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Abstract: Gene expression appears altered in apparently normal tissue surrounding tumor tissue.
The observed biological alterations in the tumor microenvironment play a crucial role in cancer
development and are named the cancer field effect (FE). A robust set of overexpressed FE genes in
tissue surrounding colorectal cancer (CRC) tumor were identified in previous studies. Our study
aimed to investigate the influence of common medication intake and modifiable risk factors on
FE gene expression using a colonic mucosa sample dataset of healthy individuals (BarcUVa-Seq).
We applied expression enrichment analysis of the FE genes for each studied medication and factor.
Both observational and instrumental (Mendelian randomization) analysis were conducted, and
the results were validated using independent datasets. The findings from the observational and
instrumental analyses consistently showed that medication intake, especially metformin, considerably
downregulated the FE genes. Chemopreventive effects were also noted for antihypertensive drugs
targeting the renin–angiotensin system. Conversely, benzodiazepines usage might upregulate FE
genes, thus fostering a tumor-promoting microenvironment. In contrast, the findings from the
observational and instrumental analyses on modifiable risk factors showed some discrepancies.
The instrumental results indicated that obesity and smoking might promote a tumor-favorable
microenvironment. These findings offer insights into the biological mechanisms through which
risk factors might influence CRC development and highlight the potential chemopreventive roles of
metformin and antihypertensive drugs in CRC risk.

Keywords: colorectal cancer; tumor microenvironment; chemoprevention; gene expression; Mendelian
randomization

1. Introduction

Colorectal cancer (CRC) is the third most diagnosed cancer and the second leading
cause of cancer death affecting both men and women [1]. There is evidence that genetic
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factors are involved in CRC development, as revealed by the family history-associated risk
and low penetrance genetic risk variants [2–4].

The incidence of CRC is also affected by modifiable lifestyle factors. Physical activity,
alcohol consumption, smoking habits and adherence to a Western dietary pattern are among
the key lifestyle factors linked to CRC risk [5]. Additionally, medication intake has been
related to CRC. Notably, aspirin has been shown to reduce CRC risk by 20% [6,7], although
conflicting results have been reported on this topic [8]. Beyond aspirin, non-steroidal
anti-inflammatory drugs (NSAIDs) have also been linked to a decreased CRC risk [6,7,9,10].
However, their substantial gastrointestinal and cardiovascular side effects limit their use
as chemopreventive agents [7]. Other medications explored for their potential to reduce
CRC risk include the blood lowering glycemic agent metformin [9,11–13], the blood lipid
reducing statins [14–16] and the antiresorptive bisphosphonates [17,18].

Modifiable factors and medications may influence CRC risk by altering cellular molec-
ular mechanism. The various cell populations surrounding and within the tumor tissue are
collectively referred to as the tumor microenvironment. Although these cells may appear to
form normal tissue, molecular alterations, known as the cancer field effect (FE), have been
observed [19–21]. The FE could either be a consequence of the presence of the tumor or in-
dicate a pre-neoplastic phase of tumor development. The working hypothesis of this study
is that, in the latter scenario, FE molecular changes could be the result of the mechanistic
impact of risk exposures on the gut epithelium. Among these molecular mechanisms, gene
regulation emerges as a pivotal player [22]. Notably, it has been observed that hundreds
of genes were overexpressed in healthy colon tissue adjacent to tumors in comparison to
tissue from healthy individuals. This gene expression drift was interpreted as part of the
cancer FE within the tumor microenvironment [19,20].

Medications have the potential to modulate gene expression. Specifically, in the case
of oral medication, the absorption through the intestinal barrier takes place in different
locations of the gastrointestinal tract, mainly in the stomach and small bowel, but also in
the colon [23]. Therefore, active ingredients and their metabolites have the potential to
modify gut epithelial gene expression patterns, exerting either beneficial or harmful effects.
Thus, the oral administration of medication could play a central or adjuvant role in the
prevention and treatment of CRC by reversing gene expression patterns characteristics of
the tumor microenvironment. The main limitation in assessing the impact of medication
intake on colon tissue gene expression in an observational setting lies in the presence of
non-controlled confounding effects from other factors or comorbid diseases. Moreover,
conducting a randomized controlled trial (RCT) to assess this could raise ethical concerns.

Genetic epidemiology can circumvent some of the inherent limitations of observational
epidemiology by modeling non-genetic risk factors using genetic instruments and by
evaluating their association with the outcome rather than between the modifiable factor
and the outcome. In this study, we considered the use of allele scores as an instrumental
variable. They are important for the modelling of multifactorial polygenic traits, particularly
when the allele score consists of common variants with small effects [24]. Under the
assumption that the genetic instruments used are specifically associated with the risk factor
of interest, a genetic instrumental variable divides the population into subgroups that
systematically differ in the risk factor, but not in any confounding factors. Germline gene
variants related to a given risk factor are less prone to be associated with confounding
exposures. The genetically defined subgroups are analogous to treatment arms in a RCT.
Any difference in the outcome between the subgroups is inferred to be causally due to
the risk factor of interest. Therefore, this technique, commonly referred to as Mendelian
randomization (MR), is considered less sensitive to some of the biases that afflict traditional
observational epidemiology, in particular reverse causality and residual confounding [25].
With the increased availability of the results of genome-wide association studies (GWASs),
genetic variants in many loci have been identified for different complex traits, for instance
obesity, smoking and alcohol intake. In the case of medication intake, genetically proxied
therapeutic inhibition of a given drug target can be used to assess the effect of a drug on
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the outcome [26]. For instance, genetic variants in genes strongly related to systolic blood
pressure, and inhibited by hypertensive drugs, have been used to evaluate the effect of
hypertensive drugs on CRC risk [27].

The aim of this study was to investigate the impact of medication intake and modifi-
able factors on the expression of genes associated with cancer FE in the colon. This was
performed using a dataset of 445 colon tissue samples from healthy Spanish individu-
als (BarcUVa-Seq: University of Barcelona and University of Virginia RNA sequencing
project) [28,29]. Additionally, two independent datasets were incorporated, comprising
302 colon tissue samples (CEDAR: Correlated Expression and Disease Association Re-
search) [30] and 386 colon tissue samples (GTEx: Genotype—Tissue Expression v8) [31]. In
our MR methodology, we focused on testing variation in gene expression patterns rather
than outcome risk. To achieve this, we used allele scores as instrumental variables within
an individual-level RNA-Seq analysis framework. This individual-level framework is the
foundation of the original MR methodology and yields results identical to those obtained
from subsequent summary-based methods [32]. The results offer insights into the biological
mechanisms by which medication intake and risk factors may contribute to reduce or
increase CRC risk. To the best of our knowledge, this is the first study evaluating the
effect of common medication intake and exposures on gene expression patterns related
to the tumor microenvironment in healthy colon mucosa using both observational and
instrumental approaches.

2. Results
2.1. Field Effect Gene Signature

A robust collection of 211 genes was identified as an FE signature using two previous
studies independent of the BarcUVa-Seq project [19,20]. These FE genes were upregu-
lated in healthy colon tissue adjacent to tumor compared to healthy tissue from healthy
individuals (Supplementary Table S1). In the BarcUVa-Seq dataset, the overall expres-
sion of the FE genes was lower than the expression of the rest of the genes (Wilcoxon
p-value = 5.74 × 10−11, Supplementary Figure S1). Pathway analysis of the 211 genes
showed enrichment in extracellular matrix-related functions, muscle contraction and sig-
naling. Supplementary Table S2 and Supplementary Figure S2 show all seven significantly
enriched pathways. Of note, 51 out of the 211 selected genes (chi-squared p-value =
2.2 × S10−81) were also present in a recent colon FE study that included the BarcUVa-Seq
dataset in the analyses [21].

2.2. Sample Description: Clinical Parameters and Medication Intake

Some differences were seen in age distribution and gender proportion for the three
tested datasets. The BarcUVa-Seq subjects (64% females) had a mean age of 60 years and
were mostly of European ancestry. The CEDAR dataset comprised 56% women and had a
mean age of 55 years. Finally, the GTEx dataset had a lower proportion of women (37%)
and the ages ranged between 20 and 80 years, although most of the participants (35%)
were between 50 and 59 years. While genetic and gene expression data were available
for the three datasets, only the BarcUVa-Seq and CEDAR datasets had data on body mass
index (BMI) and smoking status. Mean BMI was similar for both datasets (27.5 ± 4.2 and
26.2 ± 4.6 for BarcUVa-Seq and CEDAR, respectively). Smoking status indicated that 13.7%
of the individuals in the BarcUVa-Seq dataset were current smokers, 33.8% were former
smokers and 52.5% had never smoked. In the CEDAR dataset, 20.5% of the individuals
were current smokers, while 79.5% were either former smokers or had never smoked. In
addition, 69.9% and 20.6% of the BarcUVa-Seq participants were non-drinking women and
men, respectively; while among the drinkers, the median was 2.2 g/day among women
and 5.1 g/day among men. Finally, the BarcUVa-Seq dataset also registered overall physical
activity (30.4± 26.8 units of metabolic equivalent task hours per week (MET-h/w units of
metabolic equivalents per week (METS)) (Supplementary Table S3).
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Finally, only the BarcUVa-Seq dataset had data on both clinical outcomes and medica-
tion intake. The individuals in the BarcUVa-Seq dataset may have been diagnosed with
prevalent diseases typically found among people within their age range (39–80). These
clinical outcomes were equally distributed among the sexes except for osteoporosis and
depression, which were more common among females, and gout disease, which was
more prevalent among men (p-value < 0.01; Table 1). Of note, the individuals ever diag-
nosed with cancer (4%) included survivors of non-digestive cancers who had overcome
the disease. The intakes of a wide range of medications were associated with clinical
outcomes. Some of the medications most significantly associated with the clinical out-
comes were calcium supplements for osteoporosis (p-value = 2.77 × 10−18); metformin for
type 2 diabetes (p-value < 1.00 × 10−20); antihypertensive medications for hypertension
(p-value < 9.58 × 10−5); statins for hypercholesterolemia (HMG CoA reductase inhibitors:
p-value < 1.00 × 10−20); and benzodiazepine derivatives and antidepressants for major de-
pressive disorder (Table 1 and Supplementary Table S3). As far as the relationship between
modifiable exposures and medication intake is concerned, BMI was associated with the
intake of omeprazole, hypertensive drugs, antidepressants and respiratory system drugs
(p-value < 0.01; Supplementary Table S3). Drinking status and smoking status were not
associated with medication intake (Supplementary Table S3).

Table 1. Chronic disease distribution, gender proportion and associated medications in BarcUVa-Seq
dataset.

Clinical Parameters
Overall Females Males

Psex
Associated Medication

(Top p-Value per Medication)N Yes (%) N Yes (%) N Yes (%)

Heartburn 405 20.0 260 21.0 145 23.0 0.45 Omeprazole (p = 5.27 × 10−12)

Ulcer 409 4.0 261 3.0 148 11.0 0.05

Hiatal hernia 409 9.0 261 9.0 148 13.0 0.99

Helicobacter pylori 409 3.0 261 3.0 148 8.0 0.94

Irregular bowel rhythm 408 14.0 260 17.0 148 13.0 0.02

Constipation 428 9.0 273 11.0 155 5.0 0.04 Drugs for constipation
(p = 1.10 × 10−7)

Osteoporosis 409 11.0 261 16.0 148 6.0 2.76 × 10−4 Calcium supplements
(p = 2.77 × 10−18)

Diabetes 409 12.0 261 1.0 148 19.0 0.13 Metformin
(p < 1.00 × 10−20)

Circulatory diseases 406 8.0 261 6.0 145 18.0 0.02 Acetylsalicylic acid
(p = 3.39 × 10−7)

Anemia 408 6.0 260 7.0 148 8.0 0.14

Hypertension 408 37.0 260 33.0 148 45.0 0.04

Hydrochlorothiazide
(p = 9.58 × 10−5);

Beta blocking agents, selective
(p = 9.97 × 10−7);

Atenolol (p < 1 × 10−20);
Bisoprolol (p < 1 × 10−20);

Amlodipine (p < 1 × 10−20);
Enalapril (p < 1.00 × 10−20);
Angiotensin II antagonists

(p < 1.00 × 10−20)

Cholesterol 409 38.0 261 36.0 148 44.0 0.27 HMG CoA reductase inhibitors
(p = 6.98 × 10−10)
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Table 1. Cont.

Clinical Parameters
Overall Females Males

Psex
Associated Medication

(Top p-Value per Medication)N Yes (%) N Yes (%) N Yes (%)

Arthritis 408 22.0 261 26.0 147 2.0 0.03

Anti-inflammatory and
antirheumatic products,

non-steroids (p = 3.01 × 10−9);
Ibuprofen (p = 3.19 × 10−3);

Paracetamol (p = 8.84 × 10−12)

Thyroid disease 407 7.0 260 1.0 147 5.0 0.98 Levothyroxine sodium
(p = 3.49 × 10−9)

Gout disease 408 5.0 261 2.0 147 15.0 5.84 × 10−4

Depression 408 23.0 260 28.0 148 18.0 1.66 × 10−3

Benzodiazepine derivatives
(p = 3.30 × 10−14);
Antidepressants

(p = 7.01 × 10−17);
Selective serotonin reuptake

inhibitors
(p = 1.20 × 10−8);

Migraine 408 4.0 261 5.0 147 8.0 0.31

COPD 409 8.0 261 8.0 148 12.0 0.9 Drugs for obstructive airway
diseases (p = 2.24 × 10−10);

Cancer 409 4.0 261 4.0 148 8.0 0.86

Renal lithiasis 407 4.0 260 3.0 147 12.0 0.06

Bladder stones 408 2.0 260 2.0 148 8.0 0.37

Psex: sex proportion test p-value; p: p-value; N: sample size; %: proportion.

2.3. Gene Expression Patterns by Medication Intake in the Observational Setting

Differential expression analysis (DEA) was applied to the medication intake variables
in the BarcUVa-Seq dataset adjusting for sex, age, tissue location and RNA sequencing
batch. We observed that the individuals treated with biguanides used to treat type 2
diabetes (metformin—A10BA02) showed a total of 1364 upregulated genes and 1350 down-
regulated genes compared to those without treatment (Table 2). Functional analyses of
these 2714 genes showed an enrichment of 21 pathways (FDR < 0.05), most of them related
to respiratory electron transport, steroid metabolism and extracellular matrix organiza-
tion (Figure 1a,b and Supplementary Table S4). Up- and downregulated genes can be
observed as scattered dots in Figure 1c, depicting the significance of the DEA association
estimates (logFC). It is worth mentioning that the participants under metformin treatment
showed an overexpression of almost all the genes present in cholesterol biosynthesis (17
out of 25, see Figure 1b). Other drugs showed lower numbers of differentially expressed
genes, such as platelet aggregation inhibitors (acetylsalicylic acid, 42 genes), diuretic drugs
(hydrochlorothiazide, 27 genes) and lipid modifying agents (statins, 18 genes) (Table 2).

We compared the distributions of the DEA association estimates of the 211 FE genes
with the overall genes using Gene Set Enrichment Analysis (GSEA) [33]. Under the assump-
tion that the upregulation of the FE genes is promoting tumor development, each analyzed
parameter was considered as a risk or protective factor depending on whether the FE genes
showed a positive or negative enrichment score (ES), respectively, in the GSEA. A total
of 16 medications appeared to attenuate the expression of the FE genes as they showed
a negative ES (p-value < 0.01) (Table 2). The medications showing the strongest negative
ES were metformin (ES = −2.95; p-value = 1.18 × 10−3) (Figure 1c, red dots of FE genes
were mostly downregulated compared with the background genes in grey), paracetamol
(ES = −2.91; p-value = 1.93 × 10−3), antihypertensives (ES = −2.84; p-value = 1.29 × 10−3),
statins (ES = −2.82; p-value = 2.29 × 10−3) and anti-inflammatory and antirheumatic
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products (ES = −2.82; p-value = 1.39 × 10−3). By contrast, it was observed that calcium
supplement intake promoted the upregulation of the FE genes as it showed a mild positive
ES (ES = 1.62; p-value = 4.64 × 10−3), while acetylsalicylic acid intake also showed a mild
positive but non-significant ES (ES = 1.40; p-value = 0.012) (Table 2).
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B01AC06: Acetylsalicylic acid 366 33 35 7 1.40 0.0124 
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C07AB: Beta blocking agents, selective 366 33 2 1 −2.84 1.29 × 10−3 

C07AB07: Bisoprolol 376 23 5 0 −2.77 1.80 × 10−3 
C08CA01: Amlodipine 375 24 1 0 −2.33 1.32 × 10−3 

C09AA02: Enalapril 362 37 0 0 −2.21 1.19 × 10−3 

Figure 1. (a) Reactome-based enrichment analysis summary for metformin intake. Dots, proportional
to the number of genes associated with specific pathways, represent the most significantly enriched
pathways and are color-coded based on adjusted p-values. (b) Network plot representing the
significant genes found for the most significant pathways. Genes are colored by the fold change in
metformin intake profile. (c) Metformin volcano plot. Differential gene expression for metformin
intake. (d) rs17485664 volcano plot. Differential gene expression for rs17485664 profile. For (c,d), x-
axis represents logFC values, y-axis represents −log10 p-values, horizontal dashed red line represents
significant adjusted p-value threshold (FDR = 0.1), red dots represent FE genes and gray dots the rest
of background genes.
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Table 2. Observational results for effects of medication intake on gene expression.

Medication
Intake Category DEA GSEA

No Yes N Genes
Upreg

N Genes
Downreg ES p-Value

A02BC01: Omeprazol 277 122 4 2 −1.33 0.027
A06A: Drugs for constipation 377 22 1 0 1.38 0.026

A10BA02: Metformin 366 33 1364 1350 −2.95 1.18 × 10−3

A12A: Calcium supplements 353 46 0 0 1.62 4.64 × 10−3

B01AC06: Acetylsalicylic acid 366 33 35 7 1.40 0.0124
C03AA03: Hydrochlorothiazide 375 24 24 3 −2.30 4.07 × 10−3

C07AB: Beta blocking agents, selective 366 33 2 1 −2.84 1.29 × 10−3

C07AB07: Bisoprolol 376 23 5 0 −2.77 1.80 × 10−3

C08CA01: Amlodipine 375 24 1 0 −2.33 1.32 × 10−3

C09AA02: Enalapril 362 37 0 0 −2.21 1.19 × 10−3

C09CA: Angiotensin II antagonists, plain 368 31 0 1 −1.78 1.20 × 10−3

C10AA: HMG CoA reductase inhibitors 293 106 15 3 −2.82 2.29 × 10−3

C10AA01: Simvastatin 317 82 2 2 −2.74 1.95 × 10−3

H03AA01: Levothyroxine sodium 378 21 9 0 −2.05 1.59 × 10−3

M01A: Anti-inflammatory and antirheumatic
products, non-steroids 282 117 0 0 −2.82 1.39 × 10−3

M01AE01: Ibuprofen 324 75 2 0 −1.94 3.90 × 10−3

N02BE01: Paracetamol 336 63 0 0 −2.91 1.93 × 10−3

N05BA: Benzodiazepine derivatives 351 48 1 0 −1.37 0.0272
N06A: Antidepressants 344 55 0 2 −2.02 1.06 × 10−3

N06AB: Selective serotonin reuptake inhibitors 368 31 1 0 −2.12 1.13 × 10−3

R03: Drugs for obstructive airway diseases 376 23 3 1 −2.52 1.14 × 10−3

N genes upreg: number of genes upregulated; N genes downreg: number of genes downregulated; DEA:
Differential expression analysis; GSEA: Gene Set Enrichment Analysis; ES: GSEA normalized enrichment score.

2.4. Gene Expression Patterns by Medication Intake in the Instrumental Setting

To estimate the effect of medication intake on gene expression under an instrumental
(MR) procedure, we applied DEA and GSEA analyses using as instrumental variables allele
dosages of SNPs mimicking the effect of the medication. The top expression quantitative
trait locus (eQTL) for each drug target was identified as genetic proxies of drug action.
Robust genetic proxies (Fstat ≥ 10) for the therapeutic response of drug targets were
found for the inducer effects of metformin on PRKAB1 (rs17485664), calcium supplements
on CACNA1C and ATP2C1 (rs78155648 and rs112703671, respectively) and diazepam on
GABRA2 (rs1442060), and for the inhibitor effects of amlodipine on CACNA1C (rs78155648)
and enalapril on ACE (rs4292) (Supplementary Table S5). It is worth noting that the proxy
rs78155648 for CACNA1C was used as an instrument for both the inductive effect of calcium
supplements and the inhibitor effect of amlodipine (calcium channel blocker).

The results showed that genetic proxies provided similar enrichment patterns of
expression (ES) to the corresponding medications (Table 3). According to these instrumen-
tal results, the inductive effect of metformin on PRKAB1 provided an underexpression
of the FE genes (ES = −1.86, p-value = 2.33 × 10−3) (Figure 1d, red dots represent FE
genes that were mostly downregulated compared with the background genes, shown in
grey), which was validated in the other two datasets (ES = −1.39, p-value = 4.00 × 10−3,
ES = −2.00, p-value = 1.06 × 10−3, in GTEx and CEDAR, respectively). The inducer ef-
fect of calcium supplements on CACNA1C and ATP2C1 showed a trend to increase the
expression of the FE genes (ES = 1.51, p-value = 0.08, and ES = 2.03, p-value = 2.23 × 10−3,
respectively), which was not fully validated in the case of CACNA1C in the other datasets
(ES = 1.25, p-value = 0.07, in GTEx; and ES = 1.66, p-value = 2.31 × 10−3, in CEDAR),
nor validated in ATP2C1 (ES = 2.57, p-value = 1.04 × 10−3, in GTEx; and ES = −1.83,
p-value = 0.01, in CEDAR). Therefore, the inhibitor effect of calcium channel blocker
(amlodipine) on CACNA1C showed a trend to underexpress the FE genes (same statis-
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tics but in opposite direction to the inducer effect of calcium supplements). This effect
of the antihypertensive drug was also observed in the case of the agents acting on the
renin–angiotensin system. The inhibitor effect of enalapril on ACE exhibited an underex-
pression of the FE genes (ES = −2.00, p-value = 1.60 × 10−3), which was validated in GTEx
(ES = −2.22, p-value = 2.84 × 10−3) and in CEDAR, although non-significantly (ES = −1.05,
p-value = 0.33).

Table 3. Instrumental results for drug genetic proxies on gene expression.

BarcUVa-Seq CEDAR GTEx

Medication Action Gene RSID chr pos RA AA ES
(p-Value)

ES
(p-Value)

ES
(p-Value)

A10BA02:
Metformin Inducer PRKAB1 rs17485664 12 120043595 T C −1.86

(2.33 × 10−3)
−2.00

(1.06 × 10−3)
−1.39

(4.00 × 10−3)
A12A:

Calcium Ligand CACNA1C rs78155648 12 2376292 G A 1.51
(0.08)

1.66
(2.31 × 10−3)

1.25
(0.07)

A12A:
Calcium Agonist ATP2C1 rs112703671 3 130613634 G C 2.03

(2.23 × 10−3)
−1.83
(0.01)

2.57
(1.04 × 10−3)

C08CA01:
Amlodipine Inhibitor CACNA1C rs78155648 12 2376292 A G −1.51

(0.08)
−1.66

(2.31 × 10−3)
−1.25
(0.07)

C09AA02:
Enalapril Inhibitor ACE rs4292 17 61554341 T C −2.00

(1.60 × 10−3)
−1.05
(0.33)

−2.22
(2.84 × 10−3)

N05BA01:
Diazepam Ligand GABRA2 rs1442060 4 46366067 G A 2.37

(1.88 × 10−3)
2.45

(2.07 × 10−3)
2.29

(1.66 × 10−3)

Action: drug mechanism on target gene; RSID: SNP ID; RA: reference allele; AA: alternative allele; ES: normalized
enrichment score of Gene Set Enrichment Analysis.

Finally, the inductive effect of diazepam on GABRA2 showed a remarkable overex-
pression of the FE genes (ES = 2.33, p-value = 1.88 × 10−3), which was confirmed in both
GTEx and CEDAR (ES = 2.29, p-value = 1.66 × 10−3, ES = 2.45, p-value = 2.07 × 10−3,
respectively).

2.5. Gene Expression Patterns by Modifiable Exposures in the Observational Setting

The differential expression results in the BarcUVa-Seq dataset indicated that each
standard deviation (SD) increase in BMI was related to the upregulation of 34 genes and
the downregulation of 22 genes (Table 4). The genes in the highest quartile of mean
expression values in both the BarcUVa-Seq and CEDAR DEA results showed a positive FC
correlation (n = 1776 genes, Spearman’s r = 0.27, p-value = 1.43 × 10−31). Both datasets
showed a negative ES for the 211 FE genes (−2.71, p-value = 0.001 in BarcUVa-Seq; and
−2.32, p-value = 0.004 in CEDAR) (Table 4). Regarding smoking status, the genes in the
highest quartile of mean expression values in both datasets showed a moderate positive
correlation (Spearman’s r = 0.19, p-value = 3.56 × 10−16) for DEA between current smokers
and individuals who had stopped smoking or never smoked. A positive ES for smoking
was observed in BarcUVa-Seq (1.4, p-value = 0.04) and in CEDAR (0.79, p-value = 0.90, but
non-significant) (Table 4). In the case of drinking habits, the observational results indicated
that individuals with a higher intake of alcohol showed a total of 587 upregulated genes
and 568 downregulated genes compared with individuals with a lower alcohol intake. A
negative ES was observed in BarcUVa-Seq (−1.66, p-value = 0.001) (Table 4). Finally, overall
physical activity showed a positive ES (1.44, p-value = 0.009) (Table 4).
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Table 4. Phenotype distribution for modifiable exposures, observational and instrumental results on
gene expression.

Parameters BarcUVa-Seq CEDAR GTEx

Phenotype
Distribution Obs Inst Phenotype

Distribution Obs Inst Inst

Categorical N
(% Currrent)

ES
(p-Value)

ES
(p-Value)

N
(% Currrent)

ES
(p-Value)

ES
(p-Value)

ES
(p-Value)

Smoking 409
(14%)

1.37
(0.04)

2.45
(2.6 × 10−3)

322
(21%)

0.79
(0.90)

0.91
(0.71)

3.45
(6.1 × 10−3)

Drinking 406
(48%)

−1.66
(1.3 × 10−3)

−2.65
(2.3 x10−3)

322
(-) - 1.53

(0.10)
2.77

(2.3 × 10−3)

Quantitative N
(mean ± stdev)

N
(mean ± stdev)

BMI 393
(27.5 ± 4.2)

−2.71
(1.3 × 10−3)

2.47
(3.5 × 10−3)

316
(26.2 ± 4.6)

−2.32
(4.2 × 10−3)

−1.38
(0.02)

2.98
(5.9 × 10−3)

Physical
activity

(MET-h/w)

338
(30.4 ± 26.8)

1.44
(0.01) - - - -

Obs: observational approach, Inst: instrumental approach, N: sample size, ES: enrichment score, stdev: standard
deviation.

2.6. Gene Expression Patterns by Modifiable Exposures in the Instrumental Setting

In the instrumental analyses, we used weighted genetic scores as instrumental vari-
ables for DEA and GSEA analyses in a two-sample individual-level MR approach. Genetic
proxies for modifiable exposures (BMI, smoking initiation, drinks/week) were identified
in large GWASs of the risk factors of interest, and these genetic proxies were tested for
association in the three gene expression datasets. In the case of BMI, in contrast to the
observational results, the instrumental analyses showed a positive ES in BarcUVa-Seq
and GTEx (2.47, p-value = 0.003; 2.98, p-value = 0.006) but a negative trend in CEDAR
(−1.38, p-value = 0.02) (Table 4). Regarding smoking status, a positive ES was observed
in BarcUVa-Seq, GTEx and CEDAR (2.45, p-value = 0.003, 3.45, p-value = 0.006, and 0.91,
p-value = 0.71, respectively) (Table 4). Finally, for drinking habits, a negative ES was
observed in BarcUVa-Seq (−2.65, p-value = 0.002), but the results in CEDAR and GTEx
showed a positive ES (1.53, p-value = 0.10 and 2.77, p-value = 0.002) (Table 4).

3. Discussion

In this article, a potential mechanism of the chemopreventive effect on CRC risk
of metformin and antihypertensive agents acting on the renin–angiotensin system was
identified. Also, we identified a potential mechanism of the observed harmful effect of
benzodiazepine derivatives on increasing CRC risk. This was achieved by analyzing
the differential expression in colon mucosa of healthy individuals of a set of 211 genes
related to the cancer field effect. This analysis was performed using both observational and
instrumental approaches with replication of the results, which provided robust support for
the findings.

3.1. Gene Expression in the Tumor Microenvironment

The molecular alterations (field effect—FE) present in the cell populations surrounding
the tumor cells (the tumor microenvironment) are considered necessary for promoting the
growth and survival of cancer cells. To characterize the colon cancer FE at gene expression
level, we proposed a robust set of genes from two different studies independent of the
BarcUVa-Seq project [19,20]. The pathway analysis of these genes is in accordance with
changes in the composition of the extracellular matrix and the dysregulation of the tissue
homeostasis, which contribute to both the development and progression of neoplastic
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lesions [34–36]. Furthermore, the lower expression values of these genes observed in
the healthy colon samples could indicate that FE genes may play a role in the early pre-
neoplastic stage of tumor development.

3.2. Chemopreventive Role of Commonly Used Medication

The observational and instrumental results for medication intake were highly con-
cordant. Metformin was identified as the medication with the highest impact on gene
expression, altering the respiratory electron transport, the steroid metabolism, the extracel-
lular matrix organization and the cholesterol biosynthesis. In addition, metformin showed
the strongest enrichment in downregulating the genes associated with cancer FE, which
was validated in the instrumental analyses including three independent datasets. These
results are in accordance with the theoretical anticancer effects of metformin, which are
divided into direct effects, reducing the energy consumption of cancer cells by inhibiting
mitochondrial respiratory chain complex I, and indirect effects, reducing fasting plasma
insulin levels [37,38]. This evidence provides a solid mechanism of action for the observed
lower associated CRC risk to patients with diabetes under metformin treatment.

Our results are consistent with a chemoprotective effect of ACE inhibitors on CRC risk.
Recent observational results on the use of renin–angiotensin system inhibitors pointed to a
protective effect or null effect of these anti-hypertensive drugs on CRC risk [39–41]. Also,
immunosuppression roles have been proposed for ACE in the tumor microenvironment,
which provide a potential benefit of ACE inhibition in the development of neoplasm [42].
On the other hand, a previous MR study mimicked the ACE inhibitor effect using genetic
variants of the ACE region associated with systolic blood pressure (SBP) [27]. They found a
risk role of ACE inhibition not mediated by SBP. However, they also found that genetically
proxied ACE gene expression was positively associated with CRC risk. Therefore, in line
with these previous results, our results support a chemopreventive effect of ACE inhibition
mediated by ACE gene expression and downregulating cancer FE genes. On the other hand,
the intake of calcium supplements showed upregulation of the cancer FE genes, but this
was not fully validated by the instrumental analyses. These results are in sharp contrast
with the previously observed relation between supplementary calcium intake and CRC
risk. It has been observed how calcium intake showed a protective role for CRC risk in
prospective and case–control studies [43,44]. Also, serum calcium concentrations were
observed to be inversely associated with the risk of CRC [45]. In addition, in a study of
patient-derived organoids, the exposure of organoids to concentrations of calcium for 72 h
revealed alteration of the gene expression of CRC-related genes, which could explain the
chemopreventive role of calcium in CRC risk [46]. A potential explanation for our results
could be that the chemopreventive effect of calcium is not mediated by the expression
of the CACNA1C or ATP2C1 genes. A recent study analyzing genetic variants in the
calcium signaling pathway pointed to the PDE1C gene as a key gene contributing to CRC
through changes in the tumor microenvironment [47]. In addition, our instrumental results
could be confounded as the CACNA1C gene is also targeted by anti-hypertensive calcium
channel blockers.

Regarding our results related to the use of benzodiazepine derivatives, a non-significant
downregulation of cancer FE genes was observed. However, our instrumental results
provided the opposite effect, a strong upregulation of FE genes, indicating that the observa-
tional results could be confounded. Previous observational case–control and cohort-based
studies indicated that the use of benzodiazepines increased the risk of specific cancers,
including CRC in 5–25% [48–50]. The mechanisms involved in this risk association remain
unclear and controversial. However, they could involve chronic inflammation and tumor
growth [47,49]. Therefore, our study supports these previous observations and provides a
potential mechanism of action of the role of benzodiazepines in the CRC risk.

In summary, our results reinforce the observed beneficial effect of known drugs in
reducing CRC risk [39,51,52] and provide a potential mechanism of action modulating
cancer FE gene expression in the tumor microenvironment. They provide new potential
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therapeutic strategies for CRC, since oral drug administration is a common delivery route
for a wide range of therapies and is strongly preferred by patients for its ease of use due to
its inherent non-invasiveness [53,54].

3.3. The Contribution of Modifiable Risk Factors to the Tumor Microenvironment

The observational and instrumental results for modifiable risk factors showed some
discrepancies. They highlighted the possibility of unmeasured confounding affecting the
observational results. In fact, higher BMI was associated with the intake of proton-pump
inhibitors, antihypertensive drugs, antidepressants and respiratory system drugs. The
independent genetic polymorphisms included in the instruments were randomly allocated
at conception and cannot be correlated with potential confounders in a similar way [24].
The instrumental findings of this study in relation to smoking parameters, and to a lesser
extent to BMI, raise the possibility of a potential causal relationship between these factors
and the observed alterations in gene expression. The causes of the molecular alterations
of the tumor microenvironment that benefit cancer cells are not well understood. On one
hand, it has been observed that cancer cells release growth factors and cytokines in the
microenvironment [55]. However, this study supported the idea that it can be also the
result of the effect of CRC risk exposures on the gut epithelium. The validated genetic
instruments provided strong positive associations in BarcUVa-Seq and GTEx, but these
results were not robustly validated in the independent CEDAR dataset. This independent
dataset was composed of slightly younger people (mean age of 55 years versus 60 years),
which could reduce the required cumulative period of exposure to have a significant impact
on health. Therefore, replication results in other datasets composed of older people are
encouraged. Other potential sources of bias in this instrumental setting are the presence
of pleiotropic effects and measurement errors [24]. However, the large number of genetic
instruments used, the selection of the largest sample size studies used to identify them, the
analysis based on gene set enrichment instead of a single gene and the internal validation
performed in our study minimized these sources of bias.

3.4. Strengths and Limitations

To the best of our knowledge, we have analyzed the largest cross-sectional dataset that
includes anthropometric, lifestyle and clinical data of participants together with germ-line
genetics and gene expression data of healthy colonic mucosa. There exist similar studies
with a smaller number of participants, addressing diet or lifestyle factors [56,57], and
studies with similar genetic and gene expression data but without lifestyle and clinical
data [31].

This study has several limitations. As main limitation, in this study there were
some medication effects that could not be tested in the instrumental setting because no
strong genetic instruments at gene expression level were identified. This was the case for
omeprazole, lipid-lowering drugs, antidepressants, acetylsalicylic acid and NSAIDs. In
addition, acetylsalicylic acid and NSAIDs share common target PTGS1 and PTGS2 genes,
which enables disentanglement of the effects of these drugs in an instrumental setting.
Larger studies to identify robust genetic instruments are needed to further investigate these
drugs. In addition, some of the analyzed diseases and their associated treatments were
supported by a small fraction of the whole dataset, which could reduce the robustness
of the results. Observational variables may have minimal biases even though qualified
professionals conducted the interviews and posterior quality control was carried out to
remove outliers or contradictory answers. Regarding the gene expression data, bulk
RNA-seq is a mixture of different cell compositions; thus, the gene expression levels
reflect weighted average expression levels based on the number and diversity of cell types.
However, these minimal biases are unlikely to affect our results. Another inherent limitation
of MR studies is that they can be slightly biased due to uncontrolled confounding from
family effects such as assortative mating, dynastic effects and population structure [58].
Although we mitigated bias from population stratification using a two-sample MR analysis
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in European ancestry samples, our findings may not be applicable to populations of non-
European ancestry.

4. Materials and Methods
4.1. BarcUVa-Seq Dataset

The BarcUVa-Seq (University of Barcelona and University of Virginia RNA sequencing
project) dataset is a cross-sectional study including bulk RNA sequencing data from colon
mucosa and blood genome-wide germline data of 445 healthy adult donors interviewed
for diet, lifestyle and medical variables [28]. The modifiable exposures comprise BMI,
smoking status (current smoking, no smoking), overall physical activity (registered in units
of metabolic equivalent task hours per week (MET-h/w)) and alcohol intake (measured as
described elsewhere) [59]. The continuous parameter alcohol intake (registered in grams per
day) was categorized by sex in three ordinal categories: non-drinkers, moderate drinkers
and heavy drinkers. Non-drinkers were considered the reference category, while moderate
and heavy drinkers were identified below and above the median within sex among drinkers.
In addition, diagnostics for clinical outcomes (defined using International Classification of
Diseases codes, version 10 (ICD-10)) [60] and medication intake (defined using Anatomical
Therapeutic Chemical code (ATC)) [61] were also included in the analyses. A total of
428 individuals had both questionnaire and clinical data available. Biopsies were obtained
from sites along the ascending (n = 135; 31.5%), transverse (n = 140; 32.7%) and descending
(n = 153; 35.8%) colon, from one site per individual. Molecular profiling was previously
described in [28]. Briefly, the RNA extraction, quantification and sequencing of colon
samples were performed using Illumina HiSeq 2500 or NovaSeq 6000 instruments. The
filtering steps for the expression data consisted of the removal of genes smaller than 300 bp
or with less than one Count Per Million (CPM) in at most 100 samples. This was done
to exclude miRNA from the final expression matrix, as minimal miRNA captured by the
protocol could lead to biased analysis for this RNA typology. Protein coding and non-
coding gene expression levels were then normalized using the Trimmed Mean of M values
(TMM) method. This ensured optimal results for the differential expression analysis and
a robust comparison between the samples with adjustment by library size [62]. Principal
Component Analysis (PCA) was performed to inspect for possible outliers and biases
of common nature, such as sex, age and batch processing. Blood DNA genotyping was
performed with Illumina OncoArray BeadChip and imputed, resulting in 6,804,675 single
nucleotide polymorphisms (SNPs) with an imputation R2 > 0.7 and a minor allele frequency
(MAF) > 1%. This dataset is representative of the transcriptome of colon epithelial cells of
living subjects, as all the biopsies were collected from superficial mucosa at colonoscopy.
This characteristic makes it optimal for investigating the normal physiology across the colon,
and it is relevant for studying etiological aspects of diseases affecting this tissue. More
information about the BarcUVa-Seq project can be accessed online at https://barcuvaseq.
org/, accessed on 27 June 2024. In addition, the transcriptomic features of this dataset and
their association with germline genetic variants can be explored online in a web browser,
the Colon Transcriptome Explorer version 2.0 [29] (CoTrEx 2.0; https://barcuvaseq.org/
cotrex/, accessed on 27 June 2024).

4.2. CEDAR Dataset

The CEDAR (Correlated Expression and Disease Association Research) dataset [30]
was used as an independent dataset for validation purposes. The epidemiological param-
eters available in this dataset were BMI and smoking status (current vs. non-smokers).
Therefore, in this dataset, we tested the effect of BMI and smoking status in both the
observational and instrumental setting, and the effect of the intake of drugs in the instru-
mental setting. The CEDAR dataset was obtained from the Array Express repository under
accession numbers E-MTAB-6666 and E-MTAB-6667 for the genotypes and expression data,
respectively. The data used in this study included gene expression from the transverse
colon (302 individuals). Quality control for genotyping and expression data was previously

https://barcuvaseq.org/
https://barcuvaseq.org/
https://barcuvaseq.org/cotrex/
https://barcuvaseq.org/cotrex/
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described elsewhere [63]. Briefly, the microarray raw expression data was normalized
using negative control probes with the limma R package [64], while the genotypes were
imputed using the Haplotype Reference Consortium panel on the Michigan Imputation
Server, resulting in 7,374,172 SNPs with an imputation R2 > 0.7 and a MAF > 1%.

4.3. GTEx Dataset

The GTEx (Genotype—Tissue Expression) dataset v8 [31] was also used as an indepen-
dent dataset for validation purposes for the effect of medication intake in the instrumental
setting. Sex and age were the epidemiological parameters available in this dataset. The
transverse colon GTEx v8 dataset comprised 368 samples and was obtained from dbGaP
(study accession: phs000424.v8.p2). The raw expression count data were analyzed using
exactly the same procedure as described before for BarcUVa-Seq.

4.4. Gene Set of Cancer FE

A robust collection of genes characterizing the cancer FE of colonic mucosa was built
using two previous studies [19,20]. The selected genes showed differential expression
in both studies between healthy tissue adjacent to tumor and colon tissue samples from
healthy individuals. The selected genes showed log2 fold change (logFC) values in the
same direction, absolute logFC values greater than 1 and Bonferroni correction p-values
lower than 0.01. A total of 222 genes were selected and split into 211 upregulated genes and
11 downregulated genes (Supplementary Table S1). For the sake of statistical robustness,
only the set of upregulated genes were selected for subsequent analyses. The Wilcoxon
rank sum test was employed to evaluate differences in the expression values among FE
genes and the remaining expression profile in the BarcUVa-Seq samples. Pathway analysis
was performed for the selected genes with ReactomePA [65] R package. Pathways with a
Benjamini–Hochberg false discovery rate (FDR) lower than 0.05 were considered significant.

4.5. Observational Analyses

Differential expression analysis (DEA) was applied to the standardized and categorical
variables. The Generalized Linear Model (GLM) with a quasi-likelihood method was
used to ensure a robust error rate control. Models were adjusted by sex, age, tissue
location and RNA sequencing batch. A Benjamini–Hochberg false discovery rate (FDR)
of 0.1 was set to select statistically significant differential expressed genes. As result, the
logFC estimate expresses 2-fold increase in the levels of gene expression per standard
deviation (SD) of increase for the continuous variables, and per category compared with
the reference category for the categorical variables. All the filtering and statistical analyses
were performed with the edgeR R package [66]. The logFC distribution of the 211 FE
genes compared with the logFC distribution of overall genes was assessed by Gene Set
Enrichment Analysis (GSEA) [33] for each variable. Under the assumption that FE drift
indicates a pre-neoplastic phase of tumor development, each analyzed parameter was
considered as a risk or protective factor depending on whether the FE genes showed a
positive or negative enrichment score (ES), respectively. GSEA results with a p-value smaller
than 0.01 were considered statistically significant. For the medication parameters, analyses
were performed for those variables that had at least 5% of the sample (20 individuals) in
one of the two categories, in order to ensure there were enough samples in both groups.

4.6. Instrumental Analyses

To estimate the effect of medication intake on the whole gene expression under an
instrumental procedure, we considered a two-sample individual-level MR approach using
as instrumental variables allele dosages of SNPs mimicking the effect of the medication.
The DrugBank database (https://go.drugbank.com/, accessed on 27 June 2024) [67] was
used to identify genes targeted by drugs. Subsequently, as genetic proxies of drug action,
the top expression quantitative trait locus (eQTL) for each drug target was identified in the
BarcUVa-Seq dataset and validated in the GTEx and CEDAR datasets (p-value < 0.01). Only

https://go.drugbank.com/
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eQTLs validated in at least one of the two datasets were considered for further analyses.
The “relevance” assumption was also tested by estimating the proportion of variance of
gene expression in the BarcUVa-Seq dataset explained by the eQTLs (as gene expression
levels were transformed using an inverse normalization) and estimating the F-statistics.
F-statistics can be used to estimate the strength of the relationship between the genetic
instrument and the proxied exposure, which is an estimation of the magnitude of the
instrument bias (e.g., Fstat < 10 for the weak instruments). Genotypes were recoded to 0, 1
and 2 as an additive genetic model according to the number of carried alleles mimicking the
drug effect, i.e., decreasing gene expression when mimicking an inhibitor or an antagonist,
or increasing gene expression when mimicking an inducer, an agonist or a ligand.

To estimate the effect of the modifiable exposures on the whole gene expression under
an instrumental procedure, we considered a two-sample MR approach using weighted
genetic scores as instrumental variables in the individual-level gene expression datasets. A
weighted gene score is a single variable summarizing multiple independent genetic variants
associated with a risk factor, calculated as the sum of weights for the total number of risk
factor-increasing alleles for an individual, being the weights of the estimated genetic effect
size for the exposure in the discovery study (βSNP-to-trait). Genetic proxies for modifiable
exposures (BMI, smoking initiation, drinks/week, overall activity) were identified in several
large GWASs of the risk factors of interest (as the first set of samples), and these genetic
proxies were tested for association in the previously described gene expression datasets (as
the second set of samples) [28,30,31].

Under MR assumptions, genetic scores avoid weak instrument bias and enable valid
causal estimates with large numbers of genetic variants [24]. The MR approach assumes
that the used genetic instruments are specifically associated with the risk factor of interest
and are not directly associated with either the outcome or any potential confounding
variable. Violation of the assumptions can occur in front of pleiotropic association of the
genetic variants in linkage disequilibrium (LD) with another functional variant, and in front
of population stratification where genetic associations reflect latent strata in the population.
To avoid violations of MR assumptions, the genetic instruments for each risk factor were
SNPs independently (LD R2 measure < 0.01) associated with the trait at a genome-wide
level (p < 5 × 10−8) identified in the most recent and largest GWAS results on that trait
from samples of European ethnicity.

Results from the Genetic Investigation of ANthropometric Traits (GIANT) consortium
and the UK Biobank were used to identify genetic proxies for body mass index (BMI) [68].
Similarly, data from the Tobacco and Genetics (TAG) consortium were used to identify
genetic loci for smoking initiation and average alcohol intake, registered as drinks per
week [69]. Finally, genetic instruments for overall physical activity were identified from
a genetic study on the UK Biobank [70]. For each identified SNP, the reported effect
allele size was for the allele associated with an increase in the trait and expressed in one
standard deviation (SD) of the trait per allele (βSNP-to-trait). SNPs with ambiguous
strand codification (A/T or C/G) were replaced by SNPs with tight genetic linkage (LD
R2 > 0.8) in European populations using the SNP Annotation and Proxy Search (SNAP)
(https://www.broadinstitute.org/mpg/snap/ldsearch.php, accessed on 2 July 2024) or
removed from the analyses. Finally, the “relevance” assumption was tested by estimating
the proportion of variance explained for each risk factor and by estimating the F-statistics.
The number of identified SNPs, proportion of variance explained for each risk factor and
the F-statistics are detailed in (Supplementary Table S6).

In addition, to further assess the validity of the genetic instruments, genetic scores were
evaluated for their association with both proxy exposures and potential confounding factors
present in the dataset. These relationships were modeled using linear regression, control-
ling for age, sex and principal components to account for population stratification. One
standard deviation (SD) increase in genetically determined BMI was strongly associated
with standardized BMI in both datasets (beta estimate (est) = 0.47, p-value = 3.2 × 10−3,
in BarcUVa-Seq; and est = 0.52, p-value = 7.5 × 10−4, in CEDAR). In addition, the BMI

https://www.broadinstitute.org/mpg/snap/ldsearch.php
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instrument was not associated with other potentially confounding factors, which confirms
the validity of the instrument for BMI (Supplementary Figure S3; Supplementary Table S7).
In the case of smoking, the genetic instrument for smoking status showed a positive, but
non-significant, association with current smoking status (est = 0.81 for each standard devia-
tion (SD) increase in the liability for smoking initiation, p-value = 0.25, in BarcUVa-Seq; and
est = 0.24, p-value = 0.71, in CEDAR); of note, any association with the other exposures was
not observed (Supplementary Figure S3; Supplementary Table S7). Regarding drinking
status, the genetic instrument for alcohol intake was strongly associated with drinking
status (est = 1.28, p-value = 1.6 × 10−3, in BarcUVa-Seq), especially with heavy drinking
(est = 0.79, p-value = 2.2 × 10−3, in BarcUVa-Seq). This instrument was not associated with
other potentially confounding factors, confirming its validity (Supplementary Figure S3;
Supplementary Table S7). Finally, the genetic instrument for overall physical activity was
not associated with measured overall physical activity, while it was inversely associated
with drinking status (Supplementary Figure S3; Supplementary Table S7). Therefore, this
instrument was not considered reliable and was not further used in this study.

Differential expression analysis (DEA), the GLM and Gene Set Enrichment Analysis
(GSEA) of the FE genes were applied for the genetically proxied medication intake and
modifiable exposures in the BarcUVa-Seq, CEDAR and GTEx datasets following similar
procedures to those used for the measured exposures.

5. Conclusions

In this study, we identified a potential mechanism of the chemopreventive effect on
CRC risk of metformin and antihypertensive agents acting on the renin–angiotensin system.
The potential anti-cancer cell effect of metformin and antihypertensive agents suggests that
they could be promising candidates for adjuvant therapy in cancer treatment. Nevertheless,
further validation is required through clinical trials to confirm this possibility. In addition,
we identified increased BMI and smoking as potential causal factors for the generation of a
tumor-promoting microenvironment in the colonic mucosa, underscoring the importance
of future research on lifestyle factors and their role in colorectal carcinogenesis.
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