magnetic resonance imaging predicts survival in patients 
with glioblastoma. World Neurosurg. https ://doi.org/10.1016/j.wneu.2019.03.142 (2019).

 8. Lacroix, M. et al. A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection, and survival. 
J. Neurosurg. 95, 190–198. https ://doi.org/10.3171/jns.2001.95.2.0190 (2001).

 9. Ellingson, B. M. et al. Validation of postoperative residual contrast-enhancing tumor volume as an independent prognostic factor 
for overall survival in newly diagnosed glioblastoma. Neuro Oncol. 20, 1240–1250. https ://doi.org/10.1093/neuon c/noy05 3 (2018).

 10. Albert, F. K., Forsting, M., Sartor, K., Adams, H. P. & Kunze, S. Early postoperative magnetic resonance imaging after resection of 
malignant glioma: Objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34, 45–60 
(1994).

 11. Stupp, R. et al. High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol 25(Suppl 
3), 93–101. https ://doi.org/10.1093/annon c/mdu05 0 (2014).

 12. Wen, P. Y. et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working 
group. J. Clin. Oncol. 28, 1963–1972. https ://doi.org/10.1200/JCO.2009.26.3541 (2010).

 13. Martinez-Garcia, M. et al. SEOM clinical guidelines for diagnosis and treatment of glioblastoma (2017). Clin. Transl. Oncol. 20, 
22–28. https ://doi.org/10.1007/s1209 4-017-1763-6 (2018).

 14. Allahdini, F., Amirjamshidi, A., Reza-Zarei, M. & Abdollahi, M. Evaluating the prognostic factors effective on the outcome of 
patients with glioblastoma multiformis: Does maximal resection of the tumor lengthen the median survival?. World Neurosurg. 
73, 128–134. https ://doi.org/10.1016/j.wneu.2009.06.001 (2010).

 15. Sanai, N., Polley, M. Y., McDermott, M. W., Parsa, A. T. & Berger, M. S. An extent of resection threshold for newly diagnosed 
glioblastomas. J. Neurosurg. 115, 3–8. https ://doi.org/10.3171/2011.2.JNS10 998 (2011).

 16. Ellingson, B. M. et al. Validation of postoperative residual contrast-enhancing tumor volume as an independent prognostic factor 
for overall survival in newly diagnosed glioblastoma. Neuro-Oncology 20, 1240–1250. https ://doi.org/10.1093/neuon c/noy05 3 
(2018).

 17. Aerts, H. J. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 
5, 4006. https ://doi.org/10.1038/ncomm s5006  (2014).

 18. Lambin, P. et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14, 749–762. 
https ://doi.org/10.1038/nrcli nonc.2017.141 (2017).

 19. National Comprehensive Cancer Network. Central Nervous System Cancers (Version 1.2019). NCCN Clin Pract Guidel Oncol 
2019. https ://www.nccn.org/profe ssion als/physi cian_gls/ (accessed April 22, 2019).

 20. Stupp, R. et al. High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 25(Suppl 
3), 93–101. https ://doi.org/10.1093/annon c/mdu05 0 (2014).

 21. Bisdas, S. et al. Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: Ready for prime time in 
predicting short-term outcome and recurrent disease?. AJNR Am. J. Neuroradiol. 30, 681–688. https ://doi.org/10.3174/ajnr.A1465  
(2009).

 22. Li, Q. et al. A fully-automatic multiparametric radiomics model: towards reproducible and prognostic imaging signature for 
prediction of overall survival in glioblastoma multiforme. Sci. Rep. 7, 14331. https ://doi.org/10.1038/s4159 8-017-14753 -7 (2017).

 23. Su, C. et al. Radiomics based on multicontrast MRI can precisely differentiate among glioma subtypes and predict tumour-
proliferative behaviour. Eur. Radiol. 29, 1986–1996. https ://doi.org/10.1007/s0033 0-018-5704-8 (2019).

 24. Ditmer, A. et al. Diagnostic accuracy of MRI texture analysis for grading gliomas. J. Neurooncol. 140, 583–589. https ://doi.
org/10.1007/s1106 0-018-2984-4 (2018).

 25. Robinson, C. & Kleinschmidt-DeMasters, B. K. IDH1-mutation in diffuse gliomas in persons age 55 years and over. J. Neuropathol. 
Exp. Neurol. 76, 151–154. https ://doi.org/10.1093/jnen/nlw11 2 (2017).

 26. Ohgaki, H. & Kleihues, P. The definition of primary and secondary glioblastoma. Clin. Cancer Res. 19, 764–772. https ://doi.
org/10.1158/1078-0432.CCR-12-3002 (2013).

 27. Louis, D. N. et al. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta 
Neuropathol. 131, 803–820. https ://doi.org/10.1007/s0040 1-016-1545-1 (2016).

 28. Rathore, S. et al. Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular 
characteristics, offering prognostic value beyond IDH1. Sci. Rep. 8, 5087. https ://doi.org/10.1038/s4159 8-018-22739 -2 (2018).

 29. Porz, N. et al. Multi-modal glioblastoma segmentation: Man versus machine. PLoS ONE 9, e96873. https ://doi.org/10.1371/journ 
al.pone.00968 73 (2014).

 30. Meissner, J. E. et al. Early response assessment of glioma patients to definitive chemoradiotherapy using chemical exchange satura-
tion transfer imaging at 7 T. J. Magn. Reson. Imaging 50, 1268–1277. https ://doi.org/10.1002/jmri.26702  (2019).

 31. Paech, D. et al. Relaxation-compensated amide proton transfer (APT) MRI signal intensity is associated with survival and progres-
sion in high-grade glioma patients. Eur. Radiol. 29, 4957–4967. https ://doi.org/10.1007/s0033 0-019-06066 -2 (2019).

 32. Mehrabian, H., Myrehaug, S., Soliman, H., Sahgal, A. & Stanisz, G. J. Evaluation of glioblastoma response to therapy with chemical 
exchange saturation transfer. Int. J. Radiat. Oncol. Biol. Phys. 101, 713–723. https ://doi.org/10.1016/j.ijrob p.2018.03.057 (2018).

 33. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773. https ://doi.org/10.1056/NEJMo a0808 710 (2009).
 34. Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320. https ://doi.org/10.1109/

TMI.2010.20469 08 (2010).
 35. Nyul, L. G. & Udupa, J. K. On standardizing the MR image intensity scale. Magn. Reson. Med. 42, 1072–1081. https ://doi.

org/10.1002/(sici)1522-2594(19991 2)42:6%3c107 2::Aid-mrm11 %3e3.0.Co;2-m (1999).
 36. Shah, M. et al. Evaluating intensity normalization on MRIs of human brain with multiple sclerosis. Med. Image Anal. 15, 267–282. 

https ://doi.org/10.1016/j.media .2010.12.003 (2011).
 37. Fedorov, A. et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30, 

1323–1341. https ://doi.org/10.1016/j.mri.2012.05.001 (2012).
 38. Grevera, G.J. in Deformable Models Ch. Chapter 2, 33–60 (2007).
 39. Schmainda, K. M. et al. Multisite concordance of DSC-MRI analysis for brain tumors: Results of a national cancer institute quantita-

tive imaging network collaborative project. AJNR Am. J. Neuroradiol. 39, 1008–1016. https ://doi.org/10.3174/ajnr.A5675  (2018).
 40. Boxerman, J. L., Schmainda, K. M. & Weisskoff, R. M. Relative cerebral blood volume maps corrected for contrast agent extravasa-

tion significantly correlate with glioma tumor grade, whereas uncorrected maps do not. Am. J. Neuroradiol. 27, 859–867 (2006).



10

Vol:.(1234567890)

Scientific Reports |          (2021) 11:695  | https://doi.org/10.1038/s41598-020-79829-3

www.nature.com/scientificreports/

 41. Lupo, J. M., Cha, S., Chang, S. M. & Nelson, S. J. Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: 
Characterization of spatial heterogeneity. AJNR Am. J. Neuroradiol. 26, 1446–1454 (2005).

 42. Cha, S. et al. Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity 
recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am. J. Neuroradiol. 28, 
1078–1084. https ://doi.org/10.3174/ajnr.A0484  (2007).

 43. van Griethuysen, J. J. M. et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77, e104–e107. 
https ://doi.org/10.1158/0008-5472.CAN-17-0339 (2017).

 44. Molina, D. et al. Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization. 
PLoS ONE 12, e0178843. https ://doi.org/10.1371/journ al.pone.01788 43 (2017).

 45. Goya-Outi, J. et al. Computation of reliable textural indices from multimodal brain MRI: Suggestions based on a study of patients 
with diffuse intrinsic pontine glioma. Phys. Med. Biol. 63, 105003. https ://doi.org/10.1088/1361-6560/aabd2 1 (2018).

 46. Duron, L. et al. Gray-level discretization impacts reproducible MRI radiomics texture features. PLoS ONE 14, e0213459. https ://
doi.org/10.1371/journ al.pone.02134 59 (2019).

 47. Bette, S. et al. Patterns and time dependence of unspecific enhancement in postoperative magnetic resonance imaging after glio-
blastoma resection. World Neurosurg. 90, 440–447. https ://doi.org/10.1016/j.wneu.2016.03.031 (2016).

 48. De Jay, N. et al. mRMRe: An R package for parallelized mRMR ensemble feature selection. Bioinformatics 29, 2365–2368. https ://
doi.org/10.1093/bioin forma tics/btt38 3 (2013).

 49. Parmar, C. et al. Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front. Oncol. 5, 272. 
https ://doi.org/10.3389/fonc.2015.00272  (2015).

 50. Core Team R. R: A Language and Environment for Statistical Computing (R Foundation for statistical computing, Vienna, 2013).

Acknowledgements
This work was supported by the Fundacio La Caixa. R.P.L is supported by a Prostate Cancer Foundation Young 
Investigator Award, CRIS Foundation Talent Award (TALENT-05), Fero Foundation, and the Spanish Ministry 
of Health FIS Program (Instituto de Salud Carlos III-Investigación en Salud PI18/01395). Mr Guillermo Vil-
lacampa Javierre kindly provided statistical advice for this manuscript.

Author contributions
All of the authors substantially contributed to the presented work in many aspects. Furthermore, we consider 
A.G.R. and P.N.B. to be joint first authors for their equal efforts in this study, as well as R.P.L. and C.M. to be 
joint senior authors for their decisive contributions to all aspects of this study. Other contributions made by 
non-authors were properly acknowledged within the manuscript with their consent. As a summary of author 
participations: C.M., R.P.L., A.G.R, P.N., A.P. and N.C. together conceived the study design and development. 
C.M., J.B., G.P. and M.C. were in charge of the medical data acquisition. P.N., C.M. and N.C. were responsible 
of defining the criteria for data collection into a structured database. P.N., C.M., R.P.L. and A.G.R. worked in 
the segmentation of the images. A.G.R. and M.L. carried out the processing of data and performed the analy-
ses, with the help of C.M., P.N. and A.P. in the interpretation and validation of results. A.G.R, R.P.L, C.M. and 
P.N. worked in the manuscript drafting. R.P.L. and C.M. critically revised the written works. Lastly, all authors 
reviewed and approved the manuscript for its publication. Each and every one of the authors certifies the integrity 
of the presented work.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https ://doi.
org/10.1038/s4159 8-020-79829 -3.

Correspondence and requests for materials should be addressed to R.P.-L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2021



Articles

4.2 Study 2

An accessible deep learning tool for voxel-wise

classification of brain malignancies from perfusion MRI

Cell Reports Medicine (2024), Vol 5, Issue 3, Page 101464. Impact Factor (quartile):

11.7 (Q1)

Authors and affiliations: Alonso Garcia-Ruiz1, Albert Pons-Escoda2,3, Francesco Grussu1,

Pablo Naval-Baudin2, Camilo Monreal-Aguero1, Gretchen Hermann4, Roshan Karunamuni4,

Marta Ligero1, Antonio Lopez-Rueda5, Laura Oleaga5, Alvaro Berbis6, Alberto Cabrera-

Zubizarreta7, Teodoro Martin-Noguerol7, Antonio Luna-Alcalá7, Tyler M. Seibert4,8,9, Carlos
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SUMMARY

Noninvasive differential diagnosis of brain tumors is currently based on the assessment of magnetic reso-
nance imaging (MRI) coupled with dynamic susceptibility contrast (DSC). However, a definitive diagnosis
often requires neurosurgical interventions that compromise patients’ quality of life. We apply deep learning
on DSC images from histology-confirmed patients with glioblastoma, metastasis, or lymphoma. The convo-
lutional neural network trained on�50,000 voxels from 40 patients provides intratumor probability maps that
yield clinical-grade diagnosis. Performance is tested in 400 additional cases and an external validation cohort
of 128 patients. The tool reaches a three-way accuracy of 0.78, superior to the conventional MRI metrics ce-
rebral blood volume (0.55) and percentage of signal recovery (0.59), showing high value as a support diag-
nostic tool. Our open-access software, Diagnosis In Susceptibility Contrast Enhancing Regions for Neuro-
oncology (DISCERN), demonstrates its potential in aiding medical decisions for brain tumor diagnosis using
standard-of-care MRI.

INTRODUCTION

Differential diagnosis between the most common brain malig-

nancies (i.e., glioblastoma multiforme [GBM], brain metastasis

from solid tumors, and primary CNS lymphoma [PCNSL]) repre-

sents a clinical unmet need because each of these entities re-

quires a distinct therapeutic approach.1–3 Although pathology

evaluation of tumor samples remains the gold standard for diag-

nosis, it requires invasive neurosurgical procedures, with a sig-

nificant risk of complications, and eventually can be confounded

by the use of prior medication, such as steroids.4,5

To overcome the need for surgery, magnetic resonance imag-

ing (MRI) with intravenous contrast injection is being used as a

noninvasive support system for differential diagnosis of brain

malignancies. GBM, brain metastasis, and PCNSL represent

up to 70% of all malignant brain tumors and more than 80% of

contrast-enhancing tumors within the brain.6 Nevertheless, the

enhancing patterns on imaging exhibit a high degree of similarity

across these tumor types, making differential diagnosis chal-

lenging even for experienced neuroradiologists.7–9

The noninvasive characterization of brain tumors on MRI has

been an active subject of study for years,10,11 gaining renewed

interest with the application of recent machine learning tech-

niques to imaging data. Among the existing literature, some

studies have focused on differentiating GBM from solitary

brain metastasis, either with anatomical12–17 or functional imag-

ing,10,18–23 whereas other works have concentrated on the iden-

tification of PCNSL.24–27 Of particular significance is dynamic

susceptibility contrast (DSC) perfusion MRI, which enables the

visualization of vascular characteristics, including vascular den-

sity and permeability, and is proving to be valuable for brain tu-

mor diagnosis.9,10,18,20,22,27–37

DSC is a quantitative MRI technique that consists of a temporal

T2*-weighted acquisition during the administration of a vascular

Cell Reports Medicine 5, 101464, March 19, 2024 ª 2024 The Authors. 1
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contrast bolus. The contrast agent causes an initial decrease in

the T2*-weighted signal intensity, followed by the signal recovery

during washout. In DSC, every voxel in the image yields a unique

dynamic curve that describes the temporal evolution of the

T2*-weighted signal intensity and reflects local tissue vascular

properties. The standard approach to analyze DSC is to derive

metrics such as the relative cerebral blood volume (rCBV) and

the percentage of signal recovery (PSR), both of which simplify

the dynamic signal. The rCBV relates to the tumor vascular density

with respect to normal tissue, and the PSR reflects the vascular

permeability.38 Both parameters remain the main focus of DSC

analyses for tasks such as tumor type differentiation, grade strat-

ification, and treatment response assessment.28,39,40 However,

among diverse clinically used DSC protocols, the performance

of these parameters differs greatly,38,41,42 which limits its use in

routine clinical practice. Although recent multidisciplinary efforts

have beenmade in the community to agree on a commonproced-

ure,43–45 a global standardized DSC workflow is still lacking,

regarding variations in the contrast preload settings, imaging pa-

rameters, and processing methods, all of which pose additional

challenges to the generalizability of the technique and the estab-

lishment of reference rCBV/PSR values.

Regarding the use of DSC in aiding brain tumor diagnosis, it is

worth noting that, with a few exceptions,16,21,46 most studies to

date have been designed to discriminate between two tumor

types or pairs of malignancies. Furthermore, even fewer ana-

lyses can be found over large populations or validating external

data, thus limiting the generalizability and clinical utility of the

presented approaches.

DSC curve normalization and voxel-by-voxel analyses of the full

dynamic range can overcome the limitations of conventional met-

rics and unlock the potential of DSC as a tool for differential diag-

nosis among the most common brain malignancies. Moreover,

the application of deep learning techniques may enable new stra-

tegies of analysis and inference for dynamic data. In one of the first

works exploring deep learning in DSC data,47 the authors

described an end-to-end pipeline to obtain model-free perfusion

metrics from the raw data. They used one-dimensional (1D) con-

volutional neural networks (CNNs) to characterize the dynamic

DSC data of individual voxels. Park et al.34 developed an autoen-

coder and a clustering strategy to distinguish different brain areas,

including pathologies, from the 1D dynamic data.

In this work, we describe the development and validation of an

innovative, comprehensive framework for differential diagnosis of

GBM, brainmetastasis, and PCNSL, taking advantage of all of the

time points of the normalized DSC (nDSC) data. The proposed

Diagnosis In Susceptibility Contrast Enhancing Regions for

Neuro-oncology (DISCERN) app provides voxel-by-voxel signa-

tures of tumor type and is based on training 1D deep CNNs,

with only a small number of pilot scans for a given DSC protocol.

In the present study, we demonstrate the feasibility and accuracy

of the method and show its superior performance compared to

classifiers based on conventional DSC metrics. In addition, our

method exhibits on par or higher diagnostic capabilities in com-

parison to those of expert neuroradiologists. The potential of

DISCERN is to aid radiologists in interpreting brain MRI data,

thereby enhancing the diagnostic capacity of experienced neuro-

radiologists and allowing less experienced radiologists to achieve

a higher level of proficiency. To facilitate ease of use, we have de-

signed a user-friendly interface with the ultimate goal of mini-

mizing the need for invasive brain biopsies and guiding the selec-

tion of optimal treatment strategies in clinical practice.

RESULTS

Population demographics
In this multicenter, retrospective study, we analyzed MRI data

from a total of 568 patients with biopsy-confirmed GBM, brain

metastasis, or PCNSL. The classification model was developed

and tested with 440 patients from a single center, and additional

independent cohorts with varying imaging protocols were pro-

cessed for external validation (Figure 1A). Further information

about the study cohorts and classification results can be found

in the STAR Methods and in Table S1. No statistically significant

differences (p > 0.05) in terms of age and gender were observed

between the three tumor types.

Development of a CNN for brain tumor classification
We trained our CNN classifier on a development cohort in which

patients were randomly split into training and test sets. For the

training set, we included 20 patients with PCNSL and 20 non-

PCNSL patients (10 with GBM and 10 with metastasis). This pro-

vides a comparable number of voxels for each tumor type and

each binary classification (i.e., PCSNL vs. non-PCNSL; GBM

vs. metastasis for the non-PCNSL cases). The test set consisted

of 25 patients with PCNSL, 85 with metastasis, and 290 with

GBM (Figure 1). Approximately 50,000 nDSC curves from voxels

of the enhancing region in the training group were used to train

the classifier. Each nDSC curve corresponds to a specific spatial

voxel of the enhancing tumor.

DISCERN outperforms standard classifiers for brain
tumor diagnosis
Following a hierarchical classification approach, our CNNmethod

successfully achieved three-way tumoral classification, outper-

forming the traditional perfusion metrics (i.e., rCBV and PSR)

and standing out from simpler binary classifiers. Specifically, for

the task of PCNSL diagnosis, DISCERN achieved superior perfor-

mance, with an accuracy of 0.94 (95% confidence interval [CI]:

0.93–0.94), and mean rCBV and mean PSR classified patients

with accuracies of 0.72 (95% CI: 0.70–0.74) and 0.84 (95% CI:

0.83–0.85), respectively. In a second step, patients not classified

as PCNSL were categorized as GBM or brain metastasis.

DISCERN differentiated GBM frommetastases, with an accuracy

of 0.81 (95%CI: 0.79–0.82). By contrast, the performance of stan-

dard DSC-derived metrics was markedly lower: rCBV classifica-

tion achieved an accuracy of 0.69 (95% CI: 0.67–0.71) and a

mean PSR of 0.65 (95%CI: 0.63–0.67). In Figure 2, the area under

the receiver operating characteristic (AUC ROC) curves of the bi-

nary classifiers and 3-way average ROC curves are shown for

both the DISCERN classifier and conventional rCBV/PSR. For

PCNSL vs. non-PCNSL, the CNN provided a significantly higher

AUC than rCBV (DeLong test against rCBV: p = 0.0019, against

PSR, p = 0.4615). For GBM vs. metastasis, the CNN resulted in

a higher AUC than rCBV and also than PSR (against rCBV: p =

0.0049, against PSR, p < 0.001).
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Lastly, we mimicked a real-world clinical scenario in which our

diagnostic support system is confronted with brain lesions

comprising the three most common malignancies, in this case

represented by the internal test dataset (unseen in the training).

In this setting, DISCERN achieved an accuracy of 0.78 (95%

CI: 0.76–0.79), which is substantially better than the three-way

accuracy achieved using mean rCBV, 0.59 (95% CI: 0.57–0.60)

and mean PSR, 0.55 (95% CI: 0.53–0.56). Furthermore, the

combination of rCBV and PSR into a logistic regression model

also yielded poor performance (Table S2). When validating

DISCERN, the tool obtained a three-way classification accuracy

of 0.71 evaluating 80 scans of patients from external centers,

0.72 on 25 cases from a 3T scanner (same center as the 1.5T

development data), and 0.78 on 23 patients with GBM from the

Ivy GAP public dataset (Table S3). These data underscore the

potential of DISCERN for differentiating among the three

most common clinical diagnostic challenges in patients with

enhancing brain lesions.

Voxel-wise explainable representation of the CNN
decision process
DISCERN provides spatial probability maps of tumor classifica-

tion, which are then used to obtain a voxel proportion and a pa-

tient classification label. In Figure 2A, we present three examples

per tumor type of the voxel-wise probability maps according to

the DISCERN classifier. The probability maps are shown overlaid

onto the CE-T1WMRI for anatomical references. Overall, the tu-

mor type probability maps are smooth and identify the tumor

type with high confidence in most voxels, even when intratumor

signal heterogeneity is seen in the contrast-enhanced T1W scan.

Voxels exhibiting a high probability of belonging to the incorrect

tumor class tend to be located either in the boundary of the

enhancing area or around necrotic intratumoral spots. This

potentially reflects partial volume (i.e., inclusion of signal from

tumor and nontumor areas within a voxel) or intratumoral

heterogeneity.

Visual interpretation of the CNN classification
We further sought to implement Class Activation Mapping

(CAM) to provide a visual explanation of the DISCERN classi-

fication network. The ScoreCAM48 method yields a normal-

ized score of the contribution of every input to the final classi-

fication of a CNN. This allows us to identify the most

discriminative time points for nDSC differentiation.

ScoreCAM spatial maps were obtained for each binary classi-

fication (Figure 3A). The CNN focuses mostly on the bolus

passage to classify the central tumor region (middle row for

PCNSL vs. non-PCNSL and lower row for GBM vs. metastasis

A B

Figure 1. Summary of the population and study design

(A) Collected, excluded, and included data for analysis and further split into the development cohort and external validation cohorts. The number of patients for

each tumor type and the respective nDSC perfusion distribution are shown for each cohort.

(B) Processing pipeline of the DISCERN app for 3-way tumor classification of DSC data. At the top, the input images of CE-T1WI for automated region of interest

selection and DSC for classification are provided. DSC curves are then extracted voxel-wise from the enhancing tumor and normal white matter in the

contralateral hemisphere. The dynamic DSC signals from the enhancing tumor are normalized (nDSC) to thewhitematter. Every nDSC is classified by 2 sequential

CNNs, obtaining a probability map and an overall tumor classification. CE-T1WI, contrast-enhanced T1-weighted imaging.
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differentiation in Figure 3A). In contrast, the bolus passage

seems less important for some voxels in surrounding regions.

This suggests that the CNN effectively considered the bolus

passage as a discerning characteristic, but also that it pro-

vides additional tissue perfusion differences compared to

the raw perfusion signal (top row in Figure 3A).

The average ScoreCAM values per tumor type and per CNN

classifier can be found in Figure 3B (upper row for PCNSL vs.

non-PCNSL and lower row for GBM vs. metastasis differentia-

tion). Overall, the sharper signal changes of the nDSC (i.e., steep

slopes during contrast arrival and washout) have a higher contri-

bution score. This is especially true for GBM, with greater differ-

ences in these time points with respect to the other two tumor

types (average nDSC shown in black in Figure 3B). For PCNSL

and metastasis, the last part of the signal is also considered

important, which can be expected given the overall higher signal

magnitude reached in these cases. Importantly, applying 1D

CNNs over nDSC signals allowed analysis of the local changes

of the signal over time. In this regard, methods that only consider

the signal magnitude of specific time points, such as PSR, or a

derived measurement such as rCBV, may overlook local nDSC

changes occurring over time that reflect specific physiological

traits of the tumor.

A user-friendly app to aid brain tumor diagnosis
The DISCERN app was successfully implemented at the partici-

pating institutions for validating the tool in external cohorts, as

illustrated in Figure 4 and Table S3. The tool requires approxi-

mately 2 min to process a new case and provides a classification

outcome, in the formof (1) voxel-wise tumor typeprobabilitymaps

and (2) patient-wise tumor type. In addition, it shows the average

nDSC for the enhancing tumor and white matter, as well as a visu-

alization of the segmentation for the user to safely check the pro-

cess. The mask can be automatically segmented from the

enhancing tumor by DISCERN or it can be provided by the user.

The DISCERN app provides a classification label with balanced

sensitivity and specificity (Youden’s index) by default, but a given

clinical scenario may require a different classification threshold.

To that end, sensitivities and specificities for every threshold are

displayed, and the default settings can be changed.

In the benchmark study assessing the diagnostic efficacy of

our tool in comparison to two neuroradiologists, notable

A B

C

Figure 2. Probability maps and diagnostic performance of DISCERN

(A) Nine cases (3 per tumor type) correctly classified by DISCERN are shown, from left to right: PCNSL, metastasis, and GBM. In the upper row, a representative

2D slice of the CE-T1WI registered to the DSC with overlaid probability maps for PCNSL vs. non-PCNSL (center row) and for GBM vs. metastasis (lower row) of

non-PCNSL cases.

(B) ROC curves for binary classifiers PCNSL vs. non-PCNSL (top) and GBM vs. metastasis (bottom) for the proposed CNN, rCBV, and PSR. The CNN provided

significantly higher AUC than rCBV for PCNSL vs. non-PCNSL and higher than rCBV and PSR for GBM vs. metastasis.

(C) Three-class ROC curves showing mean and SD of 2-class combinations, from left to right: the proposed CNN, rCBV, and PSR.
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distinctions were observed between the senior and junior radiol-

ogists, achieving accuracies of 0.80 and 0.40, respectively (it is

worth noting that a random chance accuracy is 0.33 in the

three-way classification scenario). Within this subset, our tool

demonstrated a commendable performance with an accuracy

of 0.73, effectively identifying all of the instances of PCNSL by

relying solely on perfusion-based information. Furthermore, in

cases in which the radiologists exhibited elevated levels of un-

certainty (16 out of 30 cases), our tool accurately diagnosed 11

out of these 16 instances (Figure S1). These results underscore

the potential of the tool to enhance diagnostic accuracy and reli-

ability, particularly in scenarios characterized by increased diag-

nostic complexity.

DISCUSSION

We present a voxel-wise method for analyzing perfusion scans

with CNNs and improve brain cancer diagnosis, built upon prior

DSC signal normalization.49 By applying this method, we were

able to surpass the performance of previousmodels for noninva-

sive differential diagnosis of the most frequent malignant brain

tumors (i.e., GBM, metastasis, and PCNSL, representing up to

70% of all malignant tumors in the brain6), which is critical to

define an optimal treatment approach. Notably, our method

showcases superior diagnostic capabilities compared to those

of neuroradiologists. The potential of DISCERN is to assist radi-

ologists in interpreting brain MRI data, amplifying the diagnostic

proficiency of expert neuroradiologists and enabling less experi-

enced counterparts to attain a heightened level of expertise.

Our deep learning framework takes advantage of the large

amount of information provided by the thousands of voxel-

wise nDSC signals available in each individual DSC MRI

scan,47,50 and achieves optimal performance through training

with a limited number of scans from a few patients at fixed

DSC protocol (on the order of 30–40 cases). Our approach is

particularly appealing for medical imaging applications, in which

the design of robust deep learning methods is challenged by the

limited number of scans available. In addition, our method

A

B

Figure 3. Visual interpretation of the CNN classification

(A) ScoreCAM spatial maps to further understand what the most discriminative nDSC time points for classification per voxel are. We show here a representative

case of a metastasis in a 2D slice of the DSC (red box at leftmost). In the upper row, consecutive DSC dynamic time points, zoomed in on the lesion. In the center

row, spatial importance score maps obtained with ScoreCAM for PCNSL vs. non-PCNSL and for GBM vs. metastasis in the lower row; the score was scaled to

sum 1 over all time points in each voxel to observe relative importance in space.

(B) The average importance of each time point obtained from ScoreCAM that contributes to the tumor classification of nDSC curves, for PCNSL vs. non-PCNSL

(upper row) and GBM vs. metastasis (lower row) differentiation; average tumor type nDSC in the training set is overlaid as a black solid line.
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distinguishes between tumor types in a three-way classification

task. This can be of particular relevance as a support tool for dif-

ferential diagnosis in clinical practice, and is a considerable step

forward as compared to the current literature, which is domi-

nated by binary classification studies.11–14,28

Although three other published works16,21,46 have included

different kinds of three-way classifications among themost com-

mon brain tumors (GBM, metastases, and lymphoma), they

show some limitations. Liu et al.16 used the three-way classifica-

tion as a first step to select the metrics for further pairwise clas-

sifications. They considered T1w and T2w anatomical images,

with DSC regarded as a future step to improve their results. Tar-

iciotti et al.46 developed a three-way classification with multi-

parametric MRI data, using a 2D ResNet model, which would

only take advantage of spatial information, but not of dynamic

temporal information of DSC, and the reported performance of

Figure 4. Implementation of the app with an easy-to-use interface

The image illustrates the web interface of the DISCERN app Docker, used to infer results for external validation cohorts. In the uppermost tile, the user dashboard

shows the ongoing and finished studies in which to run the pipeline. The next tiles show the results, namely the reference image used for segmentation and

respective enhancing tumor and white matter regions, the average nDSC curves of those regions, the tumor probability map and distribution, and a final

classification result.
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the model was only moderate. Wang et al.21 reported a two-step

classification scheme similar to ours, and using only conven-

tional DSCmetrics, with the main limitation being the lack of vali-

dation in external cohorts.

In contrast, we present the largest dataset reported in this

context. The voxel-by-voxel approach to the classification of

DSC data takes advantage of inherently redundant information.

Furthermore, the 1D CNN takes into account the changes in

the temporal profile of the bolus passage, which other methods

ignore or simplify. It also produces probability maps, facilitating

the visual inspection of the spatial distribution of the classifica-

tion. Finally, we have validated the results in external cohorts,

demonstrating the generalizability and potential utility of our

findings.

A noninvasive diagnostic support tool is especially relevant

when considering PCNSL among potential diagnoses. Cortico-

steroids are a reasonable therapeutic option for mitigating

neurological symptoms secondary to edema in patients with

malignant brain tumors. However, early stereotactic biopsy

before corticosteroid administration is mandatory when a brain

PCNSL is suspected, becausemedication with steroids can alter

the histological pattern of PCNSL.5 Moreover, PCNSL is highly

sensitive to chemoradiotherapy instead of resection, which is

contraindicated, as opposed to GBM or metastasis. Therefore,

a reliable characterization of the tumor type by imaging is critical

to devise the appropriate management of patients.

The DISCERN app provides voxel-wise tumor type probability

maps, which are then used to obtain a voxel proportion and a pa-

tient classification label. The default Youden’s index (tradeoff be-

tween sensitivity and specificity) can be changed to the needs of

different clinical scenarios. For instance, some medical cases

may require a very high specificity for suspected GBM and me-

tastases with respect to PCNSL and, if all evidence supports it,

then an additional intervention for a biopsy could be prevented.

Therefore, the voxel proportion can be adjusted in the app to

match the user’s needs.

The presented method successfully achieved three-way tu-

moral classification, outperforming the traditional perfusion met-

rics, and standing out from simpler binary classifiers. When

tested, our method performed with accuracies of 0.94 for

PCNSL identification, 0.81 for differentiation of GBM from

metastasis, and 0.78 for three-way classification.

Of note, the DSC protocol used for model development did

not include contrast preload. Contrast preload is a common

approach described in the literature to achieve a better estimate

of the rCBV.42 However, preload can be undesirable for a num-

ber of reasons. First, it delivers a higher contrast dose to the pa-

tient. Second, it can introduce potential variability sources,

affecting the nDSC signal morphology. As countermeasures,

leakage correction and acquisition parameters that minimize

the T1 effect, such as low flip angle, have been shown to effec-

tively yield reliable rCBV estimates without preload.42,44 In this

study, we only had access to retrospective data with high flip

angle; consequently, rCBV was estimated with leakage correc-

tion, obtaining results comparable to those of PSR. The combi-

nation of both rCBV and PSR in logistic regression was explored

for completeness, but it did not improve the results of the individ-

ual parameters. It is noteworthy that even though the DSC proto-

col used a nonoptimal flip angle for PSR or rCVB quantification,

DISCERN achieved a good level of discriminatory performance.

This was further confirmed by validating the results using hetero-

geneous external validation data, indicating a high level of

robustness in the method.

A key feature of our CNN approach is the computation of

voxel-wise spatial representations of perfusion curve character-

istics in the form of maps describing the probability of a voxel to

belong to a specific tumor type. Such spatial probability maps

provide an explainable representation of the CNN decision pro-

cess andmay enable further studies of intratumor heterogeneity,

making them an appealing tool for integrative multi-omics

research and also of potential clinical interest to plan surgical

procedures. Few studies have applied deep learning to voxel-

wise DSC signals in neuro-oncological applications. A recent

study34 used a deep autoencoder to derive a set of five descrip-

tors of DSC that could differentiate between pairs of tumor types.

However, the reconstructed time signals from such aminimal set

of descriptors, in contrast to the original signal, produce a

smooth perfusion curve morphology, which may omit relevant

details for diagnostic applications.

In conclusion, the presented CNN framework for three-class

brain tumor classification based on voxel-wise DSC signal anal-

ysis is feasible and outperforms classifiers built on conventional

rCBV and PSR metrics. The method can be trained using a

limited number of scans, which most centers are likely to have

available, with notable generalization to external data. In addi-

tion, it provides voxel-wise maps of tumor type signatures that

could be useful to visualize the CNN classification process and

for tumor spatial characterization. As a way to make this tool

more accessible and eventually make an impact in clinical

practice, the proposed method has been implemented on the

user-friendly DISCERN application, which is made freely acces-

sible at http://84.88.64.102:5000/discern-app, to enhance study

reproducibility and accelerate its adoption in future clinical

studies.

Limitations of the study
The diagnostic tool DISCERN was trained with perfusion MRI

data from scans without preload contrast injection, which may

limit its performance on preloaded MRI scans. Tests on all

eligible external 3T scans with a contrast preload of 23 patients

with GBM from the IvyGAP51 dataset yielded 18 cases correctly

classified asGBM (0.78 accuracy). Further testing in preloadMRI

scans should be performed to explore the generalizability of the

results in this context.

The study used automatically segmented regions of interest,

revised by an experienced neuroradiologist. However, the vari-

ability in segmentations among different neuroradiologists has

not been explored. The proposed future segmentation methods

aim to minimize manual input, but this aspect requires further

development.

The training data were obtained from only 40 patients, which

may introduce a bias toward the inherent characteristics of this

subpopulation. To account for patient and scanner biases, we

normalized the signals to those of white matter and we trained

with an equal number of patients for every malignancy. As a lim-

itation of the retrospective nature of this study, older diagnostic
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standards were in place and isocitrate dehydrogenase mutation

status was missing from this study, which would provide a

cleaner glioblastoma cohort.

The current algorithm is limited to certain MRI sequences (T1-

weighted and perfusion MRI) and does not yet incorporate other

potentially useful image data, such as diffusion MRI,52 which

may offer more detailed insights into tumor microstructure and

potentially improve the performance of the tool.

DISCERN is user-friendly and can classify three common brain

tumors, but its application to other tumor types is still under

development. In addition, although the framework shows prom-

ise, it requires further clinical qualification and approval for use

as a medical diagnostic tool.
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This study corresponds to objective 3 of the thesis. In this work, markers derived from

whole-body MRI of patients undergoing treatment were extracted and analysed to look for

associations to response to therapy. The project aimed at supporting MRI as the preferred

imaging modality for the evaluation of response in bone metastases. The PhD candidate

was in charge of data collection, data management and inspection, image processing, feature

extraction, statistical analyses and manuscript drafting.
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Whole-body Magnetic Resonance Imaging as a Treatment Response
Biomarker in Castration-resistant Prostate Cancer with Bone
Metastases: The iPROMET Clinical Trial
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Bernardo Herrera-Imbroda h, Lucas Regis b, Laura Agundez a, David Olmos i, Nahum Calvo f,

Manuel Escobar b, Joan Carles a,b, Joaquin Mateo a,b,*, Raquel Perez-Lopez a,*

Evaluation of bone metastasis in metastatic prostate cancer
(mPC) remains a clinical challenge, as computed tomogra-
phy and bone scans are unable to capture the response of
these metastases to therapy. This is relevant for patient
management and drug development, as radiographic
response is a common intermediate endpoint in phase 1/2
clinical trials [1].

We and others previously reported that whole-body
magnetic resonance imaging (WB-MRI) including diffu-
sion-weighted (DW) imaging allows quantitative assess-
ment of bone metastasis; specific guidelines for
interpreting WB-MRI in clinical practice have now been
proposed [2]. DW-MRI provides information on tissue cellu-
larity, primarily via the apparent diffusion coefficient (ADC),
and on fat content (fat fraction, FF) [3]; as the fatty bone-
marrow repopulates the metastatic niche on killing of
tumour cells, FF could be relevant for response evaluation
[4].

We conducted a multicentre clinical trial of WB-MRI in
patients with mPC (iPROMET; NCT05078151). Patients with
mPC and bone metastases starting standard-of-care sys-
temic therapies (androgen receptor signalling inhibitors
[ARSIs]: abiraterone acetate, enzalutamide, apalutamide,
or taxane-based chemotherapy) underwent WB-MRI at
treatment baseline, after 4 and 12 wk of treatment, and,
when possible, at disease progression. We assessed the cor-
relation of imaging biomarkers to response and time to pro-
gression (TTP). Response was defined as either a Response
Evaluation Criteria in Solid Tumours (RECIST) v1.1 response
and/or a 50% decrease in prostate-specific antigen (PSA50)

from baseline. TTP was defined as the time from treatment
initiation to radiographic progression or unequivocal clini-
cal progression triggering treatment discontinuation. Fur-
ther details on the study design are available in the
Supplementary material.

A total of 88 patients participated in the study, of whom
74 received therapy and underwent at least one follow-up
MRI examination. Here we report results for all 55 evaluable
patients with metastatic castration-resistant prostate can-
cer (mCRPC; 52 ARSI; 3 chemotherapy). Progression events
were observed in 36/55 patients (median follow-up 11.13
mo), with a median TTP of 8.28 mo. The combined
RECIST/PSA50 response rate was 41/55 (75%).

At week 12, median FF on therapy was higher for
responding patients (17.7, interquartile range [IQR] 13.2–
22.1) than for nonresponding patients (10.34, IQR 8.4–
16.8; p < 0.001). For bone metastatic volume on DWI at
week 12, a relative decrease was observed for responding
patients (median �24.0%, IQR �47.0% to +1.8%) and a rela-
tive increase for nonresponding patients (median +12.4%,
IQR �4.3% to +26.3%; p = 0.024). An ADC increase >35% (pre-
defined in the study) on therapy was observed in three
cases, all of whom were responding patients. However,
the response rate was also high (36/48, 75%) among
patients who did not achieve a >35% increase in ADC.

Both absolute bone metastatic volume (hazard ratio [HR]
1.004; p = 0.02) and FF (HR 0.92; p < 0.005) at week 12 cor-
related with TTP. No significant associations for absolute
ADC values were observed. Combining volume, FF, and
ADC into multivariable models resulted in a concordance
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0302-2838/� 2024 European Association of Urology. Published by Elsevier B.V. All rights reserved.

E U R O P E A N U R O L O G Y x x x ( 2 0 2 4 ) x x x

avai lable at www.sciencedirect .com

journal homepage: www.europeanurology.com

Please cite this article as: A. Garcia-Ruiz, C. Macarro, F. Zacchi et al., Whole-body Magnetic Resonance Imaging as a Treatment Response Biomarker
in Castration-resistant Prostate Cancer with Bone Metastases: The iPROMET Clinical Trial, Eur Urol (2024), https://doi.org/10.1016/j.
eururo.2024.02.016



index (C index) ranging from 0.60 (volume + ADC) to 0.69
(volume + ADC + FF). According to these models, higher
bone-disease volume (HR 1.003, 95% confidence interval
[CI] 1.000–1.006), lower FF (HR 0.899, 95% CI 0.841–
0.960), and lower ADC (HR 0.999, 95% CI 0.997–1.001) at
week 12 were associated with a higher risk of progression.

Blood samples for assessment of circulating tumour DNA
(ctDNA) were collected from 31 patients. The ctDNA frac-
tion was positively correlated with the volume of bone dis-
ease at baseline (q = 0.39, p = 0.043) and at week 12
(q = 0.46, p = 0.015). On multivariable analysis, addition of
ctDNA to the imaging variables increased the C index from
0.68 to 0.78 (Fig. 1E).

The key findings from our study are the association
between decreasing volume of bone metastasis, and higher
FF, with response to therapy. Prior WB-MRI studies focused
on ADC [5]. In this trial, some responding patients presented
ADC increased in some responding patients and decreased
in others; the ADC association with outcome improved after
adjusting for FF at the individual-patient level. We hypoth-
esise that low ADC at follow-up in some responding
patients was because of an increase in fat infiltration in
responding bones; hence, we conclude that fat infiltration
should be considered when interpreting ADC results. This
is further supported by the observation that in ten bone
metastatic biopsies acquired in the study, MRI-derived FF

correlated with pathology evaluation of the adipose fraction
(R = 0.809; p = 0.0003).

We acknowledge that the use of multiple MRI scanners is
a limitation of this analysis; common imaging protocols
were defined across participating sites to control for poten-
tial bias. Another limitation is the sample size, with 55
evaluable mCRPC patients; arguably, this still represents
the largest multicentre prospective trial of WB-MRI in
mCRPC. Future studies that include other functional imag-
ing techniques, such as prostate-specific membrane antigen
positron emission tomography, would help in defining the
optimal use of imaging tools for precise monitoring of mPC.

In conclusion, our study demonstrates that MRI-derived
biomarkers are valuable indicators of patient benefit in
mCRPC. Multivariable combinations of imaging variables
improved outcome predictions. Moreover, we showed that
multi-omics approaches combining MRI and ctDNA hold
promise for monitoring patients with mCRPC.
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initiation (Welch’s t test: ns = not significant; * p ≤ 0.05; *** p ≤ 0.001). (C) Kaplan-Meier curves for time to progression for patients stratified by the median FF
value for the population at 4-wk and 12-wk follow-up. The difference is shown as the p value from log-rank tests. (D) Spearman’s rank correlation between
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CHAPTER 5

Global discussion

Medical image analysis has experienced major developmental breakthroughs from the digi-

talization of data and the implementation of imaging archiving systems to the late methods

of analysis, feature extraction and deep learning. However, the guidelines for major clinical

steps within the management of cancer like diagnosis, prognosis and treatment monitoring,

still rely on subjective assessments of the images, based on visual cues and annotations.

With cancer rates becoming ever more concerning, radiomics computerized features, ma-

chine and deep learning techniques are hoped to help characterize the disease, support med-

ical decisions and automate tasks, providing better reproducibility and generalization of

methods that can escalate to eventually improve the management of cancer patients. Among

the different imaging modalities, MRI offers a wide range of contrasts that can be obtained

from the same scanner, a unique feature that no other modality has. Besides anatomical

information, MRI can also acquire sequences that relate to biophysical properties of the body

tissues, such as vasculature and tissue microstructure by means of perfusion and diffusion

MRI. Furthermore, metabolic and molecular information can also be obtained with special

techniques [83–85, 87]. Metrics derived from MRI have already shown value for various med-

ical applications and there is great potential for novel biomarker development.

In this thesis, three specific clinical needs were identified where MRI-derived markers

could help in the characterization of cancer to support medical decisions, in the context of

cancer diagnosis, prognosis and evaluation of treatment. Novel approaches were proposed

to improve over previously described methods, validating the results by comparing against

established reference methods and looking for further evidence from biological samples.

In Study 1, metrics quantifying the tumour remnant were defined and associated with

patient survival. The study aimed at providing quantifiable and objective metrics, as op-

posed to prior visual assessments. In addition, the optimal timing of the MRI scan after
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surgery was observed to be within 24 hours and 72 hours for prognosis assessment. The

ability to identify patients with longer and shorter survival can impact therapy options and

monitoring, and further improving and developing new biomarkers.

In Study 2, neural networks were explored in DSC MRI to differentiate among three

types of cancer. Those are the most common brain malignancies diagnosed in adults and the

differential diagnosis on medical images is a complex task of high relevance for surgery and

treatment options. The method was compared against previously described metrics, against

neuroradiologists with different experience and validated in external data. The implementa-

tion was also publicly released.

In Study 3, the focus is on the monitoring of response during treatment for bone metas-

tases using MRI, that otherwise cannot be evaluated with CT by RECIST [4]. The strong

association of the fat fraction points at its potential use as a quantifiable biomarker. Al-

though the MET-RADS-P guideline [25] covers bone metastases, only the ADC is quantified,

with Dixon MRI relegated for visual inspection only. With the results obtained, it is hoped

that further studies explore the FF and replicate the results, so that the guideline can be

updated to take it into account.

Given the heterogeneity and complexity of cancer disease, the management of cancer has

been switching latey from a global view to specific solutions unique to each tumour. For a

long time, cytotoxic drugs of broad spectrum, such as traditional chemotherapy, were the

only treatment. Such approach may be overly aggressive, in the sense that both tumoral

and healthy cells would be killed, resulting in high toxicity and adverse side effects. The

discovery and understanding of the biological mechanisms of the cells, by the analysis of

genes, proteins, but also of histological assays of the tissues and radiological images, have

made it possible to start differentiating between types of tumours and developing better,

specific solutions.

In the same way, the studies described in this thesis focus in the practical implementation

of solutions for three clinical scenarios that correspond to real needs in cancer management.

By tackling one specific problem at a time, the proposed methods are meant to become a

useful contribution in the characterization and assessment of cancer. Notably, the devel-

opment of imaging biomarkers follows common steps, even when there may be differences

in the acquired images or the body region under study. Some common procedures include

the definition or extraction of features, the association to the patient well-being and the

validation of the proposed methods.
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Medical imaging biomarkers have demostrated their value in critical steps like screening

and follow-up, currenly described in guidelines of reference. Medical image analysis is a very

active research discipline, recently boosted with solutions based on neural networks and deep

learning, that is hoped to bring better, faster biomarkers for cancer disease.

5.1 Bridging the gap between research

and clinical practice

While it was shown that the development of imaging markers for cancer management is

possible, there are still multiple factors to consider to bring imaging-derived features to be

used in medical settings. The establishment of novel markers requires a long process of

validation and implementation steps, facing multiple challenges. That makes it difficult for

researchers to pursue and for the novel methods to achieve their intended purpose. Some of

those challenges and proposed solutions in the included studies will be discussed next.

5.1.1 The need for collaborative research

Among the considerations for novel biomarkers to be widely accepted, a key aspect is the

validation. A comprehensive, multi-centric and large-scale validation is necessary to show

how the biomarker works, how robust it is and how well it generalizes. That would build

confidence in other researchers and companies to include the biomarker in clinical trials and,

as a result, propelling its use, popularity and development. In this sense, a major factor for

the recognition of new biomarkers may be the visibility of the proposed method and how

many people it reaches. As a step towards higher visibility and impact, the implementation

of Study 2 was made publicly available. However, visibility also relates to the specific

use-case and the rate of occurrence of the disease in the general population. As an exam-

ple, a rare disease may remain a niche topic, as fewer researchers would be working on it.

Paradoxically, a very crowded research topic may be detrimental to potential biomarkers, as

many different approaches may be proposed for the same purpose, a long-standing problem

of research that was visibly criticized lately [88].

Specifically for the prognosis assessment based on the remaining tumour after surgery,

another study was developed in parallel to Study 1 [30], proposing a different metric, which

was not replicated when applied to the cohort in Study 1. Whether that was related to

methodological differences or population differences, collaborative efforts between research

groups could bring together many benefits. A single study with a unique methodology, a
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larger dataset that may better represent the general population, and a higher visibility and

impact achieved. In view of that, multiple institutions were involved to participate in Study

2, especially regarding the validation of the method.

However, dealing with larger datasets is a double-edged sword, as it usually implies higher

heterogeneity in the imaging acquisition and inherent demographic differences in populations,

which demands extensive data curation and methods handling missing data, data imbalance,

biases and confounding factors. That complexity rises exponentially when considering multi-

modality images and other sources of clinical information, a setback that was apparent in

Study 3, with the added complexity of whole-body images. Methods for the homogeniza-

tion of images, registration of images and normalization of values are known to facilitate the

analysis and mitigate potential issues, but there is still a need for better, automated methods.

More and more, publicly available datasets in repositories or challenges [89, 90], are being

published that provide anonymized curated data ready for use, enabling a better develop-

ment and validation of tools and markers for medical purposes. As such, public datasets

were explored and used in Study 2 for testing and validation. Challenges also support com-

petitions for developing the best algorithm for a specific task, sometimes yielding significant

research advances. An advantage of such contests is that holding the methods under a single

contest allows a fair comparison, something often difficult to do from single, isolated studies.

5.1.2 Implementation and cost-effectiveness

A key aspect on the deployment of novel imaging biomarkers is the technical knowledge.

The implementation of a new system would need to comply with regulatory standards of

data privacy and safety of use. It may need to communicate with other systems in the

hospital or provide the means to access data easily [33]. It is possible that the hospital staff

needs training and that an expert maintains the system. In the case of medical images,

that means dealing with the DICOM (Digital Imaging and Communication in Medicine)

standard, which oftentimes is not met by different vendors and the overall complexity makes

the implementation unattractive.

Fortunately, existing software such as Docker enables building a self-contained application

with all necessary packages, simplifying a part of the process. This was explored in the

implementation of the methods from Study 2 for use in external centres. Still, a dedicated
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application needs continuous maintenance during real deployment, which is another difficulty

in bringing new solutions forward.

Besides that, medical images may pose additional challenges, such as handling 3D or

higher dimensional data, as well as relatively large image volumes. This was an issue in

Study 3 with whole-body images, where processing steps such as registration required

powerful computing resources. Arguably, affordable computing power is available nowadays

in many shapes, including cloud services. Other approaches to handle large images include

the analysis by patches or small regions, so it is expected that intensive processing would

not be problematic in any case.

5.2 Inherent limitations of reference valuesground truth

Current methods to evaluate the response to treatment or the characterization of cancer are

imperfect. That also means that comparing novel markers with the current references may

not completely reflect their potential. In particular, the definition of response by RECIST

is based on the manual measurements of the tumour diameter of a few lesions only, which

may not completely represent the disease burden.

The validation against the established markers and outcomes proved challenging to ap-

ply in Study 3, where MRI was supposed to provide response information from lesions that

were not possible to measure from current guidelines on CT imaging. In fact, two criteria are

used in prostate cancer patients, the presence of prostate-specific antigen (PSA) [91] and the

standard radiological criteria [4], which does not cover osteoblastic metastases, the subject

of Study 3. That means that, for a number of patients, only the PSA could be regarded

as reference of response to validate the proposed markers. The PSA, though an established

biomarker in prostate cancer, is very variable from patient to patient and the percentage of

relative change of the PSA has been proposed with different cut-off values [92]. Moreover,

aggressive prostate cancers, like those undergoing neuroendocrine transformation, may not

express PSA. This limits the usefulness of PSA dynamics as a response biomarker in these

often-metastatic tumours.

Alternatively, survival information is an established outcome in the development of

biomarkers. However, survival outcomes are not free from limitations, as mentioned in the

introduction. The OS is arguably the most unambiguous of them all by definition, although

it does not take into account deaths unrelated to the disease, which in smaller populations

may introduce outliers. Additionally, it usually takes a longer time to collect. The PFS and
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TTP both need an evaluation of the tumour progression, which also suffers from limitations,

as described. Ideally, both OS and PFS would be used as reference, as in Study 1. In

Study 3, a prospective study with more recent data, OS was not available for all patients.

Additionally, as it was a smaller population, TTP was used in Study 3 and no conflicts

were detected among different criteria for patient response.

Given those issues, relating imaging markers to results from biopsy analysis or histologi-

cal features is a valuable addition in the validation of new methods. In Study 1 and Study

2, patient diagnosis was confirmed by histological analysis, the gold standard technique, and

relations to the tissue properties with imaging markers were explored in Study 3 to support

the hypothesis and results. Even so, biopsy samples also suffer from limitations. The ob-

tained sample may be only a small portion of the affected region, so there is the risk that the

sample is not completely representative of the disease. Furthermore, the diagnostic rate of

biopsies may depend on the experience of the physician [93], the location of the tumour and

other uncontrollable variables, which further supports the discovery of non-invasive imaging

biomarkers.

Additionally, it must be noted the role of manual annotations. Current imaging markers

are based on the delineation of areas of interest by an expert radiologist, which are considered

the ground truth. This step is crucial in the development of imaging biomarkers and a

considerable bottleneck in any practical implementation of computerized imaging features,

besides introducing inter-observer variability. In the case of Study 1 and 2, it was possible

to identify the region of interest for most patients via simple image processing, which then

were inspected for any required corrections. However, this was not possible to perform for

Study 3. Newer methods of automated segmentation are showing impressive results on

medical images [49, 94, 95] and could be a major breakthrough for research and medical

purposes.

5.3 Prospects of artificial intelligence in medicine

The rise of models based on neural networks and transformers have brought impressive feats

on a number of applications, some of them with a medical focus. Their flexibility with

the ability to capture complex representations from virtually any input, and an end-to-end

pipeline of feature extraction and model fitting make them a very attractive approach for

current research. In fact, the rationale for using convolutional neural networks in Study 2

was that it was deemed suitable to extract as much information from the dynamic data as
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possible, contrasting with previous methods.

In the revolution that AI is experiencing, it may seem as if these methods were the

ultimate answer to any question or task. However, there are still limitations to address,

especially when deployed for sensitive applications such as healthcare services.

5.3.1 Data availability

Because the models rely on many layers, and therefore many parameters to fit, training of

such models generally needs large pools of data, which also helps prevent overfitting and

make the model generalize better. A small data size is often a challenge in medical imaging

studies, where data is inherently limited by the available digital data collected and by the

incidence rate of the disease or condition under study.

Multicentric studies may be able to include more patients, but such collaborations re-

quire a considerable effort in terms of coordination, logistics, ethical permissions and access

to technical knowledge. In this regard, open anonymized datasets are ever growing and

becoming a powerful leverage for model development and validation, as well as for the cre-

ation of contests, such as the MICCAI challenges, where groups or individuals compete to

develop the best model for a predefined task [89]. When the number of images available

is low, transfer learning can be used, which refers to the retraining or fine-tuning of an al-

ready trained model but on different types of images. Other approaches consist on taking

advantage of redundant data in single scans, such as the voxel-wise method used in Study

2, which enabled obtaining thousands of 1D data from a few patients, but also splitting the

image in smaller patches that can serve as input samples, such as the works developed for

segmentation and on histological images [50, 95].

5.3.2 Explainability

A proper understanding of the learned representations from deep learning is still a work in

progress that could boost the confidence of users and the implementation of these models,

especially in critical applications like healthcare. To address this, a method of explainability

was used in Study 2, showing the relevant information of the perfusion dynamics to achieve

a diagnosis. Moreover, the model was tested on different datasets to demonstrate its gener-

alisation. Arguably, comprehensive testing of a model under different conditions and inputs,

and further validation on other datasets or against established biomarkers can alternatively

indicate the safe use of a model, something that can be missing or disregarded in published
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methods [88, 96].

In contrast, hand-crafted features have fixed definitions corresponding to image patterns

and linear models can be readily understood as a weighted sum of their elements. That

was the case for the metrics proposed in Study 1. On specific imaging acquisitions, models

based on the biophysical mechanisms that influence the measured signal provide a natural

way of linking the imaging data with biological traits, as well as inherently knowing the

assumptions and limitations of the model. That was the case of the ADC and FF in Study

3. In biomarker development, those are very desirable characteristics and, ideally, the best

aspects from all techniques could be eventually integrated in the future, that is, flexible self-

tuned models that can still be parametrized or trained with constraints based on biophysical

or biological evidence.

5.3.3 Multi-modal data

Interestingly, deep learning intra-model comparisons have been used to shed some light into

the learned representations [97, 98], finding similarities between the representations of mod-

els, especially larger ones. Some studies have explored the multi-modality aspect of model

representations [99] and there is the hypothesis that models are converging towards a uni-

fied representation space the more information they include [100], explaining the improved

performance and the benefit of multi-modal approaches. In fact, foundational models have

emerged as multi-purpose methods capable of wide generalization [52, 94].

Multi-modal and multidisciplinary approaches have long been regarded as one of the

keys to integrate information for cancer characterization, and actually guidelines take into

account multiple sources of data. The combination of metrics including clinical variables,

texture features, multiparametric MRI and others was explored in all three studies of the

thesis, whenever possible. But computerized methods still struggle in this aspect, possibly

lacking a unified effort of common methodology and data sharing. Looking at the rapid

development of AI models, it is possible that the community effort in improving AI would

indirectly help in the development of conventional models via the sharing of datasets, trained

representations and novel methodologies.

5.3.4 Bias and privacy concerns

The potential of AI applications in clinical settings is undeniable. However, several key

concerns require attention before widespread implementation. These concerns include both
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potential bias within the models and the privacy of patient data. Biases in the training data,

such as imbalances in ethnicity and sex of patients in medical data can make the models be

less sensitive to specific subpopulations, which warrants the use of techniques of bias miti-

gation as well as comprehensive testing and validation of models [101, 102]. In this sense,

statistical tests can be used to evaluate if sex and cancer type were balanced in defined

populations, as in Study 2.

As for privacy, building such models and bringing them forward as approved medical

tools require sharing data, often involving private companies that provide technical exper-

tise, which has triggered concerns for potential data breaching or misuse of sensitive and

confidential data [103]. For all studies presented in this work, appropriate communication

links, anonymization, storage and management of data were used to ensure data safety and

privacy. Still, there is active research focusing on anonymizing, deidentification and sharing

techniques, such as encryption and federated learning, as well as attempting to reconstruct

data from trained models [104]. Although bias and privacy issues have been long consid-

ered in the sharing and analysis of medical data, the use of large datasets and data sharing

for AI implementations must come with the responsibility to protect confidential information.

In view of the aforementioned points, it would be expected that current AI methods domi-

nate in a number of tasks, but remain heavily application-dependent. Until now, AI methods

shine with large training datasets and for relatively simple, repetitive tasks. Furthermore,

many research questions require a level of understanding of the physical or biological as-

sumptions made, for which explicit mathematical modelling may be preferred, at least until

the interpretation of neural networks is improved. Still, overly-complex problems such as

predicting protein folding and new protein structures may be readily attainable with AI

[105], which points at the dilemma of trading interpretability for blind performance.

In the medical context, any device, software or biomarker must pass several validation

steps for its safe, ethical and legal use, which on the one hand makes the development harder

to attain, but on the other hand guarantees its safety for medical purposes. Nevertheless,

multiple AI-related and machine learning methods have already been approved for clinical

use [106]. All in all, neural network models have come to stay and evolve. It would seem

that those disciplines that can access large enough datasets would probably benefit from AI

models in the short term. For more niche fields, hybrid models or alternative approaches

may still enable the use of these novel methods.
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CHAPTER 6

Conclusions

1. Computerized metrics from MRI allow to quantify the remaining enhancing tumour

after surgery in patients with glioblastoma multiforme, especially in the scans acquired

between 24 and 72 hours after surgery. The proposed metrics showed associations with

the survival of the patients, demonstrating prognostic value for clinical applications.

The use of quantifiable features can improve over the visual assessment of images and

help in the reproducibility and generalization of methods.

2. The differential diagnosis of glioblastoma multiforme, solitary brain metastasis and

primary central nervous system lymphoma can be performed by a model based on con-

volutional neural networks on normalized DSC MRI data. The voxel-by-voxel approach

allows training such models with few MRI scans. The proposed method performed with

remarkable accuracy as compared with conventional parameters and with neuroradi-

ologists, as well as in external data. The method provides probability maps of the

tumour diagnosis voxel by voxel, potentially serving as a computer-aided diagnostic

tool for supporting medical decisions.

3. The volume of disease, ADC and FF of bone metastases derived from whole-body

diffusion-weighted MRI were associated with response to treatment and with survival

of patients with advanced prostate cancer. The combination of imaging and clinical

parameters improved the accuracy of survival regression models, suggesting the multi-

modality approaches for the development of biomarkers. The fat content in bone

metastases computed by means of the FF showed a strong association with survival.

The role of the fat in the healing bone may play a major role in the interpretation of

the ADC and should be taken into special consideration for the assessment of patients

with bone metastases.
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