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Arnau, Luca, and Alba. And to all the researching mothers.

Dedicat a:

Totes les filles i fills nascuts durant l’elaboració d’aquesta tesis: l’Àgata, la Telma,

l’Ester, l’Arnau, el Luca i l’Alba. I a totes les mares investigadores.

ii



Abstract

Cardiovascular Diseases (CVDs), the leading cause of death in developed countries,

often involve atherosclerosis, which is a chronic inflammatory thickening of the inner

artery layer. Monitoring atherosclerotic plaque detection and its characteristics is cru-

cial for assessing future cardiovascular events. Carotid Artery (CA) Ultrasound (US)

images are utilized for subclinical atherosclerosis detection by measuring carotid Intima

Media Thickness (IMT) and identifying atherosclerotic plaques. This thesis introduces

Deep Learning (DL) methods to segment CA US images and characterize atheroscle-

rotic plaque, aiming to improve cardiovascular risk prediction.

First, we address the segmentation of the Carotid Intima-Media (CIM) region, where

the IMT is estimated. In this work, we introduce a fully automated method based

on Convolutional Neural Networks that accurately localizes the carotid IMT region

in longitudinal B-mode CA US images. In particular, we present a novel single-step

approach using DenseNets for semantic segmentation, resulting in enhanced subclinical

atherosclerosis detection through efficient carotid IMT estimation and atherosclerotic

plaque detection.

This thesis introduces two clinical applications of carotid IMT estimation and

atherosclerotic plaque detection. The first study evaluates cardiovascular event risk

in autoimmune disease patients, focusing on chronic inflammation’s impact on sub-

clinical atherosclerosis. In the second study, we examine the coexistence of subclinical

atherosclerosis in the lower limb (Ankle-Brachial Index) and carotid arteries. The

findings of both studies highlights the systemic nature of atherosclerosis, suggesting

a correlation between biomarkers in different areas and the likelihood of subclinical

disease.

Finally, we explore new ways of improving cardiovascular risk prediction using DL

techniques to extract information from CA US. In cardiovascular epidemiology, risk

prediction functions assess the likelihood of a cardiovascular event based on individ-

ual clinical variables, using survival models. Despite their accurate stratification into
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low, moderate, and high-risk groups, a significant number of cardiovascular events still

occur in the medium-risk category. This study introduces a novel approach for CA

characterization, integrating individual artery condition data into traditional survival

models. The work presents an innovative survival model that incorporates CA US im-

age features derived from Deep Neural Networks, enabling effective cardiovascular risk

prediction and the reclassification of individuals from the moderate to the high-risk

category within the survival model.

iv



Acknowledgements

This work has been partially funded by: the Ministry of Economy and Competi-

tiveness of Spain through the Instituto de Salud Carlos III-FEDER (CIBERCV and
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eficàcia i enteresa.

Als meus pares, per ser la llavor de tot plegat. Gràcies per ser-hi.
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els vostres dibuixos i les vostres abraçades.
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Chapter 1

Introduction

1.1 Clinical introduction

1.1.1 Cardiovascular diseases

Cardiovascular Diseases (CVDs) are a group of disorders that involve the heart and

blood vessels[1]. These diseases can affect the heart’s function (e.g., heart attacks, heart

failure) or the blood vessels (e.g., atherosclerosis, peripheral artery disease). CVDs are

a major global health concern and a leading cause of death worldwide (approximately

17.9 million lives annually). In particular, more than four out of five CVD deaths are

due to heart attacks and strokes, with a significant proportion occurring prematurely

in individuals under the age of 70.

The common basis of CVDs is the occurrence of adverse structural and functional

changes within vascular walls –the layers of tissue that form the structure of blood

vessels–. These changes specifically include atherosclerosis and arteriosclerosis. Arte-

riosclerosis is the thickening and hardening of arterial walls, leading to reduced elasticity

and potentially affecting blood pressure regulation and overall cardiovascular health.

Atherosclerosis, a specific type of arteriosclerosis, involves the accumulation of fatty de-

posits –plaques– on the inner arterial walls, which can further compromise blood flow

and increase the risk of heart-related issues. Both, atherosclerosis and arteriosclerosis,

tend to coexist, causing progressive, diffuse, and age-related deterioration in all vascu-

lar beds [2]. Atherosclerosis is a chronic inflammatory and degenerative process that

mainly occurs in large and medium-sized arteries and is morphologically characterized

by asymmetric focal thickenings of the innermost layer of the artery [3]. Atherosclerotic

lesions are fatty deposits or plaque buildup within artery walls, consisting of choles-

terol, fat, calcium, and other substances. As they progress over time, they narrow
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and thicken the arteries, leading to reduced blood flow. Atherosclerosis begins early

in life, progresses with age, and typically manifests with subclinical arterial wall al-

terations—changes that occur without causing apparent symptoms. These alterations

precede cardiovascular events, which are incidents resulting from the progression or

complications of CVDs. Examples include stroke, myocardial infarction (heart attack),

or chest pain.

1.1.2 Detection of subclinical atherosclerosis using carotid artery ul-

trasound images.

Carotid Arteries (CA) are vital blood vessels located on each side of the neck that

supply oxygen-rich blood to the brain (see Figure 1.1). They are part of the cardio-

vascular system and they are also susceptible to the development of atherosclerosis.

The development of plaque buildup in these arteries can lead to reduced blood flow

or plaque rupture, increasing the risk of cardiovascular events and suggesting potential

problems in other arteries. Moreover, the presence of atherosclerosis in a particular

vascular bed is frequently associated with this disease in other vascular territories [4].

Consequently, the presence of atherosclerosis in the CA has a significant impact on car-

diovascular health. Thus, preventing and treating CA atherosclerosis becomes crucial

to avoid severe cardiovascular consequences.

Figure 1.1: Illustration of the CA and its different segments (CCA, ICA, and external
CA). The bulb is the junction between these segments [5].

Subclinical atherosclerosis is the early stage of artery narrowing caused by fatty de-

posits. It occurs without noticeable symptoms and is often detected through the use

of medical images. Since a person can have atherosclerotic plaques in the arteries for

a long time without presenting any symptoms, it is important to identify them to pre-

vent future cardiovascular problems. CA B-mode Ultrasound (US) image is currently
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being used in the clinical practice to detect the burden of subclinical atherosclerosis

since it provides a measurement of the Intima Media Thickness (IMT) of the artery.

CA B-mode US is a cross-sectional –it does not provide a continuous view along the

length of a structure– image constructed from echoes that are generated by reflection

of US waves at tissue boundaries. US image is a medical imaging technique that uses

high-frequency sound waves (typically in the range of 2 to 18 megahertz) to create a

real-time visual representation of internal body structures [6]. The B-mode conveys

information about tissue density and reflectivity. Brighter areas typically correspond

to dense or highly reflective structures, such as bones or tissues, while darker areas

represent less dense or less reflective tissues, such as fluids like blood. As a result,

B-mode US allows healthcare professionals to visualize tissues and organ boundaries

in a grayscale image. In particular, the IMT measurement in the clinical examination

requires the longitudinal view —aligned in a plane parallel to the artery’s direction (as

shown in both images from Figure 1.2)— rather than a transverse perspective. These

images are the data source employed for evaluating CA in this thesis.

(a) (b)

Figure 1.2: Two examples of longitudinal B-mode CA US images: (a) the red lines show
the presence of atherosclerosis plaque and the green lines show the IMT measurement;
and (b) the five anatomical regions represented in a CCA B-mode US image.

IMT is defined as the distance between Lumen-Intima (LI) and Media-Adventitia (MA)

interfaces, and it is commonly estimated in the far wall of the CA [7]. From now on,

we will refer to the region where IMT is estimated as the Carotid Intima-Media (CIM)

region. Figure 1.2 shows two B-mode US images of the CA where different anatomical

regions are distinguished: the LI and MA tissues between which the IMT is measured,

the atherosclerotic plaque, the CCA and bulb territories, the wall of the artery closest

to the skin (“Near Wall”) and the wall of the artery most distal to the skin (“Far

Wall”), and the blood (“Lumen”) between these two walls. The measurement of the

carotid IMT using B-mode US is a non-invasive, sensitive, and relatively inexpensive

image technique. Moreover, the IMT measurement is considered as an indicator of the
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presence of plaque, as is stated in the Mannheim consensus [7]. This consensus defines

a sufficient criterion for plaque detection: Plaques are focal structures encroaching

into the arterial lumen of at least 0.5 mm or 50% of the surrounding IMT value, or

demonstrates a thickness > 1.5 mm as measured from the LI interface to the MA

interface.

Carotid arterial wall assessment may include different CA territories, the Common CA

(CCA), the Internal CA (ICA), or bulb territory of the CA (see Figure 1.1). Atheroscle-

rotic thickening and plaque are commonly found at the bifurcation of the CA and the

beginning of the ICA, but only occasionally occur in the CCA. However, it is well known

that noise represents the most prominent problem in US imaging and, in particular,

noise is more evident in internal areas such as bulb or ICA. Therefore, most B-mode

US studies are performed assessing the CCA due to its accessibility, which makes the

quality of the CCA images better compared to those of other artery territories.

There is a clinical motivation to automate IMT estimation and plaque detection. Man-

ual detection of the LI and MA walls in US images is a slow and tedious task, and

inter-individual and inter-observer variability in the measurements is a common issue

in these estimations [7]. This is mainly due to two aspects: one, anatomical variations

encompassing vessel morphology and changes related to atherosclerosis; and two, im-

age quality, which, aside from having noise and the presence of speckles, is strongly

influenced by the scanner and its configuration. Consequently, automated methods

are necessary to analyze large quantities of images in a fast manner, reduce measure-

ment variability and avoid reproducibility issues, a crucial requirement for high-quality

studies.

1.1.3 Cardiovascular disease prevention

Survival models for risk classification

In the field of cardiovascular epidemiology, practitioners use risk prediction functions

[8, 9, 10, 11, 12] to estimate the risk of suffering a cardiovascular event in a period of

time. These function are called risk functions in the literature. These functions are

based on survival models which are statistical methods used to analyze and predict

the time until an event of interest occurs, such as death, failure, or any other defined

outcome. In particular, the survival models used in cardiovascular risk functions are

mathematical models designed to estimate an individual’s likelihood of developing any

CVD. It takes into account various risk factors such as age, gender, blood pressure,

cholesterol levels, smoking status, and family history of heart disease etc. By analyzing

these factors, the prediction function provides a numerical value or percentage that

indicates the probability of experiencing a cardiovascular event within a specified time
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interval for a particular individual [13]. Cox Proportional Hazards model (CoxPh) is a

specific type of survival model that assess the relationship between predictor variables

–covariates– and the probability of an event happening at a given time –the outcome–

[14]. Most of the risk prediction functions in the field of cardiovascular epidemiology

are based on CoxPh [8, 9, 10, 12] where the outcome is the time until an event occurs,

and the predictor covariates are the risk factors.

Improvement of risk classification

Classically, the predictive results of risk functions are divided into different risk cat-

egories for stratification. Each risk category is defined by an interval probability of

suffering a cardiovascular event in the next ten years [8, 9]. These functions accurately

stratify individuals into different categories and one example is shown in Table 1.1. Ta-

ble 1.1 shows data on the ten-year incidence rate of cardiovascular events (specifically

stroke, myocardial infarction or chest pain) in a population of 3,724 individuals aged

between 35 and 74 years who participated in REGICOR study [8]. The risk category

for each subject is based on the percentage probability of suffering a cardiovascular

event in the next ten years (first column). The second and third columns indicate

the number of subjects in each category and the number of events respectively. The

last column shows the percentage of events that occurred in a period of ten years for

each risk category. As can be seen, the percentage of events falls inside each interval

probability. More specifically, the percentage of subjects in the low, moderate, and

high categories is 1.2%, 6.32%, and 12.50%, respectively, which is within the interval

probability estimated: [0, 5)%, [5, 15)%, and [15,.)%.

Table 1.1: REGICOR data [8] on the ten-year incidence rate of CVD event.

Risk category and Subjects with event in the
interval probability Subjects (%) event (%) risk group (%)

Low < 5 2449 (65.76%) 31 (25.83%) 1.27%
Moderate ∈ [5, 15) 1139 (30.59%) 72 (60.00%) 6.32%
High ≥ 15 136 (3.65%) 17(14.17%) 12.50%

TOTAL 3724 (100%) 120 (100%) 3.22%

Despite these functions accurately stratify individuals into different categories, the ma-

jority of cardiovascular events occur in individuals classified as being at medium risk

[13]. One example are the values in the third column in Table 1.1 which show that

the moderate category concentrates the highest percentage of events (60%). Moreover,

the cut-off points that define the risk stratification in low -risk group, moderate-risk

group, and high-risk group have practical implications for deciding pharmacological

intervention measures. According to [15], treating populations is only cost-effective in
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the high-risk category. In particular, this study discusses the effectiveness of statins

–treatment used to lower cholesterol levels in the blood and reduce the risk of heart

disease– in a population with varying heart disease risk classification. The authors

suggest that the treatment may benefit intermediate-risk patients, but decisions should

consider net benefit, safety, and patient preferences due to a higher number of in-

dividuals included in this category. Statin treatment reduces cardiovascular risk and

should remain a priority in managing patients at high risk. Nonetheless, the substantial

number of individuals falling within the intermediate-risk category requiring treatment

raises suitability concerns.

These examples provide evidence of the poor discriminative ability of classical risk

factors, which is a recurrent observation in cardiovascular risk classification [13]. In

particular, this fact makes the stratification strategy ineffective in treating the pop-

ulation of the moderate group. Therefore, new pathological information should be

considered to reclassify individuals from this group to the high-risk group.

Risk assessment using CA US images

The tissue of CA walls provides information about the patients’ arteries and cardiovas-

cular health. For this reason, the study of CA US plaque images has been considered

clinically relevant. Moreover, the long induction period of atherosclerosis makes it suit-

able for the study of subclinical CVD for preventive purposes. Several attempts in the

literature tried to assess the cardiovascular risk of subjects using CA image features

([16, 17, 18, 19]). These works use CA image features related to IMT and atheroscle-

rotic plaque (such the size or texture based on gray level). These features are combined

with other risk factors to create risk prediction functions. While all risk functions are

improved by adding these types of features, there has been no significant improvement

in the predictive capacity of classical risk factors [13]. Additionally, these types of fea-

tures have not been specifically tested to observe improvements in reclassification. The

central aim of the clinical research in this thesis is to address these questions, which

also serve as motivation for all the technical research carried out.

1.2 Technical introduction

1.2.1 Artificial intelligence and computer vision

Artificial Intelligence (AI) involves the development of algorithms and systems –a col-

lection of hardware, software, and algorithms, that work together– that enable machines

to perform tasks that typically require human cognitive functions, such as learning, rea-

soning, problem-solving, perception, language understanding, and decision-making. AI
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has applications in various fields, including robotics, healthcare, finance, entertainment

and so on [20].

Computer vision is a subfield of AI that specifically deals with the interpretation and

understanding of visual information from the world, just like humans do. AI tech-

niques, such as Machine Learning (ML) and Deep Learning (DL), play a crucial role

in advancing computer vision. These techniques enable computers to learn from visual

data, allowing them to recognize patterns, objects, and features within images and

videos. Some of the current applications of computer vision include optical character

recognition, mechanical inspection, warehouse picking, self-driving cars, drone-based

photogrammetry and medical imaging [21].

The field of ML can be described as the study and development of computer algorithms

that allow the creation of models to automatically learn patterns and make predictions

or decisions based on data [22]. In the context of computer vision, traditional ML

techniques often involve the manual extraction of relevant image features –numerically

representation that summarize the image in question– that allow to better discriminate

and classify the different labels –categories, classes, or identifiers assigned to images or

elements within them–. These features could include aspects like edges, textures, or

color histograms and they are used to train the models[21].

DL is a subset of ML that uses Neural Networks (NN), which are composed of multiple

interconnected layers (called hidden layers) of nodes. NN takes input data through an

input layer, processes it through hidden layers using learned weights, and produces an

output through an output layer. NN are able to extract a high level representation of

data that are most relevant for a specific learning task such as pattern recognition –the

process of identifying and classifying patterns within visual data–. In computer vision,

DL has revolutionized the field by allowing computers to learn directly from raw image

data, without the need for manual feature engineering. DL has proven to be highly

effective in handling complex visual tasks, leading to many advancements in computer

vision[21].

Deep Neural Networks (DNNs) are NN with a significant number of hidden layers

allowing to improve learning capacity. Convolutional Neural Networks (CNNs) are the

most commonly DNNs used for image-related tasks. Its most basic characteristic is

that they are composed of convolutional layers, among others. Convolutional layers

apply convolution operations over image pixels, creating multiple level representations

of the structures appearing on the images. These structures go from basic edges and

colours in the initial layers to more complex object parts or spatial object relationships

in the final layers [23].
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1.2.2 Artificial intelligence in healthcare

Artificial intelligence has undergone a rapid growth in recent years, covering advances in

both theoretical and practical aspects. In the healthcare sector, AI-based methods and

tools have played a critical role in solving a variety of medical and healthcare-related

issues, saving time, costs, and lives as well as fostering economic resilience particularly

under the COVID-19 pandemic environments [24].

In particular, CNNs have gained significant relevance in the clinical field due to their

remarkable ability to analyze medical images and contribute to improved diagnostics

and patient care. CNNs demonstrate exceptional performance in tasks like detecting

abnormalities, tumors, and disease-related features in a wide range of medical imaging

modalities, including X-rays, Computerized Tomography (CT), Positron Emission To-

mography (PET), and Magnetic Resonance Imaging (MRI), among others. This tech-

nology enhances the accuracy and speed of diagnoses, enabling healthcare professionals

to identify conditions at earlier stages and make treatment decisions. Moreover, CNNs

aid in reducing human error and variability, while also assisting in surgical planning

(such as preoperative scans, to identify important structures, anomalies, or potential

areas of concern), and monitoring patient progress.

1.3 Regicor project and dataset

The REGICOR project1 began in 1978 as the Girona Heart Registry at the Josep

Trueta Hospital in Girona. Later, it became a population registry that included sev-

eral hospitals in the territory of the province of Girona. Now the project brings together

more than 50 researchers from the Hospital del Mar Medical Research Institute (IMIM),

from the Cardiology Services unit at Josep Trueta Hospital and the primary care re-

search unit in Girona. The research focus is the population distribution of CVDs and

associated risk factors, and improved prevention tools and strategies. The REGICOR

mission is to contribute to the available knowledge about the magnitude and causes of

CVDs. The final objective is to contribute to a significant reduction in the burden of

these diseases.

The REGICOR project investigates the role in the development of CVDs from molec-

ular bases to population perspective. A branch of this project is a cohort study with

a follow-up of more than 30 years which began the first recruitment between 1995 and

2005 [25]. This study randomly selected a group of individuals –7,571 (52.0% women)

inhabitants, to be precise– from the province of Girona to represent the general pop-

ulation older than 25 years. These individuals were actively followed [8]. The study

1https://regicor.cat/
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consists of three recruitment stages: in 1995, 2000 and 2005 (involving 1480, 2540

and 3551 individuals, respectively). In the third recruitment, the subjects were older

than 35 years. All these stages involved three face-to-face encounters (the baseline and

two follow-ups) with the recruited individuals for data collection. In particular, general

data such as sociodemographic information, risk factors, anthropometric measurements,

diet, medications, etc., were collected from these individuals in an initial assessment

and two subsequent follow-up assessments. Furthermore, non-face-to-face follow-ups

were conducted annually from the beginning of the study to gather information on

cardiovascular events.

Moreover, in this project branch, during the first face-to-face follow-up, cross-sectional

US images of the three segments (CCA, bulb, and ICA) of the CAs (left and right) were

collected from approximately 5,000 individuals. The scans were performed between

2005 and 2015 using the Acuson XP128 US system equipped with an L75-10 MHz

transducer. Longitudinal US images were obtained in B-mode with a resolution of

0.043 mm/pixel and a size of 470x445 pixels. The original images were saved in DICOM

format and then converted to PNG. Additionally, images of approximately 50% of these

individuals were sent to the Academic Vascular Image Center in Amsterdam2 (AVICA)

for analysis. All images were analyzed by AVICA experts who, using the validated

semi-automatic software e-track [26, 27], extracted the IMT value for each image.

The main dataset for this thesis comprises the REGICOR images, the IMT values

obtained using the semi-automatic method, clinical data from both the baseline and

the first follow-up, and information about cardiovascular events.

1.4 Goals and objectives of the thesis

The final objective of this thesis is to improve the prediction of cardiovascular risk using

CA US images. The necessary path taken to achieve this main objective is composed

of five conceptual stages which are described below:

(1) CIM region segmentation: To delineate the CA region where the IMT mea-

surement is supposed to be estimated.

(2) IMT estimation: To compute the IMT from the CIM region segmented before.

(3) Plaque detection: To detect the presence of atherosclerotic plaque (if there is

any) and its location within the CIM region.

(4) CIM region and plaque characterization: To characterize the CA wall and

2https://www.abc.uva.nl/research/institutes/institute-articles/academic-medical-center-amc.html
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the plaque (if there is any) by learning relevant visual features from the CA image.

(5) Cardiovascular risk prediction improvement: To use relevant learned fea-

tures from the CA image, particularly from the atherosclerotic plaque, that en-

hance cardiovascular risk prediction, specifically the reclassification.

Figure 1.3 illustrates these stages and the thesis contributions derived from each one

of them.

Figure 1.3: This figure shows the conceptual stages addressed in this thesis. Below the
dotted line, the research contributions related with each stage are shown.

Next, we detail the goals and clinical applications that we face in this thesis:

i) Given the common use of CA US images for subclinical atherosclerosis detection,

which involves measuring arterial IMT and identifying atherosclerotic plaques, it is

essential to employ automated segmentation approaches to delineate the CIM region

and accurately estimate the IMT value. CNNs have gained prominence in the clinical

field due to their exceptional capacity for analyzing medical images. Thus, the first

goal of this thesis is to develop a CNN-based method for the precise identification

and interpretation of specific anatomical components within the CA, with a particular

focus on plaque detection. Importantly, this approach aims to facilitate the rapid and

efficient estimation of IMT and plaque detection across extensive image datasets. This

proposal encompasses stages 1, 2 and 3 (Figure 1.3) and it is addressed in Chapter 2

of this thesis.

ii) This thesis presents two clinical applications of the IMT value estimation and

plaque detection method developed in the stages 2 and 3 (Figure 1.3). The first clinical

10



application deals with autoimmune diseases. Autoimmune diseases may prematurely

lead to arterial degeneration due to chronic inflammation, increasing the risk to develop

CVDs. CVDs are caused by changes in the vascular wall and therefore affect all arteries,

in particular showing alterations in the IMT and the arterial stiffness of the CA. In our

study, we compare the prevalence of subclinical atherosclerosis and arterial stiffness in

individuals with longstanding autoimmune disorders to the general population. This

study is addressed in Chapter 3 of this thesis.

iii) The second clinical application aims to relate two measures for the detection of

subclinical atherosclerosis. The long development period of atherosclerosis allows for

preventive study using measures like Ankle Brachial Index (ABI) –a test that compares

blood pressure in the ankles to that in the arms– in the lower limb and IMT in the CA to

predict cardiovascular events. However, the correlation between lower limb and carotid

atherosclerosis, especially in the general population without intermittent claudication

history, remain underexplored. The work presented in Chapter 4 of this thesis evaluates

this correlation in general population.

iv) The final goal of this research project is to improve the survival model for risk

stratification using CA US images. Analyzing these images is useful for cardiovascular

risk assessment as they provide information about the vulnerability of atherosclerotic

lesions in other arteries. Our research aims to characterize CA wall and plaque, using

CA US images and DL techniques, to learn new feature embeddings. These embeddings

not only capture underlying data relationships and patterns but also preserve relevant

information while filtering out irrelevant details. This enhances risk prediction and

stratification for cardiovascular events ranging from moderate to high categories. This

approach encompasses stages 4 and 5 (Figure 1.3) and it is addressed in Chapter 5 of

this thesis.

1.5 Contributions

This work contributes to research in the field of ML and healthcare imaging through

the following publications during the thesis period:

Primary Contributions (publications as first author)

1. Published (citations 32)“Semantic segmentation with DenseNets for CA ultra-

sound plaque segmentation and CIMT estimation”. Maria del Mar Vila, Beat-

riz Remeseiro, Maŕıa Grau, Roberto Elosua, Àngels Betriu, Elvira Fernandez-

Giraldez, Laura Igual. Artif Intell Med 2020 [28]. This article focuses on medical

image processing, specifically the development of a DL method designed to seg-

ment and contextualize the CIM region, estimate IMT, and detect the presence
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of atherosclerotic plaque.

2. Published (citations 2) “Do individuals with autoimmune disease have increased

risk of subclinical carotid atherosclerosis and stiffness?”. Maria del Mar Vila,

Beatriz Remeseiro, Laura Igual, Roberto Elosua, Rafael Ramos, José Manuel

Valdivielso, Ruth Mart́ı-Lluch, Jaume Marrugat,Maŕıa Grau. Hypertens Res.

2021 [29]. This article is a clinical application of IMT measurement estimation

and plaque detection that analyzes the relationship between IMT measurements

and autoimmune diseases.

3. Published (citations 1) “Polyvascular Subclinical Atherosclerosis: Correlations

Between ABI and Carotid Atherosclerosis in a Population-Based Sample”. Maria

del Mar Vila, Laura Igual, Beatriz Remeseiro, Roberto Elosua, Rafel Ramos, Jose

Manuel Valdivielso, Ruth Mart́ı-Lluch, Jaume Marrugat, Maria Grau. Angiology

Vol 74(5) 443-451 2022 [30]. This article is a clinical application of IMT mea-

surement estimation and plaque detection that analyzes the relationship between

subclinical measurements of atherosclerosis: IMT and ABI.

4. Published (citations 15) “Last Advances on Automatic Carotid Artery Analysis

in Ultrasound Images: Towards Deep Learning”. Maria del Mar Vila, Beatriz

Remeseiro, Maŕıa Grau, Roberto Elosua, and Laura Igual. Handbook of Artificial

Intelligence in Healthcare, Springer, 2022 [24]. This book chapter presents a

review of automatic techniques for IMT measurement and plaque assessment

from CA US images.

5. Sent (Q2 journal)“Deep-stratification of the cardiovascular risk by ultrasound CA

images”. Maria del Mar Vila, Lucas Gago, Pablo Pérez Sánchez, Beatriz Reme-

seiro, Maria Grau, Laura Igual. This article is about the creation of a cardio-

vascular risk prediction function that utilizes information from CA US images

extracted with NNs.

Secondary contributions (publications as co-author)

6. Published“Carotid Artery Segmentation in Ultrasound Images”. Chen Zhang,

Maira del Mar Vila, Petia Radeva, Roberto Elosua, Maŕıa Grau, Àngels Betriu,

Elvira Fernandez-Giraldez, Laura Igual. MICCAI Workshop on Computing and

Visualization for Intravascular Imaging and Computer Assisted Stenting 2015

[31]. This work proposes a ML method for CIM region segmentation in CA US

images.
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7. Published (citations 132)“A Convolutional Neural Network for Automatic Char-

acterization of Plaque Composition in Carotid Ultrasound”. Karim Lekadir, Al-

fiia Galimzianova, Àngels Betriu, Maria del Mar Vila, Laura Igual, Daniel L.

Rubin, Elvira Fernández, Petia Radeva and Sandy Napel. IEEE J Biomed Health

Inform 2017; 21(1): 48-55 [32]. This article proposes a DL approach based on

CNNs to automatically identify different constituents of atherosclerotic plaque

(plaque composition characterization) in CA US images.

8. Published (citations 5)“An end-to-end framework for intima media measurement

and atherosclerotic plaque detection in the carotid artery”. Lucas Gago, Maria del

Mar Vila, Maŕıa Grau, Beatriz Remeseiro, Laura Igual. Computer Methods and

Programs in Biomedicine 223, 2022 [33]. This article presents an improved DL

method for estimating IMT and detecting the presence of atherosclerotic plaque,

continuing from previous research [28].

Figure 1.3 illustrates the contributions, both as the first author and a co-author, derived

from the stages mentioned in the previous section.

1.6 Thesis organization

This section provides an overview of the organization and structure of this thesis,

including the chapters and their respective topics to guide the reader through the

work.

Chapter 2 This chapter involves the stages 1, 2 and 3 from Section 1.4 (see Figure 1.3).

Thus, it reviews automatic techniques that have been introduced in the literature for

CA segmentation, allowing IMT measurement and plaque detection in CA longitudinal

B-mode US images. Moreover, this chapter presents a DL approach for IMT estima-

tion and plaque detection, using a fully automatic single-step approach based on CA

semantic segmentation.

Chapter 3 & Chapter 4 These chapters present two clinical applications derived

from the stages 2 and 3 from Section 1.4 (see Figure 1.3). Chapter 3 presents a

study about the impact of chronic inflammation in autoimmune diseases on subclinical

atherosclerosis and arterial stiffness. Chapter 4 contains the work that explores the

correlation between lower limb atherosclerosis biomarkers and carotid atherosclerosis

indicators such as CCA IMT and plaque presence.

Chapter 5 This chapter involves the stages 4 and 5 from Section 1.4 (see Figure 1.3).

Thus, it reviews image-based techniques to characterize atherosclerotic plaques and

CA walls in B-mode US longitudinal images in order to predict cardiovascular risk and

13



events. Moreover, this chapter presents a DL approach that uses deep CA US image

features to improve risk stratification and reclassification.

Chapter 6 This chapter presents a summary of the key findings and contributions of

the thesis and discusses their implications. Moreover it exposes the limitations, offers

suggestions for future research and discusses the revolution of DL techniques in medical

imaging.
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Chapter 2

Deep learning proposal for

carotid IMT estimation and

plaque detection

2.1 Introduction

This section studies the problems of CIM region segmentation, IMT estimation, and

plaque detection in CA longitudinal B-mode US images. In this section, we review the

state-of-the-art of automatic methods to solve these image analysis problems (part of

this review is included in our chapter “Last Advances on Automatic Carotid Artery

Analysis in Ultrasound Images: Towards Deep Learning” published in [24]). Moreover,

we introduce our approach presented in [28], which is a fully automatic single-step,

based on DL, approach for CA Semantic Segmentation (SS). This SS method involves

distinguishing various anatomical components in the CA image and encompasses CIM

region segmentation, IMT estimation, and plaque detection in CA longitudinal B-mode

US images

2.2 State of the art

B-mode longitudinal US images are commonly used for carotid IMT estimation and to

detect sublcinical atherosclerosis. The carotid IMT is conventionally measured man-

ually by a trained operator from the B-mode US scan images. The methodology is

highly user-dependent, time-consuming, tedious, and infeasible when using large image

databases.
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Several computerized techniques have been developed for automatically estimating the

carotid IMT measurement. The automated procedure for estimating carotid IMT first

requires a CA image interpretation to identify and segment the CIM region, where

the IMT is then measured. CA image interpretation consists of localizing the different

anatomical components of the CA, such as lumen, far wall, near wall, Bulb, and CCA

(see Figure 2.1 (left)). In particular, Mannheim consensus [7] states that the IMT

for CCA images is estimated 1cm distal from the Bulb, which reflects this necessity.

As it is shown in Figure 2.1 (left), carotid IMT estimation and plaque detection only

needs the segmentation of the region between LI and MA interfaces. We call Region of

Interest (ROI) the bounding box in the image containing these both interfaces. The LI

and MA interfaces delimit the segmentation of CIM region within that ROI. Carotid

arterial wall assessment may include the CCA, bulb or ICA segments. Figure 2.1 shows

an example of the CIM region in CCA (left) and bulb (right) segments. The ICA has

an anatomically similar shape to that of the CCA; however, it has poorer image quality

because it is less accessible with the US device.

Figure 2.1: CCA (left) and Bulb (right) longitudinal B-mode US images. The different
parts of the CA are delimited with green lines. In both cases the IMT is estimated in
the CIM region from the far wall. The IMT in the CCA is measured approximately 1
cm distal from the carotid Bulb.

The difficulties in CA segmentation in B-mode US scan images come from the following

issues:

1. These images have a low signal-to-noise ratio. It is well known that noise and the

presence of speckles represent the most prominent problem in US imaging.

2. The acquisition of the US is user-dependent, and the quality of the image strongly
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depends on the scanner used and its settings.

3. The high variability in vessel morphology in general together with the variability

due to atherosclerosis disease make the task difficult.

Basic image processing techniques for CIM region delineation and atherosclerotic plaque

segmentation presented in the literature include, among others, Hough transform [34],

edge detection [35, 36] and snakes [37, 38, 39, 40]. Moreover, AI solutions, such as ML

and DL approaches, serve the same purpose. On one hand, ML techniques are based

on handcrafted features to segment the CIM region. In this case, the feature extraction

is independent of the actual model of classification [31, 41, 42]. On the other hand,

the feature extraction and model characterization are indifferent of each other in DL

methods; i.e., the system has the ability to automatically learn the features of the

model which better discriminate for the CIM region segmentation [28, 33, 38, 43, 44,

45, 46, 47].

Review articles [48, 49] present more references of studies that use image processing,

basic ML techniques and also statistical methods. More recent reviews [50, 51] show the

evolution and impact of the fast-changing AI technology on CIM region and atheroscle-

rotic plaque segmentation. The first review [50], show the influence of automatic AI

techniques in a clinical practice guidelines for CVD risk to improve patient outcomes.

In particular, it includes a quantitative search of the latest ML and DL techniques for

automated carotid IMT measurement techniques and how they have evolved in the last

15 years. The second review [51] presents a categorization consisting of three genera-

tions for CIM region and atherosclerotic plaque segmentation systems: (1) conventional

methods (image processing methods based on the primary threshold to get the edges of

the CIM region), (2) contour-based methods and (3) intelligence-based methods using

the ML and DL methods. In particular this review focus on how ML and DL tech-

niques can be used for this purpose and it presents the details about studies using CCA

images.

2.2.1 Fully automated methods for CIM region segmentation

According to Loizou [49], the methods can be broadly classified into two categories. The

first category includes techniques that require user interaction, i.e., semi-automatic;

whereas the second one includes fully automatic methods. Semi-automatic approaches

[36, 40] require user interaction for manual initialization to select the ROI and/or

to correct wrong results during examination. In general, the manual ROI selection

together with this type of interactions result in better performance. The best semi-

automatic methods found in the literature for clinical practice are the ones that offer

visual feedback during image acquisition instead of analyzing stored images [36].
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In contrast, fully automatic methods [28, 31, 33, 37, 41, 42, 43, 45, 47] run without any

initial setting or user interaction. The main advantage of these techniques is that they

are able to process large amounts of data. Furthermore, they allow the reproducibility

of results, and save time and resources. Preliminary efforts using ML [31, 41, 42]

and DL [38, 43, 44, 45, 46, 52, 53, 54] in fully automatic carotid IMT evaluation

are presented in the literature. Among all these, the AtheroEdgeTM [41] system is

remarkable; it is a patented software frequently used in the literature. Its proposal is a

method based on splines and elastic contours that achieves clear edge tracing but fails

in noisy corners. Lara et al. proposed several carotid IMT estimation methods using

windowing processes on a ROI and a feed-forward network for pixel classification [52,

53, 54]. Standard multi-layer perceptron was introduced in [54], but the best results

from the same author are obtained in [43] where an auto-encoder was also proposed

for CA image interpretation. However, despite all these sophisticated techniques, these

approaches do not outperform the snake-based method presented in [37]. For their

part, Zhang et al. [31] proposed a two-step segmentation method of the CIM region

based on patch-based classification and stacked sequential learning. Later, patch-based

CNNs were used in different steps for carotid IMT estimation [45]. More specifically,

this work uses US videos instead of a unique frame and adds an extra first step for

selecting a specific cardiac cycle period. Despite the DL advantages, ML techniques

applied to CIM region segmentation are still present in the literature. For instance,

Qian and Yang [42] presented an approach to automatically segment plaque that uses

several ML methods and combines them in an iterative algorithm. Rajasekaran et al.

[38] used a CNN for the detection of a ROI, although snake algorithm was further used

to extract the boundaries of LI and MA layers. Biswas et al. [46, 44] proposed two

interesting approaches based on a combination of two DL models. Firstly, they used a

method that consists of a convolutional encoder/decoder to first extract features and

then created the segmented images from them [46]. In particular, the training system

uses two kinds of GT, one for LI and other for MA, which lead to the design of two DL

systems. However, the final stage of this approach still needs a ML-based “refinement”

in order to increase the accuracy of the system. More recently, they proposed an

interesting two-stage method based on two independent DL models [44]. In this case,

one model uses a CNN with patch images as input to form the ROI, and the other

model uses a FCN to segment the CIM region within that ROI. In particular, this DL

approach uses patches instead of the whole image at once, allowing a better control of

the small regions of the image. Despite the novelty of these proposals, they require a

complex system because they are composed of two sophisticated DL models.
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Single-step approaches

To the best of our knowledge, all the aforementioned DL segmentation techniques are

two-step approaches that define separate methods to first locate the ROI (performed

manually in the case of semi-automatic methods); and second, delineate the CIM region

within the ROI. On the contrary, our proposal Vila et al. [28], presented a single-step

DL approach for automatic CA image interpretation. This approach is based on SS us-

ing Densely Connected Convolutional Networks (DenseNets) [55], which were designed

to facilitate the training of very deep networks due to a reduction in the number of

parameters and the reuse of feature maps. This proposal represents the first attempt in

the literature to accurately segment and interpret the different anatomical components

of the CA (lumen, far wall, near wall, Bulb, CIM region and CIM-Bulb region, see

Figure 2.1), which has demonstrated to be helpful in the proper estimation of the IMT.

Using the segmented regions, a straightforward approach for carotid IMT estimation

and plaque detection is defined. Later, this work was enhanced by the study proposed

in [33], which is a SS model based on U-Net with EfficientNet as the backbone for CCA

and bulb territories. Moreover, this study proposes another model consisting of a re-

gression and classification model, using the original image and the segmented image as

the input. This novel method is based on a CNN designed using Bayesian optimization

and is capable of making real-time predictions of the maximum and average carotid

IMT and the presence of atherosclerotic plaque, also in CCA and bulb territories. An-

other single-step DL approach is presented in [47], which performs a comparison of

several methods based on the U-Net architecture to assess the atherosclerotic plaque

segmentation in CCA and ICA territories.

2.2.2 Comparison of relevant works for CIM region segmentation and

IMT estimation

Table 2.1 summarizes the most relevant proposals for CIM region segmentation and

IMT estimation presented in the literature and it compares several characteristics of

every method. The different characteristics reported are the following:

• Column “Segmentation Method”. A little more than a half of the recent methods

are based on DL techniques. In particular, different architectures of NNs are

adopted in 9 out of the 16 works reported.

• Column “Method SA/FA”. It is worth mentioning that the Semi-Automatic meth-

ods do not achieve better results than the Fully-Automatic methods in all cases.

• Column “Proc. Time per Frame”. The information of the processing time per

frame is not provided in all the papers. It is important to note that even if the
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DL methods can take quite a long time to be trained (depending on the power

of the hardware, Graphics Processing Unit (GPU), and other properties), the

important factor to consider is the time spent on testing, which is generally fast.

• Column “Image Modality”. Regarding the image modality, there are several

works which consider video instead of an unique frame. These videos are se-

quences of images that capture two phases of the cardiac cycle: diastole (when

the heart relaxes) and systole (when it contracts). These phases, and consequently

the videos themselves, exhibit distinct characteristics based on the health of the

artery. This variation enables videos to estimate carotid IMT during both periods,

yielding additional information about arterial atherosclerosis. Considering videos

allows for the analysis of a specific cardiac cycle period, such as end-diastolic US

frames [45], or both periods [36, 40]. Using both periods enhances the method’s

assessment robustness.

• Column “Territory”. Most of the presented works and reference values from the

guidelines focus only on CCA images. The image quality of other territories,

such as Bulb or ICA, is worse than CCA (poorer contrast and more affected by

noise, see Section 1.1.2). Moreover, successful imaging depends on the anatomy

of subjects. These facts make the segmentation of the CIM region in these other

territories difficult. According to Table 2.1, only [28, 33] deals with Bulb images

and [47] with ICA images. However, automatic segmentation of different terri-

tories would be very useful and should be addressed if there is a will to have an

impact on clinical practice.

• Column “Presence of Plaque”. The shape variability of the CIM region makes

difficult the design of a robust segmentation method. In the non-plaque images

(i.e., images in which the plaque does not appear), the CIM region is observed as

a straight thin shape, whereas the presence of plaque leads to a focal thickening

of the CIM region, resulting in an irregular shape (see Figure 1.2(a)). As a

consequence, most of the previous works found in the literature only face the

problem of measuring the carotid IMT within plaque-free regions and discard

images with the presence of plaque. Some methods reported in Table 2.1 [28,

33, 39, 40, 46, 47] broaden the target and build a general method capable of

accurately estimating carotid IMT values even in the presence of plaque. This

property makes the methods useful for datasets of population studies (such as the

datasets considered in [28, 33]). Moreover, the presence of plaque in the dataset

allows to evaluate the plaque detection ability of the proposals.

21



• Column “N”. In terms of the number of images processed, the size of the consid-

ered datasets in the carotid IMT estimation studies is quite small. Although these

sample sizes guarantee an adequate level of study power, a large-scale study (as

in [28, 33]) is required to carefully assess the effect of variability on segmentation

performance, and also to evaluate the systems before their application in the real

praxis.

• Column “Different Devices”. The different devices and settings used for image

acquisition provide datasets with different image characteristics. Dealing with

these differences implies a difficult challenge for the robust segmentation of CA

components and IMT estimation. For this reason, most of the methods in the

literature use datasets provided by a single device. Conversely, the datasets used

in [28, 35, 40, 47] contain images from different clinical centers. In particular, in

our work, Vila et al. [28], we validate the robustness and generalization power of

our method by applying it to a second dataset, which contains images provided

by a different equipment.

• Column “Mean IMT Error (mm)”. A proper validation procedure should evalu-

ate several proposals comparing the obtained carotid IMT estimation with other

state-of-the-art approaches to demonstrate the superior performance of the pro-

posed method, as done in [28]. The direct comparison of the error values presented

in Table 2.1 is not fair since these values are completely influenced by the con-

sidered datasets. Even so, we can highlight the results reported in [28], since

only two FA methods [43, 37] reach minor errors, although these values could be

influenced by the small size of their datasets.

Author Method Territory IoU DC Prec. Sens.

Vila et al. [28] DenseNets CCA 71.21 82.99 82.17 85.30
Gago et al. [33] U-Net with EfficientNet [56] CCA 87.12 99.59 99.76 99.42
Pankaj et al. [47] U-Net CCA - 88.37 93.28 84.57
Vila et al. [28] DenseNets Bulb 57.11 69.45 69.30 73.13
Gago et al. [33] U-Net with EfficientNet [56] Bulb 92.73 96.94 97.41 97.21
Pankaj et al. [47] U-Net ICA - 89.32 93.7 85.72

IoU intersection over union, Dice Coefficient, Prec Precision, Sens Sensitivity

Table 2.2: Most relevant single-step DL approaches for CA image interpretation and
their respective results in segmentation evaluation.

Table 2.2 shows a comparison of segmentation performance evaluation in DL single-step

approaches for CA image interpretation. This table presents several metric evaluations

for CIM region segmentation [28, 33] and the best method of atherosclerotic plaque

segmentation presented in [47] in different CA territories. The first three rows of the
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table show the segmentation results in CCA images, while the rest of the rows show the

evaluation of segmentation in images where the image quality is worse: Bulb and ICA

images. The table shows better results for segmentation using U-Net architectures,

especially if the down-sampling component is replaced with a pre-trained EfficientNet

B0 [33]. Note that the direct comparison of these evaluation metrics is not fair, as these

values are completely influenced by the considered dataset.

2.3 Contributions of our study

As it has been shown in the previous section most of DL techniques for the CIM region

segmentation are two-step approaches that define separate methods to, first, localize

the ROI (made manually in case of semi-automatic methods); and second, delineate

the CIM region within the ROI. In contrast, our method proposed in [28], which is

presented in this chapter, employs a segmentation technique that works in an end-

to-end framework. An “end-to-end framework” refers to an integrated system that

addresses the entirety of CA segmentation without the need for intermediate steps

that would require separate handling. This work enables the segmentation of the CIM

region and other anatomical components in the CA image. Moreover, it efficiently

estimates the carotid IMT and detects the presence of plaques in extensive datasets of

CA longitudinal B-mode US images.

In particular, this work proposes a novel single-step (see column named “Method

SA/FA” Table 2.1) DL approach for automatic CA image interpretation. This ap-

proach is based on SS using Densely Connected Convolutional Networks (DenseNets)

[55], which were designed to facilitate the training of very deep networks due to a re-

duction in the number of parameters used and the reuse of feature maps. Our proposal

represents the first attempt in the literature to accurately localize and interpret the dif-

ferent anatomical components of the CA (lumen, far wall, near wall, bulb, CIM region

and CIM-bulb region, see Figure 2.1), which can be helpful in the proper estimation of

the IMT. Using the segmented region, we define a straightforward approach for carotid

IMT estimation and plaque detection.

Moreover, the majority of the proposed techniques in the literature restrict their ap-

plication to five particular conditions of the CA images and datasets, which are sum-

marized in the columns 7-11 in Table 2.1 and are explained below.

1) Most of the presented works and reference values from the guidelines focus only

on CCA images. The image quality of other territories, such as Bulb, is worse than

CCA (poorer contrast and more affected by noise). Also, successful imaging depends

on the subjects anatomy. These facts make the segmentation of the CIM region in
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Bulb difficult. None of the revised methods deal with Bulb images (see column named

“Artery Territory” in Table 2.1). However, we demonstrate that the method proposed

in our work is easily extensible to this different CA territory, after being successfully

trained for both CCA and Bulb.

2) In the non-plaque images (i.e. images in which the plaque does not appear), the

CIM region is observed as a straight thin shape, whereas the presence of plaque leads

to a focal thickening of the CIM region, resulting in an irregular shape (see Figure 2.2).

The shape variability of the CIM region makes the definition of a robust segmentation

method more difficult. As a consequence, most of the previous works only measure the

IMT within plaque free regions and discard images with the presence of plaque (see

column named “Presence of Plaque” in Table 2.1). Unlike most previous works, we

broaden the target and build a more general method able to accurately estimate the

IMT, even in the presence of plaque. This feature makes our method useful for datasets

of population studies, such as the one considered in this work. Moreover, the presence

of plaque in the dataset allows us to evaluate the plaque detection of our method.

Figure 2.2: US images from CCA without plaque (left) and with atherosclerotic plaque
(right).

3) In terms of the number of images processed, the size of the considered datasets in

the previous carotid IMT estimation studies is quite small (see column named “N” in

Table 2.1). Although these sample sizes guarantee an adequate level of study power,

a large-scale study —such as the one presented in this work— is required to carefully

assess the effect of variability on segmentation performance, and also to evaluate the

systems before their application in the real praxis. In particular, we show an extensive

evaluation of the carotid IMT measurement and plaque detection in a large dataset

(REGICOR), which contains 8,484 images.

4) The different devices and settings used for image acquisition provide datasets with
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different image characteristics. These differences imply difficulties for the robust seg-

mentation of CA components and IMT estimation. For this reason, most of the methods

in the literature use datasets provided by a single device (see column named “Different

Acquisition Devices” in Table 2.1). In contrast, we validate the robustness and general-

ization power of our method by applying it to the NEFRONA dataset, which contains

images provided by different equipment (see Section 2.5).

5) Regarding the validation procedure, we extensively evaluate our proposals. We

compare the obtained carotid IMT estimation with other state-of-the-art approaches to

demonstrate the outperformance of the proposed method (see column “Mean IMT Error

(mm)” in Table 2.1). Moreover, we compare the CIM region segmentation results with

other approaches and we measure the Inter-Observer Variability (IOV) of the manual

segmentation showing the degree of difficulty of the problem at hand, especially in the

case of Bulb images (see Section 2.5). Lastly we evaluate plaque detection in the large

dataset, REGICOR, for which we obtain very promising.

2.4 Methodology

We propose a method for automatic CA image interpretation that integrates SS with

other image analysis techniques for carotid IMT estimation. Figure 2.3 depicts the

workflow of our approach, subsequently explained in depth.

CIMT

Figure 2.3: Workflow of the proposed method for semantic CA segmentation and carotid
IMT estimation. The SS model is composed of a down-sampling path with Transition
Down (TD) blocks, and an up-sampling path with Transition Up (TU) blocks, both
including dense blocks that create the feature maps. A Convolution (Conv) is applied at
the input of the network as well as at the end, to generate the final segmentation. The
small circles represent concatenations, and the dotted arrows are the skip connections.
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2.4.1 Semantic segmentation

In our research, CA segmentation is about solving the problem of separating the differ-

ent anatomical components of the CA (i.e. lumen, far wall, near wall, bulb, CIM region,

and CIM-bulb region, see Section 2.2), thus obtaining a mask with six or four different

labels, depending on whether CCA or Bulb images are being analyzed, respectively. For

this purpose, we propose the use of SS algorithms that work in a supervised learning

framework, instead of using image features such as shapes or pixel-based features.

Fully Convolutional Networks (FCN) [57], commonly used in SS problems, are a par-

ticular case of CNNs that do not use fully-connected layers. They take an image of any

size as input data and transform it to obtain a segmented image, with the same spatial

resolution, by means of an inference, learning process. Figure 2.4 shows an example

of two CA images (inputs to the SS model) and their corresponding segmented images

(expected outputs of the SS model).

(a) CCA

(b) Bulb

Figure 2.4: Example of the input (left) and expected output (right) of the SS model
for images of both territories: (a) CCA and (b) Bulb. The legend at right details the
segmentation labels.

Any CNN model can be extended to be used as FCNs and so applied to a SS problem.

From the state-of-the-art architectures, we have selected Densely Connected Convolu-

tional Networks (DenseNets) [55], an extension of the well-known Residual Networks

(ResNets) [58]. DenseNets has been designed to ease the training of very deep networks,
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and present some characteristics that make them very appropriate for SS: parameter

efficiency, implicit deep supervision, and feature reuse.

As a result of all of these reasons, we have considered the so-called Tiramisu [59], an

extension of DenseNets such as FCNs, to solve the CA segmentation problem. The

Tiramisu architecture (see Figure 2.3, left) is composed of a down-sampling path with

transition down (TD) blocks to extract coarse semantic features, and an up-sampling

path with transition up (TU) blocks to recover the input image resolution at the output

level. Both paths are connected by means of skip connections that allow the recovery

of fine-grained information, and they are defined by a sequence of dense blocks that

contain a set of concatenated layers, as proposed in DenseNets. The three types of

blocks used in the Tiramisu model are defined as follows:

• Dense blocks are composed of concatenated layers that include Batch Normaliza-

tion [60], Rectified Linear Unit [61], 3× 3 convolution, and Dropout [62] (proba-

bility 0.2).

• TD blocks are composed of Batch Normalization, Rectified Linear Unit, 1 × 1

convolution, Dropout (probability 0.2) and 2× 2 max-pooling (stride 2).

• TU blocks are composed of 3× 3 transposed convolution (stride 2).

Our implementation of the SS model is in Keras1, with Theano as backend, and is

publicly available for download2.

2.4.2 IMT estimation and plaque detection

The output of the SS process is a mask divided in different regions (see Figure 2.4:

six for CCA images, and four for Bulb images). The information provided by the

different regions identified in the mask are used to estimate the IMT, following the

next procedure (partially illustrated in Figure 2.5):

1. The biggest connected component, corresponding to the CIM label, is identified

(Figure 2.5(a)). In the case that the two biggest connected components have a

similar size, we select the largest one that is more similar to the rectangular shape

of the CIM region.

2. The borders of the CIM region are smoothed with basic morphological opera-

tions. In particular, these operations are opening, to remove small objects; and

closing, to avoid small holes. Rectangles are used as structuring elements for

these operations, with dimensions 4× 8 for closing and 2× 25 for opening.

1https://keras.io/
2https://github.com/beareme/keras semantic segmentation
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(a) Mask from a CCA image (b) IMT estimation in CCA

(c) Mask from a Bulb image (d) IMT estimation in Bulb

Figure 2.5: Representative example of the IMT estimation procedure for CCA (top)
and Bulb images (bottom). At left, masks obtained from the SS model (yellow pixels
correspond to CIM region label); and the biggest, largest connected component selected
as CIM region (red rectangle). At right, the CIM region obtained from the SS result
(in green). (b) Left margin used to discard pixels with IMT value greater than 1.5 mm,
carotid IMT estimation area (1 cm after the bulb), and plaque region (in red). (d)
Right and left margins are used to discard pixels with the IMT value lower than 0.4
mm, and the carotid IMT estimation area.
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3. According to the experience of technicians, image quality is not good at the ends

of the image (approximately 0.3 cm in each side). For this reason, we define a

margin of 0.3 cm in the right part of the CCA images (see Figure 2.5(b)), and

two margins of 0.3 cm in the right and left parts of the Bulb images (see Figure

2.5(d)). Moreover, the mean values from IMT in CCA are, in general, between

0.4 mm and 1.5 mm [63]. Based on this, we discard the pixels of the CIM region

that are within the lateral margins, and have an IMT value outside the range

[0.4, 1.5] mm.

4. Once the CIM region is obtained, we divide the CIM region in vertical lines

(each line corresponds to one pixel). For each vertical line, the absolute distance

between the two borders is considered. Finally, we compute the IMTmeasurement

as the mean from all these values.

For CCA images the IMT is estimated 1 cm distal from the Bulb, justified from

a clinical standpoint [7] (see Figure 2.5(b)).

5. Afterwards, each image is classified as containing plaque or non-plaque, using the

IMT measurement and following the Mannheim Consensus (see Section 2.2).

2.5 Experiments

2.5.1 Dataset

In this work, we consider two different datasets: REGICOR and NEFRONA. REGI-

COR consists of a subsample of 2,379 subjects. The set of images collected for each

patient were obtained from left and right CA in two different territories (CCA and

Bulb), resulting in a total of 8,484 images (4,751 CCA images, and 3,733 Bulb images).

The IMT reference values, given by AVICA, were used as the Ground-Truth (GT) for

the carotid IMT estimation. Measurements were made in a 1-cm segment in the distal

CCA (1 cm proximal to the dilation of the carotid bulb) of both the right and left

arteries. Measurements were made every 1 mm in the 1 cm segment, from which the

mean values were calculated. Repeatability analysis was performed in 42 participants

who were examined by 3 sonographers at 2 different visits. The intraclass correla-

tion coefficients between sonographers and within each sonographer’s results for the

mean of IMT in CCA were 0.83 and 0.85, respectively. The coefficient of variation was

7.3%, and the average maximum within-subject (absolute) difference was 0.098 mm.

Regarding the GT for plaque detection, it was obtained using the provided carotid

IMT reference values and applying the Mannheim consensus. Furthermore, the images

containing plaque were finally supervised by an expert. Besides the GT for carotid

IMT estimation and plaque detection, a segmentation GT was defined for a subset of
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the REGICOR images. In order to obtain it, an expert (Expert1) manually delineated

and labeled the different regions of the original images, using six labels for CCA and

four for Bulb (written in red in Figure 2.1). Since this manual task is difficult and

very time-consuming, only a representative subset of REGICOR images was labeled,

including 159 CCA images (51 with plaque and 108 without plaque), and 172 Bulb

images (68 with plaque and 104 without). The training set contains 141 images for the

CCA and 155 images for the Bulb, whilst the rest of them were used for testing. The

test images were used for the comparison of the segmentation approaches presented in

Section 2.4. Additionally, the test images were manually segmented by a second expert

(Expert2) to measure the IOV.

The second dataset, NEFRONA3, from Atherotrombotic Diseases Unit Detection Hos-

pital Arnau de Vilanova, consists of a collection of B-Mode US of the CA obtained by

a Vivid BT09 device (from General Electric), with a 6-13 MHz band. For each subject

of the study CCA images were captured. This dataset is formed by 27 images with the

corresponding CIM regions and their IMT values (NEFRONA GT), provided by the

General Electric device.

2.5.2 Validation setup

This section includes the different experiments carried out to validate our approach

results, which are summarized in Table 2.3 and following described in depth.

Experiment 1: Segmentation
Purpose: comparison of different segmentation approaches
dataset: subset of REGICOR. GT: manually segmented images
# images: 159 (CCA), 172 (Bulb). Train/test split: ≈ 90%− 10%
Performance measures: accuracy, specificity, sensitivity, precision, Dice coef-
ficient

Experiment 2: carotid IMT estimation
Purpose: comparison of different methods for CIMT estimation
dataset: REGICOR. GT: carotid IMT values
# images: 8,484 (all of them used for validation)
Error measurement: correlation coefficient and Bland-Altman analysis

Experiment 3: Plaque detection
Purpose: comparison of different methods for plaque detection
dataset: REGICOR. GT: plaque detection (yes/no)
# images: 8,484 (all of them used for validation)
Performance measures: accuracy, specificity, sensitivity

Experiment 4: Generalization power
Purpose: assessment of the generalization power of the proposed method
dataset: NEFRONA. GT: carotid IMT values
# images: 27 (all of them used for validation)
Error measurement: correlation coefficient and Bland-Altman analysis

Table 2.3: Summary of the different experiments carried out for validation purposes.

3http://www.nefrona.es/
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Experiment 1: Segmentation In order to validate the proposed segmentation

method, we compared six different approaches applied to a subset of the REGICOR

dataset: four DenseNets models based on Tiramisu, the U-Net method [64], and a

two-step approach based on the shallow method Random Forest (RF). Regarding the

Tiramisu model, we have considered two different configurations varying the depth of

the network: Tiramisu56 (a total of 56 layers, 4 per dense block) and Tiramisu103

(a total of 103 layers, from 4 to 12 per block). In order to show if the SS of several

anatomical components helps in the CIM region segmentation, we also compared the

results provided by the two Tiramisu models (Tiramisu56 and Tiramisu103), but using

only two labels (CIM region and background). We called this second approach Binary

Segmentation (BS), whilst the one with all the labels is referred as SS. Notice that

both approaches, BS and SS, were compared by considering two labels in the evalua-

tion measure. In order to demonstrate the adequacy of using DenseNets, the U-Net was

also considered in the experimentation. In this sense, it is worthy to point out that the

main difference between U-Net and Tiramisu is that U-Net uses standard convolutions

instead of the dense blocks proposed in the DenseNet architecture. Finally, in order to

compare the NNs with classical methods, we have also considered a two-step approach

based on RF. Particularly, we refer as RF2 to the two-step approach in which a ROI is

first automatically extracted (pre-processing) and then a patch-based RF (multi-class)

is used for pixel-wise classification. In this case, a post-processing specifically designed

for this method [31] can be applied, which is referred as RF2-PP.

All the NN models were trained using a GeForce Titan X (Pascal) 12GB GPU from

NVIDIA. The models’ weights were initialized using the HeUniform initialization [65],

and the RMSprop algorithm [66] was used as optimizer. The training process was

carried out in two steps, as in [59]: 1) pre-training with random cropping for data

augmentation (crop dimension: 224×224 px), learning rate 1e−3, and batch size 3; 2)

fine-tuning with full size images (image dimension: 470× 445 px), learning rate 1e− 4

and batch size 1. The outputs were monitored using the pixel-wise accuracy and the

dice coefficient, with a patience of 100 during pre-training and 50 during fine-tuning.

A complete set of measures was used to evaluate the performance of the different seg-

mentation models. All of them are defined as follows, considering CIM region (positive)

and Background (negative), and using the terms true positive (TP), true negative (TN)

false positive (FP), and false negative (FN).

• The pixel-wise accuracy, i.e. the percentage of pixels correctly classified.

Acc =
TP + TN

TP + TN + FP + FN
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• Specificity, i.e. the proportion of negatives correctly classified.

Spec =
TN

TN + FP

• Sensitivity, i.e. the proportion of positives correctly classified.

Sens =
TP

TP + FN

• Precision, i.e. the proportion of true positives against all the positives.

Prec =
TP

TP + FP

• Dice coefficient, i.e. the similarity over classes.

DC =
2TP

2TP + FP + FN

Experiment 2: carotid IMT estimation With the aim of evaluating our method

in terms of carotid IMT estimation over the REGICOR dataset, we have considered

the correlation coefficient (cc) between the GT and the predicted IMT values as well

as the Bland-Altman analysis. For a deep comparison, we have considered not only the

methods used in the Experiment 1 (Tiramisu56, Tiramisu103 and RF2-PP), but also

other approaches found in the literature (see Section 2.2).

Experiment 3: Plaque detection The target is to evaluate our method in terms of

plaque detection over the REGICOR dataset, including a comparison with the two-step

approaches (RF2 and RF2-PP). For this purpose, we have used the following metrics,

previously defined, considering the presence of plaque as positive and the absence of

plaque as negative: Accuracy (Acc), Specificity (Spec), and sensitivity (Sens).

Experiment 4: Generalization power To validate the generalization power of

our method, we trained it with the subset of REGICOR used in the Experiment 1 and

evaluate its performance in terms of IMT estimation over the NEFRONA dataset. Im-

ages from the two datasets were acquired by different devices, thus, they have different

resolutions and image intensity distributions. Hence, we process the data to equate

the intensity distribution of all the images and adapt the resolution. In first place,

we modify the image gray levels to saturate the bottom 1% and the top 1% of all the

image pixels in the two datasets. Next, we transform NEFRONA images so that they

have the same resolution than REGICOR images; more precisely, from a resolution of
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10.4 pixels/mm (NEFRONA) to 23.5 pixels/mm (REGICOR). In order to do that, we

apply a bilinear interpolation, in which the output pixel value is a weighted average

of pixels in the nearest 2-by-2 neighborhood. The CIM region of NEFRONA GT was

delineated only in a small part of the image and following a different criterion than in

REGICOR. For this reason, the validation of the segmentation can only be qualitative.

Regarding the validation of the carotid IMT estimation, we consider the cc between

IMT value from NEFRONA dataset GT and the estimated IMT, and also show the

Bland-Altman analysis.

2.6 Results

In this section we report the results obtained in the four experiments previously de-

scribed, summarized in Table 2.3.

Experiment 1: Segmentation Figure 2.6 depicts the comparison between the dif-

ferent segmentation approaches in CCA (left) and Bulb (right) test images. It can be

seen that the different Tiramisu architectures clearly improve the RF2 results (mainly

note improvement in DC). Moreover, making the Tiramisu model deeper by increasing

the number of parameters (from 56 to 103) does not improve the results, probably due

to the size of the training set. Although the BS is equivalent to SS in CCA images,

the semantic information is crucial for the IMT estimation step in these images (see

Section 2.4). Note that the improvement using SS is more evident in Bulb images. Re-

garding U-Net, its results are slightly worse than Tiramisu103 BS and are not included

in the graphic. Finally, the IOV results (considering Expert1 as GT, versus Expert2)

are low compared with the automatic methods results, specially in Sensitivity and DC,

in both CCA and Bulb images. These results and the high standard deviations show

the difficulty of reproducing the CA results in clinical trials. It is worth noting that all

the measures have been computed using the Expert1’s labels as GT, but the values are

equivalent for the labels of Expert2.

Figure 2.7 shows qualitative examples of the CIM region segmentation results regarding

three methods: a shallow method (RF) and two methods based on CNN (U-Net method

and Tiramisu56 method). As can be seen, U-Net does not give an accurate result of

the different areas of the image and RF oversegments the CIM region.

Experiment 2: carotid IMT estimation Figure 2.8(a) shows the correlation be-

tween the IMT values (GT and predicted) in CCA images for the best method, i.e.

“Tiramisu56 SS+IMT estimation”, which reaches a high cc of 0.81 (cc=0.77 when

applying only Tiramisu56 SS). The result is very similar to Tiramisu103 (cc=0.80),
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(a) Accuracy and Specificity measurements for
CCA images

(b) Sensitivity, Precision and Dice Coefficient mea-
surements for CCA images

(c) Accuracy and Specificity measurements for
Bulb images

(d) Sensitivity, Precision and Dice Coefficient mea-
surements for Bulb images

Figure 2.6: Box-plot of metrics results for the different segmentation methods and
IOV. Note that the overlap measurements are split up for visualization purposes, using
different scales in the abscissa axis.

in contrast to RF2-PP (cc=0.72). Regarding Bulb images (see Figure 2.8(c)),

“Tiramisu56 SS+IMT estimation” achieves a lower cc of 0.43 (cc=0.34 when applying

only Tiramisu56 SS), probably due to the worse quality of the images in Bulb, which

makes the task more difficult in this territory. However, our proposal still outperforms

RF2-PP, which only reaches a cc of 0.41.

In Figure 2.8(b), the Bland-Altman plot depicts the difference, in CCA images, between

the IMT of the corresponding two values (estimated and GT) against the average of

both values. This plot shows a high degree of agreement between the two measures,

especially in the cases where the IMT is small (<0.5mm), which correspond to healthy

population (i.e. without plaque) [63]. Furthermore, this plot shows that the predicted

IMT is, on average, slightly underestimated (mean -0.02). The confidence intervals for

the “mean of the differences line” (shown in red in Figure 2.8) shows that this bias

is statistically significant. Therefore, in order to achieve the interchangeability of the

techniques this bias cannot be avoided.

The results are similar for Bland-Altman analysis in Bulb images (see Figure 2.8(d))

and, in this case, the average slightly overestimates the IMT measure (the mean of
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(a) Tiramisu56 (b) U-Net (c) RF

Figure 2.7: Qualitative results of the SS procedure using three different methods.

the differences is 0.06 and this bias is also statistically significant). Column named

“Mean IMT Error (mm)” in Table 2.1 compares the mean IMT error for our method

and several methods in the literature. It should be highlighted that our IMT error is

low compared with other fully automatic methods reviewed in the Table. In particular,

only the two-step methods [37, 43] reach a IMT error lower than our method, but in a

much smaller dataset and only in one territory (CCA). In fact, the size of our dataset

is much larger than the ones considered in all the rest of papers (our dataset: 2,379

subj. vs revised datasets: [36-365] subj.). Note that, as can be seen in this column of

the Table, the IMT error is not always presented as the mean of the IMT error, in some

cases it is presented with point-to-point relative error, average point-to-point distance,

or evaluating the mean error for each interface separately.

Figure 2.9 shows qualitative examples of the CIM region segmentation results and

plaque detection for four CCA and four Bulb images. The first and third columns show

examples of CIM region segmentation, outlined in green, in non-plaque images; whereas

the second and the fourth columns show examples of images with plaque, outlined in

red.

Finally, it is important to note that the processing time to estimate the carotid IMT

and detect a plaque is only 0.79 seconds, as can be also seen in Table 2.1 (column

“Proc. Time per Frame”).

Experiment 3: Plaque detection Table 2.4 includes the plaque detection results in

CCA and Bulb images, showing a promising performance, mostly in CCA. The smaller

number of plaques in the dataset gives lower sensitivity values than specificity values.

Regarding Bulb images, there is still large room for improvement, probably due to the

poorer quality of these images, as commented before. Note that the RF2 method needs
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(a) (b)

(c) (d)

Figure 2.8: Correlation between IMT values (left), and Bland-Altman analysis (right).
Both plots show the relation between GT and the estimated values in CCA images, (a)
and (b); and in Bulb images, (c) and (d). Red solid lines show the confidence intervals
(CI) for the “mean of the differences” line.
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(a) CCA images (b) Bulb images

Figure 2.9: Qualitative results of the CIM region segmentation for eight different im-
ages. Green lines are the CIM boundaries and red lines the detected plaque boundaries.
Images are cropped for visualization purpose.

a sophisticated post-processing to achieve similar results to our NN method.

Figure 2.9 shows qualitative examples of the plaque detection results.

Territory Method # Plaques/ Acc Sens Spec
Images Total images

CCA
RF2 50/4, 722 50.05% 100.00% 49.00%

RF2-PP 50/4, 722 94.08% 86.00% 94.16%
Our proposal 50/4,751 96.45% 80.00% 96.63%

Bulb
RF2 240/3, 539 35.09% 98.33% 30.49%

RF2-PP 240/3, 539 78.50% 69.58% 79.15%
Our proposal 264/3,733 78.09% 78.32% 75.00%

Table 2.4: Results of plaque detection in REGICOR images for different methods, the
number of plaques in each territory and the following validation measures: Accuracy
(Acc), Sensitivity (Sens), and Specificity (Spec).

Experiment 4: Generalization power Figure 2.10 illustrates qualitative results

of the segmentation method in some NEFRONA images. It shows the CIM region

segmentation result (in green) together with the CIM region from NEFRONA GT

(in yellow). We can observe that, generally, the CIM region is slightly over-segmented.

According to this, Figure 2.11 (right) shows an overestimation of the IMT in the Bland-

Altman plot (mean 0.29, note that the bias is statistically significant). Despite this

error, Figure 2.11 (left) shows that the obtained values have a good correspondence

with the IMT values of the NEFRONA database, with a cc of 0.58.
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Figure 2.10: Qualitative segmentation results for NEFRONA CCA images. In green,
delimitation of CIM region segmentation. In yellow, the CIM region from NEFRONA
GT.

Figure 2.11: Correlation between IMT values (left), and Bland-Altman analysis (right).
Both plots show the relation between GT and the estimated values in CCA images from
NEFRONA dataset. Red solid line shows the confidence intervals for the “mean of the
differences” line.
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2.7 Conclusions

In this work, we have presented, for the first time in the literature, a single-step ap-

proach, based on DenseNets, for semantic CA segmentation. The proposed method

accurately localizes the CIM region in CCA. Given the segmentation, we have vali-

dated the carotid IMT estimation and the detection of atherosclerotic plaque with a

large dataset of more than 8,000 images. We have compared the results obtained by

the proposed method with those of other DL models and shallow approaches, demon-

strating more accurate results of the segmentation, more general IMT measurement

and good plaque detection results. This superior performance is attributed to the ef-

fective use of SS together with the carotid IMT estimation approach. Moreover, we

have proven the generalization capability of the method applying the model previously

trained with one dataset (REGICOR) in a new test dataset (NEFRONA).

The proposed study has some limitations that are summarized below, and that will

be considered in our future work. These limitations mostly arise from the number of

images used in some of the experiments, thus the increase in the size of some datasets

constitutes the first point of improvement in our study. On the one hand, the segmen-

tation GT only includes a representative subset of the REGICOR images (159 CCA,

172 Bulb). On the other hand, the generalization power test was carried out using a

small dataset composed of only 27 images (NEFRONA). Additionally, the proposed

method is not applied on image sequences, which could improve reliability by mea-

suring hundreds of images for each subject. Regarding carotid IMT estimation, we

propose a pre-processing step that uses a smoothing algorithm based on mathematical

morphology. Taking into account the unpredictable effect of this type of algorithms

on segmentation results, a more detailed study is required to evaluate the impact of

our proposed algorithm and to compare it with other pre-processing techniques. In

this part of the methodology, it is also worth noting that the criteria of considering

IMT values higher than 0.4 mm (see Section 2.4.2) could exclude real cases with a low

IMT. Finally, the division of the CIM region in vertical columns could overestimate the

IMT values in case of oblique forms of the CA; thus, this methodological issue could

be carefully addressed as suggested by Bianchini et al. [67].

Additionally, we want to further improve the segmentation results in terms of an ad-

equate generalization to other datasets, by exploring new domain transfer techniques.

We also plan to add information indicating the presence of plaque into the NN in a

way that it can learn the differences in shape between images of healthy subjects (thin

CIM region shape) and images of subjects with atherosclerosis (irregular CIM region

shape).
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Chapter 3

Do individuals with autoimmune

disease have increased risk of

subclinical carotid atherosclerosis

and stiffness?

3.1 Introduction

CVDs, which are the primary cause of death in Western countries [1], result from

detrimental alterations in vascular walls, such as atherosclerosis and arteriosclerosis.

These conditions coexist, leading to progressive and age-related vascular deterioration

[2]. Atherosclerosis, an inflammatory process, mainly affects large arteries, with focal

thickenings in the intima [3]. Arteriosclerosis, on the other hand, causes reduced artery

flexibility in response to pressure changes.

The premature arterial degeneration observed in individuals with autoimmune disease

may be a consequence of the chronic inflammation inherent to these disorders [68, 69,

70, 71]. Additionally, the cardiovascular risk profile, which is significantly worse in

individuals with autoimmune diseases than in the general population [72], is directly

associated with both carotid IMT and arterial stiffness values [63, 73]. Karakasis et al.

[74] have recently presented a review that includes more references about the studies

of the pathogenesis of accelerated atherosclerosis in autoimmune rheumatic diseases

and the diagnostic techniques currently used, such as IMT in carotid and femoral ar-

teries, among other imaging modalities. Most studies that have addressed subclinical
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atherosclerosis included participants with autoimmune disease, who were usually re-

cruited in hospitals; therefore, they were more likely to have advanced disease stages,

which somewhat limited the generalizability of the study results.

In this section we present our the study [29], the objective of which is to assess the

prevalence of subclinical atherosclerosis (CCA IMT) and arterial stiffness (distensibility

and compliance) in individuals with a longstanding (≥ 6 years) diagnosis of autoim-

mune disorders (inflammatory polyarthropathies, systemic connective tissue disorders,

inflammatory bowel diseases, and spondylopathies) compared to the general popula-

tion.

3.2 Methods

3.2.1 Dataset

A cross-sectional analysis was carried out of a population based sample recruited in

Girona Province (northeastern Spain) in 2005 in the context of the REGICOR study.

Participants were contacted by a letter informing them of the aims of the study and the

tests to be performed. If they were willing to participate, they were asked to fast for at

least 10 h before their appointment at the health examination site. The participation

rate was 73.8%. Participants were reexamined in 2010, and carotid IMT measurements

were performed [63]. All participants were duly informed about the study and provided

their written consent to participate, and the results of the examination were sent to

each of them. The study protocol was approved by the local ethics committee (CEIm-

PSMAR 2008/3046/I; 2016/7075/I). From these data, we selected a sample of exposed

individuals diagnosed with autoimmune disease (i.e., inflammatory polyarthropathies,

systemic connective tissue disorders, inflammatory bowel diseases, spondylopathies)

and nonexposed individuals (no autoimmune diseases). The samples were matched 1:5

by age, sex and education level.

3.2.2 Autoimmune diseases

The diagnosis of autoimmune diseases was obtained from the System for the Develop-

ment of Research in Primary Care (SIDIAP) database, which includes the anonymized

electronic medical records of 80% of the Catalan population [75]. These diagnoses

were coded according to the International Classification of Diseases 10th edition (ICD-

10) and divided into four groups: (1) inflammatory bowel diseases, (2) inflammatory

polyarthropathies, (3) systemic connective tissue disorders, and (4) spondylopathies

(Table 3.1).
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ICD-10 code Title

K50eK52 Inflammatory bowel diseases
K50 Crohn disease (regional enteritis)
K51 Ulcerative colitis
K52 Other noninfective gastroenteritis and colitis
M05eM14, L40.5 Inflammatory polyarthropathies
M05 Seropositive rheumatoid arthritis
M06 Other rheumatoid arthritis
M07 Psoriatic and enteropathic arthropathies
M08 Juvenile arthritis
M09 Juvenile arthritis in diseases classified elsewhere
M10 Gout
M11 Other crystal arthropathies
M12 Other specific arthropathies
M13 Other arthritis
L40.5 Arthropathic psoriasis
M30eM35, G635 Systemic connective tissue disorders
M30 Polyarteritis nodosa and related conditions
M31 Other necrotizing vasculopathies
M32 Systemic lupus erythematosus
M33 Dermatopolymyositis
M34 Systemic sclerosis
M35 Other systemic involvement of connective tissue
G63.5 Polyneuropathy in systemic connective tissue disorders
M45eM46 Spondylopathies
M45 Ankylosing spondylitis
M46 Other inflammatory spondylopathies

Table 3.1: Autoimmune disorders diagnoses included in each group.
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3.2.3 Measurements

Examinations were performed by a team of trained nurses and interviewers. A pre-

cision scale that was easy to calibrate was used to measure weight and height with

the participants in their underwear and barefoot. Body mass index was determined

as the weight divided by the squared height (kg/m2). Blood pressure was measured

with a periodically calibrated sphygmomanometer (OMRON 711). A cuff appropriate

for the upper arm circumference (young, adult, obese) was selected for each partic-

ipant. Measurements were performed in a seated position after 5min of rest. Two

measurements were taken, and the lower value was recorded for the study. Standard-

ized questionnaires were used to collect sociodemographic and lifestyle variables, along

with previous history of and treatments for diabetes, hypertension and hypercholes-

terolemia. Current smoking was defined as active smoking within the preceding year.

Blood was drawn after 10–14 h of fasting. Total and High-Density Lipoprotein (HDL)

cholesterol concentrations were directly measured (Roche Diagnostics, Basel, Switzer-

land). Low-Density Lipoprotein (LDL) cholesterol was calculated by the Friedewald

equation whenever triglycerides were <3.4mmol/l (300 mg/dl). The coronary risk in

participants aged 35–74 years was calculated by the REGICOR function adapted from

the original Framingham function and validated in the Spanish population [76].

3.2.4 Carotid IMT

Two trained sonographers performed carotid US examinations at the follow-up reex-

amination. An Acuson XP128 US machine equipped with an L75–10 MHz transducer

and extended frequency software was used (Acuson-Siemens, Mountainview, Califor-

nia, United States). The image analyses were performed by expert trained readers with

validated software (eTRACK) used in previous studies [27].

B-mode US images of the CCA segment were obtained in DICOM format with a res-

olution of 0.043 mm/p. Image files were recorded and sent to the AVICA for analysis

(gold standard). To be consistent with clinical literature, in this section, we will use

the term gold standard to refer to the Ground Truth (GT) set. Measurements were

made in a 1-cm segment in the distal CCA (1 cm proximal to the dilation of the carotid

bulb) of both the right and left arteries. Measurements were made every 1 mm in the

1-cm segment, from which the mean values were calculated.

A fully automatic DL method able to properly locate the carotid IMT region and then

estimate the IMT was used (Table 3.2). This machine-learning procedure is based on

CNNs and was validated using the IMT estimates performed in AVICA as the gold

standard [28]. Left and right CCA IMT values were obtained for each participant, and

the mean was considered in the analysis. As a proxy of the presence of atherosclerotic
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CCA IMT (cm)
n Minimum Maximum Mean Median ICC

(SD) [IQR]
Total images analyzed 1092 0.35 1.64 0.7 0.68 -

(0.17) [0.58;0.79]
Images analyzed twice (included in the validation dataset)
Gold Standard 638 0.38 2.04 0.76 0.73 Ref.

(0.19) [0.62; 0.87]
AI method 638 0.41 1.64 0.69 0.66 0.75

(0.17) [0.57; 0.76]
Images analyzed once (not included in the validation dataset)
AI method 454 0.35 1.48 0.72 0.69 -

(0.17) [0.60; 0.81]

ICC: Intraclass correlation coefficient, IQR: Interquartile Range,SD: Standard deviation
Please note that the images are the unit of analysis (two per participant)

Table 3.2: Comparative values for the IMT estimation in the different datasets.

plaques, men and women with CCA IMT values ≥ the 75th percentile of the population

reference values were identified [63, 7].

3.2.5 Arterial stiffness

We obtained the arterial distensibility coefficient and compliance coefficient, defined

as the relative and absolute change, respectively, in the cross-sectional area per unit

of pressure. During the carotid US scan, the anterior and posterior walls of the distal

right and left CCAs were visualized in B-mode. To obtain the M-mode anterior wall

intima-lumen and posterior wall lumen-intima tracings, the sonographer switched from

full B-mode to a 1/3 B-mode 2/3 M-mode image of the distal CCA. The 1/3 B-mode

image guides the Mmode. The movement of the arterial walls on the 2/3 Mmode image

shows waveforms with double-line patterns of the arterial walls over time. eTRACK

software traces the waveforms of the leading edges of the anterior wall LI and posterior

wall LI interfaces. If the contours of both walls are identified for at least 2 heartbeats,

the software can calculate lumen diameter parameters and heart rates. Based on this

information, other outcome parameters (e.g., distensibility and compliance coefficient)

were derived using the equations from the Task Force III Summary of Clinical Appli-

cations of Arterial Stiffness [77].

3.2.6 Statistical analysis

Continuous variables were summarized as the means (standard deviation) or medians

[interquartile range] when they were nonnormally distributed, and categorical variables

were summarized as proportions. Effect modification of the relationship of diagnosed
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autoimmune diseases with subclinical atherosclerosis and arterial stiffness was antici-

pated a priori [78, 79] and tested with the -2 loglikelihood test of nested models with

and without interaction terms. The sample was stratified by sex.

Chi-square, Student’s t, and Mann–Whitney U tests were used as appropriate to com-

pare the prevalence of cardiovascular risk factors at baseline in individuals with and

without autoimmune diseases and to ascertain arterial distensibility and compliance

and the distribution of cardiovascular risk factors by terciles of common carotid IMT

values. We fitted linear regression models for men and women, adjusted for the cardio-

vascular risk factors that significantly modified arterial distensibility and compliance

and CCA IMT. Additionally, a logistic regression was fitted in the case of individuals

with a CCA IMT value ≥ the 75th percentile. To assess the effects of vasodilation fac-

tors and antiinflammatory drugs, we performed a sensitivity analysis excluding current

smokers and a multivariable analysis further adjusted for the use of calcium-channel

blockers and anti-inflammatory drugs.

The statistical analysis was conducted using R software, version 4.0.3 [80].

3.3 Results

We included 91 individuals with autoimmune disease and 455 without this diagnosis

(n = 546). The most common group of autoimmune diseases was inflammatory pol-

yarthropathies in both men (74.0%) and women (51.2%). Systemic connective tissue

disorders in women (22.0%) and inflammatory bowel diseases in men (14.0%) were the

second most prevalent group of diseases. Men with autoimmune diseases had higher

prevalences of hypertension and diabetes, higher LDL cholesterol levels and higher

10-year cardiovascular risk values than those without such diseases. In women, the

cardiovascular risk profile did not differ according to the presence of these diseases

(Table 3.3).

Biomarkers of subclinical atherosclerosis and arterial stiffness were similar in individ-

uals with and without autoimmune diseases, except for the proportion with IMT ≥
percentile 75, which was significantly lower in the group of women with an autoim-

mune diagnosis (Table 3.4).

The 10-year cardiovascular risk was associated, in all instances, with the tercile of CCA

IMT and the distensibility and compliance coefficients (Tables 3.5, 3.6, 3.7). The risk

score used to adjust the multivariate models integrated 8 variables (sex, age, systolic

and diastolic blood pressure, total and HDL cholesterol, diabetes, and smoking habit),

most of which were significantly correlated with the terciles of subclinical atherosclerosis

and arterial stiffness.
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Autoimmune diseases
Men Women

No N = 256 Yes N = 50 p value No N = 199 Yes N = 41 p value

Age(years),mean(SD) 67(12) 68(12) 0.813 64(12) 64(12) 0.955
Education level, n(%) 0.986 0.949

No studies or primary school 171(66.8) 34(68.0) 112(56.3) 22(53.7)
Secondary school 48(18.8) 9(18.0) 56(28.1) 12(29.3)
University 37(14.5) 7(14.0) 31(15.6) 7(17.1)

Autoimmune diseases, n(%) – –
Inflammatory polyarthropathies – 37(74.0) – 21(51.2)
Systemic connective tissue disorders – 3(6.0) – 10(24.4)
Inflammatory bowel diseases – 7(14.0) – 9(22.0)
Spondylopathies – 3(6.0) – 1(2.4)

Smoker, n(%) 0.393 0.776
Never 59(23.0) 17(34.0) 146(73.4) 31(75.6)
Former 55(21.5) 8(16.0) 20(10.1) 5(12.2)
Current 138(53.9) 25(50.0) 29(14.6) 4(9.8)

Body mass index, mean(SD) 27.4(3.5) 28.4(3.8) 0.104 26.7(4.3) 27.1(5.4) 0.693
Systolic blood pressure(mmHg), mean(SD) 138(20) 142(21) 0.188 128(20) 130(20) 0.675
Diastolic blood pressure(mmHg), mean(SD) 77(10) 78(11) 0.546 73(9) 75(9) 0.229
Hypertension, n(%) 138(55.0) 37(74.0) 0.020 89(45.9) 19(46.3) 0.999
Anti-inflammatory treatment, n(%) 12(4.7) 3(6.0) 0.719 27(13.6) 10(24.4) 0.131
Calcium-channel blockers treatment, n(%) 24(9.4) 9(18.0) 0.121 4(2.0) 1(2.4) 0.999
Total cholesterol(mg/dl), mean(SD) 194(36) 184(35) 0.064 212(37) 210(33) 0.788
HDL cholesterol(mg/dl), mean(SD) 48(11) 46(11) 0.135 57(11) 58(10) 0.540
LDL cholesterol(mg/dl),mean(SD) 124(32) 115(32) 0.056 136(32) 133(27) 0.636
Triglycerides(mg/dl), median [IQR] 97[69;127] 106[68;154] 0.417 89[66;114] 86[68;115] 0.890
Glycemia(mg/dl),median[IQR] 96[90;106] 98[90;117] 0.270 92[85;100] 87[83;96] 0.057
Diabetes, n(%) 65(26.5) 21(42.9) 0.034 32(16.8) 6(14.6) 0.920
10-year cardiovascular risk(%), median [IQR] 4.9[2.9;8.3] 6.6[4.3;10.0] 0.038 2.3[1.5;4.0] 2.3[1.7;3.3] 0.740

IQR: interquartile range, SD: standard deviation

Table 3.3: Characteristics of the whole sample and stratified by sex.

Autoimmune diseases
Men Women

No N = 256 Yes N = 50 p value No N = 199 Yes N = 41 p value

Atherosclerosis measures
Common carotid IMT (mm), mean (SD) 0.72(0.14) 0.75(0.16) 0.197 0.68 (0.15) 0.65 (0.10) 0.086
Common carotid IMT–percentile 75, n(%) 41 (16.02) 14 (28.00) 0.069 46 (23.12) 3 (7.32) 0.038

Arterial stiffness measures
Distensibility (mmHg−1), mean(SD) 25.99 (9.75) 25.20 (9.65) 0.604 30.53(11.11) 31.02(12.63) 0.820
Compliance (cm/mmHg), mean(SD) 0.78(0.25) 0.77 (0.26) 0.688 0.72(0.23) 0.75 (0.24) 0.444

SD: standard deviation

Table 3.4: Subclinical atherosclerosis and arterial stiffness biomarkers by diagnosis of
autoimmune diseases.

46



Men Women
T1 N = 102 T2 N = 102 T3 N = 102 p value T1 N = 80 T2 N = 80 T3 N = 80 p value

Common carotid IMT (mm), 0.59 (0.05) 0.70 (0.03) 0.88 (0.11) < 0.001 0.54 (0.04) 0.66(0.03) 0.83(0.12) < 0.001
mean (SD)
Age (years), mean (SD) 60 (13) 68 (11) 74 (9) <0.001 55 (11) 66 (10) 72 (9) <0.001
Education level, n (%) 0.031 <0.001

No studies or primary school 59 (57.8) 66 (64.7) 80 (78.4) 30 (37.5) 48 (60.0) 56 (70.0)
Secondary school 23 (22.5) 20 (19.6) 14 (13.7) 21 (26.2) 25 (31.2) 22 (27.5)
University 20 (19.6) 16 (15.7) 8 (7.8) 29 (36.2) 7 (8.8) 2 (2.5)

Autoimmune diseases 13 (12.7) 21 (20.6) 16 (15.7) 0.310 14 (17.5) 18 (22.5) 9 (11.2) 0.166
Smoker, n (%) 49 (49.0) 57 (57.0) 57 (55.9) 0.469 19 (24.4) 8 (10.1) 6 (7.7) 0.005
Body mass index, mean (SD) 27.7 (3.6) 27.4 (3.9) 27.6 (3.2) 0.788 25.6 (4.7) 27.1 (4.5) 27.7 (4.0) 0.010
Systolic blood pressure (mmHg), 132 (17) 139 (19) 145 (23) <0.001 117 (16) 130 (19) 138 (19) <0.001
mean (SD)
Diastolic blood pressure 78 (10) 79 (9) 75 (11) 0.009 73 (9) 75 (10) 74 (8) 0.300
(mmHg), mean (SD)
Hypertension, n(%) 45 (44.6) 58 (58.0) 72 (72.0) <0.001 23 (29.9) 34 (43.0) 51 (64.6) <0.001
Anti-inflammatory treatment, 5 (4.9) 7 (6.9) 3 (2.9) 0.431 7 (8.8) 15 (18.8) 15 (18.8) 0.129
n (%)
Calcium-channel blockers 8 (7.8) 12 (11.8) 13 (12.7) 0.490 2 (2.5) 2 (2.5) 1 (1.3) 0.999
treatment, n (%)
Total cholesterol (mg/dl), 201 (39) 189 (37) 187 (31) 0.008 202 (39) 214 (31) 219 (37) 0.012
mean (SD)
HDL cholesterol (mg/dl), 47 (10) 50 (11) 46 (11) 0.037 57 (10) 58 (12) 56 (10) 0.700
mean (SD)
LDL cholesterol (mg/dl), 132 (34) 118 (32) 118 (28) 0.003 128 (33) 136 (27) 141 (31) 0.028
mean (SD)
Triglycerides (mg/dl), 104 [74; 139] 85 [63; 129] 95 [73; 127] 0.203 77 [56; 107] 89 [68; 123] 92 [78; 121] 0.012
median [IQR]
Glycemia (mg/dl),median [IQR] 96 [89; 106] 96 [91; 108] 97 [91; 109] 0.345 88 [83; 95] 93 [86; 101] 92 [88; 102] 0.005
Diabetes, n (%) 19 (19.2) 26 (27.1) 41 (41.4) 0.002 9 (11.7) 13 (16.7) 16 (20.8) 0.312
10-year cardiovascular risk (%), 4.0 [2.6; 6.6] 5.9 [3.3; 8.7] 8.2 [5.1; 12.6] <0.001 1.5 [0.9; 2.6] 2.9 [1.7; 5.0] 2.9 [2.3; 4.5] <0.001
median [IQR]

IQR: interquartile range, SD: standard deviation

Table 3.5: Characteristics of the sample by terciles of CCA IMT.

Men Women
T1 N = 98 T2 N = 98 T3 N = 97 p value T1 N = 80 T2 N = 80 T3 N = 79 p value

Arterial distensibility (mmHg−1), 16.5 (3.6) 24.6 (2.3) 36.7 (7.6) <0.001 19.1 (4.6) 29.2 (3.0) 43.6 (7.4) <0.001
mean (SD)
Age (years), mean (SD) 73 (10) 68 (11) 59 (13) <0.001 72 (9) 67 (10) 54 (10) <0.001
Education level, n (%) 0.069 <0.001

No studies or primary school 73 (74.5) 59 (60.2) 63 (64.9) 61 (76.2) 47 (58.8) 26 (32.9)
Secondary school 18 (18.4) 18 (18.4) 20 (20.6) 14 (17.5) 29 (36.2) 24 (30.4)
University 7 (7.1) 21 (21.4) 14 (14.4) 5 (6.2) 4 (5.0) 29 (36.7)

Autoimmune diseases 17 (17.3) 14 (14.3) 17 (17.5) 0.789 15 (18.8) 13 (16.2) 13 (16.5) 0.897
Smoker, n (%) 52 (53.6) 54 (55.7) 47 (49.0) 0.633 5 (6.4) 10 (12.7) 18 (23.4) 0.009
Body mass index, mean (SD) 28.2 (4.0) 27.5 (3.4) 26.9 (3.1) 0.044 28.2 (4.1) 27.4 (4.4) 24.9 (4.4) <0.001
Systolic blood pressure (mmHg), 149 (23) 137 (14) 128 (16) <0.001 143 (18) 129 (15) 112 (13) <0.001
mean (SD)
Diastolic blood pressure 77 (11) 79 (9) 77 (10) 0.283 76 (10) 75 (8) 70 (8) <0.001
(mmHg), mean (SD)
Hypertension, n (%) 67 (69.8) 56 (57.7) 42 (44.2) 0.002 59 (76.6) 36 (45.6) 12 (15.4) <0.001
Anti-inflammatory treatment, 4 (4.1) 6 (6.1) 4 (4.1) 0.834 18 (22.5) 13 (16.2) 6 (7.6) 0.033
n (Calcium-channel blockers 19 (19.4) 4 (4.1) 6 (6.2) 0.001 4 (5.0) 1 (1.2) 0 (0.0) 0.131
treatment, n (Total cholesterol (mg/dl), 186 (33) 188 (37) 200 (38) 0.016 211 (32) 218 (37) 205 (40) 0.073
mean (SD)
HDL cholesterol (mg/dl), 47 (11) 48 (12) 48 (10) 0.842 55 (12) 57 (11) 58 (10) 0.326
mean (SD)
LDL cholesterol (mg/dl), 117 (30) 118 (32) 131 (34) 0.005 133 (26) 142 (31) 130 (34) 0.041
mean (SD)
Triglycerides (mg/dl), 104 [73; 135] 98 [68; 132] 94 [64; 124] 0.464 103 [78; 135] 90 [66; 107] 75 [55; 100] <0.001
median [IQR]
Glycemia (mg/dl), median [IQR] 98 [92; 110] 98 [92; 115] 93 [87; 100] 0.001 97 [89; 107] 91 [85; 97] 87 [81; 93] <0.001
Diabetes, n (%) 35 (36.8) 29 (30.9) 17 (18.5) 0.019 23 (30.7) 10 (12.8) 5 (6.4) <0.001
10-year cardiovascular risk (%), 7.3 [4.7; 12.5] 6.3 [4.0; 9.3] 3.6 [2.6; 6.2] <0.001 4.3 [2.6; 6.0] 2.5 [1.8; 4.5] 1.4 [0.9; 2.3] <0.001
median [IQR]

IQR: interquartile range, SD: standard deviation

Table 3.6: Characteristics of the sample by terciles of arterial distensibility.
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Men Women
T1 N = 98 T2 N = 98 T3 N = 97 p value T1 N = 81 T2 N = 81 T3 N = 77 p value

Arterial compliance (cm/ 0.55 (0.10) 0.79 (0.07) 1.12 (0.21) <0.001 0.51 (0.10) 0.74 (0.06) 1.06 (0.16) <0.001
mmHg), mean (SD)
Age (years), mean (SD) 70 (11) 68 (12) 62 (13) <0.001 69 (11) 65 (11) 58 (12) <0.001
Education level, n (%) 0.853 <0.001

No studies or primary school 68 (69.4) 63 (64.3) 64 (66.0) 55 (67.9) 53 (65.4) 26 (33.8)
Secondary school 16 (16.3) 22 (22.4) 18 (18.6) 23 (28.4) 19 (23.5) 25 (32.5)
University 14 (14.3) 13 (13.3) 15 (15.5) 3 (3.7) 9 (11.1) 26 (33.8)

Autoimmune diseases 16 (16.3) 16 (16.3) 16 (16.5) 0.999 15 (18.5) 13 (16.0) 13 (16.9) 0.914
Smoker, n (%) 51 (52.6) 59 (60.8) 43 (44.8) 0.083 7 (8.9) 9 (11.2) 17 (22.7) 0.032
Body mass index, mean (SD) 27.4 (4.0) 28.2 (3.6) 27.0 (3.0) 0.064 27.1 (4.2) 27.1 (4.7) 26.1 (4.4) 0.265
Systolic blood pressure (mmHg), 147 (22) 138 (16) 131 (18) <0.001 139 (21) 129 (16) 117 (16) <0.001
mean (SD)
Diastolic blood pressure 78 (11) 77 (10) 77 (10) 0.429 76 (9) 74 (8) 72 (9) 0.011
(mmHg), mean (SD)
Hypertension, n (%) 64 (67.4) 54 (55.1) 47 (49.5) 0.039 50 (64.1) 35 (43.8) 22 (28.9) <0.001
Anti-inflammatory treatment, 5 (5.1) 6 (6.1) 3 (3.1) 0.698 13 (16.0) 17 (21.0) 7 (9.1) 0.116
n (%)
Calcium-channel blockers 12 (12.2) 10 (10.2) 7 (7.2) 0.497 3 (3.7) 1 (1.2) 1 (1.3) 0.624
treatment, n (%)
Total cholesterol (mg/dl,) 193 (38) 189 (36) 193 (36) 0.683 215 (35) 211 (34) 209 (41) 0.580
mean (SD)
HDL cholesterol (mg/dl), 49 (12) 48 (11) 47 (10) 0.627 56 (12) 57 (11) 58 (10) 0.612
mean (SD)
LDL cholesterol (mg/dl), 123 (34) 119 (31) 125 (33) 0.369 137 (29) 135 (30) 134 (34) 0.841
mean (SD)
Triglycerides (mg/dl), 88 [70; 132] 101 [73; 141] 96 [66; 129] 0.353 95 [75; 133] 90 [68; 110] 75 [57; 99] 0.001
median [IQR]
Glycemia (mg/dl), median [IQR] 97 [92; 108] 98 [90; 112] 95 [88; 102] 0.219 96 [88; 107] 91 [84; 100] 88 [83; 95] <0.001
Diabetes, n (%) 30 (32.6) 30 (30.9) 21 (22.8) 0.292 21 (27.3) 12 (15.4) 5 (6.6) 0.002
10-year cardiovascular risk (%), 7.6 [4.3; 11.4] 6.1 [3.4; 9.2] 3.6 [2.7; 6.2] <0.001 3.3 [2.1; 5.4] 2.5 [1.6; 4.5] 1.7 [0.9; 2.8] <0.001
median [IQR]

IQR: interquartile range, SD: standard deviation.

Table 3.7: Characteristics of the sample by terciles of arterial compliance.

The models adjusted for 10-year cardiovascular risk showed that a diagnosis of autoim-

mune disease in men was associated with a significantly higher mean CCA IMT values

[beta-coefficient (95% confidence interval): 0.058 (0.009; 0.108); p value = 0.022]. This

association was not significant in women [-0.023 (-0.071; 0.025); p value = 0.353]. In

addition, the prevalence of CCA IMT ≥ 75th percentile was higher in men with autoim-

mune diseases than in those without [1.012 (0.145; 1.880); p value = 0.022]; in contrast,

women without autoimmune disease were more likely to have IMT ≥ 75th percentile

[-2.181 (-4.214; -0.149); p value = 0.035]. No significant differences were found for

arterial stiffness biomarkers Table 3.11. Finally, no differences were observed in the

sensitivity analysis when current smokers were excluded (Table 3.8) or after further

adjustment for the use of calcium-channel blockers or antiinflammatory drugs (Tables

3.9 and 3.10).

3.4 Discussion

The diagnosis of autoimmune diseases was a risk factor for subclinical atherosclerosis

in men in our cohorts of individuals with and without autoimmune diseases matched

by age, sex, and education level. Sex acted as an effect modifier in this association: the

difference was not significant in women. In contrast, arterial stiffness, as measured by

the coefficients of distensibility and compliance, was not increased in individuals with
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Autoimmune diseases
Men Women

Coefficient 95% CI p value Coefficient 95% CI p value

Atherosclerosis biomarkers
CCA IMT (mm)a 0.058 0.009; 0.108 0.022 -0.023 -0.071; 0.025 0.353
CCCA IMT - percentile 75b 1.012 0.145; 1.880 0.022 -2.181 -4.214; -0.149 0.035

Arterial stiffness biomarkers
Arterial distensibility (mmHg-1)a -0.458 -3.988; 3.073 0.800 -0.803 -4.320; 2.714 0.655
Arterial compliance (cm/mmHg)a -0.025 -0.128; 0.078 0.637 0.008 -0.074; 0.091 0.844

SD: standard deviation, CI: confidence interval, aLinear regression model, bLogistic regression model
All models have been adjusted for 10-year cardiovascular risk

Table 3.11: Subclinical atherosclerosis biomarkers by diagnosis of autoimmune diseases.

autoimmune diseases.

3.4.1 Autoimmune diseases as a risk factor for subclinical atheroscle-

rosis

Previous studies have shown higher prevalences of subclinical atherosclerosis and clini-

cally overt CVD in individuals diagnosed with autoimmune disorders [68, 69, 81, 82, 83,

84] Thus, immune-mediated inflammation is likely to play a pivotal role in the patho-

genesis of atherosclerosis, as it is involved in endothelial dysfunction, plaque rupture

and thrombosis [71, 85]. Specifically, for inflammatory joint diseases, the central event

in synovitis and autoimmune atherosclerosis is the accumulation of inflammatory cells

and mediators in the synovial tissue and vessel wall, respectively [86]. Therefore, the

most recent European League Against Rheumatism guidelines promote the proactive

management of cardiovascular risk in individuals with inflammatory polyarthritis and

spondylopathies. The primary preventive and therapeutic goal is to control the under-

lying autoimmune inflammatory process [87]. These recommendations have also been

proposed for individuals with systemic lupus erythematosus [88] but could likely be

extended to individuals with any systemic connective tissue disorder.

3.4.2 Participant sex modified the effect of autoimmune diseases on

IMT

Several studies in the general population revealed an association between inflammatory

biomarkers and arterial stiffness [70, 89, 90, 91]. However, our cross-sectional study did

not show significant differences in these biomarkers between individuals with and with-

out autoimmune diseases. First, the individuals with autoimmune diseases had varying

disease severity because they were selected randomly from a population [25]. Second,

most previous studies used carotid-femoral pulse wave velocity, the gold standard for

assessing regional arterial stiffness, which is a value usually obtained by tonometry or
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mechanotransducers [89, 90, 91]. Since we performed an US analysis, which is com-

monly used to assess local mechanical properties of arterial walls, the measures used to

assess arterial stiffness were carotid distensibility and compliance [92]. Nevertheless, the

adjusted coefficients indicated higher resistance to vascular deformation in individuals

with autoimmune diseases but did not reach statistical significance.

3.4.3 Limitations

Our study has several limitations. First, the added value of CCA IMT for cardio-

vascular risk prediction beyond the classic risk factors remains controversial [93, 94].

In addition, the reproducibility of IMT measures is a controversial issue [95] that we

have optimized by adopting the use of a previously validated machine-learning method

[28]. The use of carotid US enabled the detection of arterial stiffness in the carotid

wall but did not allow the measurement of carotid-femoral pulse wave velocity, which

is the gold standard for assessing this variable. Second, it was beyond the scope of

the objectives of our study to measure blood biomarkers (e.g., systemic inflammation,

endothelial dysfunction, prothrombotic state) to explore the potential mechanisms that

may accelerate atherosclerosis in patients with autoimmune disease [96]. To avoid mis-

classification bias, we used the medical diagnosis of autoimmune disease as a robust

marker of inflammatory status. Although these diagnoses were extracted from rou-

tinely collected data that may reflect underreporting, the SIDIAP database has been

validated for research in cardiovascular epidemiology [97] and rheumatic diseases [98].

Indeed, the prevalence of autoimmune diseases found in SIDIAP concurred with the

results reported in previous studies based on other datasets [99, 100, 101]. Third, a low

prevalence of autoimmune diseases was reflected in our population-based study. Nev-

ertheless, we obtained consistent results from our multivariable analysis adjusted for

10-year cardiovascular risk, which was represented by a composite score with variables

that showed significant differences in the bivariate analysis. Indeed, the sensitivity anal-

ysis yielded similar results when adjusted for the use of drugs with anti-inflammatory or

vasodilation effects (e.g., calcium-channel blockers) and after the exclusion of current

smokers. In addition, cigarette smoking has been shown to attenuate endothelium-

dependent vasodilation [102]. A priori, this effect might be similar in smokers with

and without autoimmune diseases because the sample selection was not based on this

variable. Finally, to avoid selection bias, our cohorts were matched by age, sex and

education level and did not present significant differences in 10-year cardiovascular risk.

Although this approach may reduce the representativeness of the population, the as-

sociations found between cardiovascular risk factors and CCA IMT concur with those

reported in previous studies [63, 83].
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3.5 Conclusions

This study aimed to assess the prevalence of subclinical atherosclerosis measured with

IMT and arterial stiffness (distensibility and compliance) in individuals with long-

standing diagnoses of autoimmune disorders in comparison to the general population.

Reproducibility issues of IMT measurements were addressed using a validated machine-

learning method. The study revealed a low prevalence of autoimmune diseases in the

population but still found consistent results in multivariable analysis adjusted for car-

diovascular risk. Sensitivity analysis confirmed the findings, even when accounting for

drug use and excluding current smokers. Matched cohorts for age, sex, and education

level maintained the associations between cardiovascular risk factors and CCA IMT, in

line with previous studies.

In conclusion, subclinical carotid atherosclerosis, but not stiffness, was more common

in men with autoimmune diseases than in the general population. No significant dif-

ferences were found in women with and without autoimmune diseases in these carotid

features. Sex was an effect modifier for the association between the diagnosis of au-

toimmune diseases and the CCA IMT values.
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Chapter 4

Polyvascular subclinical

atherosclerosis: correlation

between ABI and carotid

atherosclerosis in a

population-Based sample

4.1 Introduction

CVDs are the main cause of death in western countries and the common basis of this

group of diseases is atherosclerosis. The presence of atherosclerosis in different vascular

beds defines polyvascular subclinical disease, pointing out the systemic nature of the

atherosclerotic process [103, 104, 105].

The long induction period of atherosclerosis makes it suitable for the study of subclini-

cal disease for preventive purposes. On the one hand, low Ankle Brachial Index (ABI)

values, as a subclinical indicator of lower extremity peripheral artery disease, provide

a potent predictor of future cardiovascular events and death [106, 107]. On the other

hand, as it is mentioned in Section 1.1.2 carotid US can be used to detect subclinical

disease because it measures IMT and the presence of atherosclerotic plaques [7, 108,

109]. Most studies have addressed the coexistence atherosclerosis of the lower limbs

and CA in selected samples (eg, patientswith diabetes, history of stroke, or advanced

age) [110, 111, 112, 113]. However, these correlations have not been assessed in general

population or specifically in individuals with no history of intermittent claudication.
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In addition, most of the studies did not use automated methods based on ML pro-

cedures that minimize the reproducibility problem linked to IMT and carotid plaque

interpretation [28, 95].

This section presents our study [30], the objective of which is to assess the correlation

between the biomarkers of lower limb atherosclerosis (ABI) and of carotid atherosclero-

sis (eg, CCA IMT and presence of atherosclerotic plaque) in a general population and

in a subsample with no history of intermittent claudication.

4.2 Methods

4.2.1 Dataset

Cross-sectional study conducted in the context of the REGICOR study.Participants

were randomly selected in 2005 and reexamined in 2010, when ABI and carotid US

were performed. The participants included were free of terminal disease. Participants

were contacted by a letter informing them of the aims of the study and the tests to be

performed. If willing to participate, they were asked to fast (water allowed) for at least

10 h before their appointment at the health examination site. The participation rate

in the reexamination was 78.1% [63]. All participants were duly informed and provided

their written consent to participate in the study and the results of the examination were

sent to each of them. The study protocol was approved by the local ethics committee

(CEIm-PSMAR 2008/3046/I).

4.2.2 Measurements

Examinations were performed by a team of trained nurses and interviewers using the

same methods. A precision scale of easy calibration was used for weight and height

measurement with participants in underwear and barefoot. Body mass index was de-

termined as weight divided by squared height (kg/m2). Blood pressure was measured

with a periodically calibrated sphygmomanometer (OMRON711, Shimogyō-ku, Japan).

Acuff adapted to the upper arm perimeter (young, adult, obese) was selected for each

participant. Measurements were performed in a seated position after a 5 min rest.

Twomeasurements were taken and the lower valuewas recorded for the study. Stan-

dardized questionnaires were used to collect sociodemographic and lifestyle variables,

along with previous history and treatments for diabetes, hypertension, and hypercholes-

terolemia. Current smoking was defined as actively smoking within the preceding year.

Claudicationwas assessed using the Edinburgh questionnaire.19 Blood was withdrawn
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after 10-14 h of fasting. Total and High-Density Lipoprotein (HDL) cholesterol concen-

trations were determined by direct methodology (Roche Diagnostics, Basel, Switzer-

land). Low-Density Lipoprotein (LDL) cholesterol was calculated by the Friedewald

equation whenever triglycerides were <3.4 mmol/l (300 mg/dl).

4.2.3 ABI Measure

ABI was measured in accordance with current guidelines [106]. After 5 min rest and

with the participant in supine position, systolic blood pressure was measured in the

brachial artery in the antecubital fossa in the control arm with a continuous Doppler

device, then in the distal calf, using the Doppler probe to determine systolic blood pres-

sure in the supine position at the right and left posterior and anterior tibial arteries.

Right and left ABI were calculated as the ratio of the higher of 2 systolic pressures in

the lower limbs (posterior and anterior tibial arteries) to the control brachial systolic

pressures. The lowest of the values obtained was used for analysis. We discarded the in-

dividuals with ABI > 1.4 because of the high probability of medial arterial calcification

[106].

4.2.4 Carotid IMT

Two trained sonographers performed the carotid US examinations. An Acuson XP128

US machine equipped with an L75-10 MHz transducer and extended frequency software

was used (Acuson-Siemens, Mountainview, California, United States). B-mode US

images of the CCA segment were obtained in DICOM format with a resolution of 0.043

mm/p. Image files were recorded and sent to the AVICA. Measurements of IMT were

made in a 1 cm segment in the distal CCA (1 cm proximal to the dilation of the

carotid bulb) of both right and left arteries. Measurements were made every 1 mm

in the 1 cm segment, from which the mean values were calculated. To interpret the

full set of images, a fully automatic deep-learning method able to properly localize

the intima-media regi on and then estimate the IMT was used (see Table 4.1. This

deep-learning procedure is based on CNNs and was validated using the subset of IMT

estimates performed in AVICA as the gold standard [28]. To be consistent with clinical

literature, in this section, we will use the term gold standard to refer to the Ground

Truth (GT) set. Left and right CCA IMT were obtained for each participant and the

mean was considered in the analysis. For those individuals with just one estimate (eg,

left or right), this single value was considered. Finally, the presence of carotid plaque

was also assessed with a deep-learning model and according to the definition in the

Mannheim consensus: focal structure encroaching into the arterial lumen of at least

0.5 mm or 50% of the surrounding IMT value, or a thickness >1.5 mm as measured

from the MA interface to the LI interface [7].
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CCA IMT (cm)
n Minimum Maximum Mean Median ICC Plaque

(SD) [IQR] %
Total images analyzed 3307 0.44 2.12 0.76 0.73 -

(0.16) [0.65; 0.84]
Images analyzed twice (included in the validation dataset)
Gold Standard 809 0.42 1.44 0.73 0.70 Ref.

(0.15) [0.62;0.81]
AI method 809 0.47 2.12 0.76 0.73 0.80 7.4

(0.17) [0,65;0.84]
Images analyzed once (not included in the validation dataset)
AI method 2498 0.44 2.02 0.76 0.73 - 6.6

(0.16) [0.65;0.84]

ICC: Intraclass correlation coefficient, IQR: Interquartile range, SD: Standard deviation

Table 4.1: Comparative values for CCA IMT estimations.

4.2.5 Statistical analysis

According to the sample size, a correlation coefficient of 0.05 between ABI and CCA

IMT could be found as statistically significant accepting an alpha risk of 0.05 and a

beta risk of 0.2.

All analysis was stratified by sex. Continuous variables were summarized as mean

(standard deviation), or median [interquartile range] when their distribution departed

from normal, and categorical variables as proportions. The correlation between the

tertiles of ABI was ascertained using the mean values of carotid IMT, the prevalence

of carotid plaque and other cardiovascular risk factors, ANOVA, Wilcoxon, and Chi-

square, as appropriate. To compare the prevalence of cardiovascular risk factors and

the mean values of ABI by the presence of atherosclerotic plaque, the Chi-Square,

Student-t, and Mann-Whitney U tests were used as appropriate Unadjusted general-

ized additive models were fitted to find associations of ABI and other cardiovascular

risk factors (independent variables) with IMT (dependent variable). This more flexi-

ble modeling approach allows for non-linearity in the relationship and contributes to a

more accurate exploration of continuous variables, providing a pattern which reflects

the shape and trend of the association. Breakpoint regression analysis was used to test

whether an apparent change in the correlation trend between ABI and IMT was statis-

tically significant [114]. Multivariable models were fitted by potential confounders that

showed significant associations with the tertiles of ABI and CCA IMT. Finally, to assess

the probability of carotid plaque in individuals with peripheral artery disease (symp-

tomatic or asymptomatic), multivariable logistic regression models were adjusted for

age. A subanalysis was performed, excluding participants with history of intermittent

claudication reported by the participant or assessed with the Edinburgh questionnaire.

The effect modification of the relationship of ABI with common carotid IMT by age
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Men n =1516 Women n= 1791

Age, years, mean (SD) 61 (12) 60 (11)
Education level (University), n (%) 399 (260.5) 398 (220.4)
ABI, mean (SD) 1.11 (0.12) 1.09 (0.10)
Peripheral arteriopathy, n (%) 114 (70.5) 116 (60.5)
Asymptomatic peripheral arteriopathy, n (%) 63 (40.2) 38 (20.1)
Claudication, n (%) 51 (30.4) 78 (40.4)
Smoker, n (%) 712 (47.3) 301 (16.9)
Body mass index, mean (SD) 27.7 (3.7) 26.7 (4.9)
Systolic blood pressure (mmHg), mean (SD) 134 (18) 126 (20)
Diastolic blood pressure (mmHg), mean (SD) 79 (10) 75 (10)
Hypertension, n (%) 718 (48.1) 681 (38.7)
Total cholesterol (mg/dl), mean (SD) 196 (36) 206 (35)
HDL cholesterol (mg/dl), mean (SD) 47 (10) 56 (11)
LDL cholesterol (mg/dl), mean (SD) 127 (31) 132 (30)
Lipid-lowering treatment, n (%) 338 (22.8) 338 (19.2)
Triglycerides, median [IQR] 92 [68; 126] 79 [59; 111]
Glycemia (mg/dl), median [IQR] 95 [88; 105] 88 [83; 96]
Diabetes, n (%) 300 (20.3) 192 (11.0)
CCA IMT, mean (SD) 0.69 (0.14) 0.66 (0.14)
Atherosclerotic plaque, n (%) 129 (8.5) 97 (5.4)

IQR: Interquartile range, SD: Standard deviation

Table 4.2: Characteristics of the sample at baseline and follow-up, by sex.

[115] was tested with the -2 loglikelihood test of nested models with and without inter-

action terms. In a secondary analysis, the sample was stratified by age (<60 and ≥60

years).

The statistical analysis was conducted using R software, version 4.0.3 [80].

4.3 Results

We included 3307 individuals (1516 men and 1791 women), mean age 60 years (standard

deviation 11). Table 4.2 includes the sociodemographic and clinical characteristics of

the sample by sex.

CCA IMT significantly decreased by ABI tertiles, both in men [ABI tertile (T) 1: 0.70

mm (standard deviation 0.14); T2: 0.69 (0.16); T3: 0.67 (0.13); p <0.001] and in women

[T1: 0.67 (0.13); T2: 0.66 (0.16); T3: 0.64 (0.14); p = 0.005]. No significant differences

were found in the prevalence of atherosclerotic plaque by tertiles of ABI (Table 4.3).

In the regression of CCA IMT with ABI, we found similarly significant associations

in men [Beta-coefficient (95% confidence interval) = -0.173 (-0.232; -0.114); p <0.001]

and in women [-0.134 (0.200; -0.068); p < 0.001]. Individuals with no claudication also

presented with significant correlations ( < 0.001) between IMT and ABI [-0.182 (0.243;
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Men Women
1st Tertile 2nd Tertile 3rd Tertile 1st Tertile 2nd Tertile 3rd Tertile
[.52, 1.08) [1.08, 1.17) [1.17, 1.40] [.50, 1.06) [1.06, 1.14) [1.14, 1.40]
n = 515 n = 532 n = 469 p n = 614 n = 633 n = 544 p

Age, years, mean (SD) 63 (12) 60 (11) 59 (11) <0.001 62 (12) 59 (11) 59 (11) <0.001
Education level (University) n (%), 105 (20.6) 160 (30.3) 134 (28.8) 0.001 108 (17.8) 149 (23.6) 141 (26.2) 0.002
Smoker, n (%) 268 (52.2) 248 (46.8) 196 (42.3) 0.008 88 (14.4) 120 (19.0) 93 (17.2) 0.095
Body mass index, mean (SD) 27.4 (3.5) 27.6 (3.7) 28.0 (4.0) 0.026 26.9 (4.9) 26.5 (5.1) 26.8 (4.8) 0.315
SBP (mmHg), mean (SD) 138 (20) 133 (17) 130 (17) <0.001 132 (22) 124 (19) 121 (17) <0.001
DBP (mmHg), mean (SD) 79 (11) 79 (10) 78 (9) 0.281 76 (10) 74 (10) 73 (9) <0.001
Hypertension, n (%) 284 (55.9) 248 (47.4) 186 (40.3) <0.001 304 (50.6) 214 (34.5) 163 (30.2) <0.001
Total cholesterol (mg/dl),mean (SD) 196 (39) 197 (34) 193 (35) 0.284 207 (36) 207 (34) 205 (35) 0.640
HDL cholesterol (mg/dl),mean (SD) 47 (11) 48 (11) 47 (10) 0.431 55 (11) 57 (12) 57 (11) 0.040
LDL cholesterol (mg/dl),mean (SD) 127 (33) 127 (29) 127 (31) 0.973 132 (31) 132 (30) 131 (30) 0.708
Triglycerides,median [IQR] 93 [70;132] 95 [68; 130] 86 [66; 116] 0.002 85 [61;118] 78 [58; 107] 76 [58; 103] 0.002
Glycemia (mg/dl),median [IQR] 96 [89;108] 94 [88; 103] 95 [88; 104] 0.080 89 [83; 98] 88 [83; 96] 88 [83; 95] 0.514
Diabetes, n (%) 124 (24.7) 97 (18.8) 79 (17.3) 0.009 89 (14.9) 63 (10.3) 40 (7.5) <0.001
CCA IMT mean (SD) 0.70 (0.14) 0.69 (0.16) 0.67 (0.13) <0.001 0.67 (0.13) 0.66 (0.16) 0.64 (0.14) 0.005
Atherosclerotic plaque, n (%) 52 (10.1) 44 (8.3) 33 (7.1) 0.222 41 (6.7) 31 (4.9) 25 (4.6) 0.229

IQR: Interquartile range, PAD: Peripheral artery disease, SD: Standard deviation, SBP: Systolic blood pressure, DBP: Diastolic blood pressure.

Table 4.3: Characteristics of participants by tertiles of ABI.

Men Women
Modela Modelb

ABI Range N Beta Coefficient (95% CI)a p ABI Range n Beta Coefficient (95% CI)b p

All 1516 -0.068 (-0.123; -0.012) 0.016 All 1791 -0.011 (-0.070;0.048) 0.723
[0.5; 1, 2) 1181 -0.071 (-0.147;0.005) 0.066 [0.5; 1.2] 1586 -0.029 (-0.105;0.047) 0.456
[1.2; 1.4] 335 0.121 (-0.149;0.391) 0.382 (1.2; 1.4] 205 0.007 (-0.340; 0.492) 0.721

Men with no claudication Women with no claudication
All 1465 -0.073 (-0.130; -0.017) 0.011 All 1713 -0.006 (-0.067;0.055) 0.848

[0.5; 1.0] 169 -0.027 (-0.195;0.141) 0.751 [.4; 1.2) 1419 -0.010 (-0.079;0.060) 0.786
(1.0; 1.4] 1296 -0.048 (-0.133;0.036) 0.261 [1.2; 1.4] 292 0.031 (-0.089;0.008) 0.617

CI: confidence interval, aModel adjusted for age and body mass index, bModel adjusted for age

Table 4.4: CCA IMT by ABI in the whole sample and stratified by breakpoints in all
participants and in those with no claudication.

0.122) and 0.124 (0.192; 0.056) in men and women, respectively] (Figure 4.1).

We adjusted generalized additive multivariable models for the whole sample and for

where the slope changed (ie, breakpoint). The results were only significant in men

overall and in those with no claudication [-0.068 (0.123; 0.012); p = 0.016 and 0.073

(0.130; 0.017); p = 0.011, respectively]. No differences were found in women (Table 4.4).

The adjusted risk of atherosclerotic plaque at the CA in individuals with peripheral

artery disease significantly increased in all women and in those with no claudication

[Odds ratio (95% confidence interval) =2.61, (1.46;4.69); p = 0.001 and 2.49 (.99; 6.28);

p= 0.053, respectively]. The risk was also significant in men with no claudication [2.08

(1.09; 3.96); p= 0.026] (Figure 2).

The analysis stratified by age found similar results in the correlation between ABI and

IMT, with significant associations only in men (see Tables 4.5, 4.6, 4.7, 4.8, 4.9, 4.10 and

Figure 4.3). In addition, the probability of carotid plaque in individuals with peripheral

artery disease was only significant in older men and women (>60 years) [2.03, (1.13;

3.63); p = 0.017 and 2.84 (1.47; 5.49); p = 0.002, respectively] (see Figure 4.4).
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(a) All Men (b) Men with no Claudication

(c) All Women (d) Women with no Claudication

Figure 4.1: Correlations between ABI and CCA IMT by sex in all participants and in
those with no claudication.
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Men Women
<60 years ≥60 years <60 years ≥60 years
old n=738 old n=778 old n=926 old n=865

Education level (University), n (%) 241 (32.7) 158 (20.6) 305 (33.2) 93 (10.8)
Ankle-brachial index, mean (SD) 1.13 (0.10) 1.09 (0.14) 1.10 (0.09) 1.08 (0.11)
Peripheral arteriopathy, n (%) 30 (4.1) 84 (10.8) 43 (4.6) 73 (8.4)
Asymptomatic peripheral arteriopathy, n (%) 9 (1.2) 54 (6.9) 8 (0.9) 30 (3.5)
Claudication, n (%) 21 (2.9) 30 (3.9) 35 (3.8) 43 (5.0)
Smoker, n (%) 295 (40.3) 417 (54.0) 229 (24.8) 72 (8.4)
Body mass index, mean (SD) 27.4 (3.8) 27.9 (3.6) 25.6 (4.9) 27.9 (4.7)
Systolic blood pressure (mmHg), mean (SD) 127 (16) 140 (18) 116 (16) 136 (19)
Diastolic blood pressure (mmHg), mean (SD) 80 (10) 78 (10) 74 (10) 75 (9)
Hypertension, n (%) 244 (33.6) 474 (61.8) 184 (20.3) 497 (58.3)
Total cholesterol (mg/dl), mean (SD) 202 (35) 190 (36) 202 (36) 211 (34)
HDL cholesterol (mg/dl), mean (SD) 48 (10) 47 (11) 57 (12) 56 (11)
LDL cholesterol (mg/dl), mean (SD) 133 (30) 122 (31) 128 (31) 135 (29)
Lipid-lowering treatment, n (%) 85 (11.6) 253 (33.7) 81 (8.8) 257 (30.6)
Triglycerides, median [IQR] 89 [67; 127] 93 [70; 125] 69 [53; 95] 92 [68; 121]
Glycemia (mg/dl), median [IQR] 93 [87; 100] 98 [90; 111] 87 [81; 93] 91 [85; 100]
Diabetes, n (%) 75 (10.4) 225 (29.8) 55 (6.1) 137 (16.4)
CCA IMT, mean (SD) 0.64 (0.12) 0.73 (0.15) 0.60 (0.13) 0.72 (0.13)
Carotid atherosclerotic plaque, n (%) 35 (4.8) 94 (12.1) 28 (3.0) 69 (8.0)

IQR: Interquartile range, SD: Standard deviation

Table 4.5: Characteristics of men and women, by age group.

<60 years old ≥ 60 years old
No plaque Plaque No plaque Plaque
n=698 n=35 p n=683 n=94 p

Education level (University), n (%) 223 (32.0) 16 (45.7) 0.131 144 (21.4) 14 (15.1) 0.200
Ankle-brachial index, mean (SD) 1.13 (0.10) 1.11 (0.14) 0.355 1.10 (0.13) 1.07 (0.16) 0.162
Peripheral arteriopathy, n (%) 28 (4.0) 2 (5.7) 0.649 67 (9.8) 17 (18.1) 0.025
Asymptomatic peripheral arteriopathy, n (%) 7 (1.0) 2 (5.7) 0.065 41 (6.0) 3 (13.8) 0.010
Claudication, n (%) 21 (3.0) 0 (0.0) 0.618 26 (3.8) 4 (4.3) 0.776
Smoker, n (%) 276 (39.8) 17 (48.6) 0.394 353 (52.1) 64 (68.1) 0.005
Body mass index, mean (SD) 27.3 (3.8) 28.4 (4.0) 0.115 27.9 (3.6) 28.4 (3.8) 0.238
Systolic blood pressure (mmHg), mean (SD) 127 (15) 134 (19) 0.043 139 (19) 143 (17) 0.060
Diastolic blood pressure (mmHg), mean (SD) 80 (10) 82 (10) 0.156 78 (10) 75 (10) 0.003
Hypertension, n (%) 224 (32.7) 17 (48.6) 0.078 407 (60.3) 66 (72.5) 0.032
Total cholesterol (mg/dl), mean (SD) 203 (35) 199 (30) 0.608 191 (35) 181 (39) 0.022
HDL cholesterol (mg/dl), mean (SD) 48 (10) 46 (10) 0.524 47 (11) 45 (11) 0.131
LDL cholesterol (mg/dl), mean (SD) 133 (30) 133 (26) 0.884 123 (31) 114 (31) 0.014
Lipid-lowering treatment, n (%) 80 (11.5) 4 (11.8) 0.999 211 (31.9) 42 (47.2) 0.006
Triglycerides, 90 89 0.704 93 94 0.919

median [IQR] [66; 128] [73; 114] [70; 126] [77; 121]
Glycemia (mg/dl), 92 95 0.066 97 102 0.003

median [IQR] [86; 100] [90; 109] [90; 109] [93; 118]
Diabetes, n (%) 68 (10.0) 6 (17.1) 0.163 185 (27.8) 40 (44.9) 0.001

IQR: Interquartile range, SD: Standard deviation

Table 4.6: Characteristics of men by the presence of atherosclerotic plaque and age.
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Figure 4.2: Probability of carotid plaque in all individuals and in those with no clau-
dication. Models adjusted for age.

4.4 Discussion

Polyvascular subclinical disease, defined as the coexistence of atherosclerosis in different

vascular beds within the same individual, should be considered a systemic process. We

measured the coexistence of subclinical atherosclerosis at the lower limb, as measured

with ABI, and at the CCA, as measured with IMT or with the presence of atheroscle-

rotic plaque. In men, a linear negative dose-response association between the degree

of atherosclerosis at the lower limb and at the CCAs was observed. In women, periph-

eral artery disease (symptomatic or asymptomatic) significantly increased the risk of

atherosclerotic plaque in the CAs

Recognition of the atherosclerosis process as a systemic disease, as reported by nu-

merous authors, is necessary to improve the prevention outcomes [103]. First, core

risk factors such as smoking, diabetes, hypertension, hypercholesterolemia, obesity,

and family history appear to be shared among all vascular diseases, regardless of the

territory affected [116, 117]. Second, subclinical peripheral artery disease in patients

with coronary artery disease is associated with a poor prognosis during the first year

after an acute coronary syndrome event [118]. Third, CCA IMT or the presence of

atherosclerotic plaques at the CAs improve the prediction of incident CVD [95, 119,
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(a) Men (b) Women

Figure 4.3: Correlations between ABI and CCA IMT by sex and age.

<60 years old ≥ 60 years old
No plaque Plaque No plaque Plaque
n=894 n=28 p n=794 n=69 p

Education level (University), n (%) 294 (33.1) 11 (40.7) 0.534 86 (10.9) 7 (10.3) 0.999
Ankle-brachial index, mean (SD) 1.10 (0.09) 1.09 (0.07) 0.233 1.08 (0.11) 1.06 (0.15) 0.189
Peripheral arteriopathy, n (%) 40 (4.5) 3 (10.7) 0.138 60 (7.6) 13 (18.8) 0.003
Asymptomatic peripheral arteriopathy, n (%) 8 (0.9) 0 (0.0) 0.999 24 (3.0) 6 (8.7) 0.027
Claudication, n (%) 32 (3.6) 3 (10.7) 0.086 36 (4.5) 7 (10.1) 0.074
Smoker, n (%) 223 (25.0) 6 (21.4) 0.835 65 (8.2) 7 (10.6) 0.655
Body mass index, mean (SD) 25.7 (4.9) 26.0 (4.4) 0.668 27.9 (4.7) 27.9 (4.4) 0.918
Systolic blood pressure (mmHg), mean (SD) 116 (16) 122 (21) 0.127 135 (19) 139 (21) 0.223
Diastolic blood pressure (mmHg), mean (SD) 74 (10) 79 (14) 0.080 75 (9) 74 (9) 0.440
Hypertension, n (%) 174 (19.8) 9 (33.3) 0.140 452 (57.9) 44 (63.8) 0.410
Total cholesterol (mg/dl), mean (SD) 201 (35) 209 (38) 0.331 211 (33) 213 (34) 0.634
HDL cholesterol (mg/dl), mean (SD) 57 (12) 55 (10) 0.354 56 (11) 55 (11) 0.372
LDL cholesterol (mg/dl), mean (SD) 128 (31) 134 (33) 0.405 135 (29) 138 (31) 0.389
Lipid-lowering treatment, n (%) 74 (8.3) 7 (25.0) 0.008 233 (30.3) 23 (34.3) 0.579
Triglycerides, 69 78 0.103 92 91 0.620

median [IQR] [53; 93] [56; 123] [69; 121] [65; 121]
Glycemia (mg/dl), 86 90 0.011 90 93 0.279

median [IQR] [81; 93] [85; 101] [85; 100] [86; 102]
Diabetes, n (%) 51 (5.9) 4 (15.4) 0.069 121 (15.8) 16 (23.2) 0.155

IQR: Interquartile range, SD: Standard deviation

Table 4.7: Characteristics of women by the presence of atherosclerotic plaque and age.
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Figure 4.4: Probability of carotid plaque in individuals with peripheral artery disease
by sex and age.

120, 121]. In general, the presence of subclinical atherosclerosis at different locations

has been associated with higher risk of cardiovascular events in individuals with familial

hypercholesterolemia [122] or in percutaneous coronary intervention patients[123].

Our analysis, consistent with previous studies, showed increased burden of subclinical

disease in men, compared with women[124, 125]. On the one hand, men presented with

a continuous dose-response association between ABI and IMT, particularly up to ABI

values around 1.2, where a nonsignificant change in the trend was observed. A U-shaped

pattern was previously described in a cross-sectional analysis not stratified by sex in a

Chinese population of Inner Mongolia [126]. In addition, The Copenhagen City Heart

Study showed that the magnitude of association between these biomarkers was higher

in individuals with diabetes, compared with those without the disease [110]. The slope

described in the latter group was similar to that observed in men in our results. In

contrast, Zhang et al found that the association between IMT and ABI in patients with

diabetes did not remain after adjusting for cardiovascular risk factors, but the IMT as-

sociation with toebrachial index persisted. Finally, no association was found between

ABI and IMT in the Spanish Registry of patients older than 60 years with a recent non-

cardioembolic ischaemic stroke (ARTICO), performed in individuals with history of a
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non-cardioembolic stroke in the preceding 3 months [111]. Less specific is the assess-

ment of subclinical burden with magnetic resonance imaging (MRI) performed in the

Cooperative Health Research in the Region of Augsburg (KORA-MRI) cohort. In this

study, the carotid plaque in different arteries, together with other markers of subclinical

disease, were measured in individuals without CVD. Thus, the comprehensive analysis

of all markers showed that early signs of metabolic and cardio-cerebrovascular com-

plications were more present in individuals with prediabetes, compared with controls

[127].

On the other hand, women did not present with a doseresponse association, but a crit-

ical increase in the probability of carotid plaque was observed once peripheral artery

disease (symptomatic or asymptomatic) was present. This finding, also highlighted by

Colledanchise et al[128], may have particular value for cardiovascular risk assessment in

women. Indeed, the Atherosclerosis Risk in Communities study showed that account-

ing for carotid plaque presence in addition to IMT leads to greater improvement of risk

prediction in women than in men [129]. Thus, a combined assessment of subclinical

atherosclerosis at the lower limb and CAs may improve disease detection over an as-

sessment of either artery alone in both men and women, but particularly in women, in

whom traditional risk assessments are less effective [8].

Our study has several limitations. The degree of atherosclerosis in the lower limb and

CA was measured using different techniques. Although the final measurement can be

comparable, future cohort studies could assess the extent of atherosclerosis using the

same technique in both vascular beds (eg, US at femoral artery and CA). Selection

bias may affect any crosssectional study, but is likely to be modest in magnitude in

this study because it was population-based and participant selection was not based on

the presence or absence of subclinical atherosclerosis. In addition, this design cannot

establish temporality.

4.5 Conclusions

In this study we investigated the relationship between subclinical atherosclerosis

biomarkers, focusing on lower limb atherosclerosis (ABI) and carotid atherosclerosis

(measured by IMT and the presence of atherosclerotic plaque). We examined these

associations within a general population and a sub-sample without a history of inter-

mittent claudication.

Our analysis revealed a higher burden of subclinical disease in men, showing an asso-

ciation between ABI and IMT, similar to previous studies. The association between

these biomarkers was stronger in individuals with diabetes. In contrast, among women,
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while a dose-response relationship was not evident, a substantial increase in the likeli-

hood of carotid plaque was observed in the presence of peripheral artery disease. This

emphasizes the potential benefits of combining evaluations of subclinical atherosclerosis

in both the CAs and lower limbs for improved disease detection, particularly in women,

where conventional risk assessments may be less effective.

The study also highlights the systemic nature of polyvascular subclinical diseases and

their coexistence with atherosclerosis in different vascular areas. This emphasizes the

importance of recognizing atherosclerosis as a systemic disease to improve preventive

measures and outcomes.

As a main limitation, the degree of atherosclerosis in the lower limb and CA was mea-

sured using different techniques. Although the final measurements may be comparable,

future cohort studies could assess the extent of atherosclerosis using the same technique

in both vascular beds, such as US in the femoral and CAs, for consistency.

In conclusion, this study showed two patterns of association between subclinical

biomarkers of lower limb and CA atherosclerosis. Men showed a significant linear

association between ABI levels and CCA IMT values, while women with symptomatic

or asymptomatic peripheral artery disease presented with high risk of atherosclerotic

plaque at the CA. Morover, our study points out the systemic nature of the atheroscle-

rotic process. Individuals with biomarkers of atherosclerosis in a given territory are

more likely to present with subclinical disease in another. The increased risk of is-

chemic events associated with this condition, and the differences found between men

and women have important implications for cardiovascular risk management.
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Chapter 5

Deep-stratification of the

cardiovascular risk by ultrasound

CA images

5.1 Introduction

In this section, we study the problem of characterizing the CIMT region and the

atherosclerotic plaque to improve cardiovascular risk prediction. Thus, this section

presents a state-of-the-art review of automatic methods that characterize the walls of

the CA in longitudinal B-mode US images to enhance the assessment of cardiovascular

health (part of this review is included in our chapter “Last Advances on Automatic

Carotid Artery Analysis in Ultrasound Images: Towards Deep Learning” published in

[24]). Moreover, this section introduces the details of our proposal, “Deep Stratification

of Cardiovascular Risk by Ultrasound Carotid Artery Images” (see Section 1.5), which

consists in a novel DL model that characterizes CA US images to enhance the survival

model presented in [8]. In particular, this method extracts relevant features from im-

ages of the CA, specifically from the atherosclerotic plaque, using a DNN, and these

features are added to the risk function [8] to improve cardiovascular risk prediction,

specifically reclassification.

5.2 State of the art

Atherosclerosis is characterized by focal thickenings of the innermost layer of the artery,

which is reflected in the artery walls. CA B-mode US is a well-established method that
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Figure 5.1: US CA images from two territories: CCA (left) and bulb (right). The
different parts of the CA are delimited with lines: Near wall, Far wall, Lumen and CIM
region. In both cases, the carotid IMT is estimated in the CIM region. Atherosclerotic
plaque is a portion within the CIM with an IMT greater than 1.5mm [7].

helps to quantify and visualize atherosclerotic lesions since they provide the measure-

ment of carotid IMT (see Figure 5.1) and the atherosclerotic plaque identification,

following the criteria outlined in the Mannheim Consensus [7]. Therefore, the study

of these images has been considered of clinical relevance. For example, tools that can

monitor atherosclerosis can also improve diagnosis and subsequent treatment [4].

Furthermore, it is well known that the disruption of an atherosclerotic plaque plays a

crucial role in the pathogenesis of CVD events [130, 131]. Plaque disruption is charac-

terized by the content of lipid, muscle cells, and the thickness of the fibrous cap, among

other factors [132]. Thus, there exists a medical interest related to the characterization

of atherosclerotic plaques in CA. Non-invasive CA B-mode US is a well-established

method that helps to visualize and quantify atherosclerotic lesions. Therefore, CA US

characterization of plaque morphology is useful in assessing the vulnerability of the

atherosclerotic lesions. Moreover, plaque and also CA walls characterization can be

used as a powerful tool for assessing cardiovascular risk and predicting cardiovascular

events [133].

The main purpose of image-techniques developed in this field is to create an image-

based system that characterizes the atherosclerotic plaque and the CA walls. Given

CA US images, the challenges of these methods can be mainly grouped in four distinct

objectives (see Section 5.2.2 for more details):

• Objective 1: To classify atherosclerotic plaque between symptomatic and
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asymptomatic.

• Objective 2: To stratify cardiovascular risk.

• Objective 3: To predict the risk of future cardiovascular events.

• Objective 4: To classify tissue components of the atherosclerotic plaque.

Several review articles can be found in the literature which include studies and tech-

niques to deal with these objectives. Sharma et al. [134] provided the first state-of-

the-art review to comprehend the field of ultrasonic vascular morphology tissue classi-

fication. In particular, they revised different ML techniques in tissue morphology and

classification using US imaging. More recently, Saba et al. [135] provided guidelines

about obtaining IMT and carotid plaque measurements and how these measurements

are validated for risk stratification assessment and the prediction of events. This arti-

cle concludes that advances in technology have helped to generate more accurate and

consistent measurements of CA image-based features. In particular, AI methods such

as ML and DL approaches have been widely adopted for CVD risk stratification as-

sessment and the prediction of events using these CA image features. The very recent

review article presented in [136] focuses on cardiovascular risk stratification through

the use of DL techniques. In this study, it is observed that CNN algorithms are widely

employed because they further enhance result accuracy compared to ML methods, as

they automate the feature extraction process. Specifically, this review article provides

an overview of DL methods for assessing cardiovascular risk by characterizing plaque

through carotid US image techniques. These methods involve cardiovascular risk strat-

ification systems that use DL methods for carotid wall segmentation in 2D US images,

and subsequently acquire phenotypes based on images of the segmented region, such

as carotid IMT and plaque area, among others.

5.2.1 Comparison of relevant works for CA characterization

Table 5.1 summarizes relevant works from the literature related to plaque and CA wall

characterization in longitudinal B-mode US images and it compares the main charac-

teristics of every method. The remainder of this subsection is devoted to discussing

the information contained in Table 5.1: the properties of the data used in the different

studies, the objectives of the different works, the considered image features, the used

methods and the results.

Note that there is no fair way to do a general comparison of the results (see “Results”

column from Table 5.1) because the validation methods, the GT, and the datasets are

different in each proposal.
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5.2.2 Key objectives in CA characterization for enhanced cardiovas-

cular risk assessment and prediction

Characterization of CA images involves extracting image patterns that describe or clas-

sify atherosclerotic plaques and CA walls, aiming to achieve any of the four mentioned

objectives. The most advanced works that utilize B-mode US images to characterize

plaques and CA walls for assessing cardiovascular risk and predicting events can be

primarily categorized into four distinct objectives found in the literature. These ob-

jectives all aim to improve the assessment and prediction of cardiovascular events and

related risks. The details of these objectives are explained below.

• Objective 1: There are image-based techniques for binary classification of

plaques: symptomatic and asymptomatic [138, 140, 141, 142, 143, 144, 145,

147] (see “Bin. class.: sym/asym” in column “Work Objective” from Table 5.1).

Symptomatic plaques are from patients who have suffered any cerebrovascular

event. In contrast, asymptomatic plaques are from patients who have not expe-

rienced any of these diseases.

• Objective 2: In the recent literature, some attempts have appeared to assess

the CV risk of subjects using CA image features. This is carried out by solving a

classification problem between two ranges: low and high risk [133, 146] (see “Risk

stratification” in column “Work Objective” from Table 5.1).

• Objective 3: Despite the advances in imaging modalities and identifying plaque

vulnerability characteristics, such as its composition, few of these plaques rupture

and even fewer lead to clinical events [130, 131]. Therefore, it is important to

perform studies to evaluate the individual risk that entails atherosclerosis evolu-

tion. This fact has motivated several studies to analyze the CA in a longitudinal

study (i.e., repeated observations of the same subjects during a period of time) in

order to predict the occurrence of CV events during a period [16, 17, 18, 19, 139]

(see “Risk prediction of events” in column “Work Objective” from Table 5.1).

Longitudinal studies involve repeated observations of the same subjects during a

period of time (see column “Cross-Sectional/Follow-Up” from Table 5.1).

• Objective 4: It is established that the composition of atherosclerotic plaque is

related to CVD [132, 131]. Some proposals in the literature deal with the classi-

fication of the plaque components (generally lipid, fibromuscular, and calcium).

This classification is usually performed by an expert [148, 149] or using image-

based techniques built on the gray intensity levels from the plaque region [32,

137] (see “Mult. class.” in the column “Work Objective” from Table 5.1). These
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image based-techniques address the classification problem with a multi-class clas-

sification method [137, 32]. The number of studies related to this objective are

relatively small probably because the GT is difficult to obtain, either because it

requires surgery [137] or it is manually obtained [32].

5.2.3 Different types of datasets

This subsection presents the characteristics of the data used for CA image characteriza-

tion in various studies, including whether the data incorporates follow-up measurements

(indicating a longitudinal study rather than a cross-sectional one), whether it is sourced

from a single device, the inclusion of a single or multiple frames, the territory of the

artery examined, the number of samples used, if the images contain plaque, character-

istics of patients in terms of cardiovascular health (stenosis) and the GT employed.

Most of the studies focus on plaque characterization of a single frame of B-mode US

longitudinal images from the CA [16, 18, 19, 32, 133, 137, 139, 140, 141, 142, 145, 143,

146, 147] (see “Unique Frame” in column “Image Modality” from Table 5.1). This is

because US imaging is a non-expensive and non-invasive technique for CA visualization

that has been extensively used to examine atherosclerosis of a patient (see Section 1.1.2).

Different image modalities are also used in the literature using more than one frame, as

in [17], where the scans of the CCA, the Bulb, and the ICA are performed bilaterally in

three different longitudinal projections, as well as transversal projections to analyze the

entire plaque. Other studies include the information of the CA appearance during the

cardiac cycle. In these cases, the specific instants (systole and diastole) are analyzed

separately in two frames [138], adding the information of the mechanical interactions

from image sequences [144] (see “Video” in column “Image Modality” from Table 5.1).

Regarding the artery territory, in contrast to the research works reviewed in Section 2.2,

the images used several studies belong to ICA and Bulb (see column “Artery Territory”

Table 5.1). This is because plaques occur only occasionally in the other regions of the

artery. Besides, not all studies focus on the CIM region. Near wall characterization

also adds information of the entire artery [133, 146] (see “CCA (far & near wall)” in

column “Artery territory” from Table 5.1).

The GT in the revised literature is closely related to the objective of the particular

work (see column “GT” from Table 5.1). The GT in Objective 1 is based on clinical

symptoms, which means whether the individual whose image is analyzed suffered any

symptom related to CVDs or not [141, 142, 138, 143, 144, 145, 147]. The GT for the

Objective 2 is a previous risk stratification using the lumen diameter, which is a factor

related to atherosclerosis [133, 146]. For the Objective 3, the methods are validated

using the events occurred in a period of time [16, 17, 19, 139, 147], except in [18]. In this
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last paper, the validation is a comparison of the risk stratification (done using several

cardiovascular risk factors) obtained from several risk prediction functions. Finally, the

GT used for Objective 4 is obtained from an endarterectomy (i.e., a surgical process

that removes a sample of plaque) [137] or from a tissue component classification done

by an expert [32].

The size of the datasets (see column “N” from Table 5.1) are similar to the studies

presented in Section 2.2. The largest datasets presented in [139] and [19] with 1,121

and 2,205 subjects respectively and included in their follow-up study. Note that in the

studies for the Objective 4 the samples are small compared to the sample size of the

other studies. This could be due because the endarterectomy used in the GT from [137]

is aggressive for the patient, and the manual classification for the GT in [32] is tedious

and very time-consuming.

The datasets can include images of CA from individuals with atherosclerotic plaque

(“plaques”), from general population (“individuals”) or from individuals with stenosis

(“stenosis”), which is a clinical term to design a narrowing of the artery. If the number

of plaque images does not correspond to the number of individuals, the number of

patients is specified in parentheses.

Regarding the acquisition devices (see column “Different Devices” from Table 5.1), most

of the works use datasets provided by a single device. In contrast, the images used in

[141] and in [144] were obtained from two different types of equipment. Despite the

challenge they present, their proposals result in most robust methods for risk prediction

(Objective 3 ) [141] and for the classification of the presence or absence of past CV

symptoms (Objective 1 ) [144].

5.2.4 Image features for CA characterization

The following section describes the key image features identified in the literature for

characterizing the CA wall in US images.

Feature based on CA image phenotypes

Carotid IMT and plaque measurements are frequently utilized in the literature, as they

are validated for use as calculators in risk stratification assessment and event prediction

[135, 136]. Some studies use image features, called image phenotypes, which represent

quantitative measures associated with intima-media thickness (IMT) or atherosclerotic

plaque. These measures encompass parameters such as mean IMT, maximum IMT,

minimum IMT, or IMT variability ([145, 18]). Most studies using image phenotypes

employ phenotypes related to atherosclerotic plaque, which are metrics such as Total
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Plaque Area (TPA) or Grayscale Median (GSM) ([139, 17, 16, 137, 138, 18]). Some

studies use image phenotypes of atherosclerotic plaque to compare them with the oc-

currence of CVD or other pathologies during a follow-up period [17, 139]. To our knowl-

edge, the most recent work utilizing these types of features is presented in [18]. This

study introduces an image-based method to develop a 10-year risk calculator, based on

the fusion of various cardiovascular risk factors and changes, during the follow up, in

the CA phenotypes. The image phenotypes were extracted from the segmented region

obtained through the AtheroEdgeTM system [41] (mentioned in Section 2.2).

Features based on gray intensity values

The features used in the literature to characterize atherosclerotic tissue are, in general,

based on gray intensity values (see column “Image Features” from Table 5.1). The most

standard feature is the GSM method [17, 137, 133, 146, 138]. The technique proposed

in [137] for the Objective 2 is a combination of GSM and Pixel Distribution Analysis

(PDA). However, it demonstrates an agreement between these image features and his-

tologic measurements. The studies proposed in [133, 146] presented good accuracies

for risk stratification using GSM features. The estimation of the spatial distribution

of gray levels is a suitable technique for texture analysis. Gray Level Co-occurrence

Matrix [150] and Run Length Matrix (RLM) [151] methods based on gray level values

are used to examine the texture in CA US images [141]. For a more objective anal-

ysis, the group of Acharya et al. [141, 142, 143] developed novel integrated indices

using a combination of significant features to deal with Objective 1. As a result, they

concluded that grayscale features based on a combination of trace transform [152] and

texture properties are suitable for the classification of symptomatic and asymptomatic

plaques. Another different approach using the information of the pixel intensity values

and their distribution is the tissue classification method (Objective 4 ) proposed in [32].

In contrast to the other proposals, the image feature used in this case is the entire

patch around the pixel that is used as the input to the model.

Feature based on frequency approaches

Frequency-based approaches, such as the ones based on Wavelet Transforms (WT),

can decompose the frequency content of the image and, consequently, reveal texture

characteristics from different materials of the plaque [138, 140, 142, 143]. Several studies

present a scale-frequency approach showing that WT features are a good alternative

for the characterization of plaque tissue between the symptomatic and asymptomatic

groups (Objective 1 ). In this sense, Tsiaparas et al. [138] demonstrated that WT

features are more accurate than classical features as GSM, since they capture both

the frequency and spatial content of the image. The methods presented in [140, 142,
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143, 145] use a combination of some techniques mentioned above such as GLCM, RLM

and WT resulting in good accuracies for the binary classification of the Objective 1.

In particular, Acharya et al. [143] also used a gray-based feature texture known as

Local Binary Pattern (LBP), whilst [142, 143, 145] added the features extracted by the

Higher-Order Spectra (HOS) technique [153], which provides high noise immunity.

5.2.5 Characterizing the CA: Statistical and DL Approaches

Different methods have been proposed in the literature to address the various objectives

mentioned before, using the respective types of image features (see the “Methods”

column in Table 5.1).

Statistical methods for atherosclerotic plaque classification

Several statistical methods are used in order to characterize the atherosclerotic plaque

or CA wall in US iamges. For the Objective 1, common statistical methods are used

in the literature in order to select the relevant features for the binary discrimination.

These methods are Student’s t-test [140, 141, 142], ANOVA test [145], and Divergence

value to rank the features [138, 143]. An interesting work that combines three different

selection strategies is presented in [144]. These strategies are Fisher discriminant ratio,

Wilcoxon rank-sum test, and Principal Component Analysis (PCA), and were used to

select the features that are able to better discriminate the two groups. In particular, the

features used in this study are kinematic features of the arterial wall estimated with the

motion analysis from B-mode US image sequences, occurring during the cardiac cycle.

Statistical methods are also used to evaluate the classification of atherosclertoic plaque

composition (Objective 4 ), as seen in [137], which applied the Spearman coefficient

of correlation for comparisons between PDA for different tissue components and the

histologic analysis of plaques.

Statistical methods for cardiovascular risk prediction

Kaplan-Meier analysis and Cox regression are statistical methods commonly used in

survival studies to analyze and predict events in longitudinal studies, such as those

utilized in Objective 3. Specifically, both of these methods were employed in the study

by Gronholdt et al.[16], while only Cox regression was utilized in the study conducted

by Irie et al. [17]. Also, the Area Under the Curve (AUC) was used to validate the same

objective in [17, 18]. In this case, AUC measures the ability of the binary classifier in

risk stratification for the validation in [18] (see “GT” column from Table 5.1) and in risk

prediction of events in [17]. In particular, using the AUC, Khanna et al. [18] concluded

that the addition of the image-based phenypes to the classical cardiovascular risk factors

outperforms the ten currently available conventional cardiovascular risk calculators.
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ML approaches for CA characterization

On the other hand, the basic ML methods presented for the Objective 1 are supervised

classifiers based on the assumption that each of these features belong to two distinct

classes: symptomatic and asymptomatic. In these cases the classification methods are:

k-Nearest Neighbor (kNN) [141, 144, 145], Decision Trees (DT) [141, 144], Discriminant

Analysis (DA), [144], Gaussian Mixture Model (GMM) [141], and Näıve Bayes classifier

(NBC) [141]. The most common ML method used in the revised literature is Support

Vector Machine (SVM), used for classification in Objective 1 [138, 140, 141, 142, 143,

144, 145] and for risk stratification in Objective 2 [133, 146].

DL approaches for CA characterization

DL strategies as Probabilistic Neural Networks (PNN) are also used for Objective 1

[138, 141, 144, 145] and for risk prediction in Objective 3 [139]. These DL strategies

use hand-crafted feature vectors as input to the network and a traditional pipeline

design, instead of using the raw image as input and allowing an end-to-end learning. In

contrast, other studies use DL methods to automate the feature extraction process. For

their part, Lekadir et al. [32] present, for the first time in the literature, a DL approach

that performs end-to-end learning using a CNN with image patches as the input to

the model to address Objective 4. This approach conducts multi-class classification

of each pixel of the plaque into a tissue component. The entire patch incorporates

all the information around the pixel that is analyzed by the model. Then, the CNN

automatically selects the relevant information optimal for discriminating the different

plaque constituents, resulting in good accuracy results and correlation. Another end-

to-end DL approach using CNNs is presented in [147] to address the automated carotid

plaque characterization based on a binary classification system (Objective 3 ).

5.3 Enhancing cardiovascular risk prediction through DL

analysis of CA images

In the field of cardiovascular epidemiology, practitioners use risk prediction functions

[8, 9, 10, 11, 12] to estimate the risk of suffering an event in a period of time. These

functions are based on survival models and estimate the risk using a set of clinical

variables of each individual. These functions accurately stratify individuals into low,

moderate, and high-risk categories. However, they tend to classify a considerable num-

ber of individuals into the middle-risk category, and often, a subsequent reclassification

into high-risk groups is required. An example of this is the risk prediction function
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presented in the REGICOR study [8], which has been demonstrated to make accu-

rate predictions of cardiovascular events [8, 10, 11, 154]. However, it concentrates the

majority of its events (60%) in the medium-risk category (Table 1.1 of Section1.1.3)

5.3.1 Our approach

In this research, we present a novel approach to improve the survival model for risk

stratification proposed by Marrugat et al. [8]. In particular, our approach uses deep

CA US image features in the survival model aiming at reclassifying individuals from the

moderate- to the high-risk category. In particular, we consider a DNN architecture to

extract a set of deep features from the CA images, add them to the REGICOR function,

and analyze the new survival model in terms of prediction and reclassification. We

show that the DNNs are able to learn new feature embeddings useful to improve risk

stratification by classifying events from low or moderate categories to higher categories.

To do so, we compare the performance of our model using different sets of deep features

and with another model that uses a set of phenotypes manually defined from the CIM

region. Additionally, we assess the relevance of these features by comparing the risk

function outlined in [8] to a model with the same variables, except for the invasive

ones (i.e., those requiring blood extraction), which are substituted with the image

features. In this sense, we assess a model that does not include invasive variables

but incorporates additional information about atherosclerosis, including details of the

atherosclerotic plaque location. Finally, the best sets of image features are compared

in terms of reclassification. In particular, we investigate whether the inclusion of deep

image features in the survival model results in the reclassification of individuals who

have experienced an event from the moderate-risk group to the high-risk group.

This approach is presented in a paper entitled “Deep-stratification of the cardiovascular

risk by ultrasound CA images”, mentioned in Section 1.5, which was submitted in a

Q2 journal.

5.3.2 Related work

The study of CA US plaque images has been considered clinically relevant. In particu-

lar, several attempts in the literature tried to assess the cardiovascular risk of subjects

using CA image features, as discussed below.

The main purpose of studies in [133, 146] was to create an image-based system to

characterize the plaque and the CA walls in US CA images. In these works, authors

used the lumen diameter for risk stratification as GT to solve a classification problem

between two ranges: low and high risk. Their proposal was to estimate the spatial

distribution of gray levels to examine the texture for CCA far and near wall, reaching

81



high classification accuracies with two classification methods: SVM and PCA.

Other works ([16, 17, 18, 19]) focused on analyzing the CA in longitudinal studies.These

works obtained CA image features, either manually or using semi-automatic methods,

and used them to create risk prediction functions. Most of the image features considered

are related to IMT (mean IMT, maximum IMT, minimum IMT, IMT variability) and

atherosclerotic plaque (TPA, GSM of plaque). Since these features are used repeatedly

in the literature, from now on, we will refer to this set of six features as classical image

phenotypes. In particular, the model presented in [18] used the classical image pheno-

types in two instants of time combined with conventional (non-imaging) risk variables

achieving better results than classical survival models. Alternatively, Kyriacou et al.

[139] used PNN and SVM classifiers to combine clinical features, image phenotypes, and

other CA image features (based on texture and morphology) for plaque classification

(event vs non-event). Despite the promising results for predicting events in individuals

with plaque, this classification task is different from the risk stratification problem we

address in this study.

Moreover, several works in the literature [155, 156, 157, 158] compare classical risk

prediction functions with different ML approaches. The main difference between both

approaches is that ML methods use the event/non-event information for prediction (bi-

nary classification task) and survival models use the time until the event to predict the

risk of suffering an event. In these studies, they used classical clinical variables, also

known as risk factors and some additional characteristics from a population initially

free of CVD in a longitudinal study. The ML techniques outperform existing approaches

in cardiovascular event prediction. In this context, Weng et al. [155] compared differ-

ent ML algorithms: RF, logistic regression, gradient boosting, and NNs, which reached

the best results in cardiovascular prediction. The most recent approaches [156, 157]

proposed boosted ensemble algorithms followed by automated feature selection using

information gain ratio. Both of them reached very high accuracies in cardiovascular

death [156] and cardiovascular event [157] prediction. Although they did not use CA

images, Ambale-Venkatesh et al. [158] included features from electrocardiography im-

ages and reached the highest accuracy using the RF algorithm to predict the events

and to select relevant features from a large set of variables (more than 700).

In terms of subject reclassification (i.e., moving subjects who suffered an event to higher

risk categories and subjects free of event to lower risk categories), recent research works

[159, 160] used Net Reclassification Improvement (NRI) to evaluate if the addition of

one or more variables to a survival model improves its predictive capacity. In particular,

these improvements are based on the reclassification of subjects with event into higher

categories. Moreover, Tamarappoo et al. [157] applied this measure to evaluate the

82



improvement in their proposed ML prediction model and reached an improvement of

approximately 50% in reclassification.

5.4 Methodology

We propose to improve the survival model based on the REGICOR risk function [8]

by combining its clinical variables with a novel set of deep features extracted from CA

US images. Figure 5.2 depicts the different stages of the proposed method, which are

subsequently described.

DEEP-STRATIFICATION

SEMANTIC SEGMENTATION

Down-sampling Up-sampling

Bottleneck

Deep CNN-Mask
features

PCA

REGICOR clinical variables
(non-invasive variables & blood biomarkers)

Survival
model

Probability
cardiovascular 

event

Figure 5.2: Proposed methodology for the deep-stratification of the cardiovascular risk.
The survival model receives an input vector with 12 features, which include 8 clinical
variables used in the REGICOR risk function and 4 deep CNN-Mask features extracted
from a SS model of the carotid intima-media [33] and transformed by PCA.

5.4.1 REGICOR clinical variables

Most of the risk prediction functions in the field of cardiovascular epidemiology are

based on survival models, which are CoxPh [8, 9, 10, 12]. The CoxPh analyzes the risk

affecting the survival of a population of subjects [14]. In these models, the outcome

is the time until an event occurs, and the predictor covariates are the risk factors.

In particular, CoxPh survival models, such as the ones used in Framingham [9] or in

REGICOR [8], allow us to estimate the probability of suffering a cardiovascular event

in the next period of time [14], say ten years, by means of the following formula:

prob(event|x) = 1− Sexp(
∑N

n=1 βnxn−
∑N

n=1 βnxn), (5.1)
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where N is the number of risk factor variables, xn is the value of the n-th variable

for the individual x, βn is the Cox coefficient for the n-th variable, xn is the average

value of the n-th variable in the validation population, and S is the average ten-year

survival in the validation population. One of the best-known survival models in the

literature is Framingham [9]. REGICOR risk function [8] is a model with the same

risk factors as Framingham [9] but validated in the Spanish population. In particular,

in the REGICOR risk function: N = 8, the average values correspond to the Spanish

population and S is the average ten-year survival in the Spanish population. The

REGICOR risk function uses the following eight clinical variables:

• Non-invasive variables: age, sex, diastolic blood pressure, systolic blood pressure,

and smoke.

• Blood biomarkers: diabetes, total cholesterol, and HDL cholesterol.

5.4.2 Deep CNN-mask features

The extraction of the deep features is based on the model defined by Gago et al. [33]

for the segmentation of the carotid intima-media. Specifically, this work designed a SS

model that uses the U-Net [161], a widely recognized architecture that incorporates a

downsampling path for feature extraction and an upsampling path for region segmen-

tation. The downsampling path of the proposed model employs an EfficientNet B0

[56] as its backbone while maintaining the bottleneck and the upsampling path of the

original U-Net.

The deep features used in our proposal are obtained from this SS model. In particular,

we use the deep features extracted from the bottleneck, which is located between the

down-sampling and up-sampling paths (see Figure 5.2). As the segmentation model

produces a mask of the CIM region, the 1,152 features derived in this manner are

referred to as deep CNN-Mask features.

5.4.3 Dimensionality reduction using PCA

The one in ten rule [162] used in statistics determines that the number of variables for a

survival model should be around 1 variable for every 10 events. Taking into account the

number of events in our study (3.22%, see Table 1.1) and the number of deep features

(1,152) obtained for each territory (CCA and bulb), the dimension of the feature vector

must be reduced.

For this purpose, we use PCA [163], an algorithm that applies a linear transformation to

compress a dataset onto a subspace of lower dimensionality while retaining the majority

of the relevant information. The number of principal components to retain is typically
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determined by looking at the proportion of variance explained by each component and

selecting a threshold, such as retaining the top n components that explain a certain

percentage of the total variance.

In the current study, there are four CA images available for each subject: left and right

sides of CCA and bulb territories. The deep CNN-Mask features are computed from

the four images and then PCA is applied. The final vector per territory is calculated as

the average of the feature vectors obtained from both sides (left and right). According

to the experimentation, a variance percentage of 85% is applied to the two CCA images

and 70% in the case of the bulb, thus obtaining two features per territory. That is, four

deep features are concatenated with the eight REGICOR variables (which results in a

final feature vector with N = 12), to feed the survival model, as following described.

5.4.4 Survival model

At this point, we have obtained a 12-dimensional vector with the following features:

eight clinical variables, which are the ones used in the REGICOR risk function; and four

deep CNN-mask features, which are obtained after applying PCA to the deep features

computed from a SS model trained on US CA images from two territories (CCA and

bulb). These 12 features feed the survival model, as shown in Equation 5.1, to finally

estimate the probability of suffering a cardiovascular event in the next ten years. We

call this strategy deep-stratification approach.

In particular, for this work, we evaluate the respective CoxPh model (see Section 5.4.1,

REGICOR Clinical Variables), which estimates the time until the event. This model

is obtained with coxph() function from Epi package [164] (R software [80]).

5.5 Dataset

This research work analyzes the participants from REGICOR, the set of images col-

lected for each subject was obtained from left and right CA in two different territories

(CCA and bulb). During the CA acquisition, some images were discarded if the sonog-

raphers considered that the image quality was not sufficient. Due to the poor quality of

the bulb images, they collected a total of 10,151 CCA images and 9,143 Bulb images.

Among them, 8,484 images (4,751 CCA images, and 3,733 Bulb images) have carotid

IMT reference values, given by the AVICA. Due to the poor quality of the images, some

images were discarded, resulting in a total of 4,727 CCA images and 3,721 bulb images

with IMT reference values.

The clinical data include eight classical risk factors used in the REGICOR risk function.

We call them REGICOR variables and they are: gender, age, smoking, systolic and
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diastolic blood pressure, total cholesterol, HDL cholesterol, and diabetes. Moreover,

these data include the time until the event or the time to the date of the last contact.

Given the nature of our study, we only considered subjects with no history of CVD

(coronary artery disease, stroke, or intermittent claudication), therefore 314 subjects

were discarded. Finally, a total of 4,769 subjects were included in the dataset.

Table 5.2 shows a summary of the clinical data considered in this research. Note that,

from the analyzed cohort of 4,769 subjects who were free from CVD at baseline, there

are 151 incident cases (3.17%) with cardiovascular events (acute myocardial infarction,

other ischemic heart diseases, stroke, and the same causes of death) during the ten-year

follow-up period.

Table 5.2: Summary of clinical data of the REGICOR subjects considered in this
study, grouped by ‘sex’ and with the p-value for the differences between the two groups.
Categorical variables are expressed as n (%) and continuous variables asmean (standard
deviation).

All Men Women
N=4,769 N=2,620 N=2,149 p.value

Age 59.5 (11.8) 59.7 (11.8) 59.4 (11.8) 0.483
Total cholesterol 205 (35.5) 209 (35.2) 201 (35.3) <0.001
HDL cholesterol 52.7 (11.8) 56.6 (11.6) 48.0 (10.3) <0.001
Systolic blood pressure 129 (19.7) 126 (20.1) 133 (18.2) <0.001
Diastolic blood pressure 77.2 (10.1) 75.1 (9.77) 79.7 (9.91) <0.001
Diabetes 608 (12.7%) 252 (9.62%) 356 (16.6%) <0.001
Smoke 810 (17.1%) 347 (13.3%) 463 (21.7%) <0.001
Event 151 (3.17%) 58 (2.21%) 93 (4.33%) <0.001

5.6 Experimental setup

This section describes the setup used in the experimentation carried out to evaluate

our deep-stratification approach. First, we explain the performance measures to eval-

uate the prediction capability of the survival model and the reclassification. Next, we

describe the train-test split applied to the REGICOR dataset for validation purposes.

Note that the code of our proposed framework will be publicly available after paper

acceptance1.

5.6.1 Evaluation metrics

In order to evaluate the performance of our deep-stratification approach we used two

different metrics: the AUC and the Net Reclassification Improvement (NRI).

1https://github.com/mmarvila/CA deep stratification
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The AUC metric is used to assess the performance of the survival model. In this

context, this metric agrees with Harrell’s C [165], which is a goodness of fit measure of

risk scores models such as statistical survival models.

On the other hand, NRI [166] is used to evaluate the reclassification improvement in

risk prediction. NRI is a widely used metric in the recent clinical literature [159, 160,

157], which intuitively summarizes the improvement in the classification of individuals

in risk categories. Therefore, it is used to summarize the incremental improvement

obtained with new variables. The total improvement is the sum of the improvements in

the reclassification of individuals without event and with event separately as is shown

in the following formula:

NRI = (N1−N2) + (N3−N4) (5.2)

where N1 and N2 are the percentages of individuals who have suffered an event and

those who have been reclassified into higher and lower categories, respectively; and N3

and N4 are the percentages of individuals free of event who have been reclassified into

lower and higher categories, respectively.

Note that when the problem is the probability of suffering an event during a period of

time, we use the event variable (yes/no) and the time until the event (or the time until

the date of the last contact in case of non-event subjects). For this reason, the statistical

techniques utilized for NRI, such as the nricens function from nricens[167] package

(R software [80]), which is employed in this study, incorporate survival functions that

consider the time to the event in addition to the values shown in the formula. That

is, these functions generate an NRI output that cannot be derived directly from the

aforementioned formula 5.2.

5.6.2 Train-test split

Table 5.3 shows the number of images used to evaluate our deep-stratification approach.

As explained in Section 5.5, the REGICOR dataset contains a total of 10,151 CCA

images and 9,143 bulb images. Among them, 4,727 CCA images and 3,721 bulb images

have IMT reference values that can be used as the GT for carotid IMT estimation. Note

that the first two rows of the table (IMT GT) correspond to the same train-validation-

test split used in [33] (60% training set, 20% validation set, and 20% test set), which

has been used here to evaluate image-based features.
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Table 5.3: Number of images in the REGICOR dataset: train-validation-test split to
evaluate the image-based features (IMT GT) and test split to evaluate the survival
models (IMT GT + NO IMT GT).

TRAIN VALIDATION TEST TOTAL

IMT GT CCA 2836 946 945 4727

BULB 2232 744 745 3721

NO IMT GT CCA - - 5424 5424

BULB - - 5422 5422

TOTAL CCA 2836 946 6369 10151

BULB 2232 744 6167 9143

The images without IMT values can be used for the evaluation of the survival model.

For this reason, we have also considered them and, therefore, the test set used in this

case is composed of 6,369 CCA and 6,167 bulb images.

5.7 Results

This section details the four experiments conducted to evaluate our deep-stratification

approach and analyzes the results obtained. The first two experiments are intended

to select the best set of image-based features. In particular, we compare two sets of

deep features in Experiment 1 and a set of hand-crafted features in Experiment 2. In

both cases, we consider two territories (CCA and bulb) and several sizes of feature

vectors. Next, in Experiment 3, we assess the relevance of the image-based features

with respect to the blood biomarkers. For this purpose, we compare the survival model

of the REGICOR function [8] but with the image-based features instead of the blood

biomarkers. Finally, in Experiment 4, we analyze the most competitive configurations

of the previous experiments in terms of the reclassification of the survival model.

The computational time and complexity of the proposed methodology mostly depends

on the model used to extract deep features. As mentioned in [37], the time needed

to process an input image is 0.026 seconds using a GeForce RTX 2080ti 11GB GPU

also from NVIDIA. On the other hand, the computational time to obtain the proposed

CoxPh survival model is less than one millisecond per individual.

5.7.1 Experiment 1: analysis of the deep features

In order to evaluate the adequacy of the proposed deep CNN-Mask features, we compare

them with another set of deep features. For the extraction of the alternative deep

features, we use a CNN model defined for carotid IMT estimation and plaque detection
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in [33]. This model was tuned using Bayesian optimization, with a final architecture

composed of four blocks of convolutional layers followed by a max-pooling operation

and two blocks of fully connected layers followed by batch normalization and dropout.

In this case, the deep features were extracted from the second block of fully connected

layers. The 32 features derived in this manner are referred to as deep CNN-IMT

features.

As we mentioned in Section 5.5 the CA images of the REGICOR dataset correspond

to two territories, CCA and bulb. The quality of the images in CCA is better, whilst

there is an increased burden of atherosclerotic plaque in the bulb images. For this

reason, we compute the deep features from both territories, individually and jointly for

comparison.

For each CA image, the size of the feature vector is 1,152 for the proposed deep CNN-

Mask features and 32 for the alternative deep CNN-IMT features. Since the number

of events in the dataset is small (151 from 4,769 subjects, see Table 5.2), the size of

the feature vectors must be reduced. As previously explained in Section 5.4.3, the

number of events in the dataset should be about 10 per risk factor variable in the

survival model [162]. Thus, we set the maximum number of variables to be included

in the survival model to 16. Taking into account that our proposed model already

includes the 8 REGICOR risk function variables [8] (see Figure 5.2), the number of

deep features should be less than or equal to 8. To reduce the size of the two feature

vectors considered, we apply PCA to obtain a maximum of 8 variables and keep at least

70% of the variance. Table 5.4 shows the number of features obtained after applying

PCA with different variance percentages. For CCA images, a variance of 99% in deep

CNN-Mask features and 90% in CNN-IMT features result in feature vectors with more

than 8 variables, so lower variances must be considered for the proposed survival model.

Regarding the other territory, bulb, a variance lower than 95% must be considered in

both feature sets.

As detailed in Section 5.4, each subject has two CA images (left and right) per territory

(CCA and bulb). Thus, the final feature vector is calculated as the average of the feature

vectors extracted from both sides. In case one of the two images is missing, the subject

is discarded. For this reason, using the 6,369 CCA and 6,167 bulb images mentioned in

Section 5.6.2, we obtain the deep features for the following number of subjects: 2,796

subjects for CCA, 2,760 subjects for bulb, and 2,501 for both territories.

Table 5.5 shows the performance of the survival model using the two sets of deep features

(CNN-Mask and CNN-IMT), in the two territories (CCA and bulb) individually and

jointly, and with different kept variances for PCA, based on the results reported in Table
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Table 5.4: Kept variance and number of features obtained when applying PCA to the
two sets of deep features.

CNN-Mask CNN-IMT
Territory Var. No. feats. Var. No. feats.

CCA

99% >8
95% 4 90% >8
85% 2 85% 8
70% 1 70% 5

BULB

95% >8 95% >8
90% 5 90% 6
85% 4 85% 4
70% 2 70% 2

5.4. In all cases, the deep features are concatenated with the 8 REGICOR variables

[8] that are used as the baseline (AUC = 0.825). For each configuration, we report

the total number of features (No. feats.), the predictive capacity of the survival model

(AUC), the AUC increase with respect to the baseline, and the p-value of the AUC

increase, which is considered statistically significant if p < 0.06. Note that equal values

in the AUC metric have different increments due to rounding precision (three decimal

digits), and vice versa.

Table 5.5: Experiment 1. AUC results of the survival model fed with the eight REGI-
COR variables and different sets of deep features (CNN-Mask and CNN-IMT), applied
to the input images of two territories (CCA and bulb). The number of features obtained
after applying PCA to the deep features is specified between parentheses (F), after the
variance percentage. The statistically significant results (p < 0.06) are in bold.

Deep Territory No. AUC
features CCA Bulb feats. AUC increase † p
CNN-Mask PCA 95% (4F) - 12 0.831 0.007 0.118
CNN-Mask PCA 85% (2F) - 10 0.831 0.006 0.230
CNN-Mask PCA 70% (1F) - 9 0.827 0.002 0.628
CNN-Mask - PCA 90% (5F) 13 0.842 0.018 0.050
CNN-Mask - PCA 85% (4F) 12 0.842 0.017 0.052
CNN-Mask - PCA 70% (2F) 10 0.834 0.010 0.296
CNN-Mask PCA 95% (4F) PCA 85% (4F) 16 0.847 0.023 0.008
CNN-Mask PCA 85% (2F) PCA 90% (5F) 15 0.846 0.022 0.016
CNN-Mask ⋆ PCA 85% (2F) PCA 70% (2F) 12 0.842 0.017 0.054
CNN-IMT PCA 85% (8F) - 16 0.833 0.008 0.076
CNN-IMT PCA 70% (5F) - 13 0.832 0.008 0.046
CNN-IMT - PCA 90% (6F) 14 0.835 0.011 0.198
CNN-IMT - PCA 85% (4F) 12 0.836 0.011 0.070
CNN-IMT - PCA 70% (2F) 10 0.834 0.010 0.296
CNN-IMT PCA 70% (5F) PCA 70% (2F) 15 0.836 0.011 0.066
⋆ Our proposed method.
† AUC increase with respect to the 8 REGICOR variables [8] (baseline).

As can be observed, the AUC increase reaches statistically significant values using either

of the two sets of deep features. However, the best AUC results are obtained with the

deep CNN-Mask features, with AUC greater than 0.840 in several configurations. With
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respect to the two territories, their combination provides the highest values when the

deep CNN-Mask features are applied. Regarding the number of features, the highest

AUC values are obtained with larger feature vectors, mainly because these configura-

tions correspond to the joint use of the two territories. Note that the configurations

that achieve statistically significant results (p < 0.06) are selected for further analysis

(Experiments 3 and 4).

5.7.2 Experiment 2: analysis of the hand-crafted features

The aim of this experiment is to analyze the use of a new set of hand-crafted features,

which could replace the deep features in our proposed methodology (see Figure 5.2).

Based on the classical image phenotypes mentioned in Section 5.3.2, we consider six

phenotypes manually defined from the CIM region. Thus, for each CA image we ob-

tain the following image features: mean IMT, maximum IMT, minimum IMT, IMT

variability, TPA, and GSM of plaque. Notice that TPA is measured in mm2 and it

is estimated in the region where the IMT reaches more than 1.5 mm, following the

Mannheim consensus [7]. GSM refers to the GSM value in the same area where TPA

is evaluated.

These phenotypes are extracted from the four CA images available for each subject (left

and right sides of CCA and bulb territories), thus obtaining a total of 24 phenotypes

per subject. As previously explained in Section 5.7.1, a maximum of 8 image-based

features should be added so a dimensionality reduction procedure must be applied. The

definition of these 24 hand-crafted features is based on prior knowledge about specific

characteristics of the carotid images. Therefore, we can reduce the number of features,

from 24 to a maximum of 8, by selecting the most relevant phenotypes according to the

results of a statistical analysis performed on the training data. The procedure carried

out is summarized as follows:

• Base-e logarithmic adjustments. Some phenotypes are not normally dis-

tributed and hence they should be normalized using base-e logarithmic adjust-

ment. These phenotypes are mean IMT, maximum IMT, and IMT variability (on

both sides).

• Categorization of variables. Due to the low percentage of plaques (3.4% in

CCA and 25.8% in bulb), TPA and GSM phenotypes are categorized into three

classes. The categories for TPA are non-plaque, small plaque, and high burden

of plaque, where the threshold between the last two categories is the median of

all TPA values from the same side (five for CCA and six for bulb). GSM is

categorized into non-plaque, echolucent, and non-echolucent, where the threshold

for echolucency detection is the third quartile of all GSM values from the same side
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(107 in CCA and 95 in bulb). Finally, in order to analyze the interaction between

the TPA and the GSM phenotypes, we create a new variable as a combination of

both. The categories of this new variable are non-plaque (the subject does not

have any plaque), small plaque and non-echoic (the subject has at least plaque

in one side of the arteries, but none is huge or echoic), small plaque and echoic

(the subject has at least plaque in one side that is echoic, but there is not any

huge plaque), huge plaque and non-echoic (the subject has at least a huge plaque

that is not echoic), and huge plaque and echoic (the subject has at least a huge

plaque that is echoic). This categorization is done for CCA phenotypes and bulb

phenotypes separately. Finally, since there is no event in the small plaque and

non-echoic category for CCA, we merge it with the non-plaque category.

• Mean between left and right sides. In order to reduce the number of pheno-

types, the mean IMT, maximum IMT, minimum IMT, and IMT variability are

defined as the average of right and left side values [63]. If a value is missing on

one side, we use the available value for this subject. If the value is missing on

both sides, then the phenotype is considered missing.

• Co-linearity. We eliminate co-linear variables using the Variance Inflation Fac-

tor (VIF)[168]. In particular, we analyze all the variables from the model and

discard the ones with VIF> 2. Maximum IMT phenotypes from CCA and bulb

are also discarded for the model.

• Discarding variables. Ultimately, our approach involves systematically elimi-

nating non-statistically significant phenotypes from the survival model. However,

we make a deliberate choice to retain the phenotype variables that are deemed

confounders. Note that a variable is considered a confounder if at least one of the

coefficients of the variables that remained in the model changed more than 15%.

After the analysis, all the selected phenotypes are considered confounders so we

keep all of them.

As a result, Table 5.6, shows the coefficients for the CoxPh model (see Section 5.4.1)

and their corresponding p-value. These coefficients correspond to a survival model

including the eight REGICOR variables and the eight phenotypes selected. Note that

the variable is statistically significant for the model if p < 0.06.

Table 5.7 shows the performance of the survival model using the hand-crafted features in

the two territories (CCA and bulb), individually for the Statistical Analysis (SA) above

described and jointly for PCA (maximum 8 variables and at least 70% of variance).

In all cases, the hand-crafted features were concatenated with the eight REGICOR

variables [8] that are used as the baseline (AUC = 0.825). As in Experiment 1, we

92



Table 5.6: Coefficients for the CoxPh model and p-values of the risk factors used in the
survival model: eight factors from the REGICOR risk function and the six hand-crafted
phenotypes selected based on the statistical analysis performed.

Risk factor Territory Coefficient p

Age - 0.06 <0.01
Sex - 0.38 0.06
Total cholesterol - 0.01 0.04
HDL cholesterol - -0.03 0.00
Systolic blood pressure - 0.00 0.62
Diastolic blood pressure - 0.01 0.23
Diabetes - 0.49 0.02
Smoker - 0.12 0.66

log(mean IMT) CCA 2.55 <0.01
minimum IMT CCA -1.26 0.26
log(IMT Variability) CCA -0.43 0.17
Small plaque and echoic CCA -0.61 0.32
Huge plaque and non-echoic CCA 0.36 0.59
Huge plaque and echoic CCA -0.70 0.25

log(mean IMT) Bulb -1.48 0.30
minimum IMT Bulb 0.22 0.83
log(IMT Variability) Bulb 0.71 0.14
Small plaque and echoic Bulb 0.15 0.61
Huge plaque and non-echoic Bulb 0.13 0.78
Huge plaque and echoic Bulb 0.26 0.44
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report the total number of features (No. feats.), the predictive capacity of the survival

model (AUC), the AUC increase with respect to the baseline, and the p-value of the

AUC increase, which is considered statistically significant if p < 0.06. Note that equal

values in the AUC metric have different increments due to rounding precision (three

decimal digits), and vice versa.

Table 5.7: Experiment 2. AUC results of the survival model fed with the 8 REGICOR
variables and the hand-crafted features applied to the input images of two territories
(CCA and bulb). SA stands for statistical analysis and PCA is followed by the variance
percentage applied. In both cases, the number of features obtained is specified between
parentheses (F). The statistically significant results (p < 0.06) are in bold.

Image Territory No. AUC
features CCA Bulb feats. AUC increase † p

Hand-crafted SA (4F) - 12 0.843 0.018 0.010
Hand-crafted - SA (4F) 12 0.839 0.015 0.116
Hand-crafted SA (4F) SA (4F) 16 0.856 0.031 0.004

Hand-crafted PCA 99% (5F) 13 0.830 0.006 0.278
Hand-crafted PCA 95% (4F) 12 0.826 0.001 0.734
Hand-crafted PCA 90% (3F) 11 0.824 -0.001 1.314
Hand-crafted PCA 80% (2F) 10 0.824 <0.000 1.280

† AUC increase with respect to the 8 REGICOR variables [8] (baseline).

As can be seen, the AUC increase is statistically significant when using the features

selected by the statistical analysis on the CCA territory, both individually or combined

with the bulb. In particular, the best performance is achieved when using the two terri-

tories jointly. On the contrary, the configurations that used the feature vectors obtained

after applying PCA to the hand-crafted features do not have statistical significance.

Note that the configurations that achieve statistically significant results (p < 0.06) are

selected for further analysis (Experiments 3 and 4).

5.7.3 Experiment 3: analysis of the REGICOR variables

The aim of this experiment is to analyze the power of image-based features and see if

it is possible for them to replace the 3 blood biomarkers used in the REGICOR risk

function [8].

Table 5.8 shows the performance of the survival model using the five non-invasive REGI-

COR variables concatenated with the different configurations of image-based features

selected in the previous experiments, according to their statistical significance. Note

that the target of the experiment is to analyze if these features can replace the three

blood biomarkers, so the survival model with the eight REGICOR variables and the

survival model with the five non-invasive are used as the baselines (AUC = 0.825 and

AUC=0.806 respectively). As in previous experiments, we report the total number of

features (No. feats.), the predictive capacity of the survival model (AUC), the AUC
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increase with respect to the baseline, and the p-value of the AUC increase, which is

considered statistically significant if p < 0.06. Note that equal values in the AUC met-

ric have different increments due to rounding precision (three decimal digits), and vice

versa.

Table 5.8: Experiment 3. AUC results of the survival model fed with the 5 non-invasive
REGICOR variables and different configurations of image-based features selected in
Experiments 1 and 2, applied to the input images of two territories (CCA and bulb). SA
stands for statistical analysis and PCA is followed by the variance percentage applied.
In both cases, the number of features obtained is specified between parentheses (F).
The statistically significant results (p < 0.06) are in bold.

Territory No. AUC AUC
Image features CCA Bulb feats. AUC increase † p increase † † p
REGICOR risk function[8] - - 8 0.825 - - 0.019 0.076
CNN-Mask - PCA 90% (5F) 10 0.826 0.002 0.894 0.021 0.046
CNN-Mask - PCA 85% (4F) 9 0.826 0.002 0.892 0.021 0.046
CNN-Mask PCA 95% (4F) PCA 85% (4F) 13 0.831 0.007 0.57 0.026 0.01
CNN-Mask PCA 85% (2F) PCA 90% (5F) 12 0.831 0.006 0.63 0.025 0.014
CNN-Mask ⋆ PCA 85% (2F) PCA 70% (2F) 9 0.827 0.002 0.874 0.021 0.048
CNN-IMT PCA 70% (5F) - 10 0.813 -0.012 1.716 0.007 0.102
Hand-crafted SA (4F) - 9 0.825 0.000 0.978 0.019 0.024
Hand-crafted SA (4F) SA (4F) 13 0.839 0.014 0.352 0.033 0.004
⋆ Our proposed method
† AUC increase with respect to the 8 REGICOR variables [8].
† † AUC increase with respect to 5 non-invasive REGICOR variables

As can be observed in Table 5.8, there is a positive increment in most of the survival

models fed with image-based features with respect to the survival model fed with the

three blood biomarkers (REGICOR risk function [8]). Note that only in the case of the

deep CNN-IMT features the AUC increment is negative. In addition, the AUC incre-

ment is not statistically significant when adding the blood biomarkers to the survival

model fed with the five non-invasive features. However, it is statistically significant in

most of the survival models that are fed with image-based features, except in the case

of the deep CNN-IMT features.

5.7.4 Experiment 4: analysis of the reclassification results

This experiment aims at analyzing the models selected in Experiments 1 and 2 in terms

of their reclassification results for cardiovascular events. For this purpose, we consider

the NRI metric (see Section 5.6.1) and the following cut-off points, which correspond

to the risk categories defined in [8] and discussed in Table 1.1:

• low : Subjects with a probability of suffering an event <0.05.

• low-moderate: Subjects with a probability of suffering an event in the range

[0.05, 0.1).

• high-moderate: Subjects with a probability of suffering an event in the range
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[0.1, 0.15).

• high: Subjects with a probability of suffering an event ≥ 0.15.

Table 5.9 shows the performance of the survival model using the eight REGICOR

variables [8] concatenated with the different configurations of image-based features

selected in Experiments 1 and 2, according to their statistical significance. For each

configuration, we report the total NRI value (NRI) and its Confidence Interval (CI),

the NRI value for the subjects who suffered an event (NRI events) and its CI, and the

NRI value for the subjects free of event (NRI controls) and its CI. Note that the NRI

values are statistically significant if their CI does not include 0 and they are shown in

bold.

Table 5.9: Experiment 4. NRI results of the survival model fed with the 8 REGICOR
variables and the different configurations of image-based features selected in Experi-
ments 1 and 2, applied to the input images of two territories (CCA and bulb). SA
stands for statistical analysis and PCA is followed by the variance percentage applied.
In both cases, the number of features obtained is specified between parentheses (F).
The statistically significant results (CI does not include 0) are in bold.

Image Territory NRI NRI events NRI controls
features CCA Bulb [CI 95%] [CI 95%] [CI 95%]
CNN-Mask - PCA 90% (5F) 11.54 9.99 1.55

[-0.05;0.30] [-0.07;0.28] [0.00;0.03]
CNN-Mask - PCA 85% (4F) 11.56 10.05 1.52

[-0.05;0.30] [-0.07;0.28] [0.00;0.03]
CNN-Mask PCA 95% (4F) PCA 85% (4F) 17.91 16.1 1.81

[0.01;0.34] [-0.01;0.32] [0.01;0.03]
CNN-Mask PCA 85% (2F) PCA 90% (5F) 16 14.76 1.24

[-0.01;0.32] [-0.02;0.31] [<0.00;0.03]
CNN-Mask ⋆ PCA 85% (2F) PCA 70% (2F) 20.82 20.02 0.81

[0.04;0.38] [0.03;0.37] [-0.01;0.02]
CNN-IMT PCA 70% (5F) - 17.50 17.14 0.36

[0.03;0.33] [0.03;0.32] [-0.01;0.01]
Hand-crafted SA (4F) - 9.79 8.85 0.95

[-0.03;0.21] [-0.04;0.20] [<0.00;0.02]
Hand-crafted SA (4F) SA (4F) 6.47 5.58 0.9

[-0.11;0.26] [-0.12;0.25] [-0.01;0.02]
⋆ Our proposed method

The results presented in Table 5.9 indicate statistically significant improvements in

reclassification for three specific configurations. These improvements were achieved

using deep features, resulting in an increase of more than 17%. Only these three

configurations show statistically significant results in either the “NRI events” or in the

“NRI controls” column. Particularly, with our proposal, we show a significant increment

in subjects who suffered an even, with an NRI of 20.02%, while the increment using

CNN-IMT features is lower, 17.14%. Instead, the other configuration using CNN-

Mask shows a statistically significant increment in subjects free of event, although it is

relatively small (1.8%). In contrast, the results obtained from the hand-crafted features

do not demonstrate statistical significance in any case.
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Table 5.10 shows the reclassification of the event group using the previously defined

risk categories. The risk categories and the number of subjects are shown using the

REGICOR risk function [8] (rows) and our proposal (columns). The values above

the diagonal indicate subjects that have been assigned a higher category compared to

REGICOR [8]. Conversely, values below the diagonal represent the number of subjects

that have been downgraded. Similarly, the values on the diagonal indicate the number

of subjects classified with the same category using both our proposal and REGICOR

[10]. Although here we cannot show the calculation of the NRI values (as we men-

tioned in Section 5.6.1) Table 5.10 shows that, for the events, there are many more

individuals who are reclassified into higher categories (17=2+5+6+4) than not than

lower categories (4=1+1+1+1).

Table 5.10: Comparison between the REGICOR risk function [8] and our proposed
method in terms of reclassification results for cardiovascular events.

REGICOR Our proposed method
risk function <0.05 [0.05, 0.1) [0.1,0.15) ≥ 0.15 TOTAL

<0.05 24 2 0 0 26
[0.05; 0.1) 1 4 5 6 16
[0.1; 0.15) 1 1 2 4 8
≥0.15 0 0 1 9 10

TOTAL 26 7 8 19 60

5.7.5 Comparison with the literature

The predictive capacity of our proposed method (AUC = 0.842, Table 5.5) is similar

to or higher than the results proposed in the literature (see Section 5.3.2). Even with-

out the 3 blood biomarkers used in the REGICOR risk function, we achieved a good

cardiovascular risk prediction (AUC = 0.827, Table 5.8).

The best result found in the literature is reported in [18] (AUC = 0.93). This study

uses risk factors and phenotypes at two different times, thus making data collection

more complex. Regarding the ML approaches, we do not reach the results reported in

[158] (AUC = 0.86), but their proposed survival model includes data from question-

naires (lifestyles, history, medication, etc.), more biomarkers, electrocardiography, and

magnetic resonance imaging features. That is, they use a set of characteristics that

make the study more expensive and that are not appropriate to be obtained in primary

care centers. Regarding deep features, our best result is with “PCA 95%, CCA & 85%,

BULB” features, which reach 0.847 in the AUC metric (Table 5.5. In the literature, we

also found the study conducted by Rine Nakanishi [156] who demonstrates a slightly

superior AUC result of 0.85. However, they do use computed tomography images, a

more expensive technique than US imaging.
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In terms of reclassification, the total NRI reported by Tamaroppoo et al. [157] (53%)

is better than the one obtained with our method (20.82%, Table 5.9). However, our

method outperforms it in the event group, which is the objective of the presented

proposal due to its clinical relevance. More specifically, the NRI of the event group

reported in [157] is 8% versus 20.02% achieved with our proposal.

It is important to note that conducting a comprehensive and fair comparison of results

poses a challenge, given the variation in datasets across each proposal.

5.8 Conclusions

This work presents, for the first time in the literature, a survival model for cardiovas-

cular risk prediction which integrates CA image features extracted from DNNs. The

new survival model is capable of predicting the risk of suffering a cardiovascular event,

which results in a deep-stratification of the cardiovascular risk. The proposal improves

the original survival model presented in [8] by adding information from CA US images.

For that, we concatenated deep features from a CNN previously defined for CA image

SS. These features are able to improve the model in terms of prediction (AUC=0.84,

with an increment of 0.017 with respect to REGICOR risk function [8]) and reclassi-

fication (NRI=20.8%, NRI events=20%). We successfully achieved a reduction in the

number of individuals in the middle-risk category and moved them to the high-risk

category, which is our main goal.

In order to validate our proposal, we performed a comparison of different sets of image

features and different configurations of these features. First, we compared our proposal

with another set of deep features that reached a statistically significant improvement

in prediction and reclassification, but with a smaller increase than with our proposal

(AUC=0.83, NRI= 17.5%, and NRI events= 17.1%). Second, we compared with a set

of phenotypes manually defined from the CIM region and selected according to the

statistical analysis results. In this case, the improvement reached in prediction is high

(AUC=0.86) and statistically significant, but the findings in reclassification were not

statistically conclusive. In addition, our findings demonstrate that CA image features

are able to replace invasive variables, such as blood biomarkers, while simultaneously

providing localized information concerning atherosclerotic plaque.

The main limitation of our work is the small number of events in the dataset (151

events over 4,769 subjects). With so few events, we are forced to greatly reduce the

number of new image features and we are also exposed to overfitting. In this scenario,

the survival models may not have enough statistical power to show all the differences

between the different sets of image features. In addition, the proposed method has been
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tested on a single dataset, so it has not been possible to analyze its generalizability to

other domains.

For future research, it would be useful to validate our method with an independent

cohort that has more events. This would allow us to overcome the aforementioned

limitations, increasing the statistical significance of the study and testing the power of

generalization of our approach. In addition, it would be interesting to use other deep

features obtained with CNNs combined with other DNNs trained for another task, such

as a binary classification task (to predict event/non-event) or a regression task (to es-

timate the time until the event). Another line of research could be the interpretability

of the specific features extracted from CA images. Understanding the contribution of

individual features to the survival model, for example generating saliency maps, can

provide information about which regions in CA images are associated with cardiovas-

cular risk. Finally, it would be interesting to perform a longitudinal analysis of the

deep features, including changes over time in CA, as it is suggested in [18], which uses

risk factors and image phenotypes at two different times.
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Chapter 6

Conclusion

In this chapter, we present the thesis’s final conclusions, with a focus on enhancing risk

stratification, through DL image techniques. First, the most significant achievements

are shown considering the objectives and conceptual stages outlined in Section 1 and

the corresponding chapters where they have been addressed. Following this, a sum-

mary of the contributions is provided. Finally, the limitations of the thesis and future

perspectives are discussed.

Initially, we have developed an automated semantic segmentation method for identi-

fying anatomical components and atherosclerotic plaque in CA US images (Chapter

2), addressing the conceptual stage “IMT region segmentation”. This method is a

fully automatic single-step approach that allows us to estimate the IMT and segment

atherosclerotic plaque in a fast and useful manner for large datasets of images (address-

ing stages “IMT estimation” and “Plaque detection”). Then, Chapter 3 andChapter

4 presented two clinical applications derived from the “IMT estimation” and “Plaque

detection”. The first, evaluates the impact of chronic inflammation in autoimmune

diseases on subclinical atherosclerosis and arterial stiffness. The second, shows the re-

lation between lower limb atherosclerosis biomarkers assessed using ABI and carotid

atherosclerosis evaluated through CCA IMT and the presence of plaque. Finally, the

approach presented in Chapter 5, introduces a new method for extracting image fea-

tures from CA, addressing the stage “IMT region and plaque characterization”. Using

these features, we have demonstrated an improvement of risk stratification, specifi-

cally in classifying events from moderate to high risk (it addresses “Cardiovascular risk

prediction improvement” stage).
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6.1 Summary of contributions

In this study, we have developed a method for integrating individual artery condition

data into traditional survival models (Chapter 5). Our technique characterizes B-mode

CA US images by extracting information without the need for manually defined fea-

tures. Using NNs, we have uncovered feature embeddings that capture valuable data

relationships and patterns while filtering out irrelevant details. This work introduces a

innovative survival model in the literature, one that integrates CA US image features

extracted using DNNs to effectively predict cardiovascular risk. Additionally, it reclas-

sifies individuals from the middle-risk category to the high-risk category. Moreover, our

findings emphasize the potential of CA US image features to replace invasive variables

like blood biomarkers while providing localized atherosclerotic plaque information.

Furthermore, these features are extracted using a fully automated method that accu-

rately localizes the carotid IMT region in longitudinal B-mode CA US longitudinal im-

ages CA images (Chapter 2). In particular, we introduced a novel single-step approach,

using DenseNets, for semantic segmentation of longitudinal CA US images. This pro-

posal applies CNNs for precise pixel-level labeling, resulting in enhanced subclinical

atherosclerosis detection through efficient CIM region segmentation, IMT estimation

and atherosclerotic plaque detection. In addition, compared to other methods in the

literature, this approach offers several advantages: it can effectively manage extensive

image datasets; it has demonstrated the method’s ability to generalize, making it train-

able and applicable to images from various equipment sources; and has demonstrated

its ease of adaptability to diverse CA territories. The superior performance of the

method presented is attributed to the effective use of deep learning (DenseNets), the

results of which suggest that it is the best way to address segmentation.

Moreover, this thesis presents a review of the literature in B-mode CA US images

segmentation and IMT estimation (Chapter 2), and characterization of atherosclerotic

plaque classification and cardiovascular risk assessment in CA US images (Chapter 5).

This thesis presents a summary of the main literature in tables that contain the key

characteristics of these works. It aims to provide a comprehensive and synthetic com-

parison while emphasizing the shortcomings of the various proposals.

In this thesis two clinical applications of the CIM region segmentation method are

also presented (Chapters 3 and 4). In the first study, we have assessed the risk of

cardiovascular events in patients with autoimmune diseases, specifically examining the

impact of chronic inflammation on subclinical atherosclerosis. To estimate subclini-

cal atherosclerosis, we utilized the proposed segmentation method for IMT assessment

mentioned above. Our findings revealed that the diagnosis of autoimmune diseases
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poses a risk factor for subclinical atherosclerosis in men; this difference is statistically

insignificant in women. While previous general population studies had established a

link between inflammatory biomarkers and arterial stiffness, our cross-sectional anal-

ysis does not identify significant differences in these biomarkers between individuals

with and without autoimmune diseases. In the second study, we have examined the

coexistence of subclinical atherosclerosis in the lower limb, assessed using ABI, and in

the CCA, measured via IMT or the presence of atherosclerotic plaque. In conclusion,

our study revealed two distinct patterns of association between subclinical biomarkers

of lower limb and CA atherosclerosis. Men exhibited a significant linear association

between ABI levels and CCA IMT values, while women with symptomatic or asymp-

tomatic peripheral artery disease had a higher risk of atherosclerotic plaque in the CA.

Theses findings underscore the systemic nature of the atherosclerotic process, suggest-

ing that individuals with atherosclerosis biomarkers in one area are more likely to have

subclinical disease in another.

Furthermore, this thesis aims to contribute to Sustainable Development Goal (SDG)

number 3 (“Ensure healthy lives and promote well-being for all at all ages”). In particu-

lar, since the thesis focuses on enhancing cardiovascular risk prediction functions, it con-

tributes to SDG 3.4 (“reduce by one third premature mortality from non-communicable

diseases through prevention and treatment and promote mental health and well-being”).

6.2 Limitations and future perspective

The limitations in this thesis mostly arise from the number of images used in some

experiments. In the carotid IMT region segmentation approach, a small number of GT

images were utilized, and the generalization test employees a limited dataset (Chap-

ter 2). On the other hand, in the deep stratification for cardiovascular risk assessment

(Chapter 5), the number of individuals who experienced events in the dataset was sig-

nificantly smaller compared to those who did not. This resulted in an increased risk

of overfitting and an absence of generalization. Consequently, the segmentation model

may have difficulty generalizing to images from different equipment, and survival mod-

els may lack the statistical power to reveal differences among the various sets of image

features. This idea aligns with the review article [51] supporting the use of large train-

ing datasets in DL models for measuring CA parameters in US images, emphasizing

the capture of broader complexities and intricacies of the dataset for enhanced cardio-

vascular risk monitoring. Therefore, expanding the size of some datasets stands as the

initial point of improvement in our study.

It is important to mention that the main drawback of the CIM region segmentation

102



method (Chapter 2) is the application of an ad-hoc post-processing procedure immedi-

ately after segmentation. This limitation has been addressed in the derivative publica-

tion ([33], Section 1.5), whose proposal involves the CNN taking the original image and

its mask and generating a prediction of the IMT value employing a regression model

using Bayesian optimization.

Despite the aforementioned aspects related to the size of the dice set, the main future

lines lie in two aspects. The first aspect is to further improve the segmentation results

in terms of an adequate generalization to other datasets, by exploring new domain

transfer techniques. Another plan is to add information indicating the presence of

plaque into the NN in a way that it can learn the differences in shape between images

of healthy subjects (thin CIM region shape) and images of subjects with atherosclerosis

(irregular CIM region shape). The second aspect is related to the improvement of

CV risk prediction (Chapter 5). It would be useful to validate our method with an

independent cohort. In addition, it would be interesting to use other deep features

obtained with CNNs combined with other DNNs trained for another task, such as a

binary classification task (to predict event/non-event) or a regression task (to estimate

the time until the event). Furthermore, since NNs allow integrating several types of

data, the NNs used could mix images with other data, relevant for risk prediction such

electrocardiogram, Cardiac Computed Tomography (Cardiac CT), Cardiac Magnetic

Resonance Imaging (Cardiac MRI), etc. . . This could also be another potential line of

research.

This paragraph discusses the main limitations regarding clinical articles (Chapters 3

and 4). Firstly, while our matched cohorts have offered valuable insights into CCA

IMT and its relationship with to cardiovascular risk factors, the utility of CCA IMT

for predicting cardiovascular risk beyond conventional factors is still debated [93, 94].

Secondly, although the results remained consistent, adjusted for cardiovascular risk

and other variables, and aligned with previous research findings, we have included a

low prevalence of autoimmune diseases (Chapter 3). And third, another limitation

is that we have employed different techniques to assess the degree of atherosclerosis

in the lower limb and CA (Chapter 4). Although the ultimate measurements can be

compared, future cohort studies may enhance comparability by employing a uniform

technique for assessing atherosclerosis in both vascular beds, such as US images for

both the femoral artery and CA.

6.3 Challenges in deep learning

DL techniques have revolutionized the field of medical imaging, as it was prognosti-

cated in recent publications [169, 170]. Although there are still several open issues to
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be addressed, DL has already demonstrated significant potential to overcome human

performance in selected tasks, such as medical image segmentation [171]. Moreover, DL

provides key information in the clinical decision-making process [172, 173]. Currently,

the main challenges of DL in medical imaging are mainly related to data quality and

quantity for building reliable and generalizable DL models, as well as the design of

new models for maximum transparency and dependability. The success of DL systems

in medical imaging relies on the availability of high-quality, sufficiently large datasets.

Many medical fields still lack of proper big datasets necessary data for training and

validating these models effectively. Creating rich, multi-center datasets and address-

ing challenges in DL like data augmentation and synthesis is crucial for advancing

DL in medical imaging [174]. Moreover, the lack of understanding in how DL models

make predictions is a significant concern for their reilable application in medicine. To

address this, strategies for explainability, interpretability [175], and uncertainty quan-

tification [176] are gaining popularity to improve transparency, trust, and believability.

Medical diagnosis DL models should prioritize not only accuracy but also explainabil-

ity and certainty, ensuring that practitioners are informed when uncertainty is high for

better decision-making.
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Appendix A

Acronyms

List of acronyms used in this thesis:

AI Artificial Intelligence

ABI Ankle Brachial Index

AVICA Academic Vascular Image Center in Amsterdam

AUC Area Under the Curve

CV Cardiovascular

CA Carotid Artery

cc correlation coefficient

CCA Common Carotid Artery

CIM Carotid Intima-Media

CNN Convolutional Neural Networks

CoxPh Cox Proportional Hazards model

CVD Cardiovascular Disease

DA Discriminant Analysis

DL Deep Learning

DNN Deep Neural Networks

DT Decision Trees

FCN Fully Convolutional Neural Networks

GLCM Gray Level Co-occurrence Matrix

GMM Gaussian Mixture Model

GPU Graphics Processing Unit

GSM Grayscale Median

GT Ground Truth

HDL High-Density Lipoprotein

HOS Higher Order Spectra
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ICA Internal Carotid Artery

IMT Intima Media Thickness

IOV Inter-Observer Variability

kNN k-Nearest Neighbor

LBP Local Binary Pattern

LDL Low-Density Lipoprotein

LI Lumen-Intima

MA Media-Adventitia

ML Machine Learning

NN Neural Network

NBC Naive Bayes Classifier

NRI Net Reclassification Improvement

PCA Pixel Component Analysis

PDA Pixel Distribution Analysis

PNN Probabilistic Neural Networks

RLM Run Length Matrix

ROI Region of Interest

RF Random Forest

SDG Sustainable Development Goal

SS Semantic Segmentation

SVM Support Vector Machine

TPA Total Plaque Area

US Ultrasound

WT Wavelet Transform
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Española de Cardioloǵıa 64.15 (2011), pp. 385–394.

[9] Ralph B. D’Agostino et al. “Validation of the Framingham Coronary Heart

Disease Prediction Scores: Results of a Multiple Ethnic Groups Investigation”.

In: JAMA 286.2 (2001), pp. 180–187.

[10] Jaume Marrugat et al. “Derivation and validation of a set of 10-year cardiovas-

cular risk predictive functions in Spain: The FRESCO Study”. In: Preventive

Medicine 61 (2014), pp. 66–74.

107

https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
https://commons.wikimedia.org/wiki/File:Blausen_0170_CarotidArteries.png
https://commons.wikimedia.org/wiki/File:Blausen_0170_CarotidArteries.png


[11] R.M. Conroy et al. “Estimation of ten-year risk of fatal cardiovascular disease in

Europe: the SCORE project”. In: European Heart Journal 24.11 (2003), pp. 987–

1003.

[12] Julia Hippisley-Cox et al. “Predicting cardiovascular risk in England and Wales:

prospective derivation and validation of QRISK2”. In: BMJ 336.1475 (2006).

[13] Maria Grau and Jaume Marrugat. “Funciones de riesgo en la prevención pri-

maria de las enfermedades cardiovasculares”. In: Revista Española de Cardioloǵıa
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[124] M. Bermúdez-López et al. “Subclinical atheromatosis localization and burden

in a low-to-moderate cardiovascular risk population: the ILERVAS study”. In:

Rev Esp Cardiol (Engl Ed) 74.12 (2021), pp. 1042–1053.
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