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The Hardy space H1 consists of the integrable functions f
on the unit circle whose Fourier coefficients f̂(k) vanish for 
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finite set K of positive integers and consider the “punctured” 
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We then investigate the geometry of the unit ball in H1
K. In 

particular, the extreme points of the ball are identified as those 
unit-norm functions in H1

K which are not too far from being 
outer (in the appropriate sense). This extends a theorem of 
de Leeuw and Rudin that deals with the classical H1 and 
characterizes its extreme points as outer functions. We also 
discuss exposed points of the unit ball in H1
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1. Introduction and results

We shall be concerned with certain Hardy-type spaces on the circle

T := {ζ ∈ C : |ζ| = 1}.

The functions to be dealt with are complex-valued and live almost everywhere on T , 
which is endowed with normalized arc length measure. The spaces Lp = Lp(T ) with 
0 < p ≤ ∞ are then defined in the usual way. Among these, of special relevance to us is 
L1, the space of integrable functions on T with norm

‖f‖1 := 1
2π

∫
T

|f(ζ)| |dζ|, (1.1)

as well as some of its subspaces, to be specified shortly.
For a given function f ∈ L1, we consider the sequence of its Fourier coefficients

f̂(k) := 1
2π

∫
T

ζ
k
f(ζ) |dζ|, k ∈ Z,

and the set

spec f := {k ∈ Z : f̂(k) �= 0},

known as the spectrum of f . Now, the Hardy space H1 is defined by

H1 := {f ∈ L1 : spec f ⊂ Z+},

where Z+ := {0, 1, 2, . . . }, and is equipped with the L1 norm (1.1). Equivalently (see 
[13, Chapter II]), H1 consists of all L1 functions whose Poisson integral (i.e., harmonic 
extension) is holomorphic on the disk

D := {z ∈ C : |z| < 1}.

Using this extension, we therefore may—and will—also treat elements of H1 as holo-
morphic functions on D.

Our starting point is a beautiful theorem of de Leeuw and Rudin, which describes 
the extreme points of the unit ball in H1. This will be stated in a moment, whereupon 
certain finite-dimensional perturbations of that result will be discussed. But first we have 
to fix a bit of terminology and notation.

Given a Banach space X = (X, ‖ · ‖), we write

ball(X) := {x ∈ X : ‖x‖ ≤ 1}
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for the closed unit ball of X. A point of ball(X) is said to be extreme for the ball if it 
is not the midpoint of any nondegenerate line segment contained in ball(X). Of course, 
every extreme point x of ball(X) satisfies ‖x‖ = 1.

Further, we need to recall the canonical (inner-outer) factorization theorem for H1

functions. By definition, a function I in H∞ := H1 ∩ L∞ is inner if |I| = 1 a.e. on T . 
Also, a non-null function F ∈ H1 is termed outer if

log |F (0)| = 1
2π

∫
T

log |F (ζ)| |dζ|.

It is well known that the general form of a function f ∈ H1, f �≡ 0, is given by

f = IF, (1.2)

where I is inner and F is outer. Moreover, the two factors are uniquely determined by 
f up to a multiplicative constant of modulus 1. We refer to [13] or [15] for a systematic 
treatment of these matters in the framework of general Hp spaces.

Now, the de Leeuw–Rudin theorem states that the extreme points of ball(H1) are 
precisely the outer functions F ∈ H1 with ‖F‖1 = 1. In addition to the original paper 
[2], we cite [13, Chapter IV] and [15, Chapter 9], where alternative presentations are 
given.

Our purpose here is to find out what happens for subspaces of H1 that consist of 
functions with smaller spectra. We do not want to deviate too much from the classical H1, 
so we consider the case of finitely many additional “spectral holes.” Precisely speaking, 
we fix some positive integers

k1 < k2 < · · · < kM

and move from generic functions f ∈ H1 to those satisfying

f̂(k1) = · · · = f̂(kM ) = 0.

The functions that arise have their spectra contained in the “punctured” set Z+ \ K, 
where

K := {k1, . . . , kM}. (1.3)

The subspace they populate is therefore

H1
K := {f ∈ H1 : spec f ⊂ Z+ \ K}

(normed by (1.1) again), which might be called the punctured, or rather K-punctured, 
Hardy space. The number M := #K was so far assumed to be a positive integer, but it 
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is convenient to allow the value M = 0 as well. In the latter case, the convention is that 
K = ∅, so H1

K = H1 and we are back to the classical situation.
In what follows, we are concerned with the geometry of ball(H1

K), the unit ball in 
H1

K, primarily with the structure of its extreme points. Recently, a similar study was 
carried out in [10] for a certain family of finite-dimensional subspaces in H1; each of 
those was associated with a finite set Λ ⊂ Z+ and consisted of the polynomials p with 
spec p ⊂ Λ. By contrast, our current spaces H1

K are of finite codimension in H1, so we are 
now moving to the opposite extreme. The intermediate cases—not treated here—might 
also be of interest.

We briefly mention some other types of subspaces in H1 where the geometry of the 
unit ball has been investigated. Namely, this was done for the so-called model subspaces 
[4,5], and more generally, for kernels of Toeplitz operators [6,9]. Spaces of polynomials 
of fixed degree—and their Paley–Wiener type analogues on the real line—fit into that 
framework and were studied in more detail; see [8]. However, spaces of functions with 
spectral gaps, such as H1

K (or the lacunary polynomial spaces from [10]), are different in 
nature and require a new method. In particular, one of the difficulties to be faced in the 
“punctured spectrum” case is that such spaces no longer admit division by inner factors.

Our criterion for a unit-norm function f ∈ H1
K to be an extreme point of ball(H1

K) will 
be stated in terms of the function’s canonical factorization (1.2). The set K of forbidden 
frequencies being finite, it seems natural to expect that the criterion should be fairly 
reminiscent of its classical prototype (i.e., the de Leeuw–Rudin theorem), so the functions 
that obey it are presumably not too far from being outer. We shall indeed identify the 
extreme points f of ball(H1

K) as “nearly outer” functions of norm 1. Specifically, we shall 
see that the inner factors I of such functions are rather tame (rational, and with a nice 
bound on the degree); in addition, there is an interplay between the two factors, I and 
F , to be described below.

Now, let us recall that every inner function has the form BS, where B is a Blaschke 
product and S a singular inner function. The former factor is determined by its zero 
sequence in D, while the latter has no zeros and is generated—in a certain canonical 
way—by a singular measure on T . We refer to [13, Chapter II] for the definitions and 
explicit formulas, as well as for the fact that a general inner function decomposes as 
claimed above.

There is a tiny—and particularly nice—class of inner functions that we need to single 
out, namely, the finite Blaschke products. These are rational functions of the form

z �→ c
m∏
j=1

z − aj
1 − ajz

, (1.4)

where a1, . . . , am are points in D and c is a unimodular constant. The number m(∈ Z+) is 
then the degree of the finite Blaschke product (1.4). (In general, we define the degree of a 
rational function R as the number of its poles—counting multiplicities—on the Riemann 
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sphere C ∪ {∞}, and we denote this number by degR.) When m = 0, it is of course 
understood that (1.4) reduces to the constant function c.

Our characterization of the extreme points of ball(H1
K) splits into two conditions. 

First we verify that if a function f ∈ H1
K is extreme for the ball, then the inner factor 

I in its canonical factorization (1.2) is a finite Blaschke product of degree not exceeding 
M(= #K). In other words, we necessarily have

I(z) =
m∏
j=1

z − aj
1 − ajz

for some a1, . . . , am ∈ D, where m(= deg I) satisfies 0 ≤ m ≤ M . (The constant c in 
(1.4) is now taken to be 1; clearly, nothing is lost by doing so.)

Secondly, assuming that the inner factor I of a unit-norm function f ∈ H1
K has the 

above form, we find out what else is needed to make f extreme. The answer is given in 
terms of a certain matrix M, built from F (the outer factor of f) and the zeros a1, . . . , am
of I as described below.

Consider the (outer) function

F0(z) := F (z)
m∏
j=1

(1 − ajz)−2 (1.5)

and its coefficients

Ck := F̂0(k), k ∈ Z. (1.6)

Since F0 ∈ H1, it follows in particular that Ck = 0 for all k < 0. We further define

A(k) := ReCk, B(k) := ImCk (k ∈ Z) (1.7)

and introduce, for j = 1, . . . , M and l = 0, . . . , m, the numbers

A+
j,l := A(kj + l−m) +A(kj − l−m), B+

j,l := B(kj + l−m) +B(kj − l−m) (1.8)

and

A−
j,l := A(kj + l−m)−A(kj − l−m), B−

j,l := B(kj + l−m)−B(kj − l−m). (1.9)

(The integers kj are, of course, those from (1.3).) Next, we build the M×(m +1) matrices

A+ :=
{
A+

j,l

}
, B+ :=

{
B+

j,l

}
(1.10)

and the M ×m matrices
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A− :=
{
A−

j,l

}
, B− :=

{
B−

j,l

}
. (1.11)

Here, the row index j always runs from 1 to M , whereas the column index l runs from 0
to m for each of the two matrices in (1.10), and from 1 to m for each of those in (1.11).

Finally, we construct the block matrix

M = MK
(
F, {aj}mj=1

)
:=

(
A+ B−

B+ −A−

)
, (1.12)

which has 2M rows and 2m + 1 columns.
Our main result can now be stated readily.

Theorem 1.1. Let f ∈ H1
K be a function with ‖f‖1 = 1 whose canonical factorization is 

f = IF , with I inner and F outer. Then f is an extreme point of ball(H1
K) if and only 

if the following two conditions hold:
(a) I is a finite Blaschke product, with deg I(=: m) not exceeding M(= #K).
(b) The matrix M = MK

(
F, {aj}mj=1

)
, built as above from F and the zeros {aj}mj=1

of I, has rank 2m.

This criterion should be compared with its counterpart from [10, Section 2], where 
a similar rank condition on the appropriate matrix emerged in the context of lacunary 
polynomials. We also mention that Theorem 1.1 was previously announced in [11]; a proof 
sketch was supplied there as well.

Of course, the original de Leeuw–Rudin theorem for the non-punctured H1 space is 
recovered from Theorem 1.1 by taking K = ∅, in which case M = 0 and condition (b) 
becomes void. As further examples, we now consider two special cases where Theorem 1.1
is easy to apply.

Example 1.1. Let F ∈ H1
K be an outer function with ‖F‖1 = 1. Obviously enough, F is 

then an extreme point of ball(H1
K). This fact is simply a consequence of the de Leeuw–

Rudin theorem, coupled with the inclusion H1
K ⊂ H1, but we can also deduce it from 

Theorem 1.1. Indeed, applying the latter result to f = F , we have I = 1 and m = 0; 
therefore, F0 = F (∈ H1

K) and

Ckj
= F̂0(kj) = 0 (j = 1, . . . ,M).

It follows that the blocks A+ and B+ in (1.12) reduce to zero columns, of height M each, 
while the other two blocks are absent. Thus, rankM = 0(= 2m), so that conditions (a) 
and (b) are fulfilled.

Example 1.2. Suppose that the set K contains precisely one element, a positive integer 
which we call k rather than k1. Thus M = 1, K = {k}, and the space in question is

H1
{k} := {f ∈ H1 : f̂(k) = 0},
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the punctured Hardy space with a single spectral hole. Now let f = IF be a unit-norm 
function in H1

{k}; as before, it is assumed that I is inner and F outer. If I is constant, 

then f is outer and hence extreme in ball
(
H1

{k}

)
. To characterize the “interesting” (i.e., 

non-outer) extreme points of ball
(
H1

{k}

)
, we invoke Theorem 1.1. Condition (a) shows 

that we should only study the case where m = 1, so we assume that

I(z) = Ia(z) := z − a

1 − az
(1.13)

for some a ∈ D. We then consider the function F0(z) := F (z)/(1 − az)2 and its Fourier 
coefficients

F̂0(n) =: Cn = A(n) + iB(n), n ∈ Z.

More explicitly,

Cn =
n∑

j=0
(j + 1) ajF̂ (n− j), (1.14)

with the understanding that the sum is zero for n < 0. The matrix M takes the form

M =
(
A+

1,0 A+
1,1 B−

1,1
B+

1,0 B+
1,1 −A−

1,1

)
,

where the entries are given by (1.8) and (1.9), with k1 = k. Finally, the criterion for 
f = IaF to be an extreme point of ball

(
H1

{k}

)
is that

rankM = 2, (1.15)

as Theorem 1.1 tells us.
Now, the identity

f(z) = (z − a)(1 − az)F0(z)

allows us to rewrite the assumption f̂(k) = 0 as

aCk − (1 + |a|2)Ck−1 + aCk−2 = 0.

This in turn implies, upon separating the real and imaginary parts, that the first column 
of M is a linear combination of the other two. Consequently, (1.15) holds if and only if 
the determinant

Δ :=
∣∣∣∣A+

1,1 B−
1,1

B+ −A−

∣∣∣∣

1,1 1,1
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is nonzero. A calculation reveals that Δ = |Ck−2|2 − |Ck|2. Thus, (1.15) boils down to 
saying that |Ck−2| �= |Ck|, or equivalently,

∣∣∣∣∣∣
k−2∑
j=0

(j + 1) ajF̂ (k − 2 − j)

∣∣∣∣∣∣ �=
∣∣∣∣∣∣

k∑
j=0

(j + 1) ajF̂ (k − j)

∣∣∣∣∣∣ , (1.16)

this last restatement being due to (1.14).
In summary, a unit-norm function in H1

{k} is an extreme point of ball
(
H1

{k}

)
if and 

only if it is either outer or has the form IaF , where a ∈ D, the inner factor Ia is given 
by (1.13), and F ∈ H1 is an outer function satisfying (1.16).

Before stating our second theorem, we need to recall yet another geometric concept. 
Given a Banach space X = (X, ‖ · ‖) and a point x ∈ ball(X), one says that x is an 
exposed point of the ball if there exists a functional φ ∈ X∗ of norm 1 such that

{y ∈ ball(X) : φ(y) = 1} = {x}.

It is easy to show that every exposed point is extreme.
The next result provides a simple sufficient condition for a function in H1

K to be an 
exposed point of the unit ball therein.

Theorem 1.2. If f is an extreme point of ball(H1
K) and if 1/f ∈ L1, then f is an exposed 

point of ball(H1
K).

There seems to be little hope for a complete—and reasonably explicit—description of 
the exposed points of ball(H1

K), since even the classical case where K = ∅ presents an 
open problem. In fact, the exposed points of ball(H1) have been studied by a number of 
authors (see, e.g., [14,17–19] and [7, Section 3], where various pieces of information were 
gathered), but no satisfactory characterization is currently available. Among the known 
facts we single out the following (see [18]): If f is a unit-norm outer function in H1 with 
1/f ∈ L1, then f is an exposed point of ball(H1). It is this prototypical result that we 
now extend, by means of Theorem 1.2, to the H1

K setting.
The plan for the rest of the paper is as follows. In Section 2 we collect some preliminary 

results, to be employed later. In Sections 3 and 4, we prove Theorem 1.1. This is done 
in two steps: first we establish the necessity of condition (a), and secondly, we show that 
among the functions satisfying (a), the extreme points are characterized by (b). Finally, 
Section 5 is devoted to proving Theorem 1.2.

2. Preliminaries

Several lemmas will be needed. Before stating them, we list some of the function 
spaces that appear below and recall the appropriate definitions.
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Having already introduced the Hardy space H1, we now define Hp to be the intersec-
tion H1 ∩Lp if 1 < p ≤ ∞, and the closure of H1 in Lp if 0 < p < 1. The Smirnov class
N+ is the set of all ratios ϕ/ψ, where ϕ ranges over H∞ and ψ over the outer functions 
in H∞. (Equivalent—and more traditional—definitions of Hp and N+ can be found in 
[13, Chapter II].) The functions in H1 (resp., L1) with finite spectrum will be referred 
to as polynomials (resp., trigonometric polynomials). Finally, we write L∞

R for the set of 
real-valued functions in L∞.

Lemma 2.1. Let X be a subspace of H1. Suppose also that f ∈ X is a function with 
‖f‖1 = 1 whose canonical factorization is f = IF , with I inner and F outer. The 
following conditions are equivalent.

(i.1) f is an extreme point of ball(X).
(ii.1) Whenever h ∈ L∞

R and fh ∈ X, we have h = const a.e. on T .
(iii.1) Whenever G ∈ H∞ is a function satisfying G/I ∈ L∞

R and FG ∈ X, we have 
G = cI for some c ∈ R.

Proof. The equivalence between (i.1) and (ii.1) is well known (see, e.g., [12, Chapter V, 
Section 9] for the case of X = H1). We nonetheless provide the details for the reader’s 
convenience.

Suppose that (ii.1) fails, meaning that there is a nonconstant function h ∈ L∞
R with 

fh ∈ X. We may assume in addition that 
∫
T |f |h = 0 and ‖h‖∞ ≤ 1. (To achieve this, 

replace the original h by αh + β with suitable α, β ∈ R if necessary.) The functions 
f1 := f(1 + h) and f2 := f(1 − h) are then distinct unit-norm elements of X, and the 
identity f = 1

2 (f1 + f2) shows that f is a non-extreme point of ball(X). This proves the 
implication (i.1) =⇒ (ii.1).

Conversely, suppose that (i.1) fails. This tells us that there exists a non-null function 
g ∈ X for which ‖f ± g‖1 = 1. Putting h := g/f , we have then

1
2π

∫
T

|f(ζ)| {|1 + h(ζ)| + |1 − h(ζ)|} |dζ| = 2. (2.1)

Because ‖f‖1 = 1 and

|1 + h(ζ)| + |1 − h(ζ)| ≥ 2 (2.2)

wherever h(ζ) is defined, (2.1) is only possible if equality holds in (2.2) for almost all 
ζ ∈ T . This in turn implies that h takes values in the real interval [−1, 1]; in particular, 
h ∈ L∞

R . Also, h must be nonconstant. (Otherwise, we would have h ≡ c for some 
c ∈ [−1, 1] and the condition

‖f + g‖1 = (1 + c)‖f‖1 = 1
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would force c to be 0, meaning that h ≡ 0 and hence g ≡ 0.) Finally, since fh = g ∈ X, 
we see that (ii.1) is violated. The implication (ii.1) =⇒ (i.1) is thereby established.

It remains to verify the equivalence of (ii.1) and (iii.1). Assuming that (ii.1) fails, we 
can find a nonconstant function h ∈ L∞

R for which the product fh =: g is in X. Now put 
G := g/F . Because g and F are both in H1, while F is outer, it follows that G ∈ N+. 
Furthermore, we have

h = g

f
= g

IF
= G

I
, (2.3)

whence G = Ih ∈ L∞; and since N+ ∩L∞ = H∞ (see, e.g., [13, Chapter II]), we deduce 
that G ∈ H∞. Finally, in view of (2.3), the assumptions

h ∈ L∞
R , h �= const, and g ∈ X (2.4)

take the form

G/I ∈ L∞
R , G/I �= const, and FG ∈ X, (2.5)

meaning that condition (iii.1) fails. This proves that (iii.1) implies (ii.1).
Conversely, if G is an H∞ function making (2.5) true, then (2.4) holds with h = G/I

and g = fh(= FG). Therefore, (ii.1) implies (iii.1). �
Remark. The above lemma can be used to give a quick proof of the de Leeuw–Rudin 
theorem on the extreme points of ball(H1). Indeed, for X = H1, condition (iii.1) holds 
if and only if I is constant (i.e., f is outer). Here, the “if” part is true because H∞∩L∞

R

contains only constants, while the converse is proved by taking G = 1 + I2.

Next, we establish an analogue of Lemma 2.1 for exposed points.

Lemma 2.2. Under the assumptions of the preceding lemma, the following statements are 
equivalent.

(i.2) f is an exposed point of ball(X).
(ii.2) Whenever h is a nonnegative measurable function on T for which fh ∈ X, we 

have h = const a.e.
(iii.2) Whenever G ∈ N+ is a function satisfying FG ∈ X and G/I ≥ 0 a.e. on T , 

we have G = cI for some constant c ≥ 0.

Proof. The equivalence between (i.2) and (ii.2) is a known fact (see, e.g., Lemma 1(B) 
in [8]). The underlying argument being short and simple, we reproduce it here for the 
sake of completeness.

Suppose that φ ∈ X∗ is a functional with ‖φ‖ = 1 and φ(f) = 1. An application of 
the Hahn–Banach theorem shows that φ has the form
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φ(g) = 1
2π

∫
T

u(ζ)g(ζ) |dζ|, g ∈ X,

where u = |f |/f . It follows that, for a function g ∈ ball(X), the equality φ(g) = 1 occurs 
if and only if ‖g‖1 = 1 and

g

|g| = f

|f | a.e. on T . (2.6)

Now, condition (i.2) can be expressed by saying that the only unit-norm function g ∈ X

satisfying (2.6) is f . This, in turn, is easily rephrased as (ii.2).
To verify that (ii.2) is equivalent to (iii.2), we follow the pattern of the preceding 

proof; only minor adjustments are actually needed.
Namely, if (ii.2) fails, then there is a nonconstant measurable function h ≥ 0 such that 

fh =: g is in X. As before, we put G := g/F . Since g and F are both in H1, while F is 
outer, we infer that G ∈ N+. We also have identity (2.3) at our disposal. Consequently, 
the assumptions

h ≥ 0, h �= const, and g ∈ X (2.7)

take the form

G/I ≥ 0, G/I �= const, and FG ∈ X, (2.8)

which means that condition (iii.2) fails.
Conversely, if (2.8) holds for some G ∈ N+, then (2.7) is fulfilled with h = G/I and 

g = fh(= FG). �
Before proceeding with our next lemma, we need to introduce and discuss a concept 

that will be repeatedly used in what follows.

Definition 2.3. Given a nonnegative integer N and a polynomial p, we say that p is 
N -symmetric if

p̂(N − k) = p̂(N + k) (2.9)

for all k ∈ Z.

Equivalently, p is N -symmetric if and only if the trigonometric polynomial q := z−Np

is real-valued on T ; indeed, (2.9) tells us that q̂(−k) = q̂(k) for all k ∈ Z. Also, it follows 
from (2.9) that deg p ≤ 2N and p̂(N) ∈ R. Consequently, a polynomial p is N -symmetric 
if and only if it is writable as
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p(z) =
N−1∑
j=0

γN−jz
j +

2N∑
j=N

γj−Nzj (2.10)

for some γ0 ∈ R and γ1, . . . , γN ∈ C. Setting

γ0 = 2α0, γj = αj + iβj (j = 1, . . . , N),

where the αj ’s and βj ’s are real numbers, we may therefore identify the (generic) N -
symmetric polynomial (2.10) with the vector

(α, β) := (α0, α1, . . . , αN , β1, . . . , βN )

from R2N+1, to be called the coefficient vector of p.

Lemma 2.4. Given an integer N ≥ 0 and points a1, . . . , aN ∈ D, let

B(z) :=
N∏
j=1

z − aj
1 − ajz

. (2.11)

The general form of a function ψ ∈ H∞ with ψ/B ∈ L∞
R is then

ψ(z) = p(z)
N∏
j=1

(1 − ajz)−2, (2.12)

where p is an N -symmetric polynomial.

To keep on the safe side, we specify that the points aj above are not supposed to be 
pairwise distinct. Also, if N = 0, then there are no aj ’s and the products in (2.11) and 
(2.12) are taken to be 1, while p reduces to a real constant.

In the proof below, we use the notation

Kθ := H2 � θH2 (2.13)

for the star-invariant (or model) subspace in H2 generated by an inner function θ. It is 
well known (see [3,16]) that (2.13), with θ inner, actually provides the general form of 
an invariant subspace for the backward shift operator

f �→ f − f(0)
z

in H2.
The following (fairly simple) fact can also be found in either [3] or [16]: If θ is a finite 

Blaschke product, then Kθ is formed by the rational functions r whose poles (counted 
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with multiplicities) are contained among those of θ and which satisfy limz→∞ r(z)/θ(z) =
0. In other words, if θ is a finite Blaschke product of degree n, with zeros λ1, . . . , λn (∈ D), 
then Kθ is the set of functions of the form

z �→ p(z)
n∏

j=1
(1 − λjz)−1,

where p is a polynomial with deg p ≤ n − 1.

Proof of Lemma 2.4. If ψ ∈ H∞ with ψ/B ∈ L∞
R , then

ψ/B = ψ/B a.e. on T ,

or equivalently, ψB2 = ψ. It follows that ψ is orthogonal (in H2) to the shift-invariant 
subspace zB2H2, and so ψ ∈ Kθ with θ = zB2. This θ being a finite Blaschke product 
with deg θ = 2N + 1, we know from the above discussion that ψ is writable as

ψ(z) = p(z)Φ(z), (2.14)

where

Φ(z) :=
N∏
j=1

(1 − ajz)−2 (2.15)

and p is a polynomial of degree at most 2N .
Further, we put

S(z) :=
N∏
j=1

|z − aj |2 (2.16)

and note that

B(z)
Φ(z) = zNS(z), z ∈ T , (2.17)

as verified by a straightforward calculation. Combining (2.14) and (2.17), we see that

Sψ/B = z−Np on T . (2.18)

Now, because the functions S and ψ/B are real-valued on T , the same is true of the 
product z−Np, and this means that p is N -symmetric. The desired representation (2.12)
is therefore provided by (2.14).

Conversely, if p is an N -symmetric polynomial and if ψ is given by (2.14), then ψ ∈ H∞

and ψ/B is real-valued (so that ψ/B ∈ L∞
R ) by virtue of (2.18). The lemma is now 

proved. �
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Lemma 2.5. Given an integer N ≥ 0 and points a1, . . . , aN ∈ D, let B be defined by 
(2.11). Suppose also that ψ ∈ H1/2 and ψ/B ≥ 0 a.e. on T . Then ψ has the form (2.12)
for some N -symmetric polynomial p.

Proof. Once again, we define the functions Φ and S by (2.15) and (2.16). We also put 
u := ψ/Φ and note that u ∈ H1/2. The rest of the proof will consist in showing that u is 
an N -symmetric polynomial. Once this is done, the desired representation (2.12) comes 
out readily; to arrive at it, we simply write ψ = uΦ and set p := u. The lemma will 
thereby be established.

We begin by recalling identity (2.17), which yields

z−Nu = SΦu/B = Sψ/B (2.19)

a.e. on T . Since S and ψ/B are both nonnegative, the same is true of their product, and 
(2.19) tells us that

z−Nu ≥ 0 a.e. on T . (2.20)

Now, a standard factoring technique (see [13, Chapter II]) allows us to write the function 
u(∈ H1/2) in the form u = bv2, where b is a Blaschke product and v ∈ H1. In particular, 
since |b| = 1, we have

|u| = |v|2 = vv (2.21)

(here and below, everything is assumed to hold a.e. on T ). On the other hand, (2.20)
gives

|u| = uz−N = bv2z−N . (2.22)

A juxtaposition of (2.21) and (2.22) reveals that vv = bv2z−N , or equivalently,

v = bvz−N . (2.23)

Because the functions v and bv are both in H1, their spectra are contained in [0, ∞). It 
follows that

spec v ⊂ (−∞, 0] and spec
(
bvz−N

)
⊂ [−N,∞). (2.24)

At the same time, (2.23) shows that the two spectra in (2.24) are actually equal, so they 
are both contained in [−N, 0]. This in turn implies that

spec v ⊂ [0, N ] and spec(bv) ⊂ [0, N ].
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In other words, v and bv are polynomials, of degree at most N each. Consequently, 
their product (which is u) is a polynomial of degree at most 2N . Moreover, u is an 
N -symmetric polynomial, because z−Nu is real-valued by virtue of (2.20). The proof is 
now complete. �
3. Proof of Theorem 1.1: Step 1

This step consists in proving the necessity of condition (a) in Theorem 1.1. Thus, we 
want to show that a unit-norm function f(= IF ) ∈ H1

K will be a non-extreme point of 
the unit ball whenever it violates (a).

Assume that condition (a) fails, so that I does not reduce to a finite Blaschke product 
of degree at most M . This means that I is divisible either by a (finite or infinite) Blaschke 
product with at least M + 1 zeros, or by a nontrivial singular inner function. In either 
case, Frostman’s theorem (see [13, Chapter II]) tells us that there exists a point w ∈ D

for which

ϕ := I − w

1 − wI
(3.1)

is a Blaschke product. Moreover, our current assumption on I ensures that ϕ has at least 
M + 1 zeros. (Otherwise, if ϕ were a finite Blaschke product of degree d, with d ≤ M , 
then so would be I. Indeed, the identity I = (ϕ +w)/(1 +wϕ) would then imply that I
is analytic on T , so I would have to be a finite Blaschke product. Since |ϕ(ζ)| = 1 > |w|
for ζ ∈ T , an application of Rouché’s theorem would furthermore show that ϕ + w has 
precisely d zeros in D, and the same would be true for I.)

Consequently, we can find a factorization

ϕ = ϕ1ϕ2, (3.2)

where both factors on the right are Blaschke products (hence subproducts of ϕ) and ϕ1
has precisely M + 1 zeros. Setting N := M + 1, we may thus write

ϕ1(z) =
N∏
j=1

z − aj
1 − ajz

(3.3)

with the appropriate a1, . . . , aN ∈ D. Next, we define the function g ∈ H∞ by the 
formula g := 1 − wI and infer from (3.1) that

I/ϕ = g/g (3.4)

a.e. on T . Finally, we combine (3.2) and (3.4) to get

I = ϕ1ϕ2g/g. (3.5)
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Our plan is to prove that f is a non-extreme point of ball(H1
K) by verifying that 

it violates condition (iii.1) of Lemma 2.1, with X = H1
K. Thus, we need to produce a 

function G ∈ H∞, other than a constant multiple of I, with the properties that

G/I ∈ L∞
R (3.6)

and

FG ∈ H1
K. (3.7)

It turns out that such a G can be constructed in the form

G = g2pΦϕ2, (3.8)

where

Φ(z) :=
N∏
j=1

(1 − ajz)−2

and p is an N -symmetric polynomial; this claim will be justified below.
First of all, (3.8) actually defines an H∞ function, since each of the factors on the 

right-hand side is in H∞. Furthermore, any such G will satisfy (3.6). Indeed, we may 
combine (3.8) and (3.5) to find that

G/I = GI = g2pΦϕ2 · ϕ1ϕ2g/g = |g|2pΦϕ1 (3.9)

a.e. on T . An application of Lemma 2.4 with B = ϕ1 now yields

pΦϕ1 (= pΦ/ϕ1) ∈ L∞
R .

The product |g|2pΦϕ1 is therefore also in L∞
R , and (3.6) is readily implied by (3.9).

So far, everything was valid for an arbitrary N -symmetric polynomial p. Now, we shall 
see that the appropriate choice of p in (3.8) will ensure (3.7), along with the condition

G/I �= const. (3.10)

Multiplying (3.8) by F gives

FG = F0p, (3.11)

where

F0 := Fg2Φϕ2 (∈ H1).
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For (3.7) to hold, it is necessary and sufficient that

̂(FG)(kj) = 0 for j = 1, . . . ,M.

Equivalently, in view of (3.11), the numbers

δj := ̂(F0p)(kj), j = 1, . . . ,M, (3.12)

must be null.
On the other hand, we know from the previous section that there is a natural isomor-

phism between the space of N -symmetric polynomials and R2N+1. Namely, the general 
form of an N -symmetric polynomial p is given by

p(z) = p(α,β)(z) :=
N−1∑
l=0

(αN−l − iβN−l) zl + 2α0z
N +

2N∑
l=N+1

(αl−N + iβl−N ) zl,

where

(α, β) := (α0, α1, . . . , αN , β1, . . . , βN ) ∈ R2N+1. (3.13)

With this in mind, we begin by taking an arbitrary vector (3.13) and then define, for 
1 ≤ j ≤ M , the numbers δj(α, β) as in (3.12), but with p = p(α,β). That is,

δj(α, β) := ̂(F0p(α,β))(kj), j = 1, . . . ,M.

Finally, we consider the R-linear operator T : R2N+1 → R2M that acts by the rule

T (α, β) = (Re δ1(α, β), Im δ1(α, β), . . . ,Re δM (α, β), Im δM (α, β)) .

It is the dimension of the subspace NT := kerT , the kernel of T in R2N+1, that 
interests us here. The rank-nullity theorem (see, e.g., [1, p. 63]) yields

rankT + dimNT = 2N + 1,

and we combine this with the obvious inequality

rankT ≤ 2M = 2N − 2

to deduce that

dimNT ≥ 3.

In particular, we can find two linearly independent vectors, say (α(1), β(1)) and 
(α(2), β(2)), in NT . The corresponding N -symmetric polynomials, which we denote for 
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simplicity by p1 and p2, are then linearly independent as well. Consequently, at least one 
of them (let it be p1) is not a constant multiple of I/(g2Φϕ2), whence

g2p1Φϕ2/I �= const.

Also, because the coefficient vector (α(1), β(1)) of p1 is in NT , the numbers (3.12) are 
null for p = p1. This choice of p therefore guarantees that the product on either side of 
(3.11) belongs to H1

K.
In summary, setting p = p1 in (3.8) we arrive at a function G ∈ H∞ that satisfies 

(3.6), (3.7) and (3.10). We conclude that condition (iii.1) of Lemma 2.1 breaks down for 
X = H1

K, and so f fails to be an extreme point of ball(H1
K).

4. Proof of Theorem 1.1: Step 2

This second step consists in characterizing the extreme points of ballH1
K) among those 

unit-norm functions f(= IF ) in H1
K which obey condition (a). Thus, the inner factor I

of f is now assumed to be of the form

I(z) =
m∏
j=1

z − aj
1 − ajz

,

where 0 ≤ m ≤ M and a1, . . . , am ∈ D.
In view of the equivalence relation (i.1) ⇐⇒ (iii.1) from Lemma 2.1, our purpose is 

to find out whether there exists a function G ∈ H∞ (other than a constant multiple of 
I) such that

G/I ∈ L∞
R (4.1)

and

FG ∈ H1
K. (4.2)

From Lemma 2.4 we know that the functions G ∈ H∞ satisfying (4.1) are precisely those 
of the form

G = pΦ0, (4.3)

where p is an m-symmetric polynomial and

Φ0(z) :=
m∏
j=1

(1 − ajz)−2.

We further need to determine which choices of p ensure (4.2). Assuming (4.3), we put 
F0 := FΦ0(∈ H1) and rewrite condition (4.2) as pF0 ∈ H1

K, which in turn boils down to
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̂(pF0)(kj) = 0 for j = 1, . . . ,M. (4.4)

(It should be noted that our current F0 agrees with its namesake from Section 1.)
Next, we want to recast equations (4.4) in terms of the coefficient vector of p. To this 

end, we first write p in the form (2.10) (with m in place of N), which gives

p(z) =
m−1∑
l=0

γm−lz
l +

2m∑
l=m

γl−mzl (4.5)

for some γ0 ∈ R and γ1, . . . , γm ∈ C. Using the notation

Cr := F̂0(r), r ∈ Z

(in accordance with (1.6)), we find then, for any fixed k ∈ Z, that

̂(pF0)(k) =
2m∑
l=0

F̂0(k − l)p̂(l) =
m−1∑
l=0

Ck−l γm−l +
2m∑
l=m

Ck−l γl−m

=
m∑
l=1

Ck+l−m γl +
m∑
l=0

Ck−l−m γl.

(4.6)

Therefore, equations (4.4) take the form

m∑
l=0

Ckj−l−m γl +
m∑
l=1

Ckj+l−m γl = 0 (j = 1, . . . ,M). (4.7)

We now write

Cr = A(r) + iB(r) for r ∈ Z (4.8)

(in accordance with (1.7)) and decompose the γl’s similarly. Precisely speaking, we put

γ0 = 2α0, γl = αl + iβl for l = 1, . . . ,m, (4.9)

where the αl’s and βl’s are real. Finally, we plug (4.8) and (4.9) into (4.7) to obtain, 
after separating the real and imaginary parts, a system of 2M real equations. Namely, 
these are

m∑
l=0

A+
j,l αl +

m∑
l=1

B−
j,l βl = 0 (j = 1, . . . ,M) (4.10)

and
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m∑
l=0

B+
j,l αl −

m∑
l=1

A−
j,l βl = 0 (j = 1, . . . ,M), (4.11)

where the notations (1.8) and (1.9) are being used.
These equations tell us that the vector

(α, β) := (α0, α1, . . . , αm, β1, . . . , βm) (4.12)

(i.e., the coefficient vector of p) belongs to the subspace

N := kerM, (4.13)

the kernel of the linear map M : R2m+1 → R2M defined by (1.12).
To summarize, the functions G ∈ H∞ satisfying (4.1) and (4.2) are precisely those of 

the form (4.3), where p = p(α,β) is an m-symmetric polynomial whose coefficient vector 
(4.12) is in N . (We write p(α,β) for the polynomial (4.5) with coefficients γ0, . . . , γm given 
by (4.9).) The functions G of interest are thereby nicely parametrized by vectors from 
N , and it is the dimension of N that we should now look at.

First of all, we always have dimN ≥ 1. Indeed, setting G = I obviously makes (4.1)
and (4.2) true. The corresponding m-symmetric polynomial in (4.3) is then

p̃(z) := I(z)/Φ0(z) =
m∏
j=1

(z − aj)(1 − ajz),

so its coefficient vector, say (α̃, β̃), is a non-null element of N . Now, if dimN = 1, 
then N is spanned by (α̃, β̃), and the only possible polynomials p in (4.3) are constant 
multiples of p̃; equivalently, the only functions G ∈ H∞ that obey (4.1) and (4.2) are 
constant multiples of I. On the other hand, if dimN > 1, then we can find a vector 
(α, β) ∈ N which is not a scalar multiple of (α̃, β̃); plugging the corresponding m-
symmetric polynomial p = p(α,β) into (4.3), we arrive at a function G ∈ H∞ with 
properties (4.1) and (4.2) for which G/I �= const.

By virtue of Lemma 2.1, we can now conclude that a unit-norm function f = IF ∈
H1

K satisfying condition (a) is an extreme point of ball(H1
K) if and only if the kernel 

N (⊂ R2m+1) of the associated linear map M has dimension 1. Finally, we know from 
the rank-nullity theorem (see, e.g., [1, p. 63]) that

rankM + dimN = 2m + 1,

so we may restate the condition dimN = 1 as rankM = 2m. This completes the proof.

5. Proof of Theorem 1.2

Let f be a function satisfying the theorem’s hypotheses. As before, we write f = IF

with I inner and F outer. Because f is an extreme point of ball(H1
K), we know from 



K.M. Dyakonov / Advances in Mathematics 401 (2022) 108330 21
Theorem 1.1 that I is a finite Blaschke product with deg I(=: m) not exceeding M . 
Thus,

I(z) =
m∏
j=1

z − aj
1 − ajz

for certain a1, . . . , am ∈ D.
Our plan is to prove that f is an exposed point of ball(H1

K) by verifying condition 
(iii.2) of Lemma 2.2, with X = H1

K. To this end, assume that G ∈ N+ is a function for 
which

G/I ≥ 0 a.e. on T (5.1)

and

FG ∈ H1
K. (5.2)

Clearly, the function U := FG is then a fortiori in L1; we also have 1/F ∈ L1 (since 
1/f ∈ L1 by hypothesis, while |F | = |f | a.e. on T ), and we combine the two facts to infer 
that G = U/F ∈ L1/2. This in turn implies that G is actually in H1/2 (= N+ ∩ L1/2).

We may now apply Lemma 2.5, with G and I in place of ψ and B, to conclude that

G(z) = p(z)
m∏
j=1

(1 − ajz)−2

for some m-symmetric polynomial p. As a consequence, we see that G ∈ H∞. On the 
other hand, being an extreme point of ball(H1

K), the function f obeys condition (iii.1) of 
Lemma 2.1 with X = H1

K. This means that every function G ∈ H∞ satisfying (5.2) and 
making G/I real-valued a.e. on T is given by G = cI for some c ∈ R. In particular, our 
current G is necessarily of this form, the constant c being actually nonnegative in view 
of (5.1).

We have thereby checked condition (iii.2) of Lemma 2.2, with X = H1
K. The lemma 

then tells us that f is an exposed point of ball(H1
K), and the proof is complete.
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