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Only asubset of patients treated with immune checkpoint inhibitors

(CPIs) respond to the treatment, and distinguishing responders from non-
respondersis amajor challenge. Many proposed biomarkers of CPl response
and survival probably represent alternative measurements of the same
aspects of the tumor, its microenvironment or the host. Thus, we currently
ignore how many truly independent biomarkers there are. With an unbiased
analysis of genomics, transcriptomics and clinical data of acohort of patients
with metastatic tumors (n = 479), we discovered five orthogonal latent factors:
tumor mutationburden, T cell effective infiltration, transforming growth
factor-betaactivity in the microenvironment, prior treatment and tumor
proliferative potential. Their association with CPI response and survival was
observed across all tumor types and validated across six independent cohorts
(n=1,491). These five latent factors constitute a frame of reference to organize
current and future knowledge on biomarkers of CPIresponse and survival.

The development of CPIs has had atremendousimpact on cancer ther-
apy’. However, the response of patients with cancer to these agents
varies considerably' ¢, and importantimmune-related adverse events
may appear as a result of treatment’. Consequently, intense research
hasbeen dedicated inrecent years to identifying features that influence
the response to CPIs>**, leading to the identification of potential
biomarkers.

These studies have madeitincreasingly clear that the response to
CPIsis mediated by several characteristics of the tumor, its microenvi-
ronmentand the host”?, which we may regard as latent factors defining

CPI response and survival across patients. However, it is likely that
different biomarkers identified across a multitude of studies—often
focused on one or a small group of features—represent different ver-
sions of the same underlying latent factor. For example, the expression
of anumber of genes and gene sets previously identified as biomark-
ers may represent the degree of infiltration of cytotoxic cells in the
tumor™*", Furthermore, given that separate research groups indepen-
dently test different sets of potential biomarkers, there is no effective
control of the potential false positives associated with multiple testing.
As aresult of these problems, it is not clear at present how many such
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Fig.1| Extracting features from the HMF-CPI cohort. a-c, For 479 patients
with metastatic cancer in the HMF-CPI database of different cancer types, we
obtained 18 clinical features, 19 germline HLA allotype features, 18,382 somatic
features (based on single base substitutions, indels, copy number variants and
other structural variants affecting specific genomic elements or summaries
thereof) and 8,817 transcriptomic features, corresponding to all expressed

genes.d, Numeric feature values were rescaled and re-normalized (Methods),
yielding alarge table describing the cohort. LOH, loss of heterozygosity, RECIST,
Response Evaluation Criteria, CNV, copy number variant; SV, structural variant;
WGD, whole-genome doubling; CR, complete response; PR, partial response; SD,
stable disease; PD, progressive disease; OS, overall survival; PFS, progression-
freesurvival.

independent latent factors of CPIresponse and survival there are, what
aspects of the tumor, its microenvironment or the host they represent
and whether they are relevant across different tumor types.

To answer these questions, we exploited arichly profiled and anno-
tated cohort of patients with metastatic tumors (fresh-frozen biopsied)
treated with CPIs (part of the cohort profiled by the Hartwig Medical
Foundation (HMF)'**; n = 479). Specifically, we aimed to identify fea-
tures of the tumors, their microenvironmentor the host thatappeared
tobesignificantly associated with CPlresponse and survival, both across
the pan-cancer HMF-CPI cohort and all represented cancer types. To this
end, we used an exhaustive—not biased by prior knowledge—analysis of
thousands of molecular and clinical features to detect their association
with CPIresponse or survival. We discovered that all significantly associ-
ated features collapse into one of five independent latent factors that
arerelevantacrossall tumor types representedin this cohort. They are
the tumor mutation burden (TMB), effective T cellinfiltration, whether
the patientsreceived any prior treatment, the activity of transforming
growth factor-beta (TGF-P) in the tumor microenvironment and the
proliferative potential of the tumor. We verified that at the current level
of statistical power, there are no other latent factors of CPl response
and survival common to all cancer types analyzed. We validated the
association of these five latent factors with CPIresponse and survivalin
sixindependent cohorts (n = 1,491 patients) spanning six major cancer
types; to our knowledge, the largest such validation effort.

Results

Extracting features from a metastatic cancer cohort

Within the HMF"®" cohort (n = 5,288), 479 patients with metastatic
cancer who were part of the Center for Personalized Cancer Treatment

study (https://www.cpct.nl/cpct-02) received anti-PD1/PDL1 or a
combination of anti-PD1/PDL1 and anti-CTLA4 therapy. We refer to
these patients as the HMF-CPI cohort. These include patients who
had suffered from primary tumors of the skin (melanomas, n=191),
lung (n=110), bladder (n = 88) and other cancer types (other; n=90;
Fig.1a,b and Supplementary Table 1). Whole-genome somatic altera-
tions of the metastatic tumors before CPI treatment were identified
across all tumors in the HMF-CPI cohort and, for 396 of them, the whole
transcriptome of the tumor was also sequenced. Rich clinical data,
including treatments received before the diagnosis of their metastatic
tumors, response to the CPltherapies, following Response Evaluation
Criteria®® (n = 467) and survival information (n = 479), were also avail-
able (Supplementary Table 1).

To carry out a systematic de novo discovery of biomarkers of
CPIresponse, we computed 27,923 features (Fig. 1c,d and Supple-
mentary Note 1). These included the mutational (single nucleotide
variants + indels) status of 15,829 genes, the copy number status of
2,415genomicregions, 64 aggregated somatic mutation features (for
example, TMB, frameshiftindel burden, activity of mutational signa-
tures) and the occurrence of known driver structural variants as well
as features summarizing the genomic instability (for example, total
number of chromosomal fragments, ploidy, whole-genome doubling,
and so forth). We also used the expression level of 8,817 genes and
clinical characteristics of the patients such as sex, type of treatment
received for the primary tumor and age at the time of diagnosis of
the metastasis as features. Finally, human leukocyte antigen (HLA)
features that can affect theimmune response to the tumor were also
included, suchas their HLA haplotype and the number of somatically
lost HLA alleles.
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Five latent factors of CPl response and survival

To identify which of the more than 27,000 features computed per
patient were significantly associated with CPl response, we performed
univariate regressions (adjusted for the site of origin of the tumor, age
ofthe patients, site of biopsy of the metastasis and tumor purity). After
controlling for multiple testing”, we identified several hundred features
thatappearedto besignificantly associated with CPIresponse (Fig. 2a,
Extended Data Fig.1a-c and Supplementary Note 1).

Then, we asked how these significant features relate to each other
and which underlyinglatent factors of CPIresponse they represent. To
answer these questions, we clustered all significant features based on
their pairwise correlations (Fig.2b). Virtually all (Supplementary Note 1)
could be unambiguously assigned to one of three clusters (R1, R2 or
R3, encompassing somatic, clinical or transcriptomics features). This
impliesthatonly three latent factors associated with CPIresponse were
detected from the more than 27,000 features analyzed.

To understand the nature of cluster R1, we first computed the
mean of its integrating features. The single feature in the cluster with
the highest correlation to the mean was the overall TMB, with other
aggregated mutational features (for example, clonal TMB) also showing
ahigh correlation. Specifically, theincrease of TMB is associated with
ahigher probability of response and also increased survival (Extended
DataFig.2aand Supplementary Fig.1). Thus, we named this latent fac-
tor TMB, and although it could be measured using any of the features
in the cluster, we selected the TMB to represent it. Importantly, the
mutation rate of virtually all genes (some of which have been previ-
ously associated with CPI response®*'>?2*) also appear to be highly
correlated with the TMB as part of this cluster of features, and indeed,
some heavily mutated genes exhibit lower Pvalues in the regression
analysis than TMB (Supplementary Note 1). This implies thatidentify-
ing the mutations of individual genes as biomarkers of CPI response
independently of the TMB is a very challenging task.

Cluster R2 was integrated by two highly correlated clinical fea-
tures: prior exposure to systemic therapy" and prior exposure to any
therapy. These two features appear to be significantly negatively asso-
ciated with CPIresponse and survival (Fig. 2b, Extended Data Fig. 2b,
Supplementary Fig. 1and Supplementary Note 1), perhaps owing to
increased tumor aggressiveness or deteriorated patient condition.
Thus, we named cluster R2 ‘prior treatment’,and for the following analy-
ses, we represented this cluster using exposure to any prior treatment.

Cluster R3grouped the expression of 48 genes. We reasoned that
the expression of gene sets representing biological functions in the
tumor or its microenvironment could aid in the interpretation of this
cluster. Thus, we computed the mean expression of 255 gene sets (225
representing all Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways and cancer hallmarks obtained from the Molecular Signa-
tures Database (MSigDB)>**° and 30 collected from the literature'*?%;
Supplementary Table 2, Fig. 2c,d and Methods). The mean expression
of 13 gene sets was significantly associated with the response to CPI
(Fig.2d, Extended Data Figs. 2c and 3a and Supplementary Fig. 1), and
all of them showed a high correlation (Pearson’s coefficient of >0.8)
with the mean expression of the genesinthe cluster. They all represent
some aspect of immune infiltration in the tumor; most specifically,
T lymphocyte infiltration. Therefore, we named this third latent fac-
tor ‘effective T cell infiltration” and represented it through the mean
expression of all genes in the cluster. The increase in effective T cell
infiltration appears significantly associated with a higher probability
of CPlresponse and longer survival.

There is a clear positive relationship between the correlation of
every feature to the representative of its corresponding latent factor
(that is, TMB, prior treatment and the mean expression of genes in
cluster R3) and the significance of its association with CPI response.
The higher the correlation of afeature with the mean of its correspond-
ing cluster, the more significant its association with CPl response
(Fig. 2e and Extended Data Fig. 2a-c). These three latent factors are

alsosignificantly associated with overall survival and progression-free
survival upon CPI treatment (Extended Data Fig. 2a-c).

We then asked whether any other latent factors of the tumor, its
microenvironment or the host specifically influence the survival of
patients, independently of the previous three latent factors associ-
ated with response (given that response is, by itself, a major determi-
nant of survival). To answer this question, we focused on features that
appeared to be significantly associated with overall survival, after
controlling (inaddition to the aforementioned covariates) for the three
latent factors previously associated with response (Fig. 3a). Again, to
discern how many latent factors were represented by these features,
we clustered them based on their pairwise correlations (Fig. 3b).

One ofthe three clusters was clearly orthogonal to the other two,
which exhibited acertaindegree of inter-correlation. Thus, we named
them clusters S1, S2.1and S2.2, as they only represent two mutually
orthogonallatent factors (Fig. 3b and Supplementary Note1). To inter-
pret them, we analyzed the correlation of their mean expression with
that of 255 gene sets (Supplementary Table 2), as explained above.
The mean of cluster S1showed the highest correlation with a gene set
named ‘Proliferation potential’ (Fig. 3c) and a high correlation with
other gene sets representing cell cycle and overall cell proliferation
(Extended Data Figs. 2d and 3b,c and Supplementary Fig. 1). We thus
named it ‘tumor proliferative potential’and represented it through the
mean expression of all genes in the cluster.

The mean expression of the genes in cluster S2.1 showed the
highest correlation with a gene set representing TGF-f3 in fibroblasts
(Fig.3d) and a high correlation with other gene sets related to this bio-
logical process (Extended Data Figs. 2e and 3b,d-f). Asin other cases,
we represented this latent factor through the mean expression of the
genes in the cluster. Low values of this latent factor (TGF- activity in
the microenvironment) are associated with longer survival of patients
upon CPItreatment even without correcting for the effect of the three
response-associated latent factors (Fig. 3e).

We next asked whether the latent factors are specifically associ-
ated with CPI treatment or whether they represent general elements
that influence response and survival upon any type of therapy. To
answer these questions, we analyzed the datafor 2,497 patientsin the
HMF cohort who received non-CPItherapies and found that the effects
of TMB, effective T cell infiltration and TGF-f activity in the micro-
environment are unique to CPI therapies, whereas prior treatment
appearsto affect the response to both CPland non-CPItherapies, and
the effect of tumor proliferative potential appears even larger across
non-CPI than CPI-treated patients (Extended Data Fig. 4). Virtually all
features that appear significantly associated with CPI response and/
orsurvivalaregroupedinone of the five latent factors (Extended Data
Fig.5),indicating that no latent factor remains to be discoveredinthe
HMEF-CPI cohort.

In summary, five mutually orthogonal latent factors underlying
CPIresponse and survival across the HMF-CPI cohort (Fig. 3g) emerged
from this unbiased analysis. Supplementary Dataset 1lists the results of
the unbiased analysis of featuresin their association with CPlresponse
and survival. Each of them can be represented through a number of
features that are clustered by virtue of their pairwise correlations.

Validation of the five latent factors

Next, we asked whether the five latent factors, identified across HMF-CPI,
were of comparable importance in the four groups of tumors with dif-
ferent tissues of origin represented in the cohort. To answer this ques-
tion, we conducted, for each latent factor, multivariate regressions
(adjusted for age, tumor purity, biopsy location and the remaining four
latent factors) of their effect on CPI response and survival (Fig. 4). We
found that the direction of the association of each factor (with response
or survival) was maintained for all tumor types as in the pan-cancer
analysis, with small differencesin the effect size and the significance of
their associations. One exception is the association of effective T cell
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infiltration with response in patients with lung tumors, which was not
significant (although the significance in the association with survival
is maintained). The other is prior treatment, which does not exhibit
asignificant association with response across bladder tumors. Very
similar results were obtained in cancer type-wise univariate regressions
(Extended DataFig. 6a). Insummary, we find that the latent factors, with
few exceptions, appear to underlie CPlresponse and survival across all
tumor typesrepresented inthe HMF-CPl cohort (Supplementary Note 1).

We next asked whether the five latent factors are validatedininde-
pendent cohorts of the same and other tumor types representing the
wide diversity of approaches of sample processing and tumor profiling
usedintheclinic. Tothis end, we collected data from the literature for
five independent cohorts or metacohorts (INSPIRE?, Lyon®*’, MARI-
ATHASAN?, PARKERICI®', RAVI*?) and obtained the data from another
cohort of patients treated at the Vall d’'Hebron Institute of Oncology
(VHIO). These validation cohorts comprised 1,491 patients with primary
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(right) with CPIresponse and overall survival. The value of each latent factor

was computed as the mean of the cluster of features obtained in the HMF-CPI
cohortacross each validation cohort, exceptin the VHIO cohort, where the
transcriptomics latent factors were estimated from alternative sets of genes
(Methods). Inthe forest plots, the dots represent the strength (coefficients
estimated through multivariate logistic or Cox regression) of the association

Coefficient estimate (95% Cl)

between the latent factor and response or survival across cohorts. The horizontal
bars denote the 95% confidence intervals. Gray dots represent latent factors
whose estimates are within one standard error at either side of 0, dots witha

light color (green or red) represent non-significant associations with coefficient
estimates above (or below) one standard error of 0 and dark-colored dots
represent significant associations. Green dots represent positive associations
withimproved outcomes (higher response odds or lower hazard ratio), while red
dots represent negative associations (lower response or higher hazard ratio).
Mixed denotes cohorts integrated by patients with multiple tumor types.

or metastatic tumors of different organs (Supplementary Table 1and
Supplementary Note 1). For 339 of these patients, we obtained suf-
ficient information to compute the five latent factors, while for the
remaining 1,152, we could compute only four or three latent factors.
Using the available clinical information, we were able to evaluate the
association of the latent factors with CPI response for 1,294 patients
across all cohorts, while the association with overall survival could be
computed for 1,165 patients across five cohorts. Unlike in the case of
the HMF-CPI cohort, most of these studies (except INSPIRE) started
from formalin-fixed, paraffin-embedded samples. The approaches
used to identify somatic mutations range from whole-exome tumor-
normal paired sequencing to tumor-only sequencing of a panel of 432
genes. The expression of genes was measured by whole-transcriptome,
targeted RNA sequencing (RNA-seq) or a panel of 170 genes using the
nCounter (NanoString) platform.

In a multivariate analysis, pooling all external cohorts, the asso-
ciations were consistent between each of the five latent factors and
CPIresponse or survival, with all except tumor proliferative potential
reachingsignificance (Fig. 4).Insomeindividual cohorts, the associa-
tion of a particular latent factor with CPI response or survival could
notbe verified, such asthe TMBin the VHIO cohort. In this case, owing
to the lack of a control sample to reliably call somatic mutations, the
calculation of TMB is probably not reliable (Supplementary Note 1).

Nevertheless, despite the differences in cohorts, profilingand sample
collections, the associations observed inthe HMF-CPI cohort for the five
latent factors were, overall, reproduced across the validation cohorts.
T cell effective infiltration was positively associated with CPIresponse
across five validation cohorts (three significantly), TGF-B activity inthe
microenvironment was negatively associated with survival in the five
cohorts in which it could be evaluated (four significantly) and tumor
proliferative potential was negatively associated with survival in four
outof five cohorts (two significantly; Fig. 4). The association with prior
treatment was validated in all (two significantly) but one cohort (Fig. 4
and Supplementary Note 1). Genes closer to the mean of clusters R1
(T cell effective infiltration), S2.1 (TGF-f activity in the microenviron-
ment) and S1 (tumor proliferative potential) in HMF-CPI also tend to
correlate better with one another across the four validation cohorts
with transcriptomics data (Methods; Extended Data Fig. 6b).

Insummary, despite the wide differences in tumor sample process-
ing and profiling, many of the associations between the five latent fac-
torsand CPIresponse or survival previously discovered in the HMF-CPI
arealso observed across six independent cohorts.

Multivariate models to predict CPI response and survival
Wenextasked how the effects of the fivelatent factors combine (through
accumulation or interaction) to influence CPI response and survival.
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Fig. 5| Multivariate models to predict patients’ response and survival. a, The
values of the representative biomarkers of the five latent factors across patients
inthe HMF-CPI cohort were used to train hybrid (pan-cancer-informed tumor
type-specific) gradient-boosting models to predict CPl response and survival.
The performance of the models was assessed through cross-validation (Methods
and Supplementary Note 1). b, Stratifying patients based on model predictions.
We separated the patients in the HMF-CPI cohortinto three groups based on
their predicted probability of response (histograms) and the three-segment bar
below. We then calculated the fraction of responders within each group (bar
plots below each histogram). ¢, Differences in overall survival between the three
groups of patients are represented by Kaplan-Meier curves. The P value for each
cohort (annotated in the plot) was calculated with a one-sided log-rank test. The

line colors correspond to the three groups of patients definedina.d, The TMB
for each patient in the HMF-CPI cohort (with complete data for all five latent
factors) was computed with a measure commonly used in the clinic: the number
of mutations per genomic megabase. Tumors were classified as low-TMB or high-
TMB based on a simple cutoff (10 mutations per megabase). The bars are colored
accordingto the fraction of patients with high or low TMB in each of them.
Interestingly, anumber of patients with high-TMB tumors are predicted to have a
low probability of response, whereas some patients with low-TMB tumors appear
inthe high probability of response group. The bottom bar plots present the
percentage of patients in the low-TMB and high-TMB groups that showed clinical
response to CPIs. OS, overall survival; BOR, best overall response according to
RECIST; MB, megabase.

To that end, we trained multivariate machine-learning (tree-based
gradient-boosting) models® to predict the response, overall survival or
progression-free survival of patients in the HMF-CPI cohort. To exploit
the higher statistical power provided by the full cohort and the specific-
ity inherent in the response across cancer types, we first constructed
pan-cancer models and then used them as the base to obtain hybrid
models; that is, subjecting the pan-cancer models to added rounds
of training on the data corresponding to each tumor type (Fig. 5a and
Supplementary Note 1). The hybrid models trained on the five latent
factors outperformed models trained solely on tumor type-specific
data(Supplementary Fig. 2a) as well as equivalent models trained solely
onvalues of TMB and PDL1expression (Supplementary Fig. 2b) within
the HMF-CPI cohort. Models trained on different representations of the
five latent factors showed comparable performance, supporting the
ideathatthe features of each cluster constitute alternative representa-
tions of the latent factors (Supplementary Fig. 3a,b). The variability in
the influence of the five latent factors across different tumor types in
the HMF-CPI cohort observed in the multivariate regression analysis

described aboveis verified through a survey of their relative importance
onthe prediction cast by the multivariate machine-learning models of
CPIresponse and overall survival (Methods; Extended Data Fig. 7a,b).

Wethenstratified 396 patients inthe HMF-CPI cohort with all data
types (jointly and separately by tumor type) into three groups of low
(below 0.1), medium (between 0.1 and 0.5) and high (greater than 0.5)
predicted probability of response to CPI. Only 2 (3%) of the 67 patients
inthe low-probability group actually responded to CPItreatment, com-
pared with 61 out of 97 (63%) patientsinthe high probability of response
group (Fig. 5b). This stratification also significantly separated patients
in the HMF-CPI cohort based on their survival (Fig. 5¢). Stratifying the
patients based on a threshold of TMB used in the clinical practice (ten
mutations per Mbp***) to separate high-TMB and low-TMB tumorsisless
optimal, with17% of responders among patients with low-TMB tumors
and 42% among those with high-TMB tumors (Fig. 5d). Interestingly,
patientsin the group with low probability of response exhibit arange of
predicted hazards according to the overall survival pan-cancer model
(Extended Data Fig. 8a—g and Supplementary Note 1). Across the VHIO
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and INSPIRE cohorts, the stratification based on the predicted prob-
ability of response produced a perfect identification of patients with a
low probability of response, while results were less accurate across the
RAVIcohort (Extended Data Fig. 9a and Supplementary Fig. 4).

When applied to patients in the HMF cohort who did not receive
CPIs, the multivariate models of response identified an important
fraction of the patients with skin (35%), bladder (42%) and lung (16%)
tumorswithahighlikelihood of response to the treatment (Extended
Data Fig. 10). Interestingly, patients suffering from other metastatic
malignancies (some not usually considered as candidates for CPI) were
also identified as potentially good responders. For example, 18 (4%)
patients with breast cancer, 10 (3%) patients with colorectal cancer, 10
(19%) patients with kidney tumors and 5 (15%) patients with liver cancer
exhibited high probability of response to CPI.

Insummary, weillustrate that multivariate models combining the
five latent factors produce a more accurate stratification of patients
according to their predicted probability of response than the TMB
alone.

Discussion
Inthis work, we followed a completely unbiased approach to discover
genomics, transcriptomics and clinical features associated with CPI
response and survival across patients with cancer. We aimed to answer
how many and which aspects of the tumor, its microenvironment and
the hostinfluence the response to CPIs across patients (that s, latent
factors), in an effort to provide a framework of reference to existing
copious reports of biomarkers. First, through univariate logisticand
Cox regressions, we identified a few hundred features that are sig-
nificantly associated with CPI response and/or survival. Five latent
factors emerge when these significant features are clustered based
ontheir pairwise correlation. These represent mutually independent
aspects of the tumor, its microenvironment and the host that influence
theresponse of a patient to CPland their hazard after the treatment.

Although the fact that some genomics and transcriptomics fea-
tures may represent the same aspect of tumors, their microenviron-
mentorthe host had beenreported before, here we show thatanarray
of different, highly intercorrelated features (for example, expression of
genesrelatedto T cell function) actually represent different measure-
ments of the same latent factor. Thisis particularly striking in the case
of TMB: the mutation rate of hundreds of genes (including cancer driver
genes) appears to be highly correlated with TMB, suggesting that the
association of mutationsinagiven gene with CPIresponse rather than
an independent biomarker is just an alternative proxy measurement
of TMB. Although the mutation status of some genes may stillbe bona
fide biomarkers of CPI response, independently of TMB, any analysis
to identify them should account for the confounding factor of their
correlation with TMB. We also demonstrate that the associations of the
latent factors with CPIresponse and survival are observed across differ-
enttumor types, and we validated themacross sixindependent cohorts
of patients. Most of the associations discovered in the HMF-CPI cohort
were corroborated across these independent cohorts, despite differ-
ences in sample collection and processing procedures and profiling
methods between these cohorts and the HMF-CPI. This indicates that
these latent factors are mostly universally associated with CPl response
and survival. They may thus be potentially used in the future within
the clinical practice, despite the heterogeneity of sample processing
and tumor profiling approaches used. The variability observed across
tumors of different origins in more than one cohort (for example, the
smaller association of effective T cell infiltration with the response of
lung tumors) may point to findings that could be pursued further. To
our knowledge, this constitutes the most extensive exploration, to
date, of the biomarkers of CPI response and survival across cohorts
with tumors from different organs.

Importantly, no features other than these five latent factors were
significantly associated with CPIresponse or survival. Thatis, virtually

all significant features cluster within one of them. However, some rel-
evant features may still lay below the statistical power of the HMF-CPI
cohortorappear significantly associated with CPIresponse or survival
in only one tumor type. This is particularly important for features
that may be relevant for a fraction of patients, such as mechanisms of
immune escape (for example, B2M deletion, an event that we observe
assignificant across melanomasbut not other tumors inthe HMF-CPI
cohort; see Supplementary Note 1)%?>?*3¢, Other examples of such
features relevant for specific groups of patients may include common
polymorphisms that affect theimmune response® and the heterozygo-
sity at HLA loci®®. Particularities of the tumor types not representedin
the HMF-CPIcohort are, of course, also absent from our current catalog
of proxy biomarkers. These will be discovered when larger CPI cohorts
are analyzed; itis notinconceivable that even more latent factors will
become apparent then. Our discovery of latent factors is also limited
by the profiling technologies used, which rely on deconvolution of the
immune infiltrate based on bulk RNA-seq data. More detailed stud-
ies of this infiltrate—based on fine mapping of immune populations
and their interactions with other cells in the microenvironment—will
contribute in the future to refine the landscape of biomarkers of CPI
response and survival.

Atestofthe application of multivariate models combining the five
latent factors produced astratification of the patients in the HMF-CPI
cohortbased on their predicted response probabilities that discrimi-
nates better between responders and non-responders than the thresh-
old of TMB frequently used in the clinic. This could be regarded as a
proof-of-principle for application of the five latent factors to clinical
practice. Being able to identify patients with a very low probability of
response would be relevant to spare them the potential side effects of
the therapy’. Additionally, it may aid in reducing the financial burden
on healthcare providers®. There is also the possibility—illustrated
through the analyses described above—to use such multivariate models
to identify patients with tumors that are not usually considered suit-
able candidates for CPIwho have a high probability to respond. In the
future, when these types of models can be used in support of clinical
decision-making, this could potentially contribute to expanding the
therapeutic options for patients suffering from these malignancies.

Insummary, we envision that the results of this work can provide
a frame of reference to the research of biomarkers of CPl response
and survival, resulting in the classification of all identified significant
features falling into one of these five latent factors, or a completely
independent one.
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Methods

Discovery cohort

Whole-genome somatic mutations, copy number and other structural
variants across metastatic tumors from 4,484 patients in the HMF
cohort were obtained from the HMF database'®" (version DR-263_
updatel). Of these, 479 subsequently received CPI therapy (HMF-CPI
cohort), for which all somatic variation information was available.
Whole transcriptome from RNA-seq was available from the same source
for a subset of 396 patients in the HMF-CPI cohort. Several features
computed by the HMF pipeline from this data for each tumor (for exam-
ple, number of neoepitopes, activity of mutational signatures) as well as
the patients’ germline features (such as HLA allotypes) were obtained
as part of the dataset. It also included all relevant clinical information
regarding exposure to treatment for their primary malignancy, the
subsequent treatment regimen for the metastasis and longitudinal
measurements of the outcome (Supplementary Note 1 and Supple-
mentary Table 1). The ethical approval to use this datain research has
been obtained by the HMF.

Validation cohorts

INSPIRE. Whole-exome somatic mutations, the whole-transcriptome
RNA-seq gene expression of tumors and all clinical data pertaining to
prior treatment as well as outcome upon treatment with pembroli-
zumab within the INSPIRE basket trial (NCT02644369) were obtained
for 64 patients from https://github.com/pughlab/inspire-genomics.

Lyon. Targeted RNA-seq (2,559 genes) and clinical datafrom 315 patients
treated at several hospitals in Lyon and Paris®** were obtained from
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159067,
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161537,
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162519 and
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162520.

MARIATHASAN. Whole-exome somatic mutations, the whole-
transcriptome RNA-seq gene expression of tumors and all clinical data
in a previously published study? of 348 patients were obtained from
http://research-pub.gene.com/IMvigor210CoreBiologies.

PARKER ICI. Whole-exome somatic mutations, the whole-
transcriptome RNA-seq gene expression of tumors and all clinical
data of several cohorts of tumors (including those within clinical tri-
als CheckMate 038 and CheckMate 067 and two cohorts published
within other studies) compiled in a previous publication® totaling
315 patients were obtained from https://github.com/ParkerICI/
MORRISON-1-public.

RAVI. Whole-exome somatic mutations, the whole-transcriptome RNA-
seq gene expression of tumors and all clinical data of the SU2C-MARK
cohort from a previous publication®” comprising 352 patients were
obtained from https://zenodo.org/records/7625517.

VHIO. The estimated TMB and the expression (via NanoString) of 170
genesacross the tumors of 74 patients with cancer profiled and treated
at the VHIO Hospital in Barcelona were obtained directly from the
Cancer Genomics Group. Clinical data of these patients were provided
by attending oncologists at VHIO.

Details of all cohorts appear in Supplementary Table 1 and Sup-
plementary Note 1.

Ethicalapproval to use the data of the first five validation cohorts
in research was obtained by the original institutions, who obtained
written informed consent from patients and made the data available
through scientific publications. The Vall d’Hebron University Hospital
Ethics Committee of Clinical Research approved the study according
tolocalguidelines and regulations, and written consent was obtained
fromallthe patients included in this study.

Feature extraction for systematic analysis

Somatic features (18,382) representing single nucleotide variants,
indels, copy number variants and other structural variants were
extracted from files directly downloaded from the HMF database.
Theseincluded thelist of variants as well as summary statistics, such as
TMB, burden of structural variants, predicted neoantigen burden, and
so on. Although some features were obtained directly from the files,
others were derived. The level of expression (transcripts per million)
of 8,817 genes (measured through whole-transcriptome RNA-seq) was
also obtained from files downloaded from the HMF database after
pre-processing (see below). Other RNA-seq features were derived from
these values, mainly through the summarization of the expression of
genesets in separate features'>”*°*!, or by Cibersort" derivation of
immune cell populations from gene expression data (Supplementary
Table2). The HLA allotypes of HMF-CPI patients were directly obtained
from files downloaded from the HMF database, while somatic HLA
loss of heterozygosity in the tumors was estimated using the LILAC
tool*. Clinical information regarding courses of treatment before the
biopsy of the metastasis and the subsequent outcome of CPItreatment
was also obtained from files downloaded from the HMF database.
Again, part of that information was directly converted into features,
while other features, such as the time elapsed between the end of the
prior treatment and the biopsy of the metastasis, were derived from
these data. Some of these clinical features were converted into out-
comes of the analysis (best overall response to CPI, overall survival and
progression-free survival upon CPI), while others were maintained as
potentially predictive features. A detailed description of the strategy
followed for the extraction of features in the HMF-CPI cohorts appears
inSupplementary Note 1.

Pre-processing

All outcomes and features were computed across all samples in the
HMF database. Finally, the data was joined based on the sampleiden-
tifiers to produce a data frame ready for statistical analyses. Before
systematic analyses, several pre-processing steps were performed.
First, toreduce multiple testing, we applied filters to remove features
with little chance of providing meaningful associations. For somatic
mutations by gene, only genes with at least one mutation per 20
samples were kept for the analyses. For RNA expression, only cod-
ing genes withamean and standard deviation of adjusted transcript
per million values greater than 0.5 were considered. For the driver
features, only driver genes mutated in at least one in 30 samples
wereincluded. Similarly, for mutational signatures, only signatures
with exposure greater than 0.02 for at least one in 20 samples were
included. Second, all features were standardized to have a mean of
zero and a standard deviation of one across the CPI samples. This
standardization allowed for fair comparisons of estimated effect
sizes. Outside of the primary tissue location, all features in the analy-
ses were numeric or ordinal.

Systematic analyses

Each feature was tested individually for the strength of association to
best overall response, progression-free survival and overall survival.
Generalized linear models and their native maximum-likelihood-based
tools were used for all estimation, standard error calculation and
hypothesis testing.

Thebest overall response was modeled with logistic regression, in
whichwe assumed that the probability of response followed a Bernoulli
distribution withmean p. For each feature X, we accounted for primary
tissue, biopsy location, tumor purity and age as model covariates.
Formally, let/;represent the covariate indicator functions for primary
tissue (skin, lung, bladder, other tissue), let /, represent the indicator
function for biopsy location (lung, liver, lymph node, primary, skin,
other tissue), let X, represent patient age and X,,,;,, represent the
tumor purity. The full and reduced models were fit as follows.
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Full model:

LOgit( p) = :BO + X.BX + z Ijﬁj + z Ik/}k + Xpurityﬂpuri[y +Xageﬂage

J€tissue kebiopsy

Reduced model:

LOgit( p) = :BO + Z Ijﬂj + Z Ikﬂk + Xpurityﬂpurily +Xageﬂage

JEtissue kebiopsy

The models were fitted with the base R glm function.

Progression-free and overall survival outcomes were modeled for
eachfeature with Cox proportional hazards models. The hazard rates,
denoted h(t), were modeled as follows.

Full model:

lOg (h (t)) = XﬂX + z Ijﬁj + z Ikﬁk + Xpurityﬁpurity +Xageﬂage

J€tissue kebiopsy

Reduced model:

log (h (t)) = Z Ijﬁj + Z Ikﬁk +Xpun‘tyﬁpun‘[y + Xageﬁage

J€tissue kebiopsy

Survival models were fitted using the coxph function from the
survival packageinR.

For all analyses, P values were computed based on the likelihood
ratio tests comparing the full and reduced models.

For the main analyses of best overall response, progression-free
survival and overall survival, the covariates included were the indica-
tors for primary tissue, the age of patients, the site of biopsy of the
metastasis and the tumor purity. For the overall survival residuals
analysis, the covariates additionally included the representative bio-
markers of the three latent factors explaining response: TMB, T cell
effectiveinfiltration and pretreatment. For all model-feature-covari-
ate combinations, the Pvalues were calculated from the likelihood
ratio test comparing the full model to the reduced model (with the
feature of interest removed). Effect sizes (log odds ratio for the logis-
ticregression and hazard ratios for the Cox regression) and standard
errors were estimated with maximum likelihood from the full models.
All effect sizes, standard errors and corresponding P values were stored
for further analysis. Given the large dependency in tests, we used the
Benjamini-Yekutieli multiple testing threshold to control the false
discovery rate”. Several exhaustive analyses were run, with different
sets of covariates each producing similar conclusions. Full documenta-
tion of all exhaustive analyses can be found in Supplementary Note 1.

Identification of latent factors

Latent factors were defined as the independent biological mecha-
nisms underlying the features most predictive of CPI response and
survival. To label latent factors, we first focused on features passing the
Benjamini-Yekutieli multiple test significance threshold. From these
significant features, we computed their pairwise Pearson correlations
and identified clusters using hierarchical clustering (hclust() in R with
the Ward.D2 algorithm). The optimal number of clusters was defined
using the R package ‘factoextra’ function fviz_nbclust, using silhouette’,
‘wss’ and ‘gap_stat’ options.

To label transcriptomics clusters, we computed the expression
of255gene setsreported in the literature. The gene sets (Supplemen-
tary Table 2) were collected by downloading the Hallmark and KEGG
annotated gene sets from MSigDB** (version 2023.1.Hs). These gene-
sets were further complemented by others, obtained from previous
publications?, including a paper describing the CPI-1000 analyses'.
Genesets with a Pearson correlation of >0.8 with the mean of a specific
cluster and passing the multiple test P value threshold of association

with CPlresponse or survival were considered cluster-specificand thus
used to discern the nature of the cluster.

Stability of transcriptomics latent factors

Foreachgeneineach transcriptomics cluster, we calculated the silhou-
ette score*” using the silhouette() function from the package ‘cluster’
in R. This score reflects how close the particular data point is to the
cluster of assignment and how far it is from other clusters. The matrix
of distances between genes used to calculate silhouette scores was
obtained from the correlation matrix

d =+/1-|cor|,

where coris the correlation matrix of gene expression levels.

We then calculated silhouette scores for each gene in every other
cohort with available expression data (INSPIRE, MARIATHASAN,
PARKERICI, RAVI) using gene expression levels from the corresponding
dataset but keeping the initial clustering obtained in the HMF cohort.
Aggregation of silhouette scores across datasets was performed using
the aggregateRanks (method =‘stuart’) function from the ‘RobustRank-
Aggreg’ Rpackage®.

Multivariate machine-learning models

Multivariate models were fitted using the Extreme Gradient Boosting
(XGBoost) package in R*. The training in all cases sought to find the
tree function T (sumof trees) that minimizes the expected loss between
the observed and predicted response values; that is:

T = argminzE, L (Y, T(X))

where Xand Yare the feature and response data, respectively, and Lis
theloss function of choice. In our setting, the loss function was chosen
to be anegative likelihood compatible with the typical distributional
assumptions for each type of data. Specifically, the best overall
response was modeled using the logistic regression likelihood, while
progression-free survival and overall survival were modeled using the
Cox proportional hazards likelihood.

We trained three pan-cancer models (one per outcome) incor-
porating all available training data (479 patients). We also trained 12
hybrid models based on the three pan-cancer models followed by
further cycles of training on patients of each tumor type, but maintain-
ing exactly the same loss function and all hyperparameters. Patients
suffering from malignancies other than skin melanomas and lung or
bladder tumors were pooled within a group labeled as ‘other’ tumor
types. Thismodelfit procedure found acompromise between low vari-
ance but high bias from the pan-cancer models and low bias but high
variance in pure tumor type-specific models. Finally, we also trained
pure tumor type-specific models, starting from the patientsin each of
the four groups separately (details in Supplementary Note 1).

The XGBoost models require many tuning parameters (learning
rate, depth, sub-sampling, minimum tree leaf size) that guide the internal
model fitting. Initially, our model building used grid searches to select
optimal internal tuning parameters. However, in our cross-validation
study, we found that simple additive models (depth, 1; fast learning rate,
0.05; minimum leaf'size, 5; sub-sampling, 0.75) had the best performance.

Forthebest overall response, the model casts the prediction outputs
as log odds ratio scores that can then be recast into probability scores
(continuous values between 0 and1). For progression-free survivaland
overall survival, the models cast the prediction outputs as log hazard
ratios that canthenberecastinto hazard ratios (continuous and positive).

Separate models were trained solely on TMB and PDL1 expres-
sion (the continuous value reported in the HMF-CPI cohort by
whole-transcriptome RNA-seq). These models were used to represent
the predictive power of clinically approved biomarkers across analyses
of the performance of multivariate models.

Nature Genetics


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-024-01899-0

Calculation of Shapley values

Given that the final tree-based models were additive, the calculation
and extraction of Shapley values was straightforward. For each feature,
for a given additive model and individual sample, there was 1-to-1
mapping fromthe feature values and the Shapley values. This relation-
ship between feature and Shapley valuesiis visualized by the marginal
dependence plotsin Extended Data Figure 7a,b. In R, using the predict
function applied to the XGBoost output, we set the argument contri-
bution = TRUE to extract the Shapley values. The extracted Shapley
values measure additive feature contribution to the log odds ratio for
response models and the log hazard ratio for the Cox survivalmodels.

Proxy biomarkers in the VHIO cohort

In the VHIO cohort, the TMB was estimated from the mutations
detected using a 432-gene hybrid capture-based panel®. The expres-
sion of 170 genes was measured using the nCounter (NanoString)
platform*®. Normalized NanoString counts were log transformed and
standardized, and proxy biomarkers were selected based on their cor-
relation with the representative biomarkers of the five latent factorsin
the HMF-CPI cohort. For the T-cell effective infiltration gene set, CXCL9,
CXCL10,CXCL11,GZMA, GZMBand IFNG were selected. Overall, this gene
set was strongly correlated with the original T-cell effective infiltra-
tion gene set (p=0.97) and showed high statistical significance in the
exhaustive analysis (P=7.0 x 10°®). To select aset of genes to represent
the latent factors of TGF- activity in the tumor microenvironmentand
tumor proliferative potential, we selected genes with a correlation of
>0.5totherespective gene set. This processyielded BRCA1, BRCA2 and
TUBBfor the tumor proliferative potential gene set. Although none of
these genes were included in the representative biomarker obtained
from the HMF-CPI cohort, they all showed a strong correlation to this
geneset. The proxy gene set also showed a statistically significant asso-
ciation with overall survival residuals. The aforementioned process,
in the case of the VHIO TGF-f3 gene set, yielded DLL4, HEYL, NOTCH3,
NOTCH4,SERPINE1, TGFBI and TGFB3. This gene setalso showed avery
strong correlation to the representative TGF-f3 activity in the tumor
microenvironment biomarker (Supplementary Note1).

Statistics and reproducibility

The systematic analysis to identify features associated with CPI
response and survival was carried out through logisticand Cox regres-
sions, and the results were filtered for multiple testing as described in
the Methods and Supplementary Information. These features were
grouped into latent factors based on their pairwise correlations.
Standard statistical approaches, such as univariate and multivariate
regressions or Kaplan-Meier analysis, were used downstream for the
analysis of the latent factors across validation cohorts. No statistical
method was used to determine sample size for the analysis. All avail-
able samples from the discovery and validation cohorts were used;
none were excluded from the analysis. Given that the study consisted
entirely of the analysis of existing data, it was not randomized and the
investigators were not blinded, as no allocation of samples in groups
was carried out. All data used in this study are publicly available (see
below) and the code used to reproduce the analysis described in the
paper has been deposited in public repositories (see below).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Access to the HMF-CPI data can be obtained through a request to
the HMF (https://www.hartwigmedicalfoundation.nl/en/data/
data-acces-request)'®'’, The validation datasets can be obtained as
follows: INSPIRE?, INSPIRE github repository (https://github.com/
pughlab/inspire-genomics); Lyon*°, GEO GSE159067, GEO 161537,

GEO GSE162519 and GEO 162520; MARIATHASAN?, public reposi-
tory (http://research-pub.gene.com/IMvigor210CoreBiologies);
PARKER ICI?!, PARKER ICI github repository (https://github.com/
ParkerICI/MORRISON-1-public); RAVI*, zenodo repository: 7625517;
VHIO, this study github repository (https://github.com/bbglab/
immunebiomarkers).

Code availability

Allcode necessary to carry out the extraction of the features from the
HME-CPI provided files (version DR-263_updatel) and to generate the
data frame needed for analysis is freely available in a public reposi-
tory (https://github.com/bbglab/hartwig_biomarkers). The code to
reproduce all analyses is also publicly available (https://github.com/
bbglab/immunebiomarkers).
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HMF CPI: Exhaustive Analysis by Different Covariate Adjustments
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Extended Data Fig. 1| Identification of latent factors associated with CPI in the main manuscript were carried out taking into account all covariables
response and survival across the HMF-CPI cohort. The figure provides abroad described in c. Features of different nature are colored following the same
comparison of the landscape of features identified as significantly associated legend as in the main Figures. All p-values shown in the plots were computed
with CPIresponse (BOR), Progression Free Survival (PFS) and Overall Survival vialogistic (response) or Cox (survival) regressions, asin Figs.2 and 3 of the
(0S) through the systematic use of univariate regression models corrected with main manuscript. These are, by definition, two-sided, denoted by positive or
different sets of covariables (see main manuscript and Supplementary Note negative odds ratios (logistic regressions) or the reverse of hazard estimates
1). The three panelsillustrate the results of the systematic analysis using no (Cox regressions). OS: overall survival; PFS: progression-free survival; BOR: best
covariables (a), only the tissue as covariable (b), or the tissue, age, biopsy site overall response according to RECIST.

and tumor purity as covariables (c) for the regressions. All analyses described
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HMF CPI: Exhaustive Analysis by Correlation to 5 Latent Factors
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Extended DataFig. 2| The five latent factors are integrated by highly
correlated and significant features, and are mutually orthogonal. All graphs
present the relationship between the significance of the association between
individual features with CPIresponse or survival and their correlation to the
mean of the clusters of features representing each latent factor.a) TMB cluster.
Featuresintegrating this latent factor are significantly associated with CPI
response and survival. b) Pretreatment cluster. Only very few features,

all capturing different treatments, appear correlated with the mean of this
cluster. Their association is also apparent with CPI response and survival.

c) Effective T-cell infiltration cluster. Features integrating this latent factor are
significantly associated with CPI response and survival. d) TGF-f activity in the

microenvironment cluster. Features included in this cluster are highly correlated
with the mean of the cluster, while some features included in the effective T-cell
infiltration cluster show amoderate correlation (-0.5). These features are only
significantly associated with CPIsurvival (including survival residuals), but
notwith response. e) Proliferative potential cluster. These features are only
significantly associated with CPIsurvival residuals. Features of different nature
are colored following the same legend as in the main Figures. All p-values shown
inthe plots were computed via logistic (response) or Cox (survival) regressions,
asinFigs. 2 and 3 of the main manuscript. These are, by definition, two-sided.
OS: overall survival; PFS: progression-free survival; BOR: best overall response
according to RECIST.
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Extended Data Fig. 3| See next page for caption.
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Extended Data Fig. 3| Interpretation of significant expression features
using genesets. a) Heatmap representing the pairwise correlation between
genesets highlighted in Fig. 2 of the main paper. b) Significance of the
association of 255 genesets with CPI survival residuals and their correlation
with the mean of cluster S1 (left) and S2.1 (right). Significant genesets and
correlation above O are highlighted. c) Heatmap representing the pairwise
correlations between genesets that appear significantly associated with CPI
survival residuals and correlated with cluster S2.1. d) All significant features
fromthe volcano plot represented in Fig. 3e which do not belong to any of the
response clusters previously identified (TMB, T-cell effective infiltration, prior
treatment) were selected and clustered based on their pairwise correlations.
Onelarge cluster (along a few unclustered features) is apparent, called cluster

Survival. e) We computed the correlation of the mean value of the Survival
cluster with 255 genesets. It was highly correlated with genesets representing
the activity of TGF-B in the tumor microenvironment (purple dots). Other
significant genesets (uncorrelated with cluster Survival) represent T-cell
effective infiltration (red dots). f) Pairwise correlations between all genesets
that appear significantly associated with CPl overall survival not corrected by
TMB, T-cell effective infiltration and prior treatment. Two clusters are apparent.
One of them represents T-cell effective infiltration. The other represents TGF-3
activity in the microenvironment. P-values shown in the plot were computed
vialogistic (response) or Cox (survival) regressions, asin Figs.2 and 3 of the
main manuscript. These are, by definition, two-sided. OS: overall survival; PFS:
progression-free survival; BOR: best overall response according to RECIST.
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Extended Data Fig. 4 | Association of the five latent factors with anti-cancer
systemic therapies other than CPI. Association of the five latent factors with the
response to treatment (a) and overall survival (b) of patients in the HMF cohort
who received CPI (left) or other therapies (right). All patients with an annotation
of havingreceived a treatment (other than CPI) for the metastatic tumor and for
whichanannotation of the organ of origin of the primary tumor was available
wereincluded in this group (N = 2,497). In each of the graphs the horizontal
dotted line represents the threshold of statistical significance, while the vertical
dotted line separates the positive (increased response or survival) and negative
(decreased response or survival) effects. The association of each of the latent
factors with CPlresponse or survival has been assessed using a univariate

regression (on the values of the representative of the latent factor computed
across tumors). Hence, a circle in the top right quadrant denotes a latent factor
significantly associated with a positive outcome (increased response or survival);
acircleinthe top left quadrant represents a latent factor associated witha
negative outcome (decreased response or survival). A circle in either of the two
bottom quadrants represents a latent factor not significantly associated with
the outcome measured. P-values shown in the plots were computed via logistic
(response) or Cox (survival) regressions, using as independent variable, in each
case, the estimator of each latent factor. These are, by definition, two-sided,
denoted by positive or negative odds ratios (logistic regressions) or the reverse
of hazard estimates (Cox regressions).
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Extended DataFig. 5| The five latent factors capture all the signal of

features associated with CPI response and survival. a) Features of different
types significantly associated with CPIresponse or survival. The three first
graphs correspond to Extended Data Figure 1C. The fourth graph presents the
regression of survival residuals (that is, controlling for the features identified
asassociated with response) on all features. b) Volcano plots resulting from the
regression analyses presented in panel A, including only features with correlation
coefficient above 0.8 with the mean of any latent factor. Significant features from
allregression analyses show high correlation to the clusters’ mean (as the clusters
are precisely constructed from them). Other non-significant features show
equally high correlation with the clusters. ¢) Volcano plots asin panels A and B,

1/0S Hazard Estimate

1/0S Hazard Estimate

but showing only features with correlation coefficient below 0.3 to the mean of
the clusters defining the latent factors. Only scattered features uncorrelated

to the five latent factors appear significantly associated with CPl response or
survival, indicating the absence of any other mutually orthogonal latent factor
inthe HMF-CPI cohort at the level of statistical significance set by the stringent
False Discovery Rate used. Features of different nature are colored following the
same legend as in the main Figures. The p-values and effect sizes shown result
from logistic or Cox regressions. P-values shown in the plots were computed
vialogistic (response) or Cox (survival) regressions, asin Figs.2 and 3 of the
main manuscript. These are, by definition, two-sided. OS: overall survival; PFS:
progression-free survival; BOR: best overall response according to RECIST.
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Extended Data Fig. 6 | See next page for caption.

Nature Genetics


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-024-01899-0

Extended Data Fig. 6 | Univariate analyses reveal the association of latent
factors with CPIresponse across different tissues in the HMF-CPI cohort
and six validation cohorts. a) Left panel: Forest plot illustrating the association
(calculated through univariate regression models) of the five latent factors
with CPlresponse and survival across groups of patients with different types of
tumorsin the HMF-CPI cohort. Right panel: Idem across six validation cohorts.
Red or green dots denote clear association (regression coefficients estimate
more than1(light) /1.96 (dark) standard errors from 0) of a latent factor with
response or survival, while gray dots denote lack of association. Dark color
denotes significance of the association, while light color represents non-
significant associations. In the forest plots, the dots represent the strength
(coefficients estimated through multivariate logistic or Cox regression) of the
association between the latent factor and response or survival across cohorts.
The horizontal bars across dots denote the 95% confidence intervals. Gray dots
represent latent factors whose estimates are within one standard error of O,
dots with light color (green or red) represent non-significant associations with
coefficient estimates above (or below) one standard error of the O, while dark
colored dots represent significant associations. Green dots represent positive

associations withimproved outcomes (higher response odds or lower hazard
ratio), while red dots represent negative associations (lower response or higher
hazard ratio). b) Stability of transcriptomics latent factors across validation
cohorts. We computed the relationship between the distance of each feature to
all the members of its cluster (defined in the HMF-CPI cohort) and all members of
other clusters (silhouette score; Methods). The silhouette scores thus computed
for genesin the TGF-betaactivity in the microenvironment across HMF-CPl and
four validation cohorts are represented in the first five bar plotsin the top panel.
Two genes, one with relatively high silhouette score, and another showing more
variability across all cohorts appear highlighted. The ranks of the genes (sorted
accordingto their silhouette scores) are aggregated across all cohorts, and a
significance score (reflecting genes that are ranked consistently better than
expected) iscomputed (right-hand bar plot). The three graphs at the bottom of
the panel represent the relationship between the silhouette score of the genes
ineach transcriptomics latent factor in the HMF-CPI cohort (x-axis) and their
aggregated score (y-axis). Sample sizes for all datasets tested can be found in
Supplementary Table1.
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Extended Data Fig. 7 | Relative importance of the five latent factorsin the
prediction of response or overall survival across patients in the HMF-CPI
cohort. Theline plots represent the contribution of the values of each latent
factor (Scaled feature values) across patients to the predictions cast by the
response (BOR) and overall survival (OS) multivariate models. The effects are
illustrated through the Shapley Values (Methods and Supplementary Note

1). Thus, in each plot, the line corresponding to each latent factor follows the
relative influence of the values of the feature used to measure the latent factor
on the predictions obtained through the model across all patients. Lines with
positive slope correspond to latent factors that increase either the probability

of response or the hazards with the increase in their value. The bar plots below
theline plots represent the overallimportance of each latent factor (using the
standard deviation of the Shapley values) across all predictions of each model in
each cohort. a) Representation of the relative importance of the latent factorsin
the prediction of response to CPl across the pan-cancer cohort and each tumor
type separately within the HMF-CPI cohort. b) Representation of the relative
importance of the latent factors in the prediction of overall survival (hazards)
to CPlacross the pan-cancer cohort and each tumor type separately within the
HMF-CPI cohort.
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HMF response vs survival and shapley example
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Extended Data Fig. 8 | Comparison of response and survival models using
Shapley values. a) Showing acomparison of response and survival hazard
estimates. The points are color coded red for low responders (<10% probability
response), yellow for medium responders (10-50% probability) and green for
high responders(>50%). The estimates we obtained from XGboost models
trained on representative biomarkers of the five latent factors across patients
inthe HMF-CPI cohort to predict CPl response and survival. b) Exploring the
determinants of the distribution of hazards across patients with low probability
of response (scatterplot). The patients in this group have been subdivided into
two smaller groups based on their predicted hazard, represented by dots of

different shades of red separated by the horizontal line in the value of predicted
hazard 1.5. The line plots represent the distribution (quantiles) of Shapley

values (see Methods) calculated for these two subgroups of patients for the

five latent factors. The two lines appear more separated in the distributions

of Shapley values of tumor proliferative potential and TGF-beta activity in the
microenvironment. This indicates that itis the values of these two latent factors
that contribute the most to the separation between these two groups of patients.
c) Example of the predicted CPI response and survival of one patient in the HMF-
CPIcohort broken down by Shapley values.
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Extended Data Fig. 9| Stratification of patients in validation cohorts using
multivariate machine learning models. a) The histograms represent the
distribution of the probability of response to CPl of patients across three of
the validation cohorts (those with complete data on all five latent factors),
either combined or separate. The bars are colored red (probability of response
below 0.1, low), yellow (probability between 0.1and 0.5, medium) or green
(probability above 0.5, high). The absolute number of patients across the three
cohortsineachgroup (low, medium, high) are shown in the horizontal bar
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patients in each of the groups who actually showed response to CPlaccording

to the data of each cohort. b) Top panel: Kaplan-Meier curves resulting from

the aforementioned stratification of patients across the three cohorts, either
combined or separate. Bottom panel: Kaplan-Meier curves resulting from
stratifying the patients across the three cohorts based on their predicted
probability of survival according to the hybrid models trained on survival data.
The p-value for each cohort (annotated in the plot) was calculated via a one-sided
logrank test.
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Extended Data Fig.10 | Application of multivariate machine learning models
to identify patients with high probability to respond to CPl across the entire
HMF cohort. Bars represent the number of patients with metastatic tumors from
different sites of origin in the HMF cohort who received (top) or did not receive
(bottom) CPlas treatment. All patients with an annotation of having received a
treatment (other than CPI) for the metastatic tumor and for which an annotation
of'the organ of origin of the primary tumor was available were included in this
group (N =2,497). The colored segments in the bars at the left represent the
absolute number of patients with low (below 0.1), medium (between 0.1and 0.5)
or high (above 0.5) predicted probability of response. These bars have been

separated based on the total number of patients of each tumor type, and x-axes
representing the relative scales of each plot have been added. To the right side of
the plot, the percentage of patients of each tumor type including more than 15
cases are represented as stacked bar plots, to facilitate comparability between
tumor types. Animportant fraction of patients with tumors from the same origin
as those in the HMF-CPI cohort (for example, in the lung) present high predicted
probability of response to CPI. Interestingly, patients with tumors of other
origins, who are not typically considered as candidates for CPI treatment also
exhibit high predicted response probability.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  HMF cohort:
Data of the Hartwig Medical Foundation (HMF) cohort were obtained from the HMF database (version DR-263_updatel). Several other
features computed for the tumors of these patients were also obtained directly from the HMF database, while others were computed by us. A
through list of these features and their values is presented in Table S3.

Validation cohorts

INSPIRE: Data for 64 patients in the INSPIRE basket trial (NCT02644369) were obtained from the link shared in Data Accessibility.

Lyon: Data for 315 patients treated at several hospitals in Lyon and Paris were obtained from the link shared in Data Accessibility.
MARIATHASAN: Data for several cohorts of tumors (including those within clinical trials CheckMate 038 and CheckMate 067 and two cohorts
published within other studies) compiled by Campbel et al (2023), totaling 315 patients were obtained from the link shared in Data
Accessibility.

RAVI: Data for 325 patients within the SU2C-MARK cohort published in an article by Ravi et al. (2023), were obtained from the link shared in
Data Accessibility.

VHIO: Data for 74 patients were obtained directly from the Cancer Genomics Group, and clinical data were provided by attending oncologists.
Details on all the cohorts, and the source of the data obtained for each are described in Supplementary Table 1.

Data analysis TRanscriptomics expression features consisting on summarization of the expression of gene sets representing different biological processes,
or derivation via Cibersort of infiltrating immune cell populations were also calculated. Somatic HLA loss of heterozygosity in the tumors was
estimated using the LILAC tool.

For the systematic analysis of the association of these features with checkpoint inhibitors response or survival, each feature was tested
individually for strength of association using logistic (R "glm" function) or Cox ("coxph" function from the "surival" package in R) regressions.




Generalized linear models and their native maximum likelihood based tools were used for all estimation, standard error calculation, and
hypothesis testing (details in Supp. Note 1).

For somatic mutations by gene, only genes with at least 1 mutation per20 samples were kept for the analyses. For RNA expression, only
coding genes with mean andstandard deviation of adjusted TPM values greater than 0.5 were considered. For the driver features, only driver
genes mutated in at least 1 in 30 samples were included. Similarly, formutational signatures, only signatures with exposure greater than .02
for at least 1in 20 samples were included. Second, all features were standardized to have a mean 0 and standard deviation of 1 across the CPI
samples. Each feature was tested individually for strength of association to best overall response, progression free survival, and overall
survival. Generalized linear models and their native maximum likelihood based tools were used for all estimation, standard error calculation,
and hypothesis testing.

We used the Benjamini Yekutieli (BY) multiple testing threshold to control the false discovery rate.

Multivariate models were fitted using the Extreme Gradient Boosting (XGBoost) package in R. The fine tuning of the parameters of the
XGBoost are described in Supplementary Note 1. Separate models were trained solely on TMB (the value computed on the HMF-CPI,
INSPIREand VHIO cohorts) and PDL1 expression (the continuous value reported in each cohort viawhole transcriptome RNAseq or
NanoString). Shapley values for predictions cast by the models on all patients were computed in R, using the predict function applied to the
XGBoost output, setting the argument contribution = TRUE.

Clusters were built using the "hclust" package in R with the Ward.D2 algorithm.

Silhouette scores were calculated using the "cluster" package in R.

All analyses were implemented through ad hoc scripts in python (version 3.8.8) and R (version 3.6.1). All software needed to reproduce all
analyses described in the paper and generate the figures is provided in https://bitbucket.org/bbglab/immune_biomarkers and https://
bitbucket.org/bbglab/hartwig_biomarkers
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Access to the HMF-CPI data can be obtained through request to the Hartwig MedicalFoundation (https://www.hartwigmedicalfoundation.nl/en/data/data-acces-
request/).

The validation datasets can be obtained as follows:

INSPIRE, https://github.com/pughlab/inspire-genomics/;

Lyon, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159067, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161537, https://
www.nchi.nim.nih.gov/geo/query/acc.cgi?acc=GSE162519, and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162520;

MARIATHASAN, http://research-pub.gene.com/IMvigor210CoreBiologies;

PARKER ICI, https://github.com/Parker|CI/MORRISON-1-public;

RAVI, https://zenodo.org/records/7625517;

VHIO, https://bitbucket.org/bbglab/hartwig_biomarkers

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex information is available for an important number of patients across the HMF and validation cohorts.

Reporting on race, ethnicity, or  NA
other socially relevant

groupings

Population characteristics Details of the Hartwig Medical Foundation, and validation cohorts can be found in Table S1.

Recruitment Recruitment of patients in the HMF and validation cohorts are described in the original sources. In the case of the VHIO
cohort, it was integrated by patients arriving at VHIO hospital who received checkpoint inhibitors therapy.

Ethics oversight The HMF and validation cohorts are shared within the public domain. The transfer of data concerning the VHIO cohort for

this research was approved by ethics committees at the VHIO and IRB, counting with the informed consent of patients.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes correspond to all samples available from each dataset (Supplementary Table 1). These sample sizes provide enough statistical
power to detect the features integrating the 5 latent factors as significant after correction for multiple testing.

VHIO cohort: 479 metastatic cancer patients who received CPI
INSPIRE cohort: 76 cancer patients

Lyon cohort: 315 cancer patients

MARIATHASAN: 348 cancer patients

PARKER ICI: 315 cancer patients

RAVI: 362 cancer patients

VHIO: 75 cancer patients

Details on all cohorts are available in the Methods section, Table S1 and the Supplementary Note

Data exclusions  All patients with CPI therapy in the three cohorts were included in the study. For the training and application of the multivariate models, only
patients for which the five latent factors could be estimated were included.

Replication The five latent factors are validated across 6 independent cohorts. In the pooled validation, all latent factors were succesfully validated. In
separate datasets, some latent factors do not reach significance (see main manuscript).

Randomization  Randomization in the selection of training and test sets in the HMF cohort for the construction of multivariate models was applied

Blinding This is a bioinformatics analysis of data previosly generated; no prior hypothesis existed.
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Materials & experimental systems Methods
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Palaeontology and archaeology g |:| MRI-based neuroimaging
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