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Abstract
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Doctor of Philosophy

Application of Radiomics-based Machine Learning Models on Complex Cardiac
Diseases

by Cristian IZQUIERDO

This doctoral thesis explores the integration of radiomics and machine learning (ML)
in cardiology, focusing on the early detection and prognosis of complex cardiovas-
cular diseases (CVDs). Radiomics transforms conventional medical images into
rich, high-dimensional data representations that reveal intricate details of cardiac
pathologies not visible to the naked eye. To facilitate systematic analysis and in-
terpretation, we meticulously designed a pipeline to extract radiomic features and
harness ML for classification and interpretation tasks. For each chapter of the the-
sis, we tailored and refined this radiomics analysis pipeline with ML, adapting it to
suit varying scenarios, and ultimately transforming it into a survival analysis ML
pipeline for the final chapter. The thesis begins with an overview of cardiovascular
diseases, radiomics and ML, setting the foundation for their application in cardiac
imaging.

The second chapter of this thesis demonstrates the utility of cardiovascular mag-
netic resonance (CMR) radiomics and ML in distinguishing left ventricular non-
compaction cardiomyopathy (LVNC) from hypertrophic and dilated cardiomyopathies.
The following chapter reveals the potential of combining CMR radiomics with elec-
trocardiogram (ECG) data for improved atrial fibrillation (AF) detection, particu-
larly enhancing accuracy among women. The fourth chapter assesses the ability of
CMR radiomics and ML to predict major cardiovascular events like AF, heart failure
(HF), myocardial infarction (MI), and stroke, utilizing UK Biobank data. The in-
corporation of radiomic features with vascular risk factors (VRFs) and CMR indices
significantly boosts the predictive models’ performance.

Lastly, the last chapter highlights the advantages of radiomics and ML in iden-
tifying genetic cardiomyopathy in excessively trabeculated patients, showing supe-
rior accuracy over traditional methods and predicting the risk and timing of Ma-
jor Adverse Cardiac Events (MACE) more effectively. This thesis showcases the
promise of radiomics and ML in advancing cardiac diagnostics and prognostics, of-
fering a more precise, personalized approach to managing CVDs.
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Chapter 1

Introduction

1.1 Introduction

The field of healthcare, despite being an area of continuous evolution and progress,
still faces substantial hurdles in effectively addressing and treating life-threatening
diseases Gawande, 2014; Chabner, 2016. In parallel, the realm of computer science is
forging ahead, setting the stage for a future where artificial intelligence (AI) perme-
ates every facet of our daily existence (Russell and Norvig, 2020).

Consider a future where AI is capable of combining thousands of medical records
within seconds, unveiling patterns and trends that, in the past, would have been im-
possible to discern due to human limitations in data processing (Rajkomar, Dean,
and Kohane, 2019; Obermeyer and Emanuel, 2016). This profound analytical power
of AI could revolutionize diagnostic accuracy, patient care, and prognostic predic-
tion, driving improvements across the entire healthcare continuum (Deo, 2015).

Moreover, envision a world where personalized medicine is no longer an am-
bitious ideal but the prevailing norm. The confluence of AI, genomics, and health
informatics opens the doors for treatments tailored to an individual’s unique genetic
composition and health history, paving the way for more effective, precise, and less
harmful therapeutic strategies.

Cardiovascular disease (CVD) is a poignant example of a global health challenge
where these advancements could have significant impacts. It is currently the lead-
ing cause of mortality worldwide, contributing to an estimated 17.9 million deaths
annually as of the latest World Health Organization (WHO) report in 2019 (Organi-
zation, 2019). This figure is expected to rise to over 23.6 million by 2030, reflecting
the growing urgency of the problem (Roth et al., 2017). Genetic predispositions,
coupled with modifiable risk factors like hypertension, high cholesterol, smoking,
obesity, and physical inactivity, contribute to this burgeoning global health crisis
(Yusuf et al., 2004; Mozaffarian et al., 2016).

The integration of AI into cardiovascular medicine could serve as a powerful
tool in risk prediction, early detection, and management of CVD. Machine learn-
ing algorithms can analyze large volumes of data from electronic health records
(EHRs), genetic databases, and wearable technology to identify risk factors and pre-
dict patient outcomes with remarkable precision (Krittanawong et al., 2017; Attia et
al., 2019b). Moreover, advancements in genomics and pharmacogenomics offer the
promise of personalized treatment strategies for CVD, considering an individual’s
genetic makeup in drug selection and dosing (Roden and Johnson, 2016; Luzum and
Peterson, 2016).

As we move further into the 21st century, the application of AI and personalized
medicine in clinical practice, particularly in combatting the devastating impacts of
CVD (), presents an inspiring vision of the future of healthcare. Yet, it is important to
recognize that realizing this vision will require ongoing research, multidisciplinary
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collaboration, ethical considerations, and policy development to ensure these tech-
nologies are accessible, equitable, and beneficial for all(Organization, 2019).

The impact of AI on cardiology is profound, enhancing the early detection and
diagnosis of heart diseases, optimizing treatment strategies, and paving the way for
groundbreaking discoveries in heart health. AI’s unparalleled ability to sift through
and analyze vast datasets offers cardiologists critical insights into heart function
and disorders, enabling more precise and timely interventions. This technologi-
cal revolution in cardiac care is just beginning to unfold, promising to transform
our approach to preventing, managing, and potentially curing cardiovascular dis-
eases. Through dedicated research in this field, AI is set to significantly improve
cardiac health outcomes and the quality of life for individuals worldwide, marking
the dawn of a new era in cardiology.

However, cardiovascular imaging presents its own specific challenges. The use
of AI presents a significant opportunity to revolutionize cardiovascular imaging, ad-
dressing longstanding challenges in the field to enhance diagnostic accuracy and
patient outcomes. Traditional methods of cardiovascular imaging, while invalu-
able, often grapple with limitations such as variability in image interpretation, time-
consuming analysis, and the potential for human error. AI, particularly machine
learning and deep learning algorithms, can surmount these obstacles by enabling
more precise, efficient, and reproducible image analysis. These technologies have
the potential to automatically detect and quantify cardiovascular abnormalities, pre-
dict disease progression, and guide treatment decisions based on vast datasets that
no human could feasibly analyze in a lifetime. Furthermore, AI-driven tools can
streamline workflow efficiency, reducing the time from imaging to diagnosis and
treatment, thus improving patient care and reducing healthcare costs. The integra-
tion of AI into cardiovascular imaging is not without its challenges, including the
need for robust, high-quality datasets for algorithm training, concerns about algo-
rithmic bias, and ensuring the interpretability of AI decisions to healthcare providers.
Nonetheless, the promise of AI to enhance diagnostic accuracy, personalize patient
care, and optimize clinical outcomes in cardiovascular medicine is both compelling
and indispensable in the face of an ever-growing cardiovascular disease burden
globally.

This dissertation delves into the promising frontier of integrating machine learn-
ing with medical imaging, to develop invaluable tools for improving detection and
understanding of complex diseases. More precisely, the focal point of this explo-
ration is the field of cardiology and pathological excessive trabeculations, with a
specific interest in the integration of Radiomics and Machine Learning. Radiomics
is a field that exploits the high-throughput extraction of large amounts of image fea-
tures from radiographic images, offering a wealth of information beyond what the
human eye can perceive (Gillies, Kinahan, and Hricak, 2016).

Throughout this thesis, we explore four unique applications of radiomics across
various cardiovascular diseases (CVD). Each chapter delves into the specifics of data
collection methods, the machine learning (ML) strategies applied, the benefits of uti-
lizing radiomics within these contexts, and the potential for expanding these mod-
els’ applications in future research. In summation, the fusion of radiomics and ma-
chine learning promises to markedly augment our comprehension of medical imag-
ing data, its potential for predicting patient outcomes, and its capacity to identify
disease patterns. Such advancements could usher in a new era of more effective,
personalized treatment strategies for a broad spectrum of conditions.
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1.2 Motivation

Complex CVDs, including atrial fibrillation, heart failure, stroke, left ventricular
non-compaction (LVNC), and hypertrophic cardiomyopathy (HCM), dilated car-
diomyopathy (DCM), among others, present with uncertain prognostic indicators,
elusive etiological factors, and ambiguous morphological characteristics. These con-
ditions, characterized by diverse manifestations such as excessive trabeculations in
the left ventricle (specific to LVNC), irregular heart rhythms, or abnormal heart mus-
cle growth depending on the disease, pose significant challenges in diagnosis and
treatment. The implications of these varied pathological features and the associated
risks remain largely unexplored and undefined. The inherent complexity of these
diseases necessitates rigorous investigation to elucidate their pathophysiology, prog-
nostic pathways, potential risk factors, and improve their diagnosis and prognosis.
Currently, routine clinical variables are utilized in the prognosis and diagnosis of
these conditions; however, their efficacy has been somewhat limited and tedious to
acquire. This thesis underscores the principle that novel methodologies, especially
those rooted in AI, will be key to diagnosis purposes.

In this thesis, we attempt to bridge the gap: The fusion of radiomics and ma-
chine learning (ML) emerges as a crucial advancement in the assessment of complex
cardiovascular diseases, including atrial fibrillation, heart failure, stroke, DCM and
HCM, and as well as rare diseases such as LVNC. This integration transforms tra-
ditional imaging data into a comprehensive array of quantifiable features, enabling
the nuanced detection and analysis of patterns characteristic of these diseases, even
in the most uncovered paths such as excessive trabeculation in LVNC. By leveraging
these sophisticated technologies, clinicians can potentially overcome the limitations
of subjective interpretation inherent in conventional imaging methods, offering a
new frontier in the precise and early detection of complex cardiovascular conditions.

1.3 Objective

The main aim of this PhD thesis is to develop novel computational solutions based
on machine learning to advance the diagnosis, prognosis of complex cardiovascu-
lar diseases, including a rare cardiovascular disease called LVNC, and forecasting
of complications. Towards this aim, we leverage state-of-the art machine learning
techniques and advanced image analysis to optimally exploit the information from
cardiac magnetic resonance imaging (CMR), recognized as the reference modality
for assessing the structure and function of the heart.

More precisely, to achieve the aim of this thesis, the following main objectives
and relative sub-tasks had to be fulfilled:

• The first objective of this research is to investigate the potential of radiomics
and ML in diagnosing patients with a range of different cardiomyopathy and
complex cardiovascular diseases. To this end, we will develop and validate
diverse radiomics-based machine learning models for the classification. Also
will focus on the extraction of various radiomic features from cardiac imaging
data from diseased patients, feature selection for model building, and cross-
validation of the model’s performance. We will focus in several CVDs, and we
will look further into a specific condition denominated LVNC.

• The second objective of this study is to utilize radiomic signatures to predict
disease progression in a specific cardiomyopathy such LVNC. Prognosis is a
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critical aspect of patient management and has been challenging due to the het-
erogeneity of LVNC. By leveraging radiomics, we aim to derive quantitative
features from cardiac imaging data that could potentially correlate with pa-
tient outcomes. We will conduct a longitudinal study, correlating the derived
radiomic features with the clinical, biochemical, and histopathological data of
LVNC patients. The performance of the proposed radiomics-based prognos-
tic model will be evaluated in terms of its concordance index, calibration, and
clinical usefulness.

• The third objective is to facilitate the adoption of radiomics into routine clin-
ical practice through empirical demonstrations of its capabilities. Despite the
advancements in radiomics, its translation into clinical practice has been slow,
primarily due to the lack of understanding about its interpretability and ap-
plicability. We aim to bridge this gap by conducting comprehensive empirical
studies that demonstrate the robustness, reproducibility, and clinical relevance
of radiomics. This will involve sensitivity analysis, reproducibility studies,
as well as evaluation of the model’s performance across multiple centers and
imaging platforms. The clinical utility of the radiomics model will be assessed
by determining its added value to the conventional diagnostic and prognostic
methods.

The culmination of these objectives represents a significant contribution to the
field, promoting the enhanced utilization of radiomics in clinical practice, specially
with the new scenario of LVNC patients for diagnosis and prognosis, and facilitating
its wider adoption in the future.

It is worth noting that this thesis was undertaken as part of the european funded
H2020 program euCanSHare. Networks program "Next generation training in car-
diovascular research and innovation" ("euCanSHare", grant Agreement 608027). "eu-
CanSHare" was an innovative program that ran from 2019 until 2023 with the aim
of providing a tool for analysis of cardiovascular imaging, including automatic seg-
mentation pipelines, radiomics extraction and advanced ML modelling.

1.4 Contributions

The outcomes of this dissertation have culminated in three (two accepted, one under
submission) primary-author scholarly articles.

• Izquierdo C, Casas G, Martin-Isla C, Campello VM, Guala A, Gkontra P, Rodríguez-
Palomares JF and Lekadir K (2021) Radiomics-Based Classification of Left Ven-
tricular Non-compaction, Hypertrophic Cardiomyopathy, and Dilated Cardiomy-
opathy in Cardiovascular Magnetic Resonance. Front. Cardiovasc. Med. 8:764312.
doi: 10.3389/fcvm.2021.764312

• Rauseo, E., Izquierdo Morcillo, C., Raisi-Estabragh, Z., Gkontra, P., Aung, N.,
Lekadir, K., Petersen, S. E. (2021). New imaging signatures of cardiac alter-
ations in ischaemic heart disease and cerebrovascular disease using CMR ra-
diomics. Frontiers in Cardiovascular Medicine, 8, 716577.

• Cristian Izquierdo, Guillem Casas, Carlos Martin-Isla, Victor M. Campello, Es-
meralda Ruiz Pujadas , Polyxeni Gkontra, Alberto Morales-Galan , Jesus G
Mirelis, Albert Teis, Coloma Tiron, José Manuel Garcia-Pinilla, Tomás Ripoll-
Vera, Juan Jiménez-Jáimez, Eduardo Villacorta, Juan Ramon Gimeno-Blanes,
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Esther Zorio, Roberto Barriales-Villa, José F. Rodríguez Palomares, Karim Lekadir,
Andrea Guala. Radiomics analysis of cardiac magnetic resonance images for
the detection of genetic and familial cases in excessive trabeculation of the left
ventricle. On review process.

In addition to the primary authorships, significant contributions were made as
part of this thesis as a co-author to several other publications related to this field of
study, including the works presented in chapters 4 and 5:

• Pujadas, E. R., Raisi-Estabragh, Z., Szabo, L., McCracken, C., Morcillo, C. I.,
Campello, V. M., ... and Lekadir, K. (2023). Prediction of incident cardiovascu-
lar events using machine learning and CMR radiomics. European radiology,
33(5), 3488-3500.

• Pujadas, E.R., Raisi-Estabragh, Z., Szabo, L. et al. Atrial fibrillation prediction
by combining ECG markers and CMR radiomics. Sci Rep 12, 18876 (2022).
https://doi.org/10.1038/s41598-022-21663-

Additionally, the author of this thesis have also participated in several other
publications as co-author:

• Campello, V. M., Gkontra, P., Izquierdo, C., Martin-Isla, C., Sojoudi, A., Full, P.
M., ... Lekadir, K. (2021). Multi-centre, multi-vendor and multi-disease cardiac
segmentation: the MMs challenge. IEEE Transactions on Medical Imaging,
40(12), 3543-3554.

• Martin-Isla, C., Campello, V. M., Izquierdo, C., Raisi-Estabragh, Z., Baeßler,
B., Petersen, S. E., Lekadir, K. (2020). Image-based cardiac diagnosis with
machine learning: a review. Frontiers in cardiovascular medicine, 7, 1.

• Raisi-Estabragh, Z., Izquierdo, C., Campello, V. M., Martin-Isla, C., Jaggi, A.,
Harvey, N. C., ... Petersen, S. E. (2020). Cardiac magnetic resonance ra-
diomics: basic principles and clinical perspectives. European Heart Journal-
Cardiovascular Imaging, 21(4), 349-356.

• Campello, V. M., Martín-Isla, C., Izquierdo, C., Petersen, S. E., Ballester, M.
A. G., Lekadir, K. (2020). Combining multi-sequence and synthetic images
for improved segmentation of late gadolinium enhancement cardiac MRI. In
Statistical Atlases and Computational Models of the Heart. Multi-Sequence
CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges: 10th
International Workshop, STACOM 2019, Held in Conjunction with MICCAI
2019, Shenzhen, China, October 13, 2019, Revised Selected Papers 10 (pp. 290-
299). Springer International Publishing.

• Martín-Isla, C., Campello, V. M., Izquierdo, C., Kushibar, K., Sendra-Balcells,
C., Gkontra, P., ... Lekadir, K. (2023). Deep learning segmentation of the right
ventricle in cardiac mri: The mms challenge. IEEE Journal of Biomedical and
Health Informatics, 27(7), 3302-3313.

• Campello, V. M., Martín-Isla, C., Izquierdo, C., Guala, A., Palomares, J. F. R.,
Viladés, D., ... Lekadir, K. (2022). Minimising multi-centre radiomics variabil-
ity through image normalisation: a pilot study. Scientific reports, 12(1), 12532.

Furthermore, the results of this work have contributed in the development of a
web-based platform specifically designed for cardiovascular research analysis, in-
cluding radiomics analysis and machine learning tools. The platform is accessible
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at at https://vre.eucanshare.bsc.es/vre/home/and was developed as part of the
H2020 euCanShare project.

1.5 Document organization

The current document is organized into 6 distinct chapters. The current chapter
(Chapter 1) introduces the motivation for the development of this PhD thesis, its
principal objectives and contributions.

Chapter 2 is dedicated to providing both the theoretical and technical ground-
work that underpins the entirety of this thesis. This includes an in-depth exploration
of the heart’s primary characteristics, its pathophysiology, and a detailed analysis of
several CVDs and cardiomyopathy diseases, whose prognosis or diagnosis is be-
ing addressed in this thesis. Subsequently, the chapter delves into the specifics of
radiomics, expounding upon its definition, the methodologies employed for its ex-
traction, and the subsequent utilization of this data in a clinical and research con-
text. Moreover, we further investigate the principles of ML modeling, including a
comprehensive description of the algorithms leveraged in this thesis. The aim is to
elucidate how these computational tools can be used to decode the complexities of
radiomics data and the heart’s structure and function. To conclude this initial chap-
ter, we enumerate state-of-the-art publications in the current literature within the
domain of cardiology, and further honing in on its use in studying and managing
CVDs. In each chapther, literature review was provided for each specific topic.

Chapter 3 focuses on the application of Machine Learning (ML) classification al-
gorithms and radiomics in differentiating of LVNC, hypertrophic cardiomyopathy
and dilated cardiomyopathy, using CMR. This chapter is partitioned into four sub-
sections, each illustrating a unique classification target that leverages the interplay
of radiomics and ML. We demonstrate that radiomics-based ML models outperform
traditional CMR indices used in the clinic, including manually estimated trabecu-
lar indices, for the task at hand. Identifying the correct cardiomyopathy is a critical
task for clinicians, as it lays the groundwork for accurate diagnosis and effective
treatment. This step is vital in enhancing patient outcomes and increasing survival
rates. Proper classification of the cardiomyopathy not only streamlines the diagnos-
tic process but also ensures that patients receive the most appropriate and timely
care, ultimately leading to improved quality of life and health prospects.

Chapter 4 studies the relationship between CMR radiomics in combination with
ECG for atrial fibrillation (AF) prediction. This study explores the use of machine
learning models to improve the detection of AF, the most common cardiac arrhyth-
mia associated with serious health risks such as stroke and death. Traditionally, AF
diagnosis relies on electrocardiograms (ECG), which may miss paroxysmal AF due
to their time-limited nature. By combining image-derived radiomics phenotypes
with ECG features, the research develops a more effective model for identifying AF,
particularly focusing on the differences in heart remodeling between sexes. The in-
tegrated radiomics-ECG model outperformed the ECG-alone method, especially in
women, where it significantly improved both accuracy and sensitivity in detecting
AF. This novel approach offers deeper insights into AF’s electro-anatomic remodel-
ing and suggests a more efficient strategy for early AF detection, highlighting the
importance of considering sex-specific differences in cardiac health assessments.

Chapter 5 is focused in a range of more wide-spread complex cardiac diseases.
This study assesses the potential of cardiovascular magnetic resonance (CMR) ra-
diomics, combined with machine learning techniques, to predict the occurrence of
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major cardiovascular conditions, including atrial fibrillation (AF), heart failure (HF),
myocardial infarction (MI), and stroke. Utilizing data from the UK Biobank, the re-
search involved participants who experienced these cardiovascular diseases (CVDs)
during follow-up. The approach included analyzing CMR images to extract ra-
diomics features from specific regions of the heart and integrating these with vas-
cular risk factors (VRFs) and CMR indices to create predictive models.

The findings revealed that the combined model incorporating VRFs, CMR in-
dices, and radiomics features (VRF+CMR+Rad) showed superior performance in
predicting AF, with notable accuracy and area under the curve (AUC) metrics. For
HF, the inclusion of CMR metrics significantly enhanced the model’s effectiveness.
The study also demonstrated that adding radiomics features to VRFs alone yielded
comparably strong predictive capabilities for HF, indicating the substantial value of
radiomics in forecasting incident CVDs. Although improvements in predicting MI
and stroke were more modest, the results overall underscore the incremental pre-
dictive value of radiomics features when combined with traditional risk factors and
imaging indices in identifying future cardiovascular events.

Chapter 6 highlights the efficacy of integrating radiomics and machine learning
(ML) in two different scenarios. The first consist in (i) identifying genetic cardiomy-
opathy in patients with excessive trabeculation (LVNC). Our research demonstrates
that radiomics surpasses conventional clinical indices in performance. Traditional
methods not only involve laborious processes but often necessitate the administra-
tion of contrast agents. Our proposed methodology not only enhances accuracy in
detection but also streamlines the diagnostic process through automation. Further-
more, it eliminates the need for contrast agents, contributing to cost efficiency and
reducing potential risks associated with their use. This approach marks a significant
step forward in cardiac diagnostics, offering a more efficient, accurate, and safer al-
ternative. The second scenario delves into the prognosis analysis of patients with
excessive trabeculation (LVNC)(ii). In many cases, the extent of trabeculation does
not provide clear insights into the patient’s prognosis or the disease’s progression.
Our method utilizes radiomics combined with Survival Analysis Machine Learning
models to enhance the prediction of the timeline and likelihood of Major Adverse
Cardiac Events (MACE). This approach is crucial as it aids in anticipating the disease
course, allowing for early intervention and potentially averting fatal outcomes. By
accurately predicting the prognosis, clinicians can implement preemptive measures,
significantly improving patient management and reducing the risk of severe cardiac
incidents. This approach is geared towards providing a robust understanding of the
prognosis of LVNC when these temporal factors are taken into consideration. By in-
corporating the temporal aspect into the analysis, this chapter aims to shed light on
the prognostic trajectory of patients with LVNC over time, and elucidate how differ-
ent factors may influence this trajectory. This will help to underscore the complexity
and dynamic nature of LVNC prognosis, and provide a foundation for improving
patient management strategies.
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Chapter 2

Background and state-of-the-art

2.1 Clinical context

2.1.1 Demographical context

Cardiovascular diseases (CVD), a heterogeneous group of diseases affecting the heart
muscle and its system, have emerged as a leading cause of global morbidity and
mortality (see Fig. 2.1). Despite advances in cardiovascular medicine, the burden
of these heart muscle disorders remains substantial, contributing significantly to
the spectrum of heart failure cases worldwide. The insidious nature of CVD of-
ten leads to delayed diagnosis and management, underscoring a silent epidemic
with a profound impact on public health. (Organization, 2021; Organization, 2019)
The prevalence of CVD is challenging to ascertain due to varied diagnostic crite ria
and the evolution of genetic testing; however, estimates suggest that CVD could
affect as many as 1 in 500 individuals. The implications are grave, with heart fail-
ure resulting from dilated cardiomyopathy the most common form accounting for
the largest number of heart transplants annually. Hypertrophic cardiomyopathy, on
the other hand, although less prevalent, stands as a common cause of sudden car-
diac death, especially among young athletes. The etiology of CVD is multifaceted,
involving genetic predisposition, lifestyle factors, and possible environmental trig-
gers. Genetic advancements have unveiled a myriad of mutations associated with
these conditions, revealing a complex inter-play between genotype and phenotype.
Yet, the translation of these findings into preventive strategies remains in its in-
fancy. The management of CVD has evolved, focusing on mitigating risk factors,
controlling symptoms, and halting disease progression. Therapeutic strategies en-
compass a spectrum from pharmacologic treatments to advanced interventions like
implantable devices and heart transplantation. Despite such interventions, the five-
year survival rate post diagnosis for certain CVD remains as low as 50%, reflecting
the severity of these conditions. Global health systems face a considerable challenge
in addressing the rise of CVD. Early detection and targeted therapies are imperative
to alter the trajectory of this first-rate killer. Public health initiatives aimed at raising
awareness and promoting cardiovascular health could pivot the direction towards
better outcomes. As research delves deeper into the molecular underpinnings of
these diseases, there is cautious optimism that personalized medicine may herald
a new era in the management of CVD. The intertwining of robust epidemiologi-
cal data and emerging biotechnological tools promises a future where the impact of
these formidable diseases is significantly lessened.
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FIGURE 2.1: Causes of Death Globally in 2019. Data from IHME
Global Burden of Disease and Global Terrorism Database and World
Health Organization. The size of each bar represents the share of

deaths due to a particular cause.

2.1.2 Heart structure and physiopathology

The heart is a vital muscular entity nestled within the thoracic cavity, tasked with
the crucial job of propelling blood throughout the entire body (Buckberg et al., 2018;
Torrent-Guasp et al., 2005). This dynamic organ ensures efficient delivery of oxygen
and essential nutrients to all tissues while simultaneously aiding in the removal of
metabolic waste. Comprised of four distinct sections - the left and right atria situ-
ated above and the larger left and right ventricles below - it functions as a superbly
coordinated unit. The journey of blood commences in the right atrium, from where
it travels to the right ventricle, making its way to the lungs for oxygen enrichment.
This oxygen-laden blood returns to the heart’s left atrium, gets pumped into the left
ventricle, and is subsequently dispatched to nourish the body. Thus, the heart plays
an indispensable role in upholding systemic circulation and overall wellness.

FIGURE 2.2: Cardiac cavities.

The heart is a complex organ consisting of multiple morphological regions, with
the main divisions being the myocardium (MYO), the left ventricle (LV), and the
right ventricle (RV). When acquiring images of the heart, cardiologists often visual-
ize it from different perspectives depending on the specific pathology or trait they
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are examining. In our study, we will focus on the Short-Axis (SAX) view (Figure 2.3),
which encompasses the key features that are most relevant to our research objective.

FIGURE 2.3: Left image is the original MRI SAX view. Right image
represents the cardiac cavities segmented in a Short Axis (SAX) MRI
view. Green region represents myocardium (MYO), blue region rep-
resents Left Ventricle (LV) and yellow region represents Right Ventri-

cle (RV).

2.1.3 Cardiovascular disease (CVD)

CVD refers to a class of diseases that involve the heart or blood vessels (Flora and
Nayak, 2019; Lennon, Claussen, and Kuersteiner, 2018). CVD encompasses a wide
range of conditions, including coronary artery disease, which affects the blood sup-
ply to the heart; arrhythmias, or disorders of heart rhythm; heart failure, where the
heart is unable to pump blood efficiently; congenital heart disease, which is present
from birth; and stroke, which arises from problems with blood flow to the brain,
among others. The underlying mechanisms vary depending on the specific condi-
tion, but they often involve processes such as atherosclerosis (the buildup of plaque
in the arteries), hypertension (high blood pressure), or genetic factors that affect
heart function.

Risk factors for developing CVD include smoking, lack of exercise, obesity, high
blood pressure, high cholesterol, diabetes, and family history of CVD (Flora and
Nayak, 2019). Prevention and treatment strategies often focus on lifestyle modifica-
tions such as improving diet, increasing physical activity, and quitting smoking, in
addition to medical interventions like medications to manage risk factors (e.g., blood
pressure, cholesterol) and surgical procedures to correct or mitigate heart damage
(Arbelo et al., 2023).

Early detection and management of risk factors are crucial for preventing or de-
laying the onset of CVD. Advances in medical research, including the use of tech-
nologies such as radiomics and machine learning (ML) in analyzing cardiac imag-
ing, are enhancing our ability to diagnose, treat, and understand the complexities
of cardiovascular diseases, potentially leading to improved patient outcomes and
reduced mortality rates associated with these conditions. Depicted below can be
found a brief description of the CVDs discussed in this thesis.
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Atrial Fibrilation (AF)

Atrial fibrillation (AF) is a common cardiac arrhythmia characterized by rapid and
irregular beating of the atrial chambers of the heart (Brundel et al., 2022). It rep-
resents a major public health (Chugh et al., 2014; Inohara et al., 2018) concern due
to its association with increased morbidity and mortality, primarily from stroke and
heart failure. The pathophysiology of AF involves a complex interplay of electrical,
structural, and contractile remodeling of the atria, which facilitates the initiation and
maintenance of the arrhythmia.

AF is the most prevalent sustained cardiac arrhythmia, affecting millions of indi-
viduals worldwide. Its prevalence increases with age, making it a significant burden
in the aging population. Key risk factors for AF include hypertension, diabetes mel-
litus, obesity, sleep apnea, chronic kidney disease, and structural heart diseases such
as valvular heart disease and heart failure (Geelhoed et al., 2020).

The underlying mechanism of AF involves multiple pathways that lead to aber-
rant atrial electrical activity and structural remodeling. Triggers for AF typically
originate in the pulmonary veins, where ectopic beats can initiate the arrhythmia.
The perpetuation of AF is supported by changes in atrial tissue that promote electri-
cal re-entry and continuous activation of the atria. This electrical remodeling, cou-
pled with structural changes such as fibrosis, contributes to the maintenance of AF.

AF can manifest in a variety of ways, ranging from asymptomatic episodes to
significant palpitations, fatigue, dyspnea, and reduced exercise tolerance. The irreg-
ular heartbeat of AF can be detected on physical examination, with confirmation by
electrocardiogram (ECG (Aizawa, Watanabe, and Okumura, 2017) showing absent
P waves, irregular R-R intervals, and rapid atrial activity.

Management strategies for AF aim at preventing thromboembolic events, con-
trolling heart rate, and restoring and maintaining sinus rhythm. Anticoagulation is
a cornerstone in the management of AF to prevent stroke, with the choice of agent
guided by risk stratification scores. Rate control, typically with beta-blockers, cal-
cium channel blockers, or digoxin, is essential for symptomatic relief and to prevent
tachycardia-induced cardiomyopathy. Rhythm control strategies, including phar-
macologic agents and catheter-based ablation procedures, are considered for symp-
tom management and in specific clinical scenarios.

Atrial fibrillation is a complex arrhythmia with significant implications for in-
dividual and public health. The push for innovation in imaging seeks to address
the inherent challenges in AF management by providing clearer insights into the
arrhythmia’s onset, progression, and response to treatment. For instance, advance-
ments in cardiac imaging are expected to improve the precision of diagnosing AF,
assessing its severity, and monitoring its treatment response over time. This involves
not just the refinement of existing techniques but also the introduction of entirely
new imaging technologies (Bertelsen et al., 2020; Baalman et al., 2020) that can offer
unprecedented views of the heart’s electrical and structural characteristics (Bumgar-
ner et al., 2018).

Furthermore, the development of novel imaging approaches is crucial for tai-
loring therapies to individual patient needs, thereby enhancing outcomes for those
suffering from this prevalent arrhythmia. Through detailed visualization of the
atrial structure and function, healthcare providers can better identify patients who
would benefit most from specific interventions, whether they be pharmacological
treatments, catheter ablation, or surgical procedures.(Dörr et al., 2019).



2.1. Clinical context 13

Stroke

Stroke represents a critical medical condition characterized by the abrupt loss of
brain function due to a disturbance in the blood supply to the brain (Minnis and
Quinn, 2024; Mozaffarian et al., 2016). This disturbance can result from either is-
chemia, due to blockage (as seen in ischemic stroke), or hemorrhage, as a result of
bleeding (in hemorrhagic stroke). Stroke is a leading cause of disability and mortal-
ity globally, underscoring the importance of rapid diagnosis and treatment.

The incidence of stroke varies worldwide but is a significant health issue, partic-
ularly in older populations (Aparicio, Benjamin, Callaway, et al., 2021). Risk factors
for stroke can be categorized into modifiable and non-modifiable factors. Modifi-
able risk factors include hypertension, diabetes mellitus, smoking, obesity, physical
inactivity, and atrial fibrillation (Bikkina et al., 1995). Non-modifiable risk factors
encompass age, gender, ethnicity, and genetic predisposition.

The pathophysiology of stroke depends on its type. Ischemic stroke, which ac-
counts for approximately 80% of all strokes, occurs when a blood clot obstructs a
blood vessel supplying the brain, leading to a deficiency in blood flow (ischemia)
and resulting in cell death. Hemorrhagic stroke, on the other hand, results from the
rupture of a blood vessel within or surrounding the brain, causing bleeding into or
around the brain and consequent damage to brain tissue (Gosmanova, Mikkelsen,
Molnar, et al., 2016).

Preventive strategies targeting modifiable risk factors are critical in reducing the
risk of first or recurrent stroke (Flueckiger et al., 2018; Kim, Shim, Park, et al., 2016).
These include lifestyle modifications, pharmacological treatment for hypertension,
diabetes, and dyslipidemia, and, in some cases, anticoagulation for individuals with
atrial fibrillation.

Stroke is a medical emergency that requires prompt recognition and treatment to
reduce the risk of mortality and long-term disability. Efforts in public health aimed
at stroke prevention are crucial, but equally important is the integration of imaging
techniques for early detection and prognosis assessment. Alongside advancements
in acute stroke management and rehabilitation, leveraging imaging technologies be-
comes imperative to mitigate the impact of strokes on both individuals and society.
The ongoing research and development of novel therapeutic approaches are further
enhanced by the integration of imaging, promising improved outcomes for stroke
patients.

Myocardial infarction

Myocardial infarction (MI), commonly known as a heart attack, is a severe medical
condition that occurs when blood flow to a part of the heart is abruptly blocked,
leading to the death of heart muscle tissue. This condition not only represents a
leading cause of morbidity and mortality worldwide but also poses significant chal-
lenges in diagnosis and management. The role of imaging in the assessment of my-
ocardial infarction is pivotal, offering crucial insights into diagnosis, the extent of
cardiac damage, and guiding therapeutic decisions (Thygesen et al., 2007).

Myocardial infarction is a major health concern globally, with its prevalence in-
fluenced by factors such as lifestyle, diet, and genetic predisposition. Risk factors
for MI include hypertension, hyperlipidemia, smoking, diabetes, obesity, sedentary
lifestyle, and a family history of coronary artery disease (Yusuf et al., 2004).

The pathogenesis of MI primarily involves the formation of atherosclerotic plaques
in the coronary arteries, which can rupture and lead to thrombus formation. This
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thrombus can occlude the artery, drastically reducing or completely stopping blood
flow to a part of the heart muscle, resulting in ischemia and necrosis of the myocar-
dial tissue.

Symptoms of MI can vary but often include chest pain or discomfort, which may
radiate to the shoulders, arms, back, neck, or jaw. Other symptoms might include
shortness of breath, nausea, vomiting, light-headedness, and cold sweats. However,
not all MIs present with classic symptoms, making imaging and diagnostic tests
critical for accurate diagnosis.

Imaging plays a fundamental role in the diagnosis, management, and prognosti-
cation of myocardial infarction. Various imaging modalities are utilized, each offer-
ing unique benefits.

CMR provides detailed images of the heart’s structure and function, including
the extent of myocardial damage, edema, and areas of microvascular obstruction. It
is particularly useful in assessing myocardial viability and predicting recovery after
MI. Also Cardiac CT angiography is a non-invasive alternative to coronary angiog-
raphy for visualizing coronary artery disease. It can also assess for complications
of MI, such as ventricular aneurysms. Technologies such as radiomics strive to im-
prove the visualization of scar tissue and detect subtle changes in MI-affected re-
gions without relying on contrast agents. These tools aim to capture nuances that
may go unnoticed by conventional imaging techniques, potentially offering a more
comprehensive understanding of stroke progression and its effects on brain tissue.

Imaging is indispensable in the comprehensive assessment of myocardial infarc-
tion, from initial diagnosis to detailed evaluation of cardiac anatomy, function, and
post-infarction complications. (Baeßler, Mannil, Maintz, et al., 2018; Larroza et al.,
2018) The choice of imaging modality depends on the clinical scenario, available re-
sources, and specific information required. As imaging technologies advance, their
role in enhancing the accuracy of MI diagnosis, guiding therapeutic interventions,
and improving patient outcomes continues to evolve, underscoring the importance
of these techniques in contemporary cardiac care.

Heart failure

Heart failure is a clinical syndrome characterized by the heart’s inability to pump
sufficient blood to meet the body’s metabolic demands (Ekundayo et al., 2013). This
condition can result from any structural or functional cardiac disorder that impairs
the ventricles’ capacity to fill with or eject blood. Heart failure is a significant global
health issue, affecting millions of people worldwide, and is associated with high
morbidity and mortality rates.

The pathophysiology of heart failure involves a complex interplay of hemody-
namic, neurohormonal, and molecular changes. Initially, the heart tries to compen-
sate for reduced pumping capacity through mechanisms such as ventricular dila-
tion (to increase stroke volume), hypertrophy (to augment contractile force), and
activation of the sympathetic nervous system and the renin-angiotensin-aldosterone
system (to maintain arterial pressure and salt-water balance). However, over time,
these compensatory mechanisms become maladaptive, leading to worsening heart
failure (Geelhoed et al., 2020; Sahle et al., 2017).

Heart failure can be caused by a wide range of conditions that damage the heart
muscle, including coronary artery disease, hypertension, valvular heart disease, car-
diomyopathies, and myocarditis. Risk factors for developing heart failure include
advanced age, diabetes, obesity, smoking, and a family history of cardiovascular
disease.
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Heart failure is classified based on the left ventricle’s ejection fraction (EF), which
measures the percentage of blood leaving the heart each time it contracts:

• Heart failure with reduced ejection fraction (HFrEF): EF less than 40%.

• Heart failure with reduced ejection fraction (HFrEF): EF less than 40%.

• Heart failure with preserved ejection fraction (HFpEF): EF 50% or higher, with
symptoms of heart failure.

• Heart failure with mid-range ejection fraction (HFmrEF): EF between 40% and
49%.

Symptoms of heart failure may vary depending on the type and severity of the
condition but commonly include dyspnea (shortness of breath), orthopnea (diffi-
culty breathing while lying flat), paroxysmal nocturnal dyspnea, fatigue, reduced
exercise capacity, and peripheral edema. Physical examination may reveal signs
such as pulmonary rales, jugular venous distension, and a third heart sound (S3).

The diagnosis of heart failure is based on medical history, physical examina-
tion, and diagnostic tests, including electrocardiography, chest X-ray, and laboratory
tests. Echocardiography is essential for assessing ventricular function, structure, and
the presence of underlying heart disease. Additional tests such as CMR, stress test-
ing, and cardiac catheterization may be used to identify the etiology of heart failure
and guide treatment.

Management of heart failure aims to relieve symptoms, improve quality of life,
and reduce hospitalization and mortality. Treatment includes lifestyle modifications
(e.g., diet, exercise), pharmacological therapy (e.g., ACE inhibitors, beta-blockers, di-
uretics, aldosterone antagonists), and device therapy (e.g., implantable cardioverter-
defibrillators, cardiac resynchronization therapy). In advanced cases, surgical op-
tions such as valve repair or replacement and heart transplantation may be consid-
ered.

Dilated cardiomyopathy

Dilated cardiomyopathy (DCM) is a condition characterized by the dilation and im-
paired contraction of the left or both ventricles of the heart (Schultheiss et al., 2019).
It is a leading cause of heart failure and may result in arrhythmias, embolic events, or
sudden cardiac death. Unlike hypertrophic cardiomyopathy, which involves thick-
ening of the heart muscle, DCM involves thinning and weakening of the ventricular
walls, leading to ineffective blood pumping (Weintraub, Semsarian, and Macdonald,
2017a).

DCM affects individuals of all ages, from infants to the elderly, with a higher
prevalence in middle-aged adults. It can arise due to a variety of causes, including
genetic mutations, viral infections of the heart, exposure to toxins (including alcohol
and certain drugs), and autoimmune diseases (Hershberger, Hedges, and Morales,
2013). In many cases, however, the exact cause remains idiopathic, meaning it is
unknown.

The fundamental pathology in DCM is a progressive dilation of the ventricles
with concurrent systolic dysfunction. This dilation impairs the heart’s ability to
pump blood efficiently, leading to compensatory mechanisms such as ventricular
hypertrophy and increased sympathetic nervous system activity. Over time, these
compensations become maladaptive, exacerbating heart failure symptoms.
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Symptoms of DCM often start insidiously and can include fatigue, weakness,
shortness of breath, and edema. As the condition progresses, it can lead to significant
morbidity from heart failure, arrhythmic events, and thromboembolic complications
due to stasis of blood in the dilated ventricles (Schultheiss et al., 2019).

The diagnosis of DCM involves a thorough clinical evaluation, including a de-
tailed medical history, physical examination, electrocardiogram (ECG), and chest
X-ray. However, echocardiography is the cornerstone of diagnosis, providing de-
tailed information on ventricular dimensions, systolic function, and the presence of
any structural heart disease.

CMR plays a pivotal role in the assessment of DCM. It offers superior spatial
resolution and tissue characterization, enabling precise measurement of ventricular
volumes, wall thickness, and systolic function. CMR can also identify myocardial
fibrosis, which is a predictor of adverse outcomes in DCM. This ability to visual-
ize structural changes at a microscopic level and to differentiate DCM from other
cardiomyopathies makes CMR an invaluable tool in the management and prognos-
tication of patients with DCM (Weintraub, Semsarian, and Macdonald, 2017b).

Management of DCM is primarily aimed at treating heart failure symptoms and
preventing complications such as arrhythmias and thromboembolic events. This
may include the use of medications such as ACE inhibitors, beta-blockers, and di-
uretics, along with lifestyle modifications. In advanced cases, device therapy (e.g.,
implantable cardioverter-defibrillators or cardiac resynchronization therapy) or heart
transplantation may be considered.

Dilated cardiomyopathy is a complex condition that significantly impacts pa-
tients’ quality of life and survival. Advances in genetic research and imaging tech-
niques, particularly the use of CMR, have greatly enhanced our understanding and
management of DCM. Ongoing research into the underlying mechanisms and po-
tential targeted tools such radiomics continues to offer hope for improved outcomes
in this challenging condition.

Hypertrophic cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is a complex cardiovascular disorder charac-
terized by the abnormal thickening of the heart muscle, particularly the ventricular
septum. This thickening can impede normal blood flow out of the heart and affect
the heart’s ability to pump effectively. HCM is a significant cause of sudden cardiac
death, especially in young athletes, and can lead to a variety of symptoms ranging
from benign to life-threatening (Maron, 1997).

HCM is among the most common genetic heart disorders (Gruner et al., 2013),
affecting approximately 1 in 500 individuals globally. It can affect both men and
women of any age. HCM is primarily inherited in an autosomal dominant pattern,
meaning a mutation in just one copy of the responsible gene can cause the disor-
der. Mutations in several genes related to cardiac muscle proteins are known to
contribute to the development of HCM, including the MYH7 and MYBPC3 genes.

The hallmark of HCM is myocardial hypertrophy that is not solely explained
by abnormal loading conditions. This hypertrophy is most often asymmetric, with
the septum between the ventricles being more commonly and severely affected than
the ventricular free walls. The cellular architecture of the heart muscle in HCM is
disorganized, a condition known as myocardial disarray, which contributes to the
risk of arrhythmias.
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This abnormal thickening and structural disarray can lead to several complica-
tions, including obstruction of blood flow from the left ventricle (known as obstruc-
tive HCM), diastolic dysfunction (difficulty with ventricular filling), mitral valve
abnormalities, and an increased risk of atrial and ventricular arrhythmias.

The presentation of HCM is highly variable. Some individuals remain asymp-
tomatic throughout their lives, while others develop symptoms such as shortness of
breath, chest pain, palpitations, or episodes of lightheadedness and fainting. The
risk of sudden cardiac death, although low overall, is a concern, particularly in
younger individuals engaged in competitive sports (Stewart, Lavie, Shah, et al.,
2018).

Diagnosis of HCM involves a comprehensive evaluation, including the patient’s
medical history, family history, physical examination, and several diagnostic tests.
Echocardiography (ultrasound imaging of the heart) is the primary tool for diagnos-
ing HCM, allowing visualization of the heart’s structure and function, including the
measurement of myocardial thickness and assessment of blood flow (Cardim et al.,
2015).

Electrocardiography (ECG) can show abnormal heart rhythms and other changes
indicative of HCM. Genetic testing may also be offered to identify mutations in
genes associated with HCM and to guide family screening and management.

On the other hand, imaging is also important in the diagnosis of HCM via CMR.
Clinicians often uses specific criteria, such as:

1. Myocardial Thickness: Wall thickness of 15 mm or more in adults (or signifi-
cantly above the expected range for age and body size) without another cardiac
or systemic cause.

2. Pattern of Hypertrophy: Identification of the pattern of hypertrophy (e.g., sep-
tal, apical) can aid in diagnosis and management.

3. Tissue Characterization: Presence of myocardial fibrosis, especially in areas of
hypertrophy, may support the diagnosis and has prognostic implications. The
thesis specifically focuses in this criteria section.

Management strategies for HCM are tailored to the individual’s symptoms, risk
factors for sudden cardiac death, and whether there is outflow tract obstruction.
Treatment may include lifestyle modifications, medications (such as beta-blockers or
calcium channel blockers to manage symptoms and improve heart function), and, in
some cases, invasive procedures. Septal myectomy or alcohol septal ablation can be
considered for patients with severe symptoms due to left ventricular outflow tract
obstruction. Implantable cardioverter-defibrillators (ICDs) may be recommended
for those at high risk of sudden cardiac death.

Hypertrophic cardiomyopathy is a genetically diverse and clinically variable
condition that requires careful management to mitigate its complications, including
sudden cardiac death. Advances in genetic understanding and imaging techniques
have significantly improved the diagnosis and management of HCM, enhancing the
quality of life and prognosis for those affected. Despite the advancements in cardiac
imaging, HCM is still difficult to differentiate from other specific conditions, as we
will see in the future chapters.

Left Ventricle Non-Compaction (LVNC)

Left Ventricular Non-compaction (LVNC) is an uncommon cardiac condition, distin-
guished by a unique, sponge-like morphology of the left ventricle - one of the heart’s
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primary chambers responsible for pumping blood. This anomalous presentation is
attributed to the failure of the normal myocardial compaction process during fetal
development, leading to this distinctive structural appearance (Petersen et al., 2005;
Petersen, Matthews, Francis, et al., 2016).

LVNC can compromise the heart’s ability to efficiently pump blood, leading to
a range of symptoms that may include dyspnea, chest discomfort, and arrhythmias.
The condition’s etiology can be either genetic, stemming from inherited factors, or
acquired, resulting from specific pathologies or environmental influences. It is also
noteworthy that LVNC frequently co-occurs with other cardiac conditions, such as
various forms of cardiomyopathy.

Management of LVNC generally comprises a multifaceted approach. Medica-
tions are often prescribed to alleviate symptoms and improve heart function. Lifestyle
modifications may be recommended to mitigate the exacerbation of symptoms and
prevent further cardiac complications. In more severe cases, or when concurrent car-
diac conditions are present, surgical interventions such as ventricular assist devices
or transplantation may be considered.

The most challenging aspects in managing LVNC lie in (i) distinguishing it from
other cardiomyopathies, and (ii) predicting its prognosis, encompassing both its evo-
lution and the prediction of those likely to experience cardiac events. The complexity
and heterogeneity of LVNC present substantial difficulties in accurately identifying
it and predicting its course. Certain patients may remain asymptomatic and stable
over time, while others may exhibit a progressive course leading to heart failure, ar-
rhythmias, or thromboembolic events. This variability in clinical progression makes
prognostication a particularly arduous task. The ability to accurately differentiate
it from other complex CVDs and prognosticate adverse cardiac events is crucial in
managing LVNC as it enables timely intervention, optimized treatment strategies,
and can significantly improve patient outcomes.

FIGURE 2.4: ExampleS of CMRs depicting three complex car-
diac diseases challenging to distinguish: dilated cardiomyopathy
(DCM), hypertrophic cardiomyopathy (HCM), and left ventricular
non-compaction (LVNC). The leftmost image showcases DCM, which
is characterized by a noticeable thickening of the heart muscle. The
middle image depicts HCM, where the myocardium appears thinner
in comparison. Lastly, the right image exemplifies LVNC, identifiable
by its unique sponge-like structure. The distinctive trabeculae in this

case are found in the region of the left ventricle.
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2.2 Methodological context

2.2.1 Clinical measurements

Cardiologists utilize CMR (Pennell, 2004) as a sophisticated tool to extract vital clin-
ical indices critical for predicting, diagnosing, planning treatment, and managing
cardiovascular diseases. The unparalleled detail provided by MRI in visualizing
cardiac anatomy and function is due to its superior spatial resolution and the ability
to differentiate between various tissue types without exposing patients to ionizing
radiation. This imaging technique is instrumental in quantifying a broad array of
cardiac metrics essential for evaluating the health and functionality of the heart.

The procedure initiates with the capture of precise images using specialized MRI
sequences designed specifically for cardiac assessment. These include cine MRI for
motion assessment, myocardial tagging for evaluating strain, and late gadolinium
enhancement to identify fibrosis or scarring. Each sequence furnishes distinct and
valuable data contributing to a thorough cardiac examination.

Following image capture, sophisticated software aids cardiologists and radiolo-
gists in analyzing the images. This phase entails meticulous measurement of struc-
tural and functional cardiac indices. Among the primary metrics measured are the
volumes of the ventricles, the mass of the myocardium, the fraction of blood ejected
from the heart during each beat (ejection fraction), and the degree of myocardial
strain. These measurements are derived through either manual, semi-automated,
or automated processes of image segmentation, where the contours of the heart’s
chambers and the myocardium are precisely delineated.

One of the most important measures utilized by cardiologist is Left Ventricle
Ejection Fraction (LVEF)(Maceira et al., 2006). Assessing the left ventricle ejection
fraction (LVEF) is a fundamental procedure in cardiology that involves calculating
the percentage of blood the left ventricle ejects with each heartbeat relative to its total
volume during diastole. This metric is crucial for gauging heart function, particu-
larly in diagnosing and managing heart failure and other cardiac conditions. The
measurement process typically employs imaging modalities such as echocardiogra-
phy, CMR, or ventriculography.

Echocardiography, often the first choice due to its accessibility and non-invasive
nature, uses ultrasound waves to create images of the heart in motion, enabling the
visualization of the left ventricle as it contracts and relaxes. CMR, known for its high
spatial resolution and accuracy, provides detailed images of the heart’s structure and
function, allowing for precise calculation of LVEF. In some cases, ventriculography,
an invasive technique using contrast dyes and X-rays, is utilized, especially when
other methods are inconclusive (Grothues et al., 2002).

To measure LVEF, healthcare professionals first determine the volumes of the left
ventricle at the end of diastole (when it is fullest) and at the end of systole (when it is
least full). The LVEF is then calculated by subtracting the systolic volume from the
diastolic volume, dividing this difference by the diastolic volume, and multiplying
by 100 to express the result as a percentage.

LVEF is a vital measure because it directly reflects the heart’s ability to pump
blood effectively throughout the body (Maceira et al., 2006). A normal LVEF ranges
from 55% to 70%, indicating efficient heart function. Values below this range sug-
gest systolic heart failure or cardiomyopathy, where the heart’s pumping ability is
compromised. Conversely, an LVEF higher than normal can indicate diastolic dys-
function, where the heart is stiff and cannot fill properly. Monitoring LVEF over time
can help guide treatment decisions, including medication adjustments, the need for
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implantable devices, or surgical interventions, making it an indispensable tool in the
management of patients with heart disease.

Trabeculations in the heart are mesh-like, irregular muscular columns that line
the inner surface of the ventricles, primarily the left ventricle. These structures are
formed during normal embryological development of the heart and consist of net-
works of muscle fibers (see Figure 2.4. They play a role in the functioning of the
heart by helping to manage blood flow and minimize stress on the ventricular walls
during the contraction cycle. In certain conditions, such as left ventricular non-
compaction cardiomyopathy, the trabeculations are excessively prominent, which
can be detected through imaging techniques like CMR and may affect heart func-
tion. In evaluating ventricular structures, especially trabeculations, the use of the
Petersen and Jacquier coefficients is crucial. These metrics, derived from advanced
CMR techniques, allow for a precise differentiation between trabeculated and com-
pact myocardial masses. The Petersen coefficient (Petersen et al., 2005) provides a
ratio of trabeculated to total myocardial mass, helping to assess the extent of tra-
beculation. Conversely, the Jacquier coefficient (Jacquier et al., 2010) evaluates the
trabecular mass relative to the total ventricular mass. These coefficients are instru-
mental for diagnosing conditions like left ventricular non-compaction cardiomyopa-
thy (LVNC), where excessive trabeculations are characteristic.

Identifying the degree of trabeculation involves high-resolution imaging and de-
tailed segmentation techniques to distinguish pathological from normal physiologi-
cal trabeculations. This differentiation is essential due to the variability in trabeculae
among individuals and the complexity of the heart’s structures. The precise mea-
surement facilitated by these coefficients aids in the standardization of diagnoses
and helps to ensure accuracy in identifying pathological conditions.

Additionally, late gadolinium enhancement (LGE) is a technique utilized in CMR
to identify scar tissue or MI within the heart muscle (Kim et al., 2009). This method
involves the use of a gadolinium-based contrast medium, which highlights differ-
ences in the tissue composition of the heart muscle by accumulating in regions with
increased extracellular space, often a hallmark of fibrosis or scarring.

In the process of LGE, the contrast agent makes the affected myocardial areas
appear bright on MRI images, contrasting sharply with the darker appearance of
healthy myocardial tissue (see Figure. 2.5). This distinction is particularly useful for
delineating the presence and extent of scar tissue, offering critical insights into the
condition of the heart following injury or disease.

LGE MRI has become an indispensable tool in the evaluation of cardiac health,
further used in the final chapter of this thesis, especially for detecting and quanti-
fying myocardial damage due to ischemic heart disease or other cardiomyopathies
(Stirrat and White, 2013). It plays a pivotal role in assessing myocardial viability, in-
forming treatment strategies, and predicting patient outcomes, such as susceptibility
to arrhythmias or the potential for heart failure progression.

Accuracy in these measurements is paramount, as inaccuracies can lead to misdi-
agnosis or inappropriate management strategies. Adherence to standardized mea-
surement protocols is crucial for ensuring the reliability and consistency of these
indices.

2.2.2 Challenges in cardiovascular imaging

Imaging techniques are in continuous development but still face many challenges
(Fujikura, 2022). One of the primary difficulties arises from the inherent limitations
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FIGURE 2.5: Schematic of typical hyperenhancement (HE) patterns
identified by late gadolinium enhancement imaging in patients with
ischemic and nonischemic cardiomyopathy. Source of the image:
Stirrat J, White JA. The prognostic role of late gadolinium enhance-
ment magnetic resonance imaging in patients with cardiomyopathy.
Can J Cardiol. 2013 Mar;29(3):329-36. doi: 10.1016/j.cjca.2012.11.033.

PMID: 23439019.(Stirrat and White, 2013)
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of imaging modalities. While technologies like CMR and echocardiography are in-
valuable for visualizing the heart’s structure, their ability to delineate fine trabecu-
lations can be influenced by factors such as image resolution, the specific imaging
sequence or protocol used, and the observer’s experience. CMR, despite its superior
spatial resolution, requires careful optimization of sequences to adequately capture
the contrast between trabeculated and compact myocardium. Similarly, echocardio-
graphy’s effectiveness can be hampered by acoustic shadowing and the dependency
on the patient’s anatomy and window of imaging (Dwivedi et al., 2013).

Moreover, the criteria for diagnosing conditions related to trabeculation, such as
LVNC, are subject to ongoing debate and refinement. The lack of universally ac-
cepted standards for measuring and interpreting trabeculations adds another layer
of complexity. Researchers and clinicians employ various quantitative indices, like
the trabeculation-to-compact layer ratio, but these metrics can vary significantly
based on the methodology and thresholds used (Casas, Rodríguez-Palomares, and
Ferreira-González, 2022).

Inter-individual variability further complicates the assessment of left ventricle
trabeculations. There is a wide range of normal trabeculation among healthy indi-
viduals, influenced by factors such as age, gender, and ethnicity. This variability
necessitates a tailored approach to interpreting trabeculation levels, considering the
patient’s unique background and the clinical context.

The dynamic nature of the heart, with trabeculations that may alter in appear-
ance and function over time or in response to physiological and pathological condi-
tions, requires a dynamic and flexible assessment strategy. This necessitates ongoing
research and development of more refined imaging techniques and analytical tools,
as well as a multidisciplinary approach involving cardiologists, radiologists, and
imaging specialists to accurately assess and interpret the significance of left ventri-
cle trabeculations.

Regarding the use of late gadolinium enhancement, while is a powerful imag-
ing technique in CMR for identifying myocardial scarring and fibrosis, it does have
several drawbacks:

• Nephrogenic Systemic Fibrosis Risk: Gadolinium-based contrast agents can
pose a risk of nephrogenic systemic fibrosis (NSF) in patients with severe renal
impairment. NSF is a rare but serious condition characterized by fibrosis of the
skin, joints, and internal organs.

• Allergic Reactions: Although rare, some patients may experience allergic reac-
tions to the gadolinium contrast agent, ranging from mild symptoms to more
severe anaphylactic reactions.

• Limited Accessibility and Cost: LGE MRI requires specialized equipment and
expertise, which may not be available in all medical facilities. Additionally, the
cost of the procedure and the contrast agent can be high, limiting accessibility
for some patients.

• Contraindications: Patients with certain types of metal implants, pacemakers,
or defibrillators may not be eligible for MRI procedures, including those in-
volving gadolinium contrast, due to safety concerns.

• Temporal Resolution: While LGE provides excellent spatial resolution of my-
ocardial scarring, it may not offer the best temporal resolution for dynamic
cardiac function assessments compared to other imaging modalities.
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• Quantification Challenges: Although LGE is excellent for qualitative assess-
ment of scar tissue, quantifying the exact amount of myocardial fibrosis can be
challenging and may require advanced imaging and analysis techniques.

• Kidney Function Monitoring: Patients undergoing LGE MRI may require mon-
itoring of their kidney function before and after the administration of gadolin-
ium, adding an additional step to the imaging process.

Extracting clinical indices from CMR images represents a sophisticated and es-
sential task that integrates advanced imaging technology with medical proficiency.
However, this process is not without its challenges (Pennell, 2004). Our research
aims to address these obstacles by exploring how emerging technologies can be
leveraged to surmount these difficulties, such automatize the extraction process,
standarize the protocols, recognize and visualize unseen new patterns or remove
the use of contrast agents.

2.2.3 Radiomics analysis

Recent advancements in MRI technology and image processing, including the in-
tegration of machine learning and artificial intelligence, are refining the precision
with which these clinical indices are measured (Najjar, 2023; Pinto-Coelho, 2023).
These innovations are streamlining the measurement process, reducing variability
between observers, and paving the way for more accurate, reliable, and predictive
cardiac assessments. In this scenario is where radiomics play an important role. Ra-
diomics is a technique that involves using mathematical and geometrical algorithms
to extract large amounts of data from images (Gillies, Kinahan, and Hricak, 2016).
This approach is used to obtain numerical values from complex image characteris-
tics, which can be difficult to be interpreted directly. Radiomics can provide both
geometric or morphological information and more complex data information such
as variations in gray textures or histogram-based characteristics.

In the context of medical imaging, the application of radiomics has demonstrated
its reliability and effectiveness in various domains, mainly used in oncology for over
a decade (Ding et al., 2021). Radiomics has proven to be effective in capturing es-
sential textural and shape details that play a crucial role in comprehending various
types of cancer, as well as predicting prognosis and assessing risk.(Wu et al., 2018).
In recent times, researchers have put forth the suggestion that the unique capabil-
ities of radiomics make it potentially applicable in the field of cardiology (Raisi-
Estabragh et al., 2020a). Numerous publications have highlighted the efficacy of
radiomics in predicting and classifying cardiac diseases (Cetin et al., 2018; Cetin et
al., 2020; Rauseo et al., 2021). While the medical community has made significant
efforts to establish standardized protocols and define quantitative metrics for differ-
ent diseases, there remain certain procedures that still rely on subjective evaluation
by clinicians. To address this challenge, radiomics aims to provide a quantitative
approach by extracting numerical features from medical images. These features can
then be used to establish value ranges and evaluation scales specific to each disease,
facilitating easier extrapolation of findings to other clinical studies and promoting
the adoption of a unified criterion for disease prognosis and diagnosis. To perform
a radiomics analysis, it is essential to follow a series of crucial steps, depicted below:
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Region of interest (ROI) segmentation

Medical images are reservoirs of substantial pixel-based information, where only a
fraction of the image is the target, while surrounding organs or tissues may not be
relevant for the study. In radiomics analysis, it is critical to accurately delineate the
organ - the area of interest within the overall image. In this work, we concentrate ex-
clusively on the heart, emphasizing the importance of precise segmentation. Failure
to accurately segment the ROI can lead to data extraction from extraneous regions
outside the heart (i.e. lungs), diluting the focus of our analysis.

This dissertation focused on CMR of SAX view, as it provides extensive mor-
phological and functional information regarding the studied cardiac disease. Within
this perspective, the key structures requiring detailed delineation include the left
ventricle (LV), the right ventricle (RV), and the myocardium (MYO)(Fig.2.7).

In order to aid the healthcare professionals in this intricate process of segmen-
tation, numerous software tools are available. These range from freely accessible
platforms such as ITK-Snap (Fig.2.6) to proprietary software like CVi42 CVI42 Ver-
sion x.x Year. By leveraging these digital tools, clinicians can accomplish accurate
segmentation of the heart’s intricate structures, thereby enabling an efficient and
precise radiomics analysis.

FIGURE 2.6: ITK-Snap is a free open source tool that allows clini-
cians/researchers to delineate the contours of the ROI.

Radiomics extraction

The researchers in Griethuysen et al., 2017a have introduced PyRadiomics, an open-
source software code that has gained significant popularity in the field. PyRadiomics
facilitates the calculation and extraction of radiomics features. It offers a user-friendly
object-oriented code, requiring only the original image and the corresponding mask
or contours to enable efficient extraction of radiomics. The extracted radiomics are
conveniently presented in a tabular data format, allowing for ease of analysis and
interpretation.
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FIGURE 2.7:
Original image

FIGURE 2.8:
ROI selection

FIGURE 2.9: Process of delineation. Clinicians must select the ROI
before radiomics extraction

In our particular scenario, we acknowledge the unique characteristics of each
region of the heart and recognize the significance of extracting and analyzing ra-
diomics separately based on the specific type of cardiomyopathy under investiga-
tion. This approach proves crucial in identifying structural alterations at a localized
level and determining the most relevant radiomics for detecting these changes. For
instance, in cases where the injury is confined to a particular region, such as a my-
ocardial scar resulting from a myocardial infarction, it becomes imperative to extract
radiomics individually from the left ventricle (LV), right ventricle (RV), and my-
ocardium (MYO). This enables a comprehensive evaluation of the distinct radiomic
features associated with each region, facilitating accurate detection and characteri-
zation of pathological conditions.

Radiomics can be broadly categorized into three distinct types based on the
mathematical attributes they describe. These include Shape Radiomics, First-Order
Radiomics, and Textural Radiomics.

Shape Radiomics characteristics assess and gauge the morphological attributes
within delineated contours, disregarding the distribution of gray-level intensity. This
category of features is intuitively comprehensible as they correspond closely to vol-
umes and surfaces that are routinely measured with CMR indices in clinical practice.
Examples of these features range from basic metrics like volume, elongation, or sur-
face area, to more complex metrics such as sphericity.

First-order radiomics features are derived from the statistical properties of voxel
intensities within a ROI, as defined by a segmentation mask. These statistics ar-
ticulate the pixel/voxel intensity distribution in the form of fundamental metrics,
independent of spatial interrelationships. Examples of first-order radiomics features
include simpler metrics such as the median or mean, as well as more complex math-
ematical metrics like entropy, energy, or kurtosis.

In contrast, texture radiomics features identify nuanced alterations in the pixel’s
gray-scale distribution by detecting patterns and changes in adjacent gray-scale val-
ues through advanced matrix computations. These texture features can be classified
into five categories based on the matrix used for their derivation: Gray Level Co-
occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run
Length Matrix (GLRLM), Neighbouring Gray Tone Difference Matrix (NGTDM),
and Gray Level Dependence Matrix (GLDM).
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It is anticipated that shape features will encapsulate cardiac morphological traits
typically associated with each specific cardiac condition. Meanwhile, first-Order and
texture features are anticipated to significantly contribute to discerning gray-scale
alterations within the Left Ventricle (LV) or Left Ventricle Myocardium (LVMYO)
tissue. This is especially pertinent for distinguishing trabeculations in patients with
LVNC, a characteristic attribute of this condition.

Challenges in radiomics implementation

The utilization of radiomics for cardiovascular imaging, while holding significant
promise, encounters various obstacles and limitations that impact its efficacy and
broader implementation (Jin, 2023; Najjar, 2023; “Radiomics in Cardiovascular Imag-
ing” 2023). These challenges are spread across technical, clinical, and logistical areas,
including:

• Variability and Lack of Standardization in Imaging Data: The diversity in
imaging protocols, equipment from various manufacturers, and settings used
across different healthcare facilities introduces inconsistency in radiomic fea-
ture extraction. Achieving uniformity in imaging protocols and feature extrac-
tion techniques remains a significant challenge.

• Complex Data Sets and the Risk of Overfitting: The extraction of numerous
features from cardiovascular images results in complex datasets. Addressing
these with advanced statistical and machine learning methods is crucial to pre-
vent overfitting and ensure the model’s applicability to novel data.

• Issues with Reproducibility and Independent Validation: The reproducibility
of radiomic findings can be hampered by differences in image acquisition tech-
niques, feature extraction algorithms, and analysis procedures. Conducting in-
dependent validation to verify these studies is essential yet often complicated
by the need for extensive, annotated data collections (Raisi-Estabragh et al.,
2020c).

• Incorporation into Clinical Practice: The integration of radiomics into existing
clinical workflows poses both logistical and technical hurdles. It requires train-
ing for healthcare professionals to interpret radiomic assessments and seam-
less integration with current medical IT infrastructures.

• Model Interpretability: The complexity and lack of transparency in many high-
performing machine learning models challenge their acceptance by clinicians.
This opacity can hinder trust and limit the practical use of these models in
clinical environments.

In the field of cardiovascular imaging, the effectiveness of radiomics is particu-
larly contingent upon the precision of image segmentation techniques. These proce-
dures are critical for delineating the relevant anatomical structures within the heart,
ensuring that the subsequent radiomic analysis accurately reflects the underlying
cardiac pathology. The accuracy of these segmentation steps directly impacts the
quality and reliability of the extracted radiomic features, underscoring their impor-
tance in the overall process of leveraging radiomics for diagnostic and prognostic
purposes in cardiovascular medicine. In our research, accurately identifying and
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outlining the presence of excessive trabeculations within the left ventricle or my-
ocardium is of paramount importance. This process is crucial for assessing the struc-
tural abnormalities of the heart, particularly in conditions such as Left Ventricular
Non-compaction (LVNC).

2.2.4 Machine Learning

Machine learning, a subset of artificial intelligence, encompasses the training of al-
gorithms using data to make predictions or detect patterns. It has found extensive
employment in diverse fields such as image and speech recognition, natural lan-
guage processing, and predictive analytics (Russell and Norvig, 2016).

In machine learning, algorithms undergo training using sizable datasets, en-
abling them to generalize and make accurate predictions or identify patterns in new,
unseen data. This process involves supervised learning, unsupervised learning, or
reinforcement learning methods.

Supervised learning employs labeled datasets where each example is associated
with a known output, allowing the algorithm to learn from the provided ground
truth (Russell and Norvig, 2016). Conversely, unsupervised learning operates on un-
labeled datasets, requiring algorithms to autonomously uncover patterns and struc-
ture within the data (Bishop, 2006). Reinforcement learning involves an agent inter-
acting with an environment, receiving feedback in the form of rewards or penalties
as it learns to achieve a specific goal (Sutton and Barto, 2018).

Within the field of cardiology, machine learning has proven its utility in various
applications. For instance, it has been used in image analysis for cardiac image seg-
mentation, aiding in the precise delineation of anatomical structures (Litjens et al.,
2017). Moreover, machine learning techniques have shown promise in the detection
and classification of cardiac arrhythmias, contributing to more accurate diagnoses
and personalized treatment strategies (Attia et al., 2019a).

By harnessing the power of machine learning, advancements in cardiology are
facilitated, leading to improved patient outcomes, refined diagnostics, and enhanced
decision-making processes.

Throughout the development of this thesis, various machine learning algorithms
were employed for classification, ranging from tree-based decision models to more
sophisticated methods such as SVM and XGBoost.

Classification

Support Vector Machine (SVM) is a powerful supervised machine learning algo-
rithm predominantly used for classification tasks, although it can be employed for
regression as well. Originally introduced by Vapnik and Chervonenkis in the 1960s,
its modern and more popular incarnation was developed in the 1990s, when it was
formulated in terms of an optimization problem that aimed to maximize the margin
between classes(Cortes and Vapnik, 1995).

The core idea behind SVM is to find an optimal hyperplane that separates data
into distinct classes. In two-dimensional space, this hyperplane is simply a line.
However, in higher dimensions, it takes the form of a plane or a set of planes.
The "optimal" hyperplane is the one that achieves the maximum margin from both
classes, and the data points that lie closest to this hyperplane (and effectively define
its position) are known as ’support vectors’ – hence the name.

Another algorithm frequently used in ML is Random Forest (RF)(Breiman, 2001).
A Random Forest Classifier is a machine learning model formed from a collection of
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FIGURE 2.10: Support Vector Machine schematic.

multiple decision trees. To create diversity and reduce bias, each tree is trained on
random subsets of data and features. When making predictions, every tree provides
its own class ’vote’, with the majority determining the final classification. This en-
semble method not only increases prediction accuracy but also makes the model
more resilient against overfitting. Furthermore, the Random Forest has the capabil-
ity to rank feature importance, offering valuable insights into which variables most
influence predictions.

FIGURE 2.11: Decision tree schematic

XGBoost (eXtreme Gradient Boosting, Chen and Guestrin, 2016) is a powerful
machine learning algorithm that has gained significant attention in the field of clas-
sification. It belongs to the family of gradient boosting algorithms, which are en-
semble learning methods that combine the predictions of multiple weak models to
create a strong predictive model.
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In the context of classification, XGBoost excels at constructing predictive models
that can accurately classify data into different classes or categories. It operates by se-
quentially building a series of decision trees, where each subsequent tree is trained
to correct the mistakes made by the ensemble of previously trained trees. This itera-
tive process allows XGBoost to progressively improve the model’s performance and
capture complex relationships within the data.

One of the key advantages of XGBoost is its ability to handle diverse types of
data and effectively manage high-dimensional feature spaces. It employs a unique
regularization technique known as "gradient-based regularization," which helps pre-
vent overfitting and enhances the model’s generalization capability. Additionally,
XGBoost incorporates a robust optimization framework that optimizes a specific ob-
jective function, such as log-loss or cross-entropy, to find the best possible model
parameters.

The algorithm incorporates several innovative features, including parallel tree
construction, which accelerates the training process, and hardware optimization,
which further enhances efficiency. XGBoost also supports various advanced tech-
niques, such as handling missing values, handling imbalanced datasets, and pro-
viding feature importance analysis.

In summary, XGBoost is a state-of-the-art machine learning algorithm specifi-
cally designed for classification tasks. Its ability to handle diverse data types, man-
age high-dimensional feature spaces, and optimize objective functions makes it a
valuable tool for developing accurate and robust classification models.

Survival analysis

Survival analysis (Flynn, 2012; Stel et al., 2011), also known as time-to-event analysis,
is a statistical method used to examine the time until a specific event of interest
occurs. In the context of our scenario, it pertains to analyzing the time until a cardiac
event takes place.

In survival analysis, the event of interest is referred to as the "failure" event or
"censoring" event, while the time until the event happens is called the "survival
time." The data utilized in survival analysis typically comprises two types of ob-
servations:

• Failure observations: These include instances where the exact failure time is
known.

• Censoring observations: These consist of cases where the failure time is not
known, but it is established that the subject remained at risk for the event until
a specific censoring time.

The primary objective of survival analysis is to estimate the underlying probabil-
ity distribution of the survival time and draw inferences about the population based
on the available sample data. One widely employed model in survival analysis is
the Cox proportional hazards model (Abd ElHafeez et al., 2021; Deo, Deo, and Sun-
daram, 2021). This model estimates the hazard rate of the event as a function of one
or more co-variates.

Survival analysis explores various aspects of the survival time distribution, such
as the event of interest, probability of survival over time, hazard rate, cumulative
hazard, and survival function.

Machine learning (ML) can be employed in conjunction with survival analysis
to identify patterns and predictors related to survival time. In our healthcare con-
text, an ML model could be trained using a dataset containing patient information
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encompassing demographics, medical history, imaging features, ECG indexes, etc.
This ML model aims to predict the likelihood of survival for individual patients. By
analyzing intricate relationships and interactions between variables, ML algorithms
can enhance the accuracy of survival predictions compared to traditional statistical
techniques.

Traditional survival analysis methods, like the Cox proportional hazards model
(Benítez-Parejo, Rodríguez del Águila, and Pérez-Vicente, 2011), make specific as-
sumptions about data (e.g., the risk associated with variables is constant over time).
However, real-world data can be more complex.

Machine learning offers a flexible approach. Neural networks, for instance, can
be adapted to survival analysis. DeepSurv(Katzman et al., 2018), a deep learning
approach to survival analysis, allows for the non-linear relationships between co-
variates and provides a risk score that can be used for personalized treatment rec-
ommendations. The reduced explainability of complex models, particularly in the
area of deep learning, brings about significant disadvantages. These downsides not
only impede the practical deployment of such models but also raise ethical concerns.
Given these considerations, the aforementioned limitations in explainability are pre-
cisely why (Katzman et al., 2018) will be excluded from our evaluations in this study
of survival analysis.

Random Survival Forests (Pölsterl, 2020), an adaptation of Random Forests for
survival data, is another tool that captures complex interactions between variables
and offers importance measures for each predictor.

2.2.5 Feature selection in modelling

Feature selection (FS) is a process in machine learning where the most relevant vari-
ables (features) are identified and selected for use in model construction (Xu et al.,
2023). FS plays a pivotal role in machine learning (ML) within clinical settings, pri-
marily due to its impact on the accuracy, efficiency, and interpretability of predictive
models. In healthcare, where decisions can have direct consequences on patient
outcomes, the selection of relevant features from clinical data is crucial for several
reasons. Its use implies:

• Improves Model Performance: By choosing the most relevant features, ML
models can focus on the most significant predictors of outcomes, potentially
increasing accuracy and reducing the risk of overfitting. This is especially im-
portant in clinical setups where the prediction accuracy can directly affect pa-
tient care and treatment plans.

• Enhances Interpretability: In clinical practice, understanding why a model
makes a certain prediction is as important as the prediction itself. Feature se-
lection helps in simplifying models, making it easier for healthcare profession-
als to interpret the results and trust the ML-based decisions.

• Reduces Training Time: By eliminating redundant or irrelevant features, the
dimensionality of the dataset is reduced, which can significantly decrease the
computational resources and time required to train models. This is particu-
larly beneficial in clinical environments where rapid decision-making is often
needed.

• Facilitates Generalization: Selecting a robust set of features can help in devel-
oping models that generalize well to new, unseen data, which is critical when
applying models across different patient populations or clinical settings.
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• Aids in Data Understanding: The process of feature selection can reveal im-
portant insights about the underlying structure of clinical data and the rela-
tionships between different variables. This can lead to a better understanding
of the disease processes and patient characteristics that are most relevant to
health outcomes.

• Supports Cost-effective Testing: In scenarios where collecting certain data points
is expensive or invasive, feature selection can identify the most informative
features that need to be collected, potentially reducing the costs and burdens
on patients.

In this thesis, we employ two widely recognized feature selection (FS) tech-
niques, reflecting their prevalent use in the field.

• Chi-Square Test (McHugh, 2013): A filter method that assesses the statistical
significance of the relationship between each feature and the target variable,
particularly for categorical data. It measures how expectations compare to
actual observed data. Features with higher values from this test indicate a
stronger association with the target, making them prime candidates for inclu-
sion in the model. This approach is effective for preliminary reduction of fea-
tures, helping to streamline the modeling process.

• Sequential Forward Selection (SFS) (Ververidis and Kotropoulos, 2005): As a
wrapper approach, SFS begins with no features and incrementally adds them
based on their contribution to model performance. It evaluates each candi-
date feature by its ability to improve the model when combined with features
already selected. The selection process continues until no significant perfor-
mance gain is observed. Although SFS can be resource-intensive, it meticu-
lously constructs a feature set that is optimized for the model at hand.

These methods, the Chi-Square test and Sequential Forward Selection, are in-
strumental in simplifying the feature space and enhancing model performance. The
former is particularly useful for quick, initial screening of categorical features, while
the latter offers a comprehensive strategy to build an effective feature combination
through an iterative process. Leveraging these techniques allows for the develop-
ment of more accurate and efficient predictive models.

2.2.6 Challenges in Machine Learning modelling

Several papers have highlighted the challenges associated with integrating machine
learning (ML) into medical practice, particularly emphasizing the ethical considera-
tions and practical hurdles in critical care and emergency medicine (Vayena, Blasimme,
and Cohen, 2018; Sendak et al., 2019; Kang and Yoon, 2023). These challenges can be
summarized below:

• Data Quality and Availability: One of the primary hurdles in ML is obtain-
ing high-quality, relevant data. Models are only as good as the data they’re
trained on, and issues like missing values, inaccuracies, and biases in the data
can significantly skew outcomes. In current clinical practice, a significant is-
sue arises from incomplete data due to patients discontinuing or not adhering
to follow-up processes. Additionally, there is inconsistency in the quality of
data acquisition, and much of the data from the past five decades has been col-
lected through manual annotations and paperwork, difficulting the translation
to computational environments.
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• Model Complexity and Interpretability: As ML models become more complex,
interpreting their decision-making processes becomes more challenging. This
"black box" nature can hinder trust and acceptance, especially in critical fields
like healthcare.

• Computational Resources: Advanced ML models, particularly deep learning,
require substantial computational power for training and inference, which can
be costly and environmentally impactful.

• Generalization vs. Overfitting: Creating models that generalize well to new,
unseen data while avoiding overfitting to the training dataset is a delicate bal-
ance. Overfitting leads to models that perform well on training data but poorly
in real-world applications. In clinical practice, it’s imperative for models to be
versatile and applicable across various settings, including different centers and
countries, ensuring they deliver reliable and generalizable outcomes.

• Ethical Concerns and Bias: ML models can inadvertently perpetuate or am-
plify biases present in their training data, leading to unfair or unethical out-
comes. Ensuring models are fair and unbiased is a significant challenge.

• Dynamic Environments: In many applications, the environment in which the
model operates can change over time, a phenomenon known as concept drift.
Models need to be adaptable and capable of learning from new data without
forgetting previous knowledge.

• Labeling Costs: For supervised learning, obtaining a large amount of accu-
rately labeled data can be expensive and time-consuming, limiting the speed
and scope of model development.

• Integration with Existing Systems: Integrating ML models into existing IT sys-
tems and workflows can be challenging, requiring significant effort to ensure
compatibility and performance. Clinicians should be trained in their use and
understanding for a better clinical outcome.

2.3 State-of-the-Art

Radiomics, originally emerging within the domains of oncology and radiology imag-
ing (Shur et al., 2021), have recently seen a surge in their application to cardiovas-
cular imaging. Given the voluminous influx of new research on this topic, several
works have pivoted towards offering extensive reviews to encapsulate the evolving
landscape (Polidori et al., 2023; Rizzo et al., 2018).

Radiomics have been applied to a wide range of cardiovascular applications.
For example, in Kolossváry et al., 2017; Koskinas et al., 2015; Schlett et al., 2013 ra-
diomics are used to evaluate and characterize cardiovascular issues related to coro-
nary plaques. In Baessler et al., 2019, they delved into the differential potential of
radiomic features extracted from cardiac magnetic resonance (CMR) imaging, aim-
ing to distinguish between ischemic cardiomyopathy and dilated cardiomyopathy.
Their findings indicated high diagnostic accuracy from machine learning models
built upon radiomic signatures. Another publication, A et al., 2023 team focused
on left ventricular remodeling in patients with dilated cardiomyopathy, utilizing ra-
diomic features from echocardiography. Their findings illustrated that specific ra-
diomic metrics could potentially predict adverse remodeling. In Pu et al., 2022, they



2.3. State-of-the-Art 33

embark on a radiomic analysis to identify fibrosis within hypertrophic cardiomy-
opathy using cardiac magnetic resonance (CMR) cine imaging. Fibrosis, a critical
pathological feature of hypertrophic cardiomyopathy, can play a pivotal role in prog-
nosis and management. The research potentially delves into the capabilities of ra-
diomics to enhance the precision of fibrosis detection through CMR, offering insights
that could refine diagnostic and prognostic processes. In Neisius et al., 2019, they
delve into the potential of radiomic analysis in distinguishing between hypertensive
heart disease and hypertrophic cardiomyopathy using myocardial native T1 imag-
ing. Both conditions, although distinct, might present overlapping clinical and imag-
ing characteristics. This study possibly highlights the utility of radiomic features to
offer enhanced diagnostic precision, aiding in the differentiation between these two
heart conditions. Another example can be depicted in Neisius et al., 2020. In this
work, the authors investigate the potential of texture signatures derived from native
myocardial T1 imaging as innovative markers for identifying patients with hyper-
trophic cardiomyopathy, especially those without evident myocardial scarring. Hy-
pertrophic cardiomyopathy, a prevalent heart condition, can often present without
clear scar tissue, making diagnosis challenging. This study seeks to understand if
specific texture signatures from native myocardial T1 imaging can offer enhanced
diagnostic capabilities and help in the early and precise identification of such pa-
tients. Another similar example as the previous one can be found in Schofield et
al., 2019. The primary objective of their study was to discern whether such texture
analysis using radiomics can differentiate between various causes or aetiologies of
left ventricular hypertrophy (LVH), a condition characterized by the thickening of
the heart’s left ventricular wall. Differentiating the underlying causes of LVH can
be vital for appropriate treatment and prognosis. The study underscores the poten-
tial of advanced imaging techniques, such as texture analysis of CMR cine images,
in enhancing diagnostic precision and providing more insights into the heterogene-
ity of LVH presentations. Throughout the various chapters outlined below, we will
explore the current state-of-the-art and findings related to the specific research in-
quiries addressed in each of the chapters.
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Chapter 3

Radiomics-Based Classification of
Left Ventricular Non-compaction,
Hypertrophic Cardiomyopathy,
and Dilated Cardiomyopathy in
Cardiovascular Magnetic
Resonance

3.1 Introduction

Cardiomyopathies (CMs) are defined as primary myocardial disorders in the ab-
sence of other conditions that may affect the structural or functional properties of
the heart’s muscle (Elliott et al., 2007). CMs are divided into distinct morphologic
phenotypes (Elliott et al., 2007), including hypertrophic cardiomyopathy (HCM) and
dilated cardiomyopathy (DCM) as two of the most prevalent CMs. HCM is charac-
terized by an increase in left ventricular (LV) wall thickness (“2014 ESC Guidelines
on diagnosis and management of hypertrophic cardiomyopathy” 2014), DCM by
LV (or biventricular) systolic dysfunction and dilatation (Pinto et al., 2016), while
both disorders are unexplained by loading conditions. Left ventricular noncom-
paction (LVNC) is a recently defined and poorly understood condition, character-
ized by prominent LV trabeculae, a thin compacted myocardial layer, and deep inter-
trabeculae recesses (Jenni, Oechslin, and Loo, 2007).

Cardiac magnetic resonance (CMR) is current the gold standard imaging modal-
ity for the clinical assessment of CMs, as well as to identify and differentiate the
different phenotypes. CMR is widely used in the diagnosis of HCM (Cardim et
al., 2015), DCM (Donal et al., 2019) and LVNC (Petersen et al., 2005; Jacquier et al.,
2010; Captur et al., 2013). However, some LVNC features can overlap with those of
other CMs and LVNC patients might present with morphological findings of HCM
and/or DCM (Oechslin and Jenni, 2018). Furthermore, hypertrabeculation may also
occur in the healthy population, which makes it challenging to differentiate physio-
logic from pathological hyper-trabeculation forms (Oechslin and Klaassen, 2019) by
CMR. The difficulties to differentially and timely diagnose LVNC in clinical practice
has motivated the development of new imaging indices, in particular, the Petersen
(Petersen et al., 2005) and Jacquier (Jacquier et al., 2010) coefficients, which estimate
the level of hypertrabeculation in the LV myocardium. However, these coefficients,
while they improve LVNC diagnosis (Captur et al., 2013), are challenging and te-
dious to estimate in practice, as they require expert and accurate identification and
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delineation of the trabeculae on the CMR images. This is a time-consuming task that
is furthermore subject to inter-observer variability given the inherent complexity of
the trabeculae.

Radiomics is an emerging image analysis technique for deeper phenotyping of
cardiovascular health and disease in CMR (Raisi-Estabragh et al., 2020b). It enables
the examination of a large pool of advanced imaging features that describe a wide
range of complex, as well as subtle traits of the cardiac tissues at different scales
and locations. Compared to existing cardiac indices such as those listed above, ra-
diomics features encode multivariate information by capturing and combining het-
erogeneous morphological (e.g. sphericity, compactness) and appearance (e.g. en-
tropy, coarseness) properties of the tissues. Hence, in the last years, several works
have shown its potential for identifying new imaging signatures that can be lever-
aged for enhanced cardiac disease understanding ((Cetin et al., 2020; Amano et al.,
2018)) and quantification (Aerts et al., 2014; Neisius et al., 2019; Cheng et al., 2018). In
addition to providing comprehensive indicators of cardiac health and disease, CMR
radiomics features are easier to calculate as they only require the segmentation of
the myocardial boundaries, and even this segmentation process can be automatized
(Campello et al., 2021).

This chapter presents the first to develop and evaluate a radiomics model for au-
tomatically differentiating LVNC, DCM, and HCM phenotypes in CMR. Based on a
clinical dataset comprising different CM subgroups as well as healthy subjects from
routine clinical practice, a machine learning pipeline is implemented to combine
multiple radiomics features into a novel discriminative model of LVNC, HCM, and
DCM. Subsequently, the obtained radiomics model is evaluated in great detail and
its performance compared to the one obtained based on CMR indices, including the
existing, manually estimated trabecular indices of LVNC. The results described in
chapter show the promise of the proposed radiomics approach for achieving state-
of-the-art LVNC, HCM, and DCM differential diagnosis more efficiently, while re-
moving the need for the delineation of the LV trabeculae.

3.2 Data and Methodology

3.2.1 Dataset

The study cohort consists of 118 subjects, including 37 DCM, 25 HCM, and 35 LVNC
patients, as well as 21 healthy control (NOR) subjects. HCM and DCM populations
were available from the 2020 M&Ms MICCAI Challenge dataset (Campello et al.,
2021). All patients for this study were assessed at the Hospital Universitari Vall
d’Hebron (HUVH) following standard CMR protocols. Table 3.1 summarizes the
clinical diagnostic criteria for each disease. In short, HCM, DCM, and LVNC diag-
noses were established by expert cardiologists based on currently accepted imaging
criteria (Cardim et al., 2015; Donal et al., 2019; Petersen et al., 2005; Jacquier et al.,
2010) combined with other clinical data, such as electrocardiography, family history,
and genetics. The mean age of the cohort was 49.4 ±17.97 and 76 subjects (65% of
the cohort) were men (see Table 3.2 for more detailed information).

3.2.2 CMR clinical indices

All patients underwent a standard CMR protocol. In brief, all scans were performed
with a 1.5 Tesla scanner (Avanto, Siemens Healthcare, Erlangen, Germany), with
typical cine parameters as follows: TR/TE (repetition time/echo time) =3.2/1.5 ms,



3.2. Data and Methodology 37

TABLE 3.1: Cohort size for each specific disease/control and clinical
criteria for inclusion.

Disease Cohort size Clinical inclusion criteria

DCM 37 Depressed LVEF with increased LV volumes. Usually nor-
mal LV mass, wall thickness and asymmetry.

HCM 25 Increased LV mass with wall thickness > 15mm and/or
asymmetry > 1.3. Ussually preserved LVEF.

LVNC 35 Jacquier ratio > 20% and Petersen ratio > 2.3. LVEF, LV
volumes, LV mass and wall thickness can be normal or not.

NOR 21 Normal conventional CMR values. No history of relevant
cardiovascular disease or systemic diseases.

voxel size 1.4 × 1.4 × 8 mm, and a slice gap of 2.0 mm. The temporal resolution
was interpolated to 25 phases per cardiac cycle (28-37 ms). The protocol includes a
complete cine short-axis ventricular stack with the base to apex coverage acquired
using balanced steady-state free procession (bSSFP) with one breath-hold per image
slice. Short axis cine images were obtained and analyzed. Semi-automatic contour-
ing of LV endocardial and epicardial end-diastolic (ED) and end-systolic (ES) bor-
ders was performed with Circle 42 (CVi 42) software (Calgary, Canada). A total of
9 existing CMR indices were quantified, including LV ejection fraction (LVEF), end-
diastolic and end-systolic LV volumes (EDLVV, ESLVV), LV mass, inter-ventricular
septum (IVS), posterior wall (PW) thickness, asymmetry (IVS/PW), and Petersen
and Jacquier coefficients (Petersen et al., 2005; Jacquier et al., 2010). Right ventricle
contours were not provided for the study; thus features were not considered. How-
ever, these diseases are predominantly related to the LV cavity, therefore missing
information from the right ventricle was not considered relevant. Fractal dimen-
sions (Captur et al., 2013) were not included in the experiments due to its limited
applicability in daily clinical routine and its lack of prognostic correlation (Ivanov
et al., 2017). Additionally, Petersen and Jacquier coefficients (Petersen et al., 2005;
Jacquier et al., 2010; Captur et al., 2013) were considered more validated for this ex-
periments. All CMR analyses were performed by an expert cardiologist with several
years of experience in the field.

3.2.3 Radiomics extraction

From the region of interest provided by the LV endocardial and epicardial contours,
radiomics were extracted from end-diastole (ED) and end-systole (ES) phases, fol-
lowing a pre-established pipeline from the open-source Python (Van Rossum and
Drake, 2009, version 3.7.9) PyRadiomics library (Griethuysen et al., 2017a, version
3.0). A set of 420 radiomics features were extracted from the LV cavity (LV) and LV
myocardium (LVMYO) within the original filter, including different types: 52 shape,
72 first-order, and 296 texture features (see Suppl. Material for a full list of radiomics
extracted). We perform a radiomics features characterization by considering both
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the ED and ES phases to be able to identify disease-specific changes over a heartbeat
cycle of the radiomics features.

3.2.4 Machine learning scheme

From the previous section, a total of 420 radiomics features were extracted and were
potential candidates for inclusion in the targeted radiomics model for disease clas-
sification. However, not all of these features will have predictive power, and hence
feature selection will be first applied to select the most optimal features for the clas-
sification task. We separated this feature selection process into 2 steps. First, we
identify those that are highly correlated, for each feature, and remove them from
the radiomics set as they carry a similar predictive signal. For this purpose, we
estimated Pearson correlation between all features, and those above 0.9 were con-
sidered redundant. It is well-known that radiomics are highly redundant thus, with
this first step we only aimed to remove the most correlated ones, and be further
reduced with a more sophisticated feature selector. The procedure resulted in a re-
duction from 420 radiomics features to only 120. This reduced subset is introduced
in the Pipeline function from Python Sci-kit learn package (Pedregosa et al., 2011,
version 0.24.2) that has three different steps, including the additional feature selec-
tion method mentioned above:

1. Normalization: Data normalization is required before introducing the data
into the machine learning models because different scales in the variables mea-
sured represent that features have different contributions to the model fitting,
and this may introduce bias. We applied the MinMaxScaling function from
the Sci-kit Python library (Pedregosa et al., 2011). The StandardScaler was also
considered, although no significant difference was found with a min-max scal-
ing.

2. Feature selection: The number of features remaining was still large and had
to be reduced before reaching the model building section. For this purpose,
the SelectKBest function from Python’s Sci-kit learn library (Pedregosa et al.,
2011) was performed. The algorithm works by selecting the best features based
on univariate statistical tests. It selects the features according to two different
parameters: highest score function and number of features (k). These parame-
ters had to be defined beforehand. The score function parameter selected was
f_classif, which computes the ANOVA f-value for the sample and provides the
associated p-value for each feature based on the correlation with the class label.
The k parameter is defined as the number of features selected by the feature se-
lector. Prior the analysis, we do not know the optimal number of features to
be selected, therefore the k value before the analysis had to be defined within
the range of parameters from 5 to 120 (i.e. number of possible features it may
select), to be later introduced in the hyper-parameter optimization Grid Search
CV. The number of features selected is tested iteratively, selecting the best k
radiomics according to the score function and tested further with the model.

3. Model building: Three different machine learning algorithms were trained
and tested: One Vs Rest Support Vector Machine (SVM), Multi-class Ran-
dom Forest (RF), and Multi-class Logistic regression (LR) for classification (Pe-
dregosa et al., 2011). According to a recent review (Martin-Isla et al., 2020),
both SVM and RF models were the most used techniques for conventional ML
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for image-based diagnosis. Additionally, prior knowledge from a recent pub-
lication (Rauseo et al., 2021) proved also the reliability of SVM and RF when
dealing with radiomics. Finally, we decided to include Logistic Regression as
one of the most-used techniques in statistical analysis for the purpose of in-
creasing the comparison benchmark.

For evaluation, the experiment is validated in a nested CV scheme Cawley and
Talbot, 2010. We performed a 10-fold outer loop and a 3-fold inner loop (see Figure
3.1 for a more graphical description). This represents that for each fold in the outer
loop, 90% of the data is kept for training and validation, while the remaining 10%
will be held for testing. The same procedure was performed in the inner loop for
each fold. The remaining train and validation data were split into 66% for training
and 33% for validation. All the splits in our scheme were performed with Stratified
K-fold sci-kit learn function (Pedregosa et al., 2011) to keep classes balanced. The
normalization and feature selection steps were performed in each fold of the nested
CV scheme to avoid data leakage. This means that no knowledge of the held test
set was introduced into the training stage, which could corrupt the learning process
and its posterior generalization.

Models’ performance are dependent on the hyper-parameters selected Probst,
Boulesteix, and Bischl, 2019. For this purpose, a Grid Search CV (Pedregosa et al.,
2011) was applied in the inner loop, thus ensuring the optimal hyper-parameters
were selected. Grid Search CV (Pedregosa et al., 2011) is an optimizer algorithm
that calculates the model’s performance for each combination of hyper-parameters
and keeps the one that achieved the highest prediction metric, to be later tested on
the testing held data. (see Table 3.4 in Suppl. Material for the full list of hyper-
parameters used).

Paired t-test on both distributions of testing AUC performances was performed
to analyze the statistical significance for each general machine learning model across
CMR indices and radiomics, as well as for each differential diagnosis (i.e. identifying
a single disease class from the whole cohort) and prove they were comparable. Addi-
tionally, Receiver Operating Characteristic (ROC) curves were calculated to provide
a better representation of the true and false-positive rates for each differential diag-
nosis. Due to the architecture of our Nested CV scheme, we obtain 10 different tests
AUC, one per fold (10Fold outer loop, see Figure 3.1, left side). This means that each
of the 10 models resulted from the Grid Search CV in the inner loop might be differ-
ent (i.e. the combination of hyper-parameters and the number of features selected
may vary depending on different characteristics of the training and validation set).
Thus, to present the most relevant features on average in a single list, we analyzed
the features selected by each of the 10 models and selected for representation those
features that remained constant across the 10 folds and were finally sorted by fea-
ture importance score. With this, we create a highly approximated list of the most
relevant radiomics features for each classification.

Since it is possible that different iterations selected a different number of features
(i.e. for example, fold 1 could select 30 features and fold 2, 40 features), we analyzed
the validation AUC values for each number of features (k=10,20,30,40. . . ) across all
the combination of hyper-parameters to see the effect of increasing the number of
features on AUC (see Figure 3.3). Finally, to provide a more clinical perspective,
we analyzed the implications of feature type (shape, first-order, or texture), region
(LVMYO, LV cavity), and phase (ED, ES) for each differential diagnosis, and linked
them with the existing clinical knowledge.
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FIGURE 3.1: Machine learning validation: 10-fold outer loop Nested
CV and a 3-fold CV inner loop scheme.

3.3 Results

3.3.1 Differentiation of LVNC, HCM, DCM and Normal subjects

In the first experiment, we evaluated and compared the performance of the differ-
ent machine learning models (namely RF, OVR-SVM and LR). As it can be seen in
Table 3.5, the highest AUC values were obtained by the RF technique, for all mod-
els. Hence, the RF technique is used as the baseline models in the remainder of the
experiments.

Subsequently, we performed a comparison between the AUC scores obtained by
the existing CMR indices (i.e. standard model) and radiomics models for classifi-
cation. As it can be seen from Table 3.5, the radiomics model had a comparable
performance to the standard model and there was no statistically significant differ-
ences between the two models (p-value > 0.05). However, the radiomics model was
obtained without the expert delineation of the trabeculae. In more detail, the ROC
curves for the classification models are presented in Figure 3.2.

3.3.2 Radiomics signatures analysis

In this section, we provide more details on the contributions of the different ra-
diomics features to the classification models. We analyzed incrementally the num-
ber of features selected for all the hyper-parameter combinations and we showed in
Figure 3.3 that the AUC values did not increase significantly after integrating 30-40
radiomics features in the model.

To further illustrate the predictive power of the radiomics features, Table 3.7
presents across subsections the 10 best performing radiomics for each differential
diagnosis, sorted by their weighted feature importance (in percentage). Moreover,
Table 3.8 shows the 10 best radiomics features involved for the general RF model.
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TABLE 3.4: Hyper-parameters grid for optimization.

Model Hyper-parameter: [range]

One-vs-Rest SVM C: [0.01,1,10,100,1000]
gamma: [1,0.1,0.001,0.0001]
kernel = [’rbf’]

Random Forest bootstrap: [’True’,’False’]
min_samples_leaf: [3, 4, 5, 6]
n_estimators: [100, 200, 300, 500, 1000]
min_samples_split: [8, 10, 12]
multi_class=’ovr’

Logistic Regression penalty: [l1]
Solver: [’liblinear’]
multiclass = [’ovr’]
max_iter = [100,150]

*Select KBest k: [5,10,15,20,25,30,40,50,60,70,80,90,100,110,120]

C: regularization parameter. RBF: Radial Basis Function kernel. OVR: One-vs-Rest.

TABLE 3.5: Summary table of the testing performance of the selected
models. The table provides AUC values for CMR existing indices and

radiomics, along with the p-value.

CMR indices Radiomics p-value

Models Mean STD Mean STD

One Vs Rest SVM 0.972 0.03 0.942 0.03 > 0.05

Random Forest 0.978 0.03 0.964 0.01 > 0.05

Logistic Regression (multinomial) 0.970 0.03 0.956 0.03 > 0.05

TABLE 3.6: Generic and differential diagnosis AUC testing metrics
for Random Forest model. P-values are presented in the table for sta-

tistical significance analysis and prove they are comparable.

CMR indices Radiomics p-value

General model Mean STD Mean STD

Random Forest 0.978 0.03 0.964 0.01 > 0.05

Differential diagnosis models

DCM-vs-Rest 0.97 0.02 0.93 0.03 > 0.05
HCM-vs-Rest 1.00 0.00 0.99 0.03 > 0.05
NOR-vs-Rest 0.95 0.02 0.97 0.02 > 0.05
LVNC-vs-Rest 0.96 0.04 0.92 0.03 > 0.05
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FIGURE 3.2: Roc curve comparison for differential diagnosis. The left
subfigure represents the CMR indices ROC curve. The right subfigure

represents the radiomics ROC curve.

FIGURE 3.3: In our grid search scheme, we analyzed incrementally
the number of features selected for all the hyper-parameter combi-
nations and we show that validation AUC was not increasing signifi-
cantly once reached 30-40 features, with the lowest STD at 40 features.

AUC when selecting under 10 features reduced drastically.

By looking at Figure 3.4, we can observe that shape features play an important
role when classifying DCM against the rest of the diseases. Alternatively, texture
features have a higher impact in the classification of HCM and healthy subjects, and
even a higher impact in the differential diagnoses of LVNC.

Left side of figure 3.5 shows the distribution of the selected radiomics features
across the cardiac structures (i.e. LVMYO vs. LV cavity). For the identification of
DCM, most of the radiomics features (65%) pertained to the LV cavity, while the
remaining 35% belonged to the LVMYO. Conversely, features extracted from the LV
cavity and the LVMYO participated equally to the identification of HCM and healthy
subjects. Finally, the largest difference in terms of region importance can be found
for LVNC, where almost 96% of the features belonged to LVMYO, with only a 4%
to LV cavity (see Figure 3.5, left image.). This last finding is in line with the existing
clinical knowledge. Normally, papillary muscles are considered inside the LV cavity
and not as a myocardial mass, according to the guidelines and clinical consensus
among cardiologists. But in patients with LVNC conditions, trabeculae and papil-
lary muscles are quantified (within Jacquier coefficient (Jacquier et al., 2010) outside
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FIGURE 3.4: Differential diagnosis overlapping radar plot, comparing
the distribution of the selected radiomics across types of radiomics.

the LV cavity and included in the myocardial mass (LVMYO). For this reason, con-
trary to what the name itself suggests, the assessment between LVNC and the rest of
cardiomyopathies is determined by changes or differences in the LVMYO.

FIGURE 3.5: Distribution of the selected radiomics features across the
cardiac structures (left image, i.e. LV myocardium (LVMYO) vs. LV
blood pool (LV)) and cardiac cycle phase (right image). For this anal-

ysis, all the radiomics selected by the RF model were used.

Regarding the contribution of cardiac cycle phases, ES radiomics were more im-
portant than ED features for the classification of DCM, HCM, and healthy subjects.
However, ES and ED phases play a similar role when assessing LVNC (See Figure
3.5, right image).

Finally, we compared the time needed to obtain the diagnoses using the stan-
dard as well as the proposed radiomics models. With the existing CMR indexes, our
clinical experts spent approximately 9-12 minutes to delineate the trabeculae and
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then derive an LVNC diagnosis, on average. In contrast, for the proposed radiomics-
based approach, the time to assess one subject was reduced to 10-20 seconds depend-
ing on the image characteristics (i.e. volume, slice images or bin width Griethuysen
et al., 2017a).

3.4 Discussion

3.4.1 Summary of findings

Machine learning-based radiomics models showed excellent performance for differ-
entiating between hypertrophic cardiomyopathy, dilated cardiomyopathy, left ven-
tricular non-compaction, as well as healthy subjects. According to the results pre-
sented in Table 3.5 and Figure 3.2, radiomics and existing CMR indices resulted in
similar performances.

The 10-most significant radiomics features for the general RF model comprise
a combination of radiomics types, regions, and heart cycle phases (see Table 3.8).
Looking in detail, myocardium sphericity seems to play an important role in the
overall classification, occupying the first and third spots in terms of predictive power
for the ES and ED phases, respectively. This can be explained by the remodeling of
the heart that affects the global and regional structure of the left ventricle.

Moreover, texture features were found to add substantial information, position-
ing in the second top position of the ranking, which underlines the widely accepted
diagnostic importance of myocardial tissue characteristics such as myocardial fibro-
sis (See Table 3.8). Specifically, Long Run High Gray Level Emphasis is a texture fea-
ture that explains longer contrasted gray level strings/regions, which can be related
to the existence and prominence of myocardial trabeculations, typically associated
with LVNC.

Regarding the radiomics features for each differential diagnosis, differences were
found among the various diseases. Concretely, we can observe how the contribution
of the radiomics features to the prediction are distributed, by type (Fig. 3.4), region
and phase (Fig.3.5). While shape features seem to play the most important role in
DCM classification, texture features are more important when classifying HCM and
LVNC subjects. This finding is in line with clinical knowledge: DCM is defined pri-
marily by a dilation of the left ventricle, while myocardial fibrosis has a pivotal role
in HCM diagnosis and LVNC is defined by the presence of myocardial trabecula-
tions.

3.4.2 Limitations and future work

The findings presented in this chapter must be considered in light of the study limita-
tions, and future work may take different directions. Firstly, while the radiomics per-
formance for automated diagnosis is promising, these results were obtained based
on a single-centre small-size clinical cohort. To confirm these promising results, fu-
ture studies should be extended towards multi-centre studies. Furthermore, this
work relied on semi-automated, manually controlled, delineations of the LV endo
and epi-cardial contours on the short-axis images, before the extraction of the exist-
ing indices and radiomics features. However, automatic segmentation of the ventric-
ular boundaries has been extensively investigated using deep learning (Campello et
al., 2021) and these models could be extended to segment pathological cases in par-
ticular for LVNC. Finally, this chapter focused on the diagnosis of LVNC and related
CMs. In clinical practice, subsequently, prediction of LVNC related events before
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they occur would enable early and personalized prevention. Our plan is to extend
the proposed radiomics models to enable patient-specific risk prediction and prog-
nosis estimation after LVNC diagnosis.

3.5 Conclusions of Chapter 3

CMR radiomics constitutes a promising approach to differentially diagnose over-
lapping and complex conditions such as HCM, DCM, and LVNC. The classification
performance of radiomics models are in-line with the one obtained by using existing
CMR indexes but the diagnoses can be reached fully automatically without the need
for expert delineation of the trabeculae as in previous works.
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TABLE 3.7: Top-10 best performing radiomics for each differential di-
agnosis, divided across subsection.

DCM vs Rest

Radiomics feature Type Region Phase Weight (%)

Minor Axis Shape LVMYO ES 7.0
Volume Shape LV ES 6.7
Least Axis Shape LVMYO ES 5.8
Max2D diameter Slice Shape LV ES 5.5
Least Axis Shape LV ED 5.4
Least Axis Shape LVMYO ED 5.1
Long Run High Gray Level Emphasis GLRLM LV ES 5.1
Minor Axis Shape LVMYO ED 5.0
Volume Shape LV ED 5.0
Sphericity Shape LVMYO ES 5.0

HCM vs Rest

Radiomics feature Type Region Phase Weight (%)

Surface Area to Volume Ratio Shape LVMYO ES 7.4
Sphericity Shape LVMYO ES 7.2
Large Dependence High Gray Level E. GLDM LV ES 6.9
Long Run High Gray Level E. GLRLM LV ES 6.7
Sphericity Shape LVMYO ED 6.2
Skewness First Order LV ES 5.3
Gray Level Non Uniformity GLSZM LV ES 5.1
Autocorrelation GLCM LV ES 5.0
Energy First Order LV ES 4.9
Surface Area to Volume Ratio Shape LV ES 4.8

NOR vs Rest

Radiomics feature Type Region Phase Weight (%)

Gray Level Non Uniformity GLRLM LV ES 6.5
Run Length Non-Uniformity GLRLM LVMYO ES 6.0
Sphericity Shape LVMYO ES 5.9
Low Gray Level Run E. GLRLM LVMYO ED 5.7
Dependence Variance GLDM LVMYO ES 5.7
Max2D diameter Slice Shape LVMYO ES 5.2
Gray Level Non Uniformity GLSZM LVMYO ES 5.2
Long Run High Gray Level Emphasis GLRLM LVMYO ED 5.2
Max2D diameter Slice Shape LV ES 5.0
Minor Axis Shape LV ED 4.9

LVNC vs Rest

Radiomics feature Type Region Phase Weight (%)

Large Dependence Low Gray Level E. GLDM LVMYO ES 6.6
Surface Area to Volume Ratio Shape LVMYO ED 6.5
Inverse Variance GLCM LVMYO ES 6.1
Long Run Emphasis GLRLM LVMYO ES 5.9
Large Area Low Gray Level E. GLSZM LVMYO ES 5.7
Large Dependence Low Gray Level E. GLDM LVMYO ED 5.6
Large Area Emphasis GLSZM LVMYO ED 5.2
Zone Percentage GLSZM LVMYO ED 5.1
Long Run Emphasis GLRLM LVMYO ED 5.1
Percentile 90 First Order LVMYO ES 4.8
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Chapter 4

Atrial Fibrillation Prediction by
Combining ECG Markers and
CMR Radiomics

4.1 Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia. It is characterized by
an irregular heart rhythm and often abnormally rapid heart rate. The most common
complications of AF are increased risk of stroke, heart failure, and death (Chugh et
al., 2014). These complications may be mitigated by early AF detection and initia-
tion of appropriate treatments, such as anticoagulation and rate control therapies.
Cardiac structure and electrical activity are two important, inter-linked aspects of
cardiac health and disease. The cardiac conduction system is complex and depends
on the global and local structure of the cardiac chambers. The occurrence of AF is
linked to distinct electro-anatomic cardiovascular remodeling (Pellman and Sheikh,
2015). Electrical recordings of the heart such as the 12-lead electrocardiograms (ECG)
provide indications of cardiovascular health. The ECG is a dynamic physiological
signal that represents the electrical activity of the heart. It is widely used to identify
patterns or abnormalities in cardiac rhythms and waveforms. ECG recordings are
the main clinical tool for AF diagnosis (Hagiwara et al., 2018). The best indicators are
the absence of the p-wave degenerating into small magnitude fibrillatory waves and
the irregularity of R-R intervals indicating irregular conduction of atrial impulses
through the atrioventricular (AV) node to the ventricles. The study of the QRS com-
plex, a combination of the Q wave, R wave and S wave that represents ventricular
depolarization, might also add some information by analyzing the height of the am-
plitude or the size of the interval. But the latter indicator might have normal values
even when the AF is present (Fuster et al., 2006). Furthermore, AF frequently occurs
intermittently with the characteristic AF-defining features only apparent when an
individual experiences a paroxysm of AF. Whilst paroxysmal AF is more challeng-
ing to diagnose, it confers the same adverse risks as individuals continuously in an
AF rhythm (Lip, 2001). Emerging deep learning approaches have shown promise in
quantifying complex patterns in cardiac electrical activity (Somani et al., 2021; Liu
et al., 2020). However, there is room for improvement. For patients with undiag-
nosed AF, ischemic stroke may be the first clinical manifestation of the condition.
AF is detected for first time in approximately one-fourth of patients presenting with
ischemic stroke(Sposato et al., 2022; Howlett et al., 2015). Early detection of AF may
enable early intervention and prevention of ischemic stroke. There are numerous
conference challenges, particularly organized by Physionet, which aim to address
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early detection using machine learning techniques. In spite of the successful re-
sults, the existing works in the literature do not stratify by sex. This is an important
consideration given significant sex differential patterns in AF highlighted in clinical
papers. The estimated prevalence of AF is lower in women, whilst this may reflect
genuine lower burden of AF in women it may also indicate under-diagnosis in this
population (Ko et al., 2016). Indeed, women with AF experience higher mortality
and ischemic stroke and are less often prescribed anticoagulation treatment (Kassim
et al., 2017). Cardiovascular Magnetic Resonance Imaging (CMR) plays an impor-
tant role in the diagnosis of complex cardiac diseases. Recently, the concept of ra-
diomics has attracted significant attention in the cardiac imaging community (Raisi-
Estabragh et al., 2020b) due to its ability to quantify and analyse large pools of ad-
vanced imaging phenotypes, which are descriptive of complex shape, size, intensity
or textural patterns. Preliminary results have shown the promise of CMR radiomics
for AF discrimination (Cetin et al., 2018). CMR radiomics extracts a large number of
quantitative features using data characterization algorithms. These techniques are
very promising for deeper image phenotyping of cardiac structure and tissue (Raisi-
Estabragh et al., 2021b). The combination of imaging phenotypes and ECG features
for AF detection has not been explored in the existing literature. Yet, such an ap-
proach may enable integration of complementary signals and hence improve AF de-
tection by considering both anatomical and electrical alterations. In this chapter, we
aim to evaluate the feasibility of combining cardiac imaging with ECG features for
AF detection considering sex-differential patterns. Integrated risk prediction models
were built combining CMR radiomics and ECG parameters, separately for men and
women. Morphological, temporal and non-linear features were extracted from the
ECG waveforms. The study was performed using the UK Biobank resource, a large-
scale health database publicly available under request. To our knowledge, it is the
first time, that the combination of ECG and imaging are explored. The inclusion of
radiomics allows a more precise information of the AF event and quantifies the com-
plexity of cardiac structure and remodeling providing a complementary information
additionally to the ECG test.

4.2 Related work

The related works can be divided into three categories according to the computation
of the features: ECG features extracted from the waveforms with machine learning
techniques, ECG features extracted from deep learning methods and hybrid frame-
works that combines traditional ECG features with the ones extracted using deep
learning algorithms. Classical approaches were mainly based on morphological
features of the ECG signal in time domain such as heartbeat, analysis of intervals
and amplitudes of QRS, QT, PR and R-R (Athif, Yasawardene, and Daluwatte, 2018;
Zong, Mukkamala, and Mark, n.d.). Those studies, with satisfactory results, may be
sensitive to the ECG noise. To alleviate this issue, the morphological features were
computed in other domains such as in the frequency or time–frequency domain.
Some examples of these features are power spectral density of the R-R intervals and
frequency bands (e.g., ultra low , very low and low). Non-linear features were also
considered as the model of the heart cannot be reduced to a linear function as it also
involves a nonlinear contribution (Acharya et al., 2006; Rizwan et al., 2021). Some
works combining ECG features in different domains are the following: Yin et al.,
2019 proposed a multi-domain ECG feature extraction method20. The multi-domain
features were composed of nonlinear and frequency domain features, which were
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used as input features to train and test an SVM classifier model. Zabihi et al., 2017
also proposed a multi-domain ECG feature extraction which included time-domain
features, time-frequency, phase-space based on non-linear features and meta-level
information. Random forest classifier was applied for feature selection as well as
for classification. As the technology evolves, more data can be processed, and deep
learning techniques emerge. Many works have applied deep learning for feature ex-
traction using convolutional neural networks (CNN)(Zubair, Kim, and Yoon, 2016;
Kiranyaz, Ince, and Gabbouj, 2016; Hsieh et al., 2020), long and short memory net-
works (LSTM) (Schwab et al., 2017; Faust et al., 2018) as well as their variants (Xia
et al., 2018; Andersen, Peimankar, and Puthusserypady, 2019; Fan et al., 2018). Other
studies have applied deep learning to obtain new features and fused them with tra-
ditional features. Some examples are the following. Smoleń, 2017 created an initial
model using Recurrent Neural Network (RNN) classifier, that was fed by lengths of
intervals between following R peaks. The computed probabilities for each class were
combined with hand-designed features and used as an input for Gradient Boosting
Machine (GBM) classifier. The features selected were categorized into 5 categories:
statistical features, QRS morphology features, RR-interval features, noise features,
and frequency-based features. The performance of those methods was very promis-
ing. Most of them used publicly available databases within conference challenges.
However, the main issue of deep learning techniques is that a large number of sam-
ples are required in order to ‘learn’ and generally, hospitals do not have enough
cases to use this type of methods.

Additionally, the AF might not be registered on standard of care 12-lead ECG
during hospital visits, opening a new line of research into AF detection using portable
devices such as smartwatches (Dörr et al., 2019; Bumgarner et al., 2018; Perez et al.,
2019). Those devices might not be as sophisticated and exact as clinical ECG devices.
But it has the advantage that it can deal with the early detection of the AF as long
periods of signal are recorded. Screening is suggested as one strategy to increase AF
detection rates and start anticoagulation in an earlier stage in high-risk individuals.
Screening by opportunistic pulse palpation or ECG rhythm strip is already recom-
mended by the European Society of Cardiology (ESC) in all patients older than 65
years contacting health services and by the National Institute for Health and Care
Excellence (NICE) where patients have a symptom suggestive of AF (Welton et al.,
2017).

Another line of research is using risk factors, biomarkers, ECGs or a combination
of risk factors and imaging features in order to predict incident cases of AF. A strong
causal relationship between natriuretic peptides NT-proBNP, BNP and MR-proANP,
and incidence of AF was ruled out by Geelhoed et al., 2020 Vascular risk factors in-
cluding diabetes, hypertension as well as daily lifestyle variables such as smoking
and obesity(Chyou et al., 2015; Wong et al., 2020) have also been studied in rela-
tion to incident atrial fibrillation as well as the inclusion of CMR Imaging (Pujadas
et al., 2020), in recent studies. ECG features have also been analyzed to study the
possibility to develop AF (Aizawa, Watanabe, and Okumura, 2017). In spite of the
promising results, the studies are in an initial stage of research and have not been
integrated in clinical routine.
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4.3 Methods

4.3.1 Population and Setting

UK Biobank is a large-scale health database containing over a half million of partic-
ipants aged between 40 and 69 years old and recruited across UK between 2006 and
2010. It is a powerful research resource including biomarkers, medical records, risk
factors, clinical tests and physical measurements to study the most common and
life-threatening diseases. The database is regularly updated with additional data,
making it a potential source for research purposes. AF was detected through the
Hospital Episode Statistics (HES) system, a database containing clinical details of all
the admissions of the NHS hospitals in England, to provide a continuous follow-up
of the participants.

FIGURE 4.1: The process to select the data from the UK Biobank.

4.3.2 Study design and data

From the 495 prevalent AF cases in the UK Biobank cohort, we selected all the pa-
tients with AF who underwent both ECG and the CMR scan and the corresponding
segmentation of the Left Ventricle (LV) and Right Ventricle (RV) cavities as well as
the left and right atria were available (n=383). To analyze the differences between
sexes, we separated the data into female (n=121) and male (n=262) participants. Of
these, 45 women and 49 men were in sinus rhythm at the time of their ECG record-
ing. The healthy controls were defined as participants who were not diagnosed with
AF and had a normal sinus rhythm on their ECG. For the healthy controls, we con-
sidered the first 2000 UK Biobank participants for computational purposes with ECG
and CMR imaging. To avoid unbalanced models, the same number of healthy con-
trols were randomly selected for each sex (Figure 4.1).

4.3.3 Feature extraction

The features of ECG were extracted in temporal, morphological and non-linear do-
mains. Radiomics features were computed from the LV and RV segmentations in
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FIGURE 4.2: The figure shows four-chamber cine CMR images in
end-diastole from two female UK Biobank participants. Our mod-
els selected the most important radiomics features from the left atrial
region of interest. The arrows show the axis, and the circular shape
indicates the sphericity. The first image (a) shows an AF patient with
a larger axis and pronounced oval sphericity. The second image (b)
illustrates a healthy subject with normal atrial dimensions, with more

circular sphericity and a smaller axis than an AF patient.

end-systole (ES) and end-diastole (ED) phases from short- and long-axis cine CMR
images. The radiomics of the atrias were computed from the long-axis images. In
this section, we will explain in detail how the features were extracted.

4.3.4 Radiomics Feature extraction

Radiomics features were extracted from the CMR images and the corresponding
contours from three segmented ROIs: LV and RV cavities and LV myocardium in
ED and ES in short axis. The segmentation of the ROIs was performed manually by
expert cardiologists by defining the contours with points with a different label for
each ROI using CMR and CT Software (CVI42). The segmentations for each patient
were exported in a single xml file containing the contour points for the RV, LV and
MYO segmentations. In order to convert each contour into a binary mask, we de-
veloped an in-house software that transforms CVI42 contours into readable format
contours (euCanSHare n.d.). We also obtained the atrial segmentation using an auto-
matic segmentation model based on a traditional U-Net architecture. First, a man-
ual segmentation was performed by clinical experts in 764 datasets from Barts Heart
Centre, UK.Then, data augmentation techniques were used for generalizability of
the model such as small rotations, random contrast adjustments and random inten-
sity histogram shifting. The Adam optimizer was used with a learning rate of 0.0001
and 0.9 and 0.999 for first and second moments, respectively. The model was then
trained with a batch size of 16 256x256 images with 100 epochs. The loss function
used was cross entropy. We computed the radiomics using the open-source python-
based PyRadiomics library (version 2.2.0). To harmonize the images, the histogram
matching technique was applied given a reference image. A binwidth of 25 was
used to discretize the grey values of the image as it is the default parameter selected
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by pyradiomics. We extracted the relevant information present in the image by us-
ing three classes of features: 1. First Order Features: are histogram-based features
related to the distribution of the gray level values in the tissue, without focusing
on their spatial relationships. 2. Shape Features: describe geometrical properties of
the organ, such as volume, diameter, minor/major axis and sphericity. 3. Texture
Features: are derived from images and allow quantification of spatial relationships
among pixels. The shape radiomics of all the ROIs both for the short axis and long
axis were all considered. However, the first-order and textural features were only
considered from the LV myocardium as the other ROIs included parts such as the
papillary muscles that can alter the intensity signals within the ventricular and atrial
cavities. Shape features derived from the LV myocardium, LV, RV and LA, RA were
selected for the analysis, while first-order and textural features derived only from
the LV myocardium were used. A total of 420 atrial radiomics features were com-
puted in long axis where each ROI contained the same number of features of each
type (ROI shape n=24, ROI first-order n=36, ROI texture n=150). Additionally, 262
radiomics features both for short and for long axis were included from each CMR
study (LV shape n=26, RV shape n=26, MYO shape n=26, LV myocardium first-order
n=36, LV myocardium texture n=148).

4.3.5 ECG Feature extraction

We extracted the features of the ECG signals that are related according to literature
with AF. We do not use the whole ECG signal as an input of the classification method
to avoid overfitting. The ECG features for morphological, classical and non-linear
features were computed using the open source code for ECG feature extraction in
AF implemented in Matlab and mainly based on Physionet library (Andreotti et al.,
2017). Firstly, classical ECG features were extracted based on morphological fea-
tures in time domain including heartbeat intervals, analysis of QRS, QT, PR, R-R
intervals and amplitude. For robustness, morphological features in frequency do-
main were also extracted including power spectral density of the R-R intervals and
frequency bands (ultra-low, very low, low and high frequency and Ratio of low-
to high-frequency power). Finally, non-linear features were also considered as the
model of the heart is not only linear but also involves a nonlinear contribution. In
this work, Poincaré Plot was used to extract non-linear features in ECG. Poincaré
Plot is a 2D dimensional scatter plot where each point represents the RR interval as a
function of the previous RR interval. The Poincaré analyzes quantitatively the shape
of the plot which provides rich information of the behavior of the heart. For exam-
ple, the plot for a patient with AF has a more circular shape than a healthy subject
that is similar to a comet along the line of identity (Henriques et al., 2020).In order to
determine the geometric appearance of the plot quantitively, some techniques such
as ellipse fitting, correlation coefficient and histogram-based methods were imple-
mented. Additionally, the Sample entropy was computed to measure the complexity
of the time series (Shaffer and Ginsberg, 2017). We proposed a multi-domain ECG
feature extraction method including classical, non-linear and frequency domain fea-
tures with a total number of 116 features. The second lead was used to extract the
features as both old devices and the wearable devices are using a single lead. Ac-
cording to literature, the second lead provides the most valuable information (S. Luz
et al., 2016; Murat et al., 2021) including P, QRS and T waves. For that reason, it is
the most used within the single-lead ECG works and the one with better results from
12-lead ECG recordings (Baalman et al., 2020).
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4.3.6 Feature Selection

Chi-squared test is applied to the features, and selects metrics statistically signifi-
cantly linked to the outcome. The Chi-squared test can be defined as given the data
of two variables, we can get observed count O and expected count E. Chi-Square
measures how expected count E and observed count O deviate from each other. The
formulation is as follows:

A small p-value of the test statistic indicates that the corresponding features is
dependent on the outcome, and it is an important feature. The statistical test returns
each feature’s importance score using the -log of the p-value. A large score value
indicates that the corresponding feature is important. In our approach, the number
of features selected was 30 as the model stabilizes after 30 features.

4.3.7 Statistical Analysis

The experiments were conducted using the Matlab 2021b software. The correlation
between ECG and radiomics was performed using Pearson’s correlation. We used
the fscchi2 function to apply the Chi-Squared test to select the most relevant features.
A hierarchical model was built by combining radiomics with ECG to show the added
value of incorporating radiomics features into the model for women, men and for
both sexes. For comparison, we built the ECG and Radiomics-based models alone.
The models were trained with a Support Vector Machine (SVM) technique which
has been widely used in cardiovascular risk predictions (“Discrete Cosine Trans-
form and Support Vector Machines for Classification Cardiac Atrial Arrhythmia and
Cardiac Normal” 2020; Martinez-Alanis et al., 2020) due to its numerous advan-
tages such as computationally efficient and robustness for real-world applications
as well as the ability to find non-linear relationships through the kernel trick. The
models were tested following a nested cross validation also known as double cross-
validation, in order to minimize a biased evaluation of the accuracy of the model.
Nested cross validation is widely employed in the machine learning field and was
mainly developed to work with small datasets. Compared to standard cross vali-
dation techniques, nested cross validation can help in the reduction of overfitting
and alleviate the limitation of optimistic biases, especially in relatively small sam-
ples. Varma and Simon et al., showed that nested cross validation methods provide
an almost unbiased estimate of the true error compared to standard k-fold cross-
validation particularly when used for both hyperparameter tuning and evaluation
(Varma and Simon, 2006; Iizuka et al., 2003; Raschka, 2018). The method is divided
into two loops: the inner loop is responsible for the selection of the best parameters,
and the outer loop estimates the generalization accuracy66. This procedure splits
the data into training and test folds k times in an outer loop. For each training fold,
the hyperparameter optimization process is performed in an inner loop and returns
the best parameters that minimize the error following the same procedure of parti-
tioning and rotating the training fold into training and validation sets. Using this
scheme, the test folds are never used to build the model, decreasing the possibility
of overfitting. Notice that we have ten models trained with different partitions of the
data not a single partition, making this procedure robust and reliable. Additionally,
all the data has been used for testing making the performance measurements more
reliable. The hyperparameter optimization procedure was performed using greedy
optimization which apply a brute force exhaustive search by trying each combina-
tion of each parameter. Five partitions are used for tuning the parameters of the SVM
for each training fold in the inner loop (5-cross validation) and 10 cross-validation
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for the outer loop with partitions of 90% for training and 10% of testing in each
outer fold. The summary of this procedure is shown in Figure 4.3. We computed to
assess the performance of the models, the receiver operating characteristics (ROC)
curve and area under the curve (AUC), as well as F1-score, accuracy, sensitivity and
specificity over the test set. Additionally, Welch´s t-test was computed for group-
wise comparisons. Several healthy partitions are randomly selected to show that the
model does not depend on the selected data using different random seeds and we
computed the ROC curve for each different partition of the healthy cohort. To com-
pare the models, a paired t-test on the distributions of AUC performances was per-
formed to analyze the statistical significance in a nested cross validation framework
(Izquierdo et al., 2021). Data Availability The datasets generated and/or analysed
during the current study are available online from the , UK Biobank database.

FIGURE 4.3: A nested cross validation scheme.

4.4 Results

4.4.1 Baseline characteristics

We studied 32,121 UK Biobank participants with an average age of 63 (±7.53) years.
51% of the participants were female. A total of 495 participants had prevalent AF.
The AF cohort included a greater proportion of men (69.3%), slightly older individ-
uals with greater comorbidity burden, and higher BMI. For most baseline metrics
there was no statistically significant difference between men and women except in
education level and alcohol intake. Specifically, men were more likely to participate
in higher education (48% vs. 34%) than women and consume alcohol more than 1-2
time a week. The Table 4.1 summarizes the baseline characteristics.

4.4.2 Correlation between ECG and Radiomics features

The correlation between ECG and radiomics features was not very high, as illus-
trated in Figure 4.4. The morphological features were the ones with a certain corre-
lation along all the radiomics features both in short and in long axis. Moreover, a
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higher correlation is shown for radiomics features computed from long axis images
(vs short axis) as these features include atrial radiomics, particularly in the heart rate
variability in temporal and non-linear domain. Thus, ECG features seem to have a
higher correlation with the features related to the atria than with the other regions of
interest of the heart. However, the correlation found is not high between ECG and
radiomics with the two providing additive and complementary information.

FIGURE 4.4: Correlation between ECG and radiomics features show-
ing low correlation between radiomics features extracted from the
short-axis images and a slightly higher correlation with the features
from the long axis images including atrial metrics. Temp temporal,

Freq frequency, HRV heart rate variability, HR heart rate.

4.4.3 Feature Selection for each Model

For the model that includes both sexes, the ECG features which are related to the
heart rate (such as tachycardia) were the most predominant features. The volume
and surface of the left atrial were also important features in the model. Most of the
relevant radiomics features are first, shape and then texture. The region of interest
(ROI) selected for all the features are left atrium (LA) and the phase end diastole
(ED). In Table 4.5, all the selected features are shown for the general model.

For the separate model in women, the most predominant features are mean of RR
and diameter of the LA. The shape and texture variables are also informative model
features. The ranking of importance is lower than the other models. In the model
built with only male participants, the sphericity and volume of the LA are selected
as the most relevant features followed by the ECG features such as tachycardia and
bradycardia. The shape features are the most selected and secondly the texture.

In Table 4.6 and Table 4.7, the features for female and male are described with the
ranking score. In Table 4.8, the repeatability of the variables in women is also shown
in the partitions of the nested-cross validation.

In the three models, ED phase is selected the most and most of the radiomics fea-
tures are from the left atrial ROI. The most predominant features are mainly based
on shape and secondly textural features. First-order features do not have a high
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presence in the models. Figure 4.5 highlights visually the most relevant CMR mark-
ers, in the ED phase from the left atrial, for the women case but for men, it would be
equivalent. The arrows indicate the axis, and the circular shape shows the sphericity.
The AF patient has larger axis with a more oval sphericity than the healthy patient
with a more circular shape of the left atrial.

FIGURE 4.5: The figure shows four-chamber cine CMR images in end-
diastole from two female UK Bi-obank participants. Our models se-
lected the most important radiomics features from the left atrial re-
gion of interest. The arrows show the axis, and the circular shape
indicates the sphericity. The first image (a) shows an AF patient with
a larger axis and pronounced oval sphericity. The second image (b)
illustrates a healthy subject with normal atrial dimensions, with more

circular sphericity and a smaller axis than an AF patient.

4.4.4 Performance of Electro-Radiomics Models

Table 4.2 shows the performance of the models adjusted by sex for the whole sample
and for men and women separately. In the model with both sexes, radiomics did not
show an added value compared with ECG alone or with the combination of both.
In sex-specific analyses, we found poorer performance of the ECG model in women
than men (AUC: 0.77 vs 0.88, p<0.05). The addition of radiomics features improved
the model accuracy for women to similar levels as for the ECG only model in men
(AUC: 0.87 vs 0.88, p >0.05). The sensitivity also increases considerably in women by
adding the radiomics (Sensitivity:0.68 vs 0.79) having a higher detection of AF cases.
According to our experiments, the addition of radiomics features has greater incre-
mental value for AF discrimination in women than for men, where the added value
is not clear. This behavior is not observed if we do not separate the data between
men and women. To show, that the added value of radiomics in women does not
depend on the data selected, we repeated the experiments with another randomly
selected healthy comparator, observing consistent results throughout (Figure 4.6).
In order to test the robustness of the results with respect to covariates, we repeated
the sex-specific experiments adjusting the models by: i) age and sex (p>0.05) and ii)
age, sex and main comorbidities related to AF which are diabetes, high cholesterol
and hypertension (p>0.05). The results in Table 4.3 follow the same pattern than the
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model adjusted by sex. It shows the robustness and strength of the features selected
related to AF of the models.

FIGURE 4.6: Different random partitions of the healthy cohort were
randomly selected to show the added value of radiomics versus ECG
alone in women. For all the cases, the improvement is clear and sta-

tistically significant (p<0.05).

Finally, we extended the statistical analysis of phenotyping prevalent AF by se-
lecting only the cases with patients of AF with a sinus rhythm without being differ-
entiated with a normal ECG of a healthy patient and randomly matched with the
healthy cohort with N=45 and N = 49 for men and women, respectively. Again, the
best added value of adding radiomics is for women reaching an 0.72 of AUC vs 0.54
(p<0.05). The sensitivity increased significantly compared with ECG alone (0.65 vs
0.72). The best general model combining women and men was ECG+ radiomics with
an AUC of 0.61. For men the most predictive model was using radiomics with an
0.59 of AUC. Then, we observe that using radiomics in this scenario, the prediction
improves for all cases, particularly in women. A summary of the results is shown in
Table 4.4.

4.5 Discussion

In this study we demonstrate the feasibility and clinical utility of using an integrative
electro-anatomic model for AF diagnosis. We demonstrate the usefulness of these
models in understanding phenotypic alterations that occur in AF. Importantly, we
identified different electro-anatomical remodeling patterns in male and female pa-
tients with AF. Our findings indicate the usefulness of a more integrative approach
to disease in women, who may have more subtle phenotypic alterations than men,
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particularly in the early disease stages. As ECG is the main clinical tool for AF diag-
nosis, we expected ECG to have better results than radiomics alone, as was shown in
the results for the men and general models. However, we found lower performance
of the ECG model for women than men in AF. This behavior is clearly seen when
the models are split into female and male subjects. The combination of ECG with
radiomics predictors was able to improve the model performance among female
subjects. Radiomics showed less added value for men, however the most relevant
features selected by the Chi-Squared test were radiomics-based features, particularly
from the left atrial. Although, it did not improve the model’s overall accuracy, this
finding suggests that radiomics features may precede ECG changes in both men and
women. The underlying mechanisms of the sex differences in AF are incompletely
understood. The main driving factors reported in the literature are higher body
mass index, larger atria and ventricle size among males (Kishi et al., 2015; McManus
et al., 2010; Magnussen et al., 2017). Notably, atrial enlargement has been linked
to higher risk of incident AF and AF recurrence (Zacà et al., 2007; Raisi-Estabragh
et al., 2021a). Moreover a study by Vegte et al., 2021 demonstrated that genetically
susceptibility to AF increases indexed left atrial volumes and decreases LA ejection
fraction (Vegte et al., 2021). On the other hand, these factors might also impact the
interpretation of the ECG signal. Our results suggest that women with AF have less
overt ECG changes than men. Indeed, women have a higher heart rate at rest due
to hormone effects, autonomic nervous system influences, and intrinsic properties
of the sinus node. The P-wave is significantly shorter as well as the PR interval
and the QRS duration. QT has also a more prolonged corrected interval in women
(Boriani et al., 2017). As an example, prolonged QT interval possibly cause lower
sensitivity for ECG in women with leading to false positive cases. Moreover, shorter
P-waves with lower amplitude might make ECG recordings susceptible to noise and
motion artifacts (Hossain et al., 2019). This means that the subtler radiomics fea-
ture changes are important for improving AF detection in women. Due to the more
pronounced ECG changes among male participants our model can differentiate be-
tween cases and controls with high accuracy using these features alone. Notably,
radiomics features appear dominant in the combined models even for men. This
suggests that radiomics features are more sensitive at picking up AF-related alter-
ations and these changes may complement the information derived from the ECG.
We also performed an extension including only the patients with the diagnosed AF
who were in sinus rhythm at time of their ECG. As expected, ECG was not able to
distinguish between healthy and unhealthy participants. However, the inclusion of
radiomics substantially improved the model performance, particularly in women.
Importantly, increased atrial volume (Bertelsen et al., 2020) and atrial fibrosis (Sohns
and Marrouche, 2020) might serve as a substrate for AF, and these alterations can be
picked up by radiomics features. Although further information is needed to better
describe the link between atrial radiomics features and biological precursors of AF.
The utility of artificial intelligence-based methods has been already demonstrated in
the detection of AF, importantly sex differences are rarely addressed in these studies.
The Apple Heart Study assessed the ability of an irregular pulse notification algo-
rithm to identify AF in 419,297 (42% female) individuals (Perez et al., 2019). Overall,
2161 (21% female) participants received a notification and 34% of cases were clini-
cally confirmed from the total number of users detected by the smartwatch. In the
study positive predictive value of an irregular pulse notification was 0.84 (95% CI,
0.76–0.92), supporting the ability of the algorithm to correctly identify atrial fibril-
lation, mainly among white male subjects. Notably, the datasets collected among
smart device users rarely permit the assessment of sex differences, as man are more
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likely to own these devices in the first place (Guo et al., 2019). AI applications are
also used in the monitoring (Gopinathannair et al., 2020), risk stratification (Ino-
hara et al., 2018) and management of AF patients. As a future work, we will extend
this research to other cohorts to generalize the models and validate them to external
data. With the inclusion of more data, we will also explore deep learning techniques
combining all leads with the features that we identified in this work to improve the
model accuracy. Moreover, we will also differentiate between certain types of atrial
fibrillation to find phenotypes in each category instead of atrial fibrillation patients
in general. We will also test the utility of the present model to predict incident AF.

4.5.1 Limitations

Our ascertainment of AF status relied on clinical diagnoses. A limitation of this
approach is that we would not capture as yet clinically unrecognized AF cases. As
a result, some of the participants labelled as controls in our study may have low
burden or paroxysmal AF that is not yet clinically identified. The impact of such
misclassification would be attenuation rather than spurious high performance of
our models. Additionally, the models were not validated externally limiting the
generalizability of our results.

4.5.2 Conclusions

In this study of the UK Biobank participants we demonstrated that an ECG-based
model had lower accuracy to detect AF in female subjects compared to males. The
inclusion of CMR radiomics combined with ECG increased the model performance
in women. Especially CMR derived radiomics shape features of the LA had robust
role in the betterment of our models, suggesting the critical role of atrial remodeling
in the disease mechanism of AF. The main universal implication is that a combined
approach of ECG and atrial imaging might lead to better assessment of female par-
ticipants suspected of AF. As a further layer of our analysis we selected prevalent
AF patients with normal ECG tests, here, we found that all models got benefit from
adding radiomics. But again, the clearest case was for women with the inclusion of
radiomics with ECG features.



64
Chapter 4. Atrial Fibrillation Prediction by Combining ECG Markers and CMR

Radiomics

T
A

B
L

E
4.1:

Baseline
characteristics

describing
the

w
hole

population,
population

w
ithout

A
F,

patients
w

ith
A

F
in

general
and

sex-
specific.In

bold,the
characteristics

w
ith

notsignificantdifferences.

C
h

a
ra

cte
ristics

W
h

o
le

p
o

p
u

la
tio

n
(n

=
3

2
,1

2
1

)
S

u
b

je
cts

w
ith

o
u

t
A

F
(n

=
3

1
,4

2
4

)
P

a
tie

n
ts

w
ith

A
F

(n
=

4
9

5
)

p
-v

a
lu

e
A

F
v

s
n

o
n

-A
F

A
F

in
w

o
m

e
n

(n
=

1
5

2
)

A
F

in
m

e
n

(n
=

3
4

3
)

p
-v

a
lu

e
A

F
in

w
o

m
e

n
v

s
m

e
n

A
ge

m
ean

(std)
63.27

(±
15.2)

62.32
(±

14.8)
68.43

(±
6.23)

<0.001
68.04

(±
6.54)

68.61
(±

6.55)
Fem

ale
sex

n
(%

)
16,658

(51.86%
)

16,462
(52.32%

)
152

(30.40%
)

<0.001
152

(100%
)

0
(0%

)
0.29

Tow
nsend

deprivation
index

m
edian

(IQ
R

)
-1

.9
5

(±
3

.3
0

)
-2

.6
4

(±
3

.3
0

)
-2

.7
4

(±
3

.5
4

)
0.66

-2.73
(±

3.50)
-2.74

(±
3.55)

0.43
Body

m
ass

index
m

ean
(kg/m

2)
2

6
.5

7
(±

4
.3

5
)

2
6

.5
5

(±
4

.3
4

)
2

7
.7

9
(±

4
.5

3
)

<0.001
27.91

(±
5.41)

27.74
(±

4.09)
0.73

C
urrentsm

oker
n

(%
)

2
0

3
2

(6
.3

2
%

)
1

9
9

3
(6

.3
4

%
)

2
6

(5
.2

5
%

)
0.32

5
(3.28%

)
21

(6.12%
)

0.19
H

ypertension
status

n
(%

)
4

3
9

7
(1

3
.6

8
%

)
4

1
7

7
(1

3
.2

9
%

)
1

6
5

(3
3

.3
3

%
)

<0.001
48

(31.57%
)

117
(34.11%

)
0.58

H
igh

cholesterolstatus
n

(%
)

7
2

7
2

(2
2

.6
3

%
)

7
0

5
5

(2
2

.4
5

%
)

1
6

4
(3

3
.1

3
%

)
<0.001

42
(27.63%

)
122

(35.56%
)

0.08
IPA

Q
(M

ET
m

inutes/w
eek

m
edian

[IQ
R

])
2271

[2360]
1528

[2350]
1532

[2545]
0.84

1543
[2772]

1515
[2373]

0.99
E

d
u

ca
tio

n
le

v
e

l
n

(%
)

Leftschoolage
14

or
younger

421
(1.31%

)
414

(1.31%
)

5
(1.01%

)
0.56

2
(1.31%

)
3

(0.87%
)

0.002
Leftschoolage

15
or

older
2260

(7.03%
)

2198
(6.99%

)
49

(9.9%
)

<0.001
18

(11.84%
)

28
(8.16%

)
H

igh
schooldiplom

a
4229

(13.16%
)

4138
(13.16%

)
56

(11.29%
)

27
(17.76%

)
32

(9.32%
)

Sixth
form

qualification
1820

(5.66%
)

1758
(5.68%

)
24

(4.84%
)

5
(3.28%

)
19

(5.53%
)

Professionalqualification
8953

(27.87%
)

8745
(27.82%

)
143

(28.88%
)

48
(31.57%

)
95

(27.69%
)

H
igher

education
U

niversity
degree

14,438
(44.94%

)
14,144

(45.01%
)

218
(44.04%

)
0.56

52
(34.21%

)
166

(48.39%
)

0.002
A

lco
h

o
l

in
ta

k
e

n
(%

)
1

6
,6

5
8

(5
1

.8
6

%
)

1
5

,9
3

0
(5

0
.5

9
%

)
2

6
8

(5
5

.6
3

%
)

<0.001
13

(8.55%
)

15
(4.37%

)
<0.001

N
ever

1,595
(4.96%

)
1,505

(4.78%
)

28
(5.65%

)
0.32

20
(13.16%

)
15

(4.37%
)

0.19
Specialoccasions

only
2,032

(6.32%
)

1,993
(6.34%

)
35

(7.07%
)

0.21
31

(20.39%
)

19
(5.53%

)
0.94

1–2
tim

es
a

m
onth

993
(3.09%

)
8133

(25.88%
)

109
(22.02%

)
<0.001

31
(20.39%

)
78

(22.74%
)

0.58
3–4

tim
es

a
w

eek
4,397

(13.68%
)

8,896
(28.30%

)
133

(26.86%
)

0.21
36

(23.68%
)

97
(28.27%

)
0.08

D
aily

or
alm

ostdaily
2,727

(8.49%
)

8,096
(25.94%

)
150

(30.30%
)

0.66
52

(34.21%
)

119
(34.69%

)
0.02



4.5. Discussion 65

TABLE 4.2: Average performance of the models for all AF patients
adjusted by sex. The standard deviation is indicated in parenthesis

ECG Radiomics ECG + radiomics

All

F1_score 0.82 0.71 0.81
Accuracy 0.84 0.74 0.81
Sensitivity 0.77 0.66 0.77
Specificity 0.91 0.82 0.86
AUC 0.86 (±0.04) 0.82 (±0.03) 0.87 (±0.04)

Women

F1_score 0.72 0.72 0.78
Accuracy 0.74 0.73 0.78
Sensitivity 0.68 0.69 0.79
Specificity 0.80 0.77 0.77
AUC 0.77 (±0.13) 0.81 (±0.09) 0.87 (±0.05)

Men

F1_score 0.84 0.73 0.82
Accuracy 0.85 0.75 0.82
Sensitivity 0.81 0.69 0.82
Specificity 0.89 0.80 0.82
AUC 0.88 (±0.05) 0.82 (±0.04) 0.89 (±0.06)
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TABLE 4.4: Average performance of the models when the AF patients
have a normal sinus rhythm and normal ECG. The standard deviation

appears indicated in parenthesis.

ECG Radiomics ECG + radiomics

All

F_score 0.49 0.55 0.6
Accuracy 0.53 0.53 0.6
Sensitivity 0.51 0.57 0.62
Specificity 0.56 0.49 0.57
AUC 0.54 (±0.11) 0.59 (±0.12) 0.61 (±0.08)

Women

F_score 0.60 0.6 0.68
Accuracy 0.54 0.59 0.66
Sensitivity 0.65 0.66 0.72
Specificity 0.44 0.52 0.6
AUC 0.54 (±0.23) 0.67 (±0.16) 0.72 (±0.15)

Men

F_score 0.49 0.58 0.5
Accuracy 0.49 0.58 0.54
Sensitivity 0.49 0.57 0.49
Specificity 0.51 0.6 0.59
AUC 0.45 (±0.14) 0.59 (±0.19) 0.56 (±0.19)
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TABLE 4.5: Feature selection for AF for all participants for the electro-
radiomics model.

Feature selection Feature type ROI Phase Importance
tachy 95.7189
brady 95.3946
’LA_shape_SurfaceArea_ED’ Shape LA ED 94.4181
’LA_shape_VoxelVolume_ED’ Shape LA ED 93.3183
’LA_shape_MeshVolume_ED’ Shape LA ED 93.0671
medianRR 92.9818
’LA_shape_Sphericity_ED’ Shape LA ED 92.2226
meanRR 91.1313
’LA_shape_SurfaceVolumeRatio_ED’ Shape LA ED 89.5061
DistCennS 86.7612
’LA_gldm_DependenceNonUniformity_ED’ Texture LA ED 86.5382
’LA_shape_Maximum2DDiameterColumn_ED’ Shape LA ED 86.0905
’LA_shape_Maximum2DDiameterSlice_ED’ Shape LA ED 85.0250
’LA_shape_Maximum3DDiameter_ED’ Shape LA ED 84.4272
’LA_firstorder_Energy_ED’ First-Order LA ED 84.0768
’LA_firstorder_TotalEnergy_ED’ First-Order LA ED 83.5177
’LA_shape_MajorAxisLength_ED’ Shape LA ED 83.3500
’LA_ngtdm_Strength_ED’ Texture LA ED 77.9337
’LA_shape_MinorAxisLength_ED’ Shape LA ED 77.4875
’LA_glrlm_GrayLevelNonUniformity_ED’ Texture LA ED 75.8153
’LA_glszm_GrayLevelNonUniformity_ED’ Texture LA ED 74.2248
’LA_ngtdm_Busyness_ED’ Texture LA ED 74.0887
DlvI2 73.8246
DlvI8 73.8246
’LA_glrlm_RunLengthNonUniformity_ED’ Texture LA ED 72.1410
’LA_ngtdm_Coarseness_ED’ Texture LA ED 69.0288
’LA_gldm_GrayLevelNonUniformity_ED’ Texture LA ED 67.3082
DlvI3 65.5733
DlvI9 65.5733
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TABLE 4.6: Feature selection for AF for women for the electro-
radiomics model.

Feature selection Feature type ROI Phase Importance
meanRR 23.8432
’LA_shape_Maximum2DDiameterColumn_ED’ Shape LA ED 23.2997
Cvlc6 23.2829
brady 22.6090
’LA_shape_Sphericity_ED’ Shape LA ED 22.1852
medianRR 21.1193
tachy 20.5118
’LA_shape_MinorAxisLength_ED’ Shape LA ED 20.4190
’LA_firstorder_TotalEnergy_ED’ First-Order LA ED 20.3422
’LA_shape_VoxelVolume_ED’ Shape LA ED 20.2966
’LA_shape_MeshVolume_ED’ Shape LA ED 20.2541
’LA_shape_SurfaceArea_ED’ Shape LA ED 20.2347
DlvI2 20.1606
DlvI8 20.1606
’LA_shape_SurfaceVolumeRatio_ED’ Shape LA ED 20.0550
’LA_firstorder_Energy_ED’ First-Order LA ED 19.5947
’LA_gldm_DependenceNonUniformity_ED’ Texture LA ED 19.3729
’LA_glrlm_RunLengthNonUniformity_ED’ Texture LA ED 19.2391
’LA_shape_MajorAxisLength_ED’ Shape LA ED 19.0635
’LA_glrlm_GrayLevelNonUniformity_ED’ Texture LA ED 18.6670
DistCennS 18.3854
’RA_shape_MajorAxisLength_ED’ Shape RA ED 17.3390
’LA_shape_Maximum2DDiameterColumn_ES’ Shape LA ES 17.3050
DlvI3 17.0507
DlvI9 17.0507
’LA_glszm_GrayLevelNonUniformity_ED’ Texture LA ED 16.8258
’LA_ngtdm_Coarseness_ED’ Texture LA ED 16.6224
’LA_ngtdm_Strength_ED’ Texture LA ED 16.3346
’RA_shape_Maximum2DDiameterSlice_ED’ Shape RA ED 15.9814
’RA_shape_Maximum3DDiameter_ED’ Shape RA ED 15.9814
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TABLE 4.7: Feature selection for AF for men for the electro-radiomics
model.

Feature selection Feature type ROI Phase Importance
’LA_shape_Sphericity_ED’ Shape LA ED 67.1634
’LA_shape_VoxelVolume_ED’ Shape LA ED 66.8851
’LA_shape_MeshVolume_ED’ Shape LA ED 66.6944
’LA_shape_SurfaceArea_ED’ Shape LA ED 65.4330
’LA_shape_Maximum2DDiameterSlice_ED’ Shape LA ED 64.5759
’LA_shape_Maximum3DDiameter_ED’ Shape LA ED 64.5759
tachy 64.0718
brady 63.9600
’LA_shape_MajorAxisLength_ED’ Shape LA ED 63.9363
’LA_gldm_DependenceNonUniformity_ED’ Texture LA ED 63.8068
Cvlc6 63.3610
medianRR 63.3370
’LA_firstorder_TotalEnergy_ED’ First-Order LA ED 61.8981
’LA_shape_SurfaceVolumeRatio_ED’ Shape LA ED 61.3160
’LA_firstorder_Energy_ED’ First-Order LA ED 60.8644
DistCennS 60.3365
meanRR 59.1486
’LA_shape_Maximum2DDiameterColumn_ED’ Shape LA ED 58.8432
’LA_glrlm_GrayLevelNonUniformity_ED’ Texture LA ED 58.6194
’LA_ngtdm_Busyness_ED’ Texture LA ED 56.8700
’LA_ngtdm_Coarseness_ED’ Texture LA ED 53.7045
’LA_shape_MinorAxisLength_ED’ Shape LA ED 53.6843
’LA_glrlm_RunLengthNonUniformity_ED’ Texture LA ED 52.9183
’LA_gldm_GrayLevelNonUniformity_ED’ Texture LA ED 51.8700
’RA_shape_Sphericity_ED’ Shape RA ED 50.8045
’LA_ngtdm_Strength_ED’ Texture LA ED 50.1410
’RA_shape_MajorAxisLength_ED’ Shape RA ED 49.2244
’LA_glszm_GrayLevelNonUniformity_ED’ Texture LA ED 49.1139
pNN50 48.8595
’RA_shape_VoxelVolume_ED’ Shape RA ED 48.5482
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TABLE 4.8: Feature selection for AF for women for the electro-
radiomics model in all partitions in the nested-cross validation in-
dicating the number of repetitions in each feature in each different

partition.

Feature selection for AF in women in electro-radiomics Feature type ROI Phase Number of Iterations
model in all nested-cross validation partitions
’meanRR’ Shape LA ED 10
’LA_shape_Maximum2DDiameterColumn_ED’ Shape LA ED 10
’crvdi’ Shape LA ED 10
’blah6’ Shape LA ED 10
’tachy’ Shape LA ED 10
’medianRR’ Shape LA ED 8
’LA_shape_MinorAxisLength_ED’ Shape LA ED 10
’LA_sfirstorder_TotalEnergy_ED’ First-Order LA ED 10
’LA_shape_VoxelVolume_ED’ Shape LA ED 10
’LA_shape_MeshVolume_ED’ Shape LA ED 10
’LA_shape_SurfaceArea_ED’ Shape LA ED 10
’Dlvl2’ Shape LA ED 10
’Dlvl8’ Shape LA ED 9
’LA_shape_SurfaceVolumeRatio_ED’ Shape LA ED 10
’LA_sfirstorder_Energy_ED’ First-Order LA ED 10
’LA_gldm_DependenceNonUniformity_ED’ Texture LA ED 10
’LA_glrlm_RunLengthNonUniformity_ED’ Texture LA ED 10
’LA_shape_MajorAxisLength_ED’ Shape LA ED 10
’LA_glrlm_GrayLevelNonUniformity_ED’ Texture LA ED 8
’DistCent5’ Texture LA ED 5
’RA_shape_MajorAxisLength_ED’ Shape RA ED 10
’LA_shape_Maximum2DDiameterColumn_ES’ Shape LA ES 9
’Dlvl9’ Texture LA ED 7
’Dlvl15’ Texture LA ED 5
’LA_glzsm_GrayLevelNonUniformity_ED’ Texture LA ED 5
’LA_ngtdm_Coarseness_ED’ Texture LA ED 7
’LA_ngtdm_Strength_ED’ Texture LA ED 8
’RA_shape_Maximum2DDiameterSlice_ED’ Shape RA ED 9
’RA_shape_Maximum2DDiameter_ED’ Shape RA ED 8
’LA_shape_Maximum3DDiameter_ED’ Shape LA ED 8
’LA_ngtdm_Busyness_ED’ Texture LA ED 2
’LA_shape_MajorAxisLength_ES’ Shape LA ES 4
’RA_shape_Maximum2DDiameterColumn_ED’ Shape RA ED 2
’LA_shape_Maximum2DDiameterSlice_ES’ Shape LA ES 1
’edgesbin2n1’ Shape LA ES 1
’LA_shape_Sphericity_ES’ Shape LA ES 1
’LA_shape_Maximum3DDiameter_ES’ Shape LA ES 1
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Chapter 5

Prediction of incident
cardiovascular events using
machine learning and CMR
radiomics

5.1 Introduction

Cardiovascular disease (CVD) is the most common cause of morbidity and mortal-
ity worldwide (Aparicio, Benjamin, Callaway, et al., 2021). Accurate risk stratifi-
cation has a key role in ensuring appropriately targeted preventive strategies. Ex-
isting disease prediction algorithms reliant on demographic and clinical variables
have been proposed for prediction of selected major CVDs (Himmelreich, Veelers,
Lucassen, et al., 2020; Sahle et al., 2017; Flueckiger et al., 2018). Cardiovascular mag-
netic resonance (CMR) is the reference modality for quantification of cardiovascular
structure and function and is widely used in clinical and research settings (Schulz-
Menger, Bluemke, Bremerich, et al., 2020). The rich phenotyping provided by CMR
allows characterisation of pre-clinical organ-level remodelling (Sekaran, Crowley,
Souza, et al., 2017). Therefore, there is growing interest in the integration of imaging
biomarkers into CVD prediction algorithms (Leiner, Rueckert, Suinesiaputra, et al.,
2019). However, existing approaches to CMR image analysis are limited to simplistic
volumetric measurements or qualitative assessments (Raisi-Estabragh et al., 2020b).
These conventional CMR metrics (left ventricular ejection fraction or maximal end-
diastolic wall thickness) have shown potential for the early detection of cardiac de-
terioration and the characterisation of subclinical diseases (Petersen et al., 2017). Ra-
diomics is a quantitative image analysis method, which allows extraction of highly
detailed information about ventricular shape and myocardial character, thereby pro-
viding new information from existing standard of care images (Raisi-Estabragh et al.,
2021a). Radiomics features may be used as predictor variables in clinical models, of-
ten developed using machine learning (ML) methods. A key advantage of radiomics
analysis over unsupervised ML algorithms is the interpretability of the models; that
is, the radiomics features can be traced back to the heart’s morphological and tis-
sue level alterations (Kolossváry et al., 2018). CMR radiomics is in the early stages
of its development and thus far existing work has largely focused on demonstrat-
ing feasibility of the technique for disease discrimination (Neisius et al., 2020; Cetin
et al., 2020). The CMR radiomics analysis is more mature within oncology and in
this context, radiomics models have been successful for prediction of incident health
events (Bera, Braman, Gupta, et al., 2021). The value of CMR radiomics models for
incident CVD prediction has not been previously studied. In this chapter, we aim
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to evaluate the feasibility and clinical utility of CMR radiomics for the prediction of
four key incident CVDs: atrial fibrillation (AF), heart failure (HF), myocardial infarc-
tion (MI), stroke. To evaluate the incremental value of CMR radiomics over existing
approaches, we hierarchically built supervised ML models incorporating traditional
vascular risk factors (VRFs) and conventional CMR metrics.

5.2 Methods

5.2.1 Population and Setting

The UK Biobank (UKB) is an extensive cohort study that comprises over half a mil-
lion individuals recruited between 2006 and 2010. The UKB provides a rich source of
health data including comprehensive medical history, risk factors, biomarkers, and
physical measurements (UK Biobank: Protocol for a large-scale prospective epidemiolog-
ical resource 2007). The UKB imaging study commenced in 2015 and aims to scan
100,000 participants from the original dataset, and includes CMR (Littlejohns, Hol-
liday, Gibson, et al., 2020). Participants’ incident outcomes are tracked through the
national data sources, including Hospital Episode Statistics (HES) and death regis-
ters to provide continuous longitudinal follow-up (Raisi-Estabragh et al., 2020b).

FIGURE 5.1: Definition of the study sample. Abbreviations: AF, atrial
fibrillation; HF, heart failure; MI, myocardial infarction

5.2.2 Ethical approval

This study complies with the Declaration of Helsinki; the work was covered by the
ethical approval for UKB studies from the National Health Service (NHS) National
Research Ethics Service on 17th June 2011 (Ref 11/NW/0382) and extended on 18th
June 2021 (Ref 21/NW/0157) with written informed consent obtained from all par-
ticipants.
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5.2.3 Definition of the Study Sample

From the UK Biobank, most of the particpants starts with a healthy condition devel-
oping diseases along the time. We identified individuals who experienced incident
AF (N=193), HF (N=209), MI (N=218) or stroke (N=199) until the censoring date,
28th February 2021. Outcomes were ascertained through linked HES data with dis-
eases defined according to the standardised international classification of disease
(ICD) codes (Supplementary Table A.1). Individuals with the outcome of interest at
imaging were not included. We selected comparator groups for each outcome (AF,
HF, MI, stroke) comprising an equal number of randomly selected subjects who did
not develop the outcome of interest during follow-up to eliminate class imbalance
bias (Figure 5.1).

5.2.4 Vascular risk factors

We selected VRFs based on biological plausibility and reported associations in the
literature, including the following variables: age, sex, body mass index, material de-
privation, education, current smoking, alcohol intake, physical exercise, high choles-
terol, diabetes mellitus, and hypertension (Visseren, Mach, Smulders, et al., 2021).
The definition used for the ascertainment of high cholesterol, diabetes mellitus and
hypertension is given in Supplementary Table A.1.

5.2.5 Conventional CMR measures

All CMR scans were completed in dedicated UKB imaging centres using 1.5 Tesla
scanners (MAGNETOM Aera, Syngo Platform VD13A, Siemens Healthcare, Erlan-
gen, Germany) under pre-defined acquisition protocols (Petersen, Matthews, Fran-
cis, et al., 2016). Standard long-axis images and a short axis stack covering both ven-
tricles from base to apex were captured using balanced steady-state free precession
sequence (Petersen, Matthews, Francis, et al., 2016. CMR examinations of the first
5,065 UKB participants were assessed manually using CVI42 post-processing soft-
ware (Version 5.1.1, Circle Cardiovascular Imaging Inc., Calgary, Canada) (Petersen
et al., 2017). This analysis set was used to develop a fully automated quality con-
trolled pipeline and extract the contours for the 32,121 CMR studies (Bai, Sinclair,
Tarroni, et al., 2018; Attar, Pereañez, Gooya, et al., 2019). The following conven-
tional CMR indices were considered during our analysis: LV end-diastolic volume
(LVEDV), LV end-systolic volume (LVESV), RV end-diastolic volume (RVEDV), RV
end-systolic volume (RVESV), LV stroke volume (LVSV), RV stroke volume (RVSV),
LV ejection fraction (LVEF), RV ejection fraction (RVEF), LV mass (LVM). For ease of
interpretation, we gave LV and RV ventricular volumes and masses in body surface
area standardized format.

5.2.6 Background of CMR Radiomics

CMR radiomics is a novel image analysis technique permitting the computation of
multiple indices of shape and texture (Raisi-Estabragh et al., 2020b). Three classes
of features are extracted: shape, first-order and texture-based features. First-order
features are histogram-based and related to the distribution of the grey level values
in the tissue. Shape features describe geometrical properties of the organ, such as
volume, diameter, minor/major axis and sphericity. Texture features are derived
from images that encode the global texture information, using mathematical formu-
lae based on the spatial arrangement of pixels. Radiomic features can appreciate the
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heart’s complexity in detail by revealing patterns invisible to the naked eye. Thus,
it furnishes a nearly limitless supply of imaging biomarkers with potential added
value over conventional CMR metrics. However, caution should be taken regarding
the reproducibility of different features (Raisi-Estabragh et al., 2021b).

5.2.7 Radiomics Feature extraction

Radiomics workflow is illustrated in Figure 5.2. We used the short axis stack con-
tours for conventional image analysis to define three regions of interest (ROI) for
radiomics analysis: RV cavity, LV cavity, LV myocardium in ES and ED phases. We
calculated these features from the 3D volumes of the ROIs. The open-source PyRa-
diomics platform (version 2.2.0.) was adopted to extract Radiomics features. The
grey value discretisation was performed using a binwidth of 25 to pull the intensity-
based and texture radiomics features. A total of 262 radiomics features were in-
cluded from each CMR study ( LV shape n=26, RV shape n=26, MYO shape n=26,
LV myocardium first-order n=36, LV myocardium texture n=148).

5.2.8 Radiomics feature selection

Sequential Feature Forward Selection (SFFS) algorithm (Kudo and Sklansky, 2000)
was applied to select the most relevant subset of features to improve computational
efficiency or reduce the model’s generalisation error . SFFS starts with zero feature
and finds the one that maximises a score when an estimator is trained on this single
feature. This procedure is repeated until the total number of features is reached or
there is no improvement. The score selected was given from a Support Vector Ma-
chine model (SVM) (Noble, 2006; Chandra and Bedi, 2021). The objective of SVM is
to maximise the margin between cases and controls, which is defined as the distance
between the separating hyperplane (decision boundary) and the training samples
that are closest to this hyperplane, as shown in Figure 5.3.

5.2.9 Statistical analysis

Data analysis and graph visualisation were performed using Matlab (version 2001b),
R (version 4.1.2, R package: gplots package heatmap.2 function) and RStudio (ver-
sion 2022.02.3) programs. We assessed the intercorrelation between conventional
CMR metrics and radiomics features using Pearson’s correlation. Due to the large
number of radomics features, we grouped the inter-correlated variables into six clus-
ters using hierarchical clustering, as per our previous publication (Raisi-Estabragh
et al., 2021b). We created hierarchical models to understand the influence of vascu-
lar risk factors (VRF), conventional CMR indices and radiomics features and their
integrated use in the prediction of incident CVDs (AF, HF, MI and stroke). The first
three models assess the performance of VRF, conventional CMR indices, and CMR
radiomics separately. Next, we combined categories as follows: VRF-CMR indices,
VRF-radiomics, and CMR indices-radiomics. Finally, we merged all three compo-
nents into an integrative model: VRF-CMR indices-radiomics. The summary of the
process is shown in Figure 2. Training data sets are used to train and tune the param-
eters of the model then a separate testing set is used to assess the performance of the
model to see that the model built is able to generalise to unseen data. SVM is used for
classification. We chose SVM due to its properties: good performance in real-world
applications, computationally efficient, robust in high dimension, and sound in the-
oretical foundations. In order to tune the SVM parameters brute force exhaustive
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search also known as greedy optimisation is used. The model is then trained with
the parameters optimised. This procedure of tuning and training is performed five
times each with different partitions of training (80%) and test (20%) samples to re-
duce overfitting. The average error of the testing folds determines the performance
of the model. We determined model performance using receiver operating charac-
teristic (ROC) curve and area under the curve (AUC) scores. To assess the model
accuracy, the mean accuracy, sensitivity, specificity, and AUC are reported. Welch’s
t-test and Chi-Squared test were used for group-wise comparisons for continous and
categorical values, respectively.

FIGURE 5.2: Flowchart to create the models for incident
CVD. Abbreviations: CMR,cardiac magnetic resonance imaging;

CVD,cardiovascular disease; VRF, vascular risk factor

5.3 Results

5.3.1 Baseline characteristics

The subjects’ characteristics are summarised in Tables 5.1 and 5.2. CMR data was
available for 32,121 UKB participants. For the whole imaging set, the average age
was 63.3(±7.5) years, and the sample included 51.9% women. Over 3.7(±1.3) years
of prospective follow-up, 193 participants had incident AF, 209 incident HF, 218 in-
cident MI, and 199 incident stroke. Men were more likely to experience all incident
CVDs considered. As expected, individuals who experienced incident CVD events
had a greater overall risk factor burden. Conventional CMR metrics differed among
at-risk groups and the whole imaging set: participants, who later developed AF,
HF, MI or stroke had on average higher LVMi (p<0.05). The HF group had larger
LVEDVi, and reduced LVEF (p<0.05) compared to the whole imaging set.

5.3.2 Correlation between CMR metrics and radiomics features

Figure 5.4 shows the correlation pattern between conventional CMR metrics and
the imaging set’s radiomics features. Overall, size radiomics features showed the
strongest correlation with conventional metrics. Moreover, some parameters from
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FIGURE 5.3: SVM process of maximising the margin. The objective of
the support vector machine model is to maximise the margin between
cases and controls, which is defined as the distance between the sepa-
rating hyperplane (decision boundary) and the training samples that
are closest to this hyperplane, which is the so-called support vectors

(marked with circles)

the local uniformity and shape groups also correlated with conventional metrics.
Contrary to that, the majority of global intensity, local dimness and global variance
features showed inconsistent correlation patterns with CMR indices. Thus, although
there is some overlap of conventional and radiomics CMR metrics, there are many
areas where radiomics features provide new information.

5.3.3 Identification of metrics for each CVD outcome

The features selected for each model are shown in Tables 5.4, 5.5 and 5.6. Feature im-
portance is shown as the accuracy given by the SVM algorithm for each standalone
feature. The SFFS algorithm chose hypertension for all predictive models, its stan-
dalone accuracy was similar among incident outcomes, except for stroke which was
lower (Accuracy: AF vs HF vs MI vs Stroke – 0.59 vs 0.62 vs 0.58 vs 0.55). Sex was
included in all but the HF models. LVM and LVSV were the two conventional fea-
tures consistently selected by the SFFS. The accuracy of LVM alone was higher in
all models compared to LVSV. The identified radiomics signatures for each incident
outcome are depicted in Appendix Supplementary Tables A.2, A.3, A.4, A.5 and A.6.
Overall, ventricular shape and myocardial texture feature dominated all models and
there was only a marginal role for first-order features. Indeed, HF and MI predic-
tion models included only shape and texture features. Radiomics features derived
from the LV blood pool and myocardium dominated all prediction models. Notably,
when conventional CMR metrics and radiomics features were included alongside
each other, the latter were selected more frequently than the former. Shape fea-
tures depicting the “Maximum diameter” presented the most discriminative power
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FIGURE 5.4: Correlation matrix of conventional CMR indices vs ra-
diomics features in the whole sample. The correlation matrix illus-
trates correlation of each radiomics feature on the x-axis with the
conventional CMR metrics indicated on the y-axis. Due to the large
number of radiomics features, we grouped the inter-correlated vari-
ables into six clusters using hierarchical clustering using Ward’s algo-
rithm. Abbreviations: LVEDV, left ventricular end-diastolic volume;
LVEF, left ventricular ejection fraction; LVESV, left ventricular end-
systolic volume; LVM, left ventricular mass; RVEDV, right ventricular
end-diastolic volume; RVESV, right ventricular end-systolic volume;

RVSV, right ventricular stroke volume

in AF, alongside texture features of non-uniformity. In the HF model, shape fea-
tures (maximum diameter, minor axis and volume) presented the greatest selective
power, whilst in the MI model, the texture features, such as coarseness or large area
emphasis, were more prominent.

Abbreviations: ROI, region of interest; SVM model alone: support vector machine model per-
formance showing the mean and standard deviation using each radiomic feature individually; LV,
left-ventricle; RV, right-ventricle; MYO, left ventricle myocardium; ED, end-diastolic.

5.3.4 The degree of discrimination achieved for each incident CVD

Results from the hierarchical models are summarized in Table 5.3. The average error of the testing
folds determines the performance of the model. Radiomics models alone yielded slightly better dis-
crimination and higher sensitivity than VRFs or conventional CMR models in each outcome. AF and
HF prediction models performed generally better than MI and stroke prediction models. The addi-
tion of radiomics features improved the performance of VRF models in AF (AUC: 0.67 vs 0.76) and
HF (AUC: 0.73 vs 0.83) prediction (Figure 5.5). Moreover, VRFs and radiomics features’ combination
reached better performance than VRFs and conventional CMR metrics in AF, HF and stroke prediction
models.We reached the best performance in the incident AF prediction model combining VRFs, CMR
indices, and radiomics features (Table 5.3). In Table A.7, we have added an additional experiment
defining the healthy controls as subjects not having any cardiovascular disease or stroke at the base-
line visit and during follow-up to see if the models behave in the same way. The results followed the
same pattern for all the models except in the sensitivity which was lower. Additionally, the models
stabilized with 40 features in the univariate feature selection. We could conclude that the performance
of our model is rather similar regardless of the comparator groups, suggesting that the patterns we
pick up are stable.

5.4 Discussion

In this study, we demonstrate the feasibility of CMR derived radiomics features to predict incident
AF, HF, MI, and stroke. Additionally, using hierarchically built SVM models, we demonstrate the
incremental value of CMR radiomics features for risk prediction over VRFs and conventional CMR
metrics.
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FIGURE 5.5: ROC curves showing the discriminative power of vas-
cular risk factors alone and the combination of vascular risk factors
and radiomics feature in all incident outcome prediction model. The
combination of vascular risk factors (VRFs) and radiomics features
(orange) reached better performance in the prediction of AF and HF
compared to VRF alone (blue) (p < 0.05). Abbreviations: AF, atrial

fibrillation; HF, heart failure; MI, myocardial infarction

5.4.1 Comparison with existing literature

To the best of our knowledge, this is the first study to demonstrate the value of CMR radiomics models
for incident CVD prediction. Previous research supports the utility of CMR radiomics in the differen-
tial diagnosis of left ventricular hypertrophy (Schofield et al., 2019), especially the diagnosis of HCM
(Neisius et al., 2020; Baeßler, Mannil, Maintz, et al., 2018; Antonopoulos, Boutsikou, Simantiris, et al.,
2021). Cetin et al., 2020 have shown the technique’s potential to identify imaging signatures associ-
ated with cardiovascular risk factors such as diabetes or hypertension . Furthermore, Raisi-Estabragh
et al. demonstrated the independent associations of CMR phenotypes with sex, age, and important
VRFs (Raisi-Estabragh et al., 2021b). Recently, Ma et al. concluded that a non-contrast T1 map-based
radiomics nomogram is suitable for predicting major adverse cardiac events in patients with acute
MI (Ma, Ma, Wang, et al., 2021). We built hierarchical models to test the utility and added benefit of
including radiomics features in predicting AF, HF, MI and stroke using the SFFS algorithm. Not sur-
prisingly, hypertension proved a crucial predisposing factor linked to all considered outcomes. This
finding is consistent with the overwhelming evidence showing that among all risk factors for CVD, hy-
pertension is associated with the strongest causal link to adverse outcomes (Schnabel, Sullivan, Levy,
et al., 2008; Gosmanova, Mikkelsen, Molnar, et al., 2016; Fuchs and Whelton, 2020; Ekundayo et al.,
2013; Rathore, 2018). Sex was selected for inclusion in all predictive models, except for HF, a finding
that is in line with the results from major epidemiological studies (Lloyd-Jones, Larson, Leip, et al.,
2002; Bleumink, Knetsch, Sturkenboom, et al., 2004) showing that the lifetime risk of HF is compara-
ble among males and females. Of note, we did not differentiate subgroups of HF, which clearly show
sex-specific differences as emphasised by Lam, Arnott, Beale, et al., 2019. Left ventricular hypertro-
phy (most commonly assessed by LVM increase) is a remarkable prognostic marker that incorporates
a broad range of pathologies, such as hypertrophic and infiltrative cardiomyopathies, although it is
most commonly caused by chronic pressure and volume overload (Stewart, Lavie, Shah, et al., 2018).
Early studies have recognised increased LVM as a risk factor for stroke in the Framingham Heart
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Study (Bikkina et al., 1995). LVM has been widely utilised ever since due to its ability to predict a
variety of clinical outcomes (Stewart, Lavie, Shah, et al., 2018). Whilst conventional metrics quantify
LVM according to mass or wall thickness, radiomics analysis can additionally quantify the distribution
and pattern of myocardial signal intensities within the LV myocardium. As such, radiomics features
extracted from the myocardium may provide more granular distinction of health and disease in com-
parison to conventional CMR indices where, rather crudely, the single most discriminatory feature
for all risk factors was higher LVM (Cetin et al., 2020). Indeed, Schofield et al. showed that texture
radiomics features derived from bSSFP sequences can differentiate between the aetiologies of LV hy-
pertrophy (Schofield et al., 2019). These findings suggest that radiomics has the capability to enrich
risk information beyond the limits of LVM. In our study, texture features were identified as the most
defining model predictors, highlighting the clinical relevance of these metrics. Finally, we illustrated
that radiomics features derived from CMR could provide incremental discriminative value over VRFs
and CMR indices in the prediction of incident AF and HF. The HF model showed the most robust
improvement with the addition of radiomics features, whilst stroke prediction showed only a slight
improvement in the hierarchical models. This might be partially due to the aetiology: diseases such
as dilated cardiomyopathy (the most common non-ischaemic cause of HF (Antonopoulos, Boutsikou,
Simantiris, et al., 2021)) that primarily affect the global muscular structure of the heart may be better
captured by CMR radiomics. In contrast, MI typically comprises more focal areas of myocardial injury
and stroke is a primary cerebral illness.

5.4.2 Clinical interpretation of radiomics findings

Shape features and texture radiomics features presented the most discriminative value in AF prediction
models. The most prominent shape feature was the maximum diameters of the LV and the ventricular
wall in different phases of the cardiac cycle. This refers to the notion that the adverse remodelling of
the heart described by larger chamber sizes and hypertrophy predispose AF. Alterations of the non-
uniformity levels (“dependence non-uniformity” and “gray level non-uniformity”) are referring to
changes in the heterogeneity of intensity values, which might reflect on the adverse changes in tissue
composition of the myocardial structure. Similarly, “large area low gray level emphasis” suggests
larger myocardial regions with low signal intensity (dimmer) pixels. Indeed, LV diastolic dysfunction
has been linked to an increased risk of AF in the general population (Kim, Shim, Park, et al., 2016),
and more recently Tian et al. demonstrated the association between adverse LV remodelling and AF
among HCM patients (Tian, Cui, Yang, et al., 2018). In the HF models, shape features, derived from the
myocardium, LV and RV demonstrated strong discriminatory value. This can be explained by adverse
and often biventricular remodelling that characterises HF patients. Our results suggested that apart
from the diameter of a given slice, the elongation of the heart (depicted by “minor axis”) also provide
additional information.

5.4.3 Limitations

Although our analysis is performed with different partitions of data to have a model independent to
the samples by minimising the case of over-fitting, the model might still be biased to the participants
obtained in the UKB. In this proof-of-concept study, we limited our investigations to LV and RV metrics
derived from bSSFP images. The clinical utility of this proof-of-concept study is limited in its current
state: 1) CMR is not a routine examination 2) CMR should not be performed for the sole purpose of
risk stratification. However, we believe it is reasonable to postulate that the radiomics models may be a
useful enhancement to existing CMR scans performed with a clinical indication; and may improve risk
stratification in the future. Moreover, no external validation has been performed, and the case-control
design leaves significant risk of residual confounding. Of note, only 5% of the UK Biobank population
was studied and a 2.5% event rate in this hypothesis generating study. Thus, the predictiveness of the
model if these radiomic metric were deployed in the general cohort remains unanswered.

5.5 Conclusions

We demonstrated the feasibility of using CMR derived radiomics features to predict key cardiovascular
outcomes. Radiomics features provided additional information over VRFs, although the improvement
was only marginal compared to conventional CMR metrics. The improvement was most prominent in
AF and HF prediction, which highlight that the performance of radiomics models is dependent on the
disease aetiology and mechanism.
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Chapter 6

Radiomics analysis of CMR images
for the detection of genetic and
familial cases in excessive
trabeculation of the left ventricle

6.1 Introduction

Excessive trabeculation of the left ventricle (ETLV) is a ventricular phenotype identified by promi-
nent myocardial trabeculation, with ongoing debate surrounding is clinical significance.(Petersen et
al., 2023; Casas, Rodríguez-Palomares, and Ferreira-González, 2022). From one hand, there is substan-
tial evidence that in certain individuals it is a normal (i.e. physiological) trait or a reversible physio-
logical response to increased afterload, such as in exercise or pregnancy, with no clinical implications
(Gati et al., 2014; Gati et al., 2013). For other patients, ETLV may be associated with a cardiomyopathy,
often referred to as left-ventricular non-compaction (LVNC), secondary to a pathogenic genetic variant
and leading to abnormal LV volumes or ejection fraction (LVEF) and increased risk of major adverse
cardiac events (MACE)(Casas et al., 2021).

Current diagnostic criteria for ETLV are based on the ratio between compacted and non-compacted
myocardium thickness (Petersen et al., 2005; Jenni, Oechslin, and Loo, 2007), do not consider alter-
ations in ventricular function nor ultrastructural characteristics of the hypertrabeculated region, and
do not differentiate physiological variations in trabeculation from cardiomyopathy. The identification
of image-based biomarkers of pathological ETLV beyond systolic dysfunction may optimise the man-
agement of patients with ETLV. Along with long-term follow-up, genetic testing and familial screen-
ing offer a possibility to differentiate physiological and pathological ETLV (Oechslin and Jenni, 2018).
However, this approach is associated with a high healthcare cost, genetic testing shows a positive re-
sult in only 30-40% of the patients (Arbustini et al., 2016), while familial screening requires substantial
effort and cooperation, which is not always feasible. In this context, image-based descriptors may be
helpful in assessing the pre-test probability of a positive genetic or familial result, providing a valu-
able alternative when these tests are not feasible, or in the initial evaluation of these patients without
having to wait for long-term follow-up.

Radiomics is an automatic image analysis technique aiming at objectifying measures of shape and
texture patterns. In cardiology, some of the radiomics measures overlap with standard imaging mea-
sures of the heart, such as LV volumes, while others encode statistical measures of brightness distribu-
tion and patterns. Taken together, these features have been shown to offer insights into cardiovascular
pathophysiology, identifying unknown (Griethuysen et al., 2017b) and established (Izquierdo et al.,
2021) phenotypes, and predicting the occurrence of adverse events (Cetin et al., 2018; Rauseo et al.,
2021). Nonetheless, radiomics measures, often called “features”, suffer for inter-image variability aris-
ing from differences in sequences and scanners (Raisi-Estabragh et al., 2020b) which can be partially
overcome by image normalization (Campello et al., 2022). Despite image normalization, radiomics
studies should involve multicentre data, where their high representation capacity is confronted by
realistic image variability.

The aim of this study was to evaluate the capacity of radiomics in (i) identifying a genetic substrate
or familial aggregation and (ii) estimating the risk of adverse events in a large multi-centre dataset
of patients meeting ETLV diagnostic criteria. This study further addresses the robustness of such
classification to inter-centre variability in image characteristics.
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FIGURE 6.1: MRI imaging samples of LVNC subjects included in our
study.

6.2 Methodology

6.2.1 Dataset

Study cohort

An observational, retrospective, longitudinal, multicentre cohort study was designed to identify indi-
viduals diagnosed with ETLV followed at 11 Spanish referral centres in the period between 2000 and
2018. A total of 347 subjects’ cine short-axis (SAX) cardiovascular magnetic resonance (CMR) images
were obtained along with their contours, which were manually delineated by an experienced cardiolo-
gist from VdH using the software CVi42. To ensure consistency in the Standard Operational Procedure
(SOP) for segmentation [Fig.6.2], all the contouring procedures were performed at VdH location rather
than at their origin centers. The CMR images were provided in DICOM format and were converted to
NifTi format using the research group’s internal software to facilitate the post-processing steps, which
included the extraction of end-diastolic (ED) and end-systolic (ES) frame locations required for fur-
ther radiomics extraction. Clinical data was provided, including genetics, demographics and distinct
cardiac measures such left ventricle ejection fraction (LVEF) and follow-up endpoint named MACE
(Major Adverse Cardiac Event). Both are described in the following subsections. The following table
shows the distribution of subject per origin center. Diagnosis was made at the referral inherited car-
diac disease unit based on Jenni criteria (Jenni, Oechslin, and Loo, 2007) on echocardiography images
and was validated by cardiac magnetic resonance (CMR) according to Petersen and Jacquier criteria
(Petersen et al., 2005; Jacquier et al., 2010). Fractal analysis was also performed (Captur et al., 2013). Pa-
tients were followed up on a regular yearly basis, treated according to clinical guidelines (Ponikowski
et al., 2016; Yancy et al., 2013) and follow-up was censored after last contact with the outpatient clinic.

FIGURE 6.2: Example of Segmentarion Operational Procedure (SOP)
for our study. Trabeculations are not segmented separately or consid-

ered part of the myocardium (MYO).
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TABLE 6.1: Sample sizes at different clinical centers.

Clinical center Code Sample size
Hospital Universitari Vall d’Hebron HUVH 132
Hospital Universitario Virgen de las Nieves HVN 18
Hospital Virgen de la Arrixaca HVAM 5
Hospital Universitario Virgen de la Victoria HUVV 3
Hospital Universitario Puerta de Hierro HUPH 35
Hospital Universitario Germans Trias i Pujol HUGTP 13
Hospital Son Llàtzer HSLL 7
Hospital La Fe HLF 21
Hospital Josep Trueta HJT 3
Complexo Hospitalario Universitario A Coruña CHUAC 78
Complejo Asistencial Universitario Salamanca CAUSA 29

Genetics and family aggregation

Active family screening was encouraged in all probands. Positive family aggregation was defined if
at least one additional first-degree relative fulfilled the imaging criteria for ETLV. Genetic testing was
indicated according to the criteria of each center and consisted of a next-generation sequencing panel
of more than 200 genes related to inherited cardiovascular diseases. A study was considered positive
if a pathogenic or likely pathogenic variant was identified (Richards et al., 2015).

Adverse events

The clinical endpoints of the study (MACE) was a combination of heart failure hospitalization, heart
transplantation, LV assist device implantation, cardiac resynchronization therapy implantation, aborted
sudden cardiac death, ventricular fibrillation, sustained or non-sustained ventricular tachycardia, ap-
propriate implantable cardioverter-defibrillator therapy, systemic embolic stroke or transient ischemic
attack, embolic myocardial infarction, peripheral artery embolism, or death by any cause.

6.2.2 Normalization and radiomics extraction

CMR images were centralised for core lab blinded evaluation at the Vall d’Hebron University Hospital
(Barcelona, Spain). Short-axis cine CMR images were obtained and end-systolic (ES) and end-diastolic
(ED) segmentations of the endo- and epicardium were performed by an experienced cardiologist using
clinical software (CVi42, Circle Cardiovascular Imaging). To address the variability originating from
different centers, protocols and vendors (Figure 1), piece-wise linear histogram matching normaliza-
tion was performed (Campello et al., 2022), to reduce radiomics variability. Pre-processing steps were
performed prior to radiomics extraction from end-diastole (ED) and end-systole (ES) frames. A total of
462 radiomics features were extracted from the LV and MYO regions using PyRadiomics (Griethuysen
et al., 2017a), without any additional filtering steps, including bin size of 25.

Shape radiomics features are a subset of radiomics features that quantify and measure morpholog-
ical characteristics in segmented contours, independent of the gray-level intensity distribution. These
features focus on capturing surface and volume properties that are commonly calculated using estab-
lished clinical indices in routine cardiac magnetic resonance (CMR) examinations. Examples of shape
features include simple metrics such as volume, elongation, surface area, as well as more advanced
metrics like sphericity. By analyzing shape features, it is possible to assess and understand the mor-
phological cardiac attributes associated with specific diseases. This information can be valuable in
diagnosing and stratifying the risk of patients with left ventricular noncompaction (LVNC).

In contrast, first-order radiomics features are derived from the statistical analysis of the inten-
sity histogram of the image region defined by the mask. These features describe the distribution of
pixel/voxel intensities and provide insights into grayscale changes in the left ventricle (LV) or LV my-
ocardial tissue, which is relevant in LVNC cases. First-order statistics include straightforward metrics
such as median or mean, as well as mathematically advanced measurements like entropy, energy, or
kurtosis. By examining first-order features, it becomes possible to identify and quantify grayscale vari-
ations associated with trabeculations in LVNC subjects, offering important diagnostic information.
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Texture radiomics features constitute another category of radiomics features, designed to cap-
ture subtle changes in the distribution of gray-scale pixel values. These features analyze patterns,
trends, and relationships between neighboring gray-scale changes using sophisticated matrix calcu-
lations. Texture features can be classified into different types, including Gray Level Co-occurrence
Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length Matrix (GLRLM),
Neighboring Gray Tone Difference Matrix (NGTDM), and Gray Level Dependence Matrix (GLDM).
By employing texture features, it becomes possible to characterize the spatial distribution of trabecula-
tions in the LVNC population, providing valuable insights into the arrangement and patterns of these
structures.

FIGURE 6.3: In the upper sequence, the methodology for radiomic
feature extraction from cardiac magnetic resonance (CMR) imaging
is elucidated, commencing with the initial acquisition and preceding
the contour delineation. The intermediate sequence delineates the
computation and assessment of traditional CMR indices, encompass-
ing the left ventricular ejection fraction (LVEF), Petersen’s coefficient,
Jacquier’s coefficient, and Captur analysis. The lower sequence de-
tails the genetic and familial scrutiny undertaken by the participants,
alongside the longitudinal tracking of their clinical outcomes, with
particular attention to the occurrence of major adverse cardiac events
(MACE). On the right, the schematic represents the integration of the
derived variables into various configurations for the development of
Machine Learning models aimed at enhancing diagnostic accuracy,
specifically for genetic classification and prognostication of MACE.

Machine Learning for genetic classification

In this study, we employed two different models, namely Imbalanced Random Forest (IMB-RF) and
XGBoost (XGB), for the classification task. To enhance the performance of these models, a feature
selection (FS) technique called Recursive Feature Elimination (RFE) was incorporated. Additionally,
the models were integrated into a Nested Cross-Validation (NestedCV) pipeline, allowing for robust
hyperparameter tuning through GridSearch.

One crucial aspect we considered during the model development was the imbalance present in the
dataset. Imbalanced datasets often pose challenges for classification models as they contain a signifi-
cant disparity in the number of instances between classes. To address this issue, we carefully designed
the train-validation-test splitting process to take into account the class imbalance. This approach en-
sured that each split maintained the original class distribution, preventing biased model evaluation.
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FIGURE 6.4: Architecture used for survival analysis.

To further enhance the model performance, we explored various scaling algorithms. However,
interestingly, we observed that decision tree-based algorithms, including IMB-RF and XGB, are inher-
ently invariant to scaling. This implies that the scaling of features had no substantial impact on the
performance of these models. Therefore, we concluded that incorporating scaling algorithms in the
pipeline did not yield any significant improvements.

Overall, our approach encompassed the following steps: feature selection using RFE, utilization
of IMB-RF and XGB models, integration into a NestedCV pipeline for reliable evaluation, and con-
sideration of dataset imbalance during the train-validation-test splitting. Furthermore, we confirmed
the invariance of decision tree-based algorithms to scaling, thereby validating our choice to exclude
scaling algorithms from the pipeline.

6.2.3 Machine Learning scheme for survival analysis prediction

In this section of our study, we delve into the structured process of constructing our machine learning
models, designed for two distinct analyses: survival analysis and genetic classification. We provide
a meticulous account of the methodologies employed to not only ascertain the performance of these
models but also to evaluate their generalization capabilities.

We introduce an innovative approach to address the challenges posed by imbalanced datasets in
predictive modeling. Our algorithm operates in several phases, encompassing preprocessing steps,
feature selection, model training, and evaluation.

In the pre-processing stage, we tackled potential issues stemming from multicollinearity by re-
moving variables with high correlation. This approach ensured that our models did not suffer from
unnecessary redundancy and instability. Following this, we implemented data scaling to bring all
features onto the same scale, a critical step in algorithms that rely on distance calculations or gradient-
based optimization.

Subsequently, we applied Sequential Forward Floating Selection (SFFS) for feature selection. The
SFFS algorithm operates by iteratively adding or removing features based on their contribution to the
model performance until the addition or removal of features does not lead to an improvement of the
prediction score. This technique allowed us to identify a subset of features that provided the best
performance, improving the interpretability of our model and reducing overfitting.

For model training, given the imbalanced nature of our data, we used an Imbalanced Random
Forest algorithm. This ensemble learning method creates multiple decision trees and merges them to
get a more accurate and stable prediction. But unlike standard Random Forest, this algorithm adjusts
the class distribution of the bootstrap sample in each iteration to handle the imbalanced data problem.

The evaluation of model performance was carried out using a nested cross-validation (CV) scheme,
which provides an unbiased estimate of the model performance. In the outer loop, the data was split
into a training and test set, while in the inner loop, model hyperparameters were tuned. This approach
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avoided leaking information from the test set into the model during the tuning phase, hence offering
a more robust estimation of the model’s ability to generalize to unseen data.

We assessed model performance using the concordance index (C-index), an appropriate measure
for survival models, or when the outcome is time-to-event data. The C-index measures the proportion
of all usable patient pairs in which the predictions and outcomes are concordant, providing an overall
measure of prediction accuracy.

Our model’s top 10 performing features were identified based on their relevance and contribution
to the model’s predictive performance, offering insights into the key factors driving the outcomes.
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6.3 Results

6.3.1 Quality control

In this study, we performed a meticulous subset selection procedure on our original dataset to ensure
consistent measurement of Ejection Fraction (EF) values. We compared EF values derived from ex-
pert clinicians’ MRI measurements (MRI-FEVI) with EF values obtained through radiomics analysis
(RAD-FEVI). We excluded patients who exhibited a discrepancy of 15% or more between these two
measurements. Discrepancies may arise from the semi-automatic segmentation of cardiac cavities or
intraobserver variability when calculating MRI-FEVI. By employing this rigorous selection process as
a crucial quality control step, we obtained a refined dataset consisting of 338 subjects with matching
RAD-FEVI and MRI-FEVI values. Only 9 subjects were excluded during this process (see Fig.6.7), and
none of the subjects experiencing MACE were removed. In light of MRI-FEVI being considered the
benchmark gold standard measure, it is crucial to verify the absence of discrepancies between MRI
and RAD FEVI. Any inconsistencies could potentially affect radiomics calculations and other related
implications. Through this analysis, we ensure that our radiomics automatic extraction process was
executed accurately.

FIGURE 6.5:
Original dataset

FIGURE 6.6:
Subset selection

FIGURE 6.7: Discrepancy between MRI-FEVI and RAD-FEVI

6.3.2 Results for genetic/familiar positive

After ensuring the quality and accuracy of the extracted radiomic data, it is imperative to meticulously
select the subjects for the designated experiments, adhering to predefined criteria and research ob-
jectives. The initial experiments are designed to identify a genetic substrate or familial aggregation,
focusing on uncovering hereditary patterns and genetic predispositions. The cohort primarily con-
sisted of middle-aged patients, with a slight male predominance and a relatively-low prevalence of
common cardiovascular risk factors. Familial screening or genetic tests were performed in 256 (76%)
participants, with 100 (39%) of them presenting positive genetic findings and 58 (23%) a positive famil-
ial screening. In total, 157 (61%) patients tested positive for either familiar or genetic studies. During
a follow-up of 42,5 (32.40) months, 38 (14.84%) experienced MACE. Regarding identification of geno-
type and family aggregation, patients presenting with a positive familial or genetic study had higher
prevalence of hypertension, dyslipidemia and wide QRS, and were more likely to smoke (Table 6.2).
Moreover, this group showed lower EDV and ESV LV volumes and higher prevalence of LGE, with no
differences in LVEF.

Table 6.3 reports the results of the models developed to identify positive genotype and/or family
aggregation. Results showed that LV ejection fraction has limited capacity to discern genotype and
family aggregation (F1 score in between 40 and 60%), and that radiomics significantly improve the
detection capacity, resulting in a F1 score in between 55% and 72%. Precision, also called positive
predictive value, and recall, also known as sensitivity, further show the added value of including
radiomic features in the analysis. Of note, the superiority of predictions including radiomics was
consistent across the different tests and models.

The 10 most important features in the decision of the best model (XGB model based on LVEF and
radiomics) showed that shape features are not among the most important ones (Table 6.4), despite the
difference in LV geometry identified by LV volumes (Table 6.2). In contrast, textural features played the
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most predominant role, suggesting the detection of a textural signature of the genetic cardiomyopathy
in the myocardium.
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FIGURE 6.8: n the results of the genetic identification analysis, the
plots reveal the tendency combining genetic studies with family
screening enhances the differentiation of most variables, compared
to when these methods are used independently. Furthermore, the in-
tegration of radiomics into this approach leads to an increase in F1
score values, indicating improved accuracy in the identification pro-

cess
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TABLE 6.4: Top 10 radiomics features in the prediction of positive
genetic or family study. ED and ES = end diastolic and end systolic

phases, LV = left ventricle, MYO = myocardial region.

Feature Region Type Phase Weight

Inverse Variance LV Texture ES 0.16
Size Zone Non-Uniformity LV Texture ED 0.13
Autocorrelation MYO Texture ES 0.12
Long Run Emphasis LV Texture ES 0.11
Run Variance MYO Texture ES 0.11
Elongation LV Shape ES 0.10
90 Percentile LV Tissue ED 0.08
Dependence Entropy MYO Texture ED 0.07
Contrast LV Texture ED 0.07
Joint Entropy LV Texture ES 0.06

6.3.3 Survival analysis time-to-event prediction for MACE

Patients experiencing a MACE had lower baseline LVEF and higher prevalence of comorbidities, smok-
ing habit and larger LV (Table 6.5). Table 6.6 presents the results obtained for the task of identifying
individuals with ETLV experiencing MACE during follow-up in both classification (left) and survival
free from MACE (i.e. time-to-event, right). Regarding the classification task, LVEF alone yielded an
F1 score of 69%, while radiomics alone achieved a score of 75%. When combining radiomics with
LVEF, a noteworthy 10% improvement in F1 score (79%) beyond the results obtained by LVEF alone
was achieved. Similarly, in the survival (i.e. "time-to-event") analysis, radiomics achieved a C-index
of 0.72, outperforming the best model using LVEF (C-index of 0.67). Furthermore, integrating LVEF
and radiomics yielded the best predictive performances, resulting in a C-index of 0.75. The findings
are consistent across models and indicate that the inclusion of radiomics significantly enhances the
identification of patients at risk beyond LVEF.

Shape features dominated the discrimination (Table 6), being the six most important features, with
metrics related to short-axis size (diameter, area, volume) and shape (flatness, i.e., the squared ratio of
largest and shortest distances). Notably, the following features describe textural information, suggest-
ing that there are CMR textural differences between patients with normal ETLV and cardiomyopathy
associated with MACE, which cannot be captured by LVEF.
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TABLE 6.5: Characteristics of the cohort depending on the subsequent
development of MACE.

Characteristics MACE (-) MACE (+) p-value MACE + vs -

N 284 53 -
Male (%) 56 57 0.100
Age (y) 44.6 (15.8) 44.6 (15.8) 0.350
BMI (Kg/m2) 24.69 (4.70) 25.88 (5.13) 0.590
Hypertension (%) 17.1 38.5 <0.001
Diabetes (%) 3.6 15.4 <0.001
Dyslipidaemia (%) 22.2 53.8 <0.001
Smoking (%) 12.3 24.5 0.016
Wide-QRS (%) 21.8 47.2 <0.001
Genetic and familiar studies
Positive genetic (%) 24.92 32.07 0.800
Positive familiar (%) 22.98 25.41 0.130
CMR
LV EDV (ml) 178 (62) 237 (106) 0.003
LV ESV (ml) 94 (58) 166 (101) 0.011
LV EF (%) 50.0 (12.6) 35.9 (17.5) <0.001
LGE (%) 13.14 33.36 0.001

6.3.4 Robustness to unseen clinical centers

Generalization is a cornerstone of machine learning models, especially when they are applied in mul-
ticenter domains, such in our case. When a model generalizes well, it indicates that it has learned
the underlying patterns and relationships in the data, rather than memorizing the specific details of
the training set. This is essential in multicenter settings, where data can vary widely due to diverse
demographics, equipment, procedures, and operational policies. A model that is overfit to the train-
ing data from one center may fail to predict accurately when deployed in a different center, leading
to poor decision-making and outcomes. In figure 6.9 we can observe the differences between acquisi-
tions from different centers. For normalization (or harmonization), we used the histogram matching
normalization technique employed in Campello et al., 2022. In the publication, they recognized that
such variability can compromise the integrity and reproducibility of radiomics-based models and pro-
posed the use of image normalization as a potential solution. The pilot study specifically explored
various techniques of image normalization to determine their efficacy in minimizing the discrepancies
in radiomics features across different medical imaging centers. The findings indicate that certain nor-
malization techniques can indeed enhance the consistency and reliability of radiomics data, suggesting
that they could be adopted as standard practices in multi-center radiomics studies.

For a comprehensive assessment, individual analysis was conducted for each center with a sam-
ple size exceeding 20 cases. To achieve statistical significance, cases from centers 6 through 11 were
consolidated into a single group. Our approach involved training the models on n-1 centers, ensuring
consistent architecture mirroring that shown within the inner loop of Fig. 3.1 in the Survival Machine
Learning model, specifically the Random Survival Forest (RSF). We adopted a nested cross-validation
framework for this inner loop setup. This methodology allowed us to segregate a distinct test dataset
from a specific center, positioning us to accurately measure the model’s proficiency when faced with
data from a center it hasn’t been exposed to previously. This rigorous evaluation aims to provide
insights into the model’s adaptability and generalizability across different centers.

Table 6.8 presents the results of the generalizability tests, where the performance of the time-
to-event prediction model (including LVEF and radiomics) to data from unseen clinical centers was
quantified. Compared to results on Table 6.6 (C-index of 0.75), the results showed a slight decline in
performance. This was particularly marked in the group containing data from a multitude of centers
(bottom line), where a modest c-index of 0.54 was obtained.
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FIGURE 6.9: Individual instances of data offered by each center can be
distinguished by aspects such as histogram characteristics, for exam-
ple, contrast. The process of normalization becomes a critical factor

in mitigating the variability between different centers
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TABLE 6.7: Top 10 radiomics for the classification of MACE with
(right weights) and without (left weights) time-to-event. ED and ES
= end diastolic and end systolic phases, LV = left ventricle, MYO =
myocardial region. WC=Weights in classification. WS=Weights in

Survival analysis

Feature Region Type Phase WC WS

Maximum 2D Diameter Slice LV Shape ES 0.20 0.20
Minor Axis Length LV Shape ES - 0.17
Flatness MYO Shape ED 0.20 0.16
Mesh Volume LV Shape ED 0.14 0.14
Surface Area LV Shape ED 0.13 0.14
Minor Axis Length LV Shape ES - 0.10
Large Dependence High GLE MYO Texture ED 0.09 0.09
Cluster Shade MYO Texture ES 0.09 0.09
Inverse Variance LV Texture ES - -
Root Mean Squared LV Tissue ES - 0.09
Grey Level Variance MYO Texture ED 0.07 0.07
Joint Entropy LV Texture ES - 0.05
Contrast MYO Texture ED - 0.07

TABLE 6.8: Generalizability test. The score presented is C-index. H =
Harmonized. NH = Non-harmonized.

Centre Sample size H score (C-index) NH score (C-index)

Centre 1 132 0.67 0.65
Centre 2 78 0.60 0.58
Centre 3 35 0.73 0.72
Centre 4 29 0.68 0.68
Centre 5 21 0.62 0.59
Centres 6-11 49 0.54 0.47

6.4 Discussion

The main results of this study are that in a large multi-center cohort of patients with ETLV radiomics
(i) may identify the signature of a genetic or familial cardiomyopathy from non-enhanced, routine
CMR images and (ii) may provide added prognostic value beyond LVEF. On the other hand, the re-
sults underline the challenges posed to such a high-throughput, automatic approach by the significant
variability of images collected from several independent clinical centers.

There is an ongoing debate on whether ETLV is a morphologic trait or a distinct cardiomyopathy
(Arbelo et al., 2023). Previous studies have proposed comprehensive patient evaluations, including
symptoms, electrocardiogram, imaging, family screening and genetic studies, among others, to differ-
entiate physiological from pathological ETLV (Casas et al., 2021; Gati et al., 2014; Caselli et al., 2015).
In particular, the current CMR diagnostic criteria have a poor specificity for detecting actual cardiomy-
opathy cases and probably lead to an overdiagnosis of the entity(Protonotarios and Elliott, 2019), while
the different criteria are inconsistent and present poor reproducibility (Ivanov et al., 2017).

The identification of cardiomyopathy has traditionally involved assessing reduced EF or abnormal
cardiac structure and pacing. Genetic or familial association studies offer an alternative avenue, espe-
cially appealing for early detection of patients who may present with preserved systolic function, and
to identify patients who require periodic follow-ups from those who could be safely discharged. Con-
sidering the limited availability and high cost of performing these studies, the results presented here
highlight the potential offered by radiomics for the identification of positive genetic or familial associ-
ation may be of clinical interest. The here-reported value of radiomics in the identification of patients
harboring a positive genotype or having a positive familial aggregation was notable and consistent
throughout multiple tests and model architectures. Specifically, radiomics predictions were mostly
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FIGURE 6.10: The scatter plot demonstrates the variability of the gen-
eralization performance of a predictive model across multiple centers.
The centers are evaluated on their ability to maintain a consistent C-
index score, which is a measure of the model’s predictive accuracy.
Category ’H’ generally exhibits higher generalizability, with a mean
C-index score (red dashed line) that is consistently above that of cate-
gory ’NH’ (green dashed line). Notably, Centre 3 shows the highest C-
index score for category ’H’, suggesting that the model performs best
in this center. On the other hand, Centers 6-11, when aggregated, in-
dicate a lower generalization capacity for both categories. This could
imply a need for model recalibration or adaptation to improve per-
formance in these centers. The data suggests that while the model
has varying levels of generalizability, there is room for optimization,
particularly in centers where the C-index score falls below the mean

based on texture descriptors, highlighting a textural signature associated with a genetic cardiomyopa-
thy. To the best of the authors knowledge, only one previous study tested the possibility to identify a
genetic positive result from cine CMR, demonstrating that a larger extent of hypertrabeculation was
associated with a higher likelihood of a positive genetic result [25]. No multicenter studies nor studies
using deep phenotyping techniques are available in this regard, while no other radiomics applications
in ETLV or in other genetic cardiomyopathies are available. Further studies are certainly needed.

To the best of the authors’ knowledge, only one small and single-center study tested the possibility
of identifying a genetic positive result from cine CMR, reporting that a larger extent of ETLV was
associated with a higher likelihood of a positive genetic result (Waning et al., 2021). This result was not
reproduced in the present cohort (Table 1), since neither Petersen, Jacquier nor fractal values differed
between patients with a positive or negative result from the genetic and familial studies, suggesting
that the degree of ETLV alone does not define the presence of an actual cardiomyopathy, aligning with
previous reports (Grigoratos et al., 2019; Amzulescu et al., 2015). No multicenter studies nor studies
using deep phenotyping techniques are available in ETLV patients; further studies in these patients
are needed. Notably, conventional and deep image analysis techniques were successfully used for
imaging-based predictions of genotypes in other cardiomyopathies (Morita et al., 2021; Bos et al., 2014;
Gruner et al., 2013).

In the present cohort radiomics demonstrated a 10% improvement in risk stratification of patients
beyond LVEF or LGE. While it is worth underlying that other factors have been shown to modulate
risk in patients with ETLV (Casas et al., 2021), LVEF remains the cornerstone of clinical management
of cardiomyopathy patients, including those with ETLV (Aung et al., 2020), while previous studies
underlined the prognostic impact of having a positive LGE finding (Casas et al., 2021). Thus, present
data may reflect the potential of radiomics features to provide additional information regarding the
cardiomyopathic nature and risk profile of these patients, which is clinically relevant considering the
high heterogeneity of this population (Petersen et al., 2023). Also, our findings may allow to avoid the
administration of contrast media, if confirmed in future prospective studies.
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These results are in line with a previous, single-center and substantially smaller study, where ra-
diomics showed added value for MACE prediction beyond clinical data (Han et al., 2023). Nonetheless,
while promising, present results also underline the challenges of obtaining a robust model in a mul-
ticenter imaging context, where the variability in image appearance is vast. Indeed, despite the use
of state-of-the-art image normalization (piece-wise linear histogram matching) to account for center
variability, a significant drop in performance was obtained when data of the center of interest were
omitted. This underscores the need for future work focusing on dealing with multi-center variability
in radiomics for the development of robust machine learning models.

6.4.1 Limitations

Despite the significance of the study, it presents certain limitations. Although this study is based on
data from 11 clinical centers, they were all from Spanish Institutions. Therefore, the generalizability of
the results to a broader international context as well as the fairness of the proposed approach in terms
of ethnicity should be evaluated in further studies. Another limitation arises from the limited number
of confounders included in the event prediction tests. In particular, certain prognostic markers, such as
LGE CMR, were not included in models. Larger studies are needed to test whether radiomics provide
added diagnostic or prognostic information beyond those established predictors.

6.4.2 Conclusions

In a multicenter cohort study of individuals diagnosed with excessive trabeculation of the left ven-
tricle radiomics analysis of standard, non-enhanced cine CMR images provided added value beyond
left ventricular ejection fraction in the identification of a genetic or familial substrate and of adverse
prognosis. Textural radiomics features were instrumental to recognize a genetic or familial substrate,
while shape features dominated the identification of adverse prognosis.
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7.1 Generic conclusions

This PhD thesis offers innovative contributions in the integration of radiomics with machine learning
(ML), representing a transformative approach to address significant clinical challenges in the diag-
nosis, prognosis of complex cardiovascular diseases, and forecasting of adverse events in complex
cardiovascular diseases. More precisely, the main contributions of this dissertation are:

• In the research outlined in Chapter 3, we proposed a fully automatic CMR radiomics-based
ML pipeline for distinguishing between complex and overlapping conditions like hypertrophic
cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and left ventricular non-compaction
(LVNC). The accuracy of the proposed radiomics-based models aligns with that of conventional
CMR metrics, offering the added advantage of completely automated diagnoses. This method
eliminates the necessity for manual trabeculae delineation by experts, as required in prior stud-
ies, streamlining the diagnostic process.

• In Chapter 4, we demonstrated the the efficacy of integrating radiomics with ML for the prog-
nostication of Atrial Fibrillation (AF). The ECG-based model demonstrated a reduced capabil-
ity in identifying AF in female subjects compared to male counterparts. Enhancing this model
with CMR radiomics, particularly when paired with ECG data, significantly improved its ac-
curacy for female subjects. Notably, radiomic shape features derived from the left atrium (LA)
via CMR played a pivotal role in enhancing our model’s effectiveness, highlighting the impor-
tance of atrial remodeling in the pathophysiology of AF. This suggests that integrating ECG
data with atrial imaging techniques could result in more accurate assessments for women who
are suspected of having AF. Further analysis targeted patients with prevalent AF but normal
ECG readings, where the incorporation of radiomics consistently improved model performance
across the board.

• In chapter 5, our research proved the effectiveness of utilizing radiomics features extracted from
CMR to forecast critical cardiovascular outcomes (CVD). These features offer supplementary in-
sights beyond traditional vascular risk factors (VRFs), albeit with a relatively modest enhance-
ment when juxtaposed with standard CMR measurements. This augmentation in predictive
accuracy was notably significant in cases of atrial fibrillation (AF) and heart failure (HF), under-
scoring the notion that the efficacy of radiomics-based models is contingent upon the specific
pathogenesis and underlying mechanisms of the condition in question.

• Finally, in chapter 6 we proved that in a study spanning multiple centers, involving participants
identified with left ventricular excessive trabeculation, an analysis using radiomics from stan-
dard, non-enhanced cine CMR images revealed additional value beyond the assessment of left
ventricular ejection fraction for detecting a genetic or familial basis and predicting adverse car-
diac events. The study found that textural radiomics features were crucial in identifying genetic
or familial connections, whereas shape-based radiomics features played a key role in predicting
adverse prognostic outcomes.

7.2 Impact of the research

Integrating radiomics into the clinical workflow offers a promising avenue to augment the prognos-
tic evaluation of cardiovascular conditions. By combining radiomic features with established clinical
biomarkers, healthcare professionals can achieve a more comprehensive and nuanced understanding
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of a patient’s disease state. This multidimensional analysis enables the identification of subtle patterns
and associations that may elude conventional diagnostic methods.

The synergy between radiomics and clinical biomarkers facilitates the development of personal-
ized treatment plans tailored to the individual characteristics of a patient’s disease. This approach
not only holds the potential to improve the accuracy of cardiovascular disease predictions but also of-
fers insights into the mechanisms driving complex cardiovascular diseases. Consequently, radiomics
could play a pivotal role in advancing precision medicine for cardiovascular care, leading to improved
patient outcomes and optimized treatment strategies.

In summary, our thesis showed that the union of radiomics with traditional clinical biomarkers
signifies a transforming advancement in cardiovascular diagnostics, underscoring the power of inno-
vative technologies to refine patient care. This approach not only enhances diagnostic precision but
also introduces a tailored, predictive model for the effective management of cardiovascular diseases,
including atrial fibrillation, Stroke, Heart Failure, Myocardial infarction, HCM, DCM and left ventricu-
lar non-compaction (LVNC). As radiomics continues to advance, its potential to redefine our method-
ologies for diagnosing, understanding, and treating complex conditions such as LVNC becomes in-
creasingly evident, promising a future where medical interventions are more accurately aligned with
individual patient profiles.

7.3 Future work

Despite the importance of our findings, there are some limitations to the current work, related to disad-
vantages of using artificial intelligence (AI) in medicine, specially associated to the radiomics pipelines
and its adoption in clinical practice:

• Reliability and Reproducibility: The process of acquiring images across multiple centers and
using different scanner brands introduces significant variability in radiomics data, which can
impede the reliability and reproducibility of research findings. This variability arises primarily
due to differences in acquisition protocols and scanner technologies, which can affect the in-
tegrity of radiomics features and, consequently, the trends and interpretations derived from the
data.

To mitigate these challenges and enhance data consistency, it is crucial to standardize image
acquisition processes. Standardization involves establishing uniform criteria that can be uni-
versally applied across various settings, ensuring that the extracted radiomics models retain
their applicability and accuracy irrespective of the location or equipment used. Such standard-
ization not only facilitates more robust comparative studies but also improves the clinical utility
of radiomics models.

Additionally, the disparity in scanner brands and settings can substantially alter the acquired
data, potentially leading to inconsistent radiomics features. Numerous studies have explored
the impact of these variables on radiomics analysis, highlighting the necessity for normalization
techniques (Raisi-Estabragh et al., 2020c; Campello et al., 2022). In our research, we employed
specific normalization strategies to address these issues. While these methods provided some
level of control over data variability, the quest for more refined techniques remains. Ongoing
research and development of advanced normalization methods are imperative to further mini-
mize data discrepancies and bolster the reliability of radiomics analyses across different studies
and clinical applications.

Continued advancements in this field could lead to the development of more sophisticated
standardization and normalization protocols (Zwanenburg et al., 2020), thereby enhancing the
predictive power and clinical relevance of radiomics. Engaging in cross-disciplinary collabora-
tions and leveraging technological innovations are critical steps toward achieving these goals.

• Inter-observer variability in segmentation: The role of segmentation in radiomics extraction
is critical, as it significantly influences the quality and reliability of the derived data. While
existing guidelines aim to standardize segmentation practices, considerable variability can still
occur due to differences in how individual clinicians interpret and apply these criteria. This
variability is particularly pronounced in radiomics features that describe morphological aspects
of the tissue, which are sensitive to the precise boundaries defined during the segmentation
process.

To address the challenge of inter-observer variability, the scientific community is actively inves-
tigating the potential of automated segmentation techniques (Cardenas et al., 2019; Campello et
al., 2021; Martín-Isla et al., 2023). Automation aims to minimize human bias and inconsistency
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by standardizing the segmentation process, thus enhancing the reproducibility of radiomics
analyses across different studies and settings. Several studies have demonstrated the efficacy of
automated tools in reducing variability and improving the precision of radiomics features.

In our study, we have implemented a centralized approach to segmentation to further control
variability. By centralizing the segmentation process, we ensured that all images were processed
under consistent guidelines and by a dedicated team, reducing the influence of individual clin-
ician variability on the segmentation outcomes. This approach not only improves the consis-
tency of our radiomics data but also provides a robust foundation for comparing our results
with other studies that may employ different segmentation protocols.

Ongoing research into more advanced automated segmentation methods is essential. As these
technologies evolve, they hold the promise of enabling even more consistent and accurate ra-
diomics extraction, potentially revolutionizing the field by allowing for the seamless integration
of radiomics into clinical practice.

• Interpretability: Radiomics involves a range of variables; some are straightforward and easy to
grasp, whereas others require specialized tools or expertise for interpretation. To enhance the
adoption of radiomics in clinical settings, it’s crucial to link these variables with visual charac-
teristics that are easily interpretable (Abbasian Ardakani et al., 2022). In the medical field, the
ability to clearly explain and interpret findings is especially important for patient understand-
ing.

To improve the adoption of radiomics in clinical settings, there is a crucial need to make ra-
diomic features more interpretable. This entails mapping complex radiomic variables to visual
characteristics that clinicians can easily understand and explain. Simplifying the interpretation
of radiomic data without compromising its analytical depth is essential for effective communi-
cation between healthcare providers and patients. Enhancing interpretability not only aids in
clinical decision-making but also helps in educating patients about their conditions, fostering a
better understanding and increasing trust in the use of advanced imaging technologies in their
treatment plans (Lambin et al., 2017).

Moreover, developing user-friendly software tools that can visualize radiomic data in an in-
tuitive manner will further facilitate its integration into routine clinical practice. These tools
should be designed to bridge the gap between the complex quantitative data that radiomics
provides and the qualitative insights that clinicians need euCanSHare n.d.). By offering visual
representations of radiomic findings, such tools can make these data points accessible to clini-
cians without specialized training in data science, thereby broadening the scope of radiomics’
applicability in diverse medical specialties.

• Validation: A significant challenge in radiomics is the validation of computational models,
which are typically trained on specific datasets. When these models are applied to different
patient groups or external datasets, their performance can vary significantly. The intricacy and
high dimensionality of radiomic features, when combined with the often limited sample sizes,
increase the likelihood of developing models that fail to generalize effectively beyond the envi-
ronments for which they were originally designed.

Validation challenges in radiomics are compounded by the variability inherent in imaging data.
Different imaging modalities, such as CT, MRI, or PET, produce data with unique characteristics
and scales, which can affect the performance of radiomic models when applied across modal-
ities not included in the training set. Furthermore, variations in imaging protocols between
institutions can introduce additional discrepancies that complicate the generalization of these
models. Standardization of imaging protocols and the use of harmonization techniques are
critical steps towards improving the robustness and transferability of radiomic models across
diverse clinical settings (Lambin et al., 2017).

Moreover, the statistical methods used to evaluate model performance also play a crucial role
in the validation process. Traditional metrics such as accuracy, sensitivity, and specificity might
not be entirely sufficient for assessing the performance of radiomic models due to their high-
dimensional nature. Advanced statistical techniques, such as cross-validation and bootstrap-
ping, are often recommended to provide more reliable performance estimates. Additionally,
incorporating external validation through multicentric studies can further enhance the credibil-
ity and generalizability of radiomic assessments.

• Lack of Prospective Studies: Radiomics research is often based on retrospective data analysis,
which limits the ability to apply findings predictively in clinical practice. For radiomics to be



110 Chapter 7. Conclusions

integrated into clinical decision-making, there is a need for prospective studies that validate the
predictive capabilities of radiomic features in real-time clinical scenarios.

The reliance on retrospective data in radiomics poses significant limitations because these datasets
may not fully capture the diversity and complexity of future patient populations. Retrospective
studies are typically constrained by the data’s existing biases and the conditions under which
the data were collected, which may not accurately represent current clinical practices or pa-
tient demographics. This can lead to models that perform well on historical data but falter in
prospective, real-world scenarios. Therefore, conducting prospective radiomic studies is crucial
as they allow researchers to validate and refine models under contemporary clinical conditions
and with real-time data collection (Yip and Aerts, 2016).

Prospective radiomic studies also offer the opportunity to evaluate the clinical utility of ra-
diomic features before they are implemented in routine practice. These studies can provide
insights into how radiomic models influence clinical outcomes and decision-making processes.
Furthermore, prospective trials can facilitate the standardization of imaging protocols and data
collection methods, ensuring that the radiomic features extracted are reliable and applicable
across different clinical settings. This shift from retrospective to prospective analysis in ra-
diomics research is essential for moving the field towards practical, evidence-based applications
in personalized medicine.

• Effectiveness: The practical effectiveness of radiomics in enhancing clinical outcomes is still an
area of active investigation. While radiomics has shown potential in research phases, translating
these findings into clinical practice and demonstrating real-world benefits remains a challenge.
Effective implementation requires evidence from controlled trials that assess the impact on pa-
tient management, healthcare costs, and overall clinical efficacy. The transition from research
to clinical practice in radiomics is fraught with challenges, particularly in demonstrating tan-
gible improvements in patient outcomes. While research phases often show promising results,
these findings do not always translate into effective clinical tools due to various barriers such
as technological integration, clinical workflow adaptation, and healthcare professional training.
Moreover, the absence of robust clinical trials focusing on patient-centered outcomes makes it
difficult to assess the true impact of radiomics. Therefore, to establish radiomics as a valuable
clinical tool, there is a pressing need for controlled trials that not only assess diagnostic and
predictive accuracy but also focus on how radiomics can improve patient management, reduce
healthcare costs, and enhance overall treatment efficacy (Gillies, Kinahan, and Hricak, 2016).

Further compounding the challenge is the need for multi-disciplinary collaboration to effec-
tively integrate radiomics into clinical practice. The development and implementation of ra-
diomic strategies require concerted efforts from radiologists, oncologists, data scientists, and
IT professionals. This collaboration is essential for designing systems that are both clinically
relevant and technically feasible (Yip and Aerts, 2016). Additionally, educating healthcare pro-
fessionals about the benefits and limitations of radiomics will be crucial for its acceptance and
effective use. As such, continuous professional development and training programs must be
part of the implementation strategy to ensure that radiomics tools are used optimally to achieve
the best clinical outcomes.
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TABLE A.1: Supplementary Table I: Disease definitions.

Source UKB Field ID: code Description
Myocardial infarction
Self-report 20002 Heart attack/myocardial infarction
Algorithm 42002 Date of myocardial infarction
ICD10 I21 Acute myocardial infarction

I22 Subsequent myocardial infarction
I23 Certain current complications following acute myocardial infarc-

tion
First occurrences 131298 Acute myocardial infarction

131300 Subsequent myocardial infarction
131302 Certain current complications following acute myocardial infarc-

tion
Diagnosed by doctor 6150 : 1 Heart attack
ICD9 3894 Age heart attack diagnosed

410 Acute myocardial infarction
411 Other acute and subacute forms of ischaemic heart disease
412 Old myocardial infarction

Heart failure
Self-report 20002 Heart failure/pulmonary oedema
ICD10 I500 Congestive heart failure

I501 Left ventricular failure
I509 Heart failure, unspecified

First occurrences 131354 heart failure
Atrial fibrillation
Self-report 20002 Atrial fibrillation
ICD10 I480 Paroxysmal atrial fibrillation

I481 Persistent atrial fibrillation
I482 Chronic atrial fibrillation

Stroke
Self-report 20002 Stroke
Algorithm 42002 Ischaemic stroke

42006 Brain haemorrhage
42008 Date of stroke
42100 Date of ischaemic stroke

Diagnosed by doctor 6150 : 3 Stroke
ICD10 40506 Age stroke diagnosed

I60 Intracranial haemorrhage
I61 Other nontraumatic intracranial haemorrhage
I62 Other nontraumatic intracranial haemorrhage

ICD9 164 Stroke, not specified as haemorrhage or infarction
431 Intracerebral haemorrhage
434 Other and unspecified intracranial haemorrhage
436 Acute but ill-defined cerebrovascular disease

First occurrences 131362 Intracerebral haemorrhage
131364 Other nontraumatic intracranial haemorrhage
131366 Cerebral infarction
131368 Stroke, not specified as haemorrhage or infarction

Diabetes
Diagnosed by doctor 2443 Diabetes diagnosed by doctor
High cholesterol
Medications 6177, 6153 : 1 Cholesterol lowering medication
Biochemistry 30690 Cholesterol > 7 mmol/L
Hypertension
Medications 6177, 6153 : 2 Blood pressure medication
ICD10 codes are drawn from fields 41270, 41280, 41234 and 41259 ICD9 codes are drawn from fields

41271, 41281, 41234 and 41259 Where a 3-digit code is given, this includes all 4-digit sub-codes, for
example, I21 includes I210, I211 and I212 etc.
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TABLE A.2: Supplementary Table 2: Atrial fibrillation.

AF Model Features Selected (ordered as selected) Type ROI Phase SVM (alone)
VRF

Sex 0.66(±0.05)
Age 0.59(±0.04)
Hypertension 0.59(±0.06)

CMR
LVM 0.66(±0.07)
RVF 0.59(±0.03)
LVEDV 0.59(±0.02)
LVSV 0.56(±0.05)

CMR+VRF
LVM 0.66(±0.07)
Hypertension 0.59(±0.03)
Age 0.59(±0.06)
RVEDV 0.62(±0.04)
LVEDV 0.59(±0.03)

Radiomics
Maximum 2D diameter slice Shape MYO ES 0.57(±0.07)
Maximum 2D diameter column Shape LV ES 0.58(±0.01)
Maximum 2D diameter row Shape MYO ES 0.60(±0.07)
Dependence non-Uniformity Texture MYO ED 0.65(±0.08)
Inverse difference moment Texture MYO ED 0.58(±0.06)
Large area low gray level emphasis Texture MYO ED 0.59(±0.03)
Large area low gray level emphasis Texture MYO ES 0.59(±0.04)
Maximum 2D Diameter row Shape LV ES 0.63(±0.07)
Surface area Shape LV ED 0.62(±0.05)
Maximum 2D diameter slice Shape LV ES 0.61(±0.05)
Maximum 3D diameter Shape MYO ES 0.61(±0.05)
Sum of squares Texture MYO ES 0.55(±0.02)
Zone variance Texture MYO ED 0.64(±0.09)
Maximum 2D diameter row Shape MYO ED 0.58(±0.06)
Energy First-Order LV ED 0.68(±0.03)
Gray level non-uniformity Texture MYO ES 0.65(±0.07)
Run percentage Texture MYO ED 0.60(±0.08)
Major axis Shape MYO ES 0.67(±0.07)

Radiomics+VRF
Maximum 2D diameter slice Shape MYO ES 0.63(±0.06)
Age 0.59(±0.04)
Small area low gray level emphasis Texture MYO ES 0.58(±0.04)
Long run low gray level emphasis Texture MYO ES 0.45(±0.02)
Percentage non-uniformity Texture MYO ES 0.60(±0.03)
Long run high gray level emphasis Texture MYO ED 0.52(±0.04)
Gray level non-uniformity emphasis Texture MYO ES 0.58(±0.02)
Hypertension 0.59(±0.06)
Gray level non-uniformity normalized Texture MYO ES 0.61(±0.03)
Large area low gray level emphasis Texture MYO ES 0.59(±0.04)
Maximum 2D diameter slice Shape MYO ES 0.57(±0.07)
Surface area Shape RV ED 0.64(±0.03)

CMR+Radiomics
LVM 0.66(±0.04)
Contrast Texture MYO ED 0.59(±0.03)
Sphericity Shape RV ES 0.59(±0.05)
Major axis Shape LV ES 0.63(±0.06)
Maximum 2D diameter slice Shape MYO ED 0.62(±0.05)

CMR+Radiomics+VRF
Maximum 2D diameter slice Shape MYO ES 0.67(±0.07)
Age 0.59(±0.04)
Small area low gray level emphasis Texture MYO ES 0.48(±0.04)
Long run low gray level emphasis Texture MYO ES 0.55(±0.02)
Percentile 90th Texture MYO ES 0.54(±0.06)
Gray level non-uniformity Texture MYO ES 0.58(±0.04)
Long run high gray level emphasis Texture MYO ED 0.52(±0.04)
Hypertension 0.59(±0.06)
Gray level non-uniformity normalized Texture MYO ES 0.51(±0.02)
Large area low gray level emphasis Texture MYO ES 0.59(±0.03)

Abbreviations: CMR, cardiac magnetic resonance imaging; VRF, vascular risk factor, ROI, region of
interest, SVM model alone: support vector machine model performance showing the mean and

standard deviation using each radiomic feature individually; LV, left-ventricle; RV, right-ventricle;
MYO, left ventricle myocardium; ED, end-diastolic, EF, ejection fraction, EDV end-diastolic volume,

ESV, end-systolic volume, LV, left ventricle, RV right ventricle, SV stroke volume.
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TABLE A.3: Supplementary Table 4: Myocardial infarction.

MI Model Features Selected (ordered as selected) Type ROI Phase SVM (alone)
VRF

Sex 0.66 (±0.04)
Hypertension 0.58 (±0.03)
Body Surface Area 0.56 (±0.02)

CMR
LVM 0.65 (±0.02)
LVSV 0.55 (±0.06)
LVEDV 0.57 (±0.04)
RVEDV 0.57 (±0.04)

CMR+VRF
Sex 0.66 (±0.04)
Body mass index 0.56 (±0.03)
Hypertension 0.59 (±0.02)
Body Surface Area 0.58 (±0.03)
LVEDV 0.56 (±0.05)

Radiomics
Coarseness Texture MYO ES 0.54 (±0.06)
Maximum 2D diameter row Shape RV ED 0.54 (±0.02)
Dependence variance Texture MYO ED 0.52 (±0.03)
Inverse variance Texture MYO ED 0.56 (±0.02)
Large area emphasis Texture MYO ED 0.52 (±0.04)
Gray level variance Texture MYO ES 0.53 (±0.02)
Sphericity Shape MYO ES 0.61 (±0.04)
Complexity Texture MYO ES 0.56 (±0.04)

Radiomics+VRF
Sex 0.66 (±0.04)
Small dependence low gray level emphasis Texture MYO ED 0.56 (±0.03)
Hypertension 0.58 (±0.03)
Body Surface Area 0.58 (±0.03)
Maximum 2D diameter slice Shape MYO ES 0.60 (±0.05)
Maximum 2D diameter uniformity Texture MYO ES 0.54 (±0.04)
Max 2D diameter slice Shape LV ES 0.64 (±0.04)
Zone entropy Texture MYO ES 0.53 (±0.06)

CMR+Radiomics
LVM Shape RV ED 0.65 (±0.02)
Least axis Shape RV ED 0.54 (±0.04)
Major axis Shape RV ES 0.59 (±0.03)
Surface area Shape MYO ES 0.60 (±0.03)
Maximum 2D diameter row Shape MYO ES 0.57 (±0.03)
Gray level non-uniformity normalized Texture MYO ED 0.57 (±0.01)
Large area high gray level emphasis Texture MYO ES 0.58 (±0.02)
Volume Shape MYO ES 0.63 (±0.03)
Maximum 2D diameter slice Shape MYO ES 0.64(±0.05)

CMR+Radiomics+VRF
Sex 0.66 (±0.04)
Small dependence low gray level emphasis Texture MYO ED 0.56 (±0.03)
Hypertension 0.58 (±0.03)
Maximum 2D diameter slice Shape MYO ES 0.60 (±0.05)
Maximum 2D diameter slice non-uniformity Texture MYO ES 0.54 (±0.04)
Zone Entropy Texture MYO ES 0.58 (±0.06)
Maximum First-Order MYO ES 0.53 (±0.02)

Abbreviations: CMR, cardiac magnetic resonance imaging; VRF, vascular risk factor, ROI, region of
interest, SVM model alone: support vector machine model performance showing the mean and

standard deviation using each radiomic feature individually; LV, left-ventricle; RV, right-ventricle;
MYO, left ventricle myocardium; ED, end-diastolic, EF, ejection fraction, EDV end-diastolic volume,

ESV, end-systolic volume, LV, left ventricle, RV right ventricle, SV stroke volume.
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TABLE A.4: Supplementary Table 3: Heart Failure

HF Model Features Selected (ordered as selected) Type ROI Phase SVM (alone)
VRF

Age 0.65(±0.08)
Body surface area 0.61(±0.03)
Hypertension 0.62(±0.04)
Diabetes 0.53(±0.02)
High cholesterol 0.52(±0.06)
Body mass index 0.51(±0.05)

CMR
LVEDV 0.66(±0.05)
LVM 0.64(±0.05)
RVEDV 0.57(±0.05)
LVEF 0.66(±0.06)
LVSV 0.62(±0.04)
RVSV 0.51(±0.03)
LVESSV 0.66(±0.05)

CMR+VRF
Age 0.65(±0.08)
Body mass index 0.61(±0.03)
Body surface area 0.61(±0.06)
Hypertension 0.62(±0.04)
Diabetes 0.53(±0.03)
LVEDV 0.59(±0.02)

Radiomics
Maximum 2D diameter slice Shape MYO ES 0.68(±0.06)
Minor axis Shape LV ES 0.66(±0.06)
Volume Shape RV ED 0.56(±0.05)
Large area low gray level emphasis Texture MYO ES 0.58(±0.02)
Informal measure of correlation1 Texture MYO ED 0.57(±0.07)
Small dependence emphasis Texture MYO ES 0.52(±0.05)
Gray level non-uniformity Texture MYO ED 0.63(±0.07)
Surface area Shape MYO ED 0.64(±0.03)

Radiomics+VRF
Maximum 2D diameter slice Shape MYO ES 0.67(±0.06)
Minor axis Shape LV ES 0.66(±0.06)
Age 0.59(±0.04)
Hypertension 0.56(±0.04)
Major axis Shape RV ED 0.62(±0.05)
Size zone non-uniformity normalized Texture MYO ED 0.53(±0.06)
Least axis Shape RV ED 0.52(±0.05)
Maximum 2D diameter slice Shape MYO ES 0.68(±0.06)
LVEDV Shape LV ES 0.60(±0.05)
Dependence non-uniformity Texture MYO ES 0.52(±0.03)

CMR+Radiomics+VRF
Maximum 2D diameter slice Shape MYO ES 0.66(±0.06)
Minor axis Shape LV ES 0.56(±0.03)
LVEDV Shape MYO ED 0.62(±0.05)
Dependence non-uniformity Texture MYO ED 0.62(±0.03)
Hypertension 0.60(±0.05)
Mean absolute deviation First-Order MYO ES 0.64(±0.03)
Run length non-uniformity Texture MYO ES 0.63(±0.08)
Age 0.56(±0.04)
Complexity Texture MYO ED 0.54(±0.04)
Low gray level zone emphasis Texture MYO ES 0.53(±0.04)

Abbreviations: CMR, cardiac magnetic resonance imaging; VRF, vascular risk factor; ROI, region of
interest; SVM model alone: support vector machine model performance showing the mean and

standard deviation using each radiomic feature individually; LV, left-ventricle; RV, right-ventricle;
MYO, left ventricle myocardium; ED, end-diastolic; EF, ejection fraction; EDV, end-diastolic volume;

ESV, end-systolic volume, LVEF, left ventricular ejection fraction; SV, stroke volume.
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TABLE A.5: Supplementary Table 5: Stroke

Stroke Model Features Selected (ordered as selected) Type ROI Phase SVM (alone)
VRF

Sex 0.62 (±0.03)
Body surface area 0.58 (±0.05)
Hypertension 0.55 (±0.03)
Age 0.61 (±0.05)

CMR
LVM 0.61 (±0.02)
RVSV 0.52 (±0.04)
LVSV 0.52 (±0.03)
LVEDV 0.52 (±0.05)
LVESSV 0.55 (±0.03)

CMR+VRF
Sex 0.62 (±0.03)
LVM 0.61 (±0.01)
Hypertension 0.60 (±0.04)
Age 0.61 (±0.05)
RVEDV 0.56 (±0.05)

Radiomics
Median First-Order MYO ES 0.57 (±0.06)
Surface area to volume ratio Shape MYO ES 0.64 (±0.02)
Busyness First-Order MYO ES 0.57 (±0.06)
Large area low gray level emphasis Texture MYO ES 0.55 (±0.04)
Gray level non-uniformity Texture MYO ES 0.63 (±0.01)
Root mean squared First-Order MYO ED 0.54 (±0.05)
Large area low gray level emphasis Texture MYO ED 0.57 (±0.04)
Mean First-Order MYO ES 0.55 (±0.06)
Large dependence low gray level emphasis Texture MYO ED 0.57 (±0.04)
Sphericity Shape LV ED 0.52 (±0.05)
Contrast Texture MYO ED 0.52 (±0.03)
Gray level non-uniformity Texture MYO ES 0.61 (±0.01)
Difference entropy Texture MYO ED 0.57 (±0.04)
Energy First-Order MYO ES 0.56 (±0.04)
Sphericity Shape MYO ES 0.59 (±0.04)
Joint average First-Order MYO ED 0.58 (±0.03)
Range First-Order MYO ED 0.56(±0.07)
Large area emphasis Texture MYO ED 0.60(±0.01)
Sum entropy Texture MYO ES 0.54(±0.02)

Radiomics+VRF
Surface area to volume ratio Shape MYO ES 0.64 (±0.02)
Median First-Order MYO ES 0.57 (±0.06)
Busyness First-Order MYO ES 0.57 (±0.02)
Large area high gray level emphasis Texture MYO ES 0.56 (±0.05)
Mean First-Order MYO ED 0.54 (±0.01)
Zone variance Texture MYO ED 0.60 (±0.05)
Large area emphasis Zone variance Texture MYO ES 0.60 (±0.03)
Sex 0.59 (±0.04)
Busyness Texture MYO ED 0.57 (±0.04)
Gray level non-uniformity Texture MYO ED 0.59 (±0.03)
Root mean squared First-Order MYO ES 0.55 (±0.04)
Hypertension 0.55 (±0.03)
Maximum 2D diameter slice Shape MYO ED 0.55 (±0.03)
Short run low gray level emphasis Texture MYO ED 0.46(±0.05)
Long run high gray level emphasis Texture MYO ES 0.45(±0.03)
Low gray level emphasis Texture MYO ED 0.53(±0.04)
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TABLE A.6: Supplementary Table 5: Stroke

CMR + Radiomics
Surface area to volume ratio Shape MYO ED 0.64(±0.02)
Median First-Order MYO ES 0.57(±0.06)
Busyness Texture MYO ES 0.57(±0.04)
Large area low gray level emphasis Texture MYO ES 0.55(±0.01)
Gray level non-uniformity Texture MYO ES 0.63(±0.04)
Root mean squared First-Order MYO ES 0.54(±0.05)
Large area low gray level emphasis Texture MYO ED 0.57(±0.04)
Mean First-Order MYO ES 0.55(±0.06)
Large dependence low gray level emphasis Texture MYO ED 0.57(±0.04)
Sphericity Shape LV ED 0.52(±0.05)
Contrast Texture MYO ED 0.56(±0.03)
Gray level non-uniformity Texture MYO ES 0.61(±0.01)
Difference entropy Texture MYO ED 0.57(±0.04)
Energy First-Order MYO ES 0.48(±0.03)
Sphericity Shape MYO ES 0.59(±0.04)
Joint average First-Order MYO ED 0.56(±0.05)
Range First-Order MYO ED 0.56(±0.07)
Large area emphasis Texture MYO ED 0.60(±0.01)
Sum entropy Texture MYO ES 0.54(±0.02)

CMR + Radiomics + VRF
Surface area to volume ratio Shape MYO ED 0.64(±0.02)
Median First-Order MYO ES 0.57(±0.06)
Busyness Texture MYO ES 0.57(±0.04)
Age 0.61(±0.05)
Large area high gray level emphasis Texture MYO ES 0.55(±0.04)
Mean First-Order MYO ED 0.54(±0.01)
Zone variance Texture MYO ED 0.60(±0.05)
Large area emphasis Texture MYO ED 0.60(±0.01)
Zone variance Texture MYO ES 0.59(±0.05)
Sex 0.62(±0.03)
Busyness Texture MYO ED 0.57(±0.04)
Gray level non-uniformity Texture MYO ED 0.59(±0.02)
Root mean squared First-Order MYO ES 0.56(±0.05)
Hypertension 0.55(±0.03)
Maximum 2D diameter slice Shape LV ED 0.55(±0.03)
Short run low gray level emphasis Texture MYO ED 0.46(±0.05)
Long run low gray level emphasis Texture MYO ES 0.45(±0.03)
Low gray level emphasis Texture MYO ED 0.53(±0.04)

Abbreviations: CMR, cardiac magnetic resonance imaging; VRF, vascular risk factor; ROI, region of

interest; SVM model alone: support vector machine model performance showing the mean and
standard deviation using each radiomic feature individually; LV, left-ventricle; RV, right-ventricle;

MYO, left ventricle myocardium; ED, end-diastolic; EF, ejection fraction; EDV, end-diastolic volume;
ESV, end-systolic volume; LVEF, left ventricular ejection fraction; SV, stroke volume.
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