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Abstract

This project aims to investigate the impact of estimating the probability of default, due to
its unknown true value, to estimate the Value-al-Risk under the ASRF model. To accom-
plish this, a Monte Carlo simulation approach is employed to estimate de default ratio based
on predetermined ”real” probabilities of default. By simulating different scenarios, we can
assess the potential bias and evaluate the need for adjustments, such as confidence level mod-
ifications or the inclusion of a Margin of Conservatism (MoC), to account for estimation
uncertainty.
Keywords: Estimation error, Probability of Default, ASRF model,Value at Risk, Monte Carlo
simulation.
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Chapter 1

Introduction

The computation of risk measures in the field of financial modeling is subject to various
sources of uncertainty, including parameter estimation errors, which is currently not ac-
counted for. One critical parameter in risk assessment is the Long Run Probability of Default
(PDLR) within the ASRF (Asymptotic Single Risk Factor) model and its true value is un-
known. Thus, it is necessary to use the observed default ratio to estimate it. This project is
motivated by the need to understand the impact of the error of estimating the probability of
default in the computation of the widely used Value at Risk (VaR). In order to do so, we will
simulate different scenarios based on predetermined real values and compare the quantiles
computed with the real PDLR and with the estimated one. We will see that we are actually
underestimating the risk by using an estimation, and therefore a possible solution will be
evaluated.

1.1 Real value vs estimation
Over fifteen years ago, the Basel Committee on Banking Supervision (BCBS)1 implemented
the Basel II risk framework, by which banks were allowed to use their own internal models to
calculate minimum capital requirements for different types of risks. However, they mandated
a specific model for credit risk, so banks could only estimate certain parameters of the model.
The goal of this model is to provide a vehicle to estimate the maximum loss, in case the bank
can not meet its own credit obligations by resorting to its capital. Given a certain confidence
level (α), risk measures such as Value-at-Risk (VaRα)2 and Expected Shortfall (ESα)3 can be
computed using the Merton-Vasicek model, as it can be seen in Huang and Oosterlee (2007)
and Osmundsen (2018). However, in order to do so, the estimation of a parameter is required
since the true value is unknown. That is to say, that we need to replace the ”true value” of
the parameter, which appears in the theoretical model, by some estimation obtained from
observed data.
Estimations always introduce variability and potential error since they are derived from a

1See Basel Committee (2005).
2The VaRα is just the quantile whose probability of seeing a greater value is α.
3ESα is the average loss, given that the loss is greater than the VaRα.
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sample of data, real or simulated, and the specific observations in the sample may not per-
fectly represent the entire population, leading to sampling variability. This means that dif-
ferent samples could yield different estimations, introducing uncertainty into the parameter
substitution.4

Therefore, unless this new source of uncertainty is taken into account, we would be assuming
a greater error than what we expect. As said before, standard risk measures such as VaRα

have a confidence level α which establishes the error we are willing to accept.
By definition, the error we are willing to accept is 1 − α. However, let us say that the loss
is a function that depends on some parameter θ, so the Value-at-Risk also depends on this
parameter (VaRθ

α(L)). If the real value of the parameter is known, we can be sure that we
are actually accepting a 1− α error, but if the parameter is unknown and, thus, must be esti-
mated, the probability of surpassing the Value-at-Risk might be higher than 1 − α owing to
the inherent variability of the estimation of θ.

1.2 The BCBS decision
The Basel Committee on Banking Supervision (BCBS) utilizes VaRα measures to determine
the amount of equity capital required. Since estimating the parameters of the model induces
another source of error5, the BCBS sets a higher confidence level α to account for this ad-
ditional error. As an illustration, let us consider the target confidence level α = 99% which
means that the loss can’t be larger than the Value-at-Risk more than 1% of the times. As
said in the previous section, since the parameter needs to be estimated, it is likely that the
Value-at-Risk (V̂aR99%) obtained with the estimator θ̂ would not ensure that the realized loss
exceeds this threshold with a probability 1%. That is to say that V̂aR99%) underestimates the
VaR99% computed with the real parameter.
The BCBS, acknowledging this, tries to correct this bias by increasing the confidence level α
to, for instance, 99.9% . Nevertheless, in compliance with European regulations, banks uti-
lizing internal models are obligated to integrate an additional Margin of Conservatism (MoC)
that should be proportional to the estimation error. Moreover, as per the European Banking
Authority (EBA), the quantification of the MoC for general estimation errors should mirror
the dispersion of the statistical estimator’s distribution as it can be seen on EBA (2017). From
this two possible options can be inferred:

1. The rectification proposed by the BCBS, such as establishing the confidence level at
99.9%, is regarded as inadequate in accordance with European regulations.

2. The desired confidence level in Europe is indeed 99.9% rather than 99%.

This study aims to evaluate whether a confidence level of 99.9% is sufficient to offset the
estimation error that would be mitigated with a confidence level of 99% or 99.5%, assuming

4In general, there also other sources of error such as model assumptions that are not met by the data or
measurement errors.

5See Casellina et al. (2021)
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the first interpretation. Furthermore, a potential methodology for introducing a MoC to tackle
the estimation error will also be explored.
The project’s structure is delineated as follows: In Chapter 1, we introduce the problem at
hand an the motivation behind it, along with a short overview of the project’s layout. Chap-
ter 2 will delve into the theoretical underpinnings of the ASRF model and the computation
of PDLR essential for VaR determination, while also introducing the solution proposed by
Casellina et al. (2023). Chapter 3 will furnish the required background for employing Monte
Carlo methods in this context, along with a comprehensive elucidation of two prominent
variance reduction techniques. The first one is importance of sampling, which is used in
Casellina et al. (2023), but not explained, so we had to investigate the complex mathemat-
ical background behind it and figure out how to apply it to our problem. The second one
is the technique of Antithetic variate, which is our contribution to Casellina’s work. This
is a less complex variance reduction technique, but improved the speed at which we get to
the real value which is the main problem we have when using Monte Carlo. Subsequently,
Chapter 4 will apply the aforementioned theoretical framework and discuss the outcomes.
Finally, in Chapter 5, conclusions will be drawn, offering perspectives on both the Margin of
Conservatism proposed by regulators and Casellina’s solution.
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Chapter 2

Theoretical foundation of the model

2.1 Creditworthiness under ASRF Model
The standard theoretical framework adopted by the BCBS is the Asymptotic Single Risk Fac-
tor (ASRF) model. In this paper, we disregard some aspects of the Supervisory Formula1 such
as the maturity adjustment and we assume the asset correlation between borrowers’ assets ω
is a fixed parameter2, while in the BCBS framework it varies as a function of probability of
default.
In the ASRF framework, following the Merton-Vasicek model3, the i-th creditworthiness
change is defined as a function of two random variables:

Yi,t =
√
ω · Zt +

√
1− ω ·Wi,t ∀i = 1, 2, ...N (2.1)

N is the portfolio size. The two random variables are Zt and Wi,t. The first one is the com-
mon factor, which affects every borrower and shows the state of the economy, and the later
is the idiosyncratic factor, which is different for each borrower. It is also worth noticing that
ω ∈ (0, 1), which establishes the correlation between Zt and Yi,t, is an exogenous parameter
set by regulation.

The hypotheses are the following:

HP.1 : Wi,t
iid∼ N (0, 1).

HP.2 : Zt ∼ N (0, 1).
HP.3 : Corr(Wi,t, Zt) = 0.
HP.4 : Corr(Zt−1, Zt) = 0.
HP.5 : Yi,t is linear.
HP.6: The portfolio is infinitely grained.

The first three Hypotheses show that the two random variables affecting the creditworthi-

1This is the approach proposed by the Basel Committee to calculate regulatory capital.
2For some asset classes, like residential mortgages, the asset correlation is constant.
3Based on the widely used Gaussian copula model. See Glasserman (2005).
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ness are standard normal distribution and uncorrelated. HP.4 is not usually mentioned in the
standard presentation of the ASRF model because it is not necessary so long we are only
dealing with one period. However, since we will later introduce an estimator of a parame-
ter of the model as the average of t = 1, 2...T observations, this is included for the sake of
simplicity, since this hypothesis excludes any serial correlation. Notice that Zt and Zt−1 are
normally distributed and come from the same normal distribution, thus, this hypothesis im-
plies that they are independent. HP.6 means that the number of borrowers is large enough, so
the effect on the idiosyncratic factor is negligible4. Therefore, Zt will be the most important
factor.

Once we have the i-th creditworthiness change clearly defined, we can infer its probability
distribution. Notice that Yi,t is a linear combination of two independent normal distributions,
and therefore it also follows a normal distribution. Let’s compute its parameters:

E[Yi,t] = E[
√
ω · Zt +

√
1− ω ·Wi,t] =

√
ω · E[Zt] +

√
1− ω · E[Wi,t] = 0.

V[Yi,t] = V[
√
ω · Zt +

√
1− ω ·Wi,t] = ω · V[Zt] + (1− ω) · V[Wi,t] = ω + 1− ω = 1.

Thus, Yi,t ∼ N (0, 1).

2.2 Probability of default
In this section, we are going to define the probability of default at a specific period t5 (PDi,t),
where . That is, the probability that during the time period t the value of the assets is under a
threshold s. Formally,

Definition 2.2.1 (Probability of Default at time t). Given a threshold s ∈ R, the Probability
of Default at time t of the i-th borrower(PDi,t) is defined as:

PDi,t := P[Yi,t < s] = Φ(s) (2.2)

Where Φ(s) is the cumulative distribution function of the standard normal distribution evalu-
ated at s:

Φ(s) =
1√
2π

∫ s

−∞
e

−x2

2 dx

Notice that PDi,t = Φ(s) comes from the fact that Yi,t follows an standard normal distri-
bution. PDi,t depends on the time period, therefore it changes at each period. Thus, we
define the long run probability of default PDLR6 as an ”equilibrium” or steady value for the
probability of default. As a consequence,

s = Φ−1(PDLR) (2.3)

4This will be shown later in this chapter.
5Notice that t is not a specific point in time, but an interval (t− 1, t)
6Formally, PDLR = E[PDi,t].
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Coming back to the definition of PDi,t, it clearly depends on Zt, thus let us compute the
probability of default at a time period t conditioned to Zt = z. Since, PDi,t = P[Yi,t < s] the
first step should be to determine the distribution of Yi,t|Zt = z:

Y z
i,t = (Yi,t|Zt = z) =

√
ω · z +

√
1− ω ·Wi,t (2.4)

Y z
i,t only has one random variable, Wi,t. Due to the fact that this variable is normally dis-

tributed, Y z
i,t also follows a Normal distribution of the form N (µ, σ2). The parameters can be

computed as follows:
µ = E[Y z

i,t] = E[
√
ω · z +

√
1− ω ·Wi,t] =

√
ω · z +

√
1− ω · E[Wi,t] =

√
ω · z.

σ2 = V[Y z
i,t] = V[

√
ω · z +

√
1− ω ·Wi,t] = (1− ω) · V[Wi,t] = 1− ω.

Note that z is not a random variable, and therefore E[z] = z and V[z] = 0. Now, we
can define PDz

i,t.

Definition 2.2.2 (Probability of Default at time t conditioned to Zt = z). Given a threshold
s ∈ R, the Probability of Default at time t conditioned to some value z of Zt (PDz

i,t) is
defined as:

PDz
i,t := P[Y z

i,t < s] = Φ

(
s−

√
ω · z√

1− ω

)
=: f(z) (2.5)

Where Φ
(
s−

√
ω·z√

1−ω

)
comes from the fact that

Y z
i,t−

√
ω·z

√
1−ω ∼ N (0, 1), since it is the standardized

version of Y z
i,t.

7

Only when z < 0, the probability of default increases, and therefore regulators are mostly
interested in this particular case. It is worth remembering that z < 0 implies a negative state
of the economy. Consequently, it can be inferred that negative states of the economy decrease
the solvency of banks.
So far, we have obtained the distribution of both PDi,t and PDz

i,t, but they both depend on s
which depends on PDLR, by the equation (2.3). In practice, PDLR is unknown, and therefore
it must be estimated.

2.3 From theory to practice

2.3.1 Introducing the binomial distribution
As it will be clear in the next section, in order to go from theory to practice, a basic knowledge
on the binomial distribution will be required. There are many probability distributions, but
in this project we only use this one, which is the sum of independent Bernoulli distributions.
Hence, let us define both distributions.
The Bernoulli distribution is a fundamental probability distribution that models a random
experiment with two possible outcomes: success and failure. This model only has one pa-
rameter (p) which is the probability the the event ”success” occurs. Therefore, the Probability
Mass Function is:

7PDz
i,t is defined as f(z) to simplify the notation.
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P (X = x) =

{
p, if x = 1

1− p, if x = 0

And its expected value (Mean) and variance can be easily computed as follows:

E[X] = 1 · p+ (1− p) · 0 = p (2.6)

V[X] = E[X2]− (E[X])2 = 1 · p+ (1− p) · 0− p2 = p(1− p) (2.7)

In our case, one borrower can either default or not, so its behaviour can be described by this
distribution. Moreover, the event ”success” is going to be described as the borrower being
in default, so p is going to be the probability of default (PDLR). However, banks don’t only
have one borrower, they have a portfolio with many borrowers and therefore the Binomial
distribution is required.
The binomial distribution B(n, p) extends the concept of the Bernoulli distribution to n in-
dependent Bernoulli trials, each with the same success probability p. It is actually the sum
of n independent Bernoulli. It models the number of successes k in these n trials. Thus, we
will be able to compute how many borrowers will default, which will be dependent on the
probability of default. 8

More rigorously, we define the binomial distribution as follows: Let’s assume thatX1, X2, ..., Xn
are a set of independent random variables such that Xi ∼ Bernouilli(p), then a variable Y
is a binomial distributed random variable if it is defined as the sum of Xi:

Y =
n∑
i=1

Xi

The probability mass function of the binomial distribution gives the probability of obtaining
exactly k successes in n trials:

P (Y = k) =

(
n

k

)
pk(1− p)n−k

Where
(
n
k

)
is the binomial coefficient, representing the number of ways to choose k successes

out of n trials.
Its Mean and Variance can be easily computed using the moments of the Bernoulli as follows:

E[Y ] =
n∑
i=1

E[Xi] = p+ p+ ...+ p = n · p. (2.8)

V[Y ] =
n∑
i=1

V[Xi] = p(1− p) + p(1− p) + ...+ p(1− p) = n · p · (1− p). (2.9)

8Notice that we are assuming that the borrowers are independent.
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Now we are ready to deal with the real goal of this section which is dealing with the fact that
PDLR is not known and, thus, must be estimated.

2.3.2 Conditional default rate
In practice PDLR is not known. However, the bank can evaluate the default rate at t (DRt),
that is the number of expositions found at default divided by the number of all the expositions
in the portfolio, and use it as a measure of the conditioned probability of default, i.e. the
Probability of default associated with a given value of the factor Zt (PDz

i,t).
Before defining DRt mathematically , let us define the indicator function Dz

i,t which is 1
when the creditworthiness conditioned to the common external factor falls below a threshold
s, and 0 otherwise. Formally,

Dz
i,t = I{Y z

i,t<s} (2.10)

And since, P[Y z
i,t < s] = f(z), Dz

i,t ∼ Bernoulli(f(z)).9

Definition 2.3.1 (Default Rate conditioned to Zt = z). Let’s assume the number of borrowers
is N. Then, the Default Rate in the period t conditioned to Zt = z (DRz

i,t) is defined as:

DRz
i,t =

N∑
i=1

Dz
i,t

N
(2.11)

By definition, the sum of n independent Bernoulli’s random variables with success probability
p follows a binomial distribution (n, p). Therefore,

∑N
i=1D

z
i,t ∼ Binomial(N, f(z)), imply-

ing that E[Dz
i,t] = N · f(z) and its variance V[Dz

i,t] = N · f(z) · (1− f(z)) . Consequently,
the expected value and variance of DRz

i,t can be computed as follows:

E[DRz
i,t) =

N∑
i=1

E[Dz
i,t]

N
= f(z) = PDz

i,t

V[DRz
i,t] =

N∑
i=1

V[Dz
i,t]

N2
=
f(z) · (1− f(z))

N

For N large enough, this binomial distribution can be approximated by the following normal
distribution:

DRz
i,t ∼ N

(
f(z),

f(z) · (1− f(z))

N

)
(2.12)

Note that DRz
i,t is an unbiased estimator of PDz

i,t, and its variance decreases as N increases.
The sixth hypothesis is that the portfolio is infinitely grained which means that N is large
enough so the effect of the idiosyncratic factor (Wi,t) is very small; therefore the variance of
the estimator should be relatively small. It is also worth noticing that althoughDRz

i,t depends

9Dz
1,t, D

z
2,t, ..., D

z
N,t are independent because the common factor is fixed.
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on Wi,t, PDz
i,t only depends on Zt = z. Since,

lim
N→∞

V[DRz
i,t] = 0

This means that as N increases the impact of the idiosyncratic factor tends to zero. And
furthermore, in the limit DRz

i,t = PDz
i,t

10.

2.3.3 Unconditional default rate
Similarly to the Definition 2.3.1, the unconditional Default Rate is defined as:

Definition 2.3.2 (Unconditional Default Rate). Let’s assume the number of borrowers is N.
Then, the Default Rate in the period t (DRt) is defined as:

DRt =
N∑
i=1

Di,t

N
(2.13)

Where Di,t = I{Yi,t<s}. It is worth noticing that D1,t, D2,t, ..., DN,t are not independent be-
cause of the effect of the common factor Zt, and thus DRt does not follow a binomial distri-
bution.

By definition, DRi,t is a particular case of the portfolio loss relative to the portfolio’s total
exposure, defined as follows.

Definition 2.3.3 (Portfolio loss relative to the portfolio’s total exposure). For a portfolio of
N borrowers, the portfolio loss relative to the portfolio’s total exposure is given by:

Lt = L
(N)
t =

N∑
i=1

wi,tηi,tDi,t where wi,t =
EADi∑N
j=1EADj,t

(2.14)

ηi,t : It’s also known as the Loss Given Default (LGD), and it refers to the fraction or per-
centage of the exposure that is expected to be lost by the lender in the event of a customer’s
default in the time period t.
EADi,t : Exposure at Default represents the amount of funds or credit exposure that a lender
is exposed to when a customer defaults on their loan or credit obligation. It is the total out-
standing balance or the maximum potential loss the lender may face in the event of default in
the time period t.
Di,t : The indicator function that shows whether the borrower defaults or not in the time
period t.11

Notice that if we are dealing with an homogeneous group of N borrowers12 and we assume
that LGD is 100% (constant), then

10Although in practice N might not be large enough, we will assume this holds because we are under the
hypothesis HP.6, which states that the portfolio is infinitely grained.

11Formally, Di,t = I{Yi,t<s}.
12wi =

1
N .
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L
(N)
t =

N∑
i=1

1

N
· 1 ·Di,t = DRt (2.15)

These assumptions will prevail throughout the whole paper.
Bluhm et al. (2016) proved that under these conditions:

L(N) −−−→
N→∞

Φ

(
Φ−1(PDLR)−

√
ω · Zt√

1− ω

)
= P (Zt), almost surely. (2.16)

Therefore, the probability distribution of DRt can be computed.
By definition, DRt ∈ (0, 1), so for every x ∈ (0, 1) we have:

FPDLR,ω(x) = P[DRt ≤ x] = P[P (Zt) ≤ x] = P
[
Φ

(
Φ−1(PDLR)−

√
ω · Zt√

1− ω

)
≤ x

]
=

= P

[
−Zt ≤

Φ−1(x) ·
√
1− ω − Φ−1(PDLR)√

(ω)

]
= Φ

(
Φ−1(x) ·

√
1− ω − Φ−1(PDLR)√

ω

)
(2.17)

The last step is because of the HP.2 and the properties of the standard normal distribution. As
a consequence of both, −Zt ∼ N (0, 1).
From the relationship (2.17), we can compute the expected value and variance of DRt.

E[DRt] = PDLR (2.18)

V[DRt] = Φ2(Φ
−1(PDLR),Φ−1(PDLR);ω)− (PDLR)2 (2.19)

Where Φ2 is the cumulative bivariate normal distribution with correlation ω evaluated in(
Φ−1(PDLR),Φ−1(PDLR)

)
.

Notice that the equation (2.18) implies that DRt is an unbiased estimator of the parameter
PDLR.
The expected value equal to PDLR comes directly from the construction of FPDLR,ω, whereas
the variance is not so straight forward. To compute the variance, we use the following well-
known relationship:

V[DRt] = E[DR2
t ]− (E[DRt])

2 (2.20)

Owing to the equation (2.18), it is only necessary to compute E[DR2
t ], and to do so we are

going to do the following workaround13 Let’s define X1,t, X2,t as two independent standard
normal random variables. And also an Xt variable as follows:

Xt =
Φ−1(PDLR)−

√
ω · Zt√

1− ω
(2.21)

13Both, the variance and the expected value, could be computed by simply following their definitions. In
order to do so, we only need the probability density function, which is the derivative of FPDLR,ω(x).
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Notice that Φ(Xt) = P (Zt), and it only depends on one random variable, and that is Zt which
is normally distributed. Therefore, Xt ∼ N (µ, σ2), with parameters:

µ =
Φ−1(PDLR)−

√
ω · E[Zt]√

1− ω
=

Φ−1(PDLR)−
√
ω√

1− ω

σ2 =
0 + (−

√
ω)2V[Zt]

(
√
1− ω)2

=
ω

1− ω

Let’s define gµ,σ2 as the density of Xt. So, we can write E(DR2
t ) as:

E[DR2
t ] = E[P (Zt)2] = E[Φ(Xt)

2] =

∞∫
−∞

P[X1,t ≤ Xt|Xt = x]P[X2,t ≤ Xt|Xt = x]dgµ,σ2(x) =

= P[X1,t ≤ Xt, X2,t ≤ Xt|Xt = x]dgµ,σ2(x) = P[X1,t −Xt ≤ 0, X2,t −Xt ≤ 0] (2.22)

Thanks to applying the conditional properties of two independent variables, the problem has
been simplified to computing a probability with depends on normal variables, and thus are
relatively easy to express. Notice that X1,t−Xt and X2,t−Xt are normally distributed, since
they are a linear combination of 2 normal variables. In fact, they follow the same distribution
with parameters:

µXi,t−Xt = E[Xi,t −Xt] = 0− E[Xt] =
Φ−1(PDLR)√

1− ω

σ2
Xi,t−Xt

= V[Xi,t −Xt] = V[Xi,t] + V[Xt] = 1 +
ω

1− ω

Note that Cov[Xi,t, Xt] = 0. Now, let us compute the correlation between X1,t −Xt, X2,t −
Xt; to do so we will need to apply the fact that Cov[X1,t−X2,t] is also zero by independence,

Corr[X1,t − Xt, X2,t − Xt] =
Cov[X1,t −Xt, X2,t −Xt]√

σ2
X2,t−Xt

· σ2
X1,t−Xt

=
ω

1 + ω
1−ω

= ω. (2.23)

By means of (2.22) and (2.23) and shifting and scaling X1,t−Xt and X2,t−Xt to achieve the
standard normal distribution, we conclude that E[DR2

t ] = Φ2(Φ
−1(PDLR),Φ−1(PDLR);ω).

Moreover, applying the relationship (2.20), we get the result (2.19).
At this point we have got an unbiased estimator of PDLR. Since we know its distribution
function (FPDLR,ω(x)), we can now find an expression to evaluate the worst case default rate
(WCDR), the maximum default rate that should be observed given a confidence level α.In
other words, we will compute a quantile qα(DRt) such that

P[DRt ≥ qα(DRt)] = 1− α ⇐⇒ P[DRt ≤ qα(DRt)] = α (2.24)
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By means of the cumulative distribution of DRt (2.17), we get:

FPDLR,ω(qα(DRt)) = Φ

(
Φ−1(qα(DRt)) ·

√
1− ω − Φ−1(PDLR)√
ω

)
= α (2.25)

And solving for qα(DRt):

qα(DRt) = Φ

(
Φ−1(PDLR) +

√
ω · Φ−1(α)√

1− ω

)
= Φ

(
Φ−1(PDLR)−

√
ω · Φ−1(1− α)√

1− ω

)
(2.26)

In conclusion, by using the equation (2.26) and assuming that N is large enough for this to
hold, we can predict any quantile in the distribution of default rates. However, it depends
on the parameter PDLR which is unknown, so banks need to estimate it by computing the
observed default rates. Therefore, the next logical step is to find an estimation for this unkown
parameter.

2.3.4 Using DRt to estimate PDLR

A reasonable estimator for PDLR would be the average observed default rates observed (DR)
over a period of time (T). This can be expressed as:

DR =
1

T

T∑
t=1

DRt (2.27)

Since DRt has the expected value and variance specified by (2.18) and (2.19), the mean and
variance of DR are:

E[DR] =
1

T

T∑
t=1

E[DRt] = PDLR (2.28)

V[DR] =
1

T 2

T∑
t=1

V[DRt] =
V[DRt]

T
(2.29)

Notice that in (2.29) we have used HP.4, in other words, we have assumed that DRt are
uncorrelated.14 Thus, by means of (2.28) and (2.29) and asuming that T is large enough,

DR ∼ N
(
PDLR,

Φ2(Φ
−1(PDLR),Φ−1(PDLR);ω)− (PDLR)2

T

)
(2.30)

Now that the estimator, which can be obtained with data, has been formally presented. The
next step is to substitute PDLR by it in the equation 2.26, so that we obtain the estimated

14In real life, they are usually correlated. However this assumption was made for simplification purposes.
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quantile15:

q̂α(DRt) = Φ

(
Φ−1(DR)−

√
ω · Φ−1(1− α)√

1− ω

)
(2.31)

2.3.5 A solution to correct the underestimation error
As we will see in the next chapter this estimator tends to underestimate qα(DRt), which is a
problem because it means that we are facing greater risk than the one that we estimate, and
therefore the reserves of money would be smaller than they should. For this reason, Casellina
et al. (2023) introduced a possible solution to this problem, consisting on computing an upper
bound for DR, and using it as the estimator of PDLR16.
The goal is to find UPβ such that:

P[PDLR ≤ UPβ] = β

As shown in (2.30), DR follows (asymptotically) a normal distribution with expected value
PDLR , and thus, we can use it to compute the upper bound (UPβ) with a confidence level
β ∈ (0, 1). By including DR and standardizing the variable, we get:

P

DR− PDLR√
V[DR]

≤ DR− UPβ√
V[DR]

 = 1− β

This implies that Φ
(
DR−UPβ√

V[DR]

)
= 1− β. As a consequence, and by means of (2.29) and the

symmetry of the standard normal distribution, UPβ can be expressed as:

UPβ = DR− Φ−1(1− β) ·
√
V[DR] = DR + Φ−1(β) ·

√
V[DRt]

T
(2.32)

Hence, if we substitute DR by its upper bound UPβ , the quantile expressed in (2.31) is now:

q̂α,β(DRt) = Φ

Φ−1

(
DR + Φ−1(β) ·

√
V[DRt]
T

)
−
√
ω · Φ−1(1− α)

√
1− ω

 (2.33)

Notice that now the quantile depends on two confidence levels α and β, so can vary the
parameter the confidence level β to correct the error derived from the estimation of PDLR.
Basically, we will need to try to find some β such that:

P[DRt > q̂α,β(DRt)] = 1− α (2.34)

15Notice that DR is a random variable, meaning it has variability. Whereas PDLR is a constant.
16E[UpperBound] > E[DR] = PDLR. Therefore, it is a biased estimator of PDLR.
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The effects of choosing different values of β will be shown in chapter 5.
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Chapter 3

Monte Carlo’s theoretical foundation

Monte Carlo methods are a class of numerical techniques that rely on randomness and prob-
ability to solve complex problems. They are particularly suited to solving problems that
involve uncertainty or cannot be easily solved analytically. The key idea behind Monte Carlo
methods is to simulate random processes or systems repeatedly and then use the statistical
properties of the results to make informed decisions or estimate values.
In the context of finance, Monte Carlo methods are employed to model and analyze a wide
range of financial instruments and scenarios as it can be seen in Glasserman (2003). These
methods are especially valuable for pricing options, managing risk, optimizing portfolios, and
assessing the potential outcomes of investment strategies. In this project, we will simulate
the behaviour of different borrowers assuming a specific PDLR, and compute the estimated
probability of default. This way, we will have both the real value (PDLR) and the value that
banks would have estimated ”in real life” and therefore we can compare them and see the
error of estimation.
Monte Carlo’s mathematical foundation lies in probability theory, statistics, and the law of
large numbers. Let’s delve into the key mathematical concepts that underpin this method.

3.1 Random variables and the law of large numbers
In Monte Carlo simulations, random variables are used to model uncertain quantities or
events. A random variable is a function that assigns a real number to each possible outcome
of a random experiment. It is typically denoted as X and follows a probability distribution,
often denoted as f(x), which describes the likelihood of different values of X occurring. As
seen in the previous chapter, the binomial distribution will be key in our problem. Remember
that an important restriction of this distribution is the independence between experiments, in
our case between the borrowers. This could be problem, since under the ASRF model are not
independent due to the common factor. However, for this same reason, it was introduced in
the previous chapter the notion of the indicator function conditioned to the common factor Z
(Dz

i,t), which by definition eliminates this problem1. In fact, we defined Dz
i,t in (2.3.1) as the

sum of n n Dz
i,t, which allows us to use the binomial distribution. Notice that our parameter p

1Notice that now it only depends on the idiosyncratic factor, which is independent between borrowers by
HP.1
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is going to be f(z), which is the probability of default at the period t conditioned to Zt = z.
Another important concept is the law of large numbers. This Law is the one that assures
that by using Monte Carlo we are actually getting closer to the solution. It is a fundamental
theorem in probability theory and statistics and describes the behavior of sample averages as
the size of the sample or the number of trials increases. It can be stated as follows:

Definition 3.1.1 (Law of Large Numbers). Let X1, X2, X3, . . . , Xn be a sequence of inde-
pendent and identically distributed (i.i.d.) random variables with mean µ, and let X̄n be the
sample average of the first n observations:

X̄n =
X1 +X2 +X3 + . . .+Xn

n

Then,:
lim
n→∞

X̄n = µ

In our particular case, we are using Monte Carlo to estimate qα({DRt}). Since, E[DRz
t ] =

DRt and we can compute DRz
t by means of the binomial distribution, we can get a series

of default rates which allows us to obtain a series of n quantiles by means of the equation
(2.31)2 . Notice that we are working with an unbiased estimator of PDLR, so our quantile
estimator is also unbiased.
Brandimarte (2014) shows that Monte Carlo has an error of order O( 1√

n
) and, therefore, it

requires a large number of simulations. For all the results in this paper, the number of simu-
lations is 10 millions, the same number that Casellina et al. (2023) used. They also applied
the variance reduction technique of importance of sampling, so we will do the same. Nev-
ertheless, we have also used another technique which has produced better results, meaning
that has taken us closer to the actual PDLR. Both techniques will be explained in the next
section.

3.2 Variance reduction
As previously explained, Monte Carlo methods are rather slow, and as a consequence, it is
useful to apply Variace-Reduction Techniques which are used to improve the precision of the
simulation-based estimates. All these methods try to get us closer to the actual solution with
less replicates than the classical Monte Carlo, thus, their goal is to increase the speed at which
we find a good enough solution3.
Although useful, these techniques tend to be mathematical and statically complex4 and its
ability to improve the method varies case by case. That is to say, that even though one method
might the best in one scenario it might be the worst in another. Thus, it is always interesting
to try different variance-reduction techniques. In this paper we will apply two common ones.

2Each quantile is computed with a different estimated DRt, obtained from the same PDLR.
3The ”good enough” solution will vary case by case. Usually, it depends on the error we are willing to

accept.
4See Bolder (2018)
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Antithetic variate

This is one of the simplest methods from the mathematical point of view, but it sometimes
provides better results than more complex methods. The Antithetic variate technique is based
on the idea of generating at each path of the simulation, two negative correlated variables5. In
our case, we will use the fact that if Z ∼ N (0, 1), then Z ∗ (−1) ∼ N (0, 1).6. Thanks to this
property, we could use the same simulation to have 2 different scenarios, just by multiplying
the result by 1 and -1.
In our case, we need to simulate the common factor (Zt) which follows a standard normal
distribution, in order to compute the probability of default conditioned to this common factor
(f(z)). This method allows us to determine two different probabilities at each step and then
taking the average of both. Here’s an example:
Let’s say that we get, through simulation, the value Zt = 0.2, then we would compute two
different probabilities by means of (2.5):

f+ = f(z = 0.2) = Φ

(
s−

√
ω · 0.2√

1− ω

)

f− = f(z = −0.2) = Φ

(
s+

√
ω · 0.2√

1− ω

)
Finally, we get our estimate (f̂(z)) as the average of both values. This way, we will be able
to find a more representative probability at each simulation, notice how the probabilities that
we obtain by using this method will tend to be towards the center, meaning that it disregards
rarer values.
It is fairly easy to see how this method does not only reduces the samples of normal distribu-
tions, but also reduces the variance for every path. Notice that the variance of our estimate
is:

V[f̂(z)] = V[0.5 · (f+ + f−)] =
V[f+] + V[f−] + 2Cov[f−, f+]

4

By definition f+ and f− are negatively correlated and, therefore, their covariance is negative.
Plus, V[f−] = V[f+]. Thus,

V[f̂(z)] =
V[f+] + V[f−] + 2Cov[f−, f+]

4
<

V[f+] + V[f−]
4

=
V[f+]
2

< V[f+]

In conclusion, by using this method the variance of our estimate is now smaller and we should
get a better approximation to the solution with less simulations.

Importance of sampling

This is a more complex method based on the idea of tweaking the probability distribution in
such a way that less likely outcome becomes more probable as it can be seen in Hammersley

5See Hammersley and Morton (1956) and Kleijnen et al. (2010)
6This follows from the properties of the expected value and the variance.
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(2013). In order to understand the concept, it is useful to remember that Monte Carlo is based
on the idea of averages. In fact, we always try to compute the following expectation:

Ep[f(x)] =
∫
p(x)f(x)dx (3.1)

where p(x) is a probability density function and f(x) the function of which we are trying to
compute the expectation. The goal is to approximate this by computing the average. To do
so, we take random samples of x, taking into account that x ∼ p(x) and compute the average
of f(x) evaluated at those points. Mathematically,

Ep[f(x)] ≈
1

N

N∑
i=1

f(xi)

By the central limit theorem, our estimate can be approximated by a normal distribution,
when N is large enough, with µ = Ep[f(x)] and σ2 = 1

N
Vp[f(x)].

Notice how if f(x) is bigger in values of x with lower probabilities, it will require many
simulations in order to get a good enough estimation, since the values that would have a
greater impact on the expectation are less likely to be observed. Bearing this idea in mind,
importance of sampling tweaks this probability so we can get a better approximation faster.
We accomplish this by introducing a new probability function (h(x))7, as follows:

Ep[f(x)] =
∫
h(x)

h(x)
p(x)f(x)dx =

∫
h(x)

(
p(x)

h(x)
f(x)

)
dx = Eh

[
p(x)

h(x)
f(x)

]
(3.2)

The ratio p(x)
h(x)

is often referred as the Radon-Nikodym derivative or the likelihood ratio and
its function is to rescale f(x). Now, our Monte Carlo estimator is:

Ê[f(x)] =
1

N

N∑
i=1

f(xi)
p(xi)

h(xi)

Although h(x) does not need to meet any special requirements, besides being a probability
density function, its choice will determine the effectiveness of this method. A good h(x)
will allow us to get a good enough estimation faster, whereas a bad choice will produce the
contrary effect. Usually we choose the h(x) that minimizes the variance of the Monte Carlo
estimator, but this is not trivial.
In our problem, the probability that we will try to change is the probability of default and to do
so, we will use the solution proposed by Glasserman and Li (2005), known as the Exponential
twisting or Esscher transform. They have applied this to the computation of capital for credit
risk in the multifactorial Merton’s model, which is defined as follows:

Definition 3.2.1. (Normal Copula Model) Let’s assume N obligors, ck ∈ [0, 1] , the loss
given default of the kth obligor, and Yk = I{ηk>xk} as the default indicator of the kth obligor
(Yk = 1 if defaults, 0 otherwise). Then, the total loss is:

7h(x) just needs to meet the standard definition of statistical density function.
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L = c1 · Y1 + c2 · Y2 + ...+ cN · YN

Where xk = Φ(1− PDLR) and ηk = ak1 · Z1 + ...+ akd · Zkd + bkϵk, in which
- Z1, ..., Zd are systematic risk factors.
- Zi ∼ N (0, 1)
- ϵk is the idiosyncratic risk of the kth obligor, also normally distributed with mean 0 and
variance 1.
- ak1, ..., akd are the factor loadings for the k-th obligor, a2k1 + ...+ a2kd ≤ 1.
- bk =

√
1− (a2k1 + ...+ a2kd) so that, xk ∼ N (0, 1).

Under this definition, Glasserman (2005) proposed the following transformation on the prob-
ability of default conditioned on the common factor (pk(z)):

pk(θ, z) =
pk(z)e

θck

1 + pk(z)(eθck − 1)
(3.3)

Where θ ∈ R is a parameter that can be computed and determines the transformation. If θ >
0, the probability of default will be incremented, while if it is negative it will be decreased. In
case θ = 0, the probability of default remains unchanged. Consequently, we will be interested
in θ > 0.
This Normal Copula Model might seem a little bit different than our model, but notice how
we get the same model if instead of d systematic risk factors, we have only one and we
establish the following relationships:
- ak1 =

√
ω

- bk =
√
1− ω

- ϵk = Wi,t

- Z1 = Zt,k
- c1, ...ck are 100%.
The state of default is also defined somewhat different, but they are equivalent. This comes
from the fact that the normal distribution is symmetric, and thus, xk = Φ−1(1 − PDLR) =
−Φ−1(PDLR) = −s.
In conclusion, we are dealing with a particular case of the Normal Copula Model which is
the one-factor Merton model, and therefore it makes sense to use the transformation (3.3).
However, it is worth noticing that since the loss given default in our model is 100% our
probability will be the same for the kth obligors8 . Then,

p(θ, z) =
f(z)eθ

1 + f(z)(eθ − 1)
(3.4)

Now our goal is to find θ. To do so, we will use the fact that coming from the general
definition of the Radon-Nikodym derivative we get that the likelihood ratio in our model is
(See Bolder (2018)):9

8We will use f(z) ∀k. We are using the notation of our model, meaning that our indicator function is Dz
i,t

and our threshold is s.
9Note how this is the classical likelihood ratio of a binomial distributed sample, taking into account that our

probability now is divided by h(.) = p(θ, z).
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ΠN
i=1

(
f(z)

p(θ, z)

)Di,t
(

1− f(z)

1− p(θ, z)

)1−Di,t

(3.5)

Where Di,t is our default indicator defined as in the equation (2.10). By replacing p(θ, z) by
its definition(3.3) in the relationship (3.5), we get the following simplified version:

ΠN
i=1

(
f(z)

p(θ, z)

)Di,t
(

1− f(z)

1− p(θ, z)

)1−Di,t

= ΠN
i=1

(
eθ
)−Di,t

(
1 + f(z) · (eθ − 1)

)
(3.6)

A useful step towards simplfying this expresion, is taking the natural logarithm:

ln
(
ΠN
i=1

(
eθ
)−Di,t

(
1 + f(z) · (eθ − 1

))
= −θ

N∑
i=1

Di,t+
N∑
i=1

ln
(
1 + f(z) · (eθ − 1)

)
= −θL+ψ(θ)

Thus,
ΠN
i=1

(
eθ
)−Di,t

(
1 + f(z) · (eθ − 1

)
= e−θL+ψ(θ)

Notice how ψ(θ) is the cumulant generating function (CGL) of L10 and therefore, this trans-
formation of the default probabilities is equivalent to directly ajusting the default-loss density.
As seen in Glasserman and Li (2005), in order to reduce the variance of our estimator we can
find our θ by solving the following equation:

∂

∂θ
ψ(θ, z) =

N∑
i=1

p(θ, z) = s

Since p(θ, z) does not depend on i,

N · p(θ, z) = s −→ θs(z) = ln

(
s(1− f(z))

f(z)(N − s)

)
θs(z) is actually a function which depends on the value of the common factor, that means
that it will change at every simulation. And in fact, since only the positive values increase the
probability of default, our θ∗s(z) = max(0, θs(z)).
To sum up, if θs(z) ≤ 0 the default probability will stay the same11, but if θs(z) > 0 the
default probability will be tweaked by means of the expression (3.4).

10ψ(θ) = ln(E[eθL]).
11This means that p(θ, z) = f(z).
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Chapter 4

Application and results

By now, every piece of theory required to tackle the problem ahead has been explained. Now
let’s focus on the practice. Our main goal is to estimate the error that banks are making
by assuming that the probability of default that they are estimating is the actual PDLR. In
order to do so, we will assume some PDLR and produce some samples1. From this samples,
we will estimate the probability of default, just as banks would do in real life, and compare
both the quantile obtained with the real value and the estimated one. We will realize that by
using the estimation we are underestimating the error, so we will try to solve this problem by
estimating an upper bound.

4.1 Implementation in R
As mentioned throughout the paper, different common factors will be simulated in order to
estimate the probability of default. Banks cannot use a period T smaller than 5 to estimate
their probability, so we will take T=5. Moreover, we will repeat the experiment 10 million
times. Both the time period and the number of experiments were set by Casellina et al. (2023)
and since we’re trying to replicate their results, we must use the same parameters. Thus, we
will assume a correlation ω = 0.24,the maximum value provided by the regulation, and that
the number of borrowers is N = 50, 000.
The algorithm to obtain the Worst Case Default Ratio (WCDR) is:

Algorithm 1 Classical Monte Carlo
1. Generate T common factors Z, from a N (0, 1).
2. Compute the probability f(z) with the expression (2.5).
3. Compute T default ratios (DRz) using the binomial distribution with p = f(z).
4. Take the average of the default ratios.
5. Compute WCDRi using the expression (2.31)
6. Repeat these steps 10 Million times and compute the average WCDR.

Source: own elaboration.

1We will do 10 millions replicates.
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Notice how in this algorithm we have not applied any variance reduction technique. However,
both the importance of sampling and the antithetic variate technique affect only the step
number 2 of the algorithm. In order to implement them, f(z) just needs to be changed using
the steps specified in the section 4.1.3 Variance Reduction for each method.2

4.2 Results
Our main goal is to see the difference between computing the WCDR through the actual
PDLR(qα({DRt})) and with the estimation of this probability (E[q̂α({DRt})], as banks do
in real life. The following table shows the results for different probabilities of default (PDLR)
and different confidence levels α.3

Table 4.1: α-quantiles of DRt (WCDR)

−− PDLR −−

α Quantile Variance Reduction 0.30% 1.00% 5.00% 10.00%

99.00%

q99%({DRt}) - 3.25% 8.67% 28.11% 43.54%

E[q̂99%({DRt})] I.Sampling 3.04% 8.17% 26.96% 42.15%

E[q̂99%({DRt})] Antithetic 3.16% 8.48% 27.84% 43.31%

99.50%

q99.5%({DRt}) - 4.42% 11.10% 33.02% 49.10%

E[q̂99.5%({DRt})] I.Sampling 4.07% 10.38% 31.58% 47.48%

E[q̂99.5%({DRt})] Antithetic 4.26% 10.83% 32.68% 48.84%

99.90% E[q̂99.9%({DRt})] I.Sampling 7.09% 16.23% 41.99% 58.52%

Source: own elaboration.
qα({DRt}) is the actual quantile and as we can see in the table, the estimated quantiles are
smaller, and therefore banks are underestimating the estimation error.
Remember that banks are using their own estimation which, in case of the Importance of
Sampling, for an actual (unknown) probability of default 0.3% and α = 99% would be 3.04%
when the real value would be 3.25%. That is to say, that they are assuming that the quantile
is 0.21% points smaller than it actually is and this has a direct impact on the reserves.
Notice that the same can be observed with the different PDLR and the absolute difference
increases as the long run probability of default gets bigger.
The actual error that banks are making is hard to know, since we don’t actually know the real
probability of default (PDLR) and, as can be seen in the table, there is a big difference in
our simulation, just by applying a different variance reduction technique. Observe how the
estimated quantile applying the Antithetic Variates is closer to the actual value than the one

2For the Importance of Sampling technique applying the Esscher transform and for the Antithetic variate
taking the average of f− and f+.

3These values have been set based on the work from Casellina et al. (2023)
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implementing importance of sampling. Although the later is a much more complex technique.

Basel Committee on Banking Supervision (BCBS) already knows this, and that’s the rea-
son why they ask banks to set the confidence level to 99.9%4, instead of 99% or 99.5%. As
it can be seen in the table, this change on α effectively corrects the underestimation. It is
also worth noticing that as the actual long run probability gets bigger the difference between
q99%({DRt})) and E[q̂99.9%({DRt})] gets smaller.
Even though setting a higher confidence level works, Casellina et al. (2023) proposed intro-
ducing an upper bound on the estimated default rate to compute the quantile (2.33)5. This
solution requires us to determine a value β that guarantees that the default rate is bigger than
the quantile with probability 1− α (2.34). The goal is to find the smallest β that corrects the
estimation error.
In the following plot it can be seen the value of β requiered for different values of PDLR and
α.

Figure 4.1: β′s plot

Source: own elaboration.
As α increases, the value of β necessary to fix the error due to estimating the parameter also
increases. Similarly, the bigger the value of the parameter PDLR, the bigger the value of β.
However, all values are within the 50− 57% range and therefore regulators should be able to
establish a specific β in this scenario, even though the real value of PDLR is unknown. In

4This is for market risk, for credit risk is 99.99%
5This complies with the European Banking Authority(EBA) requirement of computing the MoC taking into

account dispersion of the estimator.
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most cases, they can be sure that the long probability of default will be smaller than a specific
value; and therefore they could use this value to the β required.
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Chapter 5

Conclusions

To compute risk measures such as Value-at-Risk(VaR) and Expected Shortfall(ES), it is nec-
essary to estimate the probability of default. However, banks are now assuming that this
parameter is known and, therefore, not taking into account the uncertainty that comes from
the estimation of this parameter, implying a possible underestimation of the required capital.
To solve this, The Basel Committee on Banking Supervision (BCBS) set a Margin of Conser-
vatism (MoC)1 that should cover this underestimation. In this paper, we check whether this
MoC is enough and study an alternative solution to compute the VaR proposed by Casellina
et al. (2023). We found out that banks are actually underestimating the required capital, but
this underestimation depends on the real probability of default PDLR which must be esti-
mated. Therefore, we cannot know beforehand exactly by how much will they underestimate
the VaR. Nonetheless, we found that by building an upper bound (2.32) that takes into ac-
count PDLR and α2 regulators should be able to set a parameter β which overcomes the
underestimation error, even though it is not constant. In fact, for the values that we have
used β ∈ (0.50, 0.57). As Casellina et al. (2021) commented, this has been developed be-
ing coherent with the ASRF framework without introducing any extra hypotheses or other
elements such as the prior distributions or other parameters which, having to be estimated,
would introduce another source of estimation error.
It has also been found that the MoC actually covers the underestimation error, but it makes
banks reserve substantially more capital that it would be necessary, especially when the real
PDLR is small. However, by building the upper bound we could find a less conservative
solution and not force banks to reserve way more capital than what they actually need.
In the beginning, the main goal of this project was just to reproduce the results obtained by
Casellina, but we have also introduced a variation on the Monte Carlo simulation which re-
duced the number of simulations required. This is the Antithetic variate variance reduction
technique which is a less complex technique than the one use by Casellina, but has produced
better results, meaning an estimation closer to the real value with the same number of simu-
lations.

1They set a higher confidence level. For example, for market risk they set a confidence level α of 99.9%
instead of 99%

2The confidence level.
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Appendix A

R code

Click here to see the code: R code1

1If you can’t click on it, go to the next url: https://github.com/AibersonVentura/TFM2024
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