Short-Term Outcomes of Percutaneous, Intra-articular, Chevron Osteotomy (PeICO) for the Treatment of Mild to Moderate Hallux Valgus

3

2

4 Abstract

5 Background: Treatment for hallux valgus (HV) remains challenging. Third-generation 6 percutaneous procedures try to reproduce chevron-type osteotomies to replicate their 7 benefits, such as intrinsic stability and reproducibility. We report the first results using a 8 Percutaneous, Intra-articular, Chevron Osteotomy (PeICO) technique that mimics the 9 classic intra-articular open Chevron procedure, associated with a Percutaneous 10 Adductor Tendon Release (PATR) for the treatment of mild-to-moderate HV. 11 **Methods:** From May 2015 to October 2018, a total of consecutive 114 feet (74 patients) 12 were included. Primary outcome measures included: radiographic (hallux valgus and 13 intermetatarsal angles) and clinical parameters such as visual analog scale (VAS), 14 FAAM Activities of Daily Living (ADL) and FAAM Sport, AOFAS Score, and 15 MOXFQ, preoperatively and at final follow-up (Minimum 18 months). A patient 16 satisfaction survey was also performed. Pronation and length of the first metatarsal were 17 also assessed. Secondary outcomes included fluoroscopic time, length of surgery, 18 complications, recurrence and reoperation rates. 19 **Results:** At 24.09 months on average, the AOFAS score improved from 52.1 points 20 preoperatively to 91.1 (p < 0.001) at the latest follow-up. VAS decreased from 6.3 to 1. 21 Also, FAAM ALD, FAAM Sport and MOXFQ showed statistically significant 22 differences (p < 0.001) when comparing preoperative and postoperative periods. Patients 23 found the procedure to be excellent in 82% and very good in 13.5% of cases. Our global 24 complication and reoperation rates were 5.26% and 3.5% (screw removal), respectively.

25	Conclusion: PeICO combined with PATR proved to be a safe, reliable and effective
26	technique for the correction of mild-to-moderate HV deformity.
27	
28	Level of Evidence: Level IV- Case Series
29	Keywords: Hallux valgus, percutaneous, chevron, outcomes
30	
31	Introduction
32	Treatment for hallux valgus (HV) remains challenging. It continues to have a high
33	patient dissatisfaction rate (10.6%), and postoperative first metatarsophalangeal (MTP)
34	pain remains at 1.5% Barg A, which means that the search for a better procedure must
35	continue. Osteotomies -especially chevron type- continue to be the method of choice to
36	achieve correction of HV deformities. Klugarova J Matar HE
37	In order to improve the outcomes, percutaneous surgery (PS) or MIS
38	("Minimally invasive surgery") has been involved in a process of continuous change.
39	Del Vecchio JJ, Ghioldi ME This does not necessarily mean an evolution, but rather a
40	better understanding of the benefits and complications of previous generations. Third-
41	generation or 3G Jowett CRJ Lai MC Liszka H Vernois J procedures reproduce
42	chevron-type osteotomies to replicate their benefits, such as intrinsic stability and
43	reproducibility. They are divided into extra-articular and intra-articular osteotomies.
44	Recently, comparative studies have shown similar radiological and clinical
45	outcomes when comparing 3G techniques with open techniques for HV treatment.
46	Brogan K Garcés JB Kaufmann G, Mörtlbauer L Lai MC Lee M Yassin M However,
47	there is currently insufficient evidence to recommend PS over open procedures or to
48	recommend one percutaneous approach over another for HV treatment. Jeyaseelan L
49	Malagelada F

50	We report a prospective case series using a Percutaneous, Intra-articular,
51	Chevron Osteotomy (PeICO) technique for the treatment of mild-to-moderate HV
52	associated with a Percutaneous adductor tendon release (PATR). Dalmau-Pastor M,
53	Malagelada F Del Vecchio JJ, Dalmau-Pastor M PeICO technique is the first published
54	PS technique mimicking the classic intra-articular open Chevron procedure, and it has
55	already shown excellent radiological correction Del Vecchio JJ, Ghioldi ME, Raimondi
56	N and a cadaveric study showed that it is a safe and reliable procedure. Del Vecchio JJ,
57	Ghioldi ME, Uzair AE, Chemes LN, Manzanares-Céspedes Recently, Del Vecchio et al
58	published a technical description associated with a case series. Del Vecchio JJ, Ghioldi
59	ME, Uzair AE, Chemes LN, Dealbera ED. The question this study aims to answer is
60	whether this new technique works properly when applied to patients.

61

62 Methods

From May 2015 to October 2018, a total of 177 consecutive patients underwent
 surgical treatment of unilateral/bilateral, painful, mild-to-moderate HV after failure of
 conservative treatment.

Exclusion criteria for this study included: stiffness of first MTP joint described
as less than 75° of total range of motion (ROM) measured by placing a lateral
goniometer, osteoarthritis of the MTP-1-joint (grade 1-3) Coughlin MJ, Shurnas PS,
rheumatoid arthritis, patients with diabetes, neurological disorders, hypermobility of the
first tarsometatarsal joint, and previous surgery on the same foot. Inclusion flowchart is
shown in Figure 1.
After patient exclusion, 114 feet of 74 patients were included. The drop-out rate (lost to

follow-up) was 30.8%. A 12-year-experienced MIS surgeon (JJDV) performed all the

PeICO procedures in association with PATR. All the patients underwent the samepostoperative protocol.

The following data were assessed based on the patients' medical histories: general demographics (age, sex, and body mass index [BMI]), surgical details (such as length of surgery and fluoroscopy used), minutes of radiation exposure, associated procedures and complications.

80

96

81 Primary Outcome Measures

82 A radiographic evaluation was performed on standard foot anteroposterior (AP) 83 and lateral weight-bearing images, preoperatively and at final follow-up (Minimum 18 84 months). Coughlin MJ, Saltzman CL These were made with the patient standing on both 85 feet with the knees in full extension and included pre- and postoperative assessment of 86 hallux valgus angle (HVA), intermetatarsal angle (IMA) and distal metatarsal 87 articular angle (DMAA). Angles were measured following the AOFAS ad hoc 88 Committee on Angular Measurements guidelines. Coughlin MJ, Saltzman CL Severity 89 of hallux valgus was classified according to the HVA ($\leq 15^{\circ}$, normal; less than 20°, mild; 90 less than 40°, moderate; equal to or more than 40degrees, severe), and the IMA (<9°, 91 normal; 9-11°, mild; 12-17°, moderate; \geq 18°, severe). The tibial sesamoid position (TSP) 92 was assessed: a line was drawn along the first metatarsal's longitudinal axis on the 93 weight-bearing AP radiograph, and the position was classified as grade I-to-VII. Hardy 94 RH First metatarsal length and postoperative shortening were also assessed. 95 Patients were also evaluated by measuring the range of motion (ROM) of the

97 classified as: normal ($\geq 75^{\circ}$); moderate stiffness (30-74°); severe stiffness (<30°) or

first MTP joint, preoperatively and at final follow-up (Minimum 18 months). ROM was

(-70) , modelate summers (-70), severe summers (-70) or

98 extension (<30°). Frigg A This was done with feet in a relaxed position of 30° of

99 plantarflexion. Preoperatively, a goniometer was used to measure the ROM. The device 100 was placed parallel to the first metatarsal dorsal aspect, with the other side being 101 parallel to the dorsal aspect of the proximal phalanx. In the postoperative period, two 102 radiographs were then taken whilst the patient's first toe was passively forced into 103 maximum plantarflexion and dorsiflexion. ROM of the first MTP joint was measured 104 twice in all patients by two different authors using the same method (mean values were 105 calculated). Ozkurt B

The first metatarsal head pronation was also assessed using a modification of
Yamaguchi's method Yamaguchi S (0-to-30°), based on a weight-bearing AP view.
Recurrence was defined as an HVA of more than 15° at final follow-up. Raikin SM The
length of the first metatarsal was also measured.

Clinical outcomes were assessed using the visual analog scale (VAS), FAAM ADL and FAAM Sport Sutton RM, AOFAS Score, and MOXFQ Garcés JB, preoperatively and at final follow-up (Minimum 18 months). A patient satisfaction survey was also performed, asking patients to assess their scale of satisfaction (Scores from 1 to 5: 1, unsatisfactory; 2, satisfactory; 3, good; 4, very good; 5, excellent) and whether they would go through the same technique again (question 2: yes/no). All patients were invited to complete the FAAM ADL, FAAM Sport, MOXFQ, VAS, and

117 satisfaction scales by email.

118

119 Secondary Outcome Measures

120 Fluoroscopic time and length of surgery were recorded. Complications were identified

121 by either the patient or the surgeon in outpatient clinics. We used a modification of the

122 reliable Adapted Clavien-Dindo-Sink classification Sink EL for HV surgery and that

123 already assessed a 3G procedure Lewis TL (Table 2). We categorized all complications

124	following a retrospective case review. Complication data were routinely collected for all
125	patients until discharge (follow up not less than 12 months) and, beyond this,
126	complication data were identified only if the patient reported it. The reoperation rate and
127	screw removal were also assessed.
128	
129	Operative Technique
130	a) Patient positioning
131	With the patient supine with the foot overhanging about 5 cm beyond the operating
132	table edge, and the surgeon seated facing the medial aspect of the foot.
133	
134	b) Anesthesia
135	All procedures were performed under local anesthesia (Mayo block) with 5 mL of
136	bupivacaine hydrochloride 0.5% w/v and 5 mL of xylocaine solution 0.5% associated
137	with sedation. Intravenous antibiotics were administered as per local guidelines. We
138	used a tourniquet, although it is important to use a high-torque and low-speed
139	environment.
140	
141	c) Equipment
142	The following equipment is required:
143	• Burrs: 2.0×12 -mm Isham Straight Flute Shannon (ISFS) and Wedge Burr 3.1.
144	• Driver: Device with torque and speed control.
145	• One conical 3.5 mm screw.
146	• Instruments: Regular Mini Blade #6400, Freer elevator, bone rasp (Small).
147	• 2 mm x 20 mm K-wire.
148	

149 The technique can be divided into five steps:

150	1.	A 2.0 mm K-wire was slid percutaneously in the medial surface of the first toe
151		in a distal-to-proximal orientation. A medial portal (P1) was made with a
152		percutaneous surgical blade (SM69, Swann-Morton®) in the limit between the
153		proximal 1/3 and the distal 2/3 of the 1MT head (Figure2).
154	2.	A percutaneous dorsal capsular release was made to allow the first metatarsal
155		head to move laterally. The hallux must be passive dorsiflexed (30°) to prevent
156		soft tissue lesions (Figure 3). Then, the ISFS was inserted in a medial-to-lateral
157		direction (until the lateral cortex) through the 1MT head to create the apex of the
158		osteotomy. The dorsal limb describes a 20° angle proximally oriented whilst the
159		plantar limb is parallel to the floor. This creates two limbs forming the 90° angle
160		of a Chevron osteotomy (Figure 4). At this point, medial wedges (Triplanar
161		PeICO) can be added to correct pronation (plantar limb) and DMMA (dorsal
162		limb).
163	3.	First metatarsal displacement. The lateral shift (up to 60%) was performed
164		through a 2 mm K-wire and an angled stem probe. The probe was inserted
165		through the osteotomy and the K-wire was advanced until proper correction was
166		achieved (Figure 5).
167	4.	A dorsomedial portal (P2: \approx 15 mm proximal and 3 mm dorsal than the P1) was
168		made for osteotomy stabilization. We prefer to use a 3.5 mm cannulated conical
169		screw inserted from dorsal-medial to a lateral-plantar direction at a 45-degree
170		orientation (Figure 6). After the 2 mm K-wire was removed, a resection of the

171 medial eminence was made through portal 2 using a wedge Burr 3.1 (Figure 7).

172	5. PATR (Percutaneous adductor tendon release) was performed in association
173	with all PeICO procedures, following published descriptions (Figure 8). Del
174	Vecchio JJ, Dalmau-Pastor M Del Vecchio JJ, Dalmau-Pastor M
175	6. Through a medial portal, a percutaneous Akin was added in cases of persistent
176	valgus of the great toe, using a weight-bearing intraoperative test.
177	
178	Postoperative protocol
179	After achieving the required correction, a dressing was applied. The bandage circled the
180	hallux, which was positioned in a slight varus. Immediate weight-bearing with a shoe
181	with a flat, stiff sole was allowed as soon as the pain was tolerable. Ten to fourteen days
182	postoperatively the stitches were removed, and the patient was trained to put daily
183	bandages with hallux varus (5-to-10°) for the next four weeks. Four weeks after surgery,
184	patients were advised to move their toe actively and passively. At six weeks
185	postoperatively, rehabilitation was indicated if the ROM had decreased by more than
186	30° compared with the preoperative range.
187	
188	Statistical Analysis
189	All statistical analyses were performed using R version 4.0.2. Descriptive statistics of
190	position and scale were used for the continuous variables considered in two instances,
191	before and after surgery. Scatter diagrams and boxplots were plotted to visualize their
192	distribution. The difference variables between the records of each posterior and anterior
193	patient were constructed and their normality was analyzed using the Shapiro-Wilks test.
194	To assess whether the differences are statistically significant, the Wilcoxon test for
195	paired samples was performed. Statistical significance was defined as a <i>p</i> -value of
196	≤0.05.

197

198	Results
199	The mean age was 45 years (range, 20-75; SD 14), with 69 female and five male
200	patients. The mean follow-up was 24.08 months (range, 18-49; SD 8.53). The mean
201	BMI was 27 ± 4.3 kg/m2. The procedures additional to PeICO were: one patient
202	(1.35%) needed a DMMO (Distal metatarsal minimally invasive osteotomy) of second-
203	to-fourth metatarsals for the treatment of central metatarsalgia; five, sliding-DMMO for
204	the treatment of Tailor's bunion; three, percutaneous osteotomies of the proximal
205	phalanx for lesser toes deformities (2-to-4 toes); and four, Akin osteotomies for the
206	proximal phalanx of the first toe because of residual phalanx malalignment.
207	
208	Primary Outcome Measures
209	The mean IMA improved from $12.51 \pm 1.49^{\circ}$ preoperatively to $7.89 \pm 0.61^{\circ}$
210	postoperatively ($p < 0.001$), while the average HVA improved from $28.3 \pm 5.08^{\circ}$
211	preoperatively to $11.13 \pm 3.74^{\circ}$ postoperatively (<i>p</i> <0.001). We found 60.6% (69 feet)
212	with mild and 39.4% (45 feet) with moderate HV deformity. There was an average of
213	1.94° (3.63° preoperatively to 1.69° postoperatively, $p < 0.001$) of TSP improvement
214	after the PeICO procedure (Figure 9). The average first metatarsal length was 60.9 mm
215	in the preoperative and 58.6 mm in the postoperative period. This represents an average
216	shortening of 2.3mm (<i>p</i> 0.028).
217	The entire patient population presented normal ROM (\geq 75°) in the postoperative
218	period. The preoperative total ROM of the first MTP joint, the plantarflexion and the
219	dorsiflexion were measured as 104° (Normal ROM), 27.7°, and 75.8°, respectively.
220	Following the operation, the values were 96.1°, 25.2° and 70.9°. Following the

221 operation, the total ROM in the first MTP joint was reduced by $7.4 \pm 2.3^{\circ}$ (p < 0.001).

Passive dorsiflexion decreased by $4.9 \pm 1.5^{\circ}$ (p < 0.001) and passive plantar flexion by 223 $2.5 \pm 0.8^{\circ}$ (p < 0.001).

Pre-operatively, 58 feet (51.6%) had radiological signs of pronation. The average

224

225 rotation deformity was 4.45° (Range 0 to 30; SD 6.5). Five patients (2 of 20°, 2 of 30°, 226 and 1 of 25°) needed rotation according to recommendations. Although a rotational 227 PeICO could have benefited these patients, radiological correction (average correction 228 of IMA was 2.5°; HVA 9.14° and TSP 1.4 mm) and clinical outcomes and therefore no 229 procedure was performed to correct the pronation. 230 The AOFAS score improved from 52.1 points preoperatively to 91.1 (p < 0.001) 231 at the latest follow-up. VAS decreased from 6.3 to 1, on average. Also, FAAM ALD, 232 FAAM Sport and MOXFQ showed statistically significant differences (p < 0.001) when 233 comparing preoperative and postoperative periods. Patients found the procedure to be 234 excellent in 82% of cases (61 feet), very good in 13.5% (10 feet) and good in 4.1% 235 (three feet). Results are summarized in table 1. 236 237 Secondary Outcome Measures and Complications

Fluoroscopic time was 19 seconds (Range 11 to 38; SD 6.7). The average length
of surgery was 25.4 minutes (Range 16 to 50; SD 6.5).

Our global complication rate was 5.26% (6 feet). We had one (0.8%) major complication: a transfer metatarsalgia (to the second metatarsal) that was successfully treated with insoles. The minor complications presented were the following: three (2.6%) soft tissue irritations that needed screw removal after at least four months postoperatively; one (0.8%) case of superficial infection that needed oral antibiotic treatment for 14 days; one case (0.8%) presented superficial skin necrosis, but no further surgical debridement was needed. We observed no other complications involving the additional procedures. Finally, there was a reoperation rate of 3.5% forscrew removal.

249

250 Discussion

251 The most important finding of the present study is that for the first time a PS technique

252 mimicking the intra-articular open Chevron technique showed reliable and sustained

253 radiological, clinical and satisfaction outcomes, as showed by other percutaneous

254 procedures. Liszka H Lucattelli G Redfern D Vernois J. Based on the results found in

this study, PeICO can be indicated in mild-to-moderate HV deformities.

256 Reducing TSP has been proposed as a preventive factor for recurrent HV

257 deformity. Chen et al. Chen JY recommend correcting the TSP to grade IV or less to

258 improve functional outcomes and patient satisfaction when treating HV. Also,

259 Kaufmann et al. Kaufmann G, Sinz S found that a chevron osteotomy can significantly

260 correct sesamoid position using a 7-part system Hardy RH from pre- to postoperative

and it remained stable throughout the follow-up. The present findings indicate that

262 PeICO associated with PATR can achieve adequate TSP correction (average correction

263 of 1.94 grades) without loss of correction at final follow-up. Anyway, further studies

264 must address the correction power of PATR.

265 Pronation of the first metatarsal has been shown as a risk factor for the formation

and progression of HV. Okuda R Ota T Wagner P Therefore, the importance of

267 correcting malrotation to reach an adequate position and decrease the risk of HV

268 recurrence has been progressively acknowledged. Hatch DJ Okuda R, Yasuda T This

269 must be considered in the decision-making process, predominantly in moderate-to-

270 severe cases. Some authors indicate rotational correction treatment when a considerable

271 (>15°) metatarsal pronation is present. Wagner P If rotational deformity correction is

272 needed, rotational PeICO can be made by adding a medial wedge as showed in an open273 chevron technique. Prado M

274 Excessive shortening of the first metatarsal during first metatarsal osteotomy 275 represents a frequent risk factor for transfer metatarsalgia to the second metatarsal head. 276 Espinosa N Nakagawa S Toth K This has been reported to occur at rates from 12% to 277 43%. Coughlin MJ Foran IM Recently, Kaufmann et al. showed significant shortening, 278 with a decrease from 62.2±5.3 mm to 58.8±5.4 mm (P <0.001). Kaufmann G, Sinz S 279 Nakagawa et al. Nakagawa S showed that postoperative shortening of the first 280 metatarsal might lead to transfer metatarsalgia. Their results were: 60.6 ± 4.7 (Range 52) 281 to 73) in the preoperative period and 58.7 ± 4.7 (Range 45 to 68) in the postoperative 282 period. Foran IM However, Greeff et al. found just one case of transfer metatarsalgia, 283 with a statistically significant degree of shortening of the first metatarsal relative length, 284 when performing a modified Lapidus procedure. The authors mentioned that the 285 subsequent low transfer metatarsalgia rate could be attributed to the sagittal plane 286 correction and stability. Greeff W The series presented showed one case of transfer 287 metatarsalgia with a metatarsal shortening of 3.2 mm (before surgery it was 4.1 shorter 288 than the second metatarsal). 289 Four recently published comparative studies by Brogan et al. Brogan K (Third-

290 generation MIS distal chevron vs. Open Chevron), Kaufmann et al. Kaufmann G,

291 Mörtlbauer L (MIS vs Open Chevron) Lai et al. Lai MC (PECA vs. Open Scarf-Akin)

and Lee et al. Lee M (PECA vs. Open Scarf-Akin) have reported comparable

293 radiological (in terms of HVA and IMA) and clinical outcomes (in terms of AOFAS

and VAS) when comparing the 3G techniques with traditional open procedures.

295 Kaufmann G et al. Kaufmann G, Mörtlbauer L showed that outcomes of a MIS

technique were comparable with those of the open technique. They found no significant

297 differences in terms of postoperative clinical outcomes within five years (VAS, 298 AOFAS, satisfaction), radiographic outcomes, joint degeneration, or range of motion 299 outcomes at five years of follow-up. Lee et al. Lee M reported a prospective randomized 300 trial evaluating 25 MICA vs. 25 open surgery cases. They showed AOFAS score 301 improvement (61.3 to 88.7) in the MIS group. Also, HVA improved from 31.4 to 7.6° 302 and IMA from 15.6 to 6.4°. They reported 84% excellent patient satisfaction and 16% 303 good satisfaction in the MIS group. Holme TJ Although the study presented is not 304 comparative, it showed good-to-excellent radiological and clinical results and patient 305 satisfaction rates. 306 According to some authors, a simultaneous bilateral correction has the same 307 functional and radiographic results as unilateral surgery. Boychenko AV Carvalho P Lee 308 KB Lim WSR Recently, Lim et al. Lim WSR found no significant differences in post-

309 operative outcome and patient satisfaction between both groups. Our series found no
310 differences (through radiographic corrections and clinical outcomes) between unilateral
311 and bilateral patient outcomes. This may improve the quality of life of patients and
312 shows promise for safely reducing costs. Molloy A

313 Lateral release is an additional procedure that helps osteotomies to correct HV 314 deformities. The main indications for a lateral release are mild-to-severe hallux valgus, 315 especially in preoperative incongruent joints. Dalmau-Pastor M, Malagelada F Del 316 Vecchio JJ, Dalmau-Pastor M Several studies have failed to accurately describe which 317 structures were being released or detached as soft tissue adjuvant treatments of hallux 318 valgus. Adductor tendon percutaneous release was the most commonly used procedure 319 to assist osteotomies in correcting HV deformities. Del Vecchio JJ, Dalmau-Pastor M 320 Recently, PATR proved to be a reliable and accurate technique in a comparative 321 cadaveric study, and more effective in fully releasing the adductor tendon. DalmauPastor M, Malagelada F Although the most powerful percutaneous osteotomies (e.g.
MICA, subcapital) may not need a lateral release to correct HV deformity, we used
lateral release as a routine procedure, as showed in table 2. In the present study, PATR
was used in all patients and possibly has an effect in preventing recurrence. Further
studies should assess if PATR may effectively reduce TSP, how much valgus correction
power it has, and if it helps to correct proximal phalanx pronation.

328 Stiffness of the MTP joint may be a challenging complication after HV 329 correction, especially after intraarticular procedures. Distal open chevron osteotomies 330 showed rigid MTP joints between 1.13% to 27.3% of cases Bai LB Barca F Guclu B 331 Ozkurt B Tollison ME Vopat BG First generation (1G) percutaneous osteotomies 332 (Reverdin-Isham) revealed a reduction of the ROM by 15°, and moderate or severe 333 stiffness (ROM <30°) in 2% to 100% of cases. Bauer T Biz C Severyns M. Also, Bosch-334 type procedures (2G) showed stiffness rates in 4% to 14% of cases Bia A Faour-Martín 335 O Magnan B. 3G techniques showed the lowest rate of this postoperative complication: 336 0 to 7.7% Chan CX Frigg A Holme TJ Liszka H Jowett CRJ Although PeICO is a 3G 337 intra-articular osteotomy, it showed no postoperative stiffness. The reason that explains 338 these results may be that a dorsal capsulotomy is needed to shift the first metatarsal 339 head and the fact that it does not need a capsulorraphy may contribute to preserve 340 motion; patients were advised to do active and passive toe movements after four weeks. 341 Recently, a systematic review showed that 2G or Bosch-type osteotomies had an 342 average complication rate of 10% (6%major and 4% minor). 3G or chevron-type 343 procedures presented a 19% rate (8% major and 11% minor). Jeyaseelan L In the latter 344 procedures, the authors mentioned that, if the subgroup (learning curve completed) of 345 patients from the Jowett and Bedi study Jowett CRJ is excluded, the average 346 complication rate reduces to 12%. Besides this, if we evaluate 2G or 3G studies over

100 feet, the complication rate goes down to 13.4% (Table 2). Agregar texto de tabla
Our results gave a lower complication rate (5.26% between major and minor ones) than
those of 2G or 3G type procedures. Certainly, using two or three screws Jowett CRJ
Lewis TL Liszka H or not using osteosynthesis Lucattelli G may lead to more related
complications (fracture of the lateral cortex, screw skin irritation and delayed bone
union, respectively) and a higher reoperation rate.

The average recurrence rate with chevron-type osteotomies is 19.1% (Range, between 0 to 75.6%). Aiyer A Choi GW Jeuken RM Lagaay PM Recurrence is defined as the clinical development of HV after surgical correction (alignment). All patients in our study underwent the PeICO procedure associated with a PATR Dalmau-Pastor M, Malagelada F Del Vecchio JJ, Dalmau-Pastor M even in congruent MTP joints. This may have contributed to prevent recurrence (no cases seen so far).

359 Screw removal seems to be a frequent indication for a new surgical procedure in 360 3G procedures Holme TJ Lee M, ranging from 10-24%. Recently, Holme et al. Holme TJ 361 showed the results of a MICA procedure for HV treatment, with a complication rate of 362 10%, representing four patients that required Akin screw removal due to soft tissue 363 irritation. Also, Lee et al. Lee M presented a screw removal rate of 24% (6 out of 25 364 patients). Our screw removal rate was 2.6%. This complication might be avoidable by 365 using specific screws and/or getting adequate radioscopic images. The reoperation rate 366 for Chevron-Akin is 5.56% according to Lagaay et al. Lagaay PM We found that screw 367 removal was the most common reason for indicating a new procedure.

When performing a distal open chevron associated with a lateral release,
avascular necrosis incidence varies between 1.7% and 2.8% Barca F Schneider W
According to some authors, adding a lateral release may increase its occurrence. Our

371 cohort series did not show this complication, even adding a percutaneous lateral release372 (PATR).

373 Some authors report the average mean operating time of percutaneous chevron 374 osteotomy as 64.3 minutes Holme TJ Lai MC Lam K-LK (Range 44.3 to 94.3) to correct 375 mild-to-severe HV deformities. PeICO proved to be a significantly faster procedure 376 (25.4 minutes on average). Further studies should assess whether PeICO is cost-377 effective compared with other procedures. Lai et al. showed a fluoroscopic time of 44.6 378 \pm 5.9 seconds when performing a percutaneous Chevron-Akin osteotomy. Lai MC 379 Recently, Palmanovich et al. showed that mean surgery time was reduced to 45 minutes, 380 and the number of fluoroscopy expositions was decreased to 70 after two years of 381 experience doing MICA (advanced learning curve). Palmanovich E The average 382 fluoroscopy time of PeICO was 19 seconds. It seems that using fewer screws is crucial, 383 making PeICO faster and dramatically diminishing the need for radiation exposure.

384

385 Limitations

386 This study's main limitation is the lack of a control group, which would have been 387 useful to compare the results with open chevron osteotomies. There is also inherent 388 selection and observer bias because the patients were recruited from a single hospital. 389 Also, surgeries were made by an experienced surgeon. Although it can avoid a 390 performance bias, a complete percutaneous learning curve is needed to achieve the 391 results shown in this study. The AOFAS score was used and is not a validated 392 assessment tool. Finally, a short-term follow-up (18 months minimum) may not show 393 the real effect of potential complications with time.

394

395 Strengths

396 The study had some strengths. First, we included a large number of patients available

397 for analysis. Second, the MOXFQ score was used which is a validated assessment tool

398 to record patient outcomes. Complications were divided and comprehensively evaluated

399 to make future analysis easier.

400

401 Conclusion

402 To our knowledge, the present study is the first to describe the radiological and clinical

403 outcomes of a percutaneous intra-articular chevron-type osteotomy, that resembles an

404 open chevron. PeICO combined with PATR proved to be a safe, reliable and effective

405 technique for the correction of mild-to-moderate HV deformity. This technique

406 presented excellent satisfaction rates at a minimum of 18 months of follow-up. It also

407 resulted in a significantly shorter operation and fluoroscopic and a lower rate of surgical

408 site infections when compared with other techniques.

409

410 Data Availability

411 The data used to support the findings of this study are available from the corresponding412 author upon request.

413 Declaration of Conflicting Interests

414 The authors declare no potential conflicts of interest with respect to the research,

415 authorship, and/or publication of this article. ICMJE forms for all authors are available416 online.

417 Funding

418 The authors received no financial support for the research, authorship, and/or419 publication of this article.

420

421	Refer	ences
422	1.	Aiyer A, Shub J, Shariff R, Ying L, Myerson M. Radiographic Recurrence of
423		Deformity After Hallux Valgus Surgery in Patients With Metatarsus Adductus.
424		Foot Ankle Int. 2016 Feb;37(2):165-71. doi: 10.1177/1071100715608372.
425	2.	Bai LB, Lee KB, Seo CY, Song EK, Yoon TR. Distal chevron osteotomy with
426		distal soft tissue procedure for moderate to severe hallux valgus deformity. Foot
427		Ankle Int. 2010;31(8):683-688. doi:10.3113/FAI.2010.0683.
428	<mark>3.</mark>	Bauer T, de Lavigne C, Biau D, et al. Percutaneous hallux valgus surgery: a
429		prospective multicenter study of 189 cases. Orthop Clin North Am.
430		2009;40(4):505-514
431	<mark>4.</mark>	Bia A, Guerra-Pinto F, Pereira BS, et al. Percutaneous oste-otomies in hallux
432		valgus: a systematic review. J Foot Ankle Surg. 2018;57(1):123-130.
433	5.	Barca F, Busa R. Austin/chevron osteotomy fixed with bioabsorbable poly-L-
434		lactic acid single screw. J Foot Ankle Surg. 1997 Jan-Feb;36(1):15-20;
435		discussion 79-80. doi: 10.1016/s1067-2516(97)80004-x.
436	6.	Barg A, Harmer JR, Presson AP, Zhang C, Lackey M, Saltzman CL.
437		Unfavorable Outcomes Following Surgical Treatment of Hallux Valgus
438		Deformity: A Systematic Literature Review. J Bone Joint Surg Am. 2018 Sep
439		19;100(18):1563-1573. doi: 10.2106/JBJS.17.00975.

440	7. Biz C, Fosser M, Dalmau-Pastor M, Corradin M, Rodà MG, Aldegheri R,
441	Ruggieri P. Functional and radiographic outcomes of hallux valgus correction by
442	mini-invasive surgery with Reverdin-Isham and Akin percutaneous osteotomies:
443	a longitudinal prospective study with a 48-month follow-up. J Orthop Surg Res.
444	2016 Dec 5;11(1):157. doi: 10.1186/s13018-016-0491-x.
445	8. Boychenko AV, Solomin LN, Parfeyev SG, Obukhov IE, Belokrylova MS,
446	Davidov DV. Efficacy of Bilateral Simultaneous Hallux Valgus Correction
447	Compared to Unilateral. Foot Ankle Int. 2015 Nov;36(11):1339-43. doi:
448	10.1177/1071100715589174.
449	9. Brogan K, Lindisfarne E, Akehurst H, Farook U, Shrier W, Palmer S. Minimally
450	invasive and open distal chevron osteotomy for mild to moderate hallux valgus.
451	Foot Ankle Int. 2016;37(11):1197-1204.
452	10. Carvalho P, Viana G, Flora M, Emanuel P, Diniz P. Percutaneous hallux valgus
453	treatment: Unilaterally or bilaterally. Foot Ankle Surg. 2016 Dec;22(4):248-253.
454	doi: 10.1016/j.fas.2015.11.002.
455	11. Chan CX, Gan JZ, Chong HC, Rikhraj Singh I, Ng SYC, Koo K. Two year
456	outcomes of minimally invasive hallux valgus surgery. Foot Ankle Surg. 2019
457	Apr;25(2):119-126. doi: 10.1016/j.fas.2017.09.007.
458	12. Chen JY, Rikhraj K, Gatot C, Lee JY, Singh Rikhraj I. Tibial Sesamoid Position
459	Influence on Functional Outcome and Satisfaction After Hallux Valgus Surgery.
460	Foot Ankle Int. 2016 Nov;37(11):1178-1182.
461	13. Choi GW, Kim HJ, Kim TS, Chun SK, Kim TW, Lee YI, Kim KH. Comparison
462	of the Modified McBride Procedure and the Distal Chevron Osteotomy for Mild

463	to Moderate Hallux Valgus. J Foot Ankle Surg. 2016 Jul-Aug;55(4):808-11. doi:
464	10.1053/j.jfas.2016.02.014.
465	14. Coughlin MJ, Jones CP. Hallux valgus: demographics, etiology, and
466	radiographic assessment. Foot Ankle Int. 2007;28(7):759-777.
467	15. Coughlin MJ, Saltzman CL, Nunley JA II. Angular measurements in the
468	evaluation of hallux valgus deformities: a report of the ad hoc committee of the
469	American Orthopaedic Foot & Ankle Society on angular measurements. Foot
470	Ankle Int.2002;23(1):68-74.
471	16. Coughlin MJ, Shurnas PS. Hallux rigidus: demographics, etiology, and
472	radiographic assessment. Foot Ankle Int. 2003;24(10):731-743.
473	17. Dalmau-Pastor M, Malagelada F, Cordier G, Del Vecchio JJ, Ghioldi ME, Vega
474	J. Anatomical Study of Minimally Invasive Lateral Release Techniques
475	forHallux Valgus Treatment. Foot Ankle Int. 2020;1071100720920863.
476	doi:10.1177/1071100720920863.
477	18. Del Vecchio JJ, Dalmau-Pastor M. Percutaneous Lateral Release in Hallux
478	Valgus: Anatomic Basis and Indications. Foot Ankle Clin. 2020;25(3):373-383.
479	doi:10.1016/j.fcl.2020.05.003.
480	19. Del Vecchio JJ, Ghioldi ME. Evolution of Minimally Invasive Surgery in Hallux
481	Valgus. Foot Ankle Clin. 2020 Mar;25(1):79-95. doi: 10.1016/j.fcl.2019.10.010.
482	20. Del Vecchio JJ, Ghioldi ME, Uzair AE, Chemes LN, Manzanares-Céspedes
483	MC, Dealbera ED, Dalmau-Pastor M. Percutaneous, Intra-articular, Chevron
484	Osteotomy (PeICO) for the Treatment of Hallux Valgus: A Cadaveric Study.
485	Foot Ankle Int. 2019 May;40(5):586-595. doi: 10.1177/1071100718820696.

486	21. Del Vecchio JJ, Ghioldi ME, Uzair AE, Chemes LN, Dealbera ED, Dalmau-
487	Pastor, M. Percutaneous, Intra-articular, Chevron Osteotomy (PeICO) for the
488	Treatment of Hallux Valgus. Techniques in Foot & Ankle Surgery. September
489	15, 2020. doi: 10.1097/BTF.000000000000271.
490	22. Del Vecchio JJ, Ghioldi ME, Raimondi N. Osteotomía en tejadillo (chevron)
491	con técnica mínimamente invasiva en la región distal del primer metatarsiano.
492	Evaluación radiológica. [First metatarsal Minimally invasive Chevron
493	osteotomy. Radiologic evaluation]. Rev Asoc Argent Ortop Traumatol.
494	2017;82(1):19-27. doi: 10.15417/633.
495	23. Dodwell ER, Pathy R, Widmann RF, Green DW, Scher DM, Blanco JS, Doyle
496	SM, Daluiski A, Sink EL. Reliability of the Modified Clavien-Dindo-Sink
497	Complication Classification System in Pediatric Orthopaedic Surgery. JB JS
498	Open Access. 2018 Oct 23;3(4):e0020. doi: 10.2106/JBJS.OA.18.00020.
499	24. Espinosa N, Maceira E, Myerson MS. Current concept review: metatarsalgia.
500	Foot Ankle Int. 2008;29(8):871-879. doi:10.3113/fai.2008.0000.
501	25. Faour-Martín O, Martín-Ferrero MA, Valverde García JA, Vega-Castrillo A, de
502	la Red-Gallego MA. Long-term results of the retrocapital metatarsal
503	percutaneous osteotomy for hallux valgus. Int Orthop. 2013 Sep;37(9):1799-
504	803. doi: 10.1007/s00264-013-1934-1.
505	26. Foran IM, Mehraban N, Jacobsen SK, Bohl DD, Lin J, Lee S, Holmes GB,
506	Hamid KS. Radiographic Impact of Lapidus, Proximal Lateral Closing Wedge
507	Osteotomy, and Suture Button Procedures on First Ray Length and Dorsiflexion
508	for Hallux Valgus. Foot Ankle Int. 2020 Aug;41(8):964-971. doi:

509 10.1177/1071100720925438.

510	27. Frigg A, Zaugg S, Maquieira G, Pellegrino A. Stiffness and Range of Motion
511	After Minimally Invasive Chevron-Akin and Open Scarf-Akin Procedures. Foot
512	Ankle Int. 2019 May;40(5):515-525. doi: 10.1177/1071100718818577.
513	28. Garcés JB, Winson I, Goldhahn S, et al. Reliability, validity and responsiveness
514	of the Spanish Manchester-Oxford Foot Questionnaire (MOXFQ) in patients
515	with foot or ankle surgery. Foot Ankle Surg. 2016;22(1):59-70.
516	doi:10.1016/j.fas.2015.09.004.
517	29. Greeff W, Strydom A, Saragas NP, Ferrao PNF. Radiographic Assessment of
518	Relative First Metatarsal Length Following Modified Lapidus Procedure. Foot
519	Ankle Int. 2020 Aug;41(8):972-977. doi: 10.1177/1071100720924016.
520	30. Guclu B, Kaya A, Akan B, Koken M, Kemal Us A. Stabilization of chevron
521	bunionectomy with a capsuloperiosteal flap. Foot Ankle Int. 2011
522	Apr;32(4):414-8. doi: 10.3113/FAI.2011.0414.
523	31. Hardy RH, Clapham JC. Observations on hallux valgus. <i>J Bone Joint Surg Br</i> .
524	1951;33(3):376-391.
525	32. Hatch DJ, Santrock RD, Smith B, Dayton P, Weil L Jr. Triplane Hallux
526	AbductoValgus Classification. J Foot Ankle Surg. 2018 Sep - Oct;57(5):972-
527	981. doi: 10.1053/j.jfas.2018.02.008.
528	33. Holme TJ, Sivaloganathan SS, Patel B, Kunasingam K. Third-Generation
529	Minimally Invasive Chevron Akin Osteotomy for Hallux Valgus. Foot Ankle
530	Int. 2020;41(1):50-56. doi:10.1177/1071100719874360.
531	34. Jeuken RM, Schotanus MG, Kort NP, Deenik A, Jong B, Hendrickx RP. Long-
532	term Follow-up of a Randomized Controlled Trial Comparing Scarf to Chevron

- 533 Osteotomy in Hallux Valgus Correction. *Foot Ankle Int.* 2016 Jul;37(7):687-95.
 534 doi: 10.1177/1071100716639574.
- 535 35. Jeyaseelan L, Malagelada F. Minimally Invasive Hallux Valgus Surgery-A
 536 Systematic Review and Assessment of State of the Art. *Foot Ankle Clin*. 2020
- 537 Sep;25(3):345-359. doi: 10.1016/j.fcl.2020.05.001.
- 538 **36.** Jowett CRJ, Bedi HS. Preliminary Results and Learning Curve of the Minimally
- 539 Invasive Chevron Akin Operation for Hallux Valgus. *J Foot Ankle Surg*.
- 540 2017;56(3):445-452. doi:10.1053/j.jfas.2017.01.002
- 541 **37.** Kaufmann G, Mörtlbauer L, Hofer-Picout P, Dammerer D, Ban M,
- 542 Liebensteiner M. Five-Year Follow-up of Minimally Invasive Distal Metatarsal
- 543 Chevron Osteotomy in Comparison with the Open Technique: A Randomized
- 544 Controlled Trial. *J Bone Joint Surg Am.* 2020;102(10):873-879.
- 545 doi:10.2106/JBJS.19.00981.
- **38.** Kaufmann G, Sinz S, Giesinger JM, Braito M, Biedermann R, Dammerer D.
- 547 Loss of Correction After Chevron Osteotomy for Hallux Valgus as a Function of
- 548 Preoperative Deformity. *Foot Ankle Int.* 2019;40(3):287-296.
- 549 doi:10.1177/1071100718807699.
- **39.** Klugarova J, Hood V, Bath-Hextall F, Klugar M, Mareckova J, Kelnarova Z.
- 551 Effectiveness of surgery for adults with hallux valgus deformity: a systematic
- 552 review. JBI Database System Rev Implement Rep. 2017;15(6):1671-1710.
- 553 doi:10.11124/JBISRIR-2017-003422.
- 40. Lagaay PM, Hamilton GA, Ford LA, Williams ME, Rush SM, Schuberth JM.
- 555 Rates of revision surgery using Chevron-Austin osteotomy, Lapidus arthrodesis,

556	and closing base wedge osteotomy for correction of hallux valgus deformity. ${\cal J}$
557	Foot Ankle Surg. 2008 Jul-Aug;47(4):267-72. doi: 10.1053/j.jfas.2008.03.002.
558	41. Lai MC, Rikhraj IS, Woo YL, Yeo W, Ng YCS, Koo K. Clinical and
559	Radiological Outcomes Comparing Percutaneous Chevron-Akin Osteotomies vs
560	Open Scarf-Akin Osteotomies for Hallux Valgus. Foot Ankle Int.
561	2018;39(3):311-317. doi:10.1177/1071100717745282.
562	42. Lam K-LK, Kong S-W, Chow Y-H. Percutaneous chevron osteotomy in treating
563	hallux valgus: Hong Kong experience and mid-term results. J Orthop Trauma
564	Rehabil. 2015;19(1):25-30.
565	43. Lee KB, Hur CI, Chung JY, Jung ST. Outcome of unilateral versus simultaneous
566	correction for hallux valgus. Foot Ankle Int. 2009 Feb;30(2):120-3. doi:
567	10.3113/FAI.2009.0120.
568	47. Lee M, Walsh J, Smith MM, Ling J, Wines A, Lam P. Hallux Valgus Correction
569	Comparing Percutaneous Chevron/Akin (PECA) and Open Scarf/Akin
570	Osteotomies. Foot Ankle Int. 2017 Aug;38(8):838-846. doi:
571	10.1177/1071100717704941.
572	48. Lewis TL, Ray R, Miller G, Gordon DJ. Third-Generation Minimally Invasive
573	Chevron and Akin Osteotomies (MICA) in Hallux Valgus Surgery: Two-Year
574	Follow-up of 292 Cases. J Bone Joint Surg Am. 2021 Mar 25. doi:
575	10.2106/JBJS.20.01178.
576	49. Lim WSR, Rikhraj IS, Koo KOT. Simultaneous bilateral hallux valgus surgery:
577	Percutaneous or conventional? Early results of a matched study from a tertiary
578	institution. Foot Ankle Surg. 2020;S1268-7731(20)30079-5.
579	doi:10.1016/j.fas.2020.04.014.

580	50. Liszka H, Gądek A. Percutaneous Transosseous Suture Fixation of the Akin
581	Osteotomy and Minimally Invasive Chevron for Correction of Hallux Valgus.
582	Foot Ankle Int. 2020;1071100720935036. doi:10.1177/1071100720935036.
583	51. Lucattelli G, Catani O, Sergio F, Cipollaro L, Maffulli N. Preliminary
584	Experience With a Minimally Invasive Technique for Hallux Valgus Correction
585	With No Fixation. Foot Ankle Int. 2020 Jan;41(1):37-43. doi:
586	10.1177/1071100719868725.
587	52. Magnan B, Bortolazzi R, Samaila E, Pezzè L, Rossi N, Bartolozzi P.
588	Percutaneous distal metatarsal osteotomy for correction of hallux valgus.
589	Surgical technique. J Bone Joint Surg Am. 2006 Mar;88 Suppl 1 Pt 1:135-48.
590	doi: 10.2106/JBJS.E.00897.
591	53. Malagelada F, Sahirad C, Dalmau-Pastor M, et al. Minimally invasive surgery
591 592	53. Malagelada F, Sahirad C, Dalmau-Pastor M, et al. Minimally invasive surgery for hallux valgus: a systematic review of current surgical techniques. <i>Int Orthop.</i>
592	for hallux valgus: a systematic review of current surgical techniques. Int Orthop.
592 593	for hallux valgus: a systematic review of current surgical techniques. <i>Int Orthop</i> . 2019;43(3):625-637. doi:10.1007/s00264-018-4138-x.
592 593 594	 for hallux valgus: a systematic review of current surgical techniques. <i>Int Orthop</i>. 2019;43(3):625-637. doi:10.1007/s00264-018-4138-x. 54. Matar HE, Platt SR. Overview of randomised controlled trials in hallux valgus
592 593 594 595	 for hallux valgus: a systematic review of current surgical techniques. <i>Int Orthop</i>. 2019;43(3):625-637. doi:10.1007/s00264-018-4138-x. 54. Matar HE, Platt SR. Overview of randomised controlled trials in hallux valgus surgery (2,184 patients). <i>Foot Ankle Surg</i>. 2020;S1268-7731(20)30078-3.
592 593 594 595 596	 for hallux valgus: a systematic review of current surgical techniques. <i>Int Orthop</i>. 2019;43(3):625-637. doi:10.1007/s00264-018-4138-x. 54. Matar HE, Platt SR. Overview of randomised controlled trials in hallux valgus surgery (2,184 patients). <i>Foot Ankle Surg</i>. 2020;S1268-7731(20)30078-3. doi:10.1016/j.fas.2020.04.013.
592 593 594 595 596 597	 for hallux valgus: a systematic review of current surgical techniques. <i>Int Orthop</i>. 2019;43(3):625-637. doi:10.1007/s00264-018-4138-x. 54. Matar HE, Platt SR. Overview of randomised controlled trials in hallux valgus surgery (2,184 patients). <i>Foot Ankle Surg</i>. 2020;S1268-7731(20)30078-3. doi:10.1016/j.fas.2020.04.013. 55. Molloy A, Heyes G. Cost-Effectiveness of Surgical Techniques in Hallux
592 593 594 595 596 597 598	 for hallux valgus: a systematic review of current surgical techniques. <i>Int Orthop</i>. 2019;43(3):625-637. doi:10.1007/s00264-018-4138-x. 54. Matar HE, Platt SR. Overview of randomised controlled trials in hallux valgus surgery (2,184 patients). <i>Foot Ankle Surg</i>. 2020;S1268-7731(20)30078-3. doi:10.1016/j.fas.2020.04.013. 55. Molloy A, Heyes G. Cost-Effectiveness of Surgical Techniques in Hallux Valgus. <i>Foot Ankle Clin</i>. 2020;25(1):19-29. doi:10.1016/j.fcl.2019.10.005.

602	57. Okuda R, Kinoshita M, Yasuda T, Jotoku T, Kitano N, Shima H. The shape of
603	the lateral edge of the first metatarsal head as a risk factor for recurrence of
604	hallux valgus. J Bone Joint Surg Am. 2007;89(10):2163-72.
605	58. Okuda R, Yasuda T, Jotoku T, Shima H. Supination stress of the great toe for
606	assessing intraoperative correction of hallux valgus. J Orthop Sci. 2012
607	Mar;17(2):129-35. doi: 10.1007/s00776-011-0182-8.
608	59. Ota T, Nagura T, Kokubo T, Kitashiro M, Ogihara N, Takeshima K, Seki H,
609	Suda Y, Matsumoto M, Nakamura M. Etiological factors in hallux valgus, a
610	three-dimensional analysis of the first metatarsal. J Foot Ankle Res. 2017 Oct
611	10;10:43. doi: 10.1186/s13047-017-0226-1.
612	60. Ozkurt B, Aktekin CN, Altay M, Belhan O, Tabak Y. Range of motion of the
613	first metatarsophalangeal joint after chevron procedure reinforced by a modified
614	capsuloperiosteal flap. Foot Ankle Int. 2008 Sep;29(9):903-9. doi:
615	10.3113/FAI.2008.0903.
616	61. Palmanovich E, Ohana N, Atzmon R, Slevin O, Brin Y, Feldman V, Segal D.
617	MICA: A Learning Curve. J Foot Ankle Surg. 2020 Jul-Aug;59(4):781-783. doi:
618	10.1053/j.jfas.2019.07.027.
619	62. Prado M, Baumfeld T, Nery C, Mendes A, Baumfeld D. Rotational biplanar
620	Chevron osteotomy. Foot Ankle Surg. 2020;26(4):473-476.
621	doi:10.1016/j.fas.2019.05.011.
622	63. Raikin SM, Miller AG, Daniel J. Recurrence of hallux valgus: a review. Foot
623	Ankle Clin. 2014;19(2):259-274. doi:10.1016/j.fcl.2014.02.008.
624	64. Redfern D, Vernois J. Minimally invasive chevron Akin (MICA) for correction
625	of hallux valgus. Tech Foot Ankle Surg. 2016;15(1):3-11. doi:
626	10.1097/BTF.000000000000102.

627	65. Schneider W, Aigner N, Pinggera O, Knahr K. Chevron osteotomy in hallux
628	valgus. Ten-year results of 112 cases. J Bone Joint Surg Br. 2004;86(7):1016-
629	1020. doi:10.1302/0301-620x.86b7.15108.
630	66. Severyns M, Carret P, Brunier-Agot L, Debandt M, Odri GA, Rouvillain JL.
631	Reverdin-Isham procedure for mild or moderate hallux valgus: clinical and
632	radiographic outcomes. Musculoskelet Surg. 2019 Aug;103(2):161-166. doi:
633	10.1007/s12306-018-0563-7.
634	67. Sink EL, Leunig M, Zaltz I, Gilbert JC, Clohisy J; Academic Network for
635	Conservational Hip Outcomes Research Group. Reliability of a complication
636	classification system for orthopaedic surgery. Clin Orthop Relat Res. 2012
637	Aug;470(8):2220-6. doi: 10.1007/s11999-012-2343-2.
638	68. Sutton RM, McDonald EL, Shakked RJ, Fuchs D, Raikin SM. Determination of
639	Minimum Clinically Important Difference (MCID) in Visual Analog Scale
640	(VAS) Pain and Foot and Ankle Ability Measure (FAAM) Scores After Hallux
641	Valgus Surgery. Foot Ankle Int. 2019 Jun;40(6):687-693. doi:
642	10.1177/1071100719834539.
643	69. Tollison ME, Baxter DE. Combination chevron plus Akin osteotomy for hallux
644	valgus: should age be a limiting factor? Foot Ankle Int. 1997 Aug;18(8):477-81.
645	doi: 10.1177/107110079701800804.
646	70. Toth K, Huszanyik I, Kellermann P, Boda K, Rode L. The effect of first ray
647	shortening in the development of metatarsalgia in the second through fourth rays
648	after metatarsal osteotomy. Foot Ankle Int. 2007;28(1):61-63.
649	doi:10.3113/FAI.2007.0011.

650	71. Vernois J, Redfern D. Percutaneous chevron; the union of classic stable fixed
651	approach and percutaneous technique. FußSprunggelenk. 2013;11(2):70-75.
652	72. Vopat BG, Lareau CR, Johnson J, Reinert SE, DiGiovanni CW. Comparative
653	study of scarf and extended chevron osteotomies for correction of hallux valgus.
654	Foot Ankle Spec. 2013 Dec;6(6):409-16. doi: 10.1177/1938640013508431.
655	73. Wagner P, Wagner E. Is the Rotational Deformity Important in Our Decision-
656	Making Process for Correction of Hallux Valgus Deformity?. Foot Ankle Clin.
657	2018 Jun;23(2):205-217. doi: 10.1016/j.fcl.2018.01.009.
658	74. Yamaguchi S, Sasho T, Endo J, Yamamoto Y, Akagi R, Sato Y, Takahashi K.
659	Shape of the lateral edge of the first metatarsal head changes depending on the
660	rotation and inclination of the first metatarsal: a study using digitally
661	reconstructed radiographs. J Orthop Sci. 2015 Sep;20(5):868-74. doi:
662	10.1007/s00776-015-0749-x.
663	75. Yassin M, Bowirat A, Robinson D. Percutaneous surgery of the forefoot
664	compared with open technique - Functional results, complications and patient
665	satisfaction. Foot Ankle Surg. 2020;26(2):156-162.
666	doi:10.1016/j.fas.2019.01.006.