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Abstract

Cardiovascular diseases (CVDs) continue to take a significant toll on global health,
highlighting the need for more accurate and efficient diagnostic tools. This thesis,
titled "Automatic Cardiac Segmentation of Complex Morphologies, Modalities, and
Tissues Using Deep Learning," delves into complex medical imaging and artificial intelli-
gence (AI) technologies necessary to perform advanced and cutting-edge cardiovascular
diagnostics.

The groundwork of this work is laid by emphasizing the critical importance of
early, precise, and personalized CVD assessment by means of machine learning (ML)
and deep learning (DL), in order to evolve from qualitative visual assessments and
basic quantitative measures into advanced, quantitative, data-driven insights. The
importance of accurate delineation of cardiac structures for a correct assessment of
their status and function is crucial to move forward in that direction.

The first chapter delves into the right ventricle segmentation within magnetic
resonance imaging (MRI) images, highlighting the challenges posed by complex shapes
and ill-defined borders. It introduces the M&Ms-2 challenge, a substantial dataset
encompassing diverse pathologies, multiple views, and various scanners. The chapter
discusses the success of nnU-Net and underscores the value of multi-view approaches,
indicating the need for comprehensive cardiac segmentation algorithms.

In the second chapter, the focus shifts to late gadolinium enhancement MRI (LGE-
MRI) segmentation, crucial for quantifying scar tissue in cardiac patients. The proposed
solution leverages generative adversarial networks to create synthetic images, enhancing
segmentation accuracy in the presence of scar tissue. Results reveal the potential
of multi-sequence model training with synthetic images and data augmentation to
outperform traditional methods.

The third chapter addresses the segmentation of pathological tissue, specifically scar
tissue and edema, within multi-modal cardiac MRI images. The chapter introduces a
two-staged approach, involving a stacked BCDU-net for accurate myocardium segmen-
tation and multi-modal pathological region segmentation. Anatomically constrained
synthetic data augmentation enriches the model’s performances. This thesis represents
a pioneering effort to enhance cardiac deep learning-driven segmentation. By tackling
the complexities of morphologies, MRI modalities and pathological tissues, this research
contributes valuable insights, algorithms, and datasets to such task.
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Chapter 1

Introduction

1.1 Background

1.1.1 Traditional segmentation in cardiac imaging

Cardiac imaging segmentation enables the accurate and quantitative analysis of various
cardiac structures, such as the myocardium, ventricles, blood vessels or pathological
tissue. By delineating these structures, clinicians and researchers can extract useful
information about their shape, size, motion, and function, which can aid in the diagnosis
and treatment of various cardiovascular diseases.

A variety of segmentation methods have been widely used in cardiac imaging in
the past, and they include techniques such as thresholding, region-growing, edge-based
methods, and deformable models. These methods are based on mathematical models
and algorithms that aim to partition the image into different regions of interest.

Furthermore, segmentation of cardiac structures is essential for the development
and evaluation of various cardiac imaging modalities. By comparing the segmentation
results obtained from different imaging modalities, researchers can assess their accuracy
and consistency, and optimize their protocols and parameters to improve quality and
efficiency.

In the following subsections, we will discuss in more detail the clinical importance
of cardiac imaging segmentation, and how advanced segmentation methods, such as
deep learning-based approaches, can address the limitations of traditional methods and
enable more accurate, efficient, and clinically relevant analysis of cardiac structures.
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1.1. Background

1.1.2 Clinical importance of cardiac imaging segmentation

Despite significant advances in diagnosis and treatment, cardiovascular disease (CVD)
remains the most common cause of morbidity and mortality worldwide, accounting for
approximately one third of annual deaths [175, 143]. Early and accurate diagnosis is key
to improving CVD outcomes. Cardiovascular imaging has a pivotal role in diagnostic
decision making. Current image analysis techniques are mostly reliant on qualitative
visual assessment of images and crude quantitative measures of cardiac structure and
function. In order to optimise the diagnostic value of cardiac imaging, there is need for
more advanced image analysis techniques that allow deeper quantification of imaging
phenotypes. In recent years, the development of big data and availability of high
computational power have driven exponential advancement of artificial intelligence
(AI) technologies in medical imaging. Machine learning (ML) approaches to image-
based diagnosis rely on algorithms/models that learn from past clinical examples
through identification of hidden and complex imaging patterns. Existing work already
demonstrates the incremental value of image-based cardiovascular diagnosis with ML
for a number of important conditions such as coronary artery disease (CAD) and
heart failure (HF). The superior diagnostic performance of AI image analysis has
the potential to substantially alleviate the burden of cardiovascular disease through
facilitation of faster and more accurate diagnostic decision making.

Cardiac imaging segmentation is essential for the accurate and quantitative anal-
ysis of various cardiac structures, which is crucial for the diagnosis, treatment, and
management of cardiovascular diseases. Cardiac imaging modalities such as magnetic
resonance imaging (MRI), computed tomography (CT), and ultrasound are widely
used in clinical practice to visualize the anatomy and function of the heart. However,
the interpretation of these images can be challenging due to the complex and dynamic
nature of cardiac structures, and their variability among different patients and diseases.

By enabling, via automatic segmentation, the extraction of precise and quantita-
tive measurements of various cardiac structures, such as the myocardium, ventricles,
and blood vessels. These measurements can provide valuable information about the
morphology, function, and hemodynamics of the heart and blood vessels, which can
aid in the diagnosis and treatment of various cardiovascular diseases.
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Chapter 1. Introduction

Image-based cardiac diagnosis with machine learning: diagnostic applica-
tions

To analise the impact of automatic segmentation in cardiac diagnostic applications, an
organised, pre-defined literature search of two electronic databases (Google Scholar,
Scopus) was conducted. We included studies using a well-defined ML technique for
cardiac image analysis using echocardiography, cardiac magnetic resonance, cardiac
computed tomography, or single photon emissioncomputed tomography (SPECT).
Our search strategy comprised a series of title and whole text searches with search
terms combined using Boolean operators. Search results were filtered by subject
area, limiting to entries from Cardiology, Computer Science and Engineering fields.
We review in detail various achievements in the diagnosis of a wide range of cardiac
diseases using image-based ML methods.Approximately 95% of these studies rely
on some segmentation method to extract cardiac biomarkers for diagnostic and risk
assessment tasks. The preferred imaging modality for these types of applications is
cardiac magnetic resonance imaging due to diverse factors, namely:

• Image quality: Cardiac MRI provides detailed, high-resolution images of
the heart. This allows accurate visualization of cardiac structures, as well as
abnormalities and diseases that may be present. These high-quality images are
essential for accurate analysis and proper interpretation by artificial intelligence
algorithms.

• Precise quantification: Cardiac MRI offers precise quantification capabilities
of various cardiac parameters, such as ventricular volume and ejection fraction,
and other relevant markers. Functional parameters such as blood flow, myocar-
dial perfusion or tissue viability can be also assessed via cardiac MRI. These
quantitative measurements are valuable for monitoring heart disease and early
detection of subtle changes in heart function.

• Multi-view data: Cardiac MRI provides images in multiple spatial planes,
allowing a comprehensive and detailed evaluation of the heart from different
perspectives. Artificial intelligence can take advantage of this multiplanar infor-
mation to improve precision and decision-making in medicine.

Before a ML model can be built for image-based diagnosis estimation, it is necessary
to suitably define the imaging inputs. Imaging inputs may be the raw imaging data
(i.e. pixel intensities), conventional cardiac indices (and other transformed quantitative
image parameters) or radiomics features extracted from the image. Figure 1.1 shows
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Figure 1.1: Input variables type distribution in reviewed literature. As seen in the pie
chart, conventional indices are the predominant features for training ML models, followed by
radiomics and deep learning techniques.

that, despite the exponential growth of Deep Learning, conventional indexes are
the preferred alternative for AI-powered automatic image-based cardiac diagnostic
applications. However, advanced texture biomarkers such as radiomic quantitative
features are gaining popularity in recent years due to an improved expressivity and
increased assessment capabilities.

Conventional indexes

Conventional imaging indices include measures commonly used in routine clinical
image analysis such as ventricular volumes in end diastole/systole and ventricular
ejection fractions. Estimation of these clinical indices requires prior contouring of
the endocardial and epicardial boundaries of the relevant cardiac chambers as well as
necrotic, oedemic and scar tissue among others. Deep learning approaches have been
used to develop automated/semi-automated contouring tools for more efficient and
reproducible segmentation of cardiac chambers.
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Chapter 1. Introduction

Radiomics

Radiomics analysis is the process of converting digital images to minable data. Analysis
of the data through application of various statistical and mathematical processes allows
quantification of various shape and textural characteristics of the image, referred to
as radiomics features. Radiomics analysis quantifies more advanced and complex
characteristics of the cardiac structures than is visually perceptible. Introduced in 2012
[92, 90], the radiomics paradigm was, for a long time, mostly exploited in oncology.
Recently, a number of works have shown the promise of radiomics combined with ML
for image-aided diagnosis of CVD.

Deep Learning

Whole raw images may also be used as the input for the ML model, without any
pre-processing or calculation of hand-crafted input imaging features. In this case, the
optimal features for predicting the cardiac diagnoses are self-learned automatically by
the ML techniques based on the image or volume, as opposed to a priori definition by
the AI scientist, that always requires a segmentation of the region of interest.

Review of image-based cardiac diagnostic publications

Table 1.1 shows an extensive set of publications using AI for cardiac diagnostic on
a heterogeneous set of cardiac diseases and imaging modalities. One can see that
only about 10% of the analyzed publications rely on Deep Learning for classification
tasks. The reasoning behind this is based on three premises, namely i) Small inter-class
variability: the differences between a pathological and a healthy subject are subtle
compared to a regular natural imaging problem i.e. training a Deep Learning model to
distinguish between dogs and cats, ii) inevitably, this leads to an increase in terms of
number of samples required to successfully train a Deep Learning diagnosis model, in a
domain where data is often scarce and difficult to collect, and iii) none of the AI-based
cardiac imaging algorithms will be applied in clinical routine if there is not a certain
degree of explainability and interpretability.

Therefore, conventional and advanced, quantitative biomarkers solve these problems
by integrating human knowledge and compressing the information while endowing the
models with a certain degree of interpretability.
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1.1. Background

Table 1.1: Selected studies using cardiac image-based AI analysis .

Publication Modality Biomarker ML technique Diagnostic Sample size Performance

[12] MRI Radiomics LR MI 180 ACC = 0.92
[186] MRI Conventional ANN MI 299 AUC = 0.94
[93] MRI Radiomics SVM MI 50 AUC = 0.84
[120] MRI Conventional SVM / RF MI / HCM 45 ACC = 0.94
[144] MRI Conventional DT / CL / SVM MI 200 ACC = 0.95
[96] MRI Conventional PLS MI 200 ACC = 0.98
[48] echo Qualitative SVM MI 242 ACC = 0.97
[121] echo Conventional ANN MI / AP 91 ACC = 0.95
[171] echo Conventional BN / DT / CL / SVM MI 42 ACC = 0.91
[157] echo Radiomics DT / ANN / SVM MI 160 ACC = 0.94
[1] echo Radiomics CL MI 17 ACC = 0.91
[172] echo Radiomics SVM MI 800 ACC = 0.99
[161] echo Conventional CL MI 120 ACC = 0.87
[108] CT Radiomics RF / CL / ANN MI 87 ACC = 0.78
[109] CT Radiomics DT MI 30 ACC = 0.97
[179] CT Conventional SVM / RF MI 170 ACC = 0.85
[148] SPECT Conventional BN MI / CAD 728 ACC = 0.78
[64] MRI Conventional BN HCM / DCM / ARV / MYO 83 AUC = 0.79
[11] MRI Radiomics RF / LR HCM 62 AUC = 0.95
[178] MRI Conventional RF MI / HCM / DCM / ARV 100 ACC = 0.86
[39] MRI Radiomics SVM MI / HCM / DCM / ARV 100 ACC = 0.92
[73] MRI Conventional RF MI / HCM / DCM / ARV 100 ACC = 0.92
[85] MRI Conventional RF MI / HCM / DCM / ARV 100 ACC = 0.96
[25] MRI Deep Learning VAE HCM 737 ACC = 1.00
[190] MRI Conventional LR MI / HCM / DCM / ARV 100 ACC = 0.94
[126] MRI Conventional LR HHD / HCM 224 ACC = 0.67
[125] MRI Radiomics SVM HHD / HCM 224 ACC = 0.86
[154] MRI Deep Learning CNN MI / HCM / DCM / ARV 100 ACC = 0.78
[120] MRI Conventional SVM / RF MI / HCM 45 ACC = 0.94
[29] MRI Conventional CL CHD 60 ACC = 0.89
[124] echo Conventional SVM / RF / ANN HCM / ATHCM 139 ACC = 0.91
[170] echo Radiomics ANN / GA HCM / DCM 90 ACC = 0.95
[105] echo Deep Learning CNN HCM / DCM 927 AUC = 0.84
[136] echo / MRI Conventional SVM DCM 69 ACC = 0.94
[26] echo Radiomics SVM DCM / ASD 439 ACC = 0.98
[107] echo Deep Learning CNN / GAN HCM 772 ACC = 0.92
[184] echo Deep Learning CNN HCM / CA / PH 14,035 AUC = 0.93
[7] SPECT Conventional LB CAD 1,181 AUC = 0.94
[24] SPECT Deep Learning CNN CAD 1,160 AUC = 0.81
[122] SPECT Conventional ANN CAD 1,365 AUC = 0.75
[123] SPECT Conventional ANN CAD 106 AUC = 0.96
[66] SPECT Conventional ANN CAD 65 AUC = 0.74
[167] SPECT Conventional DT / GA CAD 267 ACC = 0.83
[46] SPECT Qualitative SVM CAD 267 ACC = 0.92
[13] SPECT Deep Learning ANN / CL CAD 173 AUC = 0.80
[153] SPECT Conventional ANN CAD 109 AUC = 0.88
[82] PET Conventional N/A CAD / MACE 1,234 AUC = 0.72
[47] CT Conventional N/A CAD 352 AUC = 0.84
[68] CT Conventional GBRT CAD 252 AUC = 0.75
[89] echo / SCI Qualitative ANN CAD 327 ACC = 0.80
[185] echo Radiomics SVM CAD 61 AUC = 0.88
[21] echo Qualitative SVM CAD 228 ACC = 0.99
[87] CT Radiomics N/A ATH 60 AUC = 0.91
[194] CT Deep Learning CNN ATH 163 ACC = 0.80
[177] CT Radiomics DT ATH 164 ACC = 0.86
[176] CT Deep Learning CNN ATH 250 ACC = 0.72
[76] CT Conventional CL ATH 615 ACC = 0.74
[77] CT Conventional CL ATH 249 ACC = 0.83
[54] echo Radiomics ANN HVD 120 ACC = 0.93
[119] echo Radiomics SVM / CL HVD 102 ACC = 0.99
[120] MRI Conventional SVM / RF MI / HCM / HF 45 ACC = 0.77
[10] MRI Radiomics LR HF 79 AUC = 0.85
[162] echo Conventional CL HHD / HFePF 100 ACC = 0.81
[152] echo Conventional CL / SVM HFePF 397 AUC = 0.76
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Figure 1.2: Distribution of image-based diagnostic application using machine learning (A)
per disease, (B) per modality.

1.1.3 Limitations of traditional cardiac imaging segmentation
methods

Both clinical imaging indices and radiomics require prior delineation of the involved
cardiac structures, but while computer-aided cardiac imaging segmentation methods
have been widely used for many years, they have several limitations that can affect their
accuracy and reliability. One major limitation is their sensitivity to image artifacts,
such as noise, motion, and partial volume effects. These artifacts can distort the
image intensity and geometry, which can lead to errors in the segmentation results.
Another limitation is their dependence on manual or semi-automatic procedures,
which can be time-consuming, subjective, and thus prone to inter- and intra-observer
variability. Manual segmentation methods also require extensive training and expertise,
which can limit their widespread adoption and repeatability. Moreover, traditional
segmentation methods often rely on hand-crafted and heuristic rules, which may not
fully capture the complex and dynamic nature of cardiac imaging data. This can
result in segmentation errors, especially in the presence of structural abnormalities
or disease. Finally, traditional methods may not be able to handle large datasets
or complex imaging protocols, which are becoming increasingly common in clinical
practice and research. This can limit their scalability and generalizability, and hinder
their integration with other data sources and analysis tools. These limitations highlight
the need for alternative and more advanced methods for cardiac imaging segmentation,
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Table 1.2: Selection of cardiac structural and functional analysis software incorporating AI.

Name Producer Modality

CMRtools Cardiovascular Imaging Solutions MRI
suiteHEART NeoSoft MRI
CVI42 Circle Cardiovascular Imaging MRI / CT
Medis Suite Medis MRI / CT
iNtuition Terarecon MRI / CT
Segment Medviso MRI / CT / SPECT
syngo.via Siemens MRI / CT / SPECT
IntelliSpace Portal Philips MRI / CT / echo
VevoLAB Visualsonics echo
QLAB Philips echo
TOMTEC Philips echo

such as deep learning-based approaches. By leveraging the power of deep neural
networks, these methods can overcome many of the limitations of traditional methods,
and enable more accurate, efficient, and robust segmentation of cardiac structure: many
automatic or semi-automatic tools have been developed (see Table 1.2 for examples of
existing tools).

1.2 Deep Learning in Cardiac Imaging Segmentation

1.2.1 Overview

One can think that Deep Learning and, in particular, Neural Networks capable of
learning from unstructured data as images, is a recent concept. But nothing could be
more untrue. In the 1960s we find what can be considered the embryo of a modern
Convolutional Neural Network. The Magnetic Ink Character Recognition system used
handmade filters to identify numeric characters printed with magnetic ink on bank
checks. The filters in this system were designed to identify specific characteristics of
the numbers, such as the presence or absence of certain lines and their orientation,
and were based on the mathematical concept of convolution: the magnetic ink used to
print the numerical codes was convolved with a system of magnets in a similar way
that an image is convolved with a kernel nowadays.

Two decades later Kunihiko Fukushima created the first vision Neural Network
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with hierarchical layers, the Neocognitron [57]. While the principles and concepts
introduced by the Neocognitron have laid the foundations for the advancement of
artificial intelligence in the field of visual perception, it is not until 1989 when Yan
LeCunn et al. [94] proposed backpropagation as an efficient solution for the task of
training vision Neural Networks in a supervised setup. The same year the term coined by
Richard E. Bellman in the domain of dynamic programming, the curse of dimensionality,
was also considered by Yan LeCunn in [95]: the number of free parameters on a Neural
Network has to be carefully controlled to improve the generalization capablility of vision
Neural Networks, where the input dimensionality tends to be high. This is particular
relevant in the biomedical imaging field, since the number of available examples is
normally low when compared to another domain such as natural images. Decades later,
with the exponential growth of computational power and the advent of well-optimized
modern Convolutional Neural Networks, Generative Models show how data synthesis
can play a crucial role in such domains where data scarcity continues being the main
impediment for multiple applications of Deep Learning.

1.2.2 Towards big data: Deep Learning versus Traditional Meth-
ods

These early steps, primarily applied to the classification task that had formed the core
of supervised learning for decades, suffered from a lack of expansion proportional to
the lack of expressivity related to the type of tasks that such systems were capable to
solve for a long time. To be honest, an artificial system that can learn the differences
between cats and dogs when trained with thousands of examples is quite impressive,
but the clinical community would never accept software that simply classifies a cardiac
image as pathological or healthy, with nothing more to add that a simple probability
or logit. And even if the system were to be shown to have superior efficacy than the
human, there would be obscurity to resolve when such a system failed from a technical,
legal or moral point of view, among others.

Despite this, thanks to the efforts of the scientific community that has endeavored
to collect large amounts of data and release it to promote the advancement of research
in the field of artificial intelligence, and decades after the first vision Neural Network
trained by backpropagation was presented, when it was thought that the field of
artificial intelligence had reached a plateau, one of the most interesting phenomena
in computer science of all time occurred and, we could say, that in modern science in
general. It happened in the year 2012, promoted by the ImageNet [52] competition. At
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this time, AlexNet [88] improved the best existent classification method on ImageNet
by a robust 10%. On the following years, Convolutional Neural Networks such as
GoogLeNet (2014) [160], closed the gap between the human performance and such
models in classification tasks.

Suddenly an explosion of new architectures expanded the capabilities of Deep Learn-
ing models simultaneously: these architectures could easily be adapted to increasing
complexity tasks such as for example, detection, segmentation, or generation, being
the final two the main topics covered along this work.

Figure 1.3: Cardiac function assessment using scintiphotography.[156]

On the other hand, the field of modern medicine has much deeper roots in time. In
1628, Excercitatio anatomica de motu cordis et sanguinis in animalibus [69], William
Harvey examined the structure of the heart through dissections. These studies allowed
him to understand the function of the atria and ventricles, as well as the one-way flow of
blood through the heart valves. Centuries later, and more aligned with the chronology
of the supervised learning methods expansion over the previous decades, the field of
medical imaging has experienced growth of a similar magnitude, assisted, in the same
sense, by the growth of digital computation technologies. Long gone is the first method
that made it possible to explore the human body in a non-invasive way. Wilhelm
Conrad Roentgen discovered X-rays in 1895 and, in 1918, a method to estimate the
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size of the heart using X-rays was described in [15]. Since then, multiple medical
imaging techniques with different qualities have been developed, such as ultrasound,
computerized tomography or magnetic resonance. In the field of cardiology, it was not
until 1958 when biplane cinefluorography was used to determine ventricular volumes
[40] and, later in 1971 when the use of the ECG-triggered scintiphotography [156]
allowed to compute a basic cardiac clinical index such as the Left Ventricular Ejection
Fraction while invasively validating the findings in a human cohort. In both cases
the ventricular silhouette was manually delineated and end-diastolic and end-systolic
volumes were calculated using the equation for determining the volume of a prolate
spheroid, as shown in Figure 1.3. These are the very first times that functional cardiac
assessment was achieved solely by imaging techniques and one can see how from the
very beginning delineation is a necessary component for the purpose. The task can be
easily covered by Deep Learning segmentation techniques, thus allowing this way to
benefit from their qualities, such as robustness, immediacy, or invariability of these.

However, before developing AI-based methods, multiple classical image-processing
techniques were proposed in order to compute cardiac contours at a pixel level, leaving
aside the mathematical modeling of the volume of this. In 1972, Chow et al. [45]
proposed a primitive technique based on dynamic thresholding of cineangiographic
images using Gaussian Mixture Models. While it was an attempt to take profit from
the growing computation power, the results were not sufficient to incorporate such
techniques in clinical practice. Over the following decades, segmentation methods
developed in the field of computer vision were rapidly adopted into bioinformatics,
and by extension, into cardiac image analysis. Techniques such as region growing,
clustering or active contours, in conjunction with more advanced imaging acquisition
protocols, started producing more refined results until the arrival of Deep Learning. It
is important to note that classical techniques still have their place in certain scenarios
and may be more suitable in situations with limited resource requirements, small data
sets, or when human interpretation and expert knowledge are critical: Deep Learning
can require large training data sets and significant computational and human resources.

In the same way that in the field of natural imaging there was a great effort on
the part of the community to prepare sets of images that would pave the way for
research, the field of medical imaging is not exempt from such efforts. Regarding
cardiac imaging, datasets such as RVSC [132], LVSC [158], and Sunnybrook [138] were
curated, manually annotated and released between the years of 2008 and 2012, just
before the Convolutional Neural Network renaissance, thus allowing a fair comparison
between a diverse set of classical imaging techniques proposed by the community.
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Figure 1.4: U-net architecture applied to cardiac imaging segmentation.

1.2.3 Recent developments in Deep Learning for cardiac mag-
netic resonance imaging segmentation

The early application of Deep Learning in cardiac magnetic resonance segmentation
showed promising results. Tran et al.[168] applied a Fully Convolutional Network
(FCN) architecture and demonstrated improved performance compared to previous
methods in RVSC, LVSC, and Sunnybrook datasets. The architecture was constructed
on top of a regular Convolutional Neural Network, by simply replacing the last layer of
a classification Convolutional Neural Network, the system was capable of generating
cardiac segmentation maps with unprecedented quality, very close to human capability.

Around the same time, the U-Net architecture [145], which incorporated a symmetric
decoding path, gained popularity in the biomedical imaging segmentation community.
A scheme of such architecture is presented in Figure 1.4.

In recent CMR segmentation challenges such as the Automated Cardiac Diagnosis
Challenge (ACDC) [23] and the M&Ms challenge [32], the U-Net architecture emerged
as the dominant choice. Baumgartner et al. [16] demonstrated that U-Net outperformed
FCN in all proposed segmentation tasks in the ACDC. Additionally, Isensee et al. [73]
showcased the early stages of the nnU-Net framework, which automatically optimized
preprocessing, network architecture, training, inference, and post-processing without
manual intervention, in the ACDC challenge. The top three participants in the MMs
challenge [32] also utilized nnU-Net for their segmentation approaches.

There are currently new architectures based on the Vision Transformer, a recent
AI technique that uses attention mechanisms to process images, breaking with the
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convolutional paradigm that has dominated the field of computer vision in recent
decades. These techniques have logically also been applied to cardiac segmentation, in
some cases refining the existent results [38]. In parallel, the development of generative
models has made it possible to generate highly realistic synthetic images, which is
particularly useful in the field of medical imaging, where data can be scarce. [112, 2]

1.3 Objectives and contributions

Bearing in mind that throughout the development of Deep Learning-based cardiac
image segmentation techniques, the lag with the natural image field is mainly related
to data scarcity, the work in this thesis is aimed at exploring and alleviating this effect
by attacking it from the two main related flanks: data collection and image synthesis
that will be defined in detail in the following subsections.

1.3.1 Research Questions

RQ1 (Chapter 2) Can the generation of a diverse set of cardiac data can improve the
right ventricular segmentation task in cardiac magnetic resonance?

Most of the open-source data sets for cardiac segmentation are i) based on multi-
structure cardiac segmentation and ii) centered on pathological groups related to
Left Ventricle dysfunction.

Objectives:

• Collect a diverse dataset of cardiac magnetic resonance imaging data that
includes a wide range of patient demographics, image acquisition parameters,
and cardiac pathologies.

• Design and implement a competition.

• Quantitatively compare the performance of the participating methods on
the generated dataset.

• Investigate the potential benefits of the diverse dataset and augmented
data in reducing bias and improving the segmentation performance across
different patient populations and imaging protocols.

RQ2 (Chapter 3) How to develop DL models to improve the segmentation of complex
cardiac modalities in the presence of annotation scarcity.
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State-of-the-art cardiac imaging segmentation is often presented for conventional
Steady State Free Precision Cine sequences, where the cardiac tissue tends to
be homogeneous. Segmentation performance is degraded in the presence of a
contrast agent.

Objectives:

• Investigate the limitations of current segmentation techniques when applied
to complex cardiac modalities such as Late Gadolinium Enhancement.

• Develop a methodology for generating realistic synthetic data representa-
tive of Late Gadolinium Enhancement from Steady State Free Precision
acquisitions, where annotation is a common procedure.

• Develop a LGE-specific augmentation technique.

• Assess the effectiveness of such techniques for training segmentation algo-
rithms on Late Gadolinium Enhancement.

RQ3 (Chapter 4) How to develop DL models to improve the segmentation of multi-
modal complex cardiac pathological tissues.

Segmentation of pathological tissue such as scar tissue and edema is a complex
problem due to data scarcity and inter-operator variability in terms of annota-
tion. Tissue viability assessment requires multiple imaging acquisitions, thus
highlighting the need for multi-modal algorithms.

Objectives:

• Investigate the limitations of current segmentation techniques when applied
to multi-sequence segmentation.

• Develop a methodology for generating conditional and multi-modal realistic
synthetic data representative of complex cardiac tissues such as scar and
edema.

• Assess the effectiveness of using multi-modal DL algorithms in conjunction
with synthetic data on complex cardiac pathological tissue segmentation
tasks.

1.3.2 Contributions of this Thesis

[114] Carlos Martín-Isla, Víctor M Campello, Cristian Izquierdo, Kaisar Kushibar,
Carla Sendra-Balcells, Polyxeni Gkontra, Alireza Sojoudi, Mitchell J Fulton,
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2.2. Abstract

2.1 Abstract

In recent years, several deep learning models have been proposed to accurately quantify
and diagnose cardiac pathologies. These automated tools heavily rely on the accurate
segmentation of cardiac structures in MRI images. However, segmentation of the
right ventricle is challenging due to its highly complex shape and ill-defined borders.
Hence, there is a need for new methods to handle such structure’s geometrical and
textural complexities, notably in the presence of pathologies such as Dilated Right
Ventricle, Tricuspid Regurgitation, Arrhythmogenesis, Tetralogy of Fallot, and Inter-
atrial Communication. The last MICCAI challenge on right ventricle segmentation
was held in 2012 and included only 48 cases from a single clinical center. As part
of the 12th Workshop on Statistical Atlases and Computational Models of the Heart
(STACOM 2021), the M&Ms-2 challenge was organized to promote the interest of the
research community around right ventricle segmentation in multi-disease, multi-view,
and multi-center cardiac MRI. Three hundred sixty CMR cases, including short-axis
and long-axis 4-chamber views, were collected from three Spanish hospitals using nine
different scanners from three different vendors, and included a diverse set of right
and left ventricle pathologies. The solutions provided by the participants show that
nnU-Net achieved the best results overall. However, multi-view approaches were able
to capture additional information, highlighting the need to integrate multiple cardiac
diseases, views, scanners, and acquisition protocols to produce reliable automatic
cardiac segmentation algorithms.

Table 2.1: Automatic CMR segmentation challenges in figures

Challenge Year Cases Number of
scanners Target Regions Multiview Techniques used Number of

pathologies
Stratified

by pathology

M&Ms-2 2021 360 9 RV ✓ Deep Learning 8 ✓
RVSC 2012 48 1 RV X Atlas-based 6 X

M&Ms 2020 375 5 LV/RV/MYO X Deep Learning 6 X
ACDC 2017 150 1 LV/RV/MYO X Deep Learning 5 ✓
LVSC [158] 2011 200 - MYO X Atlas-based 1 X
Sunnybrook [138] 2009 45 1 LV/MYO X Atlas-based 4 ✓

2.2 Introduction

The role of the right ventricle (RV) in circulation has historically been overshadowed by
that of the left ventricle (LV). For years, RV dysfunction was thought to not contribute
significantly to cardiac output and pressures, while LV was considered the key player in
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cardiac hemodynamics [67]. This led to RV receiving limited attention, and often being
described as the "forgotten ventricle" [142]. However, in the past few decades, the
misconception regarding the lack of impact of the RV dysfunction in cardiac function
has changed [5, 30, 117, 50, 51, 84]. A significant amount of research has progressively
demonstrated the pivotal role of RV in cardiac function, and its implication and
prognostic value in high-burden diseases, such as heart failure and/or pulmonary
hypertension [28, 55, 62], dilated cardiomyopathy [65], tricuspid regurgitation [141],
tetralogy of fallot [104], to name a few.

Given the prognostic significance of RV, the clinical interest has shifted in recent
years from a simple visual inspection of the RV from cardiac magnetic resonance imaging
(CMR), the reference modality for RV assessment [118], to extracting quantitative
RV parameters by first segmenting the structure. Despite this renewed interest of
the medical community to quantitatively assess the RV [80], the artificial intelligence
community has lagged in providing fully automated solutions for RV segmentation
from CMR, that are as accurate as for LV [32], and in benchmarking deep learning
(DL) algorithms, the current state-of-the-art in medical imaging.

More precisely, the last challenge focused on RV segmentation using CMR data
was the Right Ventricle Segmentation Challenge Dataset (RVSC) [132]. Prior to the
RVSC, challenges solely focused on the myocardium and LV (Table 2.1). Despite its
significance, the RVSC challenge was organized back in 2012 when DL was still in its
early development and not yet adopted for CMR segmentation [22]. Therefore, none of
the seven participants in the challenge used DL. Three approaches were atlas-based,
two prior-based, and the other two based on cardiac motion without needing prior
information. The best semi-automated methods achieved a dice accuracy of 80% and a
Hausdorff distance of 1 cm. At the same time, automated approaches demonstrated a
similar performance at the expense of higher computational costs. At those times, this
performance level was competitive, but it is now considered far from what the current
state-of-the-art DL-based models could achieve.

The early application of DL in CMR segmentation using a Fully Convolutional
Network (FCN) by Tran [169] showed improved results compared to prior CMR seg-
mentation methods in RVSC, LVSC, and Sunnybrook datasets. At the same time, the
U-Net[145] architecture, which added a symmetric decoding path to the FCN architec-
ture, started gaining inertia along the biomedical imaging segmentation community.
However, Lieman et al. [101] shown that there was no statistical difference in CMR
segmentation performance between the two architectures, with FCN outperforming
U-Net in LV volume prediction using a large sample size of 1,143 subjects. This was
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further validated by Bai et al. [14] in a large-scale study using 4,875 cases for the
bi-ventricular segmentation task.

In recent CMR segmentation challenges such as the Automated Cardiac Diagnosis
Challenge (ACDC) [22] and the MMs challenge [32], the U-Net architecture has
emerged as the dominant choice. In the ACDC, research by Baumgartner et al.
[17] showed that U-Net outperformed the Fully Convolutional Network (FCN) in
all proposed segmentation tasks, except for the RV end diastolic average symmetric
surface distance. The early stages of the nnU-Net framework [75], which is capable of
optimizing preprocessing, network architecture, training, inference, and post-processing
automatically without manual intervention, were also demonstrated by Isensee et al.
[72] in such challenge. The Top-3 participants in the MMs challenge [32] used nnU-Net.

Nonetheless, both aforementioned challenges were focused on cardiac multi-structure
segmentation, and the best performance was achieved for the LV and the myocardium.
The reduced accuracy in the RV segmentation can be explained by the additional
challenges posed by the complex geometry and appearance of the RV. These include
its irregular shape, the heterogeneity in the appearance and thickness of its free wall,
and its complex trabeculations [132]. As a result, several works have been recently
proposed to improve RV segmentation. [195, 127, 106, 180, 98, 27, 70, 8, 14, 83].
Nonetheless, the scarcity of relevant public CMR data has resulted in the vast majority
of current state-of-the-art methods using the data provided by the RVSC challenge
which comprises solely 48 cases from a single clinical center. Moreover, while the cohort
includes diverse pathologies, the considered diseases are not directly related to the
RV. Lastly, the complementary long-axis 4-chamber views, particularly helpful for
improving RV apical and basal slices segmentation, were not released. Other relevant
works using larger datasets, such as that of Chen et al. [43] based on 145 cases, although
important, rely on private cohorts and, therefore, do not allow for benchmarking.

In response to the gap in public datasets and evaluation frameworks for computa-
tional approaches focused on automated RV segmentation from CMR, the Multi-Disease,
Multi-View & Multi-Center Right Ventricular Segmentation Challenge (M&Ms-2) was
organized as part of the Statistical Atlases and Computational Models of the Heart
(STACOM) Workshop held in conjunction with the MICCAI 2021 Conference. This is
the first work to provide a public multi-center, multi-disease, multi-view CMR dataset,
associated contours, and an evaluation framework to benchmark DL algorithms for
RV segmentation. Moreover, the dataset complements the dataset of the challenge’s
first edition [32], a reference dataset for multi-structure segmentation, by providing
multi-view information and other diseases relevant to RV dysfunction. In total, the
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Figure 2.1: Visual appearance of short-axis (SA) and long-axis (LA) views of pathological
(upper row) and healthy (lower row) subjects. Dashed lines (white) correspond to the projection
of SA slices into the LA view. The red dashed line corresponds to the projection of the SA
slice shown in the first column. The yellow line corresponds to ground truth delineations.

M&Ms-2 challenge dataset comprises CMR data from 360 participants originating from
three Spanish hospitals. The data were acquired by nine different scanners from three
different vendors (Siemens, Philips, and General Electric). The dataset was built in
close collaboration with clinicians and accounts for seven different pathologies, while
it also includes a control group of 75 healthy participants. It should be noted that
the short-axis studies were annotated using the same Standard Operation Procedure
(SOP) as previous reference challenges, while the complementary long-axis 4-chamber
acquisitions for precise basal and apical delineation were also made publicly available.

In this paper, we present and discuss the results of the M&Ms-2 challenge in
detail. The obtained results show the challenging nature of the task of automatically
segmenting the RV from CMR images and the promise of the proposed solutions.
Moreover, the findings of the challenge highlight the need for further research to build
tools that can integrate multi-view cardiac information for the RV segmentation task
in the presence of a diverse set of pathologies.
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2.3 Challenge framework

2.3.1 Data preparation

A total of three clinical centers from Spain contributed to this challenge by providing
several CMR studies with different left and right ventricular pathologies, namely:

Dilated Left Ventricle (DLV): LV is considered dilated when the LV end-diastolic
volume measured in CMR is >214mL (>105mL/m2) in men or 179mL (>96mL/m2)
in women.

Dilated Right Ventricle (DRV): RV is considered dilated when RV end-diastolic
volume measured in CMR is >250mL (>121mL/m2) in men or 201mL (>112mL/m2)
in women.

Hypertrophic cardiomyopathy (HCM) is an inherited heart disease defined
by increased LV wall thickness (>15mm in one or more LV myocardial segments) that
cannot be explained by abnormal loading conditions. In CMR, left ventricular mass
typical values are 62-176g in men and 56-140g in women, and right ventricular mass
typical values are 25-57g in men and 50-56g in women.

Arrhythmogenic cardiomyopathy (ARR) , inherited heart disease with a loss
of myocytes and fibrofatty replacement of right ventricular myocardium; biventricular
involvement is often observed. Diagnosis includes global RV dilatation and regional
wall motion abnormalities with or without a decreased ejection fraction.

Tetrology of Fallot (FALL) is characterized by the following four features: a
nonrestrictive ventricular septal defect, overriding aorta; right ventricle outflow tract
obstruction and/or branch pulmonary artery stenosis; and consequent RV hypertrophy.

Inter-atrial communication (CIA) , a defect in the septum that separates the
two atria. CMR is rarely required but may be useful for assessment of RV volume
overload, identification of inferior sinus venous defect in the long-axis 4-chamber view,
quantification of pulmonary to systemic flow ratio, and evaluation of pulmonary venous
connection.

Tricuspid regurgitation (TRI) consists of the insufficiency of the tricuspid valve,
causing blood flow from the RV to the right atrium during systole. In CMR, TRI
appears as one or more flow jets emanating from the tricuspid valve and projecting into
the RV. Jets are often holosystolic and readily apparent on the long-axis 4-chamber view.

In total, 360 studies were included. Images were acquired with different scanners, field
strengths, and resolutions for both short-axis (SA) and long-axis 4-chamber (LA) views.
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Figure 2.2: Distribution per pathology and scanner along train, validation, and test sets.

Most images were acquired from scanners with magnetic strength of 1.5T and a small
fraction of 3.0T. The specific vendors are 1) Siemens (Siemens Healthineers, Germany)
– including Avanto (AVA), Avanto Fit (AVF), Symphony (SYM), SymphonyTim (SYT),
and TrioTim (TRT) scanners; 2) Philips (Philips Healthcare, Netherlands) – including
Achieva (ACH) scanners; and 3) General Electric (GE, GE Healthcare, USA) – includ-
ing Signa Excite (EXC), Signa Explorer (EXP), and Signa HDxt (HDXT) scanners.
More specific details on the collected studies are given in Table 2.3.

The subjects included in this multi-disease study were selected among groups of the
aforementioned cardiovascular diseases and healthy volunteers (NOR). The distribution
of pathologies within the dataset partitions and scanners are specified in Table 2.2 and
Figure 2.2.

Each CMR imaging study was annotated manually by an expert clinician from the
corresponding center, with clinical experience ranging from 3 to over 10 years. The
annotation process involved marking the short-axis and long-axis 4-chamber views
at both end-diastolic (ED) and end-systolic (ES) phases, which correspond to the
phases used to calculate clinically relevant biomarkers such as ejection fraction and
myocardial mass, for cardiac diagnosis and monitoring. Furthermore, the basal slice of
the RV at ED/ES was inferred from the position of the tricuspid annulus as defined
on the long-axis 4-chamber view at ED/ES. The apical slice was defined as the last
slice with a detectable ventricular cavity. Three main regions were provided: the left
and right ventricular cavities and the left ventricle myocardium (MYO). However, the
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Table 2.2: Number of studies per pathology in each dataset partition

Number of studies

Pathology Training Validation Test

Normal subjects 40 5 30
Dilated Left Ventricle 30 5 25
Hypertrophic Cardiomyopathy 30 5 25
Congenital Arrhythmogenesis 20 5 10
Tetralogy of Fallot 20 5 10
Interatrial Communication 20 5 10
Dilated Right Ventricle 0 5 25
Tricuspidal Regurgitation 0 5 25

Total 160 40 160

Table 2.3: Average specifications for the images acquired in the different centers.

Center* Vendor Model In-plane res.
(mm) (SA/LA)

In-plane dim.
(pixels)

Slice
thickness (mm)

Number
of slices Field Strength (T) Number

of studies
A Philips Achieva 1.18/1.19 332±32/288± 38 10 10 1.5 88
B GE Signa Excite 1.40/1.58 270±28/258± 6 9.8 12 1.5 27
B GE Signa HDxt 0.98/1.08 420±124/420± 124 10 12 1.5/3.0 25
B GE Signa Explorer 0.78/0.78 512±0/512± 0 10 13 1.5 1
C Siemens Avanto 1.21/1.15 232±24/240± 20 14 9 1.5 5
C Siemens Avanto Fit 1.13/1.24 234±24/234± 24 9.9 11 1.5 37
C Siemens Symphony 1.27/1.27 232±24/240± 18 9.7 10 1.5 21
C Siemens SymphonyTim 1.34/1.24 230±36/238± 26 9.7 12 1.5 151
C Siemens TrioTim 1.15/1.20 234±24/238± 18 8.6 13 3.0 5

* A: Clínica Sagrada Familia, B: Hospital Universitari Dexeus, C: Hospital Vall d’Hebron.

evaluation was performed exclusively on the RV. Two additional researchers performed a
detailed revision of the provided segmentation to reduce inter-observer and inter-center
variability in the contours, particularly in the apical and basal regions. Discrepancies
were resolved by consensus between the observers. Such observers applied the same
SOP across all CMR datasets to obtain the final ground truth. To generate consistent
annotations, we chose to apply the SOP that was already used by the ACDC and
M&Ms challenges with an additional rule (d) as follows:

a) The LV and RV cavities, including the papillary muscles, must be completely
covered.

b) No interpolation of the myocardial boundaries must be performed at the basal
region.

c) The RV must have a larger volume at the ED time frame compared to ES.
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d) Additionally, long-axis view is used as a reference to delimit the basal and apical
regions, as stated above.

Figure 2.3: Data collection and pre-processing pipeline.

Clinical delineations and subsequent corrections were performed using the cvi42
software (Circle Cardiovascular Imaging Inc., Calgary, Alberta, Canada). All studies
were provided in DICOM format, and contours were extracted in cvi42 workspace
format (.cvi42ws). In-house software was then used to create the contours and transform
the images into NIFTI format, and this final file format was delivered to the challenge
participants. The inter-view correspondence was preserved during pre-processing.
Figure 2.3 presents the data collection and pre-processing pipeline.

2.3.2 Model training and validation

The 360 CMR studies were divided into training, validation, and testing, as detailed
in Table 2.2. The participants received the 160 training cases with annotations for
short and long-axis views and 40 validation cases without annotation on May 10th,
2021. Two pathologies, DRV and TRI, were excluded from the training dataset to
test the generalization capability of the models to unseen pathologies. In order to
optimize the models, the participants were allowed to automatically inspect their models’
performance against 40 validation CMR cases, i.e. 5 from each of the pathologies, and
publish their validation scores using the Codalab platform [131]. A maximum of 20
submissions per team were allowed during the validation process. Note that it was not
permitted to use any external datasets or pre-trained models during training.
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2.3.3 Model evaluation

The testing phase started on July 1st, 2021, and concluded on July 20th, 2021. The
participants were forced to evaluate their models remotely to ensure the unseen test set
was hidden from the segmentation methods. The organizers’ GPU server infrastructure
with five NVIDIA 3090 RTX GPUs was provided to evaluate the submissions. The
participants were asked to assess their models by submitting their trained models to
the Codalab platform and executing them using a Docker1 image.

To assess the quality of the automatic segmentations (P ) against the ground truth
(G), two measures were used:

(i) Dice similarity coefficient (DSC) – degree of overlapping of two volumes:

DSC(P,G) =
2|P ∩G|
|P |+ |G|

(2.1)

(ii) Hausdorff distance (HD) – largest disagreement between the contours, useful
for identifying small outliers:

HD(P,G) = max

{
sup
p∈P

d(p,G), sup
g∈G

d(g, P )

}
(2.2)

where sup represents the supremum, inf the infimum, and

d(a,B) = inf
b∈B

d(a, b) (2.3)

quantifies the distance from a point a ∈X to the subset B ⊆X.
These metrics were computed for the RV segmentation from both SA and LA views,

resulting in 4 measures for each cardiac phase. If one participant had a prediction
missing for a specific subject, a zero value was assumed for DSC. A distance of 50mm

was considered for HD, 10mm above the maximum HD distance computed across all
participants and cases.

To obtain the final ranking, HD was min-max normalized across all subjects (ĤD)
to get a number between 0 and 1 for ED and ES phases in both SA and LA views
independently. Due to the difference in dimensionality between SA and LA views, a
weighted average was performed. The weighted metric, M , was obtained as follows:

M =
0.75(DSCSA + ĤDSA) + 0.25(DSCLA + ĤDLA)

2
(2.4)

where DSC and HD are the average of the corresponding metrics in ED and ES:
1https://www.docker.com/
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DSC =
DSCED +DSCES

2
and HD =

HDED +HDES

2
(2.5)

The normalized metrics returned a performance between 0 and 1, being 1 the value
that a team would obtain if it had perfect results for every metric.

2.4 Participating methods

More than 120 teams registered to download the M&Ms-2 training dataset, 17 submitted
a solution for the final testing phase, and 15 teams presented their methodology as a
paper to the STACOM Workshop (see Table 2.4 for the participant details). Table 2.5
summarizes the main features of the submitted techniques, which are described in more
detail in the following subsections.

Table 2.4: List and details of the participating teams in the challenge.

Team Institution Location
P1 University of Colorado Boulder Boulder, USA
P2 ImViA Laboratory, Université Bourgogne Franche-Comté Dijon, France
P3 Dept. of Radiology and Diagnostic Imaging, University of Alberta Edmonton, Canada
P4 School of Data Science, Fudan University Shanghai, China
P5 Department of Radiology, Leiden University Medical Center Leiden, Netherlands
P6 Eindhoven University of Technology Eindhoven, Netherlands
P7 Department of Computer Science, Rutgers University Piscataway, USA
P8 Department of Electrical Engineering, Syed Babar Ali School of Science and Engineering Lahore, Pakistan
P9 Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Braga, Portugal
P10 Data Science Department, EURECOM Sophia Antipolis, France
P11 Department of Computer Engineering and Mathematics, University Rovira i Virgili Tarragona, Spain
P12 School of Data Science, Fudan University Shanghai, China
P13 Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford Oxford, UK
P14 Charité - Universitatsmedizin Berlin, Berlin, Germany
P15 Department of Computing, Imperial College London London, UK

2.4.1 Backbone architectures

There is a degree of diversity in the backbone architectures employed by the various
participants (as depicted in Table 2.5). This subsection will provide a comprehensive
overview of the various architectures implemented by the participants.

nnU-Net architectures

Six teams used the nnU-Net [74] framework as their baseline segmentation models
(P1–P6). The nnU-Net framework includes 2D, 3D and cascaded 2D/3D U-Net [146]
architectures. The choice of base architecture for a specific segmentation problem is
left to the user. In the case of 3D short-axis (SA) volumes, the variations among P1-P6
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Table 2.5: Characteristics of participating models. Spatial Augmentation includes rotations,
flipping, scaling, and deformations. Intensity augmentation includes Gaussian noise, brightness,
gamma, and contrast.

Architecture Data Augmentation
Method Backbone Additional Features Multiview Spatial Intensity Other

P1[58] nnU-Net Deformable Bayesian Convolutions X ✓ ✓
P2[6] nnU-Net Dropout + Batch Normalization X ✓ ✓ MRI-Specific
P3[135] nnU-Net Default configuration X ✓ ✓
P4[99] nnU-Net Cross-view ROI detection LA → SA ✓ ✓ ✓
P5[159] nnU-Net Spatial and temporal Multi-channel input X ✓ ✓ Label propagation
P6[3] nnU-Net ROI detection, Intensity-based Multi-channel input X ✓ ✓ SPADE Synthesis
P7[103] DLA Cross-view refinement network ✓ ✓ ✓ Histogram Matching
P8[79] U-Net Shared Bottleneck between views ✓ ✓ X
P9[137] xU-Net 3D Unit + 2D Unit with cross-view mid-fusion ✓ ✓ ✓ Test Time Augmentation

P10[59] U-Net OoD detection and refinement
(Convolutional Autoencoder) X X X

P11[116] U-Net Single 2D network. Expansion,
depth-wise, projection block X ✓ X Test Time Augmentation

P12[61] U-Net Tranformer encoder in the bottleneck,
cross-view consistency loss ✓ ✓ ✓

P13[19] AttU-Net ROI detection, cross-over Attention ✓ ✓ ✓ Histogram Matching, Fourier
P14[165] U-Net Multi-view 3D mesh reconstruction ✓ X X

P15[60] MPFP+ViT Multi-scale Feature Pyramid,
Geometric Spatial Transformer ✓ ✓ ✓ In-painting

models were primarily in terms of the input dimensionality, with some additional minor
modifications to the base architecture. All of these methods produced separate models
for each view.

P1 adopted a 2D nnU-Net for both SA and LA views and replaced its bottleneck
convolutions with deformable Bayesian convolutions. Deformable convolutions enable
an increased and adaptable receptive field without requiring additional convolution
layers, while Bayesian convolutions improve generalisability and training speed.

P2 used a 3D nnU-Net for the SA view and a 2D nnU-Net for LA views and added
batch normalisation instead of the default nnU-Net instance normalisation. P2 also
added dropout of 0.2 to the intermediate layers of the network.

P3 used an ensemble of 2D and 3D nnU-Nets for the SA segmentation task and a
regular 2D nnU-Net for the LA view. The default nnU-Net architectures were used.

P4 trained a default 2D nnU-Net for LA views and used its output to delimit SA
views along the z axis and trained a default 3D nnU-Net with the extracted region of
interest.

P5 and P6 used multi-channel late fusion approaches in their independent default
2D nnU-Nets for both SA and LA views.

P5 used stacks of three registered CMR consecutive images to train a three input
channel 2D nnU-Net. While spatial and temporal information were porposed to
generate the SA stacks, the LA stacks only incorporated temporal information.
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P6 used six filtered versions of each 2D image as input for 2D nnU-Net with six
input channel. The images feeded to this network were pre-processed extracting the
region of interest by means of a regression CNN that delimited them to their bounding
box.

U-Net architectures

Seven participants (P8–P14) constructed their architectures on top of a traditional
U-Net.

P8 generated a multi-view SA-LA model consisting of two 2D U-Net structures
with a shared bottleneck. Each of the out-of-plane 2D SA slices belonging to the same
subject received the same complementary LA view and their features were concatenated
in the bottleneck, training simultaneously both SA and LA views in a single end-to-end
model.

P9 combined a 2D U-Net with a 3D U-Net in a unified model. In order to achieve
this goal, both views are centered around the mean position of their original centroids.
Moreover, both images are rotated to align their axes, where the LAx image is rotated
to make its Y-axis match the Z-axis of the SAx stack. To take advantage of the
complementary spatial context offered by both aligned views, a set of 3 cross-view
modules were placed at the end of the three lowest levels in the compression path.
Each cross-view module concatenated SA and LA information and retrieved a new set
of spatially significant features using a 1x1 convolution layer. At inference time, SA
and LA views were reoriented to their original pose.

P10 implemented for each view two 2D U-Nets and a 2D autoencoder. The
architecture used in the implementation of the U-Net networks corresponds to the best
methods presented in [32] and [22], while the architecture used in the implementation
of the autoencoder network can be found in [20]. While the segmentation network used
pairs of input images and their manual delineations, the autoencoder was trained to
reconstruct delineations of the training set. The autoencoder loss was used as a quality
control measure, being backpropagated to the U-Net when a poor quality was detected.
At inference time, the best segmentation network was selected for each subject, taking
in consideration the quality assessment of the autoencoder.

P11 used a single 2D U-Net for both views and replaced the standard convolutional
blocks of its decoder with expansion, depth-wise, and projection blocks. These blocks
extract helpful information with less computational complexity and thus allowed to
increase the number of channels in the decoding stage. Channels are then combined
via depthwise convolutions and finally collapsed to the original depth in the projection
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stage. Additionally, P11 added residual blocks to the standard U-Net skip connections.
P12 proposed co-training a pair of 2D U-Nets end-to-end. The main modification

of the backbone U-Net architecture used in each branch consist of the addition of an
transformer module to the bottleneck that established self-attention mechanisms on
high-level convolutional features. At training time, a SA slice and its complementary
LA view were simultaneously fed to the paired U-Net. The segmentations obtained
were then mapped between views using their complementary affine transformations.
The final loss consisted of a combination of per-view standard DSC score and the
co-segmentation SA to LA and LA to SA inter-view DSC scores.

P13 used Attention U-Net [128] as backbone. Initially, two 2D Attention U-Nets
were utilized to extract the heart’s location in both LA and SA views. The information
from both views was then combined into one volume. For LA segmentation, the cropped
LA slice and three mid-cavity SA slices were joined together. For SA segmentation, the
cropped SA slice is combined with the cropped LA slice, allowing access to additional
anatomy information in the basal and apical heart regions. Finally, each volume is
processed as a multi-channel input through a separate Attention U-Net to produce the
final segmentation masks for each view.

P14 used independent 2D U-Nets for LA and SA views and combined them into a 3D
deformable model to improve quantification and volumetry. An initial 3D deformable
model was triangulated directly from the SA segmentation contour points obtained
from the network. SA apical and basal planes were estimated from the obtained LA
segmentation and used to reconstruct the final SA volume.

Other architectures

P7 used 2D Deep Layer Aggregation (DLA) networks as a backbone for both SA
and LA views. Being the backbone the same presented in [182]. The implementation
consists of two stages: initially, two individual networks were employed to segment the
SA and LA images independently. In the following stage, the results are then jointly
refined using two additional networks. Four networks were trained independently
in total, all having a similar structure except for the refinement networks, whose
input comprised the original image, the respective 2D segmentation, and the aligned
segmentation obtained from the complementary SA/LA view. Both stages were trained
independently.

P15 propose a new hybrid 2D/3D geometric spatial Transformer Multi-Pass feature
pyramid to simultanenously segment SA and LA views. The architecture consists of 2D
SA/LA feature pyramid [102], independent 3D (SA) and 2D (LA) branches and finally
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a geometric spatial transformer (GST). The feature pyramid receives individual 2D
in-plane complementary slices for both the SA and LA as inputs and extracts features
at different downsampling levels. Then, the SA features are regrouped in a 3D SA
stack, and a segmentation is obtained by means of a simple 3D convolutional residual
block. LA features pyramids follow the same procedure on its 2D counterpart.

The GST takes as input the pre-computed affine matrix and the complementary
LA and SA views. After projecting SA volume to its complementary LA view, both
are concatenated and merged via a 2D convolutional block to obtain a refined LA
prediction.

2.4.2 Data augmentation

Data augmentation (DA) is a widely utilized technique that helps to enhance the perfor-
mance of deep learning algorithms through improved generalization and regularization.
Its utilization in the medical imaging field has been well documented[44], and it has
been consistently shown that incorporating DA can greatly benefit segmentation tasks
in cardiovascular magnetic resonance imaging[41, 32].

All participants in the challenge (except P10 and P14) used some form of data
augmentation to enhance their models. Specifically, two kinds of data augmentations
were considered: (1) spatial transformations to increase sample size through flipping,
rotation, scaling, or deformation of the original images; (2) intensity-driven techniques,
which maintain the spatial configuration of the anatomical structures but modify their
image appearance. Both augmentation families seem particularly relevant for the
M&Ms-2: while spatial transformations can reduce the gap between seen and unseen
anatomies and pathologies, intensity-driven techniques are useful in the presence of
heterogeneous imaging protocols and scanner vendors. Two teams performed data
augmentation using only spatial transformations (P8, P11). Nine teams utilized
intensity-based augmentations using standard image transformations such as blurring,
change in brightness and contrast, or addition of Gaussian noise (P1–P9, P12–P13, P15).
P3, P6 and P7 added histogram matching to their pool of intensity transformations.
Additionally, P2 used MRI-specific augmentations such as random bias fields, random
ghosting, and random motion artifacts to increase the textural variability of the images.

P5 and P6 added more sophisticated augmentations to their pipeline, and both
methods used multi-channel inputs.

P5 registered temporal (SA and LA views) and spatial (z-axis SA view) and
propagated the label information to unlabeled temporal phases to increase the training
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set. As described in the previous subsection, triplets of consecutive unlabeled images
were effectively used to pretrain each SA and LA multi-channel net, taking as ground
truth a registered label from an annotated cardiac phase. Since the propagated masks
are not as accurate as the manual segmentations, the network was fine-tuned using the
real labeled images and the adjacent registered cardiac phases.

P6 applied advanced image synthesis by using Generative Adversarial Networks
(GANs). In particular, P6 used the method proposed in SPADE [129] to increase the
number of samples per vendor and per cardiac region in an anatomically consistent
way. The augmentation consisted of morphological manipulations of the segmentation
masks to obtain synthetic images with the desired RV cavity shape. Multi-channel
augmentations were then applied on top of synthesis, as a stack of intensity transformed
channels and the the original (real or synthetic) image. The transformed images were
obtained using Laplacian, posterization, and edge-preserving filters.

On the other hand, P6 also proposed two data balancing strategies: (1) For SA
stacks, the mid-ventricular slices cover most of the 3D volume, generating unbalance
between basal, mid-ventricular and apical regions when using a 2D segmentation model.
Approaches such as [111] alleviated this effect using balanced batches of the different
short axial regions i.e. apical, basal and mid-ventricular regions. Following the same
principle, P6 generated synthetic basal samples from randomly deformed segmentations.

(2) Since the provided dataset is acquired using 9 different scanners with a different
number of samples per scanner and vendor, it is appropriate to consider some degree of
unbalance related to domain shifts. Approaches such as [49, 149] tried to minimize the
domain shift negative effects using domain adversarial training. P6 instead identified a
set of outliers for each vendor based on the computed RV cardiac indices. Then, each
vendor was synthetically augmented up to 1000 times, incorporating a 50% of outliers
and a 50% of regular cases.

Finally, P13 added Fourier Domain Adaptation [181] to alleviate vendor differences.

2.5 Results

As shown in Table 2.2, a diverse testing set integrating nine scanners and eight cardiac
pathologies was prepared for evaluating the final submissions with a total of 160
subjects. We show the obtained results per team, per cardiac region, per pathology
and per clinical indices. Additionally, we show some qualitative results.

To understand and analyse the participating methods in this challenge, we have
performed the following experimental comparisons. Firstly, we rank the participants
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exactly as it was presented during the challenge workshop. Secondly, we further dissect
the results to emphasize different aspects and qualities of cardiac segmentation, such
as pathological groups, cardiac regions or clinical indices. Thirdly, we perform a
qualitative comparison of the approaches of the participants.

2.5.1 Team Ranking

The results of the challenge, as displayed in Table 2.6, present the evaluation of all
participants using two relevant segmentation metrics (DSC and HD) for both SA
and LA acqusitions. Additionally, the average inference time is included in terms of
volumes per second for SA acquisitions and images per second for LA acquisitions .
The inference time for methods using an unified model whose inference time could not
be computed independently (P8, P9 and P15) for each view present a single inference
time . Lastly, a Welch’s t-test was conducted to determine statistical significance
between participants’ evaluation performance.

Table 2.6: DSC and HD and inference time for the final submissions of all participants. HD
is measured in millimeters. Volume Error is measured in mililitres. Inference time is measured
in seconds per volume.Boldface numbers are the best results for each column. Blue numbers
represent results are not significantly different compared to the top-performing method for
each column (p-value > 0.01 for Welch’s t-test)

SA LA

ED ES ED ES

Method DSC HD DSC HD Inference (s) DSC HD DSC HD Inference (s)

P1 0.934 9.610 0.910 10.032 1.72 0.935 6.227 0.904 5.935 0.34
P2 0.932 10.078 0.910 9.782 0.86 0.935 6.028 0.905 6.188 0.11
P3 0.940 10.122 0.914 9.987 1.8 0.931 6.337 0.904 5.976 0.42
P4 0.933 10.563 0.907 10.050 2.22 0.930 6.246 0.902 6.097 0.54
P5 0.937 10.879 0.913 10.300 2.43 0.935 6.056 0.903 6.031 0.17
P6 0.927 9.941 0.897 10.307 2.74 0.907 8.444 0.883 7.265 0.56
P7 0.932 10.517 0.903 10.880 4.11 0.923 7.371 0.902 6.019 1.23
P8 0.923 11.258 0.897 11.062 2.23 0.910 7.757 0.882 6.933 -
P9 0.924 11.327 0.898 11.447 2.89 0.922 7.173 0.900 6.391 -
P10 0.916 11.681 0.890 11.347 2.12 0.923 7.846 0.894 6.970 0.34
P11 0.909 15.275 0.880 14.606 0.67 0.888 9.323 0.854 8.347 0.18
P12 0.844 15.495 0.821 16.750 2.34 0.887 9.733 0.851 9.659 0.42
P13 0.873 16.682 0.791 18.499 3.12 0.852 11.325 0.829 9.591 0.30
P14 0.883 17.024 0.838 17.803 4.27 0.839 13.303 0.809 13.716 0.67
P15 0.852 19.430 0.821 19.117 1.54 0.814 18.629 0.781 17.198 -
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2.5.2 Results per Pathology

Figure 2.4 summarizes the average DSC per pathology according to equations (2.4)
and (2.5). This dissection is particular relevant since accurate segmentation of different
pathologies is critical for several clinical applications, including diagnosis, treatment
planning, and monitoring disease progression.

Figure 2.4: Weighted average DSC per pathology according to equations (2.4) and (2.5).

In order to evaluate the ability of the proposed methods to generalize to new,
unseen pathological groups, subjects with Dilated Right Ventricle and Tricuspidal
Regurgitation were omitted from the training phase. A Mann-Whitney U rank test,
with a significance level of 0.05, was conducted for each participant to compare their
segmentation DSC scores for known and unknown pathologies. The results of this
analysis are presented in Figure 2.5 in an organized manner, separated by imaging
view and cardiac phase.

2.5.3 Results per Cardiac Region

The examination of various segments of the heart, including the apical, basal, and
mid-ventricular regions, is crucial for determining the individual impact each region
may have on the segmentation error. To illustrate such impact, Figure 2.6 shows the
average performance of P1–P5 in SA volumes from basal to apical planes. Further
analysis is presented in relation to the detection of the basal plane, whose contribution
to segmentation accuracy is greater than another regions: detection rate of the basal
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Figure 2.5: Statistical difference according to the Mann-Whitney U rank test for DSC scores
between seen and unseen pathologies. The red dashed line stands for the 0.05 significance
threshold.

plane, as shown in Figure 2.7, presents the number of subjects per participant where
there was a disagreement regarding the manual delineation in the detected first basal
slice.

Figure 2.6: Average performance of the top 5 ranked methods in SA from basal (0%) to
the apical (100%) regions.
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Figure 2.7: Number of not segmented slices at basal region. In blue, multi-view approaches.
In orange, non-multi-view approaches.

2.5.4 Clinical Measurements

In the assessment of cardiac function, clinical metrics such as End-Diastolic and End-
Systolic Volumes, and Right Ventricle Ejection Fraction (RVEF) are commonly utilized
indices. However, geometrical metrics, such as DSC and HD, may not always correlate
with these indices. This lack of correlation is attributed to the scalar, rather than
spatial, nature of the clinical indices, which can result in good estimations of volumes
and RVEF even when the contour is not accurately defining the cardiac structures.
For such reason, the beforementioned clinical measurements are presented in Table 2.7,
in term of i) correlation (corr), ii) mean average error (mae), and iii) bias. Note that,
may be the case where ED volume is not accurately predicted. In such case the RVEF,
defined as (V olED − V olES)/V olED can increase considerably or be infinite. In such
cases a RVEF of 100% was considered.

Outliers play a crucial role on integrating automatic segmentation methods in
clinical practice, as a single missed case or a significant discrepancy in a few instances
can have a greater impact than a small average improvement that may not make a
noticeable difference in diagnostic tasks. In Table 2.8, the number of cases exhibiting
an RV ejection fraction above various thresholds is presented, alongside the number of
cases in which computation was not feasible due to a missing segmentation in some of
the cardiac phases.
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Table 2.7: Clinical metrics for the 15 participating methods. Boldface numbers are the best
results for each column. Blue numbers represent results that are not significantly different
compared to the top-performing method for each column (p-value > 0.01 for Welch’s t-test)

Volume ED Volume ES RVEF

Method corr. mae corr. mae corr. mae bias
val. mL val. mL val. % %±σ

P1 0.949 11.94 0.967 7.63 0.878 4.81 -0.31±6.9
P2 0.952 11.14 0.967 7.63 0.873 4.54 0.89±6.7
P3 0.963 10.16 0.967 7.63 0.891 4.4 0.65±6.2
P4 0.958 11.07 0.965 8.3 0.87 4.67 -0.02±6.8
P5 0.955 10.83 0.97 7.22 0.892 4.36 0.18 ±6.5
P6 0.915 13.49 0.936 9.16 0.864 4.77 -0.14±7.5
P7 0.951 11.61 0.964 8.52 0.892 4.64 -0.63±6.4
P8 0.95 11.94 0.954 9.04 0.855 5.26 0.36±8.0
P9 0.954 12.12 0.959 8.93 0.871 4.74 0.41 ±6.6
P10 0.944 14.55 0.93 10.98 0.764 6.65 0.6±9.7
P11 .913 15.79 0.917 11.01 0.772 4.96 1.38 ±9.3
P12 0.744 32.18 0.823 15.24 0.491 11.45 -7.88±15.0
P13 0.883 21.37 0.865 17.06 0.674 9.06 1.42±13.2
P14 0.898 16.99 0.886 13.00 0.671 7.74 -1.1 ±11.7
P15 0.732 23.10 0.825 14.87 0.55 11.7 4.19±18.1
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Table 2.8: Number of patients above different RVEF error thresholds.

RV Ejection Fraction Mean Average Error

Method ≥ 5% ≥ 10% ≥ 15% ≥ 20% Missing

P1 60 19 6 3 0
P2 59 16 4 2 1
P3 55 16 5 2 0
P4 57 14 4 3 0
P5 47 17 4 1 0
P6 49 15 7 3 0
P7 52 19 5 2 0
P8 58 22 9 6 0
P9 67 12 1 1 0
P10 59 34 13 8 1
P11 59 20 6 3 0
P12 116 70 36 14 1
P13 87 49 29 18 1
P14 79 37 15 11 2
P15 67 34 23 23 16

2.5.5 Qualitative results

Figure 2.8 provides some visual examples from different teams to discuss the possible
limitations and strengths of the implemented methods. In the first row, complex basal
regions for short-axis views are correctly captured by various multi-view approaches.
All of these examples were not segmented by the top 5 non-multi-view strategies. In
the second row, a pathological subject with a high degree of remodeling in the RV is
not correctly segmented by the best-performing methods, capturing the surrounding
tissue instead of the cardiac structure. P10 captured the cardiac structure as well
as the surrounding tissue. P13 and P8 delineated only the cardiac structure with
different degrees of accuracy. These methods merged SA and LA views in their networks
without additional cross-view affine projections. Finally, the last two rows show highly
remodeled right ventricular cavities correctly segmented by top-performing methods.
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Figure 2.8: Prediction examples for some of the presented methods. The first row shows
satisfactory segmentations at conflictive basal regions for SA images that were missed by
non-multi-view approaches but correctly captured by multi-view methods. The second row
shows a pathological subject with severe right ventricular dilation that was only correctly
captured by multi-view methods. The last two rows show pathological subjects from unseen
pathologies correctly segmented by top-ranked methods. Color correspondence: ground truth
(green), prediction (red).

2.6 Discussion

This study presents a comprehensive evaluation of various automatic deep learning-based
methods for multi-disease, multi-view, and multi-center right ventricular segmentation
in cardiac magnetic resonance imaging (CMR). The 15 participants employed a diverse
range of methodologies, including the choice of backbone architecture, number of
stages, multi-view fusion, and data augmentation strategies. In addition to a large
training sample of 160 cases, the authors were given 20 opportunities to optimize the
parameters and characteristics of their models during the validation process using a
well-stratified validation set of 40 cases. A Codalab-based automatic submission system
was provided to allow for public comparison of performance and promote fair and
dynamic competition between participants.
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2.6.1 Summary of the challenge results

It can be concluded that the performance of the different proposals, and in particular
for P1-P5, is relatively comparable. Statistical analysis has shown limited significant
differences between the methods, with no clear advantage for any of the participants.

From a general point of view, our study supports several observations found in the
previous edition of the challenge and other studies based on different CMR datasets.
Specifically, the results confirm that end-diastolic segmentations are more accurate
than end-systolic segmentations for the right ventricle. Additionally, the accuracy of
segmentation decreases in the basal regions that are susceptible to under-segmentation
and also is impacted in the apical regions due to their smaller size relative to the rest
of the ventricular cavity.

The accuracy of segmentation is more stable across cardiac phases in comparison to
previous challenges such as MMs-1 or ACDC, with an improvement of 0.042 in average
DSC over MMs-1 and a comparable performance with ACDC (+0.004 average DSC),
despite being MMs-2 a heterogeneous cohort.

2.6.2 Analysis of Pathologies

One of the relevant aspects of the challenge consists on evaluating the generalization
capacity of the proposed methods to new, unseen pathologies. For this reason, the
participants trained their models without access to subjects belonging to the Dilated
Right Ventricle and Tricuspidal Regurgitation groups. Figure 2.4 shows that unseen
pathologies perform consistently worse with exception of Inter-atrial communication.
It is remarkable that three out of the ten subjects belonging to this group had a closure
device visible in the basal region of the image.

We investigated in more detail the statistical differences between both, seen and
unseen groups by analyzing independently the two annotated cardiac phases and the two
views available in each study. The results in Figure 2.5 present some degree of statistical
significance between seen and unseen pathologies for both SA and LA end-diastolic
phases. This finding reveals the need for including diverse cardiac morphologies to
improve model generalisability.

2.6.3 Single- versus Multi-view Models

Regarding multi-view approaches, eight out of fifteen participants utilized the com-
plementary information between views. Although a definitive conclusion cannot be
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drawn on the general benefits, the evaluation suggests that multi-view methods have
the potential to improve basal plane detection in certain circumstances. Specifically,
participants P9, P14, and P4 achieved a lower number of not-segmented basal slices.
Additionally, some of the multi-view approaches presented a better RVEF stability.
The solution proposed by P9 obtained the lowest number of cases with a RVEF error ≥
10%, improving significantly the results obtained by P1-P5, as expressed in Table 2.8.
Further research is required to incorporate multi-view techniques into thoroughly
optimized frameworks such as nnU-Net.

2.6.4 Impact on clinical indices

We also assesed the participating methods by computing the clincal indices derived from
the generated segmentations. The results were consistent with the ranking presented
in Table 2.6, with almost any statistical difference between the Top-10 ranked methods.
Interestingly, the multi-view approach P9 presented a more consistent Ejection Fraction
across patients, with fewer cases with RVEF error greater than 10%. This point is
specially relevant for diagnostic tasks.

2.6.5 Further considerations

Due to the high heterogeneity of the presented dataset, one could argue that there are
many sensible parameters affecting the segmentation performance. Different image
dimensions, in-plane resolutions or field strengths may be critical parameters for a DL
segmentation algorithms.

Field strength: only five out of twelve samples obtained using 3T scanners were
included in the test set. Despite the small sample size, there were no substantial
differences in the segmentation performance between 1.5T and 3T acquisitions.

In-plane resolution: In Table 2.3, we presented a wide range of in-plane resolutions
and volume dimensions directly related to the acquisition scanners. When comparing
the average performance of P1-P5 across different scanners, we obtain a stable DSC of
0.912±0.016 for long-axis 4-chamber images and 0.922±0.011 for short-axis volumes.
Interestingly, the learning methods were able to generalise correctly to the heterogeneous
set of scanners, resolutions and protocols present during the training stage.
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2.6.6 Future work

In addition to the analyses and results presented in this paper, we also provide the
M&Ms-2 dataset open-access for the community, which can be downloaded from the
M&Ms-2 website2. In conjunction with M&Ms-1, it represents the most heterogeneous
dataset ever compiled in CMRs image analysis, comprising CMRs from various imaging
protocols and cardiology units. It also includes a wide range of cardiovascular diseases
and multi-view information. It is anticipated that the scientific community will embrace
the dataset as a comprehensive resource to support a wide range of automated cardiac
imaging research initiatives, including automatic pathology assessment, multi-scanner
and multi-view image registration, multi-structure segmentation, cardiac imaging
quantification, strain and motion analysis, and image synthesis. Further efforts will
focus on incorporating 2-chamber and 3-chamber long-axis views to fully leverage the
multi-view aspect of cardiac magnetic resonance studies. The integration of diverse
disease characterization with these various views will also be pivotal in facilitating
automatic evaluation and diagnosis.

2.7 Conclusions

To summarize, the key conclusions are:

1. The main findings correlate with the obtained results in previous CMR segmenta-
tion challenges: end-systolic phase and basal and apical cardiac regions are more
conflictive than their counterparts.

2. nnU-Net based approaches proved to be more effective overall. Additional effort
is required to incorporate complex models into optimized frameworks such as
nnU-Net for a fair evaluation of different architectural proposals.

3. Further research is needed regarding generalisation: it is essential to develop
methods that can generalize well across a wide range of pathologies and patient
populations.The results highlight the need to integrate a variety of cardiac diseases,
centers, scanners, and acquisition protocols to generate robust DL approaches in
the biomedical imaging analysis domain.

4. Regarding multi-view methods, it cannot be definitively concluded that they
bring a significant improvement to the CMR RV segmentation problem. However,

2www.ub.edu/mnms-2
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further study is necessary in order to perform a conclusive assessment of their
impact and potential.
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3.2. Abstract

3.1 Abstract

Accurate segmentation of the cardiac boundaries in late gadolinium enhancement mag-
netic resonance images (LGE-MRI) is a fundamental step for accurate quantification
of scar tissue. However, while there are many solutions for automatic cardiac segmen-
tation of cine images, the presence of scar tissue can make the correct delineation
of the myocardium in LGE-MRI challenging even for human experts. As part of
the Multi-Sequence Cardiac MR Segmentation Challenge, we propose a solution for
LGE-MRI segmentation based on two components. First, a generative adversarial
network is trained for the task of modality-to-modality translation between cine and
LGE-MRI sequences to obtain extra synthetic images for both modalities. Second, a
deep learning model is trained for segmentation with different combinations of original,
augmented and synthetic sequences. Our results based on three magnetic resonance se-
quences (LGE, bSSFP and T2) from 45 different patients show that the multi-sequence
model training integrating synthetic images and data augmentation improves in the
segmentation over conventional training with real datasets. In conclusion, the accuracy
of the segmentation of LGE-MRI images can be improved by using complementary
information provided by non-contrast MRI sequences.

3.2 Introduction

Late gadolinium enhancement magnetic resonance imaging (LGE-MRI) is widely used to
assess presence, location and extent of regional scar or fibrotic tissue in the myocardium.
Whilst LGE-MRI is a well-established technique and key to many cardiovascular
magnetic resonance (CMR) examinations there are challenges in quantification and
interpretation due to a number of factors. Image analysis depends on image quality
which can be affected by suboptimal CMR acquisition. Correct inversion times (TI)
need to be identified and then TI require appropriate adjustments to allow good ‘nulling’
of remote, unaffected myocardium. This ensures optimal contrast between scar/fibrosis
(bright) and normal, remote myocardium (dark). Timing after contrast administration
is important to allow not only sufficient wash-out of contrast agent (gadolinium chelate)
from the remote myocardium but also from the blood pool. Images acquired too early
will leave the blood pool bright which makes differentiating subendocardial infarct
from blood pool challenging.

In the existing literature, two main families of techniques have been proposed to
automatically segment LGE-MRI data. The first one segments directly the LGE-MRI
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images by using different techniques such as graph-cuts [4], atlas-based registration
[91], or more recently Convolutional Neural Networks (CNNs) [183]. However, these
techniques generally lack robustness due to the limited availability of LGE-MRI datasets
for training. As a result, the second family of techniques has considered exploiting
other cardiac MRI sequences to provide additional signals for guiding more robustly the
segmentation process. For instance, some researchers [174, 164] proposed to segment
first cine-MRI images and to propagate the obtained contours into the LGE-MRI images
through image registration. Similarly but by using additional sequences, the authors in
[192] implemented an atlas-based segmentation approach combining information from
balanced-Steady State Free Processing (bSSFP), LGE and T2 sequences. However, these
techniques are highly dependent on the image registration step, which is challenging
due to the inherent differences between the cardiac MRI sequences.

In addition, in order to improve segmentation and increase the model robustness
over unseen data, image synthesis has been proposed recently. The most common
model combines generative adversarial networks (GANs) with a cycle-consistency
constrain for image-to-image translation and two segmentation networks, one for each
image domain, trained end-to-end in order to benefit from a combined loss function.
This model has been applied for cross-modality segmentation improvement [188, 31],
domain adaptation across scanners [31] or across modalities [42] and segmentation of an
unlabeled target modality using only the source ground truth [71, 187]. Alternatively,
a GAN can be trained to generate synthetic images from masks according to some
conditional value, like the dataset style, as in the case of retinal fundus images for
vessel segmentation [189].

In this paper, we propose an approach to circumvent the need for image registration,
while addressing the lack of LGE-MRI images for training. Concretely, we implement a
CNN-based approach that is capable of learning key properties of the cardiac structures
simultaneously from multiple cardiac MRI sequences. Furthermore, image synthesis
and data augmentation are used to generate new examples that take into account
both the global appearance of LGE-MRI data and the local appearance of scar tissues.
With this approach, direct deep learning based segmentation of LGE-MRI is enabled
without the need for inter-sequence image registration and while exploiting the richness
of multi-sequence cardiac MRI.
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Table 3.1: MS-CMRSeg sequences details.

bSSFP LGE T2
Number of patients 45 45 45
Segmented patients 35 5 35
Number of slices 8 – 12 10 – 18 3 – 7
Slice thickness (mm) 8 – 13 5 12 – 20
TR/TE (ms) 2.7/1.4 3.6/1.8 2000/90
In-plane resolution (mm) 1.25× 1.25 0.75× 0.75 1.35× 1.35

3.3 Method

3.3.1 Dataset

Data description

The LGE-MRI dataset used in this paper was provided as part of the Multi-Sequence
Cardiac Magnetic Resonance Segmentation Challenge (MS-CMRSeg). It consists of 45
patients from Shanghai Renji Hospital that were scanned using three MRI sequences:
bSSFP, LGE and T2. Ground truth segmentations of the left ventricle (LV), right
ventricle (RV) and myocardium (MYO) were provided for some of the cases according
to the distribution in Table 4.1 (second row). Even though all sequences were acquired
and selected for the end-diastolic cardiac phase, there were differences in the shape of
the cardiac boundaries consistently between the three sequences for the same patient.
Moreover, the slices were not aligned between the sequences in the direction of the
ventricular axis, which further complicates the application of image registration. Note
that all patients in the sample suffer from cardiomyopathies and that every LGE-MRI
image presents a scar of variable size within the myocardial wall.

Data pre-processing

As a first step, intensity bias correction was applied to all sequences to correct for
potential artifacts and the intensity histograms of all images were matched to a common
one to obtain coherent appearances across images. Furthermore, before the training
process, all images were interpolated and cropped so that they had a pixel size of
256 × 256 and the same resolution. They were also normalised such that the mean
intensity and the standard deviation equal 0.5, thus ensuring most of the input values
to be positive in between 0 and 1 for convenience in later representation of the images.
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0 degrees 36 degrees 86.4 degrees 136.8 degrees

Figure 3.1: Example of three rotations of the myocardial wall with respect to the whole
image by using the landmarks provided in the leftmost image. This shows the changes in the
location of the scar tissues

3.3.2 Increasing training sample

Before describing the CNN model implemented in this paper for LGE-MRI segmentation,
this section presents two methods used to increase the number of training data and
obtain higher LGE-MRI variability.

Data augmentation

By using the provided segmentations, a set of 50 landmarks were evenly placed around
the epicardium and endocardium. With these, the myocardium and left ventricle were
rotated relative to the rest of the image, as shown in the examples in Figure 3.1, in
order to obtain an augmented dataset with varying locations of the scar tissues. Since
the contour of the epicardium is not perfectly round in general, a Gaussian filter of size
3× 3 was applied around the outer boundary to smooth the transition between the
rotated and fixed regions, thus preventing image intensity discontinuities. A total of
twenty 7.2 degrees rotations were applied. Thus, the LGE-MRI dataset was multiplied
by a factor of 20 and the location of the scar in the myocardium ranged between the
initial position and 144 degrees clockwise. This augmentation technique increases the
variability in the scar locations within the myocardial wall that was otherwise very low
due to the small number of patients available for training. Furthermore, further data
augmentations were obtained by applying small rotations of the input images up to 15
degrees before training.

Image synthesis

The rationale behind the proposed image synthesis is that there are many more
segmented cine-MRI datasets available open-access or in clinical registries for training
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Figure 3.2: Examples of synthetic LGE-MRI images. The leftmost column are the original
cine images, the central column shows the transformed images to the LGE domain and the
rightmost column is the most similar slice from the real LGE sequences, since they were not
registered/aligned.

CNN models. Thus, to increase the number of annotated LGE-MRI cases for training,
image synthesis from cine-MRI images sequences is proposed. To achieve this, the
CycleGAN method was implemented using the PyTorch library provided at this link2.

This method translates images from one domain to another without the need for
image registration or for the sequences to be from the same patients. It consists of a
pair of generators GLGE , GbSSFP and a pair of discriminators DLGE , DbSSFP that
have opposed goals. The generator GLGE (GbSSFP ) transforms the bSSFP (resp. LGE)
sequence into a realistic LGE (bSSFP) image, while the discriminator DLGE (DbSSFP )
attempts to distinguish between real and fake LGE (bSSFP) sequences. To achieve
a good image translation between the two sequences, the loss function contains two
terms: (1) an adversarial loss for each target domain that accounts for the similarity
between the generated and real images, and (2) a cycle consistency loss that ensures
that the transformed image GLGE(X) (GbSSFP (Y )) is transformed back to X (Y )
through GbSSFP (GLGE).

For the training of the CycleGAN model, all slices from the 45 patients for the
LGE and bSSFP sequences were used during 200 epochs. The training took 12 hours
on a NVIDIA 1080 GPU with a batch size of 1. The Adam optimizer was used with
learning rate of 2× 10−4, with first and second moment decay rates of 0.5 and 0.999,

2https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Table 3.2: Average and standard deviation for the Dice score of segmentation results over
the five labeled LGE volumes.

LV MYO RV
avg. std. avg. std. avg. std.

model trained w. bSSFP 0.503 0.406 0.370 0.301 0.515 0.434
model trained w. synthetic LGE 0.809 0.116 0.688 0.145 0.820 0.065

respectively. Some examples for the generated images are shown in Figure 3.2.

In order to evaluate the quality of the generated images, two segmentation models
(like the one described in the next subsection) were trained using the bSSFP images and
the synthetic LGE images separately. The obtained results are presented in Table 3.2.
In particular, the synthetic LGE images, that are anatomically similar to the original
bSSFP, provide more information for the task of LGE segmentation.

3.3.3 CNN-based LGE segmentation

Once a large set of training sample was obtained from the original, augmented and
synthetic images, a modified U-Net architecture [145] was used for the image segmen-
tation by integrating two techniques: (1) a deep supervision term in the upsampling
path as proposed in [73] that will act as lower-resolution masks that are convolved
to condition the final predictions; and (2) a reduction of the number of filters after
each upsampling operation to match the number of labels as proposed by [16]. Each
image in the dataset was provided as a single channel input, thus forcing the model to
differentiate between sequences with a unique set of weights. Additionally, in order to
avoid overfitting given the sample size, dropout was used after every max pooling and
upsampling operations, except for the high level features in the architecture, as shown
in Figure 3.3.

During training, 20% of the patients for each dataset was reserved for validation
and early stopping. With a batch size of 8 images, this model took less than 36 hours
to achieve the best accuracy on the validation set after almost 90 epochs on a NVIDIA
TITAN X GPU. The Adam optimizer was used with a learning rate of 10−4, with first
and second moment decay rates equal to 0.9 and 0.99, respectively.
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Figure 3.3: Detailed architecture of the CNN model used for LGE segmentation. The
numbers in the boxes correspond to the number of channels. Convolution operations have a
kernel size of 3× 3 and stride of 1, while transpose convolutions have a kernel size of 4× 4
and stride of 2.

3.4 Results

In order to define the best trained CNN model for LGE-MRI segmentation, various
training sets were used by varying the input sequences and combinations of image
synthesis and scar augmentation, as follows:

1. LGE sequences only;

2. LGE and bSSFP sequences;

3. All sequences (LGE, bSSFP and T2);

4. All sequences plus MYO and LV rotations in LGE sequences;

5. Number 1 plus synthetic LGE sequences;

6. Number 2 plus synthetic LGE sequences;

7. Number 3 plus synthetic LGE sequences;

8. Number 4 plus synthetic LGE sequences.

When evaluated on the validation set, the training set number 8 resulted in the best
segmentations, showing the added value of image synthesis and data augmentation
for LGE-MRI segmentation. Thus, we applied the corresponding CNN model to the
test dataset composed of 40 LGE-MRI cases. The obtained segmentations were sent
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Table 3.3: Average and standard deviation for results over the test set.

LV MYO RV
avg. std. avg. std. avg. std.

Dice score 0.898 0.045 0.810 0.061 0.866 0.051
Jaccard index 0.817 0.072 0.685 0.084 0.768 0.078
Surface distance (mm) 2.0 0.8 1.8 0.5 2.3 0.9
Hausdorff distance (mm) 11 4 12 4 16 7

to the organizers of MS-CMRSeg Challenge for evaluation. The obtained results are
summarized in Table 3.3, showing average dice scores of 90% (LV), 87% (MYO) and
81% (RV).

Two remarks are important to note regarding the results reported in Table 3.3:
(1) Despite the high variability in the LGE-MRI datasets, especially in the presence,
extent and location of the scar tissues, relatively consistent results are obtained with
standard deviations for the dice scores around 5%. (2) Despite the availability of
only 5 LGE-MRI volumes for training, the proposed approach was able to achieve
comparable results to very recent deep learning techniques, which reported dice scores
of 0.915± 0.052 (LV), 0.812± 0.105 (MYO) and 0.882± 0.084 (RV) based on 5 times
more training cases (25 LGE-MRI images). [183]. This indicates the value of the
proposed inter-sequence synthesis and scar augmentation for generating richer training
samples.

Finally, for visual illustration, Figure 3.4 shows three segmentation examples as
obtained in this study. Model number 3 (second column) introduces errors that are
corrected when adding synthetic images (model number 7 in the third column). The
last column shows that the segmentation further improves when integrating the scar
tissue augmentation as proposed in this paper (model 8).

3.5 Conclusions

This paper proposed to address the limited availability of training samples for LGE-
MRI segmentation by enriching the CNN models using two complimentary methods.
Firstly, since samples of annotated cine-MRI sequences are more commonly available,
image synthesis of LGE-MRI images was implemented using a CycleGAN approach,
thus obtaining a larger number of LGE-MRI cases during training. Secondly, we
performed LGE-specific data augmentation through shape-guided rotations of the
myocardium, which increases the variability related to the location of the scar tissues in
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Figure 3.4: Three segmentation examples as obtained by using different training combi-
nations, showing the improvement achieved by integrating inter-sequence image synthesis
(column 3) and scar tissue augmentation (column 4) during training.

the myocardium. The validation shows consistent results across the datasets, indicating
the potential of this approach for enhancing the richness and generalization of LGE-
specific CNNs.

Future work include the extension of the image synthesis to take into account
local cardiac motion abnormality for synthesizing scar tissue, as well as the use of
elastic deformations of the myocardium and scar to augment non-rigidly the LGE-MRI
examples. Furthermore, extensive validation will be performed to assess in detail the
relative importance of the different steps and sequences (bSSFP, T2) in enriching the
CNN models for LGE segmentation.
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4.2. Abstract

4.1 Abstract

Accurate segmentation of pathological tissue, such as scar tissue and edema, from
cardiac magnetic resonance images (CMR) is fundamental to the assessment of the
severity of myocardial infarction and myocardial viability. There are many accurate so-
lutions for automatic segmentation of cardiac structures from CMR. On the contrary, a
solution has not as yet been found for the automatic segmentation of myocardial patho-
logical regions due to their challenging nature. As part of the Myocardial Pathology
Segmentation combining multi-sequence CMR (MyoPS) challenge, we propose a fully
automatic pipeline for segmenting pathological tissue using registered multi-sequence
CMR images sequences (LGE, bSSFP and T2). The proposed approach involves a
two-staged process. First, in order to reduce task complexity, a two-stacked BCDU-net
is proposed to a) detect a small ROI based on accurate myocardium segmentation and
b) perform inside-ROI multi-modal pathological region segmentation. Second, in order
to regularize the proposed stacked architecture and deal with the under-represented
data problem, we propose a synthetic data augmentation pipeline that generates
anatomically meaningful samples. The outputs of the proposed stacked BCDU-NET
with semantic CMR synthesis are post-processed based on anatomical constrains to
refine output segmentation masks. Results from 25 different patients demonstrate that
the proposed model improves 1-stage equivalent architectures and benefits from the
addition of synthetic anatomically meaningful samples. A final ensemble of 15 trained
models show a challenge Dice test score of 0.665±0.143 and 0.698±0.128 for scar and
scar+edema, respectively.

4.2 Introduction

Myocardial viability assessment is key in the diagnosis of patients suffering from my-
ocardial infarction and ischemic heart disease, among others. Cardiovascular magnetic
resonance (CMR) is a well-established imaging technique that provides anatomical and
functional information of the heart. Multiple sequences with different properties can
be acquired, registered and combined to obtain a complete viability assessment. Late
gadolinium enhancement magnetic resonance imaging (LGE-MRI) is widely used to
assess presence, location and extent of regional scar or fibrotic tissue in the myocardium.
T2-weighted CMR images are able to identify edema and acute or recent myocardial
ischemic injury, and have been employed to distinguish acute coronary syndrome (ACS)
from non-ACS as well as acute from chronic myocardial infarction. On the other
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hand, balanced - Steady State Free Precession (bSSFP) cine sequence presents clear
boundaries for the cardiac anatomical regions, often unclear in the first two modalities
due the presence of pathological regions.

LGE and T2-weighted are well-established techniques to many CMR examinations,
but there are challenges in their quantification and interpretation due to a variety of
factors. First, image analysis depends on image quality which can be affected by CMR
acquisition protocol. Suboptimal parameters such as inversion time (TI), repetition
time (TR), echo time (TE) need to be correctly identified in order to maximize the
difference in intensity curves between pathological and non pathological regions, but also
to minimize inter-subject acquisitions variability. Additionally, timing after contrast
administration in LGE is important to allow sufficient wash-out of the contrast agent.
On top of that, the variability in morphology and texture of infarcted, edemic areas
and the combination of both leads to a difficult automation of the process. For this
reason, manual and automated techniques with no user interaction for infarct borders
detection often results in significant within-patient variability [86, 166, 56, 163].

In order to explore the complementary nature of existing modalities for the purpose
of myocardial pathology segmentation, the MyoPS challenge is proposed. It includes a
challenging data distribution of 45 multi-modality subjects with the goal of doing an
accurate automatic infarcted and edemic regions segmentation.

In this work, we propose a challenge solution based on a stacked BCDU-NET late
fusion architecture including localisation and segmentation stages. Additionally, we
tackle the insufficent training size by means of state-of-the-art generative adversarial
models [63, 173]. To do so, we propose an image synthesis strategy based on Semantic
Image Synthesis with Spatially-Adaptive Normalization[130]. The results demonstrate
that the proposed model improves 1-stage equivalent architectures and benefits from
the addition of synthetic anatomically meaningful samples.

4.3 Materials and methods

4.3.1 Dataset

A set of 45 cases of multi-sequence CMR are collected for the challenge. Each case
refers to a patient with three CMR sequences, i.e., LGE, T2 and bSSFP CMR. All
clinical data have got institutional ethic approval and have been anonymized. The
data released have been pre-processed using the MvMM method [193, 191] to align the
three-sequence CMR into a common space and to resample them into the same spatial
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resolution.
The provided gold standard labels of interest for the challenge are LV myocardial

edema (label 1220) and LV myocardial scars (label 2221). Additional annotations of
cardiac structures are provided: left ventricular (LV) blood pool (label 500), right
ventricular blood pool (label 600) and LV normal myocardium (label 200). Thus, the
evaluation of the test data will be focused on the myocardial pathology segmentation,
i.e., scars and edema. The inter-observer variation of manual scar segmentation, in
terms of Dice, was 0.5243±0.1578, which gives an insight of the difficulty of the task.

4.3.2 Proposed Method

An overview of the proposed automated segmentation method is presented in Figure
4.1. The approach consists of two stacked segmentation networks. In brief, after
preprocessing, we employ a computationally efficient U-Net [147] on the bSSFP CMR
to localize the rounded shape of myocardium which includes the LV normal myocardium,
LV myocardial edema and scar tissue. Subsequently, the bSSFP, T2-weighted and LGE
CMR are cropped using the bounding box of the localized myocardium. Histogram
normalization is then applied on the cropped part of imgages. During the second stage,
the cropped multi-sequence CMR is passed to a higher capacity model, the BCDU-Net
[9], to segment the myocardium scar and edema. The output is finally post-processed
based on anatomical constrains to refine output segmentation masks. The individual
stages are explained in detail in the following sections.

Preprocessing

Before the training process, all images were cropped so that they had a pixel size of 256
× 256. Furthermore, all images were normalised between 0 and 1 within the Region
Of Interest (ROI) for each independent modality.

Localization Network

The pathological tissue is located within LV blood pool and LV normal myocardium.
Therefore, we first employ a network to localize the myocardial ROI, i.e. a binary
segmentation, using cine-MRI as the input modality. Cine-MRI was chosen over the
other modalities for this task because it is the most accurate for myocardial boundary
detection due to its clear structure definition and lack of appearance of pathological
regions. This task will reduce the search space when dealing with scar and edema
segmentation by the stacked network. To do that, the myocardium, edema, and scar
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Figure 4.1: Overview of the proposed stacked network.

labels are considered as the foreground, and the other labels (left ventricular blood
pool, right ventricular blood pool) as the background. U-Net, [147], is a popular
convolutional network architecture for fast and precise segmentation of images which
is built upon the Fully Convolutional Network (FCN). The main advantages of this
network is that is capable to work well with few training samples, and the network has
the potential to make use of the global location and context information at the same
time.

This symmetric network is separated in three parts of encoding (contracting),
Bottleneck, and decoding (expanding) paths. The encoding path is composed of 4
blocks. In each block we have two 3× 3 convolutional layers followed by one 2× 2 Max
Pooling function and ReLU. In each block, the number of feature maps are doubled,
and the size of feature get half. The contracting path aims at progressively capturing
context of the input image and increasing the dimension of feature representation block
by block. These coarse contextual information are then transferred into the decoding
path through skip connections. The output of the last block of the encoder is first
passed to the bottleneck which is built by two 3× 3 convolutional layers. At the end
of bottleneck we have a high dimensional image representation with high semantic
information.

The decoding path is composed of four blocks. Each block starts with performing
a deconvolution (up-sampling) over the output of previous layer. The corresponding
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feature maps in the encoding path are then copied to this layer, and are then concate-
nated with the output of deconvolutional layer. These features are then go through one
3× 3 convolutional layers. In each block of the decoder, the size of the feature maps
gradually increases and the number of feature maps gradually decreases. The target of
decoder in U-Net is to enable precise localisation by using transposed convolutions and
recovering the size of the segmentation. Since that data is imbalanced and most of the
pixels have background label, we use the weighted binary cross entropy loss to train
the network.

In our U-net implementation, for efficiency purposes, the number of classes is used
as the number of feature maps in the deconvolutions of the decoding path, as shown in
[18, 36]. It is also worth mentioning that we do not need a very accurate segmentation
result here, since we just crop the smallest bounding box around the myocardium with
a small margin of 10 pixels.

Normalisation

The output of the localisation network provides the approximate location of the
myocardial region. Therefore, by considering the fact that the myocardial infarcted and
edemic regions are within such ROI, we can ignore unwanted background information
by finding the smallest bounding box with a small margin around the myocardium.
Moreover, an histogram equalisation is applied by modality, avoiding the effect of
unuseful background pixels in the pixel histogram redistribution.

Segmentation

We exploit the BCDU-Net [9] to segment the myocardial scar and edema from the
normalized myocardium of the three input modalities. The BCDU-Net is an extension
of U-Net by including bidirectional convolutional LSTM (BConvLSTM) [155] in the
skip connection and reusing feature maps with densely convolutions. The output
features of the deconvolutional layer contain more semantic information while the
features extracted by the corresponding encoding layer have higher resolution. To
combine these two kinds of features, the authors replaced the simple concatenation
of the skip connection with nonlinear functions, i.e. BConvLSTM in the BCDU-Net
which resulted in more precise segmentation output.

Moreover, the idea of densely connected convolutions is utilized in the bottleneck
of the BCDU-Net. By having a sequence of convolutional layers, the network may
learn redundant features, therefore, in the bottleneck of the BCDU-Net, features which
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are learned in each block are passed forward to the next block. The dense blocks
help the method to enhance information flow and learn a diverse set of features based
on the collective knowledge gained by previous layers. Furthermore, the convergence
speed of the network is accelerated by employing Batch Normalization (BN) after the
up-convolution filters.

Like U-Net, the encoding path of the BCD-Net includes four steps. Each step
consists of two 3 × 3 convolutional filters followed by a 2 × 2 max pooling function
and ReLU. The depth of feature maps are doubled at each step and the size of each
feature map get half. There are two states of BConvLSTM in the skip connection of
the BCDU-Net. The second state receives the output of the previous deconvolutional
function and the input data of the first one its corresponding feature maps in the
encoding path. The output of the second BConvLSTM is then passed to the two 3× 3

convolutional filters. Like original U-Net, the decoding path doubles the size of each
feature map and halves the number of feature channels layer by layer to reach the
original size of the input image after the final layer. To train the network, we use Dice
score-based loss.

We propose to combine the three input modalities with a late fusion approach. In
other words, the network is trained separately for the three modalities and before the
last convolutional layer after the last deconvolutional layer, the three networks are
merged.

Implementation Details

All trainings were performed on a NVIDIA 1080 GPU with a batch size of 8. The
Adam optimization function with learning rate equal to 1e− 4 was used to train both
networks. Each network is trained with 50 as the number of epochs. The input size
was 256× 256 for both localization and segmentation networks.

4.3.3 Data augmentation strategy

Online augmentation

A series of common augmentation techniques were applied to each batched image
independently. For the first stacked u-net, these augmentations included random
rotations between -15º and 15º and random scaling and offsets of a maximum of 30
pixels. For the second stacked u-net the offset augmentation is avoided due to the fact
that images were already center-cropped.
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Offline augmentation

The rationale behind the proposed image synthesis is the insufficient training sample
size. Low number of images, variability in modality acquisitions, in location and extent
of pathological regions can cause loss of generalisation in CNN-based segmentation
algorithms. Thus, in an effort to increase the number of annotated multi-sequence
images, semantic image synthesis from annotated mask to multi-sequence CMR is
performed in such way that new multi-modality images can be generated from altered
versions of real annotations. To achieve this, the Semantic Image Synthesis with
Spatially-Adaptive Normalization (SPADE) method [130] was implemented using
the PyTorch library provided at this link†. Previous methods [173] directly feed the
semantic layout as input to the deep network, which is then processed through stacks
of convolution, normalization, and nonlinearity layers. In [130], is shown that this
is suboptimal as the normalization layers tend to wash away semantic information,
desired for accurate pathology tissue and cardiac structure generation. To address the
issue, SPADE uses the input semantic annotation for modulating the activations in
normalization layers through a spatially-adaptive, learned transformation. A general
overview of the SPADE multi-modality generative model is represented in Figure 4.2.

Figure 4.2: Overview of the proposed SPADE generative model.

Two SPADE models were generated. For the training/validation subset, a model
with 71 training images (17 subjects) was used and 31 validation images (8 subjects)
were kept aside. For the final model, all the subjects were used to train an additional
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SPADE model.

Both models were trained during 45 epochs with a morphological augmentation
consisting of warping epicardium contours between pairs of subjects. Both trainings
took 24 hours on a NVIDIA 1080 GPU with a batch size of 2. The Adam optimizer
was used with learning rate of 2x10e− 4, with first and second moment decay rates of 0
and 0.9, respectively. The Variational Autoencoder (VAE) was generated with a latent
dimension of 200. Once the models were trained, a set of morphological operations
were defined in order to generate different versions of real annotations. The resulting
anatomical consistent annotations were used then to feed the SPADE models and
generate synthetic multi-modality images with controlled characteristics:

Style transfer. By training the SPADE with a Variational Autoencoder (VAE), the
style of the images can be transferred, generating a variety of images with different
pathology appearances for the same morphology. The encoder and generator of our
SPADE architecture form a VAE, in which the encoder tries to capture the style of
the image, while the generator combines the encoded style and the segmentation mask
information via the SPADEs to reconstruct the original image. The encoder also serves
as a style guidance network at test time to capture the style of target images. For
training the VAE, KL-Divergence loss term was used. Every training image was used
to generate a set of latent representations of size 200. The latter were used alone -with
random linear combinations and scaling factors- or in conjunction with the methods
described below in order to produce the final synthetic multi-modality images. The
effect of this technique is shown in Figure 4.3, where an original image in first row is
transferred to two additional pseudo-random styles, rows 2 and 3.

Epicardium warpings. As shown in Figure 4.4, a set of 8 equidistant landmarks
were placed in the epicardial contour of the source and target annotations. Epicardial
contours were then warped between pairs of training subjects by means of piecewise
affine transformations.
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Figure 4.3: Style modifications.

Figure 4.4: Epicardial contour warping between a pair of subjects.

Scar and edema rotations. As shown in Figure 4.7, scar, edema and myocardium
labels were combined in a binary mask. The epicardium was then converted to a
circular shape, rotated and reconverted to the original shape taking profit of the same
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Figure 4.5: Morphological operations involved in the scar rotation process.

Figure 4.6: Morphological operations involved in the scar and edema dilation and erosion
process.

technique used in the Epicardium warpings section. This set of transformations was
then also applied to the original labels, generating a rotated version of the scar and
edema within the myocardium. To ensure that the generated segmentations were not
too far from the distribution seen by the SPADE generator while covering the label
space, the rotation was fixed to four possible values of [-30º, -20º,20º,30º].

Scar and edema dilations and erosions. A set of random complementary dilations
and erosions with a random kernel radius from 1 to 3 pixels were applied to the training
annotations. By fixing one of them for the scar label and applying the opposite one for
the edema label, we avoid an empty gap between both. Random deletion of edemic
labels is also included in this stage. In Figure 4.6 shows the effect of an eroded scar
and dilated edema.

Offline datasets A group of datasets is generated by means of the augmentation
strategies described above. More precisely, for each of the transformable labels, i.e.
non-empty annotations, the original images are used up to three times to keep the
training size relatively small. This methodology leads to the creation of a set of four
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datasets, one per type of augmentation, i.e. style transfer alone, pathology rotations,
epicardial warping and pathology dilation/erosion. It should be noted that the resulting
datasets contain the same amount of real and synthetic data. Additionally, for all
datasets, random style transfers are applied after the annotation manipulation in the
synthesis stage. In total, each dataset contains 415 images. A fifth dataset is generated
by combining all individual four datasets. This dataset consists of 1660 images and is
used to train and validate the models. The same procedure is repeated for the final
ensemblea using the SPADE trained over all the training data. This leads to datasets
of 597 and 2388 images, for the partial augmentations and the addition, respectively.

4.3.4 Post-processing

The myocardium, scar and edema-scar segmentations produced from the stacked
networks were morphologically processed to satisfy certain anatomical constraints.
In short axis CMR, the shape of the myocardium closely resembles that of a ring
throughout the apex-base slices. Therefore, slices for which the automatically segmented
myocardium is a partial ring must be detected and corrected. To this end, the skeleton
of the myocardium was calculated for each slice. Subsequently, spur skeleton branches,
i.e. branches consisting of pixels with only one neighboring pixel, were iteratively
pruned. For non-complete rings, iterative pruning results in the removal of the entire
skeleton. In such cases, the missing arc of the partial ring was completed by adding
a circular ring whose thickness is equal to the maximum thickness of the detected
myocardium. To construct the ring, the centroid of the convex hull of the detected
myocardial region was used as its center. The thickness of the myocardium was given by
the distance of the skeleton points to the closest non-myocardial pixel and the maximum
among all points was considered. The corrected myocardium was subsequently used to
refine the scar segmentation, while an additional step was necessary in the case of the
edema-scar region. More precisely, edema can be noticed in the myocardium, but also
in the LV blood pool close to the border with the myocardium. Therefore, an extended
myocardial mask was created, which contained neighboring LV regions where edema
could be localized. In order to achieve this, an artificial ring was constructed by using
the myocardium skeleton and the distance of every pixel to it. Pixels belonging to the
myocardium or the region enclosed by it were considered to belong to the extended
myocardial mask if they were within a distance smaller than a threshold from the
skeleton points. This threshold is defined as the maximum myocardium thickness plus
a small margin of 6 pixels to account for errors in the myocardium segmentation.
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As a first step in the process of refining the scar tissue, 3D components smaller
than 100 voxels were considered to be artifacts and were, therefore, excluded from
the segmentation mask. Despite good localization of the scar region by the network,
we observed a tendency to underestimate the scar region and to produce multiple
disconnected components instead of one continuous region. To tackle this issue, the
components were connected by using their convex hull in cases where the output of the
network consisted of more than one connected components. The area of the convex hull
inside an eroded version of the extended myocardium was eliminated. For the erosion,
a disk element with radius equal to 20% of the maximum myocardium radius was used.
Furthermore, morphological closing of the image with a disk object of radius equal to
90% of the myocardium maximum thickness was performed to enlarge the component’s
border without losing the form of the original shape boundary in cases where only
one component was observed. Lastly, areas outside the corrected myocardium and the
joined edema-scar mask regions were excluded from the final scar segmentation.

In the case of the refinement of the joined edema-scar mask, 3D components of size
smaller than 300 voxels were considered as artifacts. In addition, regions of edema-scar
outside the extended myocardial area were excluded from the final segmentation by
performing element-wise multiplication of the artificial extended myocardium region
mask with the edema-scar segmentation.

4.4 Results

4.4.1 Protocol and Metrics of the challenge

In order to train our models and generate the ablation study, the training set is divided
in two partitions. From the original 25 subjects, 8 of them are kept aside for validation,
with the aim of preserving a large pool of subjects in the validation stage. The decision
is motivated by the variability in image quality and the presence of difficult cases that
may lead to a sub-optimal model selection. Moreover, this allows us to have a sufficient
validation size to evaluate the post-processing algorithm. For the same reason, we
avoided to preserve a test partition that leads to a conflict between validation and
testing results and generates additional uncertainty when selecting the best method.
After model generation, selection, evaluation and post-processing, 3D Dice scores are
computed to select the final models taking into consideration the post-processing gains.
For all the experiments, 2D Dice score is used as objective loss function, except for the
localisation U-net, where the selected loss is binary weighted cross-entropy.
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example 1 

example 2

ground truth          original w/o crop     original w/ crop      original w/crop      original w/crop
                                                                                         + style            + all SPADE aug

Figure 4.7: Segmentation examples combining different sets of training data, showing the
improvement of SPADE synthesis.

4.4.2 Ablation study

We performed a detailed ablation study in order to quantify the effect of every com-
ponent of the proposed methodology individually. The results in terms of 2D Dice
score (mean ± standard deviation), which is the accuracy evaluation metric used in the
loss function of this work, are summarized in Table 4.1. In brief, our first experiment
involved segmenting the scar and scar+segmentation using solely the original data
without performing inter-stage normalization or offline augmentation. This resulted
in a Dice score equal to 0.202 ± 0.286 and 0.170 ± 0.253 for scar and scar+edema,
respectively. The low accuracy demonstrates the extremely challenging nature of
the task and the need for incorporating a ROI-based normalization between stages
and novel augmentation strategies. To test our assumption, we added the inter-stage
cropping and normalization step to enhance the contrast between scar and edema
and the rest of the tissue within the myocardial ROI where the pathological tissue is
expected to localized. The mean dice score increased by 24.70% for scar and 33.80%

for scar+edema.

We then compared the improvement offered by any of the four types of offline
augmentation, i.e. style transfer alone, pathology rotations, epicardial warping and
pathology dilation/erosion. Style transfer produced an improvement in terms of Dice
by 9% and 14.4% for scar and scar+edema, respectively. The effects of epicardium
warping and scar and edema rotation, were lower than that of style-transfer, but yet
non-negligable. More precisely, the mean dice increased by 4.1% for scar and 7.8% for
scar+edema in the case of epicardium warping. Similarly, when scar and edema rotation
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Table 4.1: 2D Dice score (mean ± standard deviation) of the proposed method for scar and
scar+edema for different data.

Data Scar Scar + Edema
Original data 0.202± 0.286 0.170± 0.253
Original data + cropping and normalizing 0.449± 0.261 0.508± 0.243
Style transfer 0.548± 0.250 0.640± 0.192
Epicardium warping 0.490± 0.260 0.586± 0.222
Scar and edema rotation 0.466± 0.241 0.554± 0.224
Scar and edema dilation and erosion 0.458± 0.299 0.600± 0.224
All spade 0.518± 0.286 0.617± 0.253

were applied the offered improvement was 1.7% for scar and 4.6% for scar+edema.
Interestingly, scar and edema dilation and erosion did not provide any significant
improvement in the scar tissue, but offered a 10.4% mean improvement in Dice for the
scar+edema region. Subsequently, we combined the four types of data-augmentation.
We observed a Dice score of 0.518± 0.286 and 0.617± 0.253 for scar and scar+edema,
respectively. This indicates that for the case of pathological tissue segmentation the
most effective augmentation type is style transfer, while morphological augmentations
have a more limited effect. We speculate that this might be related to the highly
irregular shape of the pathological tissue. However, these types of morphological
augmentations might be important in other more regular structures. In this work, to
account for possible variability found in the test sample non present in the training
set, for the final model, we decided to use the combination of all augmentation types,
presented as "All spade" in Table 4.1. Nonetheless, future work will focus on using the
style transfer only for pathological tissue segmentation.

Lastly, we evaluated the improvement offered by applying post-processing on the
outputs of the localization and segmentation networks. A visual example of the
improvement can be seen in Figure 4.8. Post-processing produces a continuous scar
region, while both edema and scar after post-processing are localized within the
myocardial area and in the close vicinity of left ventricle, as physiologically expected.

4.4.3 Challenge results

In order to obtain the final predictions, two ensembles are generated. For the first
ensemble, a set of 5 models is generated with 10 consecutive training samples and 5
consecutive validation samples, with a roll factor of 5. For the second ensemble, a
set of 15 models is generated with 22 consecutive training samples and 3 consecutive
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Table 4.2: 3D Dice score for the final testing set of 20 subjects.

Data Scar Scar + Edema
5 models ensemble 0.625±0.255 0.677±0.146
5 models ensemble + post-processing 0.635±0.281 0.692±0.143
15 models ensemble 0.636±0.243 0.687±0.131
15 models ensemble + post-processing 0.665±0.241 0.698±0.128

validation subjects, with a roll factor of 2, making the validation set to share one
subject between consecutive models in the case of the 15 models ensemble.

The confidence maps of each one of the 5 models are averaged together. The final
predictions of the 20 unseen test subjects provided by the challenge organization are
defined as the maximum average probability of each pixel belonging to each class,
maximizing the expected results and reducing the variance. The same procedure was
applied to the 15 models ensemble. After that, post-processing, as described in Section
2.4, is applied to further enhance the model’s output. The effect of the ensemble size can
be observed in Table 4.2. The bigger ensemble obtained better results due to the bigger
training sizes. The effect of the low validation size was noticeable as a noisier validation
curve, and attenuated by means of a greater regularisation power, with an overall
improved accuracy. The quantitative effect of post-processing is also appreciated. The
15 models ensemble captured a greater number of non-trivial unconnected components.
In combination with the convex hull process described in Section 2.4, for the 15 models
ensemble the post-processing generated an improvement in accuracy of 2.9% for scar
and 1.1% for scar+edema, respectively.

4.5 Discussion

This work proposes a novel approach to address automatic multi-sequence CMR
pathology segmentation. The method is based on a two-staged process and leverages
advanced state-of-the-art deep learning techniques. CMR pathology segmentation is a
particularly challenging task even for the expert clinician due to the large variability
in imaging quality and morphology of pathological regions. To tackle this limitation,
we focus on reducing the task complexity. To this end, a localisation U-net is used
to localize the myocardial ROI. Subsequently, the detected ROI is used to partially
address the problem of intra- and inter-subject variability in signal intensity by using the
bounding box of the ROI to crop the CMR images and perform a refined normalisation
within the cropped region. The normalised CMR are then fed to a BCDU-net in
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segmentation in LGE

Figure 4.8: Improvement offered by applying post-processing on the outputs of the
localization and segmentation networks. On the top row, a slice from the bSSFP (left),
T2-weighted (middle) and LGE (right) CMR are provided for one subject of the training
dataset used as validation subject during training. On the bottom row, the corresponding
manual segmentations for myocardium, scar and edema (left), the combined output of the
two networks before (middle) and after (right) post-processing are provided. Post-processing
permits to connect the two disconnected components produced by the network and constrain
the segmentation within the myocardial area and neighboring LV area.
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order to perform the pathologic tissue segmentation. BCDU-net effectiveness has
been previously demonstrated and is related to the bidirectional flow of the gradient.
In addition, we address the problem of insufficient training examples by means of
multi-modality semantic image synthesis using morphological and style transformations.
This approach increases the variability of the training samples in terms of the location
of the infarcted and edemic tissues within the myocardium, as well as, in terms of
their appearance. The validation shows the effect of the stacked architecture with
inter-stage normalisation, giving an insight about the importance of standarisation for
multi-modality medical imaging acquisitions. Moreover, consistent results across the
different semantic manipulations and their respective synthesis, indicate the potential of
this set of transformations for enriching and improving generalization of multi-modality
cardiac pathology segmentation algorithms. Future work includes the implementation
of an end-to-end model as well as the exploration of the generated synthetic data in
detail with the aim of enhancing interpretability and quality of the image synthesis
methods.

Acknowledgement.

This work was partly funded by the European Union’s Horizon 2020 research and
innovation programme under grant agreement no. 825903 (euCanSHare project). This
work has been partially supported by the Spanish project PID2019-105093GB-I00
(MINECO/FEDER, UE) and CERCA Programme/Generalitat de Catalunya.). This
work is partially supported by ICREA under the ICREA Academia programme. KL is
supported by the Ramon y Cajal Program of the the Spanish Ministry of Economy
and Competitiveness under grant no. RYC-2015-17183.

92



Chapter 5

Conclusions

5.1 Summary

Based on the research questions presented in this thesis, the following conclusions can
be drawn:

Chapter 1 introduced a high-level summary of the topic of study in this thesis:
the necessity of research on cardiac MRI segmentation is identified and developed. A
systematic review of literature on image-based automatic classification methods in
cardiology is also presented, highlighting the need for accurate cardiac segmentation
methods as a starting point for most of the automatic and human cardiac diagnosis
procedures.

This chapter was partially based on a published research by the author in Frontiers
in Cardiovascular Medicine in January 2020 (Impact Factor 5.846, Q1).

Chapter 2 identified the necessity of in-depth assessment for the right ventricular
automatic segmentation task on Cine Steady State Free Precision cardiac magnetic
resonance imaging modality. The collection and curation of a large group of multi-view,
multi-centre studies within the scope of a balanced set of pathological subjects allowed
to assess a wide range of aspects related to the proposed task.

Firstly, the spin-off nature of the organized challenge revealed that the creation
of this diverse dataset, carefully oriented to the diversification of right ventricular
pathologies, obtained an improvement of 4.2% segmentation accuracy in terms of Dice
Score when compared to the last edition of the competition.
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Secondly, the statistical analysis was degraded in pathological groups not present
in the training set. Interestingly, the best-performing methods suffered from this
performance drop, particularly in the end-diastolic phase.

Both results highlight the need to integrate a variety of cardiac diseases, centers,
scanners, and acquisition protocols to generate robust Deep Learning approaches with
greater generalization capacity in the presence of complex morphologies.

As for the multi-view component of the study, taking into consideration that the
manual annotation procedure was guided by complementary views, some degree of
improvement was expected when incorporating the complementary information in the
automatic counterpart.

Due to the organic development of the competition, there was no explicit position
on the use of multi-view approaches by the organizing body. This fact divided the
participating methods into two subgroups:

• Best performing methods focused on optimizing their algorithms through the
well-known nn-Unet framework, thus neglecting, in general, the use of multi-view
information in a tight schedule such as that of competitions.

• By focusing their methodology on the multi-view component of the collected
data, the participating methods that opted for this type of strategy did not
have the necessary time to integrate them into the nn-Unet framework, with the
subsequent loss of accuracy related to non-exhaustive fine-tuning.

This fact highlights the need for a structured ablation study to extract a final
conclusion in terms of the validity of multi-view approaches.

This work accomplished the quality standards necessary to be published in Journal
of Biomedical and Health Informatics in July 2023 (Impact Factor 7.021, Q1).

Chapter 3 introduced image synthesis and specific Late Gadolinium Enhancement
augmentations, scar tissue rotations, in response to the second research question and
the premises exposed in Chapter 1. An incremental ablation study was performed for
the task of Late Gadolinium Enhancement bi-ventricular and myocardial automatic
delineation. Taking into account one of the most relevant factors in the field of
automated biomedical analysis, data scarcity, a set of 45 studies integrating three
domains (bSSFP, LGE and T2) was used to train a segmentation network and test it in
the second domain, where the scarcity of annotated images was even more accentuated:
only 5 annotated studies were available in this modality.
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During the development of this investigation it was notorious how the main par-
ticularity of the LGE modality (injection of contrast agent to accentuate myocardial
scar tissue) was also the main source of error when transferring the information of the
annotated domains (bSSFP, T2) to the target domain (LGE).

Two data augmentation strategies, one classic (scar rotations) and the other based
on Unpaired Image-to-Image Translation (CycleGAN), were implemented for two
different purposes.

The first increased the number of images annotated in the target domain, providing
variability at the scar tissue location level, while the second increased the number
of images annotated in the target domain, providing variability at the subject level,
showing that a problem-specific data augmentation can be particularly relevant in some
scenarios. Both strategies were favorable, concluding that the proposed image synthesis
pipeline is a useful tool to regularize segmentation neural networks in the absence of a
sufficient number of training examples for complex cardiac imaging modalities such as
LGE.

This work was published in the conference proceedings of the Statistical Atlases and
Computational Models of the Heart, held in Conjunction with Medical Image Computing
and Computer Assisted Interventions in January 2020. (QUALIS A1). This work also
obtained the third position in the Multi-sequence Cardiac MR Segmentation Challenge
(MS-CMRseg) competition.

Chapter 4. The previous work based on image synthesis was an effective technique
to mitigate the effect of data scarcity and pathological tissue location variability in
LGE cardiac studies. In response to the third research question and the knowledge
developed in Chapter 3, and with the intention of deepening and expanding the pool of
image synthesis protocols, proven beneficial for increasing the generalization capacity
of cardiac segmentation neural networks, this chapter shows how multi-modal Semantic
Image Synthesis with Spatially-Adaptive Normalization, in conjunction with multi-
modal fusion strategies enhances the performance of such networks. A multi-modal
segmentation network was trained with a large set of augmented images for the task of
myocardial scar tissue and edema segmentation, being such myocardial pathological
tissues present in LGE and T2 modalities, respectively. Different multi-modal function
strategies such as multi-stream early and late fusion strategies were implemented and
compared.Complementing these techniques, our method implemented a generative
network responsible of the generation of a variety of segmentation-conditioned multi-
modal images: ground truth segmentations were modified manipulating the morphology
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of the myocardial ring and the extent and location of the pathological regions. The
synthetic images, along with the manipulated segmentations, were then used to train a
second neural network, leading to a stacked architecture of multi-modal synthesis plus
multi-modal segmentation.

All the proposed generative techniques, including style transfer, contour warpings
and scar and edema manipulations, offered an improvement over regular augmentation
techniques in terms of Dice Score when used to train the second network, thus condi-
tioning the synthesis to the particularities that involve complex tissue segmentation
tasks.

This work was published in the conference proceedings of the Statistical Atlases and
Computational Models of the Heart, held in Conjunction with Medical Image Computing
and Computer Assisted Interventions in December 2020. (QUALIS A1). This work
also obtained the Best Paper Award mention in the Myocardial Pathology Segmentation
Challenge (MyoPS) competition.

5.2 Limitations

In this section, the key limitations of the presented research are outlined, providing a
perspective on the inherent challenges and constraints. Understanding these limitations
is essential for guiding future research directions.

Data Variability: The research heavily relies on the quality and diversity of
available data. Limitations may arise from the variability in the datasets used, such
as differences in image resolution, patient demographics, and acquisition protocols.
Chapter 2 highlights this phenomenon: a well-curated diverse dataset improved the
State-of-the-Art segmentation accuracies for the RV segmentation task. On the other
hand, the results presented in Chapters 3 and 4 rely on less diverse datasets. Therefore,
it is necessary to collect more data to validate the methots proposed in these chapters.

Ground Truth Accuracy: The accuracy of manual annotations or ground truth used
for training and evaluation can introduce potential limitations. Human annotators
may have variability in defining complex boundaries or regions of interest, affecting
the model’s performance.

Computational Resources: Deep learning models, especially when dealing with
large medical image datasets, such as multi-modal and multi-view studies, can be com-
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putationally intensive. The work’s applicability in resource-constrained environments
or low-resource settings may be limited.

Clinical Validation and Integration: While the models offer promising segmen-
tation results, their clinical utility and impact on patient outcomes require rigorous
validation through external clinical studies, which are not covered in the thesis. Ad-
ditionally, integrating the developed algorithms into existing clinical workflows and
electronic health record systems may present technical and practical challenges that
need to be addressed.

5.3 Future perspectives

5.3.1 Validation

Immediate future work related to the content of this thesis is directly incremental
with respect to Section 5.2. Validation of the proposed techniques in increasingly
large datasets or complex multi-center setups is necessary to verify the benefits of the
proposed techniques in real-world scenarios.

On the other hand, the multi-modal nature of clinical assessment on a daily basis
suggests that the integration of different imaging modalities is crucial for the execution
of differential diagnoses and personalized medicine. In this context, the proposed
algorithms will be validated in other modalities, such as CMR perfusion.

5.3.2 Efficient data collection

As discussed, large and diverse datasets are essential to develop robust AI algorithms
capable of accurately interpreting MRI scans. Efficient data collection is a key point
for accomplishing such a task. The in-house M&Ms-2 multi-center dataset prepared
and released to the community, used as a backbone to develop the study presented in
Chapter 2 was locally collected in the involved centers, which created a bottleneck and,
therefore, a significant time expenditure for the study’s development.

Technologies such as XNAT [110], which stands for "Extensible Neuroimaging
Archive Toolkit", could significantly speed up the collection and curation process.
XNAT is an open-source software platform designed for the management and sharing of
medical imaging and related data. The implementation of this framework in conjunction
with clinical partners will accelerate the process of data acquisition and curation in
future studies.
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5.3.3 Trustworthy AI

The successful integration of AI into clinical practice hinges on adhering to guidelines
and fundamental principles. The FUTURE-AI initiative, as outlined in [97], assesses
these aspects through six key building blocks: Fairness, Universality, Traceability,
Usability, Robustness, and Explainability. In the context of this thesis, we emphasize
the significance of certain building blocks and introduce additional crucial aspects for
establishing trustworthy AI.

Fairness: AI models can be influenced by specific patterns within training data,
such as variations in scanner manufacturers, skin tones, gender, ethnicity, and other
factors. Identifying such bias is necessary for a better understanding of the AI models,
and developing fair AI solutions that perform equitably across different subgroups is
essential to include them in the clinical routine.

Usability: This foundation within the FUTURE-AI framework encompasses several
concepts, among which we can highlight the concept of Efficiency. Throughout the
methods proposed in this thesis, notably dense algorithms with different subnetworks
have been demonstrated. Computational refinement of the proposed pipelines is
necessary to i) efficiently integrate them into clinical practice and ii) accelerate the
research process surrounding these methods.

Robustness: AI models must handle various sources of variation in medical images,
such as scanner manufacturer, clinical center differences, or inter-observer annotation
variability. These variations should be analyzed and, where possible, accounted for
using generalizable methodologies.

Interpretability: AI tools are often seen as "black boxes" due to their opaque
decision-making processes. However, clinical decisions require reasoning and understand-
ing of potential model failures. While segmentation is one of the most understandable
topics in medical AI, interpretation mechanisms for decision-making in segmenta-
tion neural networks would benefit processes such as quality control or final human
decision-making in complex cases.
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