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Abstract

We find minimizing configurations for most of the Riesz-s energies on the unit
circle S1. We also provide a complete asymptotic expansion of the Riesz-s energy
associated to N equally spaced points on the S1. Finally, we present Chui’s con-
jecture, prove a partial result and show how it leads to an interesting consequence
about function approximation in the Bergman space.
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Introduction

Smale’s 7th problem

In the late 20th century, Vladimir Arnold, the vice-president of the International
Mathematical Union, asked several mathematicians to propose a list of unsolved
problems in mathematics for the 21st century. One of the mathematicians was
Stephen Smale, who presented in 1998 a list of 18 unsolved problems, that would
later become known as Smale’s Problems [Sma98]. In this introduction, we will
present Smale’s 7th problem and explain how it motivates our work.

One of the first people to consider a similar problem was J. J. Thompson, best
known for his atomic model. He believed that an atom was a positively charged
sphere with negatively charged particles (electrons) on its surface. A natural ques-
tion in this context is what’s known as Thompson’s problem: how would these elec-
trons distribute themselves on the sphere, considering that they repel each other
according to Coulomb’s law? Mathematically, the question translates to finding a
configuration of N points ωN = {x1, . . . , xN} ⊂ S2 such that their associated energy

E1(ωN) =
∑
i ̸=j

1

∥xi − xj∥

is minimal. This question then gave rise to two natural generalizations of Thomp-
son’s problem. The first one was to find minimal configurations of the Riesz energies

Es(ωN) =
∑
i ̸=j

1

∥xi − xj∥s
,

where s > 0 is an arbitrary real number. The second one was to find minimal
configurations (called in this case Fekete points) of the logarithmic energy

Elog(ωN) =
∑
i ̸=j

log
1

∥xi − xj∥
.

In a simplified way, Smale’s 7th problem asks the following: if we call

(0.1) mN = min
ωN⊂S2

Elog(ωN),

find ωN such that
Elog(ωN)−mN ≤ C logN,

where C is a constant independent of N .
More specifically, it asks to describe an algorithm that, given a natural number

N , produces a configuration of points ωN satisfying (0.1). For more details, we refer
the reader to [Bel20, Chapter 2].

Naturally, to find such a configuration of points, we would first need a good
enough understanding of the value mN , which is sadly not the case at present.
However, there are some partial results that help us grasp how this value grows as

iii



0. THE PROBLEM IN THE UNIT CIRCLE iv

N increases. The first of these results that we are going to prove states that the
sequence

mN

N(N − 1)
is non-decreasing. It is also known that

lim
N→∞

mN

N2
= W (S2) =

1

2
− log 2,

where W (S2) denotes the Wiener constant

W (S2) =
1

(4π)2

∫
x,y∈S2

log
1

∥x− y∥
dx dy.

In fact, the most precise result related to the value mN known at present is
the following theorem, to which different mathematicians have made significant
contributions (see [BL23] and the references therein).

Theorem. There exists a constant C ∈ R such that

mN = W (S2)N2 − N logN

2
+ CN + o(N).

Moreover,

−0.0569 ≈ log 2− 3

4
≤ C ≤ 2 log 2 +

1

2
log

2

3
+ 3 log

√
π

Γ(1/3)
≈ −0.0556

It is conjectured that the upper bound is indeed an equality, but it has not been
proven (see [BHS12, Conjecture 4]). Analogous results can also be proven for the
other energies (see [BHS12]).

The problem in the unit circle

When a difficult question, such as Smale’s 7th problem, arises, it is often useful
to consider other (presumably easier) cases in the hopes that solving them will lead
to progress on the original problem. In our context, a natural and simpler case that
has also been studied involves finding minimal configurations of points on the unit
circle S1 ⊂ R2. This is what we will explore in these pages: we will find minimizing
configurations for some Riesz energies and derive the complete asymptotic expansion
for the energy associated with N equally spaced points, which was essentially done
in [BHS09].

In the first chapter, we will first introduce some basic concepts concerning Riesz
energies and minimizing configurations. However, interactions between points are
not only studied in the Riesz (or log) cases and a very interesting alternative set-
ting is to consider complete monotone functions for their connection with the so
called universally optimal configurations, as defined by Cohn and Kumar in [CK07,
Definition 1.3]. For this reason, we will present this class of functions and we will
prove the important Hausdorff-Bernstein-Widder theorem.

Theorem (Hausdorff-Bernstein-Widder). A function f : (0,∞) → R is com-
pletely monotone if and only if there exists a positive Borel measure µ supported on
[0,∞) such that

f(r) =

∫ ∞

0

e−rt dµ(t)

for every r > 0.
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In the later sections of the same chapter, we will find minimizing configurations
for the Riesz-s energies (and other results that also apply to completely monotone
functions) on the unit circle S1 for some values of s, as well as solve the problem
of maximizing the sum of the pairwise arc distances of N points on the unit circle.
The results are summarised below.

• If s > −2 or s = log, then equally spaced points are optimal.
• If s = −2 then any configuration with its center of mass located at the

origin is optimal.
• If s < −2 and N is even, then a configuration with N/2 points located

at one endpoint of a diameter and N/2 located at the other endpoint is
optimal.

• If we are summing the pairwise arc distances, then balanced configurations
are optimal.

In the second chapter, based on [BHS09], we will give a complete asymptotic
expansion of the Riesz energy of N equally spaced points ω∗

N , given by

Ls(N) = Es(ω
∗
N) = 2−sN

N−1∑
k=1

(
sin

πk

N

)−s

.

We distinguish two cases depending on the value of s, which we can summarise
in the next two theorems.

Theorem (general case). Let s ∈ C with s ̸= 1, 3, 5 . . . and let p be a non-
negative integer. Then

Ls(N) = WsN
2+

2

(2π)s

p∑
n=0

αn(s)ζ(s− 2n)N1+s−2n+Os,p(N
−1+Re s−2p), N → ∞,

where Ws = Ws(S
1) is the Wiener constant of the unit circle (see Definition 1.1

and Theorem 1.4), the functions αn(s) are defined in (1.2) and ζ is the Riemann
zeta function.

Theorem (exceptional case). Let s = 2M + 1, M = 0, 1, 2, 3 . . ., and let p be
an integer satisfying p > M . Then

Ls(N) =
1

π

(1/2)M
22MM !

N2 logN +

(
GM +

1

π

(1/2)M
22MM !

γ

)
N2

+
2

(2π)s

p∑
n=0
n ̸=M

αn(s)ζ(s− 2n)N1+s−2n +Os,p(N
−1+s−2p), N → ∞,

where the constant GM is defined in (1.9), ζ is the Riemann zeta function and γ is
the Euler-Mascheroni constant.

This result shows that in the 1-dimensional sphere one can derive a complete
asymptotic expansion of the minimal energy (when s > −2).

Finally, in the last chapter we will study another minimization problem on
the unit circle. The motivation comes from investigating the magnitude of the
electrostatic field on the unit disk D

E(z) =
N∑
k=1

1

z − zk
,
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generated by N unit point charges {z1, . . . , zN} ⊂ S1 interacting through the
Coulomb potential

U(z) =
N∑
k=1

log
1

|z − zk|
.

Observe that, indeed, grad U(z) = −E(z).
In 1971, C. K. Chui conjectured that the quantity∫

D

∣∣∣∣∣
N∑
k=1

1

z − zk

∣∣∣∣∣ dm(z)

is minimized when the points {z1, . . . , zN} are the roots of unity, and in particular,
that the quantity above is strictly positive. Surprisingly, and in stark contrast to
the Riesz energy minimization studied in the previous chapters, this remains an
open problem and only a few results are known about this conjecture. Shortly
after Chui’s original paper, [Chu71], D. J. Newman proved in [New72] that for any
{z1, . . . , zN} ⊂ S1 ∫

D

∣∣∣∣∣
N∑
k=1

1

z − zk

∣∣∣∣∣ dm(z) ≥ π

18
,

which we will prove in this chapter. Finally, as an interesting application of the
previous bound, we will prove that there exist functions in the Bergman space A1(D)
which cannot be approximated by functions of the form

SN(z) =
N∑
k=1

1

z − zk
, |zk| = 1 for k = 1, . . . , N

in A1(D), but can be approximated by functions SN uniformly in each compact set
of D.



CHAPTER 1

Optimal configurations on the circle

Most of the proofs that can be found in the first 3 sections of this chapter have
been adapted from [BHS19, Chapters 2, 4 and Appendix A].

1. Discrete energies and basic properties

Let (A, ρ) be a metric space and K be a mapping from A×A to R∪{∞} (which
is called a kernel). Let also ωN = {x1, . . . , xN} ⊂ A be an N -point configuration,
which is understood as a multiset (that is, it can possibly have repetitions) and
has cardinality #ωN = N (counting multiplicities). In this setting, we define the
K-energy of a configuration ωN as

EK(ωN) =
N∑
i=1

N∑
j=1
j ̸=i

K(xi, xj) =
∑
i ̸=j

K(xi, xj),

and we denote by

(1.1) EK(A,N) = inf{EK(ωN) : ωN ⊂ A}
the minimal discrete N -point K-energy of the set A.

In this paper we will work with continuous kernels (as extended real-valued
functions on A × A) and A will be a compact set, so there will be a K-energy
minimizing configuration on A and the infimum in (1.1) will in fact be a minimum.
Moreover, notice that in this case, if A1 ⊂ A2 ⊂ A, then EK(A1, N) ≥ EK(A2, N)
and if B ⊂ A, then EK(B,N) = EK(B,N).

We present now the following basic property of the minimal energy, essential to
have a basic understanding of how it behaves as a function of N .

Proposition 1.1. Let A be an infinite set and K an arbitrary kernel on A×A.
Then

{
EK(A,N)
N(N−1)

}∞

N=2
is a non-decreasing sequence.

Proof. If we call ωN an arbitraryN -point configuration, then for i ∈ {1, . . . , N}
we have

EK(ωN) = EK(ωN \ {xi}) +
N∑
j=1
j ̸=i

(K(xi, xj) +K(xj, xi)).

Now, if we sum over all values of i we get

(N − 2)EK(ωN) =
N∑
i=1

EK(ωN \ {xi}) ≥ NEK(A,N − 1),

and since this is true for all possible values of ωN , we arrive at

(N − 2)EK(A,N) ≥ NEK(A,N − 1),

1
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or equivalently
EK(A,N)

N(N − 1)
≥ EK(A,N − 1)

(N − 1)(N − 2)
. □

Remark 1.2. From the last inequality we see that if 2 ≤ N0 ≤ N , then

EK(A,N) ≥ N(N − 1)

N0(N0 − 1)
EK(A,N0) ≥

1

2
N(N − 1)EK(A, 2).

This inequality tells us that if EK(A,N0) > 0 for some N0 ≥ 2, then not only
is the original sequence non-decreasing (and hence it could be the 0 sequence) but
actually EK(A,N) grows at least as fast as N2.

We are going to primarily study the Riesz-s kernels.

Definition 1.3. Given a metric space (A, ρ), the Riesz-s kernel on A × A is
defined as

Ks(x, y) =

{
ρ(x, y)−s if s ≥ 0,

−ρ(x, y)−s if s < 0.

In some situations, the problem of maximizing the product of pairwise distances
comes up naturally, as a generalization of the diameter of the set A (the transfinite
diameter from classical potential theory). Observe that

log

( ∏
1≤i<j≤N

|zi − zj|

)
= −

∑
1≤i<j≤N

log
1

|zi − zj|
.

This equality motivates the following definition (and the study of its associated
energy).

Definition 1.4. Given a metric space (A, ρ), the logarithmic (“s = log ”) kernel
on A× A is defined as

Klog(x, y) = log
1

ρ(x, y)
.

With this definition, the maximization of the product is equivalent to the min-
imization of the logarithmic energy

Elog(ωN) = EKlog
(ωN) = 2

∑
1≤i<j≤N

log
1

|zi − zj|
.

We will usually work with A being a subset of C, and in this case we have that

Elog(ωN) = log

( ∏
1≤i<j≤N

|zi − zj|

)
= −2 log |V (z1, . . . , zN)|,

where

V (z1, . . . , zN) =

∣∣∣∣∣∣∣∣∣
1 z1 · · · zN−1

1

1 z2 · · · zN−1
2

...
... . . . ...

1 zN · · · zN−1
N

∣∣∣∣∣∣∣∣∣
is the Vandermonde determinant.

We shall also mention that in the case s = 0 we trivially have
E0(ωN) = E0(A,N) = N(N − 1).
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As a final remark, we mention that if A is an unbounded metric space andN ≥ 2,
we have Es(A,N) = 0 for s > 0 and Es(A,N) = −∞ if s < 0 or s = log. Thus, we
can consider only compact spaces without loss of generality because the minimal
energies are trivial otherwise. Also, if A is compact, there will be a minimizing
configuration since the s-kernels are continuous.

2. Completely monotone functions

In this section we will study how Riesz kernels are related to a more general
class of kernels, those defined by completely monotone functions.

Definition 2.1. Given an interval I, a function f ∈ C∞
R (I) is completely mono-

tone if
(−1)nf (n)(x) ≥ 0

for any n ≥ 0 and x ∈ I.

We will also consider the following special class of kernels.

Definition 2.2. Given a metric space (A, ρ), the Gaussian kernel is defined as

Gt(x, y) = Gt,ρ(x, y) = e−tρ(x,y)2 , x, y ∈ A, t ∈ R.

The class of Gaussian kernels is closely related to the Riesz kernels. For s > 0,
from the integral definition of the Gamma function we can write

1 =
1

Γ(s/2)

∫ ∞

0

e−tts/2−1 dt.

Then, given x, y ∈ A and calling ρ = ρ(x, y), if we do the change of variables t = ρ2u
in the integral above, we obtain

1 =
1

Γ(s/2)

∫ ∞

0

ρ2e−ρ2u(ρ2u)s/2−1 du =
ρs

Γ(s/2)

∫ ∞

0

e−ρ2uus/2−1 du.

This shows that for s > 0 we can write

Ks(x, y) =
1

ρ(x, y)s
=

1

Γ(s/2)

∫ ∞

0

Gt(x, y)t
s/2−1 dt.

Having introduced these 2 concepts, the remaining of this section will be dedi-
cated to proving the following theorem.

Theorem 2.3 (Hausdorff-Bernstein-Widder). A function f : (0,∞) → R is
completely monotone if and only if there exists a positive Borel measure µ supported
on [0,∞) such that

f(r) =

∫ ∞

0

e−rt dµ(t)

for every r > 0.

Recall that the support of a measure is the set of points for which every open
neighborhood has positive µ-measure.

In order to prove this characterization of completely monotone functions, we
must first introduce their discrete counterpart.

Notation 2.4. Given a sequence x = {xn}∞n=0, we define ∆0xn = xn, ∆xn =
(∆x)n = xn+1 − xn and ∆kxn = ∆(∆k−1)xn. Note that for every k, ∆kxn is a
sequence in n.
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Definition 2.5. A sequence {xn}∞n=0 is completely monotone if (−1)k∆kxn ≥ 0
for all n, k ≥ 0.

We will now prove a result that establishes a connection between completely
monotone functions and sequences.

Lemma 2.6. Given a sequence y = {yn}∞n=0, for every k ≥ 1 we have

∆kyn =
k∑

l=0

(
k

l

)
(−1)k−lyn+l.

Proof. We prove it by induction on k. If k = 1 the result is clear, and if we
assume the result is true for k, then

∆k+1yn = ∆(∆kyn) =
k∑

l=0

(
k

l

)
(−1)k−lyn+1+l −

k∑
l=0

(
k

l

)
(−1)k−lyn+l.

Now making the change of indices s = l+1 in the first summation while leaving
the other sum unchanged, we get

∆k+1yn = (−1)k+1yn +
k∑

l=1

((
k

l − 1

)
(−1)k+1−l +

(
k

l

)
(−1)k+1−l

)
yn+l + yn+k+1

=
k+1∑
l=0

(
k + 1

l

)
(−1)k+1−lyn+l,

which finishes the proof. □

Lemma 2.7. If f is a completely monotone function, then so is the sequence
y = {f(a+ nh)}∞n=0 for every a ≥ 0 and h > 0.

Proof. Consider the polynomial p(t) = ckt
k + · · ·+ c1t+ c0 that coincides with

f at the points a + hm for m ∈ {n, n + 1, . . . , n + k}, which exists and is unique
if we further assume that it has degree at most k (by the Lagrange Interpolation
Theorem). If we call g(t) = f(t) − p(t), we know by construction of p that g has
exactly k + 1 zeros in the interval [a + hn, a + h(n + k)]. This allows us to apply
Rolle’s theorem in succession to g and conclude that there is a point ξ for which
g(k)(ξ) = 0. This implies that f (k)(ξ) = p(k)(ξ) = k!ck.

Let us call b = a + hn, so that our points of interpolation are now xl = b + hl
with l ∈ {0, 1, . . . , k}. Then by the Lagrange interpolation formula we have

(2.1)

p(t) =
k∑

l=0

p(b+ hl)
k∏

j=0
j ̸=l

t− xj
xl − xj

=
k∑

l=0

f(b+ hl)
k∏

j=0
j ̸=l

t− b− hj

h(l − j)

=
k∑

l=0

f(b+ hl)(−1)k−l

hkl!(k − l)!

k∏
j=0
j ̸=l

(t− b− hj),

where the formula
k∏

j=0
j ̸=l

1

h(l − j)
=

(−1)k−l

hkl!(k − l)!
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follows from a simple induction on k.
Recall now that our sequence is yn = f(a + hn). Since p(k) = k!ck, taking the

derivative of order k in the last expression of (2.1) and using Lemma 2.6, we obtain
that

ck =
k∑

l=0

f(b+ hl)(−1)k−l

hkl!(k − l)!
=

1

hkk!

k∑
l=0

(
k

l

)
(−1)k−lf(b+ hl)

=
1

hkk!

k∑
l=0

(
k

l

)
(−1)k−lyn+l =

1

hkk!
∆kyn.

The proof is now over because we can write

(−1)k∆kyn = (−1)khkk!ck = (−1)khkf (k)(ξ) ≥ 0,

where in the last inequality we have used that f is completely monotone. □

Lemma 2.8. Let n be a positive integer and define, for k ≥ n,

gk(t) =
n−1∏
j=0

kt− j

k − j
.

Then limk→∞ gk(t) = tn uniformly in [0, 1].

Proof. Given j ∈ {0, 1, . . . , n− 1}, we can bound for t ∈ [0, 1] and k ≥ n∣∣∣∣kt− j

k − j
− t

∣∣∣∣ = ∣∣∣∣j(t− 1)

k − i

∣∣∣∣ ≤ n− 1

k − n+ 1
.

Since this bound is independent of t, for every j we have that

lim
k→∞

gk,j(t) = lim
k→∞

kt− j

k − j
= t

uniformly in [0, 1]. And now we observe that since q(t) = t is bounded in [0, 1], the
product gk = gk,0 gk,1 · · · gk,n−1 converges uniformly to the product tn. □

Having seen this result, we now briefly introduce the concept of weak* conver-
gence for measures and state Helly’s selection theorem, which we will need later on
in this section. The proof of this theorem can be found in [BHS19, Section 1.6]; it
uses the Riesz Representation Theorem in the setting of continuous functions.

Definition 2.9. A sequence of signed finite Borel measures in R converges
weak* to a signed finite Borel measure µ if for every function f ∈ C(R) we have∫

R
f(x) dµn(x) →

∫
R
f(x) dµ(x) as n→ ∞.

Theorem 2.10 (Helly’s selection theorem). If {µn}∞n=1 is a sequence of signed
Borel measures on a compact set A ⊂ R such that the sequence of total variations
{|µn|}∞n=1 is bounded, then there exists a subsequence {µnk

}∞k=1 that converges weak*
to a finite signed Borel measure µ supported on A.

Now we are ready to prove Hausdorff theorem, which is the discrete version of
the theorem we want. Notice, however, that the functions inside the integral are in
this case monomials.
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Theorem 2.11 (Hausdorff). A sequence {xn}∞n=0 is completely monotone if and
only if there exists a finite and positive Borel measure µ on [0, 1] such that

xn =

∫ 1

0

tn dµ(t), n ≥ 0.

Proof. If we assume that such an integral representation exists, then we get
that

(−1)k∆kxn = (−1)k
k∑

j=0

(
k

j

)
(−1)k−jxn+j =

k∑
j=0

(
k

j

)
(−1)j

∫ 1

0

tn+j dµ(t)

=

∫ 1

0

tn

(
k∑

j=0

(
k

j

)
(−t)j

)
dµ(t) =

∫ 1

0

tn(1− t)k dµ(t) ≥ 0.

for all n, k ≥ 0.
For the other direction, given k ≥ 0 and 0 ≤ m ≤ k, let

λk,m =

(
k

m

)
(−1)k−m∆k−mxm.

Define now for each k ≥ 0 the measure µk which is supported at the m + 1
distinct points m/k with 0 ≤ m ≤ k, by imposing µk({m/k}) = λm,k.

Fix n ≥ 0 and let gk(t) =
∏n−1

j=0
kt−j
k−j

. The reader can check with a simple
induction on n that

gk

(m
k

)
=

n−1∏
j=0

m− j

k − j
=
m!(k − n)!

(m− n)!k!
=

(
m
n

)(
k
n

)
Then if n ≥ 1 we have

k∑
m=n

gk

(m
k

)
λk,m =

k∑
m=n

(
m
n

)(
k
n

) ( k
m

)
(−1)k−m

k−m∑
i=0

(
k −m

i

)
(−1)k−m−ixm+i

(1)
=

k∑
m=n

k−m∑
i=0

(
k − n

k −m− i

)(
i+m− n

i

)
(−1)ixm+i

(2)
=

k∑
j=n

j∑
m=n

(
k − n

k − j

)(
j − n

j −m

)
(−1)j−mxj

=
k∑

j=n

(
k − n

k − j

)
xj

j∑
m=n

(
j − n

j −m

)
(−1)j−m

=
k∑

j=n

(
k − n

k − j

)(j−n∑
l=0

(
j − n

l

)
(−1)l

)
xj = xn.

Equality (1) follows from just applying the definition of binomial coefficient, and
equality (2) follows from doing the change of variables j = m+ i and changing the
order of summation.
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If n = 0, we can adapt the argument changing the n for a 0 to get

(2.2)
k∑

m=0

λk,m = x0,

which by definition of the measures µk, proves that they all have total mass equal
to x0.

Choose ε > 0 and fix n ≥ 1. By Lemma 2.8 we know there is an integer Kε > 0
such that

|gk(t)− tn| ≤ ε for t ∈ [0, 1] and
(n
k

)n
≤ ε if k > Kε.

Then for k > Kε we have that∣∣∣∣xn − ∫ 1

0

tn dµk(t)

∣∣∣∣ =
∣∣∣∣∣

k∑
m=n

gk

(m
k

)
λk,m −

k∑
m=0

(m
k

)n
λk,m

∣∣∣∣∣
≤

k∑
m=n

∣∣∣∣gk (mk )− (mk )k
∣∣∣∣λk,m +

n−1∑
m=0

(m
k

)n
λk,m

≤ ε
k∑

m=n

λk,m +
n−1∑
m=0

(n
k

)n
λk,m ≤ ε

k∑
m=0

λk,m = εx0,

where we have used multiple times that λk,m ≥ 0 since the original sequence x is
completely monotone by hypothesis. This calculation implies that

lim
k→∞

∫ 1

0

tn dµk(t) = xn for all n ≥ 0.

The proof is over because in view of (2.2) we can apply Helly’s selection theorem
to conclude that there is a subsequence {µkl}∞l=0 that converges weak* to a positive
(because all the original measures are positive) and finite Borel measure µ supported
on [0, 1]. By definition of weak* convergence we obtain that

xn = lim
l→∞

∫ 1

0

tn dµkl(t) =

∫ 1

0

tn dµ(t)

for all n ≥ 0, as we wanted to see. □

We can now prove the last lemma which in essence constructs the measure we
are looking for.

Lemma 2.12. If a function f : [0,∞) → R is completely monotone, then there
exists a finite and positive Borel measure µ such that

f(r) =

∫ ∞

0

e−rt dµ(t)

for r ≥ 0.

Proof. First of all, by virtue of Lemma 2.7, the sequence {f(n)}∞n=0 is com-
pletely monotone. Secondly, by Hausdorff theorem we know there exists a finite
and positive Borel measure µ with support in [0, 1] such that f(n) =

∫ 1

0
tn dµ(t) for

all n ≥ 0.
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The same reasoning allows us to conclude that for fix m ≥ 1, the sequence
{f(n/m)}∞n=0 is completely monotone, and hence there exists a finite and positive
Borel measure νm such that

(2.3) f
( n
m

)
=

∫ 1

0

tn dνm(t) for n ≥ 0.

Consider now the finite and positive Borel measure µm, also supported in [0, 1],
defined as dµm(t) = tm dνm. We can then write∫ 1

0

tn dµ(t) = f(n) =

∫ 1

0

tnm dνm(t) =

∫ 1

0

tn dµm(t).

This implies that a given polynomial has the same integral with respect to the
measure µ and any of the measures µm. In turn, this means that since we can
uniformly approximate any continuous function in [0, 1] by polynomials (via the
Weierstrass Approximation Theorem), we know that any continuous function will
also have this property. Therefore,

f
( n
m

)
=

∫ 1

0

tn dνm(t) =

∫ 1

0

tn/m dµm(t) =

∫ 1

0

tn/m dµ(t),

where in the last equality we have used the previous argument applied to the con-
tinuous function q(t) = tn/m.

If we now define the (continuous) function

g(x) =

∫ 1

0

tx dµ(t),

we see that f and g coincide at every rational in [0,∞), and so they must be equal.
Then,

µ([0, 1]) = g(0) = f(0) = lim
x→0+

f(x)

= lim
x→0+

∫
[0,1]

tx dµ(t)

= lim
x→0+

∫
(0,1]

tx dµ(t) ≤ µ((0, 1]).

Since we always have µ((0, 1]) ≤ µ([0, 1]), we have the equality and µ({0}) = 0.
If we consider now the measure ν obtained by dν(t) = − log t dµ(t), for r ≥ 0 we
have

f(r) =

∫
(0,1]

tx dµ(t) =

∫
[0,∞)

e−xt dν(t)

and the proof is over. □

Having proven this auxiliary result, we can now finish the proof of the Hausdorff-
Bernstein-Widder theorem.

Proof of Theorem 2.3. If we assume such an integral representation exists,
then by the Theorem of differentiation under the integral sign, we directly have

(−1)kf (k)(r) =

∫ ∞

0

e−rttk dµ(t) ≥ 0

for r > 0 and all k ≥ 0.
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For the other direction, given δ ∈ (0, 1), the function Fδ(t) = f(t + δ) is com-
pletely monotone in [0,∞) (because f is completely monotone). Applying Lemma
2.12, we know there exists a finite and positive Borel measure νδ supported on [0,∞)
such that

Fδ(r) =

∫ ∞

0

e−xt dνδ(t) =

∫
(0,1]

tx dµδ(t),

where dµδ(t) = e−t dνδ(t) is a new measure. Now, given n ≥ 1, we can use this
integral representation of Fδ to conclude that

f(n) = Fδ(n− δ) =

∫
(0,1]

tnt−δ dµδ(t).

This just means that the last integral actually doesn’t depend on δ, and therefore
if we define the new measure dηδ(t) = t−δ dµδ(t), every polynomial p such that
p(0) = 0 will also have an integral over this measure independent of δ.

Using the same argument as before, this will also be the case for any continuous
function that vanishes at 0. Finally, applying this fact to the function h(t) = tx,
for any x > 0 and δ < min{1, x}, we will have

f(x) = Fδ(x− δ) =

∫
(0,1]

tx dηδ(t) =

∫
(0,1]

tx dη1/2(t) =

∫ ∞

0

e−xt dν(t),

where ν is a new measure defined by dν(t) = − log t dη1/2. This integral represen-
tation completes the proof of the theorem. □

We will finish this section by introducing the concept of universally optimal
configurations, as it was defined by Cohn and Kumar in [CK07].

Definition 2.13. We say that a configuration ωN is universally optimal on a
compact metric space (A, ρ) if it minimizes the K-energy of any kernel of the form
K(x, y) = f(ρ(x, y)2) where f is completely monotone.

Notice that Theorem 2.3 allows us to write such kernels as

K(x, y) = f(ρ(x, y)2) =

∫ ∞

0

Gt,ρ(x, y) dµ(t).

Notice that the Riesz-s kernels for s > −2 are of this form, if we take into
account that minimizing a negative energy is equivalent to maximizing its positive
version (with f(x) = x−s/2). Therefore, universally optimal configurations in the
S1 will be minimal energy configurations for these kernels. We end this section
with the following characterization of universally optimal configurations, which is
a direct consequence of Theorem 2.3.

Theorem 2.14. A configuration ωN is universally optimal on a compact metric
space (A, ρ) if and only if it is optimal for all Gaussian kernels Gt with t > 0.

Proof. The direct implication is clear. And if a configuration ω1
N is not uni-

versally optimal, then there exists a kernel of the form K(x, y) = f(ρ(x, y)2) with
f completely monotone and a configuration ω2

N such that∑
xi,xj∈ω1

N
i ̸=j

K(xi, xj) >
∑

xi,xj∈ω2
N

i ̸=j

K(xi, xj).
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By Theorem 2.3, this is equivalent to saying that for some Gaussian kernel Gt,ρ,∫ ∞

0

∑
xi,xj∈ω1

N
i ̸=j

Gt,ρ(xi, xj) dµ(t) >

∫ ∞

0

∑
xi,xj∈ω2

N
i ̸=j

Gt,ρ(xi, xj) dµ(t),

and by the monotonicity of the integral we obtain that ω1
N is not optimal for some

Gaussian kernel, which proves the result. □

3. The optimality of equally spaced points

Our objective in what follows is to study which are the optimal configurations for
the Riesz-s kernels for diferent values of s. Our first goal is to prove the optimality
of equally spaced points in the unit circle for the case s > −1. We will first prove
it for the geodesic distance, and then we will obtain the result for the Euclidean
distance as a corollary.

Definition 3.1. Given a rectifiable simple closed curve Γ ⊂ Rp with a chosen
orientation, the geodesic distance between any two points x, y ∈ Γ, denoted by l(x, y),
is the length of the shortest arc of Γ connecting x and y.

We shall now prove the aforementioned result for this distance in a slightly more
general setting.

Theorem 3.2. Let f : (0, |Γ|/2] → R be a convex and decreasing function
defined at t = 0 by limt→0+ f(t) and let K be the kernel on Γ × Γ of the form
K(x, y) = f(l(x, y)). Then any configuration consisting of N equally spaced points
with respect to the arc length will minimize the K-energy. If f is strictly convex,
then such configurations are the only ones attaining a global minimum.

Proof. Let us denote by L(x, y) the distance from the point x to the point y
along Γ in the direction given by the orientation.

y

x

L(x, y)

l(x, y)

Figure 1. The geodesic distance l(x, y) and L(x, y) for the points
x = (−1, 0) and y = (0, 1) in S1 with the counterclockwise orienta-
tion.

We will also assume that given an arbitrary configuration ωN = {x1, . . . , xN} ⊂
Γ, the index of the points increases in the direction of the orientation, and we will
denote xN+i = xi for i = 1, . . . , N . For fix k ∈ {1, . . . , N − 1}, we have

N∑
j=1

l(xj, xj+k) ≤
N∑
j=1

L(xj, xj+k) =
N∑
j=1

k∑
n=1

L(xj+n−1, xj+n) = k |Γ|
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(changing the order of summation) and also
N∑
j=1

l(xj, xj+k) ≤
N∑
j=1

(|Γ| − L(xj, xj+k)) = (N − k)|Γ|.

If ω′
N = {z1, . . . , zN} denotes instead a configuration of N equally spaced points,

we have

(3.1)
1

N

N∑
j=1

l(xj, xj+k) ≤
|Γ|
N

min{k,N − k} = l(z1, zk+1).

Using this result, we finally have

EK(ωN) =
N−1∑
k=1

N∑
j=1

f(l(xj, xj+k)) ≥ N

N−1∑
k=1

f

(
1

N

N∑
j=1

l(xj, xj+k)

)

≥ N
N−1∑
k=1

f(l(z1, zk+1)) = EK(ω
′
N),

where in the first inequality we have used the convexity of f and in the second
one, that f is decreasing together with (3.1). Notice also that strict convexity of f
implies an strict inequality. □

Notice that the restrictions on f are similar to those we have in a completely
monotone function, so this result also works for them.

We can now establish this result with the Euclidean distance in the more familiar
S1, where we have an easy connection between the 2 distances.

Lemma 3.3. If P,Q ∈ S1, then

|P −Q| = 2 sin
l(P,Q)

2
.

Proof. If we call O = (0, 0), we first of all have that P̂OQ = l(P,Q). Then
notice that by the law of cosines,

|P −Q|2 = 2− 2 cos(l(P,Q)) = 2(1− cos(l(P,Q))),

while by a well known trigonometric identity,

1− cos(x) = 2 sin2
(x
2

)
.

Combining these results we get the desired equality. □

Corollary 3.4. Let f : (0, 2] → R be a convex and decreasing function defined
at t = 0 by limt→0+ f(t). If we define again the kernel K(x, y) = f(|x − y|) on
S1 × S1, any configuration of equally spaced points will minimize the associated
K-energy. If f is strictly convex or strictly decreasing, then these are the only
minimizing configurations.

Proof. Using the previous lemma, we know that for x, y ∈ S1,

|x− y| = 2 sin
l(x, y)

2
.

Since f is convex and decreasing on (0, 2] and sin t
2

is concave and increasing
on (0, π], the composition g(t) = f(2 sin t

2
) is convex and decreasing. Now we can
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apply Theorem 3.2 and obtain that equally spaced points are energy minimizing
for the kernel K(x, y) = g(l(x, y)) = f(|x − y|). We notice also that if f is either
strictly convex or strictly decreasing, then g is strictly convex and by Theorem 3.2
such configurations are the only optimal ones. □

Remark 3.5. Since the functions f(t) = t−s for s > 0, g(t) = −t−s for −1 ≤
s < 0 and h(t) = log 1

t
are convex and strictly decreasing on (0, 2], we conclude that

the N-th roots of unity are the only energy minimizing configuration for the Riesz
s-kernels for s ≥ −1 and s = log.

In the last case, we can even compute exactly the minimal energy as a conse-
quence of this famous identity.

Lemma 3.6 (Euler’s Identity). If N ≥ 2 then

(3.2)
N−1∏
k=1

sin
πk

N
= 21−NN.

Proof. First of all, notice that by Lemma 3.3, we have

sin
πk

N
=

|1− ei
2πk
N |

2
.

Therefore,
N−1∏
k=1

sin
πk

N
= 21−N

N−1∏
k=1

|1− ei
2πk
N |.

Notice now that the numbers 1− ei
2πk
N with k = 0, . . . , N − 1 are the N roots of

the polynomial Q(x) = (1− x)N − 1. If we now exclude the solution x = 0, which
corresponds to k = 0, we find that the numbers 1− ei

2πk
N with k = 1, . . . , N − 1 are

all the roots of the polynomial

P (x) =
Q(x)

x
=

(1− x)N − 1

x
= aN−1x

N−1 + · · ·+ a1x+ a0.

Now, by the binomial theorem, a0 = N and aN−1 = 1, while by Vieta’s formulas,
N−1∏
k=1

(1− ei
2πk
N ) = (−1)N

a0
aN−1

= (−1)NN.

Taking the modulus on both sides finishes the proof. □

Proposition 3.7. The minimal energy for the kernel s = log is given by

Elog(S1, N) = −N logN.

Proof. By the symmetry of the roots of unity, we have that

Elog(S1, N) = −N
N−1∑
k=1

log |xk − xN | = −N log
N−1∏
k=1

|xk − xN |

= −N log
N−1∏
k=1

2 sin
l(xk, xN)

2
= −N log

N−1∏
k=1

2 sin
πk

N
= −N logN,

where in the last equality we have used (3.2). □
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Before moving on to different values of s, we will now present a theorem that
gives a similar result which is true for the n dimensional sphere Sn.

Theorem 3.8. Let f : (0, 4] → R be a convex and decreasing function defined
at t = 0 by limt→0+ f(t). If 2 ≤ N ≤ n + 2, then the vertices of regular (N − 1)-
simplices inscribed in Sn with center at the origin minimize the energy in Sn, n ≥ 2,
with respect to the kernel K(x, y) = f (|x− y|2). If f is strictly convex or strictly
decreasing, then these are the only optimal configurations.

Recall that a regular N -simplex is the N -dimensional convex hull of N+1 points
with equal pairwise distances.

Proof. Let ωN = {x1, . . . , xN} be an arbitrary configuration on Sn, so that

Λ(ωN) =
N∑
i=1

N∑
j=1

|xi − xj|2 =
N∑
i=1

N∑
j=1

(2− 2xi · xj) = 2N2 − 2

∣∣∣∣∣
N∑
i=1

xi

∣∣∣∣∣
2

≤ 2N2,

with equality if and only if
∑N

i=1 xi = 0, which is the case for the vertices of a
regular (N − 1)-simplex centered at the origin. As a consequence, we have
(3.3)

EK(ωN) =
N∑
i=1

∑
j ̸=i

f(|xi−xj|2) ≥ N(N−1)f

(
Λ(ωN)

N(N − 1)

)
≥ N(N−1)f

(
2N

N − 1

)
,

where in the first inequality we have used the convexity of f and in the second one,
that it’s decreasing. Moreover, we again have an equality if

(3.4) |xi − xj| = |xk − xl| for i ̸= j, k ̸= l and
N∑
i=1

xi = 0.

Thus, the vertices of a regular (N − 1)-simplex in Sn centered at 0 are energy
minimizing. If f is strictly convex or strictly decreasing, then we have equality in
(3.3) if and only if (3.4) holds, or equivalently if and only if the given configuration
is a regular (N − 1)-simplex in Sn centered at 0. □

Remark 3.9. Notice that in this case the minimal energy is

EK(Sn, N) = N(N − 1)f

(
2N

N − 1

)
.

Next, we will characterize the configurations that minimize the s-energy when
s ≤ −2. In order to do so, we first introduce some notation.

We will denote as M(A) the set of all Borel probability measures on a compact
set A ⊂ Rn. We will also denote by Bn the n-dimensional ball

Bn = {x ∈ Rn : ∥x∥ ≤ 1},
so that Sn−1 ⊂ Bn. We also define the following concepts.

Definition 3.10. We say that a point b = (b1, . . . , bn) is the center of mass of
a measure µ ∈ M(A) if and only if

bi =

∫
A

xi dµ(x), i = 1, . . . , n,

where we write x = (x1, . . . , xn).
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The following result due to Björck [Bjö56] shows that the problem is trivial for
the Riesz kernels of order s < −2.

Theorem 3.11. If s < −2, a measure µ ∈ M(Bn) minimizes the energy

(3.5) Is(µ) = −
∫
Bn

∫
Bn

|x− y|−s dµ(x) dµ(y)

if and only if µ = 1
2
(δa + δ−a), where a ∈ Sn−1 is arbitrary.

If s = −2, a measure µ ∈ M(Bn) minimizes the energy (3.5) if and only if
µ ∈ M(Sn−1) and the center of mass of µ is the origin.

Remark 3.12. Notice that if we consider a simple measure µ = 1
N

∑N
j=1 δxj

,
then the energy becomes the familiar expression

Is(µ) = − 1

N2

N∑
i=1

N∑
j=1

|xi − xj|−s,

so rephrasing our problem like that is just restating it in a different way.

Proof of Theorem 3.11. Case s = −2: Let µ ∈ M(Bn) and b = (b1, . . . , bn)
be its center of mass. Then∫

Bn

∫
Bn

x · y dµ(x) dµ(y) =
n∑

i=1

∫
Bn

∫
Bn

xiyi dµ(x) dµ(y)

=
n∑

i=1

(∫
Bn

xi dµ(x)

)2

=
n∑

i=1

b2i = |b|2.

Using that −|x− y|2 = 2x · y− |x|2 − |y|2 and the previous calculation, we have

(3.6)

I−2(µ) = −
∫
Bn

∫
Bn

|x− y|2 dµ(x) dµ(y)

= 2

∫
Bn

∫
Bn

x · y dµ(x) dµ(y)− 2

∫
Bn

|x|2 dµ(x)

≥ 2|b|2 − 2 ≥ −2,

with equality if and only if b = 0 (that is, µ has its center of mass at the origin)
and

(3.7)
∫
Bn

|x|2 dµ(x) = 1.

Since |x| ≤ 1 on Bn, (3.7) can hold if and only if |x| = 1 µ-almost everywhere, or
equivalently if µ is supported on Sn−1. Therefore we have proven that µ minimizes
the energy (3.5) if and only if µ ∈ M(Sn−1) and b = 0, as desired.

Case s < −2: Using (3.6), we have

(3.8)
Is(µ) = −

∫
Bn

∫
Bn

|x− y|−s−2|x− y|2 dµ(x) dµ(y)

≥ −2−s−2

∫
Bn

∫
Bn

|x− y|2 dµ(x) dµ(y) ≥ −2−s−1.
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Now if µa =
1
2
(δa + δ−a) with a ∈ Sn−1 arbitrary, we get

Is(µa) = −1

4

2∑
i=1

2∑
j=1

|xi − xj|−s = −1

2
|a+ a|−s = −2−s−1,

so it is sufficient to prove that there are no other measures that attain the equality
in (3.8).

If there was such a measure µ, then in particular it would satisfy I−2(µ) = −2
which we have seen implies b = 0 and µ ∈ M(Sn−1). Then,

Is(µ) =

∫
Sn−1

∫
Sn−1

|x− y|−s dµ(x) dµ(y)

= 2−s−2

∫
Sn−1

∫
Sn−1

|x− y|2 dµ(x) dµ(y).

Similarly as before, since |x− y|−s ≤ 2−s−2|x− y|2, then necessarily |x− y|−s =
2−s−2|x− y|2 µ× µ-almost everywhere on Sn−1 × Sn−1.

If n = 1, then S0 = {1,−1} and the measure would be of the desired form. If on
the other hand n ≥ 2 and the support of µ contains 3 or more points, then there are
2 points z1, z2 ∈ supp(µ) such that |z1 − z2| < 2. This implies the existence of two
spherical caps C1, C2 ⊂ Sn−1 centered respectively at z1 and z2 such that for any
x ∈ C1 and y ∈ C2, we have |x−y| < 2. But this means that |x−y|−s < 2−s−2|x−y|2
for (x, y) ∈ C1 × C2, which has positive µ× µ-measure (by definition of support of
a measure), which is a contradiction with our previous findings. Hence the support
of µ contains at most 2 points, and since b = 0, those must be the endpoints of a
diameter with each point having mass 1/2. □

We can now finally state the exact result that matches our situation.

Theorem 3.13. If s < −2, a measure µ ∈ M(Sn) minimizes the energy

(3.9) Is(µ) = −
∫
Sn

∫
Sn

|x− y|−s dµ(x) dµ(y)

if and only if µ = 1
2
(δa + δ−a), where a ∈ Sn is arbitrary.

If s = −2, a measure µ ∈ M(Sn) minimizes the energy (3.9) if and only if the
center of mass of µ is the origin.

Proof. Simply observe that such a measure µ minimizing the energy (usu-
ally called equilibrium measure) satisfies µ ∈ M(Sn) ⊂ M(Bn+1), and apply the
previous theorem. □

We finish this section by mentioning that in the case −2 < s < −1, the unique
optimal configuration is again the one consisting ofN equally spaced points. We will
however not provide a proof of this fact since it uses linear programming methods,
a different technique than what we are using here which is beyond the scope of this
project (see [CK07] or [BHS19, Chapter 5]).

4. A result for the geodesic distance

Our goal in this section is to tackle the problem of maximizing the sum of the(
n
2

)
pairwise arc distances (that is, the one given by the geodesic distance l(x, y))
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determined by a configuration ωn = {x1, . . . , xn} of n points on the unit circle (case
s = −1 of the s-kernels),

El(ωn) =
n∑

i=1

n∑
j=i+1

l(xi, xj).

In the previous section (see Theorem 3.2) we found a sufficient condition for a
given configuration to be optimal: having equally spaced points (here we make use of
the fact that minimizing a negative energy is equivalent to maximizing its positive
version). In this section we will go a step further and characterize minimizing
configurations, following the work from Minghui Jiang in [Jia08]. We are going
to see that if we change the distance the results are quite different, showing in
particular that there is no uniqueness in the minimizing configuration.

Given 2 points p, q ∈ S1, call angle(p, q) the angle of counterclockwise rotation
from p to q, which clearly satisfies angle(p, q) = 2π − angle(q, p). Given a point set
P , define δ(P ) as

δ(P ) =

|P |∑
i=1

|P |∑
j=i+1

l(xi, xj)

and given a positive integer k ≥ 2, denote by δ(k) the maximum possible sum of
the

(
k
2

)
pairwise arc distances determined by a configuration with k points in S1.

Lastly, we call a point set P balanced if for each line that goes through the center
and touches no point of P , the number of points on each side of the line differs at
most by 1.

We can now state the aforementioned characterization.

Theorem 4.1. Let k ≥ 2 and P be a point set such that |P | = k. Then δ(P ) =
δ(k) if and only if P is balanced. The maximal energy is δ(k) = ⌊k/2⌋⌈k/2⌉π.

In order to prove this theorem, we first need to characterize the property of
being balanced in a more convenient way.

We will always consider that a point set P in S1 has its points ordered coun-
terclockwise by their non-descending polar coordinates in [0, 2π). We will therefore
denote by P (i) the i-th point in the sequence, where we agree for convenience
that P (i) = P (i mod n) and that angle(i, j) = angle(P (i), P (j)). We now define
diff(i, j) = (j − i) mod n and P (i, j) as the subsequence consisting of 1 + diff(i, j)
consecutive points: P (i), P (i+ 1), . . . , P (j).

We will call {i, j} a pair of indices if diff(i, j) ̸= 0 (that is, they don’t represent
the same point). A pair of indices is median if diff(i, j) = diff(j, i) = n/2 and
non-median otherwise. Notice that if n is odd, all pairs are non-median and if n is
even there are n/2 median pairs.

We denote by (i, j) an ordered pair that satisfies 0 < diff(i, j) ≤ ⌊n/2⌋. An
ordered pair (i, j) is short if angle(i, j) ≤ π and antipodal if angle(i, j) = π. Lastly,
we denote by P (i) the antipodal point of P (i), which in general will not belong to
the point set P .

Lemma 4.2. A point set is balanced if and only if every ordered pair is short.

Proof. Suppose P is balanced and call (i, j) an arbitrary ordered pair and let
P (k) and P (l) respectively be the points closest to P (i) and P (i) (with P (k) ̸= P (i)
and P (l) ̸= P (i)) in the counterclockwise direction. Consider a line that goes
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through the circle that, by construction of the points P (k) and P (l), partitions
P into 2 subsets P (k, l − 1) and P (l, k − 1). Since P is balanced, we must have
|P (k, l − 1)| ≥ ⌊n/2⌋ which in turn means that |P (i, l − 1)| ≥ ⌊n/2⌋ + 1. But
diff(i, j) ≤ ⌊n/2⌋ implies that P (j) ∈ P (i, l − 1) and consequently angle(i, j) ≤
angle(i, l − 1) ≤ π (by definition of P (l)), so (i, j) is short.

We prove the other direction by contraposition. Assume that P is not balanced,
and consider a line that goes through the center partitioning P into 2 subsets whose
size differs by at least 2. Let P (i, j) be the larger subset and P (k, l) be the smaller
one, with diff(j, k) = diff(l, i) = 1 (that is, P (k) comes after P (j) and P (i) comes
after P (l) in the counterclockwise direction). We have |P (k, l)| ≤ ⌊n/2⌋, which
implies |P (j, i)| ≤ ⌊n/2⌋+1. It follows that diff(j, i) ≤ ⌊n/2⌋ while angle(j, i) > π,
so we have found an ordered pair not short. □

We are now ready to prove the main theorem.

Proof of Theorem 4.1. By the previous lemma, we need to show that the
sum of arc distances is maximum if and only if every ordered pair is short. For this,
we consider median and non-median pairs separately and prove the result for each
of them.

Median pairs: The arc distance l(i, j) of a median pair is maximal if and only
if the points are antipodal, which happens if and only if the pairs (i, j) and (j, i)
are short. This proves that the sum of arc distances of median pairs is maximum if
and only if all ordered median pairs are short.

Non-median pairs: Assume first that P is a point set with the maximum sum
of arc distances of non-median pairs, and that there exists an ordered non-median
pair satisfying angle(i, j) > π. Choose this pair such that diff(i, j) is minimum.

Consider, as before, a line partitioning P into 2 subsets P (j, i) and P (i+1, j−1).
Move now the point P (i) in the counterclockwise direction for a distance ε until
it is on the partitioning line. This movement makes all the arc distances from the
point P (i) to each of the points in the subset P (i, j − 1) decrease by ε. Similarly,
the arc distances from the point P (i) to the points in the subset P (j, i) increase
each by ε. This simply means that the sum of arc distances increases by a total of
xε, where x = diff(j, i) − diff(i, j − 1). Our goal is to see that x ≥ 1 in order to
reach our contradiction.

Since (i, j) is an ordered non-median pair, it must satisfy diff(i, j) ≤ ⌊n/2⌋ and
diff(i, j) ̸= n/2. For even n, this means that diff(i, j) ≤ n/2 − 1 while for odd n,
diff(i, j) ≤ (n− 1)/2, so we can always bound it by (n− 1)/2. Therefore,

diff(j, i) ≥ n+ 1

2
and diff(i, j − 1) ≤ n− 1

2
− 1,

so x ≥ 2. Leaving out one possible median pair when n is even, we still obtain that
x ≥ 1, which means that P wasn’t optimal since we’ve found another set with a
bigger sum of arc distances. We have reached a contradiction and the result follows.

Now we will prove the other direction directly. For this, consider two arbitrary
point sets P and Q in S1 with |P | = |Q| = n and assume that every ordered
non-median pair in them is short. Define for every such pair (i, j) the quantity

∆i,j = l(Q(i), Q(j))− l(P (i), P (j)).

Our goal is to prove that
∑

(i,j) ∆i,j = 0, where the sum is taken over all non-
median pairs, since this will mean that P and Q have the same sum of arc distances



4. A RESULT FOR THE GEODESIC DISTANCE 18

of non-median pairs. Since every non-median pair is short, we have
l(P (i), P (j)) = L(P (i), P (j)) and l(Q(i), Q(j)) = L(Q(i), Q(j)),

where L(x, y) denotes the distance from x to y in the counterclockwise direction.
It follows that

∆i,j = l(Q(i), Q(j))− l(P (i), P (j)) = l(P (j), Q(j))− l(P (i), Q(i)).

Notice now that for each index 1 ≤ k ≤ n, there are the same amount of ordered
non-median pairs (i, k) and (k, j). The term l(P (k), Q(k)) is included as a positive
term in each ∆i,k and as a negative term in each ∆k,j. Therefore,

∑
(i,j) ∆i,j = 0

and P and Q have the same sum of arc distances of non-median pairs. If these point
sets did not have the maximum sum and another point set P ′ had the maximum
sum of arc distances of non-median pairs instead, then P ′ would have at least one
ordered non-median pair that is not short, which contradicts the other direction of
the lemma we proved before.

To provide the value of the maximum sum, we only need to calculate the sum
associated with one balanced configuration. We consider the configuration that
consists of ⌊n/2⌋ points in one endpoint of a diameter, and ⌈n/2⌉ points in the
other endpoint. It is clear that in this case the sum of arc distances is ⌊n/2⌋⌈n/2⌉π,
which finishes the proof of the theorem. □



CHAPTER 2

The Riesz energy of the roots of unity

In the previous chapter, we studied optimal configurations of N points that
minimised the energy associated to a variety of different kernels. We can summarize
our results in the following way:

• If s > −2 or s = log, then equally spaced points are optimal.
• If s = −2 then any configuration with its center of mass located at the

origin is optimal.
• If s < −2 and N is even, then a configuration with N/2 points located

at one endpoint of a diameter and N/2 located at the other endpoint is
optimal.

• If we are summing the pairwise arc distances, then balanced configurations
are optimal.

We remark that in two cases, namely the sum of arc distances in the circle, and
in the case of logarithmic energy, we could compute the value of the optimal energy
exactly.

We can actually do the same for the s-energy associated to N equally spaced
points ω∗

N , which we will call from now on

Ls(N) = Es(ω
∗
N).

If s ∈ C and ω∗
N = {z1, . . . , zN} are the N -th roots of unity in S1, then by the

symmetry of these points

Es(ω
∗
N) = N

N−1∑
k=1

|zk − zN |−s = N
N−1∑
k=1

|1− e2πi
k
N |−s = 2−sN

N−1∑
k=1

(
sin

πk

N

)−s

,

where the last equality follows from Lemma 3.3.
We know that Es(S1, N) = Ls(N) in the case s ≥ −2. Our goal in this section

is to derive a complete asymptotic expansion for this expression as N → ∞.

1. Preliminary concepts

We will now introduce concepts from potential theory as well as special functions
that will be necessary for the main theorems of this chapter. The main reference
for this chapter is [BHS09].

The first definition we need is what’s called the Wiener constant.

Definition 1.1. Given a compact set A ⊂ Rn and a symmetric and continuous
kernel K, the (possibly infinite) Wiener constant is defined as

WK(A) = inf
µ∈M(A)

IK(µ),

where
IK(µ) =

∫
A

∫
A

K(x, y) dµ(x) dµ(y),

19
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and M(A) denotes the set of all Borel probability measures supported on A.
If a measure µK,A satisfies IK(µK,A) = WK(A), then we call µK,A an equilibrium

measure.

This constant appears in the following theorem, which can be proven using
potential theory.

Theorem 1.2. If A has Hausdorff dimension d and 0 < s < d, then

lim
N→∞

Es(A,N)

N2
= Ws(A).

Here we will focus on the case A = S1, for which we can compute the Wiener
constant (from now on, we will write Ws instead of Ws(S

1)).

Lemma 1.3. The equilibrium measure for the circle A = S1 is the normalised
Lebesgue measure.

Proof. It is known that such a minimizer measure must be rotation invariant,
and we know that the Lebesgue measure has this property. In order to see its
uniqueness, we will adapt the proof in [Rud90, p. 2].

More precisely, we want to see that given two non-negative regular, rotation
invariant measures (also called Haar measures) µ and µ′ (in the S1), there exists a
positive λ such that µ′ = λµ.

For that, fix g ∈ C(S1) such that
∫
S1 g dµ = 1 and define λ as

λ =

∫ 2π

0

g(e−iθ) dµ′(θ).

Then, for any other f ∈ C(S1), we have∫
S1

f dµ′ =

∫ 2π

0

g(eit) dµ(t)

∫ 2π

0

f(eiθ) dµ′(θ)

=

∫ 2π

0

g(eit) dµ(t)

∫ 2π

0

f(ei(t+θ)) dµ′(θ)

=

∫ 2π

0

dµ′(θ)

∫ 2π

0

g(eit)f(ei(t+θ)) dµ(t)

=

∫ 2π

0

dµ′(θ)

∫ 2π

0

g(ei(t−θ))f(eit) dµ(t)

=

∫ 2π

0

f(eit) dµ(t)

∫ 2π

0

g(ei(t−θ)) dµ′(θ) = λ

∫
S1

f dµ,

where we have used Fubini’s theorem twice.
Thus, the Lebesgue measure is the unique rotation invariant measure up to

multiplication by a constant, and since the equilibrium measure is in particular a
probability measure, the result follows. □

Theorem 1.4. For s ∈ C, s ̸= 1, 3, 5 . . ., we have

(1.1) Ws =
2−sΓ((1− s)/2)√
πΓ(1− s/2)
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Proof. By the previous lemma, we know that the equilibrium measure is the
normalised Lebesgue measure. Thus,

Ws =
1

4π2

∫ 2π

0

∫ 2π

0

|eit − eiθ|−s dt dθ =
1

4π2

∫ 2π

0

∫ 2π

0

|1− ei(θ−t)|−s dt dθ

=
1

2π

∫ 2π

0

|1− eit|−sdt.

Then, using Lemma 3.3 and the identity [PBM86, Chapter 2, Section 5.3.1], we
obtain

Ws =
2−s

2π

∫ 2π

0

sin−s t

2
dt =

21−s

π

∫ π/2

0

sin−s u du = 2−s Γ((1− s)/2)√
πΓ(1− s/2)

. □

Next, we need to introduce the sinc function, defined as

sinc z =

{
sin(πz)/(πz) if z ̸= 0,

1 if z = 0.

Notice that the sinc function is analytic, and has no zeros in the unit disk D.
This means that it has a logarithm that is analytic in D, where we choose the
branch such that log sinc 0 = 0, which means that sinc−sz = exp(−s log sincz) is
well defined as an holomorphic function. Moreover, sinc−s is even, so it admits a
series representation of the form

(1.2) sinc−sz =
∞∑
n=0

αn(s)z
2n, |z| < 1, s ∈ C.

For 0 < y < 1, we can write

(1.3) sin−s πy = π−s y−s sinc−s πz = π−s

∞∑
n=0

αn(s)y
2n−s

uniformly in compact sets of (0, 1) (for fixed s). Therefore, if (a)k denotes the
Pochhammer symbol (or rising factorial)

(a)0 = 1 and (a)k =
k−1∏
j=0

(a+ j) =
Γ(a+ k)

Γ(a)
, a ∈ C, k ≥ 1,

then we obtain

(1.4)
dm

dym
sin−s πxy =

(−1)m

πs

∞∑
n=0

αn(s)(s− 2n)m x
2n−sy2n−s−m.

Integrating now term by term, we can also obtain an expression for the anti-
derivative of sin−s πy in (0, 1),

(1.5) As(y) =
1

πs

∞∑
n=0

αn(s)
y2n+1−s

2n+ 1− s
if s ̸= 1, 3, 5 . . . ;

if s = 2M + 1 with M = 0, 1, 2 . . ., then

(1.6) As(y) =
αM(s)

πs
log y +

1

πs

∞∑
n=0
n ̸=M

αn(s)
y2n+1−s

2n+ 1− s
.
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In order to continue, we need to have some additional information about the
coefficients αn(s).

Lemma 1.5. The functions αn(s) satisfy

α′
0(s) = 0 and α′

n(s) =
n−1∑
m=0

αm(s)
ζ(2(n−m))

n−m
, s ∈ C, n ≥ 1,

where the Riemann zeta function is defined in (2.5).

Proof. Taking the derivative with respect to s in (1.2), we obtain

(1.7) (− log sincz) sinc−sz =
∞∑
n=0

α′
n(s)z

2n, |z| < 1, s ∈ C.

Moreover, we have

log sincz = log
∞∏
k=1

(
1− z2

k2

)
=

∞∑
k=1

log

(
1− z2

k2

)

= −
∞∑
k=1

∞∑
n=1

z2n

nk2n
= −

∞∑
n=1

z2n

n
ζ(2n).

Therefore,

(− log sincz) sinc−sz =

(
∞∑
n=1

z2n

n
ζ(2n)

)(
∞∑

m=0

αm(s)z
2m

)

=
∞∑
n=1

z2n
n−1∑
m=0

αm(s)
ζ(2(n−m)

n−m
,

and comparing terms with the expansion in (1.7) finishes the proof. □

Proposition 1.6. For every n ≥ 0, αn(s) is a polynomial of degree n in s with
non-negative coefficients.

Proof. We prove it by induction. The base case is clear since sinc 0 = 1 implies
that α0(s) = 1, and then we simply integrate the expression for α′

n(s) we obtained
in the previous lemma taking into account that ζ(2k) > 0 for all k ≥ 1. □

By Proposition 1.6, we get |αn(s)| ≤ αn(|s|) ≤ αn(R) for |s| ≤ R, which implies
that for fixed y ∈ (0, 1), the series expansion in (1.5) converges uniformly for s in
compact subsets of C by the Weierstrass M -test. Thus, As(y) is an holomorphic
function in s in C \ {1, 3, 5 . . .} for fixed y ∈ (0, 1).

For Re s < 1, sin−s πy is integrable on [0, 1]. Therefore (see Theorem 1.4), we
have

Ws =
1

2π

∫ 2π

0

|1− eit|−s dt = 21−s

∫ 1/2

0

sin−s πy dy = 21−sAs(1/2).

Since both Ws and 21−sAs(1/2) are holomorphic in C \ {1, 3, 5 . . .} and coincide
in Re s < 1, by analytic continuation they must be the same function and so

(1.8) Ws = 21−sAs(1/2) =
1

πs

∑
n=0

αn(s)
(1/2)2n

2n+ 1− s
if s ̸= 1, 3, 5 . . .
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If on the other hand, s = 2M +1 with M = 0, 1, 2 . . ., then using (1.6) we define
the constant

(1.9) GM = 21−sAs(1/2) =
αM(s)

2s−1πs
log

1

2
+

1

πs

∞∑
n=0
n ̸=M

αn(s)

22n+1(n−M)
.

We will compute the value of this constant in Theorem 3.7.

2. The Euler-Maclaurin summation formula

In this section we will introduce the Euler-Maclaurin summation formula and the
Riemann zeta function. We start by defining the Bernoulli numbers. The reference
used for this section is [Bue13].

Definition 2.1. The Bernoulli numbers Bk are defined as the coefficients of
the series expansion

z

ez − 1
=

∞∑
k=0

Bk

k!
zk.

The Bernoulli numbers are closely related to the Bernoulli polynomials, defined
as follows.

Definition 2.2. The Bernoulli polynomials are defined as the coefficients of the
series expansion

(2.1)
zetz

ez − 1
=

∞∑
k=0

Bk(t)

k!
zk.

We can derive a closed form for these polynomials by taking the product of
power series

∞∑
k=0

Bk(t)

k!
zk =

zetz

ez − 1
=

(
∞∑
k=0

Bk

k!
zk

)(
∞∑
n=0

(tz)n

n!

)
=

∞∑
k=0

zk
∑
i+j=k

Bi

i!j!
tj.

Therefore, we obtain

Bk(t) =
k∑

m=0

(
k

m

)
Bk−mt

m.

Since B0 = 1, B0(t) = 1. The Bernoulli numbers satisfy the relation Bk =
Bk(0) = Bk(1) with the exception of k = 1. In that case, since B1(t) = t−1/2, it is
taken by convention in the modern literature that B1 = B1(0) = −1/2. Bernoulli
numbers have very interesting properties, such as the following one.

Proposition 2.3. If k ≥ 2 is an odd natural number, then Bk = 0.

Proof.
z

ez − 1
−B1z =

2z + z(ez − 1)

2(ez − 1)
=
z(ez + 1)

2(ez − 1)
=
z(ez/2 + e−z/2)

2(ez/2 − e−z/2)
.

Consequently, the function
z

ez − 1
−B1z is even and its series expansion has no

non-trivial odd terms. □
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Other properties relating the Bernoulli numbers and the Bernoulli polynomials
are:

• For real z = x, if we replace t by 1− t and x by 1−x in (2.1), the left-hand
side remains unchanged, and we obtain the relation

(2.2) Bn(1− x) = (−1)nBn(x) for x ∈ R, n ≥ 1.

• The Bernoulli numbers satisfy (−1)n+1B2n > 0 for n ≥ 1.
• For n ≥ 1,

(2.3)
∫ 1

0

Bn(x) dx = 0.

Lemma 2.4. For k ≥ 1,
B′

k(t) = kBk−1(t).

Proof. Differentiating (2.1) with respect to t, we get

z2ezt

ez − 1
=

∞∑
k=1

B′
k(t)

k!
zk

(recall that the first Bernoulli polynomial is constant). This implies

zezt

ez − 1
=

∞∑
k=1

B′
k(t)

k!
zk−1 =

∞∑
k=0

B′
k+1(t)

(k + 1)!
zk.

And comparing the powers of z term by term with (2.1) gives the result. □

Definition 2.5. We denote the Bernoulli periodic function Cn as

Cn(x) = Bn(x− ⌊x⌋).

We are now ready to state and prove the Euler-Maclaurin summation formula.

Theorem 2.6 (Euler-Maclaurin summation formula). If f is a smooth function
in [a, n], where a < n ∈ Z, then for all m ≥ 1 we have

n−1∑
k=a

f(k) =

∫ n

a

f(x) dx+
m∑
k=1

Bk

k!
f (k−1)(x)

∣∣∣∣n
a

+Rm,

where

Rm =
(−1)m+1

m!

∫ n

a

Cm(x)f
(m)(x) dx.

Proof. We want to prove that

(2.4) f(0) =

∫ 1

0

f(x) dx+
m∑
k=1

Bk

k!
f (k−1)(x)

∣∣∣∣1
0

+
(−1)m+1

m!

∫ 1

0

Bm(x)f
(m)(x) dx

holds for all m ≥ 1.
We first prove the base case, m = 1. Since

f(x) = f(0) +

∫ x

0

f ′(t) dt,
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we can integrate with respect to x from 0 to 1 and get∫ 1

0

f(x) dx = f(0) +

∫ 1

0

∫ x

0

f ′(t) dt dx = f(0) +

∫ 1

0

f ′(t)

∫ 1

t

x dx dt

= f(0) +

∫ 1

0

f ′(t)(1− t) dt = f(1) +

∫ 1

0

−tf ′(t) dt.

Adding the last two equations and dividing by 2 gives the equality∫ 1

0

f(x) dx =
f(0) + f(1)

2
+

∫ 1

0

(
1

2
− t

)
f ′(t) dt,

or equivalently

f(0) =

∫ 1

0

f(x) dx+
f(0)− f(1)

2
+

∫ 1

0

(
x− 1

2

)
f ′(x) dx

=

∫ 1

0

f(x) dx+B1f(x)

∣∣∣∣1
0

+

∫ 1

0

B1(x)f
′(x) dx,

and the base case is proven. Now assume that (2.4) is true for all k ≤ m. By
Lemma 2.4, B′

k(x) = kBk−1(x), and so∫ 1

0

Bk(x)f
(k)(x) dx =

Bk+1(x)

k + 1
f (k)(x)

∣∣∣∣1
0

− 1

k + 1

∫ 1

0

Bk+1(x)f
(k+1)(x) dx.

The case m+ 1, using the previous calculation, can be written as

f(0) =

∫ 1

0

f(x) dx+
m∑
k=1

Bk

k!
f (k−1)(x)

∣∣∣∣1
0

+
(−1)m+1

m!

(
Bm+1(x)

m+ 1
f (m)(x)

∣∣∣∣1
0

− 1

m+ 1

∫ 1

0

Bm+1(x)f
(m+1)(x) dx

)
.

Now we observe that when m is odd, (−1)m+1 = 1 and when m is even,
Bm+1(0) = Bm+1(1) = 0. Consequently,

f(0) =

∫ 1

0

f(x) dx+
m+1∑
k=1

Bk

k!
f (k−1)(x)

∣∣∣∣1
0

+
(−1)m+2

(m+ 1)!

∫ 1

0

Bm+1(x)f
(m+1)(x) dx.

Applying this formula to the functions gj(x) = f(j + x) for any integer number
a ≤ j ≤ n− 1, we obtain

f(j) = gj(0)

=

∫ 1

0

gj(x) dx+
m+1∑
k=1

Bk

k!
g
(k−1)
j (x)

∣∣∣∣1
0

+
(−1)m

(m+ 1)!

∫ 1

0

Bm+1(x)g
(m+1)
j (x) dx

=

∫ j+1

j

f(x) dx+
m+1∑
k=1

Bk

k!
f (k−1)(x)

∣∣∣∣j+1

j

+
(−1)m

(m+ 1)!

∫ j+1

j

Cm+1(x)f
(m+1)(x) dx.

Adding them up for all a ≤ j ≤ n− 1 we obtain the result. □

We end this study about the Bernoulli numbers with the following formula,
sometimes used as a definition instead of the approach we used.
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Corollary 2.7. For n,m ≥ 1,
n−1∑
k=1

km =
1

m+ 1

m∑
k=0

(
m+ 1

k

)
Bkn

m+1−k.

Proof. To prove this result, we will use the Euler-Maclaurin summation for-
mula to the function f(x) = xm. Notice first of all that for l ≤ m,

f (l)(x) = m(m− 1) · · · (m− l + 1)xm−l,

which in particular means that f (m) = m!. By (2.3), we also have that

Rm = (−1)m+1

∫ n

0

Cm(x) dx = n(−1)m+1

∫ 1

0

Bm(x) dx = 0.

We can now write
n−1∑
k=1

km =
n−1∑
k=0

f(k)

=

∫ n

0

xm dx+
m∑
k=1

Bk

k!
m(m− 1) · · · (m− k + 2)xm−k+1

∣∣∣∣n
0

+Rm

=
nm+1

m+ 1
+

1

m+ 1

m∑
k=1

(
m+ 1

k

)
Bkn

m−k+1

=
1

m+ 1

m∑
k=0

(
m+ 1

k

)
Bkn

m−k+1. □

The last special function we need to introduce is the famous Riemann zeta
function.

Definition 2.8. The Riemann zeta function is defined as

(2.5) ζ(s) =
∞∑
n=1

1

ns
, Re s > 1.

This function has been extensively studied since Euler first computed it for some
real values of s (the Basel problem) and Riemann considered its generalization to
complex values.

There are plenty of results about the zeta function, and deep connections have
been found relating it to other areas of mathematics. We will see that it also plays
an important role in the computation of the complete asymptotic expansion we will
present in Section 3, a seemingly unrelated topic.

Notice that the expression in (2.5) converges only when Re s > 1. The main
result we will need about the Riemann zeta function later on is that it can be
analytically continued to the rest of the complex plane, having a simple pole at
s = 1.

Theorem 2.9. The Riemann zeta function can be analytically continued to the
half-plane Re s+ 2p > 0, where p is an arbitrary natural number, using

(2.6) ζ(s) =
1

s− 1
+

1

2
+

p∑
k=1

B2k

(2k)!
(s)2k−1 −

(s)2p+1

(2p+ 1)!

∫ ∞

1

C2p+1(x)x
−s−2p−1 dx.
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Proof. The idea is to apply the Euler-Maclaurin summation formula to the
function f(x) = x−s. Thus, given a natural number p, if Re s > 1 we can write

ζ(s) =
∞∑
n=1

n−s =

∫ ∞

1

x−s dx+
f(1)

2
+ lim

N→∞

f(N)

2

+

p∑
k=1

B2k

(2k)!
f (2k−1)(x)

∣∣∣∣∞
1

+
1

(2p+ 1)!

∫ ∞

1

C2p+1(x)f
(2p+1)(x) dx.

Using then that

f (k)(x) = −s(−s− 1) · · · (−s− k)x−s−k = (−1)k (s)k x
−s−k

we obtain the desired formula. Note that the last integral in the right-hand side of
(2.6) converges if Re s + 2p > 0 and the whole expression coincides with ζ in the
half-plane Re s > 1, and so it is the analytic continuation. □

After knowing that the zeta function can be analytically continued to the entire
complex plane, one may wonder what its zeros are. The ζ function is known to have
its “trivial” zeros at the negative even integers s = −2,−4,−6 . . .; this is something
that Riemann himself knew. The Riemann hypothesis states that every other zero

of the function (known as the non-trivial zeros) has real part equal to
1

2
.

We finish this section with the following definition.

Definition 2.10. Let p be a non-negative integer, y ≥ 1 and s a complex number
such that s ̸= 1. Then we define the incomplete Riemann zeta function as

ζy,p(s) =
1

s− 1
+

1

2
+

p∑
k=1

B2k

(2k)!
(s)2k−1 −

(s)2p+1

(2p+ 1)!

∫ y

1

C2p+1(x)x
s−2p−1 dx.

We also define (notice that (1)m = m!)

(2.7) Ψy,p = lim
s→1

(
ζy,p(s)−

1

s− 1

)
=

1

2
+

p∑
k=1

B2k

2k
−
∫ y

1

C2p+1(x)x
−2p−2 dx.

Notice that since the periodic Bernoulli polynomials are uniformly bounded
(|Cp(x)| ≤ Kp), we have for Re s+ 2p > 0

(2.8)
|ζy,p(s)− ζ(s)| =

∣∣∣∣ (s)2p+1

(2p+ 1)!

∫ ∞

y

C2p+1(x)x
−s−2p−1 dx

∣∣∣∣
≤ |(s)2p+1K2p+1|

(2p+ 1)!(Re s+ 2p)
y−Re s−2p = Os,p(y

−Re s−2p),

where Os,p denotes that the constant associated with the O notation may depend
on s and p. Consequently,

lim
y→∞

ζy,p(s) = ζ(s), Re s+ 2p > 0.
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3. A complete asymptotic expansion

As we have mentioned before, in this chapter we will find a complete asymptotic
expansion in terms of powers of N of the s-energy of N equally spaced points

(3.1) Ls(N) = 2−sN

N−1∑
k=1

(
sin

πk

N

)−s

as N → ∞. Before we start, let us restate Euler-Maclaurin’s formula (Theorem
2.6) in a more convenient way.

Theorem 3.1. If f is a smooth function in [1, n], then for all m ≥ 1 we have
n∑

k=1

f(k) =

∫ n

1

f(x) dx+
1

2
(f(1) + f(n)) +

m∑
k=1

B2k

(2k)!
f (2k−1)(x)

∣∣∣∣n
1

+R2m+1,

where

R2m+1 =
1

(2m+ 1)!

∫ n

1

C2m+1(x)f
(2m+1)(x) dx.

We first establish the following lemma that allows us to write this energy as a
series expansion.

Lemma 3.2. Let p be a non-negative integer and s be a complex number. Then
• For s ̸= 1, 3, 5 . . . we have

Ls(N) = WsN
2 +

2

(2π)s

∞∑
n=0

αn(s)ζN/2,p(s− 2n)N1+s−2n.

• For s = 2M + 1 with M = 0, 1, 2 . . . we have

Ls(N) = 21−sαM(s)

πs
N2 logN +

(
GM + 21−sαM(s)

πs
ΨN/2,p

)
N2

+
2

(2π)2

∞∑
n=0
n ̸=M

αn(s)ζN/2,p(s− 2n)N1+s−2n,

where GM is defined in (1.9) and ΨN/2,p is defined in (2.7).

Proof. The main idea of the proof is to apply the Euler-Maclaurin’s summation
formula. Given a natural number N fixed, define the function f(x) = (sin πx

N
)−s for

0 < x < N , so that

Ls(N) = 2−sN
N−1∑
k=1

f(k).

The function f satisfies that f(N − x) = f(x) and therefore f (m)(N − x) =
(−1)mf (m)(x).

Now, notice that ⌊N −x⌋ = N + ⌊−x⌋ = N −⌊x⌋− 1. Then, applying property
(2.2), we find that

Cm(N − x) = Bm(N − x− ⌊N − x⌋) = Bm(1− (x− ⌊x⌋)) = (−1)mCm(x).
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Both of these relations mean that the function C2p+1f
(2p+1) is even about N/2,

and so applying Theorem 3.1, we have

N−1∑
k=1

f(k) = 2

∫ N/2

1

f(x) dx+ f(1)− 2

p∑
k=1

B2k

(2k)!
f (2k−1)(1)

+
2

(2p+ 1)!

∫ N/2

1

C2p+1(x)f
(2p+1)(x) dx.

Next, recall that in (1.5) we defined an antiderivative of sin−s πy for y ∈ (0, 1),
so that

JN = 2

∫ N/2

1

f(x) dx = 2N

∫ 1/2

1/N

sin−s πy dy = 2N(As(1/2)− As(1/N)).

Now, if s ̸= 1, 3, 5 . . . from (1.8) and (1.5) we obtain

JN = 2sNWs +
2

πs

∞∑
n=0

αn(s)
N s−2n

s− 2n− 1
,

while for s = 2M + 1 with M = 0, 1, 2 . . ., we obtain from (1.9) and (1.6) that

JN = 2sNGM + 2
αM(s)

πs
N logN +

2

πs

∞∑
n=0
n̸=M

αn(s)
N s−2n

s− 2n− 1
.

Moreover, from the series expansion in (1.3), we see that

f(1) =
1

2

2

πs

∞∑
n=0

αn(s)N
s−2n,

and from its derivative version in (1.4), we obtain

−2

p∑
k=1

B2k

(2k)!
f (2k−1)(1) =

2

πs

∞∑
n=0

αn(s)N
s−2n

p∑
k=1

B2k

(2k)!
(s− 2n)2k−1.

Finally, we also have

2

(2p+ 1)!

∫ N/2

1

C2p+1(x)f
2p+1(x) dx

= − 2

πs

∞∑
n=0

αn(s)N
s−2n (s− 2n)2p+1

(2p+ 1)!

∫ N/2

1

C2p+1(x)x
2n−s−2p−1 dx.



3. A COMPLETE ASYMPTOTIC EXPANSION 30

Combining all of these expressions, we obtain that

Ls(N) = 2−sN
N−1∑
k=1

f(k) = N2Ws +
2

(2π)s

∞∑
n=0

αn(s)N
1+s−2n

×

(
1

s− 2n− 1
+

1

2
+

p∑
k=1

B2k

(2k)!
(s− 2n)2k−1

−(s− 2n)2p+1

(2p+ 1)!

∫ N/2

1

C2p+1(x)x
−(s−2n)−2p−1 dx

)

= N2Ws +
2

(2π)s

∞∑
n=0

αn(s)ζN/2,p(s− 2n)N1+s−2n,

as we wanted to see.
If instead, s is of the form s = 2M + 1 with M = 0, 1, 2 . . ., substituting all of

the expressions we found, and making use of the fact that the Pochhammer symbol
in this case satisfies (s− 2M)k = k!, we obtain

Ls(N) = N2GM +
2αM(s)

(2π)s
N2 logN +

2

(2π)s

∞∑
n=0
n̸=M

αn(s)N
1+s−2n

×

(
1

s− 2n− 1
+

1

2
+

p∑
k=1

B2k

(2k)!
(s− 2n)2k−1

−(s− 2n)2p+1

(2p+ 1)!

∫ N/2

1

C2p+1(x)x
−(s−2n)−2p−1 dx

)

+
2αM(s)

(2π)s
N2

(
1

2
+

p∑
k=1

B2k

2k
−
∫ N/2

1

C2p+1(x)x
−2p−2 dx

)
,

which finishes the proof by definition of the incomplete Riemann zeta function
ζN/2,p(s− 2n) and the definition of ΨN/2,p. □

We are now ready to present the main theorems that give us the complete
asymptotic expansions. The first one corresponds to the general case.

Theorem 3.3. Let s ∈ C with s ̸= 1, 3, 5 . . . and let p be a non-negative integer.
Then
(3.2)

Ls(N) = WsN
2+

2

(2π)s

p∑
n=0

αn(s)ζ(s− 2n)N1+s−2n+Os,p(N
−1+Re s−2p), N → ∞.
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Proof. Let q be the smallest integer such that Re s+ 2q > 2. By Lemma 3.2,
we have

(3.3)

Ls(N) =WsN
2 +

2

(2π)s

p∑
n=0

αn(s)ζ(s− 2n)N1+s−2n

+
2

(2π)s

p∑
n=0

αn(s)
(
ζN/2,p+q(s− 2n)− ζ(s− 2n)

)
N1+s−2n

+
2

(2π)s

∞∑
n=p+1

αn(s)ζN/2,p+q(s− 2n)N1+s−2n.

Now, by (2.8)

|
(
ζN/2,p+q(s− 2n) −ζ(s− 2n))N1+s−2n| ≤ Ks,pN

−Re s−2p−2q+2nN1+Re s−2n

= Ks,pN
1−2p+Re s−Re s−2q ≤ Ks,pN

−1−2p+Re s,

since Re s+2q > 2. It follows that the associated sum in (3.3) is Os,p(N
−1−2p+Re s).

It only remains to study the last term of (3.3), which we will rewrite as

2N−1+s−2p

(2π)s

∞∑
n=p+1

βn(s, p,N),

where

βn(s, p,N) = αn(s)ζN/2,p+q(s− 2n)

(
N

2

)−2(n−p−1)(
1

2

)2(n−p−1)

.

We will now bound these coefficients βn. First of all, from the fact that the radius
of convergence of (1.2) is 1, we know that (with s fixed) lim supn→∞ |αn(s)|1/n ≤ 1,
which implies that |αn(s)| ≤ (1 + ε)n for any ε > 0 if n is large enough.

Since the periodic Bernoulli polynomials Cn are bounded and (s − 2n)m is a
polynomial in n of degree m, we have that∣∣∣∣∣

(
N

2

)−2(n−p−1)
(s− 2n)2p+2q+1

(2p+ 2q + 1)!

∫ N/2

1

C2p+2q+1(x)x
−s+2n−2p−2q−1 dx

∣∣∣∣∣
≤ Ks,p|(s− 2n)2p+2q+1|N−2(n−p−1)N−Re s+2n−2p−2q

≤ Ks,p|(s− 2n)2p+2q+1|N−Re s−2q+2 ≤ Ks,p|(s− 2n)2p+2q+1| = Os,p(n
2p+2q+1)

if N ≥ 2 and n ≥ p+1. Consequently, since the other terms in ζN/2,p+q(s− 2n) are
also in Os,p(n

2p+2q+1), we conclude that

ζN/2,p+q(s− 2n)

(
N

2

)−2(n−p−1)

= Os,p(n
2p+2q+1)

if N ≥ 2 and n ≥ p+ 1.
Combining these results, we obtain that for n large enough and ε small enough,

|βn(s, p,N)| ≤ K1(1 + ε)n n2p+2q+1

(
1

4

)n

≤ K2

(
1

3

)n

,

where the constants K1 and K2 depend only on s and p.
This implies that the last term of (3.3) is in O(N−1+Re s−2p), and the proof is

over. □
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Remark 3.4. Since the Riemann zeta function has its trivial zeroes at z =
−2,−4,−6 . . ., if s is an even integer, the asymptotic expansion of Ls(N) has finitely
many terms. Specifically,

Ls(N) = WsN
2 if s = −2,−4,−6 . . . ,

and for s = 2M with M = 1, 2, 3 . . . we get

Ls(N) =
2

(2π)s

M∑
n=0

αn(s)ζ(s− 2n)N1+s−2n.

Finally, we note that if s = 0, then the expression in (3.2) reduces to L0(N) =
N(N − 1) (since W0 = 1), which coincides with the s = 0 Riesz energy for any
kernel, and is also the limit as s→ 0 of Ls(N) in (3.1).

Remark 3.5. Notice that Theorem 1.2 is a direct consequence of Theorem 3.3
for the special case when A = S1, since in that case Es(S1, N) = Ls(N) and we can
use the complete asymptotic expansion we just found.

We also state without proof, since it’s similar to the one we just presented, the
resulting theorem for the exceptional cases s = 1, 3, 5 . . .

Theorem 3.6. Let s = 2M + 1, M = 0, 1, 2, 3 . . ., and let p be an integer
satisfying p > M . Then

Ls(N) =
1

π

(1/2)M
22MM !

N2 logN +

(
GM +

1

π

(1/2)M
22MM !

γ

)
N2

+
2

(2π)s

p∑
n=0
n ̸=M

αn(s)ζ(s− 2n)N1+s−2n +Os,p(N
−1+s−2p), N → ∞,

where the constant GM is defined in (1.9) and γ is the Euler-Mascheroni constant.

We will finish this chapter by computing the value of the constant GM that has
appeared in the previous theorems.

Theorem 3.7. If s = 2M + 1, M = 0, 1, 2 . . ., then we have

GM =
(1/2)M
π22MM !

(
α′
M(2M + 1)

αM(2M + 1)
+

1

2
ψ(M + 1)− 1

2
ψ(M + 1/2)− log π

)
,

where ψ(z) =
Γ′(z)

Γ(z)
is the digamma function.

Proof. First of all, notice that since the Γ function satisfies Γ(z)Γ(1 − z) =
π/ sinπz, we can obtain from (1.1) that

Ws =
2−s Γ(s/2) tan(πs/2)√

π Γ((1 + s)/2)
, s ̸= 1, 3, 5 . . .

Substituting this expression into (1.8) and separating out the term where n =M ,
we obtain for s ̸= 1, 3, 5 . . . that

(3.4)
1

πs

∞∑
n=0
n ̸=M

αn(s)
(1/2)2n

2n− s+ 1
=

2−s Γ(s/2) tan(πs/2)√
π Γ(1 + s/2)

− αM(s)

πs

(1/2)2M

2M − s+ 1
.
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In the comment right after Proposition 1.6 we saw that the left-hand side of
(3.4) is holomorphic at s = 2M +1. The main idea of the proof it to now construct
another function defined in a neighbourhood of s and study its behaviour.

For this, call s(ε) = 2M + 1 + 2ε, |ε| < 1 and define the function

HM(ε) =
1

πs(ε)

∞∑
n=0
n̸=M

αn(s(ε))
(1/2)2n

2(n−M − ε)
.

Since the left-hand side of (3.4) is holomorphic at s = 2M + 1, it implies that
HM(ε) is continuous at 0. Then, using identity (1.9) we deduce that

(3.5) lim
ε→0

HM(ε) = GM +
αM(2M + 1)

22Mπ2M+1
log 2.

Now, since the tangent function is π-periodic, we have that

tan(πs/2) = tan π(M + 1/2 + ε) = tan π(1/2 + ε) = − cot πε,

where the last equality is just a trigonometric identity. Using this, we obtain from
(3.4) that

(3.6) HM(ε) =
2−2M

2επs(ε)

(
αM(s(ε))− π2M Γ(M + 1/2 + ε)√

πΓ(M + 1 + ε)

(π
2

)2ε
(πε cot πε)

)
.

Since the limit of this expression as ε → 0 exists (since HM(ε) is continuous at
ε = 0), we must necessarily have that

lim
ε→0

(
αM(s(ε))− π2M Γ(M + 1/2 + ε)√

πΓ(M + 1 + ε)

(π
2

)2ε
(πε cot πε)

)
= 0,

or equivalently that

(3.7) αM(2M + 1) = π2M (1/2)M
M !

,

since Γ(M + 1/2) = Γ(1/2)(1/2)M =
√
π(1/2)M .

Now, adding (3.7) into the bracketed expression of (3.6), we obtain that
(3.8)

lim
ε→0

HM(ε) =
2−2M

π2M+1
lim
ε→0

αM(2M + 1 + 2ε)− αM(2M + 1)

2ε

+
2−2M

2π

(1/2)M
M !

lim
ε→0

1

ε

(
1− Γ(M + 1/2 + ε)Γ(M + 1)

Γ(M + 1/2)Γ(M + 1 + ε)

(π
2

)2ε
(πε cot πε)

)
.

One can verify (using tools such as Mathematica) that the Taylor expansion of
the bracketed expression in the last term of (3.8) around ε = 0 is(

2 log
2

π
− ψ(M + 1/2) + ψ(M + 1)

)
ε+O(ε2),

where ψ(z) =
Γ′(z)

Γ(z)
is the digamma function.

Therefore, we can compute the limit to obtain

lim
ε→0

HM(ε) =
2−2M

π

α′
M(2M + 1)

π2M

− 2−2M

π

(1/2)M
M !

(
1

2
ψ(M + 1/2)− 1

2
ψ(M + 1) + log

π

2

)
.
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Finally, substituting this expression into (3.5) and using (3.7), we get

GM =
2−2M

π

α′
M(2M + 1)

π2M

− 2−2M

π

(1/2)M
M !

(
1

2
ψ(M + 1/2)− 1

2
ψ(M + 1) + log π

)
,

or equivalently (using again (3.7))

GM =
2−2M

π

(1/2)M
M !

(
α′
M(2M + 1)

αM(2M + 1)
+

1

2
ψ(M + 1)− 1

2
ψ(M + 1/2)− log π

)
. □



CHAPTER 3

Chui’s conjecture

1. Original statement and known bounds

Given z ∈ D and an N -point configuration ωN = {z1, z2, . . . , zN} ⊂ S1, we
define

SN(z) =
N∑
k=1

1

z − zk
.

In his original paper [Chu71], C. K. Chui conjectured that the average of these
functions over D is minimized if the chosen configuration ωN consists of N equally
spaced points. That is, he conjectured that

(1.1)
∫
D

∣∣∣∣∣
N∑
k=1

1

z − zk

∣∣∣∣∣ dm(z) ≥
∫
D

∣∣∣∣∣
N∑
k=1

1

z − e2πik/n

∣∣∣∣∣ dm(z).

Chui also found that the right-hand side of (1.1) is bounded below, so that if
the conjecture were true, we would have a uniform bound for these area integrals.
However, D. J. Newman showed shortly afterward in [New72] that the following
bound can be obtained independently of Chui’s conjecture.

Theorem 1.1. For any z1, z2, . . . , zN in the S1, we have∫
D

∣∣∣∣∣
N∑
k=1

1

z − zk

∣∣∣∣∣ dm(z) ≥ π

18
.

To prove Newman’s bound, we need a few properties of the Poisson kernel.

Definition 1.2. The Poisson kernel for z ∈ D and θ ∈ S1 is

Pθ(z) =
1− |z|2

|θ − z|2
.

Lemma 1.3. The Poisson kernel Pθ(z) = Re
θ + z

θ − z
, for z ∈ D and θ ∈ S1,

satisfies Pθ ≥ 0 and the sets SN = {Pθ ≥ 2N} are discs of radius
1

2N + 1
included

inside D.

Proof. Notice that by a rotation argument, we can assume without loss of
generality that θ = 1. Calling z = reit, we have

1 + z

1− z
= (1 + z)

∞∑
k=0

zk = 1 + 2
∞∑
k=1

rkeikt.

35
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Thus,

Re
1 + z

1− z
= 1 + 2

∞∑
k=1

rk cos(kt) =
∞∑
k=0

rkeikt +
∞∑
k=1

rke−ikt

=
1

1− reit
+

re−it

1− re−it
=

1− re−it + re−it(1− reit)

1− r(eit + e−it) + r2

=
1− r2

1− 2r cos t+ r2
=

1− |z|2

|1− z|2
.

Observe that being the real part of an holomorphic function, the Poisson ker-
nel is harmonic, meaning that ∆Pθ = 0, which follows from the Cauchy-Riemann
equations.

In order to find what the sets SN are, we call z = x+ iy and rewrite
1− |z|2

1− 2x+ |z|2
≥ 2N

as
(1 + 2N)x2 − 4Nx+ (1 + 2N)y2 ≤ 1− 2N.

We now complete the square for the terms with x, so that

(1 + 2N)x2 − 4Nx = (1 + 2N)

(
x2 − 4Nx

1 + 2N

)
= (1 + 2N)

((
x− 2N

1 + 2N

)2

−
(

2N

1 + 2N

)2
)
.

Simplifying and substituting this result into our inequality, we obtain

(1 + 2N)

((
x− 2N

1 + 2N

)2

+ y2

)
≤ 1− 2N +

4N2

1 + 2N
=

1

1 + 2N
,

which is an expression equivalent to the equation of a disc centered at
2N

1 + 2N
with

radius
1

1 + 2N
. □

Proof of Theorem 1.1. Call

Pk(z) = Re
zk + z

zk − z
, k = 1, . . . , N,

Sk = {z ∈ D : Pk ≥ 2N} and χk = χSk
the characteristic function of Sk. Define

also the set S =
⋃N

k=1 Sk. Since

1

z − zk
=

1

2z

(
z + zk
z − zk

+ 1

)
,

we have
N∑
k=1

1

z − zk
= − 1

2z

(
N∑
k=1

zk + z

zk − z
−N

)
.

Therefore, ∣∣∣∣∣
N∑
k=1

1

z − zk

∣∣∣∣∣ ≥ 1

2

(
N∑
k=1

Pk −N

)
,
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and we obtain that∫
D

∣∣∣∣∣
N∑
k=1

1

z − zk

∣∣∣∣∣ dm(z) ≥
∫
S

∣∣∣∣∣
N∑
k=1

1

z − zk

∣∣∣∣∣ dm(z)

≥ 1

2

∫
D

(
N∑
k=1

Pk −N

)
dm(z).

Since Pk ≥ 0 it clearly satisfies Pk ≥ Pkχk. Also notice that in the set S we
have

∑N
k=1 χk ≥ 1, so we deduce that

N∑
k=1

Pk −N ≥
N∑
k=1

(Pk −N)χk.

Observe also that by definition of Sk we have (Pk −N)χk ≥ Nχk, which means
that in S we have the bound

N∑
k=1

Pk −N ≥ N

N∑
k=1

χk.

Hence, we obtain∫
D

∣∣∣∣∣
N∑
k=1

1

z − zk

∣∣∣∣∣ dm(z) ≥ N

2

∫
S

N∑
k=1

χk dm(z).

Also, by the previous lemma, we know that∫
S

χk dm(z) =
π

(2N + 1)2
,

and we finally conclude that

N

2

∫
S

N∑
k=1

χk dm(z) =
πN2

2(2N + 1)2
≥ π

18
. □

2. An approximation problem

Our goal in this last section is to present a surprising approximation result
related to what we have proven in the previous section.

For this, we need to introduce the Bergman space Ap(D) of analytic functions,
which is defined as

Ap(D) =

{
f ∈ H(D) : ∥f∥p =

(∫
D
|f(z)|p dm(z)

)1/p

<∞

}
.

The space Ap(D) is therefore the subspace of holomorphic functions of the Ba-
nach space Lp(D). Remarkably, the space Ap(D) is also a Banach space, which is a
consequence of the following bound.

Lemma 2.1. If f ∈ Ap(D) and K is a compact subset of D, then there is a
constant CK > 0 such that

sup
z∈K

|f(z)| ≤ CK∥f∥p.
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Proof. Since f is holomorphic in D it satisfies the mean value property, so
given z0 ∈ K we have for r sufficiently small

f(z0) =

∫ 2π

0

f(z0 + reit) dt.

Multiplying both sides by r and integrating from 0 to δ > 0 (choosing δ such
that D(z0, δ) ⊂ D) we get that

f(z0) =
1

πδ2

∫
D(z0,δ)

f(z) dm(z).

Using Hölder’s inequality, we obtain

|f(z0)| ≤
1

πδ2

∫
D(z0,δ)

|f(z)| dm(z) ≤ 1

πδ2

∫
D
|f(z)| dm(z)

≤ |D|1/q

πδ2

(∫
Ω

|f(z)|p dm(z)

)1/p

≤ CK∥f∥p,

where δ only depends on K. This means that the bound is uniform in K and the
result follows. □

Theorem 2.2. The space Ap(D) is a Banach space.

Proof. Assume that {fn} is a Cauchy sequence (in the Lp(D) norm) of holo-
morphic functions. Since Lp(D) is complete, there exists a function f ∈ Lp(D) such
that ∥fn − f∥p → 0.

By the previous lemma, the sequence is also Cauchy uniformly in compact sub-
sets of D. Since H(D) is complete, there is an holomorphic function g such that
fn → g uniformly in compact sets. This implies that f = g almost everywhere, and
since functions are defined up to sets of measure 0, f ∈ H(D) which completes the
proof. □

In the special case where p = 2, Lemma 2.1 implies that A2(D) is a reproducing
kernel Hilbert space since point evaluation is bounded.

Notice that by Theorem 1.1, the set of functions

SN(z) =
N∑
k=1

1

z − zk

(where the points zk belong to S1) cannot be dense in A1(D), since we cannot
approximate the 0 function. However, we will see now that the functions SN are
complete in H(D). We follow the work of Z. Rubinstein and E. B. Saff in [Rub68]
and [RS71].

Lemma 2.3. If P (z) is a polynomial of degree m with no zeroes in D, then the
zeroes of the polynomial P (z) + zpP ∗(z), where P ∗(z) = zmP (z−1) and p = 1, 2 . . .,
have modulus equal to 1. Moreover, |P ∗(z)| ≤ |P (z)| if |z| ≤ 1.

Proof. Notice that if all of the zeros of P satisfy |z| ≥ 1, then the zeros of P ∗

are in D. Then we can write

P ∗(z) = C
m∏
k=1

(z − zk), zk ∈ D for k = 1, . . . ,m
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Moreover, since P (z) = zmP ∗(z−1), we can also write

P (z) = C

m∏
k=1

(1− zkz), zk ∈ D for k = 1, . . . ,m

Now, if P (z) + zpP ∗(z) = 0, then in particular

|z|p
m∏
k=1

|z − zk| =
m∏
k=1

|1− zkz|.

Assume for the sake of contradiction that all zk satisfy |zk| < 1. Since∣∣∣∣ z − zk
1− zkz

∣∣∣∣ < 1 if |z| < 1,

(because it’s a Möbius transformation that maps D to itself), we obtain that for
|z| < 1

m∏
k=1

|z − zk| <
m∏
k=1

|1− zkz| = |z|p
m∏
k=1

|z − zk|,

which is a contradiction. Similarly, since∣∣∣∣ z − zk
1− zkz

∣∣∣∣ > 1 if |z| > 1,

we obtain for |z| > 1

|z|p
m∏
k=1

|z − zk| =
m∏
k=1

|1− zkz| <
m∏
k=1

|z − zk|,

which is again a contradiction.
If any (or all) of the zk satisfy |zk| = 1, then |z − zk| = |1− zkz| for all z, so we

can eliminate this zk, reach the same contradiction and conclude that |z| = 1.
Finally, the fact that |P ∗(z)| ≤ |P (z)| if |z| ≤ 1 follows from the fact that

m∏
k=1

|z − zk| ≤
m∏
k=1

|1− zkz| if |z| ≤ 1, |zk| ≤ 1. □

Theorem 2.4. Let f(z) = 1 + c1z + c2z
2 + · · · be an holomorphic function in

D without zeroes. Then there exists a sequence of polynomials with zeroes in S1

converging to f uniformly in compact sets of D and having value 1 at z = 0.

Proof. Let sn(z) = 1 + c1z + c2z
2 + · · · + cnz

n and let rk be any sequence of
positive numbers strictly increasing to 1. Then there exists a strictly increasing
sequence of positive integers nk such that snk

(z) ̸= 0 and

|snk
(z)− f(z)| < 1

k
for k = 1, 2, 3 . . .

for |z| < rk. Define tnk
(z) = snk

(rkz) and Pnk
(z) = tnk

(z)+znkt∗nk
(z). We can apply

the previous lemma to the polynomials Pnk
to deduce that their zeroes lie in S1.

We now need to see that the sequence Pnk
converges uniformly in compact sets of

D to f . To that end, let ρ ∈ (0, 1) and ε > 0 be fixed and call Mρ = max|z|=ρ |f(z)|.
Notice that we can choose a positive integer k0 satisfying 1/k0 < ε/2, rk0 > ρ

and
|f(rkz)− f(z)| < ε/2
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for all k ≥ k0 and all |z| ≤ ρ (by continuity of f).
Then, for all nk (for which k ≥ k0) and |z| ≤ ρ we have

|tnk
(z)− f(z)| = |snk

(rkz)− f(z)| ≤ |snk
(rkz)− f(rkz)|+ |f(rkz)− f(z)| < ε.

This, together with the previous lemma, imply that

|Pnk
(z)− tnk

(z)| = |znkt∗nk
(z)| ≤ ρnk |tnk

(z)| ≤ ρnk(Mρ + ε).

Thus,

|Pnk
(z)− f(z)| ≤ |Pnk

(z)− tnk
(z)|+ |tnk

(z)− f(z)| < ρnk(Mρ + ε) + ε,

and taking the limit as nk → ∞, we conclude that

lim sup
k→∞, |z|≤ρ

|Pnk
(z)− f(z)| ≤ ε,

which implies the convergence in compact sets of D to f . □

Corollary 2.5. If f is an analytic function in D, then there exists a sequence
of rational functions

(2.1) SN(z) =
N∑
k=1

1

z − zk
, |zk| = 1 for k = 1, . . . , N

converging to f uniformly in compact sets of D.

Proof. Consider the function

g(z) = exp

(∫ z

0

f(t) dt

)
,

which is holomorphic and zero free in D. By Theorem 2.4, we know there exists
a sequence {pn} of polynomials with zeroes in S1 converging to g uniformly in
compact sets of D. Therefore, in a compact set K ⊂ D

lim
n→∞

p′n(z)

pn(z)
=
g′(z)

g(z)
= f(z),

because p′n → g uniformly in compact sets of D by Weierstrass theorem and both
|pn| and |g| are bounded below by a constant strictly greater than 0 in the compact
set K. The result follows from the fact that p′n/pn is of the form (2.1). □

Thus, we have proven that there exists a function f ∈ A1(D) which cannot be
approximated by functions SN in A1(D) (since they are not dense in the space), but
can be approximated by functions SN uniformly in each compact set of D.

Remark 2.6. Although the original conjecture remains open, the problem was
recently solved for a wide class of Bergman weighted spaces (see [ABF21]).

If g is an integrable positive function in [0, 1], then the weighted Bergman space
corresponding to g is

A2
(g) =

{
f ∈ H(D) : ∥f∥2(g) = Cg

∫
D
|f(z)|2g(1− |z|2) dm(z) <∞

}
,

where Cg =
∫ 1

0
g(t) dt. What was proved is that if g ̸≡ 0 is a concave non-decreasing

function in [0, 1] satisfying ∫ 1

0

g(t)

t
dt <∞
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and g(0) = 0, then for every natural number N ≥ 2 and for every configuration of
points {z1, . . . , zk} ⊂ S1, we have∥∥∥∥∥

N∑
k=1

1

z − zk

∥∥∥∥∥
(g)

≥

∥∥∥∥∥
N∑
k=1

1

z − e2πik/N

∥∥∥∥∥
(g)

.

We would like to finish with a question that follows naturally from Chui’s con-
jecture. Given x1, . . . , xN ∈ S2, the electrostatic field in the unit ball corresponding
to the Coulomb potential

U(x) =
N∑
k=1

1

|x− xk|
is given by

grad U(x) = −
N∑
k=1

x− xk
|x− xk|3

, x ∈ R3, |x| < 1.

Is it true that ∫
|x|<1

∣∣∣∣∣
N∑
k=1

x− xk
|x− xk|3

∣∣∣∣∣ dm(x) ≥ C

for some constant C > 0?
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