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Abstract. In this paper we survey some recent results on actions of finite groups on
topological manifolds. Given an action of a finite group G on a manifold X, these
results provide information on the restriction of the action to a subgroup of G of index
bounded above by a number depending only on X. Some of these results refer to the
algebraic structure of the group, such as being abelian, or nilpotent, or admitting a
generating subset of controlled size; other results refer to the geometry of the action,
e.g. to the existence of fixed points, to the collection of stabilizer subgroups, or to the
action on cohomology.

1. Introduction

1.1. Some questions on actions of finite groups. Let us begin by recalling the
most basic definitions of finite transformation groups. Standard references in the field
are [2, 9, 11, 35, 69].

Let X be a topological space and let Homeo(X) denote the group of self homeomor-
phisms of X. A continuous action of a finite group G on X is a group homomorphism
ρ : G → Homeo(X). This is usually described in terms of the map G × X → X
sending (g, x) to g · x := ρ(g)(x). An action ρ : G → Homeo(X) is said to be effec-
tive if ρ is injective. Given an action of G on X, the stabilizer of a point x ∈ X is
Gx := {g ∈ G | g · x = x}. The action is said to be free if Gx = {1} for every x ∈ X. A
point x ∈ X is said to be fixed if Gx = G. The set of fixed points of the action of G on
X is denoted by XG. For each g ∈ G we denote Xg = {x ∈ X | g · x = x}.

In this survey we only consider actions of finite groups on topological manifolds. Given
a topological manifold X, many questions come naturally to mind regarding the actions
of finite groups on X. Which finite groups act effectively on X? In particular, how much
does the assumption that a finite group G acts effectively on X prescribe the algebraic
structure of G? Are there natural constraints on X or on the action of G that force G
to be abelian or nilpotent? Is there a bound on the minimal size of a generating subset
of G? Does G admit a free action on X? Does every action have a fixed point? What
are the possible collections of stabilizers of an action of G on X?
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Answering most of the previous questions in all generality, for an arbitrary X, is proba-
bly out of reach with the currently available tools. The questions become more accessible
if one restricts to particular examples of manifolds. Hence, many results in the litera-
ture aim to understand finite group actions on restricted collections of manifolds such as
spheres (see e.g. [20, 31, 71]), Euclidean spaces, homogeneous spaces, low dimensional
manifolds (see e.g. [22, 23]), or products of them. Another possibility is to focus on
very particular examples of finite groups, such as finite cyclic groups or finite p-groups.
Smith theory, for example, applies to actions of finite cyclic groups of prime order on
contractible manifolds or spheres. It can be extended to actions of finite p-groups on
arbitrary manifolds using equivariant cohomology (see e.g. [9]), but results of Jones [37]
imply that Smith theory cannot be extended beyond p-groups.

Yet another strategy to make the previous questions affordable is to consider actions of
a group G on a manifold X and to prove properties, not on the action of G on X, but on
the restriction to some subgroup of G of index bounded above by a constant depending
only onX. All the results in this survey follow this strategy. As a consequence, they don’t
say anything interesting on actions of small finite groups, but they become meaningful
once one considers actions of large finite groups (where the meaning of large depends on
the manifold supporting the action). The benefit of allowing to pass to a subgroup is that
the results are valid for large collections of manifolds, and in some cases for manifolds
satisfying only a finiteness condition such as being closed, or compact, or having finitely
generated integral homology.

If a topological manifold X is endowed with some geometric structure then one may
consider actions of finite groups G→ Homeo(X) whose image is contained in the group
Aut(X) ≤ Homeo(X) of homeomorphisms preserving the given structure. For example,
we may consider differentiable, complex or symplectic structures. Although our main
focus is on continuous actions, we will say a few words on actions preserving geometric
structures. The automorphism group of a geometric structure on X is usually much
smaller than Homeo(X), so questions on finite transformation groups tend to become
simpler in the presence of invariant geometric structures, as we will see in a few examples.

1.2. Conventions, notations and contents. In this paper manifold means topological
manifold, possibly with boundary. A closed manifold is a compact manifold with empty
boundary. By convention, all group actions on manifolds will be implicitly assumed to
be continuous. If X and Y are topological spaces, X ∼= Y will mean that X and Y are
homeomorphic. When we refer to a p-group without specifying the prime p we mean
a p-group for an arbitrary prime p. If G is a group, by H ≤ G we mean that H is a
subgroup of G.

If P (n) denotes some statement depending on a natural number n, we say that P (n)
is true for arbitrarily large values of n if there exists a sequence of natural numbers,
ni →∞, such that P (ni) is true for every i.

Most of the results stated in this survey have appeared with proof elsewhere, so we
won’t prove them here. The main exceptions are Theorems 4.5, 5.1 and 7.3, which are
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proved in Section 13, the part of Theorem 4.1 referring to WLS manifolds, which will be
proved in [56], and Theorem 6.3, which will be proved in [57].

Each section except for the last one is concerned with a particular aspect of finite
group actions. Sections from 2 to 8 refer to the group itself (how far it may be from
being abelian or nilpotent, how many elements you need to generate it, or how big it
can be), while Sections from 9 to 12 refer to the geometry of the action (induced action
on homology, the rotation morphism, existence of fixed points, and number of different
stabilizer subgroups).

2. Ghys’s question and Jordan property

Around twenty years ago Étienne Ghys asked in a series of talks [26] the following
question: given a closed manifold X, does there exists a constant C such that any finite
group G acting effectively on X has an abelian subgroup A ≤ G satisfying [G : A] ≤ C?
Ghys was most probably thinking about a differentiable manifold and about smooth
actions on it (see [24, Question 13.1]), as one of his motivations was [25], but the question
also makes sense for continuous actions on (topological) manifolds.

Motivated by a similar conjecture by Jean-Pierre Serre [72] on the Cremona group and
its natural extension to arbitrary birational transformations groups, Vladimir L. Popov
[61] defined a group Γ to be Jordan if there is a number C such that any finite subgroup
G ≤ Γ has an abelian subgroup A ≤ G satisfying [G : A] ≤ C. The name is inspired
by Jordan’s theorem [12, 19, 38], according to which GL(n,R) is Jordan for every n. So
Ghys’s question asks whetehr Diff(X) is Jordan for every closed manifold X.

Partial positive answers to Ghys’s question appeared in [47, 48, 52, 80]. The results in
[52] are based on the main result in [59], which characterizes Jordan groups in terms of
finite subgroups whose cardinal is of the form paqb for primes p, q and integers a, b. The
paper [59] uses fundamentally the classification of finite simple groups (CFSG).

In 2014 Balázs Csikós, László Pyber and Endre Szabó [16] proved that Diff(T 2 × S2)
is not Jordan, thus giving the first example of a smooth manifold whose diffeomorphism
group is not Jordan. This was followed by more examples in [50, 74]. Consequently, Ghys
modified his conjecture replacing abelian by nilpotent [27]. This modified conjecture was
proved in dimension four by the author and Carles Sáez-Calvo [58], and it has been
recently proved in arbitrary dimensions for continuous actions on (topological) manifolds
by Csikós, Pyber and Szabó [17]. Actually, the main result in [17] does not require the
manifold to be compact:

Theorem 2.1 (Theorem 1.4 in [17]). Let X be a manifold such that H∗(X;Z) is finitely
generated. There exists a constant C such that any finite group G acting effectively on
X has a nilpotent subgroup N ≤ G satisfying [G : N ] ≤ C.

Two of the main ingredients in the proof of [17, Theorem 1.4], the first a result on
finite groups proved using the CFSG [17, Corollary 3.18], and the second a result on finite
transformation groups [17, Lemma 6.1], can be combined to obtain a criterion for Jordan
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property of homeomorphism groups which only requires to consider finite p-groups. This
has allowed to extend the results on Jordan property for diffeomorphism groups proved
in [52] to homeomorphism groups. The current knowledge on the question is summarized
in the following theorem.

Theorem 2.2. Let X be a manifold. If any of the following conditions is true, then
Homeo(X) is Jordan:

(1) X is compact and dimX ≤ 3, see [55] (the case dimX = 3 follows from combining
[60, 80]),

(2) X is n-dimensional and H∗(X;Z) ' H∗(S
n;Z), see [55],

(3) X is connected, H∗(X;Z) is finitely generated, and the Euler characteristic χ(X)
of X is nonzero, see [55],

(4) X is rationally hypertoral (we define this below), see [54],
(5) X is closed and it supports a flat metric, see [78, Corollary 1.7].

If X supports an effective action of SU(2) or SO(3,R) then Homeo(T 2×X) is not Jordan,
see [50].

We say that an n-manifold X is rationally hypertoral if X is closed, connected and
orientable, and it admits a map of nonzero degree to T n = (S1)n. IfX is connected, this is
equivalent to the property that Hn(X;R) ' R and the cup product map ΛnH1(X;R)→
Hn(X;R) is surjective.

No characterisation seems to be known at present of which manifolds have Jordan
homeomorphism group.

The CFSG is used both in the proof of Theorem 2.1 and in the proof of cases (2) and
(3) of Theorem 2.2. Since the proof of the CFSG is extremely long and complicated,
it is natural to ask whether it can be avoided in those proofs, perhaps replacing it by
geometric arguments.

Question 2.3. Can one prove Theorem 2.1 and cases (2) and (3) of Theorem 2.2 without
using the CFSG?

The Jordan property has recently been studied for automorphism groups of some
geometric structures on manifolds. In [49] it was proved that if X is T 2 × S2 endowed
with any symplectic structure then Symp(X) is Jordan. This was extended in [58] to all
closed symplectic 4-manifolds. The automorphism group of any closed almost complex 4-
manifold has been proved to be Jordan in [58]. The particular case of compact complex
surfaces had been earlier proved by Yuri Prokhorov and Constantin Shramov in [64].
Finally, the isometry group of any closed Lorentz 4-manifold has been proved to be
Jordan in [53].

In higher dimensions the following question seem to be open.

Question 2.4. Let X be a compact symplectic (resp. Lorentz, almost complex, or com-
plex) manifold. Is the automorphism group of X necessarily Jordan?
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There are however a few results on Jordan property of automorphism groups of geo-
metric structures in higher dimensions. In [51] it is proved that the symplectomorphism
group of any compact symplectic manifold with vanishing first Betti number is Jordan.
It is also proved in [51] that Hamiltonian diffeomorphism groups of arbitrary compact
symplectic manifolds are Jordan. Automorphism groups of compact Kaehler manifolds
have been proved to be Jordan by Jin Hong Kim in [39]. This has been extended to
compact varieties in Fujiki’s class (that is, compact reduced complex spaces which are
bimeromorphic to a compact Kähler manifold) by Sheng Meng, Fabio Perroni and De-Qi
Zhang in [43]. Recently, Aleksei Golota has proved that parallelizable compact complex
manifolds have Jordan automorphism group in [29].

We mentioned at the beginning of this section that the Jordan property has also been
studied in algebraic geometry for birational transformation groups. The situation there
is remarkably parallel to that for homeomorphism groups, with some varieties having
Jordan birational transformation group and others not (in fact, the first counterexample
to be found is the product of an elliptic curve by the projective line, see [79]). Some
central contributions to these question are, among others, work of Jean-Pierre Serre [72],
Vladimir Popov [61], Yuri G. Zarhin [79], and Yuri Prokhorov and Constantin Shramov
[62, 63]. The interested reader can consult the paper [30] by Attila Guld for an analogue
in that context of Theorem 2.1, a list of references, and the history of the problem.
We may add to this the theorem of Sheng Meng and De-Qi Zhang [44] stating that the
automorphism group of any projective variety defined in characteristic zero is Jordan.

3. Actions of finite abelian groups

For any finite group G we denote by d(G) the minimal size of a generating set of G.
By convention, the trivial group has d = 0.

The next result follows from a theorem of L.N. Mann and J.C. Su [42, Theorem 2.5].

Theorem 3.1. Let X be a compact manifold. There exists a constant C, depending only
on X, such that for any finite abelian group A we have d(A) ≤ C.

The original theorem of Mann and Su refers to actions of groups of the form (Z/p)k.
The bound in Theorem 3.1 is the same one as that in [42, Theorem 2.5] and is explicit:
it can be chosen to depend on the sum of the Betti numbers of X maximized over all
possible fields. The theorem of Mann and Su, and hence Theorem 3.1, is also valid for
non compact manifolds X with finitely generated H∗(X;Z) (see [18, Theorem 1.8]).

Finding, for an arbitrary manifold X, the optimal value of the constant C(X) in
Theorem 3.1 is probably a very difficult question. Following the strategy described in
the Introduction we are led to the following questions, which we will motivate below.

Question 3.2. Does there exist, for every compact connected n-dimensional manifold X,
a constant C such that any finite abelian group A acting effectively on X has a subgroup
B satisfying [A : B] ≤ C and d(B) ≤ n?
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Question 3.3. Is X = T n the only n-dimensional compact connected manifold for which
the bound n in the previous question cannot be replaced by n− 1?

Answering affirmatively Question 3.3 would materialize in the context of finite group
actions on manifolds a beautiful poem of Tomàs Garcés1: it would have the remarkable
consequence that, in the particular case of the torus, you can recover a manifold from
information on the collection of finite groups that act on it. This is usually impossible,
as there are plenty of closed asymmetric manifolds (see Section 8 below).

The optimal value, for a fixed manifold X, of the constant C in Question 3.2 can
be arbitrarily large as soon as n ≥ 2. For example, any finite group acts freely (hence
effectively) on some closed connected and orientable surface; applying this fact to (Z/p)r
for any prime p and any r > 2 we get closed connected orientable surfaces for which the
optimal constant C in Question 3.2 is as large as we wish.

We next explain the motivation behind the previous questions. Let X be a compact
n-manifold, and consider the set

µ(X) = {m ∈ N | X supports effective actions of (Z/r)m for arbitrarily large r}.
Theorem 3.1 implies that µ(X) is finite. Following [54] we define the discrete degree of
symmetry of X to be

disc-sym(X) = max({0} ∪ µ(X)).

By [54, Lemma 2.6], for any nonnegative integer k the inequality disc-sym(X) ≤ k is
equivalent to the existence of a contant C such that any finite abelian group A acting
effectively on X has a subgroup B satisfying [A : B] ≤ C and d(B) ≤ k. Hence,
the Question 3.2 (resp. Question 3.3) is equivalent to the following Question 3.4 (resp.
Question 3.5).

Question 3.4. Is disc-sym(X) ≤ n for every compact connected n-manifold X?

Question 3.5. If a compact connected n-manifold X satisfies disc-sym(X) = n, is X
necessarily homeomorphic to T n?

An affirmative answer to Questions 3.4 and 3.5 would be an example of a rigidity
result2.

1”Si veiessis el blau fumerol / adormit a la vella teulada, / ¿em diries quants rostres hi ha / en el clar
borrissol de la flama? / Si un vaixell, en el trèmul mat́ı / de les lloses del moll se separa, / ¿no sabries,
per l’ombra que es mou, / els adéus que bateguen en l’aire? / I si un trot fugitiu deixond́ı / els camins
esväıts de la tarda, / ¿per l’espurna que fan els cavalls, / endevines els ulls de la dama?”. This is a
rough translation, lacking unfortunately the musicality of the original Catalan version: ”If you saw the
blue sleeping smoke / lying down on the ancient roof / would you tell me the number of faces / on the
clear fluff of the flame? / If a boat, in the trembling morning / goes away from the quay / would you
know, from the moving shadow / the beating farewells in the air? / And if a fleeing gallop awoke / the
fading paths of the afternoon / would the sparks made by the horse / tell you the eyes of the lady?”.

2By this we mean a result that fits the following vague pattern. Let S be a set of geometric ob-
jects of some type and let φ : S −→ R be a map. A rigidity result for (S, φ) is the statement that
(1) there is an upper bound M := maxφ(S) < ∞, and that (2) φ−1(M) 6= ∅ and the objects in
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The requirement in the previous questions that the manifold X is connected is crucial,
for otherwise there would be no hope of bounding disc-sym(X) by a constant depending
only on dimX. Indeed, if for example X = X1 t · · · t Xk and each Xi is equal to S1,
then X is one dimensional but it supports an effective action of T k, where the action of
(θ1, . . . , θk) ∈ T k on the component Xj ⊂ X is given by multiplication by θj. In fact, we
have in this case disc-sym(X) = k, as the reader can easily check.

Why are the previous questions reasonable? For any sequence of integers ri → ∞ it
seems to be a natural intuition that the sequence of groups (Z/ri)m ”converges” to the
torus Tm. Thus one may heuristically expect that having effective actions of each of
the groups (Z/ri)m on a given manifold should have similar implications as having an
action of Tm on that manifold. Since no connected n-manifold supports a continuous
action of a torus of dimension bigger than n, and since the only n-manifold supporting
an effective action of T n is T n itself (see e.g. the proof of Theorem 1.9 in [54] for a
proof), the previous heuristic naturally leads to the question above.

One may transform the previous heuristic into an actual theorem in different ways.
Perhaps the most natural is the following one, which is a little exercise in Lie group
theory (see [54, Theorem 1.10]).

Theorem 3.6. Let G be a compact Lie group. There exists a constant C such that for
every finite abelian subgroup A ≤ G there is a torus T ≤ G satisfying [A : A ∩ T ] ≤ C.
Hence, the following are equivalent for each m ∈ N:

(1) There exists subgroups of G isomorphic to (Z/r)m for arbitrarily big integers r.
(2) There exists an m-dimensional torus in G.

Note that even if G is a connected compact Lie group not every finite abelian subgroup
of G is contained in a torus. For example, if G = SO(3,R) and A ≤ G is the subgroup
of diagonal matrices with entries ±1 then A ' (Z/2)2. However every nontrivial torus
T ≤ SO(3,R) is isomorphic to S1, and hence A can’t possibly be contained in a torus
in SO(3,R), for otherwise it would be cyclic. This shows that the constant C in the
previous theorem cannot be chosen to be 1 in some cases where G is connected.

If (X, g) is a closed Riemannian manifold, then by Myers–Steenrod’s theorem the
isometry group Isom(X, g) is a compact Lie group. Applying Theorem 3.6 to it we
conclude that the following are equivalent:

(1) There exist effective actions by isometries of (Z/r)m on (X, g) for arbitrarily big
integers r.

(2) There exists an effective action by isometries of Tm on (X, g).

φ−1(M) ⊂ S are more rigid (or less abundant) than those in other fibers of φ. Some examples: (i)
S = {simple smooth curves γ ⊂ R2 of total length 2π}, φ(γ) = area enclosed by γ; here, the isoperi-
metric inequality is a rigidity result. (ii) Mostow rigidity after Besson-Courtois-Gallot, see [5]. (iii) S =
{U(p, q)-local systems on a closed connected surface}, φ = Toledo invariant; here the rigidity result is
due to Toledo, Hernández, and Bradlow-Garćıa–Prada-Gothen, see [10, 34, 75]. Answering affirmatively
Questions 3.4 and 3.5 would imply a rigidity result for S = {closed connected n-dimensional manifolds}
and φ = disc-sym.
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If one replaces the compact Lie group G by the homeomorphism group of a manifold
then things become much more complicated, and in fact the analogue of Theorem 3.6 in
that case fails to be true in general, as shown by the following theorem.

Theorem 3.7. There exist closed connected manifolds X satisfying disc-sym(X) ≥ 1
but supporting no effective action of the circle.

The construction of the manifolds X in the previous theorem and the proof that they
support no effective action of the circle is due to Cappell, Weinberger and Yan [13]. The
fact that disc-sym(X) ≥ 1 was known to the authors of [13] (see [76, Remark 1.3]), and
a detailed proof appears in [54, Theorem 1.11].

4. Bounds on the discrete degree of symmetry

We don’t know the answer to Question 3.4 in general, but some partial positive re-
sults are available, and no counterexample has been found so far. Before stating the
positive results we introduce a new definition. An n-manifold X is said to be weak
Lefschetz symplectic (WLF for short) if X is connected, closed and orientable and in
addition there exists some class Ω ∈ H2(X;R) such that the image of the cup product
map Λ∗H1(X;R) ⊗ R[Ω] → H∗(X;R) contains Hn−1(X;R) ⊕ H∗(X;R). For example,
any compact connected Kaehler manifold is weak Lefschetz symplectic, by Lefschetz’s
decomposition theorem.

The following theorem combines the main results in [54] (for the rationally hypertoral
case) and in [56] (for the WLS case).

Theorem 4.1. Let X be a closed connected n-dimensional manifold. Suppose that X
is rationally hypertoral or WLS. Then disc-sym(X) ≤ n. If disc-symX = n, then
H∗(X;Z) ' H∗(T n;Z) as rings, and the universal abelian cover of X is acyclic. If
disc-symX = n and the fundamental group π1(X) is virtually solvable, then X ∼= T n.

The universal abelian cover of an arconnected space X with fundamental group π can

be identified with Xab := X̃/[π, π], where X̃ is the universal cover of X. The cover
Xab has a residual action of H1(X;Z) ' π/[π, π], and the orbit map of this action is
a principal H1(X;Z)-bundle π : Xab → X. If H1(X;Z) is torsion free and X has the
homotopy type of a CW complex, one may describe π : Xab → X as follows. Take a
map φ : X → T r such that φ∗ : H1(T r;Z)→ H1(X;Z) is an isomorphism. (φ exists by
the assumption on the homotopy type of X.) Then Xab → X is homeomorphic to the
pullback via φ of the Zr-bundle Rr → Rr/Zr = T r.

Remark 4.2. The statement of the previous theorem is slightly redundant. Indeed, if the
universal abelian cover Xab of an arconnected space X is acyclic then H1(X;Z), which
acts freely on Xab, cannot have nontrivial torsion, by Smith’s fixed point theorem for
actions of Z/p (p prime) on acyclic manifolds (see e.g. [9, Chap II, Corollary 4.6]).
Hence X can be identified with with a quotient Xab/Zr, where Zr acts freely and proper
discontinuously on Xab. The projection Xab×Zr Rr → Xab/Zr is a homotopy equivalence
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(it is a locally trivial fibration with fibers homeomorphic to Rr), while applying Serre’s
spectral sequence to the projection Xab ×Zr Rr → Rr/Zr we conclude that H∗(X;Z) '
H∗(T r;Z). If X is a closed manifold, this can only happen if X is connected and r =
dimX.

The results in the following theorem are taken from [55].

Theorem 4.3. Let X be a closed connected n-dimensional manifold. Suppose that
χ(X) 6= 0 or that H∗(X;Z) ' H∗(Sn;Z). Then disc-sym(X) ≤ [n/2].

The following result, which is [54, Theorem 1.2], provides further evidence suggesting
a positive answer to Question 3.4.

Theorem 4.4. For any closed connected n-manifold X we have disc-sym(X) ≤ [3n/2].

In low dimensions we have the following result, which is proved in Subsection 13.2.

Theorem 4.5. Let X be a closed connected manifold of dimension ≤ 3. We have
disc-sym(X) ≤ dimX, with equality if and only if X is homeomorphic to a torus.

It is an interesting problem to compute or estimate the discrete degree of symmetry.
In dimensions ≤ 2 this is easy using standard tools, but in higher dimensions this is
substantially more challenging. Here are some examples.

Example 4.6. (1) disc-sym(S1) = 1 (this is elementary).
(2) disc-sym(T 2) = 2, disc-sym(S2) = disc-sym(RP 2) = disc-sym(RP 2]RP 2) = 1,

disc-sym((T 2)]g) = 0 if g ≥ 2, and disc-sym((RP 2)]g) = 0 if g ≥ 3. This
follows from the fact that any continuous finite group action on a closed surface
is conjugate to a conformal transformation for a conveniently chosen conformal
structure (Kérékjartó’s theorems, see e.g. [15] and especially the Remark at the
end of [15]), together with the arguments in the proof of [47, Theorem 1.3].

(3) Fix natural numbers k, n satisfying 1 ≤ k ≤ n − 1. Let σ : T n → T n be the free
involution defined by σ(x1, . . . , xn) = (x1 + 1/2, . . . , xk + 1/2,−xk+1, . . . ,−xn).
Then disc-sym(T n/σ) = k. See [54, Theorem 1.13]. (For example, setting n = 2
and k = 1 we get the Klein bottle RP 2]RP 2.)

(4) Let Z be a closed and connected m-manifold such that H∗(Z;Z) 6' H∗(S
m;Z).

For every n ≥ 0 we have disc-sym(T n × (Tm]Z)) = n. See [54, Theorem 1.8].
(5) disc-sym(Sn) = [n/2]. This follows from Theorem 4.3 and the fact that the torus

T [n/2] acts effectively on Sn.

A notion related to the discrete degree of symmetry is the stable rank. Let X be
a manifold. Let µprime(X) be the set of all natural numbers m such that X supports
effective actions of (Z/p)m for arbitrarily large primes p. Define the stable rank of X
to be stable-rank(X) := max({0} ∪ µprime(X)). We obviously have stable-rank(X) ≤
disc-sym(X), so a weaker version of Question 3.4 would ask whether, for a closed and
connected manifold X, we necessarily have stable-rank(X) ≤ dimX, and a stronger
version of Question 3.5 would be whether the case of equality only occurs for X = T n.
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The discrete degree of symmetry is an analogue for actions of finite groups of the
degree of symmetry of a manifold X. The latter is defined to be the maximum of the
dimensions of the compact Lie groups acting effectively on X, and it has been extensively
studied in the literature. See for example [35, Chap. VII, §2].

5. Abelian group actions preserving geometric structures

We may consider analogues of the discrete degree of symmetry defined in terms of
actions of (Z/r)m preserving some geometric structure. This leads for example to the
smooth, symplectic or holomorphic discrete degree of symmetry.

Denoting by disc-symsmooth(X) the smooth discrete degree of symmetry of a smooth
manifold X, we have the following result, which is proved in Section 13.1.

Theorem 5.1. Let X be a closed connected smooth n-manifold, where n ≤ 4. We have
disc-symsmooth(X) ≤ n. If disc-symsmooth(X) = n then H∗(X;Z) ' H∗(T n;Z) and the
universal abelian cover of X is acyclic. If disc-symsmooth(X) = n and π1(X) is virtually
solvable then X ∼= T n.

An interesting question is to find manifolds for which one can define any of these
notions and obtain a smaller value than the (continuous) discrete degree of symmetry.
(The question is probably substantially more difficult for smooth or symplectic structures
than for holomorphic ones.)

Question 5.2. For a manifold X, let σ denote a smooth, symplectic or holomorphic
structure on X, and let disc-symσ(X) denote the discrete degree of symmetry defined
considering only actions of groups that preserve σ. Do there exist examples of X and σ
for which disc-symσ(X) < disc-sym(X)?

This does not seem to have been addressed so far in the literature. Some discrepancy
between continuous and smooth finite group actions has been pointed out in [54, Theorem
1.5], related to the existence of exotic smooth structures on tori, but this discrepancy
does not give any example of a manifold for which the smooth and the continuous discrete
degrees of symmetries differ. In contrast, there exist results on the analogue for actions
of compact connected Lie groups: Amir Assadi and Dan Burghelea proved in [3] that if Σ
is an n-dimensional exotic sphere then T n]Σ does not support any smooth action of the
circle, whereas it does support an effective continuous action of T n, as it is homeomorphic
to T n itself (see also the references in [3] for earlier examples).

If X is a symplectic manifold, one can define µHam(X) to be the set of all natural
numbers m such that the group Ham(X) of Hamiltonian diffeomorphisms of X con-
tains subgroups isomorphic to (Z/r)m for arbitrarily large integers r, and then define
accordingly the Hamiltonian discrete degree of symmetry of X to be disc-symHam(X) :=
max({0} ∪ µHam(X)). It follows from [55, Corollary 1.7] and Lemma 11.3 below that if
X is compact then disc-symHam(X) ≤ dimX/2. The same considerations that lead to
Question 3.4 suggest the following.
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Question 5.3. Let X be a compact symplectic manifold. If disc-symHam(X) = dimX/2,
does X necessarily support a structure of toric manifold?

Compact toric manifolds admit cell decompositions all of whose cells are even dimen-
sional, and consequently their integral cohomology is free as a Z-module and concentrated
in even degrees. With this in mind, the following result provides evidence for the previous
question.

Theorem 5.4. If a compact symplectic manifold X satisfies disc-symHam(X) = dimX/2,
then H∗(X;Z) is free as a Z-module and Hk(X;Z) = 0 for odd k.

Proof. Let X be a 2n-dimensional compact symplectic manifold. We are going to use
the solution to the integral Arnold conjecture (see [1, Corollary 1.2], [4, Theorem A],
or [67, Theorem 1]), which implies that for every prime p the number of fixed points of
a nondegenerate Hamiltonian diffeomorphism is bounded below by dimZ/pH

∗(X;Z/p).
This implies that every Hamiltonian diffeomorphism has some fixed point (note that the
rational Arnold conjecture is enough for this implication).

Suppose that disc-symHam(X) = n. Then there is a sequence of integers ri → ∞
and, for each i, a subgroup of Ham(X) isomorphic to (Z/ri)n. Let P = {p prime |
p divides ri for some i}. We distinguish two possibilities. If P is infinite, then we can
take a sequence of primes pj belonging to P and satisfying pj → ∞. Each pj divides
rij for some ij, so (Z/pj)m is isomorphic to a subgroup of (Z/rij)m and hence it is also
isomorphic to a subgroup of Ham(X). The second possibility is that P is bounded. In
that case, there exists some p ∈ P and a sequence of natural numbers ej →∞ such that
pej divides rij for some ij. Arguing as before, this gives a subgroup of Ham(X) isomorphic
to (Z/pej)m for each j. In conclusion, we may assume that there is a sequence of integers
ri → ∞, such that either each ri is a prime or each ri is of the form pei for some fixed
prime p, and for each i there is a subgroup of Ham(X) isomorphic to (Z/ri)n.

By [55, Theorem 2.3] and [54, Lemma 2.1] we may assume the existence of a prime
power r ≥ 4, a subgroup G of Ham(X) isomorphic to (Z/r)n, and an element g ∈
G satisfying Xg = XG. Since Xg is nonempty, so is XG. Applying Lemma 11.3 to
each point in XG, and using the fact that if m < 2n then GL(m,R) has no subgroup
isomorphic to (Z/r)n, we conclude that all points in XG = Xg are isolated. If x ∈ Xg

then we denote by Dxg : TxX → TxX the differential at x of g ∈ Ham(X). Since g
has finite order, all eigenvalues of Dxg are roots of unity, and since x is isolated in Xg,
none of the eigenvalues of Dxg is equal to 1. This implies that g is a non degenerate
Hamiltonian diffeomorphism. Finally, if α ∈ C \ R is an eigenvalue of Dxg, then so is
α. All this implies that det(1−Dxg) > 0. By Lefschetz’s fixed point theorem, it follows
that χ(X) = |Xg|. Applying the integral Arnold conjecture to g we conclude that, for
every prime p, dimZ/pH

∗(X;Z/p) ≤ |Xg| = χ(X) =
∑

k(−1)k dimZ/pH
k(X;Z/p). This

implies that Hk(X;Z/p) = 0 for odd k and that dimZ/pH
∗(X;Z/p) = χ(X), which is

independent of p. The theorem now follows from the universal coefficients theorem and
the fact that H∗(X;Z) is finitely generated. �
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To conclude this section, let us mention that the analogues of Question 3.4 and Ques-
tion 3.5 for birational transformation groups have been answered in the affirmative by
Aleksei Golota in [28].

6. Free actions of finite abelian groups

For any closed manifold X we define the discrete degree of free symmetry, which
we denote by disc-symfree(X), following the same recipe as for the discrete degree of
symmetry but considering only free actions of finite abelian groups. Namely, we let
µfree(X) denote the set of natural numbers m such that X supports a free action of
(Z/r)m for arbitrary large integers r, and we define

disc-symfree(X) := (max{0} ∪ µfree(X)).

Of course one always has disc-symfree(X) ≤ disc-sym(X). The following theorem can be
seen as a refinement of Mann–Su’s theorem for free actions. It was originally proved by
Gunnar Carlsson for p = 2 and by Christoph Baumgartner for odd p (see [2, Theorem
1.4.14] for a proof).

Theorem 6.1. Let p be a prime and let X be a paracompact topological space on which
(Z/p)m acts freely and trivially on H∗(X;Z/p). Suppose there exists some i0 ∈ N such
that that H i(X/G;Z/p) = 0 for all i ≥ i0. Then m ≤ |{j | Hj(X;Z/p) 6= 0}|.

The following result answers affirmatively Question 3.4 for free actions. It is a conse-
quence of Theorem 6.1 and Theorem 9.2 below.

Theorem 6.2. For any connected manifold X we have disc-symfree(X) ≤ dimX.

In [57] we prove the following, which gives a partial affirmative answer to Question 3.5
for free actions.

Theorem 6.3. Let X be a connected manifold satisfying disc-symfree(X) = dimX. Then
H∗(X;Z) ' H∗(T n;Z) as rings and the universal abelian cover of X is acyclic. If in
addition π1(X) is virtually solvable, then X ∼= T n.

Similarly, one can define the stable free rank ofX, which we denote by stable-rankfree(X),
by considering free actions of (Z/p)m for arbitrary large integers p. This is trivially related
to the discrete degree of symmetry by the inequality stable-rankfree(X) ≤ disc-symfree(X).
Ten years ago Bernhard Hanke proved the following remarkable result.

Theorem 6.4 (Theorem 1.3 in [32]). Let X be a product of spheres Sj1 × · · · ×Sjk , and
let ko be the number of ji’s which are odd. Then stable-rankfree(X) = ko.

Actually Hanke proves more: if (Z/p)r acts freely on the manifold X of the theorem
and p > 3 dimX, then r ≤ ko. Hanke’s results naturally suggest the following question.

Question 6.5. Let X be a product of spheres. What are the values of disc-sym(X),
stable-rank(X) and disc-symfree(X)?
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In general we should expect disc-sym(X) (resp. stable-rank(X)) to be bigger than
disc-symfree(X) (resp. stable-rankfree(X)), as for example disc-sym(Sn) = [n/2] (see
Example 4.6) while disc-symfree(X) = 1 (this follows from Smith theory [73]), but in
some cases this is not true. For example, if X is a torus (and perhaps also if X is a
product of spheres of dimensions ≤ 2) then disc-sym(X) = disc-symfree(X).

7. Nilpotent groups and beyond

For a closed n-manifold X with Jordan homeomorphism group, a positive answer
to Question 3.2 implies the existence of a constant C such that any finite group G
acting effectively on X has an abelian subgroup A ≤ G satisfying [G : A] ≤ C and
d(A) ≤ n. Since not all closed manifolds have Jordan homeomorphism group, and in
view of Theorem 2.1, it is natural to find analogues for finite nilpotent groups of the
questions and results in the previous sections. We have the following result.

Theorem 7.1. Let X be a closed and connected n-manifold, with n ≥ 2. There exists a
constant C such that any finite nilpotent group N acting effectively on X has a subgroup
N ′ satisfying [N : N ′] ≤ C and d(N ′) ≤ (45n2 + 6n+ 8)/8.

Combined with Theorem 2.1, the previous theorem implies the following.

Corollary 7.2. Let X be a closed and connected n-manifold, with n ≥ 2. There exists a
constant C such that any finite group G acting effectively on X has a nilpotent subgroup
N satisfying [G : N ] ≤ C and d(N) ≤ (45n2 + 6n+ 8)/8.

We will deduce Theorem 7.1 from previous results on actions of finite abelian groups
combined with a group theoretical result which we now state. Given natural numbers
k, C let us denote by Nk,C the collection of all finite nilpotent groups N such that every
abelian subgroup A ≤ N has a subgroup B ≤ A satisfying [A : B] ≤ C and d(B) ≤ k.
The following theorem will be proved in Section 13.3.

Theorem 7.3. Given natural numbers k, C there exists a constant C ′ = C ′(k, C) such
that every N ∈ Nk,C has a subgroup N ′ ≤ N satisfying [N : N ′] ≤ C ′ and d(N ′) ≤
1 + k(5k + 1)/2.

Theorem 7.1 follows from combining Theorem 4.4, [54, Lemma 2.7] and the previous
theorem. The bound on d(N ′) given by Theorem 7.1 is probably far from optimal. Very
probably, the bound resulting from combining Theorem 7.3 with a hypothetical positive
answer to Question 3.2 would neither be optimal. We are thus led to the following
question.

Question 7.4. Given a natural number n, what is the smallest number δ(n) with the
property that for every closed and connected n-manifold X there exists a constant C,
depending only on X, such that any finite nilpotent group N acting effectively on X has
a subgroup N ′ satisfying [N : N ′] ≤ C and d(N ′) ≤ δ(n)?

In [56] we prove:
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Theorem 7.5. Let X be an n-dimensional WLS manifold. There exists a number p0

such that, for every prime p > p0, any finite p-group acting effectively on X is nilpotent
of nilpotency class 2 and can be generated by n or fewer elements.

The class of WLS manifolds contains plenty of closed manifolds with non-Jordan home-
omorphism groups, but it is otherwise very small when compared with the collection of
all closed manifolds. Nevertheless, the previous theorem suggests that asking whether
the function δ(n) in Question 7.4 is linear on n is not completely crazy.

To conclude our discussion about the function δ, let us mention the following result
(see the paragraph after [48, Corollary 1.3]), which can be seen as an extension of the
theorem of Mann and Su to arbitrary finite groups:

Theorem 7.6. For any closed manifold X there is a constant C such that for any finite
group G acting effectively on X we have d(G) ≤ C.

Besides the minimal number of generators, another natural invariant of finite nipotent
groups is the nilpotency class. We may ask the following.

Question 7.7. Does there exist a function κ : N → N such that for any closed and
connected manifold X there is a constant C with the property that any finite nilpotent
group N acting effectively on X has a subgroup N ′ ≤ N of nilpotency class κ(dimX)
satisfying [N : N ′] ≤ C? If κ(n) exists, what is its minimal possible value?

By (1) in Theorem 2.2 the function κ is defined on {1, 2, 3} and satisfies κ(1) = κ(2) =
κ(3) = 1. The main result in [58] is:

Theorem 7.8. Let X be closed 4-dimensional smooth manifold. There exists a constant
C such that every finite group G acting smoothly and effectively on X has a nilpotent
subgroup N ≤ G of nilpotency class 2 and satisfying [G : N ] ≤ C.

Quite likely the arguments in [58] can be applied with some mild modifications to
continuous actions on (topological) manifolds. This would imply that κ(4) is well defined
and, taking into account the fact that Homeo(S2×T 2) is not Jordan, its value is κ(4) = 2.

Perhaps the strongest argument in favor of the existence of the function κ comes
from the analogy with birational transformation groups. Indeed, combining the works
of Golota [28] and Guld [30] we obtain the following.

Theorem 7.9. Let X be a complex projective variety of complex dimension n. There
exists a constant C such that any finite group G of birational transformations of X
has a nilpotent subgroup G′ of nilpotency class at most 2 satisfying [G : G′] ≤ C and
d(G′) ≤ 2n.

More concretely, the previous theorem follows from applying first of all Guld’s theorem
to reduce to the case of finite nilpotent groups of class 2, and then applying Golota’s
theorem to the action on the base and on the fiber over a generic point of the MRC
fibration (see [30, §2.3] and the proof of [30, Theorem 23]).
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Could the function κ in Question 7.7 be taken to be constant equal to 2 as for birational
transformation groups? We don’t have any argument against this possibility, and in fact
we do not know the answer to the following question.

Question 7.10. Does there exist a closed manifold M supporting, for arbitrarily big
primes p, an effective action of a finite nilpotent p-group of nilpotency class ≥ 3?

8. Almost asymmetric manifolds

In the context of finite transformation groups, a manifold is said to be asymmetric if
it supports no effective action of a nontrivial finite group. Closed asymmetric manifolds
has been studied in a number of papers, beginning with the examples of P.E. Conner,
F. Raymond, P. Weinberger [14] and E.M. Bloomberg [8]. It is expected that in an
appropriate sense most manifolds are asymmetric (see [66] and the references therein). No
example is presently known of a simply connected closed asymmetric manifold, although
we are probably close to it, see [66, Theorem 4] and [41].

The point of view adopted in this paper suggest this definition: a manifold is almost
asymmetric if there is an upper bound on the size of the finite groups that act effectively
on it. The following is a particular case of [54, Lemma 2.6]:

Lemma 8.1. Let X be a compact manifold. The manifold X is almost asymmetric if
and only if disc-sym(X) = 0.

Proving that a manifold is almost asymmetric is in general much simpler than proving
that it is asymmetric. See for example item (4) in Example 4.6 (e.g., T n]T n is almost
asymmetric for every n ≥ 2). As another example, the manifolds in [66, Theorem 4]
are instances of simply connected closed manifolds which are almost asymmetric. This
makes it reasonable to expect that the following vague question might be substantially
more accessible than the one addressed in [66].

Question 8.2. Are ”most closed manifolds” almost asymmetric?

For example, [66, Theorem 6], combined with Theorem 9.2 below, implies that the
answer to the previous question is affirmative when restricted to the set N of simply
connected spin 6-manifolds with free integral cohomology. To define ”most manifolds”
[66, Theorem 6] relies on the ring structure on the cohomology, which is parametrized
essentially by a degree three homogeneous polynomial with integer coefficients on as
many variables as the rank of H2. Consider, for each n ∈ N, the percentage of all such
polynomials that have coefficients in [−n, n] and which come from the cohomology of
a manifold in N which is not almost symmetric; then [66, Theorem 6] states that the
limsup as n→∞ of this percentage is equal to 0.

9. Trivial actions on homology

The following is a classical result of Herman Minkowski [45].
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Lemma 9.1. For each natural number k there exists a number Ck such that every finite
subgroup G < GL(k,Z) satisfies |G| ≤ Ck.

To prove the lemma it suffices to check that if ρ : GL(k,Z) → GL(k,Z/3) is the
componentwise reduction mod 3, and a ∈ GL(k,Z) satisfies ρ(a) = ρ(Id) and ak = Id
for some natural k, then a = Id. This implies that if G < GL(k,Z) is finite then ρ|G is

injective, so |G| ≤ 3k
2
. Minkowski’s lemma has the following implication.

Theorem 9.2. Let X be a compact manifold. There exists a constant C such that, for
every action on X of a finite group G, there is a subgroup G′ ≤ G satisfying [G : G′] ≤ C
whose action on H∗(X;Z) is trivial.

The previous theorem is an immediate consequence of Lemma 9.1 when the cohomol-
ogy of X has no torsion. The case where there is some torsion (which in any case will be
finitely generated because X is compact) needs an easy extra argument, see [48, Lemma
2.6].

If X is a noncompact manifold then a priori its cohomology might fail to be finitely
generated, so Lemma 9.1 does not allow us to conclude anything similar to Theorem 9.2
for actions on X. However, there are some situations where X is noncompact and one
has a statement similar to Theorem 9.2. The following is proved in [56].

Theorem 9.3. Let X be a manifold endowed with a properly discontinuous3 action of
Zr such that X/Zr is a compact manifold. There exists a constant C such that, for every
action on X of a finite group G that commutes with the action of Zr, there is a subgroup
G′ ≤ G satisfying [G : G′] ≤ C whose action on H∗(X;Z) is trivial.

In the previous theorem, the action of Zr on X endows H∗(X;Z) with a structure
of module over the group ring Z[Zr] ' Z[t±1

1 , . . . , t±1
r ]. The assumption that X/Zr is

compact implies that H∗(X;Z) is a finitely generated Z[Zr]-module, and Theorem 9.3
follows from an analogue of Lemma 9.1 that is valid for finitely generated Z[Zr]-modules.
See [56] for details.

10. The rotation morphism

In this section we explain how one can associate to the action of a finite group G on
a connected manifold X and a G-invariant class α ∈ H1(X;Z) a character G → S1.
This construction is particularly useful in the case of rationally hypertoral manifolds,
especially when combined with Theorem 9.2. For more details, see [54, §4]. In the case
of smooth actions what we explain here can be alternatively described using differential
forms (see [47, §2.1] and [58, §8.1]).

Here and everywhere we identify the circle S1 with R/Z and use accordingly additive
notation for the group structure on S1.

3An action of a discrete group G on a manifold X is properly discontinuous if every x ∈ X has a
neighborhood U such that U ∩ g · U = ∅ for every g ∈ G \ {1}. This implies that X/G is a manifold.
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Let θ ∈ H1(S1;Z) be a generator. There exists a continuous map ψα : X → S1, unique
up to homotopy, such that ψ∗αθ = α. For each g ∈ G we denote by ρ(g) : X → X the

map x 7→ g · x. Let φ̃α :=
∑

g∈G ψα ◦ ρ(g). By construction we have φ̃α ◦ ρ(g) = φ̃α for

every g ∈ G, i.e., φ̃α is G-invariant. Since ρ(g)∗α = α for every g, we have φ̃∗αθ = |G|α.

The fact that φ̃∗αθ ∈ H1(X;Z) is |G| times an integral class implies the existence of a

map φα : X → S1 such that φ̃α = |G|φα. The map φα is not unique, but two different
choices of φα differ by a constant map X → S1 equal to some |G|-th root of unity (i.e.,

the class in R/Z of an element of |G|−1Z). We say that φα is a G-th root of φ̃α.

For each g ∈ G we have |G|(φα◦ρ(g)) = (|G|φα)◦ρ(g) = φ̃α◦ρ(g) = φ̃α. Hence, φα◦ρ(g)

is a |G|-th root of φ̃α. Consequently, there is a |G|-th root of unity, ξα(g) ∈ S1, such that
φα ◦ ρ(g) = ξα(g) + φα. This formula implies that the map ξα : G → S1 is a morphism
of groups. We call it the rotation morphism. The morphism ξα is independent of the
choice of φα and of the initial map ψα: it only depends on α and θ. (Any two choices of
ψα are homotopic, and ξα varies continuously with the choice of ψα and takes values in
a discrete set; hence ξα remains constant through any homotopy of maps ψα : X → S1.)
Furthermore, ξα is linear on α, as the reader can easily check.

The following lemma will be used later when studying group actions on nonorientable
manifolds.

Lemma 10.1. With notation as above, suppose that σ : X → X is an involution sat-
isfying σ∗α = −α, and suppose that the action of G on X commutes with σ. Then
2ξα(g) = 0 for every g ∈ G.

Proof. The map ψ−α := ψα ◦ σ : X → S1 satisfies ψ∗−αθ = −α. Let φα be a |G|-th root

of φ̃α. Then φα ◦ σ is a |G|-th root of
∑

g∈G ψ−α ◦ ρ(g). For any x ∈ X we have

ξα(x) = φα(g · x)− φα(x) = φα(g · σ(x))− φα(σ(x))

= φα(σ(g · x))− φα(σ(x)) = (φα ◦ σ)(g · x)− (φα ◦ σ)(x)

= ξ−α(x) = −ξα(x),

which implies the lemma. �

More generally, if α1, . . . , αk ∈ H1(X;Z) are G-invariant classes, we denote A =
(α1, . . . , αk) and repeating the previous construction for each αi we define a map φA :
X → T k = (S1)k and a morphism ξA : G → T k by φA = (φα1 , . . . , φαk

) and ξA =
(ξα1 , . . . , ξαk

). By construction we have

(1) φA(g · x) = φA(x) + ξA(g).

We identify T k = (R/Z)k with Rk/Zk, and we denote by πA : XA → X the pullback
of the principal Zk-bundle Rk → Rk/Zk.

For each g ∈ G, ρ(g) : X → X lifts to a homeomorphism ρA(g) : XA → XA that
commutes with the action of Zk on XA, and two choices of ρA(g) differ by the action of
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an element of Zk on XA. In general ρA(g) will have infinite order, but not always. In
fact, we have:

Lemma 10.2. Let g ∈ G. There exists a finite order lift ρA(g) : XA → XA of ρ(g) if
and only if ξA(g) = 0.

The following result, which is a restatement of [54, Theorem 4.1], shows the relevance
of the rotation morphism for actions on rationally hypertoral manifolds. It is the key
ingredient in the proof that if X is rationally hypertoral then Homeo(X) is Jordan.

Theorem 10.3. Let X be a closed connected and orientable n-manifold. Suppose that
α1, . . . , αn ∈ H1(X;Z) satisfy α1 ∪ · · · ∪ αn = dθX , where d is a nonzero integer and
θX ∈ Hn(X;Z) is a generator. Let A = (α1, . . . , αn). For any action of a finite group
G on X inducing the trivial action H1(X;Z) the morphism ξA : G′ → T n satisfies
|Ker ξA| ≤ |d|.

Keeping with the previous notation, the action of Zk on XA induces an action on
H∗(XA;Z) which allows us to look at H∗(XA;Z) as a module over the group ring Z[Zk].
If X is closed, then H∗(XA;Z) is finitely generated as a Z[Zk]-module. In general it is
not finitely generated as a Z-module, but the following result shows that it is so under
some conditions. The next is [54, Corollary 6.3].

Theorem 10.4. Let B = Z[z±1
1 , . . . , z±1

b ]. Let M a f.g. B-module. Suppose there exists
some nonzero δ ∈ N, and for every 1 ≤ j ≤ b integers rj,i → ∞ as i → ∞, and
wj,i ∈ EndBM such that w

rj,i
j,i = zδj ∀i, j. Then M is a f.g. Z-module.

The previous theorem is a key ingredient in the proof of Theorem 4.1. If X is a closed
connected n-manifold and α1, . . . , αn ∈ H1(X;Z) satisfy α1 ∪ · · · ∪ αn 6= 0, then the
combination of Theorems 9.3 and 10.3 with Theorem 10.4, applied to M = H∗(XA;Z)
with A = (α1, . . . , αn) and b = n, implies that H∗(XA;Z) is finitely generated as a Z-
module. Then, an argument based on Serre’s spectral sequence implies that XA must
actually be acyclic, which implies that H∗(X;Z) ' H∗(T n;Z). If π1(X) is solvable then
XA is contractible, so X is homotopy equivalent to T n and hence it is also homeomorphic
to it (by the topological rigidity of tori). If π1(X) is virtually solvable then the argument
proceeds by passing to a suitable finite cover of X. The case of WLS manifolds follows
a similar strategy, but there are some additional difficulties. An important ingredient in
that case is Theorem 11.1 below.

We close this section with a result that will be used in the proof of Theorem 4.5.

Lemma 10.5. Let X be a closed 3-manifold satisfying H∗(X;Z) ' H∗(T 3;Z). Any
effective action of S1 on X is free.

Proof. Suppose given an effective action of S1 on X which is not free. Since S1 is
connected, the induced action of S1 on H∗(X;Z) is trivial. Let x ∈ X be a point
with nontrivial stabilizer, and let g ∈ Gx be a nontrivial element of finite order. Let
G < S1 be the subgroup generated by g. Since H∗(X;Z) ' H∗(T 3;Z), there are classes
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A = (α1, α2, α3) ∈ H1(X;Z)3 such that α1 ∪ α2 ∪ α3 is a generator of H3(X;Z). By
Theorem 10.3 ξA : G→ T n is injective. But (1) implies ξA(g) = [0], because g ·x = x. �

The previous result has an obvious generalisation to arbitrary dimensions. One can
prove in addition that if X is a closed n-manifold satisfying H∗(X;Z) ' H∗(T n;Z) then
any effective action of S1 on X is free and the orbits represent a nontrivial element in
H1(X;Z). This implies that X ∼= Y × S1, where Y = X/S1 (since S1 acts freely on
X, the quotient map X → Y is a circle bundle, and the nontriviality of the orbits in
H1(X;Z) implies by Gysin that the Euler class of the circle bundle X → Y is trivial).

11. Fixed points

A basic question in topology is to find conditions under which a self map, or in partic-
ular a self homeomorphism, of a given topological manifold has necessarily a fixed point.
Typical examples are Brouwer’s or Lefschetz’s fixed point theorems. When considering
an action of a finite group G on a manifold X, these results may imply in some cases the
existence of a big subgroup G′ ≤ G all of whose elements act on X with a fixed point.
But a priori there need not be any relation between the fixed points of different elements
in G′, let alone a point of X fixed by all elements of G′. For example, while for n ≤ 3
any action of a finite group on the closed n-dimensional disk Dn has a fixed point, there
are examples of actions of finite groups on Dn, for n ≥ 6, without fixed points, although
Brouwer’s fixed point theorem implies that each element of the group fixes at least one
point of the disk (see the Introduction in [53]). However, and perhaps surprisingly, there
is a subgroup, of index bounded by a function of n, which does have a fixed point. This
is a general property, as we will see.

Let us say that an action of a group G on a space X has the weak fixed point property
if for every g ∈ G there is some x ∈ X such that g ·x = x. The following is [55, Theorem
1.6].

Theorem 11.1. Let X be a connected manifold with H∗(X;Z) finitely generated. There
exists a constant C with this property: given any action of a finite group G on X with
the weak fixed point property, there is a subgroup G′ ≤ G satisfying [G : G′] ≤ C and
XG 6= ∅.

Combining Theorem 11.1 with Theorem 9.2 and with Lefschetz’s fixed point theorem
we obtain the following.

Theorem 11.2. Let X be a compact manifold satisfying χ(X) 6= 0. There is a constant
C such that for any action of a finite group G on X there is a subgroup G′ ≤ G satisfying
[G : G′] ≤ C and XG′ 6= ∅.

The case X = Dn is already nontrivial, and the examples of finite group actions
without fixed points when n ≥ 6 show that the need to pass to a subgroup of G is in
general unavoidable.
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The existence of fixed points has strong implications regarding the algebraic structure
of the group that acts. This is most transparent in the smooth category, in which we
have the following result.

Lemma 11.3. Let X be a connected smooth manifold, and suppose that a finite group
G acts smoothly and effectively on X. If x ∈ XG then the morphism δ : G→ GL(TxX),
defined by deriving the action of G on X at x, is injective.

Proof. Let η0 be any Riemannian metric on X and let η =
∑

g∈G ρ(g)∗η0, where ρ(g) is
the diffeomorphism X 3 x 7→ g · x ∈ X. Then η is a G-invariant Riemannian metric
on X, so the exponential map with respect to η gives a G-equivariant diffeomorphism
from a neighborhood of 0 in TxX to a neighborhood of x in X. Therefore, if g ∈ Ker δ
then Xg = {x ∈ X | g · x} has nonempty interior. The same argument applied to the
action of the subgroup 〈g〉 ≤ G generated by g implies that the interior of Xg = X〈g〉 is
closed. Since the interior Xg is obviously open, and since X is connected, it follows that
Xg = ∅, which implies that g = 1 because G acts effectively on X. �

For example, if X is a connected n-dimensional smooth manifold and G = (Z/r)m acts
smoothly and effectively on X with a fixed point then G is isomorphic to a subgroup of
GL(n,R), which easily implies that m ≤ [n/2] as soon as r ≥ 3.

If instead of a smooth action we consider a continuous action of a finite group G on a
connected n-dimensional manifold, then the existence of a fixed point does not necessarily
imply that G is isomorphic to a subgroup of GL(n,R). Indeed, Bruno Zimmermann has
constructed in [81], for each n ≥ 5, examples of effective continuous actions on the n-
sphere Sn of groups which are not isomorphic to any subgroup of GL(n+ 1,R). Taking
the cone of Sn, which is homoeomorphic to Rn+1, we obtain an effective action that
fixes a point (namely, the vertex of the cone). However, if we consider actions of finite
p-groups then no such example exists:

Lemma 11.4. Let X be a connected n-manifold, and suppose that a finite p-group G
acts continuously and effectively on X. If XG 6= ∅ then G is isomorphic to a subgroup
of GL(n,R).

The previous lemma follows from combining a result of R.M. Dotzel and G.C. Hamrick
[21] with basic results on the geometry of continuous actions of p-groups near a fixed
point (see [55, Corollary 3.3] for details).

Lemma 11.4 is one of the ingredients in the proof that if X is a connected manifold
with H∗(X;Z) is finitely generated and χ(X) 6= 0 then Homeo(X) is Jordan. Let us
briefly sketch the argument of the proof. If H∗(X;Z) is finitely generated and χ(X) 6= 0
then a formula of Ye [77, Theorem 2.5] implies the existence of a number C such that any
finite p-group G acting effectively on X has a subgroup G′ ≤ G satisfying [G : G′] ≤ C
and XG′ 6= ∅ (see [55, Lemma 2.1] for details). Lemma 11.4 implies that G′ is isomorphic
to a subgroup of GL(n,R), where n = dimX, and Jordan’s theorem then implies that
G′ has an abelian subgroup A ≤ G′ satisfying [G′ : A] ≤ C ′ for some C ′ depending only
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on n (and hence on X, but not on G). This fact on p-groups can be combined with
the result by Csikós, Pyber and Szabó mentioned after the statement of Theorem 2.1
above to conclude that Homeo(X) is Jordan. Note that we are not assuming that X is
compact as in Theorem 11.2; but compactness is crucial in Theorem 11.2, as long as we
care about arbitrary finite groups and not only on p-groups, as shown for example by
the main result in [33] (see the end of [50, §1.1] for an explanation).

12. Stabilizers

Studying whether a given action has fixed points is a particular case of the problem
of understanding the collection of stabilizers of the action. For any effective action of a
group G on a space X we denote by

Stab(G,X) = {Gx | x ∈ X}

the collection of subgroups of G that arise as stabilizers of points in X. The previous
section was concerned with the question of whether G ∈ Stab(G,X). Here we consider
the question of bounding the cardinal of Stab(G,X).

In general, | Stab(G,X)| cannot be bounded by a constant depending only X. We
prove this with an example. If Gn denotes the isometry group of a regular n-gon Pn ⊂ R2,
then two vertices of Pn have the same stabilizer in Gn if and only if they are aligned with
the center of Pn, so | Stab(Gn, Pn)| ≥ n/2. Since Pn ∼= S1 for every n, we obtain actions
of finite groups G on S1 with arbitrarily large | Stab(G,S1)|. Taking n = 2k the group
Gn is a 2-group, so this phenomenon also holds true for p-groups (examples of p-group
actions for an arbitrary prime p with the same behaviour can be obtained taking actions
on the p− 1-dimensional torus, see [18, Remark 1.4]).

In contrast, [18, Theorem 1.3] states the following.

Theorem 12.1. Let X be a manifold with finitely generated H∗(X;Z). There exists a
constant C such that for every action of a finite p-group G on X there is a subgroup
H ≤ G containing the center of G and satisfying [G : H] ≤ C and | Stab(H,X)| ≤ C.

Theorem 12.1 plays a key role in the proof of many of the results stated in this survey,
as will become clear in the following three sections.

Is Theorem 12.1 true if instead of p-groups we consider arbitrary finite groups? This
seems to be unknown at present, with the exception of Dn, S2n and, for trivial reasons,
almost asymmetric manifolds. The following is [18, Question 1.9]:

Question 12.2. Does there exist, for every compact manifold X, a constant C such that
for any action of a finite group G on X there is a subgroup H ≤ G satisfying [G : H] ≤ C
and | Stab(H,X)| ≤ C?

13. Proofs of some of the theorems
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13.1. Proof of Theorem 5.1. The case n = 1 is elementary. For the case n = 2 see the
comments in item (2) of Example 4.6. Let us now prove the case n = 4, and afterwards
we will address the case n = 3.

We first prove some elementary facts on finite abelian groups to be used later. Recall
that for any finite group G we denote by d(G) the minimal size of a generating set of G.
If p is a prime and G is a finite abelian p-group of exponent p, then we can look at G as
a vector space over Z/p, and a subset g1, . . . , gk ∈ G is a minimal generating subset if
and only if it is a basis, so d(G) = dimG. Therefore, d((Z/p)m) = m.

As elsewhere in this paper, we use additive notation for abelian groups.

Lemma 13.1. If A ≤ B are finite abelian groups, then d(A) ≤ d(B).

Proof. Let d := d(B). There is a surjective morphism φ : Zd → B. Let Λ := Kerφ. Since
B ' Zd/Λ is finite, the rank of Λ is d, so Λ ' Zd. Hence T := Rd/Λ is a d-dimensional
torus. The inclusion Zd ↪→ Rd induces an injection B ↪→ T , which allows us to identify A
with a subgroup of T . The quotient T/A is an Abelian connected compact Lie group, so
T/A is also a d-dimensional torus. In particulat, π1(T/A) ' Zd. The quotient T → T/A
is a Galois covering with A as group of deck transformations, so there is a surjection
π1(T/A)→ A. Hence, d(A) ≤ d. �

The previous result is false for arbitrary finite groups. For example, for any natural
number n ≥ 3 the symmetric group S2n is generated by (1 2) and (1 2 . . . 2n), which
implies that d(S2n) = 2, because S2n is not cyclic. However, the subgroup G ≤ S2n

generated by the transpositions (1 2), (3 4), . . . , (2n − 1 2n) is isomorphic to (Z/2)n, so
d(G) = n.

Lemma 13.2. Let A be a finite abelian p-group. We have d(A) = d(A/pA).

Proof. By the classification of finite abelian groups we have A ' Z/pe1 × · · · × Z/pek
for some naturals k, e1, . . . , ek. Then A/pA ' (Z/p)k. Since A can be generated by k
elements, we have d(A) ≤ d(A/pA). The converse inequality d(A) ≥ d(A/pA) follows
from the existence of a surjection A→ A/pA. �

Lemma 13.3. Let p be a prime and let e,m be natural numbers. Let G = (Z/pe)m and
let K ≤ G be a subgroup. Let n = d(G/K). We have n ≤ m and if n < m then K
contains a subgroup isomorphic to (Z/pe)m−n.

Proof. By Lemma 13.2 we have d(G/K) = d((G/K)/p(G/K)) = d(G/(K+pG)). There
is a natural exact sequence

0→ (K + pG)/pG→ G/pG→ G/(K + pG)→ 0,

where each of the groups have exponent p. Hence

dim((K + pG)/pG) = dim(G/pG)− dim(G/(K + pG)) = m− n,
which implies that n ≤ m. Let ε1, . . . , εm−n be a basis of (K + pG)/pG as a Z/p-vector
space. For each i, let ei ∈ K + pG be a lift of εi. Since (K + pG)/pG ' K/(K ∩ pG), we
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can in fact take ei inside K. The kernel of the morphism E : Zm−n → K, (l1, . . . , lm−n) 7→∑
liei, is equal to peZm−n. This follows from the more general fact that if f1, . . . , fr ∈ G

are lifts of a set of r linearly independent elements of G/pG then the kernel of the
morphism F : Zr → G, (λ1, . . . , λr) 7→

∑
i λifi, is equal to peZr. Certainly peZr ≤ KerF .

To prove the reverse inclusion KerF ≤ peZr, assume that
∑

i p
cibifi = 0 where ci ≥ 0,

bi are integers and bi is not divisible by p. Let c = min{ci}. Then we have∑
i|ci=c

pcbifi ∈ pc+1G,

which contradicts the fact that the projections of f1, . . . , fr in G/pG are linearly inde-
pendent. So E(Zm−n) ≤ K is isomorphic to Zm−n/peZm−n ' (Z/pe)m−n. �

We are going to use the following result.

Lemma 13.4. Let Σ be a closed and connected surface of genus g. There is a constant
integer C, depending only on g, with the following properties.

(1) If p > C is a prime and m ≥ 2 is an integer, then for any morphism φ : (Z/p)m →
Diff(Σ) the kernel of φ contains a subgroup isomorphic to (Z/p)m−2.

(2) If p ≤ C is a prime and e ≥ C is an integer, then for any morphism φ :
(Z/pe)m → Diff(Σ) the kernel of φ contains a subgroup isomorphic to (Z/pe−C)m−2.

Proof. Combining the comments in item (2) of Example 4.6 with the classification of
closed connected surfaces we deduce the existence of a constant C ≥ 1 such that any
finite abelian subgroup A < Diff(Σ) has a subgroup A′ ≤ A satisfying [A : A′] ≤ C and
d(A′) ≤ 2. We claim that this constant C satisfies the desired properties.

We first prove (1). Let p > C be a prime, let m ≥ 2 be an integer, and suppose
that φ : G → Diff(Σ) is a group morphism, where G := (Z/p)m. Any subgroup or
quotient of G can naturally be seen as a vector space over Z/p. There is a subgroup
A′ ≤ φ(G) which satisfies d(A′) ≤ 2 and [φ(G) : A′] ≤ C. Since φ(G) is a p-group
and p > C, we have A′ = φ(G). We have dimφ(G) = d(G) ≤ 2. It follows that
dim Kerφ ≥ dimG − 2 = m − 2. Hence Kerφ contains a vector subspace of dimension
m− 2, which is hence isomorphic to (Z/p)m−2.

We now prove (2). Let p ≤ C be a prime and let e ≥ 1 and m ≥ 2 be integers.
Let G = (Z/pe)m and let ψ : G → Diff(Σ) be a morphism of groups. There is a
subgroup A′ ≤ ψ(G) satisfying d(A′) ≤ 2 and [ψ(G) : A′] ≤ C. Let G′ = ψ−1(G). Then
|G/G′| = ps for some integer s, and we have ps ≤ C, which implies that s ≤ logpC ≤ C.
Let G′′ = psG. Then G′′ ≤ (Z/pe−s)m and G′′ ≤ G′. The latter implies that ψ(G′′) ≤ A′,
so d(ψ(G′′)) ≤ 2 by Lemma 13.1. By Lemma 13.3, Kerψ contains a subgroup isomorphic
to (Z/pe−s)m−2. �

We are now ready to prove Theorem 5.1. Suppose that X is a smooth closed, con-
nected 4-manifold. Suppose also, for the time being, that X is orientable, and choose an
orientation of X. Suppose that ri →∞ is a sequence of integers m is a natural number
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such that Gi := (Z/ri)m acts smoothly and effectively on X for every i. Without loss of
generality we assume that Gi acts on X preserving the orientation (apply [54, Lemma
2.1] to the kernel of Gi → Aut(H4(X;Z))). Also, as in the proof of Theorem 5.4, we
may assume that either each ri is a prime, or there exists some prime p such that each
ri is a power of p.

Passing to a subsequence if necessary, we can assume that either the action of (Z/ri)m
is free for every i, or that it has nontrivial stabilizers for every i. In the first case,
Theorem 6.2 implies that m ≤ 4, and if m = 4 then Theorem 6.3 allows to conclude the
proof of Theorem 5.1.

Now suppose that for each i there is some nontrivial subgroup Γi ≤ Gi such that
XΓi 6= ∅. We will see that in this case we necessarily have m ≤ 3. Choose for each i
a connected component Yi of XΓi . By Smith theory (see [9, Chap III, Theorem 4.3]),
|π0(XΓi)| is bounded above by a constant depending only on X (recall that ri is a power
of a prime), and hence using again [54, Lemma 2.1] we may assume that the action of
Gi on X preserves Yi for each i. Since Gi acts on X preserving the orientation, Yi has
even codimension in X, and hence it is 0 or 2-dimensional. (If p is odd then Yi has even
codimension regardless of whether the action is orientation preserving. It’s only in the
case p = 2 that orientability plays a role.) Passing to a subsequence we may assume
that dimYi is independent of i. If dimYi = 0 then Yi is a fixed point of Gi, so Lemma
11.3 gives an embedding Gi ↪→ GL(4,R), which implies that m ≤ 2. Suppose now that
dimYi = 2 for every i. By [9, Chap III, Theorem 4.3] and the theorem on classification
of closed connected surfaces, the genus of Yi is bounded uniformly. Hence we may apply
Lemma 13.4 to the morphisms φi : Gi → Diff(Yi) with a constant C independent of i.
We distinguish two cases.

Suppose that each ri is prime. Then, by item (1) in Lemma 13.4, the kernel of φi
contains a subgroup Hi ' (Z/ri)m−2. Let yi ∈ Yi be any point. Since Hi is contained in
the kernel of φi, all elements of Hi fix yi, and consequently by Lemma 11.3 there is an
embedding4 Hi ↪→ GL(2,R), which implies that m− 2 ≤ 1.

The other case is that in which each ri is of the form pei for some prime p independent
of i. This is dealt with as in the previous case using item (2) of Lemma 13.4, and again
the conclusion is that m− 2 ≤ 1.

To conclude the proof in dimension 4, we consider the case in which X is a smooth,
closed, connected and non-orientable 4-manifold. Let π : Y → X be the orientation
covering of X. Then Y is a smooth, closed, connected and orientable 4-manifold, so
the previous arguments, combined with [54, Theorem 1.12] (adapted to smooth ac-
tions), imply that disc-symsmooth(X) ≤ 4. Furthermore, if disc-symsmooth(X) = 4, then
disc-symsmooth(Y ) = 4, so H∗(Y ;Z) ' H∗(T 4;Z) as rings. We are going to see that the

4Lemma 11.3 states that the map λi : Hi ↪→ GL(Tyi
X) given by linearising the action is injec-

tive; but the image of λi is contained in the group GL(Tyi
X,Tyi

Yi) of automorphisms of Tyi
X acting

trivially on TyiYi ⊂ TyiX. Since Hi is finite, composing Hi ↪→ GL(TyiX,TyiYi) with the projection
GL(Tyi

X,Tyi
Yi)→ GL(Tyi

X/Tyi
Yi) ' GL(2,R) is again injective.
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assumption disc-symsmooth(X) = 4 leads to a contradiction; hence, if X is non-orientable
we have disc-symsmooth(X) ≤ 3.

Assume that disc-symsmooth(X) = 4, so that there exist integers ri →∞ and a smooth
effective action of (Z/ri)4 on X for each i. As we said, in this case H∗(Y ;Z) ' H∗(T 4;Z),
so Y is rationally hypertoral and H∗(Y ;Q) ' Λ∗H1(Y ;Q).

Let σ : Y → Y be the orientation reversing involution satisfying π ◦ σ = π. The
morphism π∗ : H∗(X;Q)→ H∗(Y ;Q) is injective and its image can be identified with the
subspace of σ-invariant classes in H∗(Y ;Q). Hence σ cannot act trivially on H∗(Y ;Q),
because that would imply that H4(X;Q) ' Q, which is impossible because X is non-
orientable. SinceH∗(Y ;Q) ' Λ∗H1(Y ;Q) it follows that σ acts nontrivially onH1(Y ;Q),
and hence also on H1(Y ;Z).

Arguing as in the proof of [54, Lemma 7.1] and using the assumption that (Z/ri)4 acts
smoothly and effectively on X for each i, we conclude that there are integers si → ∞
and, for each i, a smooth and effective action of (Z/si)4 on Y that commutes with the
involution σ. Applying Lemma 10.1 and Theorems 9.2 and 10.3 to the actions of (Z/si)4

on Y we reach a contradiction, so disc-symsmooth(X) ≤ 3 if X is non-orientable. This
finishes the proof of the theorem in the 4-dimensional case.

The proof for 3-dimensional manifolds follows the same scheme, but the details are
simpler. The same argument as before reduces the proof to the case of orientation
preserving actions of (Z/r)m on orientable 3-manifolds. Orientability implies that the
fixed point set of a finite group action is a disjoint union of a number of copies of the
circle, and the number of copies is bounded above by a constant depending only on the
manifold, by Smith theory. Hence one needs to use the analogue of Lemma 13.4 where
the surface is replaced by the circle.

Alternatively, if X is a smooth, closed and connected 3-manifold and (Z/r)m acts
smoothly and effectively on X then (Z/r)m+1 acts smoothly and effectively on Z :=
X × S1, where the (m + 1)-th factor Z/r acts by rotations on the S1 factor. Applying
the 4-dimensional case of the theorem to Z we deduce the proof of the theorem for X.

13.2. Proof of Theorem 4.5. As in the proof of Theorem 5.1, the case dimX = 1 is
elementary, and for the case dimX = 2 the comments in item (2) of Example 4.6 give
the result.

Hence we only need to consider the 3-dimensional case. Assume that X is a closed
topological manifold of dimension 3. By Moise’s theorem [46] (see also [7]), X has a
unique smooth structure (see also [70, Section 3.10]). By a recent result of Pardon
[60] any finite group acting effectively and topologically on X admits effective smooth
actions on X (although not every topological action is conjugate to a smooth action, as
illustrated by the famous example due to Bing [6]). Consequently, disc-symsmooth(X) =
disc-sym(X). So Theorem 5.1 implies that disc-sym(X) ≤ 3, and that if disc-sym(X) = 3
then H∗(X;Z) ' H∗(T 3;Z).
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We next prove that if disc-sym(X) = 3 then X is homeomorphic to T 3. By the
previous arguments it suffices to prove that if X is a smooth closed 3-manifold such that
H∗(X;Z) ' H∗(T 3;Z) and disc-symsmooth(X) = 3 then X is diffeomorphic to T 3. By
the arguments in [80, §2], the fact that X supports smooth effective actions of arbitrarily
large finite groups implies that X supports an effective action of S1. By Lemma 10.5 such
action is free, so X is the total space of a circle bundle on a closed surface Y = X/S1.
The surface Y is connected and orientable because X is, as H0(X;Z) ' H3(X;Z) ' Z.
Consider the following portion of Gysin’s exact sequence of the circle bundle X → Y :

0→ H1(Y ;Z)→ H1(X;Z)→ H0(Y ;Z)
∪e−→ H2(Y ;Z)

where e ∈ H2(Y ;Z) is the Euler class. Since H0(Y ;Z) ' Z ' H2(Y ;Z), if e 6= 0 then
H1(Y ;Z) ' H1(X;Z) ' Z3, which is impossible for a closed connected and orientable
surface Y . Hence e = 0, so X ∼= Y × S1. Again the previous sequence implies that
H1(Y ;Z) ' Z2, so Y is a 2-torus. This implies that X ∼= T 3.

13.3. Proof of Theorem 7.3. We will use the following notation. If G is a group,
Aut(G) denotes the group of automorphisms of G. If G′ ≤ G is an inclusion of groups,
Aut(G,G′) denotes the group of automorphisms φ ∈ Aut(G) such that φ(G′) = G′. If
G,H are groups, Mor(G,H) denotes the set of all group morphisms G → H. If H is a
subgroup of G, NG(H) denotes the normalizer of H in G.

Fix natural numbers k, C. We claim that there is a constant Λ such that any finite
p-group P ∈ Nk,C has a subgroup P ′ ≤ P satisfying [P : P ′] ≤ Λ and d(P ′) ≤ k(5k+1)/2.

Suppose that P ∈ Nk,C is a finite p-group. Let A be a maximal abelian normal
subgroup of P . There is a subgroup B ≤ A satisfying d(B) ≤ k and [A : B] ≤ C. By
Lemma 13.5 below, [Aut(A) : Aut(A,B)] ≤ Ck+C . Let ρ : Aut(A,B) → Aut(B) be the
restriction map. The kernel of the natural morphism η : Ker ρ→ Aut(A/B) is equal to
{IdA +ψ ◦ π | ψ ∈ Mor(A/B,B)}, where π : A → A/B is the projection (recall that we
use additive notation on abelian groups). The map IdA +ψ◦π 7→ ψ gives an isomorphism
of groups Ker η ' Mor(A/B,B), where the group structure on Mor(A/B,B) is inherited
by the group structure on B. Let e ∈ Z satisfy pe ≤ C < pe+1. Since A is a p-group,
|A/B| ≤ pe. The pe-torsion B[pe] ≤ B satisfies |B[pe]| ≤ ped(B) ≤ pek ≤ Ck. Since
Mor(A/B,B) = Mor(A/B,B[pe]), we have |Mor(A/B,B)| ≤ (Ck)C = CkC . Hence:

|Ker ρ| ≤ |Aut(A/B)| · |Mor(A/B,B)| ≤ C!CkC .

The action of P by conjugation on itself induces a morphism ζ : P → Aut(A) whose
kernel is equal to A ≤ P (see e.g. [65, §5.2.3]). Let P0 = ζ−1(Aut(A,B)). Then

[P : P0] ≤ [AutA : Aut(A,B)] ≤ Ck+C .

Since d(B) ≤ k, the Gorchakov–Hall–Merzlyakov–Roseblade lemma (see e.g. [68, Lemma
5]) implies that the subgroup ρ(ζ(P0)) ≤ Aut(B) satisfies d(ρ(ζ(P0))) ≤ k(5k − 1)/2.
Hence we may pick up elements g1, . . . , gr ∈ P0, with r ≤ k(5k − 1)/2, such that
ρ(ζ(g1)), . . . , ρ(ζ(gr)) generate ρ(ζ(P0)). Let P ′ ≤ P0 be the subgroup generated by
the elements g1, . . . , gr ∈ P0 and by B. Clearly d(P ′) ≤ k + k(5k − 1)/2 = k(5k + 1)/2.
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We now bound [P : P ′]. From the exact sequence

1→ ζ(P0) ∩Ker ρ→ ζ(P0)→ ρ(ζ(P0))→ 1

we conclude that

|ζ(P0)| ≤ |ζ(P0) ∩Ker ρ| · |ρ(ζ(P0))| ≤ |Ker ρ| · |ρ(ζ(P0))| ≤ C!CkC |ρ(ζ(P0))|.
Since ρ : ζ(P ′)→ ρ(ζ(P0)) is surjective, we have |ζ(P ′)| ≥ |ρ(ζ(P0))|. The two estimates
imply [ζ(P0) : ζ(P ′)] ≤ C!CkC . We have Ker ζ ∩ P0 = A and Ker ζ ∩ P ′ = B, so
[P0 : P ′] = [A : B][ζ(P0) : ζ(P ′)] ≤ C · C!CkC . Combining this with our estimate on
[P : P0] we obtain

[P : P ′] = [P : P0] · [P0 : P ′] ≤ Λ := Ck+C · C · C!CkC = C(k+1)(C+1)C!.

This finishes the proof of the claim.

Now let N ∈ Nk,C . Let p1 < p2 < · · · < ps be the primes dividing |N |, and for each i
let Pi ≤ N be a Sylow pi-subgroup of N . By [36, Theorem 1.26] each Pi is normal (and
hence unique). The same result [36, Theorem 1.26] implies that the multiplication map
µ : P1 × · · · × Ps → N is a bijection. Suppose that pj ≤ Λ < pj+1.

We next define inductively subgroups N = N1 ≥ N2 ≥ · · · ≥ Nj+1 satisfying

[Ni : Ni+1] ≤ Ω := (Λ!)k(5k+1)/2+Λ for every i,

and subgroups P ′i ≤ Ni ∩ Pi satisfying [Ni ∩ Pi : P ′i ] ≤ Λ and d(P ′i ) ≤ k(5k + 1)/2
for i = 1, . . . , j. Set N1 := N . Suppose that 1 ≤ i ≤ j and that N1 ≥ · · · ≥ Ni

and P ′1, . . . , P
′
i−1 have been defined. Let Qi be the Sylow pi-subgroup of Ni. Note that

Qi ≤ Pi by the uniqueness of the pi-Sylow subgroup of N , hence Qi = Ni ∩ Pi. By the
claim there is a subgroup P ′i ≤ Qi satisfying [Qi : P ′i ] ≤ Λ and d(P ′i ) ≤ k(5k + 1)/2. Let
Ni+1 := NNi

(P ′i ). Since Qi E Ni, we can estimate, using Lemma 13.5 below:

[Ni : Ni+1] ≤ [Aut(Qi) : Aut(Qi, P
′
i )] ≤ Ω.

By construction we have, for every 1 ≤ i ≤ j,

[Pi : P ′i ] = [Pi : Qi] · [Qi : P ′i ] = [Pi : Ni ∩ Pi] · [Qi : P ′i ]

≤ [N : Ni] · [Qi : P ′i ] ≤ Ωi−1Λ,

and also [N : Nj+1] ≤ Ωj.

For each j+1 ≤ i ≤ s let P ′i := Nj+1∩Pi. The claim implies that d(P ′i ) ≤ k(5k+1)/2
for every j + 1 ≤ i ≤ s, which combined with the previous arguments implies that
d(P ′i ) ≤ k(5k + 1)/2 for every i. By construction, each of the groups P ′i normalizes the
previous groups P ′1, . . . , P

′
i−1, and this implies that

N ′ := µ(P ′1 × · · · × P ′s)
is a subgroup of N , and that each P ′i is the Sylow pi-subgroup of N ′. Furthermore,

|N ′| =
∏
i

|P ′i | ≥

(
j∏
i=1

|Pi|
Ωi−1Λ

)(
s∏

i=j+1

|P ′i |

)
.
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For each prime p and each integer a let νp(a) be the integer such that pνp(a) divides
a but pνp(a)+1 does not. To find a lower bound for |N ′|, note that if 1 ≤ i ≤ j then

|Pi| = p
νpi (|N |)
i and that, since |Nj+1| divides |N |, νpi(|N |) ≥ νpi(|Nj+1|). In addition, we

have |P ′i | = p
νpi (|Nj+1|)
i for each j + 1 ≤ i ≤ s. Therefore,

|N ′| ≥ |Nj+1|∏j
i=1 Ωi−1Λ

=
|Nj+1|

Ωj(j−1)/2Λj
≥ |N |

ΩjΩj(j−1)/2Λj
=

|N |
Ωj(j+1)/2Λj

.

Consequently,

[N : N ′] ≤ Ωj(j+1)/2Λj ≤ C ′ := ΩΛ(Λ+1)/2ΛΛ,

since the number of primes in the set {1, . . . ,Λ} is at most Λ. By [40, Theorem 2] we
have d(N ′) ≤ 1 + k(5k + 1)/2, so Theorem 7.3 is proved.

The following lemma has been used in the previous proof.

Lemma 13.5. Let H ≤ G be an inclusion of finite groups. We have

[Aut(G) : Aut(G,H)] ≤ ([G : H]!)d(H)+[G:H],

and if H is normal then we have [Aut(G) : Aut(G,H)] ≤ [G : H]d(H)+[G:H].

Proof. If H is normal, define K := H. Otherwise, let K be the kernel of the morphism
G→ Perm(G/H) given by left multiplication of G on G/H, where Perm(S) denotes the
group of permutations of the set S. In both cases, K is a normal subgroup of G, and if
H is not normal then [G : K] ≤ [G : H]!.

Let σ : Aut(G) → Mor(G,G/K) be the map sending φ ∈ Aut(G) to π ◦ φ, where
π : G → G/K is the projection. We have d(G) ≤ d(H) + [G : H]. A morphism
G → G/K is uniquely determined by the images of the elements in a generating set
of G, so |Mor(G,G/K)| ≤ L := |G/K|d(H)+[G:H]. Hence, there is some φ ∈ Aut(G)
such that |σ−1(σ(φ))| ≥ |Aut(G)|/L. Let ψ ∈ σ−1(σ(φ)), and write ψ = φ ◦ ξ for
some ξ ∈ Aut(G). Let h : G → G be the map defined by h(g) = ξ(g)g−1. We have
σ(ψ) = σ(φ), so φ(ξ(g)g−1) = φ(ξ(g))φ(g−1) = ψ(g)φ(g)−1 ∈ K for every g ∈ G, or
equivalently ξ(g)g−1 ∈ φ−1(K) for every g. In particular, if g ∈ φ−1(H) then ξ(g) ∈
gφ−1(K) ⊆ φ−1(H), so ξ(φ−1(H)) = φ−1(H). Hence the image of the injective map

σ−1(σ(φ)) 3 ψ 7→ φ−1 ◦ ψ ∈ Aut(G)

is contained in Aut(G, φ−1(H)), so |Aut(G, φ−1(H))| ≥ |σ−1(σ(φ))| ≥ |Aut(G)|/L. But
Aut(G,H) 3 θ 7→ φ−1 ◦ θ ◦ φ ∈ Aut(G, φ−1(H)) is a bijection, so the lemma follows. �
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