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Abstract

This paper investigates (non-)manipulability properties and welfare effects of Wal-
rasian equilibrium rules in object allocation problems with non-quasi-linear preferences.
We focus on allocation problems with indivisible and different objects. The agents are
interested in acquiring at most one object.

We show that the minimum Walrasian equilibrium rule is the unique rule that is
non-manipulable via monotonic transformations at the outside option among the set of
Walrasian equilibrium rules. Analogously, we also show that the minimum Walrasian
equilibrium rule is also the unique Walrasian equilibrium rule that is non-manipulable
by pretending to be single-minded. On the domain of quasi-linear preferences, we in-
troduce a novel axiom: welfare parity for uncontested objects. On this domain, this
axiom is enough to characterize the minimum Walrasian equilibrium rule among the set
of Walrasian equilibrium rules.

Keywords: Strategy-proofness, monotonic transformations, Walrasian equilibrium.
J.E.L. classification numbers: D44, D47

1 Introduction

The allocation of diverse objects is a classical problem in economics. The selection of
Walrasian equilibrium as a criterion to allocate objects offers notable advantages in terms

∗E-mail addresses: frobles@ub.edu (F. Robles), mnunez@ub.edu (M. Núñez),
lrobles@ceg-europe.com (L. Robles). Francisco Robles is a Serra Húnter Assistant Professor.
Marina Núñez and Francisco Robles acknowledge the support of the research grant PID2023-
150472NB-I00 (Ministerio de Ciencia e Innovación) and research grant 2021SGR00306 (Generalitat de
Catalunya).
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of both, efficiency and fairness.1 However, the utilization of such a criterion may lead to
two notable challenges. First, the issue of non-uniqueness, where multiple equilibria may
complicate fair implementation. Second, there is a potential risk of manipulability, where
agents may influence outcomes by distorting requested private information. Addressing
these issues, Demange & Gale (1985) explores the (non-)manipulability of Walrasian
equilibrium rules, revealing that the rule consistently selecting the minimum Walrasian
equilibrium price vector satisfies strategy-proofness. More recently, Andersson & Svens-
son (2014) recently exemplifies the relevance, but also the complexity involved in object
allocation problems in the context of house allocation with rent control.

This paper bridges different strands of the literature regarding allocation problems
without quasi-linear preferences, examining the robustness of (non-)manipulability prop-
erties of Walrasian equilibrium rules. Additionally, it provides novel results related to
welfare implications when an additional and specific object becomes available in existing
allocation problems.

In our setting, there are many indivisible and different objects to be allocated among
a group of agents. We impose no condition on the number of objects available in relation
with the number of agents. An allocation rule determines an assignment of objects and
a price for each object based on the agents’ preference profiles. Agents are interested in
acquiring at most one object and have preferences that may be not quasi-linear. More
precisely, each agent has a preference over object-money bundles that adhere to specific
criteria: money monotonicity (preference for lower prices), finiteness (finite willingness
to pay), continuity (closed upper and lower contour sets for any bundle), and a weak
preference for real objects over the outside option.2 This domain of preferences has
been typically referred to as classical in the literature, see for example, Kazumura et al.
(2020).

Our aim is two-fold. First, we investigate the manipulability properties of Walrasian
equilibrium rules. We introduce a novel form of manipulability based on Maskin’s notion
of monotonic transformation of preferences (Maskin, 1999) –a preference relation R′

i is
a monotonic transformation of Ri at bundle a if bundles preferred to a under R′

i are
also preferred to a under Ri. We show that all Walrasian equilibrium rules, except for
the minimum Walrasian equilibrium rule, are susceptible to manipulation via monotonic
preference transformations at the outside option. Intuitively, this transformation effec-
tively communicates that an agent finds the outside option more acceptable than his
true preference would suggest. Our result implies that an agent could influence any Wal-
rasian equilibrium rule, except for the minimum, by adjusting their willingness-to-pay
for certain objects. Using Maskin’s notion of monotonic transformation of preferences
to characterize allocation rules is not new, in Kojima & Manea (2010), these monotonic
transformations are crucial to characterize the deferred acceptance among the set of
stable rules. We follow a similar approach, but in the setting of allocation problems
with money.

Our initial results can be seen as a robustness test to better understand the (non-

1This has been extensively discussed by many authors, at least ever since the publication of Demange
& Gale (1985).

2These properties align with the discussions in Alkan et al. (1991), Andersson & Svensson (2014),
Morimoto & Serizawa (2015) and Kazumura et al. (2020)
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)manipulability properties of Walrasian equilibrium rules by relaxing the strict notion
of strategy-proofness. In Morimoto & Serizawa (2015), the minimum Walrasian equi-
librium rule is characterized using efficiency, no subsidy for losers, (ex-post) individ-
ual rationality, and strategy-proofness in a similar setting, assuming that the number
of agents strictly exceeds the number of objects. It is crucial to note that strategy-
proofness imposes a stringent non-manipulability restriction. If an allocation rule sat-
isfies strategy-proofness, it cannot be manipulated via a monotonic transformation of
preferences. In addition, we show that when we restrict the domain of preferences to
that of quasi-linear preferences, among the rules that satisfy efficiency, no subsidy for
losers and (ex-post) individual rationality, the minimum Walrasian equilibrium rule is
not the only allocation rule that cannot be manipulated via a monotonic transformation
of preferences at the outside option.

In our second main result, we drop manipulation via monotonic transformations at
the outside option and introduce a novel type of manipulation: an allocation rule is
manipulable by pretending to be single-minded, when an agent, who may well be inter-
ested in multiple objects, declares to be interested only in a specific object and reports
that he sees the other objects just as receiving no object at all. We demonstrate that
among the set of Walrasian equilibrium rules, the only one that cannot be manipulated
by pretending to be single-minded is the minimum Walrasian equilibrium rule. Clearly,
the requirement of non-manipulation by pretending to be single-minded is a weaker
condition compared to strategy-proofness. Importantly, our notions of manipulation
are independent. We leave as an open question whether the minimum Walrasian equi-
librium rule is the only rule that satisfies efficiency, (ex-post) individual rationality, no
subsidy for losers and that cannot be manipulated by pretending to be single-minded.

The second aim is to study Walrasian equilibrium rules when a new object is intro-
duced into the allocation market complementing the findings of Mo (1987). Motivated
by concepts of competition economics, we introduce the idea of an uncontested object.
On the domain of quasi-linear preferences, an object , say objectj, is uncontested when
an agent faces no competing demands for it –specifically, only one agent is interested in
object j and the rest of agents see such an object as a null object. Building up on this
notion, we introduce a new axiom called welfare parity for uncontested objects. This
axiom aims to balance individual benefits and collective welfare when an uncontested
object is introduced into the existing allocation problem. More precisely, this axiom
ensures that the additional individual payoff derived from obtaining the new object is
equivalent with its overall impact on the efficient level of welfare. We demonstrate that
the minimum Walrasian equilibrium rule is the unique Walrasian equilibrium rule that
satisfies welfare parity for uncontested objects. We further show that welfare parity
for uncontested objects implies that the price of a newly introduced uncontested object
should be zero. This reflects the absence of competitive pressure on the price of an
uncontested object: if agent i faces no competing demands over object j, he should
acquire the object at no cost.

Related literature

In our paper, we explore properties of Walrasian equilibrium as a criterion for object
allocation in markets characterized by indivisibilities and classical preferences. We cover
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two major aspects. First, we identify which Walrasian equilibrium rules are immune to
two weak notions of manipulation. Second, we consider the impact of introducing an
object into the market to characterize the minimum Walrasian equilibrium rule.

As mentioned, Demange & Gale (1985) proves that the minimum Walrasian equi-
librium rule satisfies strategy-proofness and Morimoto & Serizawa (2015) characterize
it as the only one satisfying strategy-proofness, efficiency, individual rationality and no
subsidy for losers. Previously, Miyake (1998) had characterized the same rule on the
domain of Walrasian equilibrium rules by means of strategy-proofness.

In the literature, the use of strategy-proofness and the assumption that there are
more agents than objects have been typically imposed to characterize the minimum
Walrasian equilibrium rule. Moreover, most of the known results assume that the objects
are identical copies, e.g., Saitoh & Serizawa (2008), Sakai (2008), Ashlagi & Serizawa
(2012), Sakai (2013) and Adachi (2014). Our results depart from these previous papers
in that we do not make use of strategy-proofness, we allow for situations in which there
are more objects than agents and the objects may be different.

For a multi-unit assignment problem, Budish & Cantillon (2012) investigates the
non-manipulability of allocation rules in course allocation scenarios, introducing the
concept of simple manipulations. A course allocation mechanism is simple to manip-
ulate when a student overreportes popular courses and underreportes unpopular ones.
This notion of manipulation allows Budish & Cantillon (2012) to study whether an
allocation rule is immune or vulnerable to such misrepresentations. Our approach is
parallel to theirs: we adopt monotonic transformations of preferences as our benchmark
for manipulations. Several papers have studied non-manipulability properties of allo-
cation rules in the context of indivisible objects. Andersson & Svensson (2014) studies
non-manipulability properties of price equilibrium in a house allocation model with rent
control. In Andersson et al. (2014) and Fujinaka & Wakayama (2015) strategic manip-
ulations under envy-free solutions are analysed. For a mechanism design perspective of
object allocation problems with classical preferences, see Kazumura et al. (2020).

With quasi-linear preferences, and under the assumption that each buyer consumes
at most one object, the Vickrey rule coincides with the minimum Walrasian equilibrium
rule. Moreover, as a consequence of Holmström (1979) it can be characterized as the
only rule that satisfies efficiency, individually rationality and strategy-proofness. If we
restrict to the domain of Walrasian rules, then this rule is the only strategy-proof rule, see
for instance Pérez-Castrillo & Sotomayor (2017). Similarly, van den Brink et al. (2021)
show that in the Shapley and Shubik assignment problem, that assumes preferences are
quasilinear in money, the buyers-optimal stable rule is the only stable rule that satisfies
buyer-valuation monotonicity. This monotonicity property requires that if all valuations
of a buyer weakly decrease (or increase), but the object allocated does not change, then
the payoff to this buyer under the rule cannot increase (or decrease). Previously, in the
same setting, Mishra & Talman (2010) had characterized Walrasian equilibrium price
vectors by means of under- and overdemanded sets. Our work is also related to that
of Mo (1987), that presents several comparative static results. The comparisons are
based on sets of Walrasian equilibria when new agents are introduced into an existing
allocation problem. In the more general setting of package allocation rules, it is shown in
Núñez & Robles (2024) that on the domain of efficient and individually rational rules,
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the non-manipulability property can be weakened to obtain the Vickrey rule, and it
is enough to require overbidding proofness and underbidding proofness. Our present
paper, focuses on the minimum Walrasian equilibrium rule, that with non-quasi-linear
preferences differs from the Vickrey rule, to similarly weaken the non-manipulability
requirement. Finally, our work is also related to that in Delacrétaz et al. (2022), which
explores the relationship between Walrasian prices and the so-called Vickrey transfers.
In particular, among other results, the authors show that, in their model where agents
may be initially endowed with objects, the largest net price that an agent receives in
any Walrasian equilibrium price vector is equal to the Vickrey transfer he receives.

2 Preliminaries

Consider a non-empty and finite set N of n agents, and a non-empty and finite set
of different and indivisible objects O. These objects are managed by an institution
tasked with their distribution. Each agent is entitled to acquire at most one object and
his endowment consists of enough money to buy any object. There are no constraints
regarding the number of objects in relation to the number of agents. In scenarios where
the number of agents surpasses the number of available objects, a null object ∅, is
introduced with as many copies as necessary.

2.1 Allocations of objects

An assignment of objects in O to agents in S ⊆ N is a list with |S| elements, z =
(zi)i∈S = (z1, . . . , zs), where for every i ∈ S, we have zi ∈ O ensuring that for any pair
i, i′ ∈ S with i ̸= i′, it holds that zi ̸= zi′ . The set of all possible assignments from O
to S is denoted by ZS(O). Given S, a vector of transfers will be denoted by t = (ti)i∈S,
where ti ∈ R for each i ∈ S. The set of vectors of transfers is represented by TS. A
(feasible) allocation of objects in O to agents in S consists of a pair (z, t) ∈ ZS(O)×TS.
In words, agent i ∈ S receives object zi and transfers ti units of money.

2.2 Agents’ preferences

Each agent i has a (complete and transitive) preference relation Ri over the consumption
set O×R, i.e., over pairs consisting of an object and some money. Pi and Ii denote the
strict and the indifference relations associated with Ri, respectively.

Definition 2.1. A preference Ri over the consumption set O×R is classical if it satisfies
the following properties:

1. Money Monotonicity: For each j ∈ O and each m,m′ ∈ R, if m > m′, then
(j,m′) Pi (j,m).

2. Finiteness: For each m ∈ R and each j, j′ ∈ O, there exist m′,m′′ ∈ R, such that
(j′,m′) Ri (j,m) and (j,m) Ri (j

′,m′′).
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3. Continuity: For each bundle (j,m), its upper contour set C(Ri, (j,m)) = {(j′,m′) ∈
O × R|(j′,m′) Ri (j,m)} and lower contour set C(Ri, (j,m)) = {(j′,m′) ∈ O ×
R|(j,m) Ri (j

′,m′)} are both closed sets.

4. Weak Preference for Real Objects: For each object j, (j, 0) Ri (∅, 0).

The set of classical preferences is denoted by RC.
3 Money monotonicity means that

an agent always prefers to pay less for any given object. Finiteness implies that no
object is infinitely good or infinitely bad. Continuity ensures that small changes in
the price do not lead to disproportionate changes in preference. Weak preference for
real objects indicates that agents weakly prefer having an object for free over having
nothing.4 Following Alkan et al. (1991), given a classical preference Ri ∈ RC, the
quantity of money m represents agent i’s willingness to pay for object j at Ri when
(j,m) Ii (∅, 0). Because of finiteness and continuity, such an amount of money m does
exist, and, by money monotonicity, it is unique. Given a subset of agents S ⊆ N , a
profile of preferences for S consists of an |S|-tuple of preferences, one for each agent and

it will be denoted by R = (Ri)i∈S ∈ R|S|
C . When S = N \ {i} for some i ∈ N , we write

R−i.
It is well-known that the domain of classical preferences includes the domain of

quasi-linear preferences.5

Definition 2.2. A classical preference Ri ∈ RC is quasi-linear if it assigns a valuation
rij to each object j ∈ O such that:

1. rij ≥ 0,

2. the valuation for the null object is zero, ri∅ = 0, and

3. for any two bundles (j,m) and (j′,m′), the preference (j,m) Ri (j
′,m′) holds if

and only if rij −m ≥ rij′ −m′.

The set of classical preferences that are quasi-linear is denoted by RQ and will be simply
called quasi-linear preferences.

Note that a quasi-linear preference profile R = (Ri)i∈N can be represented by a
valuation matrix r = (rij)(i,j)∈N×O. As mentioned before, RQ ⊊ RC.

6

Given a quasi-linear preference profile R ∈ Rn
Q represented by the valuation matrix

r, the welfare7 created by an assignment z ∈ ZS(O) is defined as:

W z
S,O(R) =

∑
i∈S

rizi .

3For related models, see e.g., Andersson & Svensson (2014) and Morimoto & Serizawa (2015).
4Weak preference for real objects is a weaker form of the desirability of objects in Morimoto &

Serizawa (2015).
5See for example Kazumura et al. (2020).
6For further reading we refer to Morimoto & Serizawa (2015) and Kazumura et al. (2020).
7Following the approach in Delacrétaz et al. (2022).
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Note that for any S ⊆ N , 1 ≤ |ZS(O)| < ∞. We denote by W ∗
S,O(R) the efficient level

of welfare when objects in O are to be assigned to agents in S:

W ∗
S,O(R) = max

z∈ZS(O)

{∑
i∈S

rizi

}
. (1)

When W ∗
S,O(R) is attained at z ∈ ZS(O), z is called an efficient assignment at R. We

denote by ZR
S (O) ⊆ ZS(O) the set of efficient assignments of O to S at R.

Finally, we consider the notion of single-mindedness.8 In our setting, an agent is
single-minded when he is interested in acquiring an specific object and sees the rest of
objects as null objects.

Definition 2.3. A classical preference Ri ∈ RC is single-minded if there is an object
j ∈ O such that:

(j, 0) Pi (∅, 0) and for every j′ ̸= j, we have (j′,m) Ii (∅,m) for all m ∈ R.

We denote by RSM the set of all single-minded preferences. Note that RSM ⊆ RC
and RSM ⊈ RQ, but RSM ∩RQ is not empty.9

2.3 Allocation rules

An allocation rule, or simply a rule, φ consists of a pair of maps (φo, φm), which associate
each preference profile with respective assignments and transfers. Specifically, for any
R = (Ri)i∈N , the rule φ determines an assignment φo(R) ∈ ZN(O) and a vector of
transfers φm(R) ∈ TN , such that φo

i (R) denotes the assignment of agent i, and φm
i (R)

denotes the corresponding transfer. The tuple φi(R) = (φo
i (R), φm

i (R)) represents the
bundle allocated to agent i under φ at R. Consequently, the allocation induced by φ at
R is denoted by φ(R) = (φi(R))i∈N .

To finish this subsection, we introduce one of the most classical properties for alloca-
tion rules: strategy-proofness. In words, strategy-proofness requires that no agent will
be better off by unilaterally reporting a false preference.

Definition 2.4. A rule φ satisfies strategy–proofness if for every i ∈ N , every Ri, R
′
i ∈

RC and every R−i ∈ Rn−1
C , where Ri is the true preference of agent i, we have that

φi(R) Ri φi(R
′
i, R−i).

2.4 Walrasian equilibria

A price vector p = (pj)j∈O ∈ R|O|
+ consists of a non-negative price for each object, with

each null object ∅ having a price of zero. The set of all such price vectors is denoted by
P . Given R = (Ri)i∈N and p ∈ P , the demand set D(Ri, p) ⊆ O of agent i is defined as:

D(Ri, p) = {j ∈ O | (j, pj) Ri (k, pk) for all k ∈ O}.
8See, for example, Mu’alem & Nisan (2002).
9See Example 6.4 in Appendix.
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This set includes all objects that agent i most prefers given p. Note that the demand
set is never empty, because at sufficiently high prices, the demand set will include copies
of null objects.

A Walrasian equilibrium consists of an assignment of objects and a price vector such
that each agent receives an object belonging to his demand set at the given prices and
the price of any unassigned object is zero.10

Definition 2.5. Given a set of objects O and R ∈ Rn
C , a pair (z, p) ∈ ZN(O)× P is a

Walrasian equilibrium at R if:

WE.1 zi ∈ D(Ri, p) for all i ∈ N ; and

WE.2 pj = 0 for all j ∈ O \Oz.

For any classical preference profile, the set of Walrasian equilibria is non-empty.11

Given a Walrasian equilibrium (z, p), we say that p is a Walrasian equilibrium price
vector. It is also known, that given a profile R, the set of all Walrasian equilibrium
price vectors PW (R) ⊆ P has a complete lattice structure.12 This structure ensures
the existence of a unique minimum Walrasian equilibrium price vector p and a unique
maximum Walrasian equilibrium price vector p at R, such that p ≤ p ≤ p for every
Walrasian equilibrium price vector p at R.13 If (z, p) is a Walrasian equilibrium at R
and p is the minimum Walrasian equilibrium price vector, then we call (z, p) a minimum
Walrasian equilibrium.

The next example illustrates a minimum Walrasian equilibrium in the context of
classical preferences.

Example 2.6. This example represented in Figure 1, borrowed and slightly adapted
from Morimoto & Serizawa (2015), illustrates a scenario with three agents 1, 2, and 3
and two real objects A and B, alongside a null object ∅. The graphical representation
includes three primary horizontal lines. The lowest line represents the null object, while
the middle and top lines correspond to objects A and B, respectively. Intersections along
the vertical axis denote bundles that include the respective objects without any monetary
payment. For instance, the point labeled ’0’ on the lowest line refers to the bundle
containing the null object and no payment.

10While in the literature a Walrasian equilibrium is usually denoted by a pair where the first com-
ponent is typically reserved for a price vector and the second one for an assignment of objects, in this
paper, we switch their order to simply unify the notation of how agents’ preferences are defined, i.e., a
bundle consists of an object and its price and not vice versa.

11See Demange & Gale (1985).
12See Demange & Gale (1985).
13See Demange & Gale (1985).
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Figure 1: An illustration of a minimum Walrasian equilibrium with three agents.

In Figure 1 a rightward shift along the horizontal axes indicates an increase in the
price that an agent must pay for a designated object. Indifference curves, depicted as
colored lines connecting various points, illustrate indifference among the bundles. Three
indifference curves in blue correspond to agent 1, labeled as R1. Additionally, three
bundles are labeled as x1, x2, and x3, where xi is the bundle assigned to agent i for
i ∈ {1, 2, 3}. Specifically, x1 is the bundle (A, 5), object A at a price of 5, x2 is (B, 3),
and x3 is (∅, 0).

The price vector p = (pA, pB, p∅) = (5, 3, 0), together with the specified assignment
(object A to agent 1, object B to agent 2 and the null object to agent 3), form a Walrasian
equilibrium. At this price vector, the demand set of agent 1, D(R1, p) consists of set
{A,B}. This can be seen in Figure 1 as the indifference curves, combined with money
monotonicity, confirm that (A, 5) I1 (B, 3) P1 (∅, 0). Similarly, for agent 2, D(R2, p) =
{B} since (B, 3) P2 (∅, 0) and (∅, 0) P2 (A, 5). Lastly, agent 3’s demand set, D(R3, p),
comprises {A, ∅}, since (A, 5) I3 (∅, 0) P3 (B, 3). These arguments show that p = (5, 3, 0)
with the specified assignment is indeed a Walrasian equilibrium.

Furthermore, we establish that the price vector p = (pA, pB, p∅) = (5, 3, 0) is in fact
the minimum Walrasian equilibrium price vector. Following the arguments presented
in Morimoto & Serizawa (2015), consider (p′A, p

′
B) another Walrasian equilibrium price

vector. We first show that p′A < pA and p′B < pB cannot happen. Should it occur
that p′A < pA and p′B < pB, all agents would prefer either (A, p′A) or (B, p′B) over the
null bundle, implying that each agent demands either A or B or both. Consequently, at
least one agent would be unable to obtain an object belonging to his demand set, thereby
violating one of the requirements of a Walrasian equilibrium as stated in Definition 2.5.
Thus, we may have p′A < pA or p′B < pB, but not both. If p

′
A < pA, then necessarily p′B ≥

pB; under this scenario, agents 1 and 3 would both prefer (A, p′A) over the null bundle and
(B, p′B), exclusively demanding A. This situation would prevent either agent 1 or 3 from
acquiring A, leading to a violation of one of the requirements of a Walrasian equilibrium
as stated in Definition 2.5. Therefore, p′A ≥ pA. Similarly, if p′B < pB, agents 1 and
2 would prefer (B, p′B) over the null bundle and (A, p′A), exclusively demanding B. This
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would again prevent either agent 1 or 2 from acquiring B, leading to a violation of one of
the requirements of a Walrasian equilibrium as stated in Definition 2.5. Consequently,
p′B ≥ pB. Therefore, the price vector p is the minimum Walrasian equilibrium price
vector.

It is now possible to define rules that, for any given preference profile, select a
Walrasian equilibrium.

Definition 2.7. A rule φ is a Walrasian equilibrium rule if, for each R ∈ Rn
C , there is a

Walrasian equilibrium (z, p) such that for every i ∈ N , φo
i (R) = zi and φm

i (R) = pφo
i (R).

Furthermore, a rule φ is a minimum Walrasian equilibrium rule if, for every R ∈ Rn
C ,

there is a Walrasian equilibrium (z, p) where p is the minimum Walrasian equilibrium
price vector and for every i ∈ N , φo

i (R) = zi and φm
i (R) = p

φo
i (R)

.

As mentioned, for any R ∈ Rn
C , the minimum Walrasian equilibrium price p is

unique. However, there can be multiple Walrasian equilibria at R with p as the price
vector, e.g., (z, p) and (z′, p) with z ̸= z′. Despite this, it is known that each agent is
indifferent between these Walrasian equilibria, i.e., for every i ∈ N , (zi, pzi

) Ii (z
′
i, pz′i

).

For this reason, in the literature, it is common to refer to the minimum Walrasian
equilibrium rule even though there could be many allocation rules that, for any R,
select a Walrasian equilibria at R having p as the price vector. An outstanding property
of the minimum Walrasian equilibrium rule is that it satisfies strategy-proofness, as
indicated by Demange & Gale (1985).

The subsequent section examines the susceptibility of allocation rules to two rela-
tively weak versions of manipulability based on: (i) monotonic transformations of pref-
erences and (ii) single-mindedness.

3 Misrepresentations via monotonic transformations

or single-mindedness

The aim of this section is to study the manipulability properties of Walrasian equilibrium
rules. Firstly, we study whether Walrasian equilibrium rules are immune to monotonic
transformations of a preference.

Definition 3.1. Let Ri ∈ RC be the true preference of agent i. A preference R′
i ∈ RC

with R′
i ̸= Ri is a monotonic transformation of Ri at (j,m) ∈ O×R if (j′,m′) R′

i (j,m)
implies (j′,m′) Ri (j,m).

The previous definition implies that if (j′,m′) is preferred to (j,m) at R′
i, then it is

also preferred to (j,m) at Ri. In terms of upper contour sets, it says that C(R′
i, (j,m)) ⊆

C(Ri, (j,m)).14 This notion of monotonic transformations has been used in allocation
problems by Kojima & Manea (2010) to characterize Deferred Acceptance algorithms.

14Note that if (j′,m′) ∈ C(R′
i, (j,m)), as R′

i is a monotonic transformation of Ri at (j,m), then
(j′,m′)Ri (j,m), which means that (j′,m′) ∈ C(Ri, (j,m)) and this implies that C(R′

i, (j,m)) ⊆
C(Ri, (j,m)). In the Appendix in Lemma 6.1, we prove that also C(Ri, (j.m)) ⊆ C(R′

i, (j.m)).
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The next definition captures a notion of weak manipulability and it is inspired by
the popular belief that the less interest one shows when negotiating to buy an object,
the lower the price one will pay for it.

Definition 3.2. A rule φ is manipulable via monotonic transformations at (∅, 0), if
there is a preference Ri ∈ RC, a profile R−i ∈ Rn−1

C , and a monotonic transformation
of Ri, denoted by R′

i ∈ RC at (∅, 0), such that

φi(R
′
i, R−i) Pi φi(Ri, R−i).

In a scenario where an agent reports a monotonic transformation at (∅, 0), he is
communicating that the bundle (∅, 0) is more preferable than it actually is. In other
words, the agent understates his willingness to pay for certain objects. This manipula-
tion means that the lower contour set of the outside option in the reported preferences
becomes larger than that under the true preference.

Manipulation via monotonic transformations of preferences is closely related to strategy-
proofness. Clearly, if an allocation rule satisfies strategy-proofness, no agent benefits
from unilaterally reporting a monotonic transformation of his true preference, so our
notion of non-manipulation is weaker than strategy-proofness.

Just as manipulation via monotonic transformations of preferences, agents in allo-
cation problems may be inclined to unilaterally use another type of misrepresentation
when asked to report their preferences. The next notion of manipulability focuses on a
single object and is different from the monotonic transformation of a preference at the
outside option.

Definition 3.3. A rule φ is manipulable by pretending to be single-minded, if there is
an agent i with a preference Ri ∈ RC, a preference profile R−i ∈ Rn−1

C , and a preference
R′

i ∈ RSM, with Ri ̸= R′
i, such that

φi(R
′
i, R−i) Pi φi(Ri, R−i).

The previous notion of manipulation is motivated by the following situation. Con-
sider an allocation problem where several objects are available. Suppose an agent is
truly interested in many objects but decides to report interest in acquiring only a spe-
cific object, j′. By pretending to be single-minded, the agent believes that such behavior
could either result in obtaining j′ at a low price or acquiring another object at a very
low price compared to the situation when he reports his true preference.

The next example shows that a rule that always selects the maximum price Walrasian
equilibrium can be susceptible to manipulation through a monotonic transformation at
(∅, 0), but as will be shown, that manipulation is not a manipulation by pretending to
be single minded.

Example 3.4. Continue with Example 2.6, with three agents and two real objects A
and B as in Figure 1. Now, we consider a Walrasian equilibrium rule that consistently
selects the maximum price Walrasian equilibrium. That is, for each preference profile
R, the rule chooses a Walrasian equilibrium (z, p) such that p is the maximum price
Walrasian equilibrium.

11



First, we show that the price vector p = (7, 5, 0) together with the assignment z with
z1 = A, z2 = B and z3 = ∅ is a Walrasian equilibrium. Note that this assignment was
also determined in the initial part of Example 2.6. Then, note that if the price vector
is p = (7, 5, 0), the demand sets given the preference profile R initially considered in
Example 2.6 are: D1(R1, p) = {A,B}, D2(R2, p) = {B, ∅} and D3(R3, p) = {∅}. This
is because, for agent 1, there is an indifference curve indicating that (A, 7) I1 (B, 5),
but together with money monotonicity, it can be seen that the same indifference curve
implies that (A, 7) P1 (∅, 0). For agent 2, there is an indifference curve indicating
that (∅, 0) I2 (B, 5), but together with money monotonicity, it can be seen that the
same indifference curve implies that (B, 5) P2 (A, 7). Finally, for agent 3, there is
an indifference curve indicating that (∅, 0) P3 (B, 5) and (∅, 0) P3 (A, 7). Thus, the
aforementioned assignment together with the price vector p = (7, 5, 0) are a Walrasian
equilibrium.

Second, we show that the price vector p = (7, 5, 0) is the maximum Walrasian equi-
librium price vector. We first show that there is no price vector p′ = (p′A, p

′
B) for the

real objects such that p′A > pA and p′B > pB. Assume by contradiction that such a
vector p′ does exist. Recall that under p = (7, 5, 0), we had D2(R2, p) = {B, ∅} and
D3(R3, p) = {∅}, so if we increase the price of both real objects, the demand sets of
agents 2 and 3 would include only the null object ∅. Thus, at least one real object would
not be assigned and by definition of Walrasian equilibrium, see Definition 2.5 , the price
of that assigned object must be zero, which contradicts the assumption of the existence
of p′ = (p′A, p

′
B) with p′A > pA and p′B > pB. Now, we show that there is no Walrasian

equilibrium price vector p′ = (p′A, p
′
B) such that p′A = pA and p′B > pB. Assume by

contradiction that such a vector p′ does exist. Recall that under p = (7, 5, 0), we had
D2(R2, p) = {B, ∅} and D3(R3, p) = {∅}, so if we increase the price of object B only,
object B would not belong to any demand set, and would not be assigned. Thus, by
definition of Walrasian equilibrium, see definition 2.5 , the price of unassigned object
must be zero, which contradicts the assumption of the existence of such a price vector p′.
Third, we show that there is no Walrasian equilibrium price vector p′ = (p′A, p

′
B) such

that p′A > pA and p′B = pB. Assume by contradiction that such a vector p′ does exist. So
if we increase the price of object A only, object A would not belong to any demand set,
and would not be assigned to any agent. Thus, by definition of Walrasian equilibrium ,
the price of unassigned objects must be zero, which contradicts the existence of p′.

Third, it can be seen that, given the price vector p = (7, 5, 0) and the corresponding
demand sets D1(R1, p) = {A,B}, D2(R2, p) = {B, ∅} and D3(R3, p) = {∅}, there is
only one assignment of objects that is compatible with the maximum price Walrasian
equilibrium in this example.

Thus, if we apply a rule φ that always selects a Walrasian equilibrium such that
every agent pays the maximum Walrasian equilibrium price according to the reported
preference profile, then in this example, agent 1 would get object A at a price of 7, agent
2 would get object B at a price of 5 and agent 3 would get the null object at a price of 0.

We see now that if that Walrasian equilibrium rule φ is applied, agent 2 has incentives
to report a monotonic transformation of his true preference R2 at (∅, 0), denoted by
R′

2. This monotonically transformed preference R′
2 (depicted in purple) and the true

preference (depicted in gray) are shown in Figure 2 below.
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Figure 2: An illustration of a monotonic transformation of R2 at (∅, 0).

Note that R′
2 is a monotonic transformation of R2 at (∅, 0) where agent 2 reports a

lower willingness to pay for object B, say 4. Figure 3 below does not show R2 anymore,
but R′

2 and three indifference curves of agent 1 necessary to calculate the maximum price
Walrasian equilibrium at (R1, R

′
2, R3).

B

A

∅ −2 −1 0 1 2 3 4 5 6 7 8 9 10

R1R1

R′
2

R3
R1

m

Objects

Figure 3: An illustration of a maximum Walrasian equilibrium with three agents.

Under this slightly modified scenario, and following our previous arguments to find
the maximum Walrasian equilibrium price vector at R, it can be seen that the maxi-
mum Walrasian equilibrium price vector at (R1, R

′
2, R3) is p′′ = (6, 4, 0). Even more,

it can also be seen that at R and (R1, R
′
2, R3), agent 2 receives object B under any

Walrasian equilibrium that chooses the maximum Walrasian equilibrium price vector.
Thus, this means that, given the reported preferences of agents 1 and 3, when agent
2 reports R′

2, he pays a lower price for object B than that when he reports R2. In
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other words, φ2(R1, R
′
2, R3) = (B, 4)P2 (B, 5) = φ2(R), where the strict preference fol-

lows from money monotonicity and therefore agent 2 has incentives to use a monotonic
transformation at (∅, 0) of his true preference. In addition, note that R′

2 is not a single-
minded preference, because the willingness-to-pay for object A and object B under R′

2 is
3 and 4, respectively.

The next results provide new characterizations of the minimum Walrasian equi-
librium rule among the set of Walrasian equilibrium rules without imposing strategy-
proofness. First, these results are novel in that they depart from the typical use of
strategy-proofness to characterize the minimum Walrasian equilibrium rule in similar
settings. Second, they serve as robustness tests of the manipulability properties of the
minimum Walrasian equilibrium rule: even if we consider these weaker forms of non-
manipulation compared to the usual strategy-proofness, the only Walrasian equilibrium
rule that cannot be manipulated is the minimum Walrasian equilibrium rule. The proof
of the following result makes use of different lemmas included in the Appendix.

Theorem 3.5. On the domain of classical preferences, a Walrasian equilibrium rule
φ is manipulable via a monotonic transformation at (∅, 0) if and only if φ is not the
minimum Walrasian equilibrium rule.

Proof. We show that if a Walrasian equilibrium rule, denoted by φ, is not manipulable
via monotonic transformations at (∅, 0), then φ is the minimum Walrasian equilibrium
rule.

Let R ∈ Rn
C be a preference profile, φ a Walrasian equilibrium rule and (z, p) a

minimum Walrasian equilibrium at R. Assume, on the contrary that φm
t (R) ̸= p

φo
t (R)

for some t ∈ N . Since φ is a Walrasian equilibrium rule, then φm
t (R) > p

φo
t (R)

. For

notational convenience, let object k be such that k = φo
t (R). Since p

k
≥ 0, it follows

that φm
t (R) > p

k
≥ 0, that is φm

t (R) > 0.
We claim that

(zt, pzt
) Pt φt(R). (2)

To verify this, note that either zt ̸= k or zt = k. If zt ̸= k, by transitivity, we have

(zt, pzt
) Rt (k, pk) Pt (k, φ

m
t (R)) = φt(R).

Otherwise, if zt = k, we have

(zt, pzt
) Pt (k, φ

m
t (R)) = φt(R).

Thus, as claimed (zt, pzt
) Pt φt(R).

By continuity of Rt, there is a real number ϵ1 > 0 such that

(zt, pzt
+ ϵ1) Pt (k, φ

m
t (R)) Rt (∅, 0),

where the final comparison holds because a null object is always available at a price of
zero, ensuring that any bundle allocated to an agent in a Walrasian equilibrium must
be at least as good as receiving (∅, 0).
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Consider R′
t satisfying the following:

(j, 0) I ′t (∅, 0) for every j ∈ O \ {zt} and (zt, pzt
+ ϵ2) I

′
t (∅, 0),

where ϵ1 > ϵ2 > 0. First, note that such a preference exists, e.g., a quasi-linear preference
that values all j ̸= zt at zero and values zt at pzt

+ ϵ2.

Second, we show that R′
t is a monotonic transformation of Rt at (∅, 0). Take any

j ̸= zt, note that if (j,m) R′
t (∅, 0), then m ≤ 0, because of money monotonicity. So,

take that j ̸= zt and m ≤ 0, we have that (j,m) Rt (∅, 0) as a consequence of money
monotonicity and the weak preference for real objects. Now take zt, if (zt,m) R′

t (∅, 0),
then m ≤ p

zt
+ ϵ2. Take that m ≤ p

zt
+ ϵ2, we have that (zt,m) Pt (zt, pzt

+ ϵ1) Pt (∅, 0),
which implies (zt,m) Pt (∅, 0). Thus, R′

t is a monotonic transformation of Rt at (∅, 0).
Third, by construction, R′

t is a single-minded preference.
Let R′ = (R−t, R

′
t). We now show that (z, p) is a Walrasian equilibrium also at R′.

Under z, each agent i ̸= t receives an object belonging to his demand set given p at
R and that is also true at R′ as their preferences are the same in both profiles. With
respect to agent t, note that (zt, pzt

) P ′
t (∅, 0) and (j, 0) I ′t (∅, 0) for every j ̸= zt, hence

(zt, pzt
) P ′

t (j, 0) I
′
t (∅, 0). Thus, Dt(R

′
t, p) = {zt}. We then have that each agent receives

an object in his demand set, confirming that (z, p) is also a Walrasian equilibrium at
R′.

According to Lemma 6.2 and Corollary 6.3 in Appendix, if in any Walrasian equilib-
rium (z, p) at R′ agent t’s preference satisfies (zt, pzt

) P ′
t (∅, 0), then in every Walrasian

equilibrium at R′, agent t must receive zt. Consequently, in all Walrasian equilibria at
R′, agent t receives zt.

Therefore, in every Walrasian equilibrium at R′, agent t obtains zt and the maximum
Walrasian equilibrium price of object zt at R′

t is at most p
zt
+ ϵ2 because (zt, pzt

+

ϵ2) I
′
t (∅, 0). Thus, for any Walrasian equilibrium price at R′, the price that agent t has

to pay for zt is at most p
zt
+ ϵ2. Hence, the following expression shows that agent t has

incentives to report the preference R′
t instead of his true preference Rt, i.e.,

φt(R
′) Rt (zt, pzt

+ ϵ2) Pt (zt, pzt
+ ϵ1) Pt φt(R),

where the first and second comparisons are due to money monotonicity of Rt and the
third comparison follows from expression (2). This shows that a Walrasian equilibrium
rule φ that is not the minimum Walrasian equilibrium rule can be manipulated via
monotonic transformations at (∅, 0). This completes the proof of the if part.

The only if part of the proof follows immediately because the minimum Walrasian
equilibrium rule satisfies strategy-proofness, see e.g., Demange & Gale (1985).

A natural question is whether the previous result holds within a broader set of
rules. Specifically, instead of restricting the set of Walrasian equilibrium rules, one
could consider whether the result extends to efficient and (ex-post) individually rational
rules as considered in Morimoto & Serizawa (2015). We first formally introduce some
definitions.
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Definition 3.6. Given R ∈ Rn
C , the allocation (z, t) ∈ ZN(O) × TN Pareto-dominates

(z′, t′) ∈ ZN(O)× TN at R if
1) (zi, ti) Ri (z

′
i, t

′
i) for all i ∈ N ,

2) (zi, ti) Pi (z
′
i, t

′
i) for some i ∈ N , and

3)
∑

i∈N ti ≥
∑

i∈N t′i.

A rule φ is efficient if for every R, there is no allocation (z, t) ∈ ZN(O) × TN that
Pareto-dominates φ(R) at R.

A natural requirement in allocation problems is efficiency. Notice that point 3) is
necessary, otherwise if only points 1) and 2) are required, any allocation (z, t′) with
t′i < ti would dominate (z, t).

Individual rationality implies that every agent will pay for his assignment at most,
his willingness to pay for it.15

Definition 3.7. An rule φ satisfies (ex-post) individual rationality if for every i ∈ N
and every R ∈ Rn, we have

φi(R) Ri (∅, 0).

Finally, the next axiom requires that no agent receives a positive amount of money.

Definition 3.8. An rule φ satisfies no subsidy for losers if for every i ∈ N and every
R ∈ Rn, we have that

if φo
i (R) = ∅, then, φm

i (R) ≥ 0.

In Morimoto & Serizawa (2015), it is shown that the minimumWalrasian equilibrium
rule is the unique rule that satisfies efficiency, ex-post individual rationality, no subsidy
for losers and strategy-proofness when there are strictly more agents than objects under
the domain of classical preferences. For the domain of classical preferences, we leave
as an open question whether such a characterization provided by Morimoto & Serizawa
(2015) is valid when strategy-proofness is replaced by non-manipulation via monotonic
transformations at the outside option. However, in the next section, we show that such a
characterization does not hold on the domain of quasi-linear preferences when strategy-
proofness is replaced by non-manipulation via monotonic transformations at the outside
option.

The next result is analogous to Theorem 3.5 showing that the unique Walrasian
equilibrium rule that cannot be manipulated by pretending to be single-minded is the
minimum Walrasian equilibrium rule. This result is stated without a proof, because the
proof of Theorem 3.5 has been designed to serve as a proof for both results.

Theorem 3.9. On the domain of classical preference, a Walrasian equilibrium rule φ
is manipulable by pretending to be single-minded if and only if φ is not a minimum
Walrasian equilibrium rule.

15For a reference to these axioms we refer to Kazumura et al. (2020).
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With respect to the previous result, we were not able to find whether or not it holds
within a set of rules broader than the Walrasian equilibrium rules. So, we leave it as an
open question for future research.

4 Uncontested objects andWalrasian equilibria with

quasi-linear preferences

In this section of the paper, we only consider the domain of quasi-linear preferences and
introduce the notion of uncontested objects under the assumption of n ≥ 2.

In the context of quasi-linear preferences, the set of Walrasian equilibria has been
extensively explored by Shapley & Shubik (1972), Gul & Stacchetti (1999), and Mishra
& Talman (2010). Under the assumption of gross substitutes, Gul & Stacchetti (1999)
provides a formula based on agents’ willingness-to-pay to calculate the minimum and
maximum Walrasian equilibrium prices for any object. When we restrict our model to
the quasi-linear case, it satisfies the gross-substitutes condition and as a consequence,
we can apply the aforementioned formulas.

Consider a preference profile R ∈ Rn
Q, the minimum Walrasian equilibrium price for

k ∈ O at R is:

p
k
= W ∗

N\{t},O(R−t)−W ∗
N\{t},O\{k}(R−t), (3)

where W ∗
N\{t},O(R−t) and W ∗

N\{t},O\{k}(R−t) are calculated as in (1). Similarly, the max-
imum Walrasian equilibrium price for k ∈ O can be calculated as:

pk = W ∗
N,O(R)−W ∗

N,O\{k}(R). (4)

An interesting result on the domain of quasi-linear preferences relates the set of equilib-
rium prices and the set of assignments of objects that reach the efficient level of welfare.
The next result is stated without proof as it is well-known in the literature.16

Lemma 4.1. On the domain of quasi-linear preferences, for any R ∈ Rn
Q, if (z, p) is a

Walrasian equilibrium at R and z′ ∈ ZR
N(O), then (z′, p) is also a Walrasian equilibrium

at R.

Now, we prove that our previous Theorem 3.5 also holds on the domain of quasi-linear
preferences. The proof has been relegated to the Appendix.

Theorem 4.2. On the domain of quasi-linear preferences, a Walrasian equilibrium rule
φ is manipulable via a monotonic transformation at (∅, 0) if and only if φ is not the
minimum Walrasian equilibrium rule.

As mentioned before, Morimoto & Serizawa (2015) characterizes the minimum Wal-
rasian equilibrium rule with efficiency, ex-post individual rationality, no subsidy for
losers and strategy-proofness when there are strictly more agents than objects under

16See for example Gul & Stacchetti (2000)
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the domain of classical preferences. When we restrict the domain of preferences to that
of quasi-linear preferences, it is well-known that, as a consequence of Holmström (1979),
the minimum Walrasian equilibrium rule can be characterized as the only rule that
satisfies efficiency, individually rationality and strategy-proofness.17 Our next proposi-
tion provides an important result: the aforementioned characterization does not hold
on the domain of quasi-linear preferences when strategy-proofness is replaced by non-
manipulation via monotonic transformations at the outside options. This result high-
lights that manipulation through monotonic transformations at the outside option is a
nuanced notion of manipulation. It is not very restrictive, as multiple rules satisfy it
within a broader set of rules, but it is restrictive enough to show that only the minimum
Walrasian equilibrium rule satisfies this criterion within the set of Walrasian equilibrium
rules. The proof of the next proposition has been relegated to the Appendix.

Proposition 4.3. On the domain of quasi-linear preferences, within the set of rules sat-
isfying (ex-post) individually rationality, efficiency and no-subsidy for losers, the min-
imum Walrasian equilibrium rule is not the unique rule that is not manipulable via
monotonic transformations at (∅, 0).

The results of the previous section, and the Theorem 4.2, are derived using a fixed
set of objects O. In the next part of this paper, we present a novel characterization
of the minimum Walrasian equilibrium rule, allowing for a variable set of objects while
keeping the set of agents N , fixed. The following analysis is inspired by Mo (1987),
which examines the impact of new entrants on equilibrium returns of existing market
participants.

The next definition is inspired by the field of competition economics: when an agent
faces no competing demands over an object, we say that such an object is uncontested.
In other words, an uncontested object is positively valued by a single agent, but it is
unattractive or irrelevant to the others.

Definition 4.4. Given R ∈ Rn
Q, object j

′ is uncontested for i ∈ N at R if (j, 0) Pi (∅, 0)
and (j, 0) It (∅, 0) for any other agent t ̸= i.

Let UO be the universe of objects, O ⊆ UO be a set of objects and R ∈ Rn
Q be defined

over the consumption set O × R and represented by the valuation matrix r. When we
introduce a new object j′ ∈ UO \ O, we expand R over (O ∪ {j′}) × R. The resulting
extended matrix is r′ = (r′ij)(i,j)∈N×(O∪{j′}), with r′ij = rij for every (i, j) ∈ N ×O, while
values are added for the new object j′. The updated preference profile is then denoted
as R′.

The next axiom, welfare parity for uncontested objects, addresses the addition of
an uncontested object to an existing market. This axiom is novel in the literature and
examines how the payoff of the agent interested in the uncontested object is affected by
its entry. Specifically, it seeks to maintain a balance between individual benefits and
collective welfare resulting from the entrance of an uncontested object. The rationale
underlying this axiom is as follows. When an uncontested object, say j′, is introduced

17On the domain of quasi-linear preferences, it is typically assumed that the transfers are non-
negative, and for that reason, no subsidy for losers is trivially satisfied.
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into an allocation problem, any increase in the efficient level of welfare depends critically
on the valuation that the interested agent, say agent i, assigns to j′. As the welfare
improvement is a direct consequence of agent i’s valuation of j′, it is expected that
agent i alone captures the welfare gain. In this way, the axiom serves to maintain a fair
allocation from a welfare perspective.

Definition 4.5. Consider a set of objects O ⊆ UO, on the domain of quasi-linear pref-
erences, φ satisfies welfare parity for uncontested objects if, for any R ∈ Rn

Q represented
by the valuation matrix r, and upon introducing a new object j′ ∈ UO \ O, resulting in
an extended matrix r′ and an updated preference profile R′, the following holds:

if under R′, object j′ is uncontested for agent i and φo
i (R

′) = j′, then:

r′ij′ − φm
i (R

′)− (riφo
i (R) − φm

i (R)) = W ∗
N,O∪{j′}(R

′)−W ∗
N,O(R).

The next result provides a new characterization of the minimum Walrasian equi-
librium rules with a single axiom: welfare parity for uncontested objects. This result
contributes to the study of the effect of new objects introduced into assignment problems
as approached by Mo (1987).

Theorem 4.6. On the domain of quasi-linear preferences, a Walrasian equilibrium rule
φ is the minimum Walrasian equilibrium rule if and only if it satisfies welfare parity for
uncontested objects.

Proof. Consider a set of objects O ⊆ UO. We first show that if a Walrasian equilibrium
rule satisfies welfare parity for uncontested objects, then it is the minimum Walrasian
equilibrium rule. Assume by contradiction that φ is a Walrasian equilibrium rule sat-
isfying welfare parity for uncontested objects, but it is not the minimum Walrasian
equilibrium rule.

Then there is an R ∈ Rn
Q, represented by a valuation matrix r, where the outcome

of φ is not a minimum Walrasian equilibrium at R. Let (z, p) be a minimum Walrasian
equilibrium at R. Then, we have that φm

i (R) ≥ p
φo
i (R)

for every i ∈ N and at least for

one agent t, φm
t (R) > p

φo
t (R)

. Let k be such that k = φo
t (R) and let ϵ1 > 0 be such that

φm
t (R) = p

k
+ ϵ1.

Now, introduce an object j′ ∈ UO \O with the following properties. The new matrix
r′ is an extension of r, that is r′ = (r′ij)(i,j)∈N×O∪{j′}, where r

′
ij = rij for all (i, j) ∈ N×O,

r′ij′ = 0 for all i ̸= t and r′tj′ = rtk + ϵ2 with 0 < ϵ2 < ϵ1. Denote by R′ the preference
profile represented by r′. Note that in any assignment leading to the efficient level of
welfare where the set of objects is O∪{j′}, agent t receives object j′. Now, we consider
two cases.

Case 1: W ∗
N,O∪{j′}(R

′) = W ∗
N,O(R)+ϵ2. According to formula (4), the maximum Walrasian

equilibrium price for object j′ at R′ is pj′ = ϵ2. Now, we calculate the difference
in payoff for agent t as a consequence of the entrance of the new object j′:

r′tj′ − φm
t (R

′)− (rtk − φm
t (R))

= rtk + ϵ2 − φm
t (R

′)− (rtk − φm
t (R)) = φm

t (R) + ϵ2 − φm
t (R

′).
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As φ satisfies welfare parity for uncontested objects andW ∗
N,O∪{j′}(R

′)−W ∗
N,O(R) =

ϵ2, then we have:

r′tj′ − φm
t (R

′)− (rtk − φm
t (R))

= φm
t (R) + ϵ2 − φm

t (R
′) = W ∗

N,O∪{j′}(R
′)−W ∗

N,O(R) = ϵ2,

which requires that φm
t (R) = φm

t (R
′), but that equality cannot happen because

φm
t (R) = p

k
+ ϵ1 ≥ ϵ1 > ϵ2 = pj′ ≥ φm

t (R
′), where the last inequality holds

as φ is a Walrasian equilibrium rule. Then, in this case, we cannot have that
φm
t (R) > p

φo
t (R)

, so φm
t (R) = p

φo
t (R)

.

Case 2: W ∗
N,O∪{j′}(R

′) > W ∗
N,O(R) + ϵ2. Note that, as a consequence of welfare parity for

uncontested objects, we have

r′tj′ − φm
t (R

′)− (rtk − φm
t (R)) = W ∗

N,O∪{j′}(R
′)−W ∗

N,O(R), (5)

Now, making use of the payoff that an agent gets under a minimum Walrasian
equilibrium. We know that rtk − p

k
= W ∗

N,O(R)−W ∗
N\{t},O(R−t) and we also have

that φm
t (R) = p

k
+ ϵ1. Thus, combining these expressions, we can modify (5):

r′tj′ − φm
t (R

′)−
(
rtk − (rtk +W ∗

N\{t},O(R−t)−W ∗
N,O(R) + ϵ1)

)
= W ∗

N,O∪{j′}(R
′)−W ∗

N,O(R),

which is equivalent to

r′tj′ − φm
t (R

′) +W ∗
N\{t},O(R−t) + ϵ1 = W ∗

N,O∪{j′}(R
′).

We can rearrange it as follows

−φm
t (R

′) +W ∗
N,O∪{j′}(R

′) + ϵ1 = W ∗
N,O∪{j′}(R

′).

The previous expression means that agent t has to pay φm
t (R

′) = ϵ1 for object j′.
Now, note that the minimum Walrasian equilibrium price for object j′ at R′ is
p
j′
= 0, see equation (3), as only agent t has a strictly positive willingness to pay

for it. This means that the rule φ imposes a price to object j′ higher than that of
the minimum Walrasian equilibrium, i.e., φm

t (R
′) = p

j′
+ ϵ1.

Now, introduce a new object j′′ ∈ UO \ (O ∪ {j′}) to the assignment problem
with the following properties. The new matrix r′′ is an extension of r′, that is
r′′ = (r′′ij)(i,j)∈N×O∪{j′,j′′}, where r′′ij = r′ij for all (i, j) ∈ N × (O ∪ {j′}), r′′ij′′ = 0
for all i ̸= t and r′′tj′′ = rtk + ϵ3 with 0 < ϵ2 < ϵ3 < ϵ1. That is, the valuation of
object j′′ is r′′tj′′ = rtk + ϵ3 > rtk + ϵ2 = r′tj′ . Denote by R′′ the preference profile
represented by r′′. Note that, in any assignment leading to the efficient level of
welfare where the set of objects is O ∪ {j′, j′′} at R′′, agent t receives object j′′.

We have that W ∗
N,O∪{j′,j′′}(R

′′) = W ∗
N,O∪{j′}(R

′) + ϵ3 − ϵ2 and we continue with
arguments similar to those of Case 1.
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The maximum Walrasian equilibrium price for object j′′ at R′′ is pj′′ = ϵ3−ϵ2 > 0.
Now, we calculate the difference in payoff for agent t as a consequence of the
entrance of the new object j′′:

r′′tj′′ − φm
t (R

′′)−
(
r′tj′ − φm

t (R
′)
)
= rtk + ϵ3 − φm

t (R
′′)− (rtk + ϵ2 − φm

t (R
′))

= φm
t (R

′) + ϵ3 − ϵ2 − φm
t (R

′′),

and as φ satisfies welfare parity for uncontested objects and W ∗
N,O∪{j′,j′′}(R

′′) −
W ∗

N,O∪{j′}(R
′) = ϵ3 − ϵ2, then we have:

r′′tj′′ − φm
t (R

′′)−
(
r′tj′ − φm

t (R
′)
)
= φm

t (R
′) + ϵ3 − ϵ2 − φm

t (R
′′)

= W ∗
N,O∪{j′,j′′}(R

′′)−W ∗
N,O∪{j′}(R

′)

= ϵ3 − ϵ2,

which requires that φm
t (R

′) = φm
t (R

′′), but that equality cannot happen because

φm
t (R

′) = ϵ1 > ϵ3 > ϵ3 − ϵ2 = pj′′ ≥ φm
t (R

′′),

where the last inequality holds as φ is a Walrasian equilibrium rule. Then, as
well as in the previous case, in this case, we cannot have that φm

t (R) > p
φo
t (R)

, so

φm
t (R) = p

φo
t (R)

. This proves that if a Walrasian equilibrium rule satisfies welfare

parity for uncontested objects, then it is a minimum Walrasian equilibrium rule.

Now we prove that the minimum Walrasian equilibrium rule, simply denoted by
φ, satisfies welfare parity for uncontested objects. Fix a set of objects O ⊆ UO and
consider any R ∈ Rn

Q represented by the matrix r. Assume a new object j′ ∈ UO \ O
is introduced into the assignment problem inducing the extended matrix r′ and the
corresponding preference profile R′, such that object j′ is uncontested for agent i and
φo
i (R

′) = j′. Note that:

W ∗
N\{i},O∪{j′}(R

′
−i) = W ∗

N\{i},O(R−i),

as only agent i has a positive valuation for object j′. Then, using the minimumWalrasian
equilibrium price, we have that:

r′ij′ − φm
i (R

′)− (rij′ − φm
i (R))

= r′ij′ − p
j′
− (riφo

i (R) − p
φo
i (R)

)

= r′ij′ − (W ∗
N\{i},O∪{j′}(R

′
−i)−W ∗

N\{i},O(R
′
−i))

− (riφo
i (R) − (W ∗

N\{i},O(R−i)−W ∗
N\{i},O\φo

i (R)(R−i)))

= W ∗
N,O∪{j′}(R

′)−W ∗
N\{i},O∪{j′}(R

′
−i)− (W ∗

N,O(R)−W ∗
N\{i},O(R−i))

= W ∗
N,O∪{j′}(R

′)−W ∗
N,O(R−i),

where the first equality comes from the fact that φ is the minimumWalrasian equilibrium
rule, the second equality comes from the formula of the minimum Walrasian equilibrium
price, the third equality comes from efficiency of the allocation rule φ and the last
equality from the observation thatW ∗

N\{i},O∪{j′}(R
′
−i) = W ∗

N\{i},O(R−i). Thus, this shows
that the minimum Walrasian equilibrium rule satisfies welfare parity for uncontested
objects and this completes the proof.
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In the final part of this section, we explore additional implications of welfare parity
for uncontested objects. Notably, we introduce an axiom that reflects the absence of
competitive pressure on the price of an uncontested object: if agent i faces no competing
demands over object j, he should acquire the object at no cost.

Definition 4.7. A rule φ satisfies zero price for uncontested objects, if for every R ∈ Rn
Q

and every object j′ uncontested for i at R, the following holds:

if φo
i (R) = j′, then φm

i (R) = 0.

This axiom underlines the balance between supply and demand in a market where
an agent faces no competing demands over a particular object. The next result shows
that, in fact, the minimumWalrasian equilibrium rule satisfies zero price for uncontested
objects.

Proposition 4.8. On the domain of quasi-linear preferences, the minimum Walrasian
equilibrium rule φ satisfies zero price for uncontested objects.

Proof. Take any R ∈ Rn
Q such that object j is uncontested for agent i. Assume further

that φo
i (R) = j. Note that,

W ∗
N\{i},O(R−i) = W ∗

N\{i},O\{j}(R−i),

as only agent i has a positive valuation for object j. Then, from expression 3, it imme-
diately follows that

p
j
= W ∗

N\{i},O(R−i)−W ∗
N\{i},O\{j}(R−i) = 0. (6)

The previous results help us to better understand how the minimum Walrasian
equilibrium rule works on the domain of quasi-linear preferences. First, if an uncontested
object j′ is introduced into an existing allocation problem, if agent i, who is interested
in j′ happens to receive object j′, the change in his payoff before and after the entry will
be equal to the total change in the efficient level of welfare. Moreover, we know that
agent i will pay a price of zero for j′.

While the minimum Walrasian equilibrium rule satisfies zero price for uncontested
objects, the next result shows that other Walrasian equilibrium rules also satisfy this
property. Thus, zero price for uncontested objects is too weak to characterize the min-
imum Walrasian equilibrium rule among the set of Walrasian equilibrium rules. The
proof has been relegated to the Appendix.

Proposition 4.9. On the domain of quasi-linear preferences, the minimum Walrasian
equilibrium rule is not the unique Walrasian equilibrium rule that satisfies zero price for
uncontested objects.

The next result shows that, among the set of Walrasian equilibrium rules, welfare
parity for uncontested objects implies zero price for uncontested objects.

Corollary 4.10. On the domain of quasi-linear preferences, among the set of Walrasian
equilibrium rules, welfare parity for uncontested objects implies zero price for uncontested
objects.

Proof. This corollary is a direct consequence of Theorem 4.6 and Proposition 4.8.
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5 Concluding remarks

This paper explores the properties of allocation rules on the domain of classical prefer-
ences, but also on the subdomain of quasi-linear preferences. Our findings highlight the
robustness and fairness of the minimum Walrasian equilibrium rule.

We introduce concepts of manipulation via monotonic transformations and single-
mindedness, motivated by practical scenarios where agents might misrepresent pref-
erences to gain an advantage. Our results demonstrate that the minimum Walrasian
equilibrium rule uniquely resists such manipulations, providing a novel characteriza-
tion without relying on the stronger condition of strategy-proofness. It remains as an
open question whether, on the domain of classical preferences, the minimum Walrasian
equilibrium rule is the only rule that satisfies efficiency, (ex-post) individual rationality,
no-subsidy for losers and that cannot be manipulated by pretending to be single-minded.

Additionally, we introduce welfare parity for uncontested objects and show that
among Walrasian equilibrium rules, only the minimum Walrasian equilibrium rule sat-
isfies such an axiom.

6 Appendix

Lemma 6.1. Let Ri, R
′
i ∈ RC be such that Ri ̸= R′

i, if R
′
i is a monotonic transformation

of Ri at (j,m), then C(Ri, (j.m)) ⊆ C(R′
i, (j.m)).

Proof. Take any (j′′,m′′) such that (j′′,m′′) ∈ C(Ri, (j.m)), and we will show that
(j′′,m′′) ∈ C(R′

i, (j.m)) through different cases.
First case: (j,m) Pi (j

′′,m′′). Note that, since R′
i is a monotonic transformation of

Ri at (j,m), we have that (j′′,m′′) R′
i (j,m) ⇒ (j′′,m′′) Ri (j,m) and this is equivalent

to (j,m) Pi (j
′′,m′′) ⇒ (j,m) P ′

i (j
′′,m′′). Thus, (j,m) P ′

i (j
′′,m′′) and then (j′′,m′′) ∈

C(R′
i, (j.m)).
Second case: (j,m) Ii (j

′′,m′′). In this case, it is enough to show that (j′′,m′′) P ′
i (j,m)

is not possible. We will show it by way of contradiction. Assume that (j′′,m′′) P ′
i (j,m)

holds. By continuity of R′
i, there is some amount of money x such that x > m′′ and

(j′′, x) P ′
i (j,m). On the one hand, since R′

i is a monotonic transformation of Ri at
(j,m), we have that (j′′, x) Ri (j,m). On the other hand, recall that in this case
(j,m) Ii (j

′′,m′′) and that since x > m′′, by money monotonicity, we have

(j′′,m′′) Pi (j
′′, x).

Thus, (j,m) Ii (j
′′,m′′) and (j′′,m′′) Pi (j

′′, x) ⇒ (j,m) Pi (j
′′, x), which is a contradic-

tion with (j′′, x) Ri (j,m). This implies that (j′′,m′′) P ′
i (j,m) does not hold.

This shows that (j′′,m′′) ∈ C(R′
i, (j.m)), and then C(Ri, (j.m)) ⊆ C(R′

i, (j.m)).

Lemma 6.2. Let R ∈ Rn
C be a preference profile and (z′, p′) and (z′′, p′′) be two Wal-

rasian equilibria at R, define N ′′ = {i ∈ N |(z′′i , p′′i ) Pi (z
′
i, p

′
i)}, N ′ = {i ∈ N |(z′i, p′i) Pi (z

′′
i , p

′′
i )},

N0 = {i ∈ N |(z′′i , p′′i ) Ii (z
′
i, p

′
i)}, O′′ = {j ∈ O|p′′j > p′j)}, O′ = {j ∈ O|p′′j < p′j)} and

O0 = {j ∈ O|p′′j = p′j)}. If i ∈ N ′, then zi ∈ O′′.
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Proof. Let R ∈ Rn be a preference profile and (z′, p′) and (z′′, p′′) two Walrasian equilib-
ria at R. Since (z′′, p′′) is a WE, we have that for each agent i, (z′′i , p

′′
z′′i
) Ri (j, p

′′
j ) for any

j ∈ O. If i ∈ N ′, then (z′i, p
′
z′i
) Pi (z

′′
i , p

′′
z′′i
) and by transitivity, (z′i, p

′
z′i
) Pi (z

′′
i , p

′′
z′′i
)Ri (z

′
i, p

′′
z′i
).

By money monotonicity, we have that p′′z′′i
> p′z′′i

, which implies that z′′i ∈ O′′. A sym-

metrical argument shows that if i ∈ N ′′, then zi ∈ O′.

Corollary 6.3. Let R ∈ Rn
C be a preference profile and (z′, p′) be a Walrasian equilibrium

at R. If (z′i, p
′
z′i
) Pi (∅, 0) for some agent i ∈ N , then in every Walrasian equilibrium

(z′′, p′′) at R, we have that the object assigned to agent i satisfies the following z′′i ̸= j
for (j, 0) Ii (∅, 0).

Proof. Let R ∈ Rn
C be a preference profile and (z′, p′) a WE at R with an agent i such

that (z′i, p
′
z′i
) Pi (∅, 0). Assume by way of contradiction that there is another WE (z′′, p′′)

at R where z′′i = j with (j, 0) Ii (∅, 0). Define N ′ and O′′ as in Lemma 6.2 , then i ∈ N ′

and z′i ∈ O′′, which implies that p′′z′′i
> 0, but by assumption z′′i = j with (j, 0) Ii (∅, 0).

Note that as (z′′, p′′) is a Walrasian equilibrium at R, it satisfies individual rationality,
then it cannot be that p′′z′′i

> 0. This shows that in every Walrasian equilibrium (z′′, p′′)

at R, z′′i ̸= j with (j, 0) Ii (∅, 0).

The following is the proof of Proposition 4.3.

Proof. Consider the following scenario: the set of objects O consists of only one real
object, say j, and there are n− 1 copies of the null object.

Define the following rule φ. Let R ∈ Rn
Q be the reported preference profile. The

rule operates as follows: object j is assigned to the agent with the highest willingness to
pay. In case of ties, the object is assigned randomly among the agents with the highest
willingness to pay, each having equal probability. The other agents receive a copy of the
null object. Moreover, no monetary transfers occur, i.e., φm

i (R) = 0 for every i ∈ N .
To show that the allocation is not Pareto-dominated, assume on the contrary that

there exists another allocation (z, t) in which at least one agent is better off and no
agent is worse off. Let i∗ denote the agent who receives j under φ at R and let his
willingness-to-pay be ri∗j = x. Two cases must be considered: zi∗ = j or zi∗ ̸= j. In
the first case, zi∗ = j, any transfer t satisfying ti ≥ φm

i (R) = 0 for all i, with tk > 0
for some agent k ∈ N , would make agent k worse off. In the second case, let zl = j for
some l ̸= i∗. For l to compensate i∗ for taking j, l must transfer tl ≥ x to i∗. However,
under this scenario, the payoff to agent l would be rlj − tl ≤ 0 since i∗ has one of the
highest willingness-to-pay. Hence, agent l cannot be better off under (z, t) compared
to the allocation (φo(R), φm(R)). Therefore, the allocation induced by φ is not Pareto
dominated. Trivially, φ satisfies no subsidy for losers and (ex-post) individual rationality.
Next, we verify that no agent has incentives to report a monotonic transformation of
his/her true preference at (∅, 0). Consider agent i∗ with one of the highest willingness-
to-pay. This agent has no incentive to report R′

i∗ ∈ RQ with a lower willingness-to-pay,
as doing so decreases the chances of receiving object j.

Now consider any agent i ̸= i∗. Such an agent i has no incentives to report R′
i ∈ RQ

with a lower willingness-to-pay because he would not receive the object. Thus no agent
has incentives to report a monotonic transformation at (∅, 0).
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Finally, note that this rule is not the minimum Walrasian equilibrium rule because
the rule described is not even a Walrasian equilibrium rule. To see this, note that
the price of the object is always zero, and the minimum Walrasian equilibrium price
may be positive. This shows that when a broader set of rules is allowed, the minimum
Walrasian equilibrium rule is not the only one resistant to manipulation via monotonic
transformations at the outside option.

The following is the proof of Theorem 4.2.

Proof. On the domain of quasi-linear preferences, we show that if a Walrasian equilib-
rium rule, denoted by φ, is not manipulable via monotonic transformations at (∅, 0),
then φ is the minimum Walrasian equilibrium rule.

Let R ∈ Rn
Q be represented by the valuation matrix r, φ a Walrasian equilibrium

rule and (z, p) a minimum Walrasian equilibrium at R. Assume, for contradiction, that
φm
t (R) ̸= p

φo
t (R)

for some t ∈ N . For notational convenience, let object k be such

that k = φo
t (R). Since φ is a Walrasian equilibrium rule, then φm

t (R) > p
φo
t (R)

=

W ∗
N\{t},O(R−t)−W ∗

N\{t},O\{k}(R−t). Since p
k
≥ 0, it follows that φm

t (R) > p
k
≥ 0, that

is φm
t (R) > 0. Note also that rt ≥ φm

t (R) > p
φo
t (R)

= W ∗
N\{t},O(R−t)−W ∗

N\{t},O\{k}(R−t)

Consider R′
t ∈ RQ where r′tj = 0 for all j ∈ O \ {k} and φm

t (R) > r′tk > p
φo
t (R)

.

Now, we will show that under (R−t, R
′
t), agent t receives object k. Given that φ(R) is

an efficient assignment at R, we have that:∑
i∈N\{t}

riφo
i (R) + r′tk > W ∗

N\{t},O\{k}(R−t) + (W ∗
N\{t},O(R−t)−W ∗

N\{t},O\{k}(R−t))

= W ∗
N\{t},O(R−t) = max

z∈ZN (O):zt ̸=k

{∑
i∈N

rizi

}
,

which implies that under (R−t, R
′
t) ∈ Rn

Q, the efficient level of welfare is attained when
agent t receives object k, that is, φo

t (R−t, R
′
t) = k. Since φ is a Walrasian equilibrium

rule, we must have that k ∈ D(R′
t, φ

m(R−t, R
′
t)), which requires that r′tk ≥ φm

t (R−t, R
′
t).

Then, if agent t reports R′
t instead of Rt, his payoff is

rtk − φm
t (R−t, R

′
t) ≥ rtk − r′tk > φm

t (R)− φm
t (R),

which shows that agent t has incentives to report R′
t instead of Rt. By construction,

note that R′
t is a monotonic transformation of Rt at (∅, 0). Hence φ is not manipulable

via monotonic transformations at (∅, 0). This implies, that φ is the minimum Walrasian
equilibrium rule.

The only if part of the proof follows immediately because the minimum Walrasian
equilibrium rule satisfies strategy-proofness, see e.g., Demange & Gale (1985).

The following is the proof of Proposition 4.9.

Proof. On the domain of quasi-linear preferences, define φ as follows:
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1. At any R ∈ Rn
Q, if there is no uncontested object, the rule φ chooses a maximum

Walrasian equilibrium.

2. At any R ∈ Rn
Q, if there is an uncontested object, the rule φ chooses a minimum

Walrasian equilibrium.

First, φ clearly selects a Walrasian equilibrium at any R ∈ Rn
Q. Second, the rule

satisfies zero price for uncontested objects because the price for uncontested objects is
zero, as indicated in expression (6). Third, it obviously is not the minimum Walrasian
equilibrium rule.

Example 6.4. This example represented in Figure 4, illustrates a scenario with two
agents 1 and 2 and two real objects A and B, alongside a null object ∅. The graphical
representation includes three primary horizontal lines. The lowest line represents the
null object, while the middle and top lines correspond to objects A and B, respectively.
Intersections along the vertical axis denote bundles that include the respective objects
without any monetary payment. For instance, the point labeled ’0’ on the lowest line
refers to the bundle containing the null object and no payment.

B

A

∅ −2 −1 0 1 2 3 4 5 6 7 8 9 10 m

Objects

R1

R2

Figure 4: An illustration of single-minded preferences with indiference curves.

In Figure 4 a rightward shift along the horizontal axes indicates an increase in the
price that an agent must pay for a designated object. Indifference curves, depicted as
colored lines connecting various points, illustrate indifference among the bundles. Three
indifference curves in blue correspond to agent 1, labeled as R1 and three indifference
curves with dashes correspond to agent 2, labeled as R2.

Observe that the indifference curves of agent 1 are parallel shifts of one another,
meaning that agent 1 possesses a quasi-linear preference. Furthermore, it is clear that,
regardless of the amount of money involved, agent 1 is indifferent between the null object
and object B. This reveals that agent 1 is a single-minded agent, focusing exclusively
on object A. Similarly, agent 2 is also indifferent between the null object and object
B for any given amount of money, indicating that agent 2 is likewise a single-minded
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agent. However, a key distinction between the two agents lies in their preference struc-
tures. Unlike agent 1, agent 2 does not exhibit a quasi-linear preference, this can be
seen by the fact that the indifference curves representing his preference are not parallel
displacements.
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Núñez, M., & Robles, F. 2024. Overbidding and underbidding in package allocation
problems. Social Choice and Welfare.
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