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Five latent factors underlie response to 
immunotherapy

Joseph Usset1,2,3, Axel Rosendahl Huber1,10,11, Maria A. Andrianova1,11, 
Eduard Batlle    1,4,5, Joan Carles2,6, Edwin Cuppen    3,7, Elena Elez2,6, 
Enriqueta Felip2,6, Marina Gómez-Rey2, Deborah Lo Giacco2, 
Francisco Martinez-Jimenez    2,3, Eva Muñoz-Couselo    2,6, Lillian L. Siu    8, 
Josep Tabernero    2,5,6, Ana Vivancos2, Ferran Muiños    1,10, 
Abel Gonzalez-Perez    1,5,9  & Nuria Lopez-Bigas    1,4,5,9 

Only a subset of patients treated with immune checkpoint inhibitors 
(CPIs) respond to the treatment, and distinguishing responders from non-
responders is a major challenge. Many proposed biomarkers of CPI response 
and survival probably represent alternative measurements of the same 
aspects of the tumor, its microenvironment or the host. Thus, we currently 
ignore how many truly independent biomarkers there are. With an unbiased 
analysis of genomics, transcriptomics and clinical data of a cohort of patients 
with metastatic tumors (n = 479), we discovered five orthogonal latent factors: 
tumor mutation burden, T cell effective infiltration, transforming growth 
factor-beta activity in the microenvironment, prior treatment and tumor 
proliferative potential. Their association with CPI response and survival was 
observed across all tumor types and validated across six independent cohorts 
(n = 1,491). These five latent factors constitute a frame of reference to organize 
current and future knowledge on biomarkers of CPI response and survival.

The development of CPIs has had a tremendous impact on cancer ther-
apy1. However, the response of patients with cancer to these agents 
varies considerably1–6, and important immune-related adverse events 
may appear as a result of treatment7. Consequently, intense research 
has been dedicated in recent years to identifying features that influence 
the response to CPIs2,4,8–13, leading to the identification of potential 
biomarkers.

These studies have made it increasingly clear that the response to 
CPIs is mediated by several characteristics of the tumor, its microenvi-
ronment and the host12, which we may regard as latent factors defining 

CPI response and survival across patients. However, it is likely that 
different biomarkers identified across a multitude of studies—often 
focused on one or a small group of features—represent different ver-
sions of the same underlying latent factor. For example, the expression 
of a number of genes and gene sets previously identified as biomark-
ers may represent the degree of infiltration of cytotoxic cells in the 
tumor14–17. Furthermore, given that separate research groups indepen-
dently test different sets of potential biomarkers, there is no effective 
control of the potential false positives associated with multiple testing. 
As a result of these problems, it is not clear at present how many such 
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study (https://www.cpct.nl/cpct-02) received anti-PD1/PDL1 or a 
combination of anti-PD1/PDL1 and anti-CTLA4 therapy. We refer to 
these patients as the HMF-CPI cohort. These include patients who 
had suffered from primary tumors of the skin (melanomas, n = 191), 
lung (n = 110), bladder (n = 88) and other cancer types (other; n = 90; 
Fig. 1a,b and Supplementary Table 1). Whole-genome somatic altera-
tions of the metastatic tumors before CPI treatment were identified 
across all tumors in the HMF-CPI cohort and, for 396 of them, the whole 
transcriptome of the tumor was also sequenced. Rich clinical data, 
including treatments received before the diagnosis of their metastatic 
tumors, response to the CPI therapies, following Response Evaluation 
Criteria20 (n = 467) and survival information (n = 479), were also avail-
able (Supplementary Table 1).

To carry out a systematic de novo discovery of biomarkers of 
CPI response, we computed 27,923 features (Fig. 1c,d and Supple-
mentary Note 1). These included the mutational (single nucleotide 
variants + indels) status of 15,829 genes, the copy number status of 
2,415 genomic regions, 64 aggregated somatic mutation features (for 
example, TMB, frameshift indel burden, activity of mutational signa-
tures) and the occurrence of known driver structural variants as well 
as features summarizing the genomic instability (for example, total 
number of chromosomal fragments, ploidy, whole-genome doubling, 
and so forth). We also used the expression level of 8,817 genes and 
clinical characteristics of the patients such as sex, type of treatment 
received for the primary tumor and age at the time of diagnosis of 
the metastasis as features. Finally, human leukocyte antigen (HLA) 
features that can affect the immune response to the tumor were also 
included, such as their HLA haplotype and the number of somatically 
lost HLA alleles.

independent latent factors of CPI response and survival there are, what 
aspects of the tumor, its microenvironment or the host they represent 
and whether they are relevant across different tumor types.

To answer these questions, we exploited a richly profiled and anno-
tated cohort of patients with metastatic tumors (fresh–frozen biopsied) 
treated with CPIs (part of the cohort profiled by the Hartwig Medical 
Foundation (HMF)18,19; n = 479). Specifically, we aimed to identify fea-
tures of the tumors, their microenvironment or the host that appeared 
to be significantly associated with CPI response and survival, both across 
the pan-cancer HMF-CPI cohort and all represented cancer types. To this 
end, we used an exhaustive—not biased by prior knowledge—analysis of 
thousands of molecular and clinical features to detect their association 
with CPI response or survival. We discovered that all significantly associ-
ated features collapse into one of five independent latent factors that 
are relevant across all tumor types represented in this cohort. They are 
the tumor mutation burden (TMB), effective T cell infiltration, whether 
the patients received any prior treatment, the activity of transforming 
growth factor-beta (TGF-β) in the tumor microenvironment and the 
proliferative potential of the tumor. We verified that at the current level 
of statistical power, there are no other latent factors of CPI response 
and survival common to all cancer types analyzed. We validated the 
association of these five latent factors with CPI response and survival in 
six independent cohorts (n = 1,491 patients) spanning six major cancer 
types; to our knowledge, the largest such validation effort.

Results
Extracting features from a metastatic cancer cohort
Within the HMF18,19 cohort (n = 5,288), 479 patients with metastatic 
cancer who were part of the Center for Personalized Cancer Treatment 
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Fig. 1 | Extracting features from the HMF-CPI cohort. a–c, For 479 patients 
with metastatic cancer in the HMF-CPI database of different cancer types, we 
obtained 18 clinical features, 19 germline HLA allotype features, 18,382 somatic 
features (based on single base substitutions, indels, copy number variants and 
other structural variants affecting specific genomic elements or summaries 
thereof) and 8,817 transcriptomic features, corresponding to all expressed 

genes. d, Numeric feature values were rescaled and re-normalized (Methods), 
yielding a large table describing the cohort. LOH, loss of heterozygosity, RECIST, 
Response Evaluation Criteria, CNV, copy number variant; SV, structural variant; 
WGD, whole-genome doubling; CR, complete response; PR, partial response; SD, 
stable disease; PD, progressive disease; OS, overall survival; PFS, progression-
free survival.
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Five latent factors of CPI response and survival
To identify which of the more than 27,000 features computed per 
patient were significantly associated with CPI response, we performed 
univariate regressions (adjusted for the site of origin of the tumor, age 
of the patients, site of biopsy of the metastasis and tumor purity). After 
controlling for multiple testing21, we identified several hundred features 
that appeared to be significantly associated with CPI response (Fig. 2a, 
Extended Data Fig. 1a–c and Supplementary Note 1).

Then, we asked how these significant features relate to each other 
and which underlying latent factors of CPI response they represent. To 
answer these questions, we clustered all significant features based on 
their pairwise correlations (Fig. 2b). Virtually all (Supplementary Note 1)  
could be unambiguously assigned to one of three clusters (R1, R2 or 
R3, encompassing somatic, clinical or transcriptomics features). This 
implies that only three latent factors associated with CPI response were 
detected from the more than 27,000 features analyzed.

To understand the nature of cluster R1, we first computed the 
mean of its integrating features. The single feature in the cluster with 
the highest correlation to the mean was the overall TMB, with other 
aggregated mutational features (for example, clonal TMB) also showing 
a high correlation. Specifically, the increase of TMB is associated with 
a higher probability of response and also increased survival (Extended 
Data Fig. 2a and Supplementary Fig. 1). Thus, we named this latent fac-
tor TMB, and although it could be measured using any of the features 
in the cluster, we selected the TMB to represent it. Importantly, the 
mutation rate of virtually all genes (some of which have been previ-
ously associated with CPI response3,4,10,22–24) also appear to be highly 
correlated with the TMB as part of this cluster of features, and indeed, 
some heavily mutated genes exhibit lower P values in the regression 
analysis than TMB (Supplementary Note 1). This implies that identify-
ing the mutations of individual genes as biomarkers of CPI response 
independently of the TMB is a very challenging task.

Cluster R2 was integrated by two highly correlated clinical fea-
tures: prior exposure to systemic therapy11 and prior exposure to any 
therapy. These two features appear to be significantly negatively asso-
ciated with CPI response and survival (Fig. 2b, Extended Data Fig. 2b, 
Supplementary Fig. 1 and Supplementary Note 1), perhaps owing to 
increased tumor aggressiveness or deteriorated patient condition. 
Thus, we named cluster R2 ‘prior treatment’, and for the following analy-
ses, we represented this cluster using exposure to any prior treatment.

Cluster R3 grouped the expression of 48 genes. We reasoned that 
the expression of gene sets representing biological functions in the 
tumor or its microenvironment could aid in the interpretation of this 
cluster. Thus, we computed the mean expression of 255 gene sets (225 
representing all Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways and cancer hallmarks obtained from the Molecular Signa-
tures Database (MSigDB)25,26 and 30 collected from the literature12,27,28; 
Supplementary Table 2, Fig. 2c,d and Methods). The mean expression 
of 13 gene sets was significantly associated with the response to CPI 
(Fig. 2d, Extended Data Figs. 2c and 3a and Supplementary Fig. 1), and 
all of them showed a high correlation (Pearson’s coefficient of >0.8) 
with the mean expression of the genes in the cluster. They all represent 
some aspect of immune infiltration in the tumor; most specifically, 
T lymphocyte infiltration. Therefore, we named this third latent fac-
tor ‘effective T cell infiltration’ and represented it through the mean 
expression of all genes in the cluster. The increase in effective T cell 
infiltration appears significantly associated with a higher probability 
of CPI response and longer survival.

There is a clear positive relationship between the correlation of 
every feature to the representative of its corresponding latent factor 
(that is, TMB, prior treatment and the mean expression of genes in 
cluster R3) and the significance of its association with CPI response. 
The higher the correlation of a feature with the mean of its correspond-
ing cluster, the more significant its association with CPI response 
(Fig. 2e and Extended Data Fig. 2a–c). These three latent factors are 

also significantly associated with overall survival and progression-free 
survival upon CPI treatment (Extended Data Fig. 2a–c).

We then asked whether any other latent factors of the tumor, its 
microenvironment or the host specifically influence the survival of 
patients, independently of the previous three latent factors associ-
ated with response (given that response is, by itself, a major determi-
nant of survival). To answer this question, we focused on features that 
appeared to be significantly associated with overall survival, after 
controlling (in addition to the aforementioned covariates) for the three 
latent factors previously associated with response (Fig. 3a). Again, to 
discern how many latent factors were represented by these features, 
we clustered them based on their pairwise correlations (Fig. 3b).

One of the three clusters was clearly orthogonal to the other two, 
which exhibited a certain degree of inter-correlation. Thus, we named 
them clusters S1, S2.1 and S2.2, as they only represent two mutually 
orthogonal latent factors (Fig. 3b and Supplementary Note 1). To inter-
pret them, we analyzed the correlation of their mean expression with 
that of 255 gene sets (Supplementary Table 2), as explained above. 
The mean of cluster S1 showed the highest correlation with a gene set 
named ‘Proliferation potential’ (Fig. 3c) and a high correlation with 
other gene sets representing cell cycle and overall cell proliferation 
(Extended Data Figs. 2d and 3b,c and Supplementary Fig. 1). We thus 
named it ‘tumor proliferative potential’ and represented it through the 
mean expression of all genes in the cluster.

The mean expression of the genes in cluster S2.1 showed the 
highest correlation with a gene set representing TGF-β in fibroblasts 
(Fig. 3d) and a high correlation with other gene sets related to this bio-
logical process (Extended Data Figs. 2e and 3b,d–f). As in other cases, 
we represented this latent factor through the mean expression of the 
genes in the cluster. Low values of this latent factor (TGF-β activity in 
the microenvironment) are associated with longer survival of patients 
upon CPI treatment even without correcting for the effect of the three 
response-associated latent factors (Fig. 3e).

We next asked whether the latent factors are specifically associ-
ated with CPI treatment or whether they represent general elements 
that influence response and survival upon any type of therapy. To 
answer these questions, we analyzed the data for 2,497 patients in the 
HMF cohort who received non-CPI therapies and found that the effects 
of TMB, effective T cell infiltration and TGF-β activity in the micro-
environment are unique to CPI therapies, whereas prior treatment 
appears to affect the response to both CPI and non-CPI therapies, and 
the effect of tumor proliferative potential appears even larger across 
non-CPI than CPI-treated patients (Extended Data Fig. 4). Virtually all 
features that appear significantly associated with CPI response and/
or survival are grouped in one of the five latent factors (Extended Data 
Fig. 5), indicating that no latent factor remains to be discovered in the 
HMF-CPI cohort.

In summary, five mutually orthogonal latent factors underlying 
CPI response and survival across the HMF-CPI cohort (Fig. 3g) emerged 
from this unbiased analysis. Supplementary Dataset 1 lists the results of 
the unbiased analysis of features in their association with CPI response 
and survival. Each of them can be represented through a number of 
features that are clustered by virtue of their pairwise correlations.

Validation of the five latent factors
Next, we asked whether the five latent factors, identified across HMF-CPI, 
were of comparable importance in the four groups of tumors with dif-
ferent tissues of origin represented in the cohort. To answer this ques-
tion, we conducted, for each latent factor, multivariate regressions 
(adjusted for age, tumor purity, biopsy location and the remaining four 
latent factors) of their effect on CPI response and survival (Fig. 4). We 
found that the direction of the association of each factor (with response 
or survival) was maintained for all tumor types as in the pan-cancer 
analysis, with small differences in the effect size and the significance of 
their associations. One exception is the association of effective T cell 
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Fig. 2 | Three latent factors associated with CPI response. a, Logistic regression 
analysis (represented as a volcano plot) identified features significantly 
associated with CPI response (Methods and Supplementary Note 1).  
Dots with larger sizes represent significant features, and they are colored 
following the type of feature. P values shown in the plots were computed by 
logistic regressions. These are, by definition, two-sided. b, All significant  
features were selected and clustered based on their pairwise correlations.  
The colors denoting the clusters are inherited from the type of feature included 
in each of them according to the color legend in a. c, Mean expression values 
of cluster R3 (x-axis), and the 'T-cell effector' gene set (y-axis), across patients 
(dots). The Pearson's correlation coefficient is indicated. d, To discern the 

nature of cluster R3, the correlation of its mean to 255 gene sets collected from 
the literature was computed across patients (as illustrated in panel (c)). Dots 
represent gene sets. e, Relationship between the significance of the association 
with the response (y axis) and the correlation (x axis) to the mean of the cluster of 
the features in each cluster. P values shown in the plots were computed by logistic 
regressions. These are, by definition, two-sided. Dots in these three panels 
appear in darker color if they represent features significantly associated with 
CPI response and with a correlation coefficient above 0.5 with the mean of their 
respective cluster. In (a), (d) and (e), the horizontal dashed lines represent the 
significance threshold according to the Benjamini–Yekutieli correction.
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infiltration with response in patients with lung tumors, which was not 
significant (although the significance in the association with survival 
is maintained). The other is prior treatment, which does not exhibit 
a significant association with response across bladder tumors. Very 
similar results were obtained in cancer type-wise univariate regressions 
(Extended Data Fig. 6a). In summary, we find that the latent factors, with 
few exceptions, appear to underlie CPI response and survival across all 
tumor types represented in the HMF-CPI cohort (Supplementary Note 1).

We next asked whether the five latent factors are validated in inde-
pendent cohorts of the same and other tumor types representing the 
wide diversity of approaches of sample processing and tumor profiling 
used in the clinic. To this end, we collected data from the literature for 
five independent cohorts or metacohorts (INSPIRE29, Lyon30, MARI-
ATHASAN27, PARKER ICI31, RAVI32) and obtained the data from another 
cohort of patients treated at the Vall d’Hebron Institute of Oncology 
(VHIO). These validation cohorts comprised 1,491 patients with primary 

0

2

4

6

8

1 2

–l
og

10
 (P

-v
al

ue
) s

ur
iv

al
 re

si
du

al
s Clinical

CNVs and SVs
HLA
RNA
Somatic

a

Cluster S1
(n = 22)

Cluster S2.1
(n = 18)

Cluster S2.2
(n = 10)

C
lu

st
er

 S
1

(n
 =

 2
2)

C
lu

st
er

 S
2.

1
(n

 =
 18

)
C

lu
st

er
 S

2.
2

(n
 =

 10
)

Correlation

–1.0
–0.5
0
0.5
1.0

b

1

2

3

4

5
R = 0.963 R = 0.906

1 2 3 4

Mean expression cluster S1

M
ea

n 
ex

pr
es

si
on

pr
ol

ife
ra

tio
n 

po
te

nt
ia

l g
en

e 
se

t

Proliferation potential
vs cluster S1

c

2

3

4

5

1 2 3 4 5

Mean expression cluster S2.1

M
ea

n 
ex

pr
es

si
on

TG
F-

β 
�b

ro
bl

as
ts

 g
en

e 
se

t
TGF-β �broblasts

vs cluster S2.1
d

0

2

4

6

8

1
1/hazard estimate

2

–l
og

10
 (P

-v
al

ue
) o

ve
ra

ll 
su

rv
iv

al

Clinical
CNVs and SVs
HLA
RNA
RNA: T cell
RNA: TGF-β
Somatic

e

ANLN

KIF11
MKI67

TOP2A

Proliferation
potential CD248

COL4A1
COL4A2

THY1

TGF-β �broblasts

Expression cluster S1, proliferation potential Expression cluster S2.1, TGF-β �broblasts

–0.5 0 0.5 1.0 –0.5 0 0.5 1.0

0

2

4

6

8

0

2

4

6

8

–l
og

10
 (P

-v
al

ue
) s

ur
vi

va
l r

es
id

ua
ls

RNA
RNA: proliferation
RNA: TGF-β

f g

Better overall survivalWorse overall survival

Better overall survivalWorse overall survival

Significance
threshold
P = 5.5 × 10–5

Correlation with mean
expression cluster S2.1

Strong
correlationNo correlation Strong

correlationNo correlation

Correlation with mean
expression cluster S1

T cell

TMB

TGF-β Proliferation

No prior
therapy

CPI-speci�c
factors

Non-speci�c
factors

Fig. 3 | Two latent factors associated with survival. a, Features significantly 
associated with survival residuals, that is, after correction for the three latent 
factors associated with response. Larger dots represent significant features. 
Features with high correlation (Pearson coefficient of >0.5) with any of the three 
previously identified latent factors are removed. P values shown in the plots were 
computed by Cox regressions. These are, by definition, two-sided. b, Clusters 
of features based on their pairwise correlations. c,d, Cluster S1 and cluster 
S2.1 are highly correlated with gene sets representing the tumor proliferative 
potential and the activity of TGF-β in the tumor microenvironment, respectively. 
Dots represent the mean expression of two gene sets (y axis) and the mean 

expression of the genes in clusters S1 and S2.1 (x axis) across patients. Pearson's 
correlation coefficients are indicated. e, Features significantly associated with 
overall survival. Larger dots represent significant features. f, Significance of the 
association with the response (y axis) and the correlation (x axis) to the mean 
of the cluster of the features in each cluster. P values shown in the plots were 
computed by Cox regressions. These are, by definition, two-sided. g, Depiction 
of the five latent factors associated with CPI response and survival. Upwards 
arrows, positive association with response and/or survival; downwards arrows, 
negative associations. In (a), (e) and (f), the horizontal dashed lines represent the 
significance threshold according to the Benjamini–Yekutieli correction.
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or metastatic tumors of different organs (Supplementary Table 1 and 
Supplementary Note 1). For 339 of these patients, we obtained suf-
ficient information to compute the five latent factors, while for the 
remaining 1,152, we could compute only four or three latent factors. 
Using the available clinical information, we were able to evaluate the 
association of the latent factors with CPI response for 1,294 patients 
across all cohorts, while the association with overall survival could be 
computed for 1,165 patients across five cohorts. Unlike in the case of 
the HMF-CPI cohort, most of these studies (except INSPIRE) started 
from formalin-fixed, paraffin-embedded samples. The approaches 
used to identify somatic mutations range from whole-exome tumor-
normal paired sequencing to tumor-only sequencing of a panel of 432 
genes. The expression of genes was measured by whole-transcriptome, 
targeted RNA sequencing (RNA-seq) or a panel of 170 genes using the 
nCounter (NanoString) platform.

In a multivariate analysis, pooling all external cohorts, the asso-
ciations were consistent between each of the five latent factors and 
CPI response or survival, with all except tumor proliferative potential 
reaching significance (Fig. 4). In some individual cohorts, the associa-
tion of a particular latent factor with CPI response or survival could 
not be verified, such as the TMB in the VHIO cohort. In this case, owing 
to the lack of a control sample to reliably call somatic mutations, the 
calculation of TMB is probably not reliable (Supplementary Note 1). 

Nevertheless, despite the differences in cohorts, profiling and sample 
collections, the associations observed in the HMF-CPI cohort for the five 
latent factors were, overall, reproduced across the validation cohorts. 
T cell effective infiltration was positively associated with CPI response 
across five validation cohorts (three significantly), TGF-β activity in the 
microenvironment was negatively associated with survival in the five 
cohorts in which it could be evaluated (four significantly) and tumor 
proliferative potential was negatively associated with survival in four 
out of five cohorts (two significantly; Fig. 4). The association with prior 
treatment was validated in all (two significantly) but one cohort (Fig. 4  
and Supplementary Note 1). Genes closer to the mean of clusters R1 
(T cell effective infiltration), S2.1 (TGF-β activity in the microenviron-
ment) and S1 (tumor proliferative potential) in HMF-CPI also tend to 
correlate better with one another across the four validation cohorts 
with transcriptomics data (Methods; Extended Data Fig. 6b).

In summary, despite the wide differences in tumor sample process-
ing and profiling, many of the associations between the five latent fac-
tors and CPI response or survival previously discovered in the HMF-CPI 
are also observed across six independent cohorts.

Multivariate models to predict CPI response and survival
We next asked how the effects of the five latent factors combine (through 
accumulation or interaction) to influence CPI response and survival. 
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Fig. 4 | Validation of the latent factors across independent cohorts. Forest 
plots illustrating the association of latent factors across groups of tumors with 
different origins in the HMF-CPI cohort (left) and across six independent cohorts 
(right) with CPI response and overall survival. The value of each latent factor 
was computed as the mean of the cluster of features obtained in the HMF-CPI 
cohort across each validation cohort, except in the VHIO cohort, where the 
transcriptomics latent factors were estimated from alternative sets of genes 
(Methods). In the forest plots, the dots represent the strength (coefficients 
estimated through multivariate logistic or Cox regression) of the association 

between the latent factor and response or survival across cohorts. The horizontal 
bars denote the 95% confidence intervals. Gray dots represent latent factors 
whose estimates are within one standard error at either side of 0, dots with a 
light color (green or red) represent non-significant associations with coefficient 
estimates above (or below) one standard error of 0 and dark-colored dots 
represent significant associations. Green dots represent positive associations 
with improved outcomes (higher response odds or lower hazard ratio), while red 
dots represent negative associations (lower response or higher hazard ratio). 
Mixed denotes cohorts integrated by patients with multiple tumor types.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 56 | October 2024 | 2112–2120 2118

Article https://doi.org/10.1038/s41588-024-01899-0

To that end, we trained multivariate machine-learning (tree-based 
gradient-boosting) models33 to predict the response, overall survival or 
progression-free survival of patients in the HMF-CPI cohort. To exploit 
the higher statistical power provided by the full cohort and the specific-
ity inherent in the response across cancer types, we first constructed 
pan-cancer models and then used them as the base to obtain hybrid 
models; that is, subjecting the pan-cancer models to added rounds 
of training on the data corresponding to each tumor type (Fig. 5a and 
Supplementary Note 1). The hybrid models trained on the five latent 
factors outperformed models trained solely on tumor type-specific 
data (Supplementary Fig. 2a) as well as equivalent models trained solely 
on values of TMB and PDL1 expression (Supplementary Fig. 2b) within 
the HMF-CPI cohort. Models trained on different representations of the 
five latent factors showed comparable performance, supporting the 
idea that the features of each cluster constitute alternative representa-
tions of the latent factors (Supplementary Fig. 3a,b). The variability in 
the influence of the five latent factors across different tumor types in 
the HMF-CPI cohort observed in the multivariate regression analysis 

described above is verified through a survey of their relative importance 
on the prediction cast by the multivariate machine-learning models of 
CPI response and overall survival (Methods; Extended Data Fig. 7a,b).

We then stratified 396 patients in the HMF-CPI cohort with all data 
types ( jointly and separately by tumor type) into three groups of low 
(below 0.1), medium (between 0.1 and 0.5) and high (greater than 0.5) 
predicted probability of response to CPI. Only 2 (3%) of the 67 patients 
in the low-probability group actually responded to CPI treatment, com-
pared with 61 out of 97 (63%) patients in the high probability of response 
group (Fig. 5b). This stratification also significantly separated patients 
in the HMF-CPI cohort based on their survival (Fig. 5c). Stratifying the 
patients based on a threshold of TMB used in the clinical practice (ten 
mutations per Mbp34,35) to separate high-TMB and low-TMB tumors is less 
optimal, with 17% of responders among patients with low-TMB tumors 
and 42% among those with high-TMB tumors (Fig. 5d). Interestingly, 
patients in the group with low probability of response exhibit a range of 
predicted hazards according to the overall survival pan-cancer model 
(Extended Data Fig. 8a–g and Supplementary Note 1). Across the VHIO 
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and INSPIRE cohorts, the stratification based on the predicted prob-
ability of response produced a perfect identification of patients with a 
low probability of response, while results were less accurate across the 
RAVI cohort (Extended Data Fig. 9a and Supplementary Fig. 4).

When applied to patients in the HMF cohort who did not receive 
CPIs, the multivariate models of response identified an important 
fraction of the patients with skin (35%), bladder (42%) and lung (16%) 
tumors with a high likelihood of response to the treatment (Extended 
Data Fig. 10). Interestingly, patients suffering from other metastatic 
malignancies (some not usually considered as candidates for CPI) were 
also identified as potentially good responders. For example, 18 (4%) 
patients with breast cancer, 10 (3%) patients with colorectal cancer, 10 
(19%) patients with kidney tumors and 5 (15%) patients with liver cancer 
exhibited high probability of response to CPI.

In summary, we illustrate that multivariate models combining the 
five latent factors produce a more accurate stratification of patients 
according to their predicted probability of response than the TMB 
alone.

Discussion
In this work, we followed a completely unbiased approach to discover 
genomics, transcriptomics and clinical features associated with CPI 
response and survival across patients with cancer. We aimed to answer 
how many and which aspects of the tumor, its microenvironment and 
the host influence the response to CPIs across patients (that is, latent 
factors), in an effort to provide a framework of reference to existing 
copious reports of biomarkers. First, through univariate logistic and 
Cox regressions, we identified a few hundred features that are sig-
nificantly associated with CPI response and/or survival. Five latent 
factors emerge when these significant features are clustered based 
on their pairwise correlation. These represent mutually independent 
aspects of the tumor, its microenvironment and the host that influence 
the response of a patient to CPI and their hazard after the treatment.

Although the fact that some genomics and transcriptomics fea-
tures may represent the same aspect of tumors, their microenviron-
ment or the host had been reported before, here we show that an array 
of different, highly intercorrelated features (for example, expression of 
genes related to T cell function) actually represent different measure-
ments of the same latent factor. This is particularly striking in the case 
of TMB: the mutation rate of hundreds of genes (including cancer driver 
genes) appears to be highly correlated with TMB, suggesting that the 
association of mutations in a given gene with CPI response rather than 
an independent biomarker is just an alternative proxy measurement 
of TMB. Although the mutation status of some genes may still be bona 
fide biomarkers of CPI response, independently of TMB, any analysis 
to identify them should account for the confounding factor of their 
correlation with TMB. We also demonstrate that the associations of the 
latent factors with CPI response and survival are observed across differ-
ent tumor types, and we validated them across six independent cohorts 
of patients. Most of the associations discovered in the HMF-CPI cohort 
were corroborated across these independent cohorts, despite differ-
ences in sample collection and processing procedures and profiling 
methods between these cohorts and the HMF-CPI. This indicates that 
these latent factors are mostly universally associated with CPI response 
and survival. They may thus be potentially used in the future within 
the clinical practice, despite the heterogeneity of sample processing 
and tumor profiling approaches used. The variability observed across 
tumors of different origins in more than one cohort (for example, the 
smaller association of effective T cell infiltration with the response of 
lung tumors) may point to findings that could be pursued further. To 
our knowledge, this constitutes the most extensive exploration, to 
date, of the biomarkers of CPI response and survival across cohorts 
with tumors from different organs.

Importantly, no features other than these five latent factors were 
significantly associated with CPI response or survival. That is, virtually 

all significant features cluster within one of them. However, some rel-
evant features may still lay below the statistical power of the HMF-CPI 
cohort or appear significantly associated with CPI response or survival 
in only one tumor type. This is particularly important for features 
that may be relevant for a fraction of patients, such as mechanisms of 
immune escape (for example, B2M deletion, an event that we observe 
as significant across melanomas but not other tumors in the HMF-CPI 
cohort; see Supplementary Note 1)8,22,24,36. Other examples of such 
features relevant for specific groups of patients may include common 
polymorphisms that affect the immune response37 and the heterozygo-
sity at HLA loci38. Particularities of the tumor types not represented in 
the HMF-CPI cohort are, of course, also absent from our current catalog 
of proxy biomarkers. These will be discovered when larger CPI cohorts 
are analyzed; it is not inconceivable that even more latent factors will 
become apparent then. Our discovery of latent factors is also limited 
by the profiling technologies used, which rely on deconvolution of the 
immune infiltrate based on bulk RNA-seq data. More detailed stud-
ies of this infiltrate—based on fine mapping of immune populations 
and their interactions with other cells in the microenvironment—will 
contribute in the future to refine the landscape of biomarkers of CPI 
response and survival.

A test of the application of multivariate models combining the five 
latent factors produced a stratification of the patients in the HMF-CPI 
cohort based on their predicted response probabilities that discrimi-
nates better between responders and non-responders than the thresh-
old of TMB frequently used in the clinic. This could be regarded as a 
proof-of-principle for application of the five latent factors to clinical 
practice. Being able to identify patients with a very low probability of 
response would be relevant to spare them the potential side effects of 
the therapy7. Additionally, it may aid in reducing the financial burden 
on healthcare providers39. There is also the possibility—illustrated 
through the analyses described above—to use such multivariate models 
to identify patients with tumors that are not usually considered suit-
able candidates for CPI who have a high probability to respond. In the 
future, when these types of models can be used in support of clinical 
decision-making, this could potentially contribute to expanding the 
therapeutic options for patients suffering from these malignancies.

In summary, we envision that the results of this work can provide 
a frame of reference to the research of biomarkers of CPI response 
and survival, resulting in the classification of all identified significant 
features falling into one of these five latent factors, or a completely 
independent one.
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Methods
Discovery cohort
Whole-genome somatic mutations, copy number and other structural 
variants across metastatic tumors from 4,484 patients in the HMF 
cohort were obtained from the HMF database18,19 (version DR-263_
update1). Of these, 479 subsequently received CPI therapy (HMF-CPI 
cohort), for which all somatic variation information was available. 
Whole transcriptome from RNA-seq was available from the same source 
for a subset of 396 patients in the HMF-CPI cohort. Several features 
computed by the HMF pipeline from this data for each tumor (for exam-
ple, number of neoepitopes, activity of mutational signatures) as well as 
the patients’ germline features (such as HLA allotypes) were obtained 
as part of the dataset. It also included all relevant clinical information 
regarding exposure to treatment for their primary malignancy, the 
subsequent treatment regimen for the metastasis and longitudinal 
measurements of the outcome (Supplementary Note 1 and Supple-
mentary Table 1). The ethical approval to use this data in research has 
been obtained by the HMF.

Validation cohorts
INSPIRE. Whole-exome somatic mutations, the whole-transcriptome 
RNA-seq gene expression of tumors and all clinical data pertaining to 
prior treatment as well as outcome upon treatment with pembroli-
zumab within the INSPIRE basket trial (NCT02644369)29 were obtained 
for 64 patients from https://github.com/pughlab/inspire-genomics.

Lyon. Targeted RNA-seq (2,559 genes) and clinical data from 315 patients 
treated at several hospitals in Lyon and Paris30 were obtained from 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159067, 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161537, 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162519 and 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162520.

MARIATHASAN. Whole-exome somatic mutations, the whole- 
transcriptome RNA-seq gene expression of tumors and all clinical data 
in a previously published study27 of 348 patients were obtained from 
http://research-pub.gene.com/IMvigor210CoreBiologies.

PARKER ICI. Whole-exome somatic mutations, the whole- 
transcriptome RNA-seq gene expression of tumors and all clinical 
data of several cohorts of tumors (including those within clinical tri-
als CheckMate 038 and CheckMate 067 and two cohorts published 
within other studies) compiled in a previous publication31 totaling 
315 patients were obtained from https://github.com/ParkerICI/
MORRISON-1-public.

RAVI. Whole-exome somatic mutations, the whole-transcriptome RNA- 
seq gene expression of tumors and all clinical data of the SU2C-MARK 
cohort from a previous publication32 comprising 352 patients were 
obtained from https://zenodo.org/records/7625517.

VHIO. The estimated TMB and the expression (via NanoString) of 170 
genes across the tumors of 74 patients with cancer profiled and treated 
at the VHIO Hospital in Barcelona were obtained directly from the 
Cancer Genomics Group. Clinical data of these patients were provided 
by attending oncologists at VHIO.

Details of all cohorts appear in Supplementary Table 1 and Sup-
plementary Note 1.

Ethical approval to use the data of the first five validation cohorts 
in research was obtained by the original institutions, who obtained 
written informed consent from patients and made the data available 
through scientific publications. The Vall d’Hebron University Hospital 
Ethics Committee of Clinical Research approved the study according 
to local guidelines and regulations, and written consent was obtained 
from all the patients included in this study.

Feature extraction for systematic analysis
Somatic features (18,382) representing single nucleotide variants, 
indels, copy number variants and other structural variants were 
extracted from files directly downloaded from the HMF database. 
These included the list of variants as well as summary statistics, such as 
TMB, burden of structural variants, predicted neoantigen burden, and 
so on. Although some features were obtained directly from the files, 
others were derived. The level of expression (transcripts per million) 
of 8,817 genes (measured through whole-transcriptome RNA-seq) was 
also obtained from files downloaded from the HMF database after 
pre-processing (see below). Other RNA-seq features were derived from 
these values, mainly through the summarization of the expression of 
genesets in separate features12,27,40,41, or by Cibersort17 derivation of 
immune cell populations from gene expression data (Supplementary 
Table 2). The HLA allotypes of HMF-CPI patients were directly obtained 
from files downloaded from the HMF database, while somatic HLA 
loss of heterozygosity in the tumors was estimated using the LILAC 
tool22. Clinical information regarding courses of treatment before the 
biopsy of the metastasis and the subsequent outcome of CPI treatment 
was also obtained from files downloaded from the HMF database. 
Again, part of that information was directly converted into features, 
while other features, such as the time elapsed between the end of the 
prior treatment and the biopsy of the metastasis, were derived from 
these data. Some of these clinical features were converted into out-
comes of the analysis (best overall response to CPI, overall survival and 
progression-free survival upon CPI), while others were maintained as 
potentially predictive features. A detailed description of the strategy 
followed for the extraction of features in the HMF-CPI cohorts appears 
in Supplementary Note 1.

Pre-processing
All outcomes and features were computed across all samples in the 
HMF database. Finally, the data was joined based on the sample iden-
tifiers to produce a data frame ready for statistical analyses. Before 
systematic analyses, several pre-processing steps were performed. 
First, to reduce multiple testing, we applied filters to remove features 
with little chance of providing meaningful associations. For somatic 
mutations by gene, only genes with at least one mutation per 20 
samples were kept for the analyses. For RNA expression, only cod-
ing genes with a mean and standard deviation of adjusted transcript 
per million values greater than 0.5 were considered. For the driver 
features, only driver genes mutated in at least one in 30 samples 
were included. Similarly, for mutational signatures, only signatures 
with exposure greater than 0.02 for at least one in 20 samples were 
included. Second, all features were standardized to have a mean of 
zero and a standard deviation of one across the CPI samples. This 
standardization allowed for fair comparisons of estimated effect 
sizes. Outside of the primary tissue location, all features in the analy-
ses were numeric or ordinal.

Systematic analyses
Each feature was tested individually for the strength of association to 
best overall response, progression-free survival and overall survival. 
Generalized linear models and their native maximum-likelihood-based 
tools were used for all estimation, standard error calculation and 
hypothesis testing.

The best overall response was modeled with logistic regression, in 
which we assumed that the probability of response followed a Bernoulli 
distribution with mean p. For each feature X, we accounted for primary 
tissue, biopsy location, tumor purity and age as model covariates. 
Formally, let Ij represent the covariate indicator functions for primary 
tissue (skin, lung, bladder, other tissue), let Ik represent the indicator 
function for biopsy location (lung, liver, lymph node, primary, skin, 
other tissue), let Xage represent patient age and Xpurity represent the 
tumor purity. The full and reduced models were fit as follows.
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Full model:

Logit ( p) = β0 + XβX + ∑
j∈tissue

Ijβj + ∑
k∈biopsy

Ikβk + Xpurityβpurity + Xageβage

Reduced model:

Logit ( p) = β0 + ∑
j∈tissue

Ijβj + ∑
k∈biopsy

Ikβk + Xpurityβpurity + Xageβage

The models were fitted with the base R glm function.
Progression-free and overall survival outcomes were modeled for 

each feature with Cox proportional hazards models. The hazard rates, 
denoted h(t), were modeled as follows.

Full model:

log (h (t)) = XβX + ∑
j∈tissue

Ijβj + ∑
k∈biopsy

Ikβk + Xpurityβpurity + Xageβage

Reduced model:

log (h (t)) = ∑
j∈tissue

Ijβj + ∑
k∈biopsy

Ikβk + Xpurityβpurity + Xageβage

Survival models were fitted using the coxph function from the 
survival package in R.

For all analyses, P values were computed based on the likelihood 
ratio tests comparing the full and reduced models.

For the main analyses of best overall response, progression-free 
survival and overall survival, the covariates included were the indica-
tors for primary tissue, the age of patients, the site of biopsy of the 
metastasis and the tumor purity. For the overall survival residuals 
analysis, the covariates additionally included the representative bio-
markers of the three latent factors explaining response: TMB, T cell 
effective infiltration and pretreatment. For all model–feature–covari-
ate combinations, the P values were calculated from the likelihood 
ratio test comparing the full model to the reduced model (with the 
feature of interest removed). Effect sizes (log odds ratio for the logis-
tic regression and hazard ratios for the Cox regression) and standard 
errors were estimated with maximum likelihood from the full models. 
All effect sizes, standard errors and corresponding P values were stored 
for further analysis. Given the large dependency in tests, we used the 
Benjamini–Yekutieli multiple testing threshold to control the false 
discovery rate21. Several exhaustive analyses were run, with different 
sets of covariates each producing similar conclusions. Full documenta-
tion of all exhaustive analyses can be found in Supplementary Note 1.

Identification of latent factors
Latent factors were defined as the independent biological mecha-
nisms underlying the features most predictive of CPI response and 
survival. To label latent factors, we first focused on features passing the 
Benjamini–Yekutieli multiple test significance threshold. From these 
significant features, we computed their pairwise Pearson correlations 
and identified clusters using hierarchical clustering (hclust() in R with 
the Ward.D2 algorithm). The optimal number of clusters was defined 
using the R package ‘factoextra’ function fviz_nbclust, using silhouette’, 
‘wss’ and ‘gap_stat’ options.

To label transcriptomics clusters, we computed the expression 
of 255 gene sets reported in the literature. The gene sets (Supplemen-
tary Table 2) were collected by downloading the Hallmark and KEGG 
annotated gene sets from MSigDB25,26 (version 2023.1.Hs). These gene-
sets were further complemented by others, obtained from previous 
publications27, including a paper describing the CPI-1000 analyses12. 
Genesets with a Pearson correlation of >0.8 with the mean of a specific 
cluster and passing the multiple test P value threshold of association 

with CPI response or survival were considered cluster-specific and thus 
used to discern the nature of the cluster.

Stability of transcriptomics latent factors
For each gene in each transcriptomics cluster, we calculated the silhou-
ette score42 using the silhouette() function from the package ‘cluster’ 
in R. This score reflects how close the particular data point is to the 
cluster of assignment and how far it is from other clusters. The matrix 
of distances between genes used to calculate silhouette scores was 
obtained from the correlation matrix

d = √1 − |cor|,

where cor is the correlation matrix of gene expression levels.
We then calculated silhouette scores for each gene in every other 

cohort with available expression data (INSPIRE, MARIATHASAN, 
PARKER ICI, RAVI) using gene expression levels from the corresponding 
dataset but keeping the initial clustering obtained in the HMF cohort. 
Aggregation of silhouette scores across datasets was performed using 
the aggregateRanks (method = ‘stuart’) function from the ‘RobustRank-
Aggreg’ R package43.

Multivariate machine-learning models
Multivariate models were fitted using the Extreme Gradient Boosting 
(XGBoost) package in R44. The training in all cases sought to find the 
tree function T (sum of trees) that minimizes the expected loss between 
the observed and predicted response values; that is:

̂T = argminTEX,YL (Y,T (X ))

where X and Y are the feature and response data, respectively, and L is 
the loss function of choice. In our setting, the loss function was chosen 
to be a negative likelihood compatible with the typical distributional 
assumptions for each type of data. Specifically, the best overall 
response was modeled using the logistic regression likelihood, while 
progression-free survival and overall survival were modeled using the 
Cox proportional hazards likelihood.

We trained three pan-cancer models (one per outcome) incor-
porating all available training data (479 patients). We also trained 12 
hybrid models based on the three pan-cancer models followed by 
further cycles of training on patients of each tumor type, but maintain-
ing exactly the same loss function and all hyperparameters. Patients 
suffering from malignancies other than skin melanomas and lung or 
bladder tumors were pooled within a group labeled as ‘other’ tumor 
types. This model fit procedure found a compromise between low vari-
ance but high bias from the pan-cancer models and low bias but high 
variance in pure tumor type-specific models. Finally, we also trained 
pure tumor type-specific models, starting from the patients in each of 
the four groups separately (details in Supplementary Note 1).

The XGBoost models require many tuning parameters (learning 
rate, depth, sub-sampling, minimum tree leaf size) that guide the internal 
model fitting. Initially, our model building used grid searches to select 
optimal internal tuning parameters. However, in our cross-validation 
study, we found that simple additive models (depth, 1; fast learning rate, 
0.05; minimum leaf size, 5; sub-sampling, 0.75) had the best performance.

For the best overall response, the model casts the prediction outputs 
as log odds ratio scores that can then be recast into probability scores 
(continuous values between 0 and 1). For progression-free survival and 
overall survival, the models cast the prediction outputs as log hazard 
ratios that can then be recast into hazard ratios (continuous and positive).

Separate models were trained solely on TMB and PDL1 expres-
sion (the continuous value reported in the HMF-CPI cohort by 
whole-transcriptome RNA-seq). These models were used to represent 
the predictive power of clinically approved biomarkers across analyses 
of the performance of multivariate models.
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Calculation of Shapley values
Given that the final tree-based models were additive, the calculation 
and extraction of Shapley values was straightforward. For each feature, 
for a given additive model and individual sample, there was 1-to-1 
mapping from the feature values and the Shapley values. This relation-
ship between feature and Shapley values is visualized by the marginal 
dependence plots in Extended Data Figure 7a,b. In R, using the predict 
function applied to the XGBoost output, we set the argument contri-
bution = TRUE to extract the Shapley values. The extracted Shapley 
values measure additive feature contribution to the log odds ratio for 
response models and the log hazard ratio for the Cox survival models.

Proxy biomarkers in the VHIO cohort
In the VHIO cohort, the TMB was estimated from the mutations 
detected using a 432-gene hybrid capture-based panel45. The expres-
sion of 170 genes was measured using the nCounter (NanoString) 
platform46. Normalized NanoString counts were log transformed and 
standardized, and proxy biomarkers were selected based on their cor-
relation with the representative biomarkers of the five latent factors in 
the HMF-CPI cohort. For the T-cell effective infiltration gene set, CXCL9, 
CXCL10, CXCL11, GZMA, GZMB and IFNG were selected. Overall, this gene 
set was strongly correlated with the original T-cell effective infiltra-
tion gene set (ρ = 0.97) and showed high statistical significance in the 
exhaustive analysis (P = 7.0 × 10−8). To select a set of genes to represent 
the latent factors of TGF-β activity in the tumor microenvironment and 
tumor proliferative potential, we selected genes with a correlation of 
>0.5 to the respective gene set. This process yielded BRCA1, BRCA2 and 
TUBB for the tumor proliferative potential gene set. Although none of 
these genes were included in the representative biomarker obtained 
from the HMF-CPI cohort, they all showed a strong correlation to this 
gene set. The proxy gene set also showed a statistically significant asso-
ciation with overall survival residuals. The aforementioned process, 
in the case of the VHIO TGF-β gene set, yielded DLL4, HEYL, NOTCH3, 
NOTCH4, SERPINE1, TGFB1 and TGFB3. This gene set also showed a very 
strong correlation to the representative TGF-β activity in the tumor 
microenvironment biomarker (Supplementary Note 1).

Statistics and reproducibility
The systematic analysis to identify features associated with CPI 
response and survival was carried out through logistic and Cox regres-
sions, and the results were filtered for multiple testing as described in 
the Methods and Supplementary Information. These features were 
grouped into latent factors based on their pairwise correlations. 
Standard statistical approaches, such as univariate and multivariate 
regressions or Kaplan–Meier analysis, were used downstream for the 
analysis of the latent factors across validation cohorts. No statistical 
method was used to determine sample size for the analysis. All avail-
able samples from the discovery and validation cohorts were used; 
none were excluded from the analysis. Given that the study consisted 
entirely of the analysis of existing data, it was not randomized and the 
investigators were not blinded, as no allocation of samples in groups 
was carried out. All data used in this study are publicly available (see 
below) and the code used to reproduce the analysis described in the 
paper has been deposited in public repositories (see below).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Access to the HMF-CPI data can be obtained through a request to 
the HMF (https://www.hartwigmedicalfoundation.nl/en/data/
data-acces-request)18,19. The validation datasets can be obtained as 
follows: INSPIRE29, INSPIRE github repository (https://github.com/
pughlab/inspire-genomics); Lyon30, GEO GSE159067, GEO 161537, 

GEO GSE162519 and GEO 162520; MARIATHASAN27, public reposi-
tory (http://research-pub.gene.com/IMvigor210CoreBiologies); 
PARKER ICI31, PARKER ICI github repository (https://github.com/
ParkerICI/MORRISON-1-public); RAVI32, zenodo repository: 7625517; 
VHIO, this study github repository (https://github.com/bbglab/
immunebiomarkers).

Code availability
All code necessary to carry out the extraction of the features from the 
HMF-CPI provided files (version DR-263_update1) and to generate the 
data frame needed for analysis is freely available in a public reposi-
tory (https://github.com/bbglab/hartwig_biomarkers). The code to 
reproduce all analyses is also publicly available (https://github.com/
bbglab/immunebiomarkers).
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Extended Data Fig. 1 | Identification of latent factors associated with CPI 
response and survival across the HMF-CPI cohort. The figure provides a broad 
comparison of the landscape of features identified as significantly associated 
with CPI response (BOR), Progression Free Survival (PFS) and Overall Survival 
(OS) through the systematic use of univariate regression models corrected with 
different sets of covariables (see main manuscript and Supplementary Note 
1). The three panels illustrate the results of the systematic analysis using no 
covariables (a), only the tissue as covariable (b), or the tissue, age, biopsy site 
and tumor purity as covariables (c) for the regressions. All analyses described 

in the main manuscript were carried out taking into account all covariables 
described in c. Features of different nature are colored following the same 
legend as in the main Figures. All p-values shown in the plots were computed 
via logistic (response) or Cox (survival) regressions, as in Figs. 2 and 3 of the 
main manuscript. These are, by definition, two-sided, denoted by positive or 
negative odds ratios (logistic regressions) or the reverse of hazard estimates 
(Cox regressions). OS: overall survival; PFS: progression-free survival; BOR: best 
overall response according to RECIST.
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Extended Data Fig. 2 | The five latent factors are integrated by highly 
correlated and significant features, and are mutually orthogonal. All graphs 
present the relationship between the significance of the association between 
individual features with CPI response or survival and their correlation to the 
mean of the clusters of features representing each latent factor. a) TMB cluster. 
Features integrating this latent factor are significantly associated with CPI 
response and survival. b) Pretreatment cluster. Only very few features,  
all capturing different treatments, appear correlated with the mean of this 
cluster. Their association is also apparent with CPI response and survival.  
c) Effective T-cell infiltration cluster. Features integrating this latent factor are 
significantly associated with CPI response and survival. d) TGF-β activity in the 

microenvironment cluster. Features included in this cluster are highly correlated 
with the mean of the cluster, while some features included in the effective T-cell 
infiltration cluster show a moderate correlation (~0.5). These features are only 
significantly associated with CPI survival (including survival residuals), but 
not with response. e) Proliferative potential cluster. These features are only 
significantly associated with CPI survival residuals. Features of different nature 
are colored following the same legend as in the main Figures. All p-values shown 
in the plots were computed via logistic (response) or Cox (survival) regressions, 
as in Figs. 2 and 3 of the main manuscript. These are, by definition, two-sided. 
OS: overall survival; PFS: progression-free survival; BOR: best overall response 
according to RECIST.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Interpretation of significant expression features 
using genesets. a) Heatmap representing the pairwise correlation between 
genesets highlighted in Fig. 2 of the main paper. b) Significance of the 
association of 255 genesets with CPI survival residuals and their correlation 
with the mean of cluster S1 (left) and S2.1 (right). Significant genesets and 
correlation above 0 are highlighted. c) Heatmap representing the pairwise 
correlations between genesets that appear significantly associated with CPI 
survival residuals and correlated with cluster S2.1. d) All significant features 
from the volcano plot represented in Fig. 3e which do not belong to any of the 
response clusters previously identified (TMB, T-cell effective infiltration, prior 
treatment) were selected and clustered based on their pairwise correlations. 
One large cluster (along a few unclustered features) is apparent, called cluster 

Survival. e) We computed the correlation of the mean value of the Survival 
cluster with 255 genesets. It was highly correlated with genesets representing 
the activity of TGF-β in the tumor microenvironment (purple dots). Other 
significant genesets (uncorrelated with cluster Survival) represent T-cell 
effective infiltration (red dots). f) Pairwise correlations between all genesets 
that appear significantly associated with CPI overall survival not corrected by 
TMB, T-cell effective infiltration and prior treatment. Two clusters are apparent. 
One of them represents T-cell effective infiltration. The other represents TGF-β 
activity in the microenvironment. P-values shown in the plot were computed 
via logistic (response) or Cox (survival) regressions, as in Figs. 2 and 3 of the 
main manuscript. These are, by definition, two-sided. OS: overall survival; PFS: 
progression-free survival; BOR: best overall response according to RECIST.
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Extended Data Fig. 4 | Association of the five latent factors with anti-cancer 
systemic therapies other than CPI. Association of the five latent factors with the 
response to treatment (a) and overall survival (b) of patients in the HMF cohort 
who received CPI (left) or other therapies (right). All patients with an annotation 
of having received a treatment (other than CPI) for the metastatic tumor and for 
which an annotation of the organ of origin of the primary tumor was available 
were included in this group (N = 2,497). In each of the graphs the horizontal 
dotted line represents the threshold of statistical significance, while the vertical 
dotted line separates the positive (increased response or survival) and negative 
(decreased response or survival) effects. The association of each of the latent 
factors with CPI response or survival has been assessed using a univariate 

regression (on the values of the representative of the latent factor computed 
across tumors). Hence, a circle in the top right quadrant denotes a latent factor 
significantly associated with a positive outcome (increased response or survival); 
a circle in the top left quadrant represents a latent factor associated with a 
negative outcome (decreased response or survival). A circle in either of the two 
bottom quadrants represents a latent factor not significantly associated with 
the outcome measured. P-values shown in the plots were computed via logistic 
(response) or Cox (survival) regressions, using as independent variable, in each 
case, the estimator of each latent factor. These are, by definition, two-sided, 
denoted by positive or negative odds ratios (logistic regressions) or the reverse 
of hazard estimates (Cox regressions).
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Extended Data Fig. 5 | The five latent factors capture all the signal of 
features associated with CPI response and survival. a) Features of different 
types significantly associated with CPI response or survival. The three first 
graphs correspond to Extended Data Figure 1C. The fourth graph presents the 
regression of survival residuals (that is, controlling for the features identified 
as associated with response) on all features. b) Volcano plots resulting from the 
regression analyses presented in panel A, including only features with correlation 
coefficient above 0.8 with the mean of any latent factor. Significant features from 
all regression analyses show high correlation to the clusters’ mean (as the clusters 
are precisely constructed from them). Other non-significant features show 
equally high correlation with the clusters. c) Volcano plots as in panels A and B, 

but showing only features with correlation coefficient below 0.3 to the mean of 
the clusters defining the latent factors. Only scattered features uncorrelated 
to the five latent factors appear significantly associated with CPI response or 
survival, indicating the absence of any other mutually orthogonal latent factor 
in the HMF-CPI cohort at the level of statistical significance set by the stringent 
False Discovery Rate used. Features of different nature are colored following the 
same legend as in the main Figures. The p-values and effect sizes shown result 
from logistic or Cox regressions. P-values shown in the plots were computed 
via logistic (response) or Cox (survival) regressions, as in Figs. 2 and 3 of the 
main manuscript. These are, by definition, two-sided. OS: overall survival; PFS: 
progression-free survival; BOR: best overall response according to RECIST.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01899-0

Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Univariate analyses reveal the association of latent 
factors with CPI response across different tissues in the HMF-CPI cohort 
and six validation cohorts. a) Left panel: Forest plot illustrating the association 
(calculated through univariate regression models) of the five latent factors 
with CPI response and survival across groups of patients with different types of 
tumors in the HMF-CPI cohort. Right panel: Idem across six validation cohorts. 
Red or green dots denote clear association (regression coefficients estimate 
more than 1 (light) / 1.96 (dark) standard errors from 0) of a latent factor with 
response or survival, while gray dots denote lack of association. Dark color 
denotes significance of the association, while light color represents non-
significant associations. In the forest plots, the dots represent the strength 
(coefficients estimated through multivariate logistic or Cox regression) of the 
association between the latent factor and response or survival across cohorts. 
The horizontal bars across dots denote the 95% confidence intervals. Gray dots 
represent latent factors whose estimates are within one standard error of 0, 
dots with light color (green or red) represent non-significant associations with 
coefficient estimates above (or below) one standard error of the 0, while dark 
colored dots represent significant associations. Green dots represent positive 

associations with improved outcomes (higher response odds or lower hazard 
ratio), while red dots represent negative associations (lower response or higher 
hazard ratio). b) Stability of transcriptomics latent factors across validation 
cohorts. We computed the relationship between the distance of each feature to 
all the members of its cluster (defined in the HMF-CPI cohort) and all members of 
other clusters (silhouette score; Methods). The silhouette scores thus computed 
for genes in the TGF-beta activity in the microenvironment across HMF-CPI and 
four validation cohorts are represented in the first five bar plots in the top panel. 
Two genes, one with relatively high silhouette score, and another showing more 
variability across all cohorts appear highlighted. The ranks of the genes (sorted 
according to their silhouette scores) are aggregated across all cohorts, and a 
significance score (reflecting genes that are ranked consistently better than 
expected) is computed (right-hand bar plot). The three graphs at the bottom of 
the panel represent the relationship between the silhouette score of the genes 
in each transcriptomics latent factor in the HMF-CPI cohort (x-axis) and their 
aggregated score (y-axis). Sample sizes for all datasets tested can be found in 
Supplementary Table 1.
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Extended Data Fig. 7 | Relative importance of the five latent factors in the 
prediction of response or overall survival across patients in the HMF-CPI 
cohort. The line plots represent the contribution of the values of each latent 
factor (Scaled feature values) across patients to the predictions cast by the 
response (BOR) and overall survival (OS) multivariate models. The effects are 
illustrated through the Shapley Values (Methods and Supplementary Note 
1). Thus, in each plot, the line corresponding to each latent factor follows the 
relative influence of the values of the feature used to measure the latent factor 
on the predictions obtained through the model across all patients. Lines with 
positive slope correspond to latent factors that increase either the probability 

of response or the hazards with the increase in their value. The bar plots below 
the line plots represent the overall importance of each latent factor (using the 
standard deviation of the Shapley values) across all predictions of each model in 
each cohort. a) Representation of the relative importance of the latent factors in 
the prediction of response to CPI across the pan-cancer cohort and each tumor 
type separately within the HMF-CPI cohort. b) Representation of the relative 
importance of the latent factors in the prediction of overall survival (hazards) 
to CPI across the pan-cancer cohort and each tumor type separately within the 
HMF-CPI cohort.
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Extended Data Fig. 8 | Comparison of response and survival models using 
Shapley values. a) Showing a comparison of response and survival hazard 
estimates. The points are color coded red for low responders (<10% probability 
response), yellow for medium responders (10-50% probability) and green for 
high responders(>50%). The estimates we obtained from XGboost models 
trained on representative biomarkers of the five latent factors across patients 
in the HMF-CPI cohort to predict CPI response and survival. b) Exploring the 
determinants of the distribution of hazards across patients with low probability 
of response (scatterplot). The patients in this group have been subdivided into 
two smaller groups based on their predicted hazard, represented by dots of 

different shades of red separated by the horizontal line in the value of predicted 
hazard 1.5. The line plots represent the distribution (quantiles) of Shapley 
values (see Methods) calculated for these two subgroups of patients for the 
five latent factors. The two lines appear more separated in the distributions 
of Shapley values of tumor proliferative potential and TGF-beta activity in the 
microenvironment. This indicates that it is the values of these two latent factors 
that contribute the most to the separation between these two groups of patients. 
c) Example of the predicted CPI response and survival of one patient in the HMF-
CPI cohort broken down by Shapley values.
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Extended Data Fig. 9 | Stratification of patients in validation cohorts using 
multivariate machine learning models. a) The histograms represent the 
distribution of the probability of response to CPI of patients across three of 
the validation cohorts (those with complete data on all five latent factors), 
either combined or separate. The bars are colored red (probability of response 
below 0.1, low), yellow (probability between 0.1 and 0.5, medium) or green 
(probability above 0.5, high). The absolute number of patients across the three 
cohorts in each group (low, medium, high) are shown in the horizontal bar 
below the combined histogram. The barplots below present the percentage of 

patients in each of the groups who actually showed response to CPI according 
to the data of each cohort. b) Top panel: Kaplan-Meier curves resulting from 
the aforementioned stratification of patients across the three cohorts, either 
combined or separate. Bottom panel: Kaplan-Meier curves resulting from 
stratifying the patients across the three cohorts based on their predicted 
probability of survival according to the hybrid models trained on survival data. 
The p-value for each cohort (annotated in the plot) was calculated via a one-sided 
logrank test.
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Extended Data Fig. 10 | Application of multivariate machine learning models 
to identify patients with high probability to respond to CPI across the entire 
HMF cohort. Bars represent the number of patients with metastatic tumors from 
different sites of origin in the HMF cohort who received (top) or did not receive 
(bottom) CPI as treatment. All patients with an annotation of having received a 
treatment (other than CPI) for the metastatic tumor and for which an annotation 
of the organ of origin of the primary tumor was available were included in this 
group (N = 2,497). The colored segments in the bars at the left represent the 
absolute number of patients with low (below 0.1), medium (between 0.1 and 0.5)  
or high (above 0.5) predicted probability of response. These bars have been 

separated based on the total number of patients of each tumor type, and x-axes 
representing the relative scales of each plot have been added. To the right side of 
the plot, the percentage of patients of each tumor type including more than 15 
cases are represented as stacked bar plots, to facilitate comparability between 
tumor types. An important fraction of patients with tumors from the same origin 
as those in the HMF-CPI cohort (for example, in the lung) present high predicted 
probability of response to CPI. Interestingly, patients with tumors of other 
origins, who are not typically considered as candidates for CPI treatment also 
exhibit high predicted response probability.
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