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1 Summary

Inspired by a Galois representation, we will set up the theory of deformations

with more generality and try to give two proofs, one using the schlessinger

criteria and another explicitly about the existence of an object called the

universal deformation. That’s why we give a brief introduction about galois

deformations.

We will deal with a profinite group Π which satisfies the p-finiteness

condition, i.e. for every open subgroup of finite index Π0 ⊂ Π there exists

only a finite number of continuous homomorphisms Π0 −→ Fp.

By k we mean a finite field of characteristic p, we will define the category

of coefficient rings C that consists of rings Λ that are complete neotherial

local ring with residue field k, and the objects are called coefficient rings.

The category CΛ consists of rings R that are complete noetherian local Λ-

algebras with residue field k and whose morphisms are coefficient-ring homo-

morphisms which are also Λ-algebra homomorphisms.

Given a continuous homomorphism

ρ̄ : Π −→ GLn(k)

we denote by CHomρ̄(Π,GLn(R)) the set of continuous homomorphisms

ρ : Π −→ GLn(R)

such that the composite map Π −→ GLn(A) −→ GLn(k) is ρ̄. Two

homomorphisms ρ1, ρ2 are strict equivalent if there is a matrixM ∈ GLn(R),

that is the identity in GLn(k), satisfying ρ1 =M−1ρ2M .

This allows us to define deformations of ρ̄ in the ring R as strict equiva-

lence class of continuous homomorphisms.

We will introduce the deformation functor

D = Dρ̄ ⇝ Sets,
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mapping a coefficient ring R to

Dρ̄(R) = {deformation of ρ̄ to R},

and a morphism f : R1 −→ R2 maps to

Dρ̄(f) : {deformations of ρ̄ to R1} −→ {deformations of ρ̄ to R2}
ρ1 7→ f̃(ρ1)

our goal will be to prove the functor D is pro-representable, speaking

loosely, we want to find a ring R and a representation ρ of ρ̄ such that there

is a bijection

HomCΛ(R, A) −→ Dρ̄(A)

for ring A in some category to be defined. We will give two proofs of this

fact, one uses the Schlessinger Criteria and the other explicitly.
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2 Galois Representations

2.1 The Krull Topology

Consider L a perfect field, andM a normal extension of L. The Galois group

is defined as

Gal(M/L) :=

{
σ :M →M : σ is a field morphism that induces the identity on L

}
.

When M = L is the algebraic clousure of L we denote Gal(L/L) by GL

and call it the the absolute Galois group of L.

In the case the extension M/L is finite and Galois the Fundamental the-

orem of Galois theory for finite extentions states:

Theorem 1 (Fundamental theorem of Galois theory for finite fields). IfM/L

is a finite Galois extension, the map

Φ : {subgroups of Gal(M/L)} −→ {subextensions M/N/L}
H 7→MH := {x ∈M : σ(x) = x, ∀σ ∈ H}

is a bijection whose inverse maps a subextension M/N/L to Gal(M/N).

Moreover, the normal subgroups H of G correspond exactly to subextensions

M/N/L with N/L Galois and vice-versa.

What follows in this section gives an analogous theorem in the case of

infinite Galois extensions.

Consider a Galois extension M/L and its Galois group Gal(M/L), define

an inverse system whose objects are the Galois groups Gal(Ki/L) where

Ki/L is a finite Galois extension such that Ki ⊂ M , the order is defined

Gal(Ki/L) ≤ Gal(Kj/L) iff Ki ⊂ Kj and maps
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φKiKj
: Gal(Kj/L) −→ Gal(Ki/L)

σ 7→ σ|Ki
.

Note that these maps are well defined, because for any σ ∈ Gal(Kj/L)

and Galois subextension Ki/L it holds σ(Ki) ⊂ Ki.

Let’s check in fact this is an inverse system, the condition φKiKi
= Id is

trivial, and φKjKk
◦φKiKj

= φKiKk
for Ki ⊂ Kj ⊂ Kk it also satisfies because

φKiKj
and φKjKk

are the restriction maps.

Theorem 2. Let M/L be a Galois extension with Galois group Gal(M/L).

Consider the inverse system defined above, then there is a group isomorphism

Ψ : Gal(M/L)
∼−→ lim←−

K

Gal(K/L)

σ 7→ (σ|K).

Proof. First of all, the map Ψ is well defined since (σ|K) ∈
∏

K Gal(K/L)

and it is compatible with the system, i.e. φKiKj
(σ|Kj

) = σ|Ki
for Ki ⊂ Kj.

It is a group homomorphism because (σ ◦ τ)|K = σ|K ◦ τ|K (because we are

dealing with Galois extensions). It remains to show its bijective.

Injective: If σ ̸= Id then for some x ∈ M , σ(x) ̸= x. Hence there is a

finite Galois extension K/L and x ∈ K so σ|K ̸= Id.

Surjective: Consider any (σK) ∈ lim←−
K

Gal(K/L). If x ∈ Ki ∩ Kj then

σKi
(x) = σKj

(x) since Ki ∩Kj/L is a finite Galois extension so

σKi
(x) = σKi∩Kj

(x) = σKj
(x).

Hence define σ :M →M by σ(x) := σK(x) for some finite Galois exten-

sion K containing x. The map is well defined, since any element of M lives
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in some finite extension of L and similar arguments as before show this map

is a field autormorphism and leaves K fixed.

We endow Gal(K/L) with the discrete topology, the product topology on∏
K Gal(K/L), and lim←−

K

Gal(K/L) with the subspace topology; then Gal(M/L)

inherits a topology via the map Ψ called the Krull topology.

Althoug the groups Gal(K/L) have the discrete topology but the product∏
K Gal(K/L) does not have the discrete topology when the extension M/L

is infinite. Certainly, a basis for the product topology is given by

B′ =

{∏
K

UK : UK ⊂ Gal(K/L) and UK ̸= Gal(K/L) for finitely many K

}
.

From these expressions it follows a basis of neighbourhoods of the identity

Id ∈
∏

K Gal(K/L) is given by

B′
Id =

{∏
K

UK : either UK = Gal(L/K) or UK = {Id} for finitely many K

}
.

And from the last expression, a basis of neighbourhoods for the identity

Id ∈ Gal(M/L) (the identity of the galois group) is given by

BId =

{
Gal(M/K) : finite Galois extension K/L

}
. (1)

Similar reasonings prove that for σ ∈ Gal(M/L) a basis of neighbour-

hoods is given by

Bσ = σ · BId.

The last observations proves that the map τ 7→ στ is also an homeomor-

phism (it is compatible with the group structure and also with the topology).

This is not a mere coincidence, because Gal(M/L) is a topological group,

meaning:
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� The multiplication map · : Gal(M/L)×Gal(M/L)→ Gal(M/L) given

by (σ, τ) 7→ στ is continuous.

� The inverse map Gal(M/L)→ Gal(M/L) given by τ 7→ τ−1 is contin-

uous.

In literature Gal(M/K) is also called a profinite group (since it arises

from finite groups). There are innumberable properties that we can list: it

is a compact group, every open subgroup is also closed, the group is totally

disconnected, etc. For more details see [8]

Theorem 3 (Fundamental theorem of Galois theory). If M/L is a (finite

or infinite) Galois extension, the map

Φ : {closed subgroups of Gal(M/L)} −→ {subextensions M/N/L}
H 7→MH := {x ∈M : σ(x) = x, ∀σ ∈ H}

is a bijection whose inverse maps a subextension M/N/L to Gal(M/N).

Moreover, the normal closed subgroups H of G correspond exactly to subex-

tensions M/N/L with N/L Galois and vice-versa.

Example 1. Given a prime p ∈ N consider Fp a finite field of p elements,

we know for each n ∈ N there is unqiue field extension Fpn, up to field

isomorphism, of degree [Fpn : F] = n. The Galois group is Gal(Fpn/F) ≡
Z/nZ, applying this fact and theorem (2) we obtain

GFp = Gal(Fp/Fp) ≡ lim←−
n

Gal(Fpn/Fp) ≡ lim←−
n

Z/nZ.

The cyclic group Z generated by the Frobenius element ϕ : Fp → Fp given

by x 7→ xp, is easily seen to be dense in GFp but clearly Z ̸= GFp. We say

the Galois group GFp is topologically generated by ϕ.
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2.2 Galois representations

Just like we have a notion of a topological group, we say a ring A is topological

if:

� The multiplication map · : A × A → A and addition + : A × A → A

are continuous.

� The multiplication map Gal(M/L)×Gal(M/L)→ Gal(M/L) given by

(σ, τ) 7→ στ is continuous.

� The inverse map A∗ → A∗ is continuous.

We can identify the general lineal group GLn(A) with a subset of n × n
matrices with coefficients in A. Hence GLn(A) inherits a topology from An2

.

Definition 1. A galois representation of dimension n is a map

ρ : Gal(M/K)→ GLn(A),

where A is a topological ring and ρ is a group morphism and continuous.

Although the definition is quite general, we will be interested in a partic-

ular type of rings.

Definition 2. A coefficient ring A is complete noetherian local ring, with

finite residue field kA := A/mA, here mA is the maximal ideal of A.

Definition 3. Consider A a coefficient ring and ρ : Gal(M/K) → GLn(A)

a galois representation. The residual representation of ρ is

ρ : Gal(M/K)→ GLn(kA),

the composition of ρ with the reduction map GLn(A)→ GLn(kA).

If k denotes a finite field and ρ0 : Gal(M/K) → GLn(k) a galois repre-

sentation, then ρ lifts to A if k = kA and ρ = ρ0.

Two liftings ρ, ρ′ of ρ0 are equivalent if ρ can be conjugated by a matrix

of GLn(A) to obtain ρ′.

A deformation of ρ0 to A is an equivalence class of liftings of ρ0 to A.

7



Example 1. Fix a prime number p ∈ N and let ordp the valuation at p, i.e.

and ordp(a) = m if a = bpm for some p ̸ |b and we set ordp(0) =∞. We have

an absolute value | · |p := e−ordp(·) on Z, consequenlty a metric.

The completion of Z with respect of this metric is called the p-adic num-

bers Zp. By construction they are complete, moreover it is a valuation ring,

hence it is local and PID and therefore noetherian. We conclude they are a

coefficient ring.

Another way of ”obtaining” the ring Zp is using an inverse system: the

sets are Z/pnZ the maps φij : Z/piZ → Z/pjZ for j ≤ i is simply the

restriction. For major details see [8], [4] and Then

lim←−
n

Z/pnZ ∼= Zp.

These new perspective allows us to define a Galois representation. Again,

for a fixed prime p ∈ N, consider the roots of the unity µn = {ξ ∈ C : ξp
n
=

1} which give rise to finite Galois extensions Q(µn)/Q, the Galois group is

isomorphic (not canonically) to

Gal(Q(µn)/Q) ∼=
(
Z/pnZ

)×
.

Moreover they form an inverse system with the maps φij : µi → µj given

by ξ 7→ ξp
i−j

for j ≤ i. To sum up, we have the commutative diagram

(
Z/piZ

)× (
Z/pjZ

)×
Gal(Q(µi)/Q) Gal(Q(µj)/Q)

∼ ∼

Denote by µ∞ =
⋃

n≥1 µn, other than the cyclotimcs Q(µn);

Gal(Q(µ∞)/Q) ∼= lim←−
n

Gal(Q(µn)/Q) ∼= lim←−
n

(
Z/pnZ

)× ∼= Z×
p
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The last isomorphism is because lim←−
n

(Z/pnZ)× ⊂ lim←−
n

Z/pnZ ∼= Zp, now an

element of lim←−
n

Z/pnZ is invertible iff every coordinate is invertible.

Finally, we get the the Galois representation

Gal(Q(µ∞)/Q)
∼−→ Z×

p ⊂ Zp
∼= GL1(Zp)

This map is clearly a group morphism and continuous. We can extend

this representation

Gal(Q/Q)↠ Gal(Q(µ∞)/Q)→ Zp

where the first arrow corresponds to the restriction. This is called the

p-adic representation.

2.3 Ramifications

Fix a prime p ∈ N, denote by Qp an algebraic clousre of Qp; it is known that

the norm | · |p on Qp extends uniquely to every α ∈ Qp by

|α|p = |NQp(α)/Qp(α)|1/[Qp(α):Qp]. (2)

Denote the valuation rings OQp
, OQp , the maximal ideals mQp

, mQp and

the residue fields kQp
= OQp

/mQp
, kQp = OQp/mQp of Qp and Qp respectively.

First note that kQp = Fp, the finite field of p elements, since OQp = Zp

and mQp = pZp. Also, kQp ↪→ kQp
given mQp ⊂ mQp

and if 0 ̸= x ∈ kQp then

also 0 ̸= x ∈ kQp
. Moreover using the fact kQp

/kQp is an algebraic extension,

and kQp
is algebraically closed we conlude kQp

= Fp.

By equation (2) we conclude |σ(α)|p = |α|p for any σ ∈ Gal(Qp/Qp) hence

σ(OQp
) ⊂ OQp

. Hence there is a continuous map Gal(Qp/Qp)→ Gal(Fp/F),
which turns out to be surjective.

On the other side, the identification

Q ↪→ Qp ↪→ Qp.
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extends, not uniquely, to an embedding Q ↪→ Qp; all other embeedings

are obtained by conjugatin with an element of Gal(Q/Q). Since for any

σ ∈ Gal(Qp/Qp) the field Q is fixed and σ(Q) ⊂ Q we then have a map

Gal(Qp/Qp) ↪→ Gal(Q/Q),

which is continuous and is injective. To see it is continuous: it will be

enough to check the preimage of neighbourhood of the identity (1) is open,

consider Gal(Q/K) for some finite Galois extension K/Q, the preimage is

Gal(Qp/KQp) which is open, given KQp/Qp is a finite Galois extension.

Injectivity needs more work, the idea is to use Krasner’s lemma to prove Q
is dense inside Qp.

The image Dp ⊂ Gal(Q/Q) of the last identification is the decomposi-

tion group, defined up to conjugancy. The inertia group Ip ⊂ Dp fits in the

exact sequence

Id→ Ip → Dp → Gal(Fp/Fp)→ Id

Definition 4. A Galois representation ρ : Gal(Q/Q)→ GLn(A) is unram-

ified at p if Ip ⊂ ker ρ.

For more details and results check Mazur [2] and [3]
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3 Deformations of Representations

In the previous section we have defined and given some expamples of Galois

deformations, they play an important role in big theorems like Fermat’s Last

Theorem. That’s why we will give a more general definition of deformations.

Assume we have a profinite group Π and a representation, i.e. a contin-

uous homomorphism

ρ̄ : Π −→ GLn(k),

where k if a finite field of characteristic p, GLn(k) is the general linear

of kn. We want to study the lifts of ρ̄, more precisely we want to conisder

homomorphisms

ρ : Π −→ GLn(R),

where R is a ring, there exists a homomorphism π : R −→ k such that the

induced homomorphism GLn(R) −→ GLn(k) makes the following diagram

GLn(R)

Π GLn(k)

π

ρ̄

ρ

commutative. We will add some restrictions on the group Π and use the

theory of categories to be more precise on which rings R we allow and the

homomorphisms between them.

Since the groups GQℓ
and GQ,S, with ℓ prime and S a finite set of primers,

satisfy the p-finiteness we will require Π to satisfy it too, i.e. the following

hold

p-finiteness condition For every open subgroup of finite index Π0 ⊂ Π

there exist only a finite number of continuous homomorphisms Π0 −→ Fp.
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For a fixed finite field k of characteristic p, we denote by C the category

whose objects are complete noetherian local rings with residue field k (we

will call them coefficient rings), and the morphisms are local homomorphisms

R1 −→ R2 of complete noetherian local rings which induce the identity on

k.

To be more precise, for any object (R,m) of our category C there should

be a fixed ring isomorphism R/m −→ k. So the condition to the morphisms

R1 −→ R2 translates to the following diagram

R1 R2

R1/m1 R2/m2

k k

f

f̄

Id

to be commutative. We will denote by π the canonical projection R −→ k

and by abuse of language the induced map GLn(R) −→ GLn(k) will be

denoted by π also, and the kernel of the last by

Γn(R) = Ker

(
GLn(R)

π−→ GLn(k)

)
Another category of interest is the full subcategory C0, whose objects

are artinian local rings with residue field k. Let’s check indeed C0 is a full

subcategory of C, for a local artinian ring (R,m) the chain ... ⊂ m3 ⊂ m2 ⊂
m must stabilize implying the maximal ideal is nilpotent, hence (R,m) is

noetherian and clearly complete (because it has the discrete topology).

In what follows we will check that the objects of C are pro-objects of C0.
Specifically, any object (R,m) is the inverse of elements in C0 because

R ≡ lim←−
n

R/mn,
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and clearly R/mn ∈ C0 for each n ≥ 1.

3.1 The deformation functor

Definition 5. Given R ∈ C, two homomorphisms

ρ1, ρ2 : Π −→ GLn(R)

are strictly equivalent if there is M ∈ Γn(R) such that ρ1 =M−1ρ2M .

The composition of elements in the class of stricly equivalent homomor-

phisms and the projection morphism π : GLn(R) −→ GLn(k) give the same

homomorphism Π −→ GLn(k). Now we have defined the required concepts

to give a precise definition of what we want to study.

Definition 6. Given residual representation, continuous group homomor-

phism,

ρ̄ : Π −→ GLn(k),

and a coefficient ring R ∈ C is a strict equivalence class of continuous homo-

morphisms

ρ : Π −→ GLn(R)

when composed with π : GLn(R) −→ GLn(R) give ρ̄, i.e. π ◦ ρ = ρ̄.

We can define the following functor

D = Dρ̄ ⇝ Sets,

mapping a coefficient ring R to

Dρ̄(R) = {deformation of ρ̄ to R},

and a morphism f : R1 −→ R2 maps to

Dρ̄(f) : {deformations of ρ̄ to R1} −→ {deformations of ρ̄ to R2}
ρ1 7→ f̃(ρ1)
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the function f̃ : Γn(R1) −→ Γn(R2) maps a matrix M = (mij) to the

matrix f̃(M) = (f(mij)), this map is well defined because f induces the

identity on k. It is well defined, if ρ1 =M−1ρ2M for some M ∈ Γn(R1) then

f̃(ρ1) = f̃(M−1ρ2M) = f̃(M−1)f̃(ρ2)f̃(M) = f̃(M)−1f̃(ρ2)f̃(M).

The image of the idenity under Dρ̄ is again the identity, and given f :

R1 −→ R2 and g : R2 −→ R3 clearly Dρ̄(f ◦ g) = Dρ̄(f) ◦ Dρ̄(g) because
˜f ◦ g = f̃ ◦ g̃. Confirming Dρ̄ is a functor.

We will resume our task to prove the objects of C are pro-objects of C0.
Given a coefficient ring (R,m) in C observe the system {R/mk ∈ C0 : n ≥ 1}
with the maps for i ≤ j

ϕij : R/m
j −→ R/mi

x+mj 7→ x+mi

forms an inverse system and

R = lim←−
k

R/mk.

This result implies the following identities

GLn(R) = lim←−
k

GLn(R/m
k) (3)

Γn(R) = lim←−
k

Γn(R/m
k). (4)

What’s more, if F is some functor from C then {F(R/mn) : n ≥ 1} with
the functions F(ϕij) forms an inverse system which is compatible with the

morphisms F(R) −→ F(R/mn), giving a canonical morphism

F(R) −→ lim←−
n

F(R/mn).
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3.2 Continuity of the deformation functor

Definition 7. We say a functor F on C is continuous when the canonical

morphism

F(R) −→ lim←−
k

F(R/mk)

is an isomorphism.

Lemma 1. The functor D and DΛ are continuous functors.

Proof. The canonical maps

Dρ̄(R) −→ lim←−
k

D(R/mk)

a deformation ρ of ρ̄ to R the coherent sequence {ρk}, where ρk is a

deformation of ρ̄ to R/mk.

Surjectivity: Assume we are given {ρk} a coherent sequence of deforma-

tions, we will show for each k we can choose representives rk such that it

forms a coherent sequence. We proceed by induction, for k = 1 set r1 any

representative of ρk. Assume we have choosen a coherent sequence of ho-

momorphisms r1, . . . , rk representing the deformations ρ1, . . . , ρk, since (ρk+1

mod mk) = ρk we must have M−1
k (r′ mod mk)Mk = rk for some representa-

tive r′ of rk+1 and Mk ∈ Γ(R/mk). Given any lift Mk+1 of Mk to Γ(R/mk+1)

set rk+1 =M−1
k+1r

′Mk+1, and by construction (rk+1 mod mk) = rk extending

the coherent sequence of homomorphisms to k+1. By induction there exists

a coherent sequence {rk} of homomorphisms Π −→ GLn(R/m
k) whose in-

verse limit gives the deformation ρ : Π −→ GLn(R) whose reduction modulo

mk is ρk.

Injectivity: If ρ and ρ′ are two homomorphisms Π −→ GLn(R) such that

ρk := ρ( mod mk) and ρ′k := ρ′( mod mk) are strictly equivalent for all k.

Meaning there are matrices Mk ∈ Γk(R/m
k) s.t. for all k

ρk =M−1
k ρ′kMk.
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3.3 Universal deformations

A functor F : C −→ Sets is representable if it is naturally isomorphic to the

Hom(R,−) functor for some coefficient ring R, i.e. for every coefficient ring

R there is an isomorphism µR : F(R) −→ Hom(R, R) and for each morphism

f : R −→ S the following diagram commutes

F(R) Hom(R, R)

F(S) Hom(R, S)

F(f)

µR

Hom(R,−)(f)

µS

The problem we want to address is whether the deformation functor Dρ̄

is representable. In the case it is representable, we have a bijection for any

coefficient ring R

µR : Dρ̄(R) −→ Hom(R, R)

denote by ρ the preimage of the identity Id ∈ Hom(R,R), and for any

representation ρ ∈ Dρ̄(R) let φ := µR(ρ), we have the following diagram

ρ Dρ̄(R) Hom(R,R) Id

φ ◦ ρ Dρ̄(R) Hom(R, R) φ

Dρ̄(φ)

µR

Hom(R,−)(φ)

µR

implying ρ = φ ◦ ρ, hence the ring R parametrizes all possible deforma-

tions. The ring R is called the universal deformation ring of ρ̄ and ρ the

universal deformation of ρ̄.

3.4 Fiber Products

If A,B,C are objects in a some category D and α : A −→ C and β : B −→ C

are morphisms, the fiber product of A and B over C is an object of D denoted
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by A×CB together with the morphisms p : A×CB −→ A and q : A×CB −→
B such that, the following diagram

A×C B

A B

C

p q

α β

commutes and for any other object D and maps p′ : D −→ A and q′ :

D −→ B making the following diagram commutative

D

A B

C

p′ q′

α β

then there is a unique morphism r : D −→ A ×C B making the the

following diagram

D

A×C B

A B

C

r
p′ q′

p q

α β

commutative.

In the particular case of the category of sets the fiber product is given by

A×C B = {(a, b) ∈ A×B : α(a) = β(b)}.
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If A,B and C are some elements in any category where the fiber product

exists

A×C B

A B

C

p q

α β

then for any other element D it holds

Hom(D,A×C B) = Hom(D,A)×Hom(D,C) Hom(D,B)

i.e. the fiber product commutes with the covariant Hom(D,−). To check

the last equality we have to show: the following diagram is commutative

Hom(D,A×C B)

Hom(D,A) Hom(D,B)

Hom(D,C)

Hom(D,−)(p) Hom(D,−)(q)

Hom(D,−)(α) Hom(D,−)(β)

which is trivial. Finally, assume there is an elemen E that fits in the

following diagram,

Hom(D,E)

Hom(D,A) Hom(D,B)

Hom(D,C)

p′ q′

Hom(D,−)(α) Hom(D,−)(β)

we construct r : Hom(D,E) −→ Hom(D,A ×C B) by the following pro-

cedure, for any f ∈ Hom(D,E) the following commutative diagram holds
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D

A B

C

p′(f) q′(f)

α β

and by definition there is unique morphism rf : D −→ A ×C B that fits

in
D

A×C B

A B

C

rf
p′(f) q′(f)

p q

α β

If F is a representable functor, we will make an abuse of notation and

write

F(A) = Hom(D,A)

where A,D are elements of our category and D is a fixed object. By the

property of the Hom functor its easy to verify that

F(A)×F(C) F(B) = F(A×C B).

This property is known as the Mayer-Vietoris property. For general func-

tors F we can only guarantee that the following diagram

F(A×C B)

F(A) F(B)

F(C)

F(p) F(q)

F(α) F(β)
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and hence there exists a map

F(A×C B) −→ F(A)×F(C) F(B).

It turns out that our category C of local noetheriang rings is not closed

under fiber products, a counter example is given by

k[[X, Y ]] k

k[[X]]

α β

where α is the map sending Y 7→ 0 and β is the inclusion. Its easy to

verify that

k[[X, Y ]]×k[[X]] k = k ⊕ Y k[[X, Y ]] =
{
a0 +

∑
i≥0,j>0

aijX
iY j : ai,j ∈ k

}
and the following sequence of ideals

k ⊂ k[[Y ]] ⊂ k[[Y, Y X]] ⊂ k[[Y, Y X, Y X2]] ⊂ k[[Y, Y X, Y X2, Y X3]] ⊂ . . .

does not stabalize, and hence the fiber product is not noetherian. On the

other hand, the full category C0 of artinian local rings is closed under fiber

products, consider A,B,C ∈ C0 we would like to verify A ×C B ∈ C0 too.

Let’s check first the ring is local by proving the maximal ideal is mA×CB =

p−1(mA) = q−1(mB), it is easy to verify that the set S = A ×C B \mA×CB

does not contain any zero divisor and its closed under multiplication, hence

the ring (A×C B)S is local with maximal ideal mA×CB, the maps defined by

p′(x
y
) := p(x)p−1(y) and q′(x

y
) = q(x)q−1(y) are well defined and fit in the

commutative diagram

(A×C B)S

A B

C

p′ q′

α β
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and by the universal property there exists a unqiue r : (A ×C B)S −→
A×C B fitting in

(A×C B)S

(A×C B)

A B

C

p′ q′
r

p q

α β

but the following diagram is commutative too

(A×C B)

(A×C B)S

A B

C

p q
i

p′ q′

α β

and hence the inclusion must be the identity, so the ring A ×C B is

local, since some power of mA and mB vanishes then some power of mA×CB

must vanish too, proving A ×C B is a local artinian ring and p, q are local

morphisms. Since all our maps are local, we can localize and obtain

It is easy to see k
(
↪−→ A×C B)/mA×CB and by localizing we obtain
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(A×C B)/mA×CB

k k

k

p̄ q̄

id id

and by the universal property there is a map (A ×C B)/mA×CB −→ k

proving the residue field is k.

Recall that the objects of C are pro-objects of C0, i.e. for every R ∈ C

R = lim←−
n

R/mn

and if we assume we have a continuous functor F

F(R) = lim←−
n

F(R/mn)

that’s it, the functor F is completely deternimed on the values of the full

subcategory C0. But it may happen that F is representable in C but not in

the subcategory C0 i.e.

F(A) = Hom(R, A)

for every artinian coefficient ring A and some fixed coefficient ring R ,in

this case we say the functor F on the subcategory C0 is pro-representable.

In the case that a functor F is continuous and pro-representable it is

automatically representable, if R is some coefficient ring then

F(R) = lim←−
n

F(R/mn)

= lim←−
n

Hom(R, R/mn)

= Hom(R, R)

22



the last equality is because the Hom(R,−) functor commutes with inverse

limits.

Let Λ be an object of C, we define CΛ to be the category whose ob-

jects are complete noetherian local Λ-algebras with residue field k and whose

morphisms are coefficient-ring homomorphisms which are also Λ-algebra ho-

momorphisms.

The question we would like to address is what are the sufficient and

necessary conditions for a functor to be pro-representable. The answer is

given mainly by the following Theorem due to .

Definition 8. The numbers of k is the coefficient ring

k[ε] = k[X]/(X2)

where ε := X( mod X2),so ε2 = 0. And by the following corespondence

Λ −→ Λ/mΛ = k ↪−→ k[ϵ]

Theorem 4 (Grothendieck). Let

F : C0Λ ⇝ Sets

be a covariant functor that F(k) consists of a single element. Then F is

pro-representable if and only if

1. F satisfies the Mayer-Vietoris property

2. F(k[ε]) is a finite set.

Proof. Assume first F is a pro-representable fuctor, i.e. there exists R ∈ CΛ
such that for all A ∈ C0Λ

F(A) = Hom(R, A).

For A,B,C ∈ CΛ
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F(A×C B) = Hom(R, A×C B)

= Hom(R, A)×Hom(R,C) Hom(R, B)

= F(A)×F(C) F(B)

this proves one. To prove two, we know

F(k[ε]) = Hom(R, k[ε])

Since R is noetherian, we know it is finitely generated say by x1, . . . , xn

so any f ∈ Hom(R, k[ε]) is determined by the values f(x1), . . . , f(xn) and

since k[ε] is finite, we conclude Hom(R, k[ε]) is also finite.

For the other implication check [1]

3.4.1 The Tangent space

Fix a coefficient ring and consider the category CΛ of coefficient Λ-algebras.

Definition 9. For R a coefficient Λ-algebra denote its maximal ideal by mR,

the Zariski cotangent space of R is

t∗R = mR/(m
2
R,mΛ),

where

(m2
R,mΛ) = m2

R + (image of mΛ)R.

The cotangent space has a natural structure of a Λ/mΛ, i.e. a k-vector

space, since R is noetherian we conclude it is finite-dimensional.

The Zariski tangent space of R is the dual of the cotangent space

tR = Homk(mR/(m
2
R,mΛ), k)

Lemma 2. If F is a functor which is represented by R, there exists a natural

bijection

HomΛ(R, k[ε]) −→ Homk(mR/(m
2
R,mΛ), k)

Where HomΛ stands for homomorphisms of coefficient Λ-algebras and

Homk for k-vector space homomorphisms.
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Proof. Since any f ∈ HomΛ(R, k[ε]) must induce the identity on the residue

field, we conclude it must be of the form

f(x) = x̄+ φ(x)ε

where x̄ denotes the projection to the residue field k and φ(x) ∈ k. The
map φ is k-linear,

f(x+ y) = x+ y + φ(x+ y)ε

= (x̄+ ȳ) + φ(x+ y)ε

f(x) + f(y) = x̄+ φ(x)ε+ ȳ + φ(y)ε

= (x̄+ ȳ) + (φ(x) + φ(y))ε

so φ(x+ y) = φ(x) + φ(y), and for λ ∈ k

f(λx) = λx+ φ(λx)ε

λf(x) = λ(x̄+ φ(x)ε)

= λx+ (λφ(x))ε

proving φ(λx) = λφ(x). Since f is a homomorphism of Λ-algebras it’s

completely determined by it’s values on x ∈ mR. The function vanishes at

(m2
R,mΛ), if x, y ∈ mR

f(xy) = f(x)f(y)

= (x̄+ φ(x)ε)(ȳ + φ(y)ε)

= x̄ȳ + (x̄φ(y) + ȳφ(x))ε+ φ(x)φ(y)ε2

= 0

the same reasoning applies if x ∈ mΛ and y ∈ R. This allows us to take

quotient and consider

φ̄ : m/(m2
R,mΛ) −→ k
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this applications is k-linear as we have seen. And given any α ∈ Homk(mR/(m
2
R,mΛ), k)

we can extend it to mR and then on R to obtain the map

x ∈ R 7→ x̄+ α(x)ε

We can turn HomΛ(R, k[ε]) into a k-linear vector space so the bijective

map described above is a k-linear isomorphisms. Given λ ∈ k and f, g ∈
HomΛ(R, k[ε]) we write

f(x) = x̄+ φ(x)ε, g(x) = x̄+ α(x)ε

and define

(λf)(x) := x̄+ λφ(x)ε

(f + g)(x) := x̄+ (φ(x) + α(x))ε

It is easily proven that these operations make HomΛ(R, k[ε]) into a k-linear

vector space, and the described bijective map in the lemma is a k-linear

isomorphism.

We give a more construction to make F(k[ε]) a k-linear vector space. For

the scalar multiplication, any element λ ∈ K has associated the the following

autormorphism on k[ε]

a+ bε 7→ a+ αbε

and by functoriality givs an automorphism of F(k[ε]), and hence obtaining

the multiplication by scalars. For the addition, consider the fiber product

k[ε]×k k[ε]

k[ε] k[ε]

k
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since F is representable we know it satisfies the Mayer-Vietoris property,

so

F(k[ε]×k k[ε]) = F(k[ε])×F(k) F(k[ε])

and since F(k) is a singleton, cause there is only one morphism R −→ k,

the fiber product is just a cartesian product i.e.

F(k[ε]×k k[ε]) = F(k[ε])× F(k[ε]).

Since

k[ε]×k k[ε] = {(a+ bε, a+ cε) : a, b, c ∈ k}

it has defined the addition

p(a+ bε, a+ cε) := a+ (b+ c)ε

the addition on F(k[ε]) is given by the following composition

F(k[ε])× F(k[ε]) F(k[ε]×k k[ε]) F(k[ε])
F(p)

We have just proven the following proposition

Propositon 1. Let F be a covariant functor such that F(k) consists of a

single element. If the natural map

F(k[ε]×k k[ε]) −→ F(k[ε])× F(k[ε])

is a bijection. Then F(k[ε]) has a natural structure over k.

By the tangent space hypothesis over k we mean the natural map is

a bijection

F(k[ε]×k k[ε]) −→ F(k[ε])× F(k[ε]).
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3.5 Existence of the Universal Deformation

3.5.1 Schlessinger’s criteria

Consider rings R0, R1, R2 in C0Λ suppose we have the maps

R1 R2

R0

ϕ1 ϕ2

denote by R3 their fiber product i.e.

R3 = R1 ×R0 R2 = {(r1, r2) ∈ R1 ×R2 : ϕ1(r1) = ϕ2(r2)}

Recall that we have the following map

F(R3) −→ F(R1)×F(R0) F(R2) (5)

Schlessinger gives conditions on the previous map for the functor F to be

pro-representable.

H1: If the map R2 −→ R0 is small, then (5) is surjective.

H2: If R0 = k and R2 = k[ε] then (5) is surjective

H3: The vector space tF = F(k[ε]) is finite-dimensional.

H4: If R1 = R2, the maps Ri −→ R0 are the same, and Ri −→ R0 is

small, then (5) is bijective.

Theorem 5 (Schlessinger). Let F be a set-valued covariant functor on C0Λ
such that F(k) has exactly one element. If F satisfies conditions H1 to H4,

then F is pro-representable.

3.5.2 Universal Deformations

Definition 10. Let ρ̄ be a residual representation and let ρ be a deformation

of ρ̄ to a coefficient Λ-algebra A . Denote by

CA(ρ) = HomΠ(A
n, An) = {Pρ(g) = ρ(g)P, ∀g ∈ Π}

28



In particual we’ll write C(ρ̄) := Ck(ρ̄)

Theorem 6 (Mazure, Ramakrishna). Suppose Π is a profinite group that

satisfies property Φp, ρ̄ : Π −→ GLn(k) is a continuous representation, and

Λ is a complete noetherian ring with residue field k. Then the deformation

functor DΛalways satisfies properties H1, H2 and H3. Furthermore, if

C(ρ̄) = k, then DΛ also satisfied property H4.

We prove the Theorem by a series of lemmas.

Lemma 3. Property H1 is true.

Proof. We assume R2 −→ R0 is small and want to prove (5) is surjective.

Let (ρ1, ρ2) be a pair of deformations to R1 and R2 which induce the same

deformation to R0. Pick any two representative ϕ1 and ϕ2 respectively, we

know their images in R0 are strictly equivalent, i.e.. there is M̄ ∈ Γn(R0) such

that M̄ϕ1M̄
−1 = ϕ2. By our assumption R2 −→ R0 is small, in particular

surjective this implies Γn(R2) −→ Γn(R0) us surjective too, hence we can lift

M̄ to M ∈ Γn(R2). Then ϕ1 and M−1ϕ2M are group homomorphisms that

have the same image in GLn(R0) and hence they define a homomorphism

ϕ3 ∈ E3. The strict equivalent class of ϕ3 maps to (ρ1, ρ2) so the map (5) is

surjective.

Gi(ϕi) = {g commutes with the image of ϕi in GLn(Ri)}

Lemma 4. If for all ϕ2 ∈ E2 the map

G2(ϕ2) −→ G0(ϕ0)

is surjective, then the map b is injective

Proof. Suppose ϕ and ψ are elements of E3 that induce elements ϕi and

ψi in Ei for each i = 0, 1, 2. Saying that ϕ and ψ have the same image

under (5) means that for each i = 0, 1, 2 there is an Mi ∈ Γn(Ri) such that

ϕi)M
−1
i ψiMi. Mapping down to E0 we see that
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ϕ0 =M
−1

1 ψ0M1 =M
−1

2 ψ0M2

and so that M2M
−1

1 commutes with the image of ϕ0 i.e. M2M
−1

1 ∈
G0(ϕ0).

Using the surjectivity we find N ∈ G2(ϕ2) which maps to M2M
−1

1 . Let

N2 = N−1M2. Then we have

N−1
2 ψ2N2 =M−1

2 Nψ2N
−1M2 =M−1

2 ψ2M2 = ϕ2

On the other hand, the image of N2 in Γn(R0),

N2 = (M2M
−1

1 )−1M2 =M1.

SinceM1 andN2 have the same image in Γn(R0), the pair (M1, N2) defines

an element M ∈ Γn(R3) and we have M−1ψM = ϕ. Thus, ϕ and ψ are

strictly equivalent.

Lemma 5. Property H2 is true.

Proof. If R0 = k and R2 = k[ε] we know by H1 that (5) is surjective.

For injectivity, it will be enough to check the map

G2(ϕ2) −→ G0(ϕ0)

is always surjective. But when R0 = k, G0 = Γn(R0) consists only of the

identity matrix, and G0(ϕ0), which is a subgroup, is again just the identity.

So the surjectivity holds.

Lemma 6. Property H3 is true.

Proof. Let Π0 = Kerρ̄ and let ρ be a lift of ρ̄ to k[ε]. If x ∈ Π0, we have

ρ̄(x) = 1, and hence p(x) ∈ Γn(k[ε]). Hence, ρ determines a map from

Π0 = Kerρ̄ to Γn(k[ε]). Two lifts that determine the same map must be

identical. Since Π0 is an open subgroup of Π and we know Γn(k[ε]) is a

finite p-elementary abelian group. By property Φp we know there can be

only finitely many maps Π0 = Kerρ̄ to Γn(k[ε]).

This proves that DΛ(k[ε]) is a finite set.
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Lemma 7. If C(ρ̄) = k, then for any i in the group Gi(ϕi) ⊂ Ri, i.e. Gi(ϕi)

consists of the scalar matrices in Γn(Ri)

Proof. We will prove that for any deformation ρ of ρ̄ to an artinian cofficient

ring A we have CA(ρ) = A.

Since the map A −→ k is surjective, it factors as a sequence of small

extensions. Since we know that Ck(ρ̄) = k, the lemma follows by induction.

We claim that if CB(ρB) = B and A −→ B is small then CA(ρA) = A.

Take any c ∈ CA(ρA), by our assumption, the image of c in Mn(B) must

be a scalar matrix. Assume that c 7→ r̄, where the scalar r̄ ∈ B is the image

of r ∈ A. Then we can write c = r + tM where t is any generator of the

kernet of the map A −→ B and M ∈Mn(A).

Since c commutes with the image of Ā, so that for every g ∈ Π

(r + tM)ρA(g) = ρA(g)(r + tm),

which, since scalars commute

MρA(g) = ρA(g)M.

Now we reduce modulo the maximal ideal of A and use the fact C(ρ̄) = k

we concluse M must be of the form M = s+M1 where s ∈ A is a scalar and

the entries of M1 belong to the maximal ideal of A. Using the fact A −→ B

is small, we have tmA = 0, and hence M = r + ts is a scalar matrix.

Lemma 8. Property H4 is true.

Proof. From the previous lemma, Gi(ϕi) consists only of scalars (of the form

1 +mRi
) and this proves H4.

The following theorem summarizes everything we have proved.

Theorem 7 (Mazure, Ramakrishna). Suppose Π is a profinite group that

satisfies property Φp, ρ̄ : Π −→ GLn(k) is a continuous representation, such

that C(ρ̄) = k. Then there exists a ring R = R(Π, k, ρ̄) in CΛ and a defor-

mation ρ of ρ̄ to R,
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ρ : Π −→ GLn(R)

such that any deformation of ρ̄ to a coefficient Λ-algebra is obtained from ρ

via a unique morphism R −→ A.

We call R the universal deformation ring and ρ the universal deformation

of ρ̄.
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3.6 Explicit construction of the universal ring

We recall some notations, we are dealing with a profinite group Π which

satisfies the p-finiteness condition, i.e. for every open subgroup of finite

index Π0 ⊂ Π there exists only a finite number of continuous homomorphisms

Π0 −→ Fp.

By k we mean a finite field of characteristic p, the category of coefficient

rings C consists of rings Λ that are complete neotherial local ring with residue

field k. The category CΛ consists of rings R that are complete noetherian

local Λ-algebras with residue field k and whose morphisms are coefficient-

ring homomorphisms which are also Λ-algebra homomorphisms.

Given a continuous homomorphism

ρ̄ : Π −→ GLn(k)

we denote by CHomρ̄(Π,GLn(R)) the set of continuous homomorphisms

ρ : Π −→ GLn(R)

such that the composite map Π −→ GLn(A) −→ GLn(k) is ρ̄. Two

homomorphisms ρ1, ρ2 are strict equivalent if there is a matrixM ∈ GLn(R),

that is the identity in GLn(k), satisfying ρ1 =M−1ρ2M .

This allowed us to define deformations of ρ̄ in the ring R as strict equiv-

alence class of continuous homomorphisms.

We introduced the deformation functor

D = Dρ̄ ⇝ Sets,

mapping a coefficient ring R to

Dρ̄(R) = {deformation of ρ̄ to R},

and a morphism f : R1 −→ R2 maps to
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Dρ̄(f) : {deformations of ρ̄ to R1} −→ {deformations of ρ̄ to R2}
ρ1 7→ f̃(ρ1)

We proved this functor is continuous and using Schlessinger’s criteria we

proved the existence of the universal ring R and deformation ρ.

The goal in this section is to prove the existence of the universal ring R
and deformation ρ explicitly, without using the fact our functor is continuous,

precisely we want to prove the following theorem.

Theorem 8. If ρ̄ is absolutely irreducible then there exists a universal ring

R ∈ C and the universal deformation ρ ∈ Dρ̄(R).

We follow the proof given in chapter VIII of [5] The first step will be to

prove that an easier functor is representable.

Propositon 2. There is a ring Rb in CΛ and a map

ρb ∈ CHomρ̄(Π,GLn(Rb))

such that for each R ∈ C we have a bijection

HomCΛ(Rb, R) −→ CHomρ̄(Π,GLn(R))

that sends a CΛ-morphism f to the composite map

Π −→ GLn(Rb) −→ GLn(R)

Proof. We first assume the group Π is finite, and denote by e the identity

element. The commutative Λ-algebra denoted by Λ[Π, n] is given by the

following generators

Xg
ij g ∈ Π and 1 ≤ i, j ≤ n;

with the following relations

Xe
ij =

1 if i = j

0 if i ̸= j
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Xgh
ij =

n∑
l=1

Xg
ilX

h
lj for g, h ∈ Π and 1 ≤ i, j ≤ n

For example, Λ[Π, 1] is the largest abelian quotient of G over Λ.

Its easy to check that that we have the canonical bijection

HomΛ−Alg(Λ[Π, n], A) ∼= Hom(Π,GLn(A)) (6)

where an Λ algebra homomorphism f : Λ[Π, n] −→ A corresponds the

group homomorphisms ρf that sends g ∈ Π to the matrix (f(Xg
ij))i,j

By 6 the homomorphism ρ̄ : Π −→ GLn(k) gives ruse to an Λ-algebra

homomorphism Λ[Π, n] −→ k. Which has a maximal ideal as kernel mρ̄. Let

Rb be the completion of Λ[Π, n] at mρ̄. Clearly the ring Rb is noetherian

and lies inside C. By 6 the canonical map Λ[Π, n] −→ Rb gives a map

ρb : Π −→ GLn(Rb) such that the diagram commutes

Π GLn(Rb)

Π GLn(k)

ρb

ρ̄

To prove that the map in proposition (2) is a bijection, let A be a ring

in C and let ρ ∈ CHomρ̄(Π,GLn(A)). By (6) there is a unique Λ-algebra

homomorphism f : Λ[Π, n] −→ A such that ρf = ρ. The fact that ρf reduces

to ρ̄ modulo mA implies that f(mρ̄) ⊂ mA. The topology on A is given by the

open ideal a for which A/a is artinian, and the map Λ[Π, n] −→ A −→ A/a

is continuous for the mρ̄-adic topology on Λ[Π, n] for each such a. We obtain

a continuous Λ-algebra homomorphism f̃ : Rb −→ A for which the diagram

Π GLn(Rb)

Π GLn(A)

ρb

ρ
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commutes. Since the elements f̃(Xg
ij) are determined by ρ, and the Xg

i,j

generate a dense sub-Λ-algebra of Rb, the map f̃ is uniquely determined by

the conditions that it is continuous and that the diagram commutes.

Now we deal with the case when Π is not necessary finite. We write

Π = lim←− H,

with H ranging over those discrete quotients of Π for which the prepresenta-

tion ρ̄ : G −→ GLn(k) factors through a map ρ̄H : H −→ GLn(k). Each H

is finite, so the construction above produces a ring RH in C. Hence, we got

a projective system (RH)H in C.
Now consider

Rb := lim←−
K

RH

We have a continuous map ρb : Π −→ GLn(Rb) induced by the composite

maps H −→ GLn(RH). For a fixed H, the images of the defining generators

of Λ[H,n] generate each discrete artinian quotient of Ri over Λ. But these

images are contained in the image of Rb so Rb surjects to each discrete ar-

tinian quotient of RH . Moreover, each discrete artinian quotient of Rb arises

in this way. In particular it follows that Rb lies in C.
Let A = lim←−

K
Ai be a ring in CΛ written as a projective limit of its

discrete artinian quotients. We now have canonical isomorphisms

CHomρ̄(Π,GLn(A)) ∼= lim←−
i

CHomρ̄(Π,GLn(Ai))

∼= lim←−
i

lim−→
H

Homρ̄H (H,GLn(Ai))

∼= lim←−
i

lim−→
H

CHomΛ−Alg(HRH ,GLn(Ai))

∼= lim←−
i

CHomΛ−Alg(Rb,GLn(Ai))

∼= CHomΛ−Alg(Rb, A).
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In the fourth step we used the fact a continuous homomorphisms Rb −→
Ai factors over some artinian quotient R′ of Rb, and that R′ can be chosen

to be an artinian quotient of some RH .

The following proposition will allow us to formulate the required argument

to pass to the strict equivallence classes. Before we need to discuss what it

means to be absolutely irreducible.

Definition 11. A representation ρ̄ : Π −→ Gln(k) is called reducible if the

representation space kn (with the Π-action given by ρ̄) has a proper subspace

that is invariant under the action of Π. It is called irreducible if no such

subspaces exists. It is absolutely irreducible of there is no extension k′/k

such that ρ̄⊗ k′ is reducible.

Propositon 3. Let ρ be a representation of Π over some ring A in CΛ and let

A′ ⊂ A be an inclusion of rings in CΛ so that A′ has the induced topology of

A. Assume that A′ contains all the traces of all endomorphisms of ρ that are

given by multiplication with an element of Π, and suppose that ρ̄ is absolutely

irreducible. Then there is an A′-representation of ρ′ of Π such that ρ̄′ = ρ̄.

For the proof of this preposition check ([5], pp. 319-320)

Proof of theorem 8. Let ρ be a representation of Π over a ring A in CΛ of

ρ̄. We know there is some α ∈ CHomρ̄(Π,GLn(A)). By (2) there is a CΛ-

morphism fb : Rb −→ A such that the composite map Π −→ GLn(R) −→
GLn(A) is equal to ρ. Then the restriction f : R −→ A given by proposition

(3) is a representation of the representation ρ.

The trace of an element of ρ in some representation of Π depends on

the representation up to isomorphism. Therefore the map f is uniquely

determined on the traces of ρb(g) for all g ∈ Π. But the Λ-algebra generated

by these traces is dense in R, and f continuous, so f is uniquely determined.

In this proof we have required that the representation ρ̄ is absolutely

irreducible on the other hand, the proof we gave using the schlessingar criteria
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we required the representation ρ̄ to satisfy C(ρ̄) = k. There is a link between

these two conditions and it is given by Schur’s Lemma

Lemma 9 (Schur’s Lemma). If ρ̄ : Π −→ GLn(k) is absolutely irreducible,

then C(ρ̄) = k.
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