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Abstract

The aim of this article is to prove that diffusion processes in Rd with a drift can be approximated by
suitable Markov chains on n−1Zd . Moreover, we investigate sufficient conditions on the edge weights
which guarantee convergence of the associated Markov chains to such Markov processes. Analogous
questions are answered for a large class of nonsymmetric jump processes. The proofs of our results rely
on regularity estimates for weak solutions to the corresponding nonsymmetric parabolic equations and
Dirichlet form techniques.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The goal of this article is to establish approximations of nonsymmetric diffusions and jump
rocesses in Rd by Markov chains on n−1Zd with generators of the form

L (n)u(x) = 2nα
∑

y∈n−1Zd

(u(y) − u(x))C (n)(x, y), x ∈ n−1Zd , (1.1)

here α ∈ (0, 2]. Here, (C (n))n is a family of weights C (n)
: n−1Zd

×n−1Zd
→ [0,∞), n ∈ N,

hat are not necessarily symmetric. The emphasis of this article lies on the lack of symmetry
f the weights under consideration, which causes the limiting process to possess a drift.
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To be precise, in this work we investigate the following two questions:

(i) Under what assumptions on (C (n))n do the Markov chains X (n) on n−1Zd with generators
L (n) defined as in (1.1) converge weakly towards a Markov process X on Rd with
generator L being of one of the two forms

Lu(x) = ∂i (ai, j (x)∂ j u(x)) − 2bi (x)∂i u(x), (1.2)

Lu(x) = 2 p. v.
∫
Rd

(u(y) − u(x))K (x, y)dy, (1.3)

where ai, j , bi : Rd
→ R for i, j ∈ {1, . . . , d} with ai, j = a j,i , and K : Rd

×Rd
→ [0,∞]

is a nonsymmetric jumping kernel which satisfies a sector-type condition?
(ii) Let either (ai, j )i, j , (bi )i , or K be as above, and X be the corresponding Markov process

on Rd with generator given by (1.2) or (1.3). Under what assumptions on these objects
can we find (C (n))n such that the sequence of Markov chains (X (n))n with generators given
by (1.1) converges to X?

Our main results Theorem 5.7 and Theorem 5.12 answer question (i). (ii) is addressed in
heorem 5.9 and Theorem 5.13. Generally speaking, question (i) asks for conditions under
hich the Markov chains X (n) on n−1Zd converge towards some Markov process on Rd and
uestion (ii) deals with the possibility to approximate a given Markov process on Rd by a
amily of Markov chains. Thereby, such approximation yields a scheme for the construction of
iffusions, respectively jump processes on Rd .

Questions (i) and (ii) have a long history and have been answered in various contexts in the
ymmetric case. Stroock and Varadhan (see [50]) provide answers to both types of questions
or Markov processes X that are generated by non-divergence form operators. [51] is the first
rticle to investigate problems (i) and (ii) for symmetric divergence form operators of second
rder. They use the regular Dirichlet forms associated to X (n) in order to show convergence and
o identify the limiting process. This is rendered possible by proving a priori heat kernel bounds
nd uniform in n Hölder estimates for solutions to the heat equation on n−1Zd using the ideas
f De Giorgi–Nash–Moser. Their method allows for symmetric weights C (n) of bounded range
nder some continuity condition, yielding diffusion processes in the limit with generators of
he form (5.7) and bi ≡ 0. Moreover, they provide an explicit construction of approximating

arkov chains for a given symmetric diffusion matrix ai, j . [7] extends these ideas, which
llows them to deal also with unbounded weights under a second moment condition.
arkov chain approximations of reversible jump processes with generators of the form (1.3)

ave been considered for the first time in [36]. Their approach follows the program laid out
y [7] and allows for the approximation of α-stable like processes whose jumping kernels are
f the form

K (x, y) = c(x, y)|x − y|
−d−α, 0 < λ−1

≤ c(x, y) = c(y, x) ≤ λ, ∀x, y ∈ Rd , (1.4)

or some α ∈ (0, 2) and λ > 0. Their approach also features jump processes with certain
nisotropic jumping kernels that do not satisfy a uniform lower bound but still allow for Hölder
stimates of the heat kernel. Moreover, they give a full answer to (ii) for a large class of limiting
rocesses. More general anisotropies can be considered by applying the results of [6]. [52]
roves Markov chain approximations for singular stable-like processes, i.e., processes with
enerators of the form (5.15) but with K being supported only on a λd -null set. Another
pproach to Markov chain approximations of a large class of symmetric Markov jump processes
s developed in [16]. They establish convergence of the finite dimensional distributions by
239
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showing a Mosco convergence result for nonsymmetric forms and prove tightness with the
help of the Lyons–Zheng decomposition, avoiding the proof of Hölder regularity estimates.

everal of the aforementioned results are included in the functional central limit theorem
rovided in [8], where symmetric diffusion processes with jumps are considered without any
ontinuity assumptions on C (n).

As opposed to the works mentioned above, in this article we deal with nonsymmetric weights
(n), which causes the corresponding bilinear forms to be merely regular lower bounded semi-
irichlet forms. We construct both, nonsymmetric diffusions and jump processes on Rd via

pproximation of Markov chains. The corresponding generators in the diffusion case (see (1.2))
ight possess drift terms b with |b|

2
∈ Lθ (Rd ) for some θ ∈ ( d

2 ,∞]. The main results
are Theorem 5.7 and Theorem 5.9. Our results on jump processes (see Theorem 5.12 and
Theorem 5.13) take into account nonsymmetric jumping kernels K satisfying a sector condition.

Let us compare the main contributions of this article to existing results from the literature
dealing with generators related to nonsymmetric forms as in (1.2) and (1.3):

For limiting processes corresponding to second order divergence form operators, questions
(i) and (ii) have been investigated in [23], deriving a priori bounds on the heat kernel and
Hölder estimates for a class of centered random walks on n−1Zd (see [42]). Such Markov
hains admit a decomposition into cycles of bounded range and length and are governed by
eights C (n) that are not necessarily symmetric but constant along each cycle. Although this

lass of Markov chains appears to be very specialized, it turns out that it is rich enough to
pproximate any given diffusion process with a possibly nonsymmetric diffusion matrix ai, j .

While [23] considers nonsymmetric diffusion matrices but does not treat operators with
rift terms, our method allows for nonsymmetric contributions of lower order, giving rise to
ontrivial drifts but restricting ourselves to symmetric diffusion matrices ai, j . However we
xpect a combination of the techniques from [23] and those from this article to be possible.

Markov chain approximations of nonsymmetric pure jump processes have been established
n [43]. The authors apply an entirely different approach, which is inspired by [16] and not
ased on the derivation of Hölder estimates. They show convergence of the finite dimensional
istributions using Mosco convergence for nonsymmetric forms and prove tightness via a
emimartingale approach. The generators of the limiting processes are of the form (1.3) and

K may be nonsymmetric and as in (1.4) but as some additional regularity is required for
h ↦→ (K (x, x + h) + K (x + h, x)), their result is more in the flavor of [50] although Dirichlet
orm techniques are carried out.

Our results lie somewhat complementary to [43]. Compared to [43], we do not have to
mpose the aforementioned continuity condition on K but on the other hand, [43] does not
ely on Hölder estimates and therefore also works in situations where such estimates are not
vailable. We refer to [16] for a discussion of this phenomenon and to [5] for a related example.

Let us comment on the strategy of our proof. We prove convergence of Markov chains
X (n), following the framework constructed in [7,8,23,36,51]. However, regularity estimates and
pper bounds for exit times are not derived from heat kernel estimates but are shown to follow
rom weak parabolic Harnack inequalities which can be derived using the same strategy as
n [38]. The underlying techniques are purely analytic and do not rely on the corresponding
tochastic process. We establish exit time estimates and thus tightness of the laws of X (n) by
terating survival estimates that hold uniformly in X (n), adapting the arguments in [11]. Such
stimates are a useful tool for the derivation of off-diagonal heat kernel bounds (see [31–34])
or symmetric Markov processes via a purely analytic technique that is based on parabolic
aximum principles. However, it is important to point out that the aforementioned analytic
240
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proof was strongly inspired by the probabilistic proof of upper heat kernel estimates, which
also uses survival estimates (see [17,20]). Due to the lack of symmetry in our setup, special
care is required since the dual semigroup in general does not satisfy the Markov property.
In our investigation, we establish a parabolic maximum principle for nonsymmetric operators
and come up with another proof of the upper exit time estimate based on the weak Harnack
inequality. Moreover, all of the aforementioned results are shown to hold true under abstract
unifying assumptions (see Section 2.1) which allow us to treat the cases α = 2 and α ∈ (0, 2)
simultaneously. In particular, no truncation of long range weights is needed.

With tightness and Hölder estimates at hand, it remains to prove that all subsequences
converge to the same limiting process X . We achieve this by investigation of the resolvents
of the corresponding Dirichlet forms. Here, we analyze the two cases α = 2 (with bounded
range), and α ∈ (0, 2) separately and also provide answers to question (ii), building upon
results in [23,43]. Our main results are Theorem 5.7, Theorem 5.9 (case α = 2), as well as
Theorem 5.12, Theorem 5.13 (case α ∈ (0, 2)).

We conclude this introduction by emphasizing that most of our methods are robust with
respect to degeneracy, unboundedness and irregularity of coefficients. This opens the door to
the consideration of homogenization problems for irreversible Markov chains on random media.
Quenched invariance principles for symmetric random conductance models with bounded,
respectively long range and limiting generators of the form (1.2), respectively (1.3) can be
found in [2,3,9], respectively [8,10,11,16,18,19,26].

Moreover, let us point to a related direction of research, namely homogenization problems
for local, respectively nonlocal operators with random coefficients. We mention the following
articles addressing local operators: [12,44,46], and [21]. More information on this topic can
be found in the references therein. Homogenization of nonlocal operators was e.g., studied
in [13–15,27,35,37,49], and [47]. Note that [15,37] also contain some results on nonsymmetric
nonlocal operators, similar to those in our setup.

1.1. Outline

This article is structured as follows: In Section 2 we construct the Markov chains under
consideration and collect some facts about the associated bilinear forms, semigroups and
resolvents. We state and discuss the main assumptions of this article in Section 2.1. Section 3
contains the main technical results needed for convergence including weak Harnack inequali-
ties, Hölder estimates and a weak parabolic maximum principle. The proof of upper exit time
estimates, which yield tightness of the laws of (X (n)), is contained in Section 4. Convergence
of (X (n)), as well as the main results (see Theorem 5.7, Theorem 5.9, Theorem 5.12 and
Theorem 5.13) are stated and proved in Section 5.

2. Preliminaries

The goal of this section is to explain how to associate a family of weights (C (n)) on
n−1Zd

× n−1Zd with a family of Markov chains (X (n)) under a suitable assumption on (C (n))
(see (2.2)). We choose to introduce (X (n)) as the unique family of Hunt processes associated
with the regular lower bounded semi-Dirichlet forms on L2(n−1Zd ) that are induced by (C (n)).

oreover, we introduce the corresponding heat semigroup and resolvent operators in the sense
f [45] and discuss the main assumptions of this article.
241
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Let us fix α ∈ (0, 2], n ∈ N and a family of weights C (n)
: n−1Zd

× n−1Zd
→ [0,∞),

∈ N that is not necessarily symmetric, i.e., C (n)(x, y) ̸= C (n)(y, x), and satisfies

C (n)(x) :=

∑
y∈n−1Zd

C (n)(x, y) ≤ c, (2.1)

or some c > 0 that is independent of x , and C (n)(x, x) = 0 for every x ∈ n−1Zd . Under this
ssumption, the weights C (n) give rise to the operator (L (n),D(L (n))) on L2(n−1Zd ) defined by

−L (n)u(x) = 2nα
∑

y∈n−1Zd

(u(x) − u(y))C (n)(x, y), x ∈ n−1Zd , u ∈ D(L (n)),

D(L (n)) =

⎧⎨⎩ f : n−1Zd
→ R :

∑
y∈n−1Zd

| f (y)|C (n)(x, y) < ∞, ∀x ∈ n−1Zd

⎫⎬⎭ ,
here α ∈ (0, 2]. Here, L2(n−1Zd ) = L2(n−1Zd , µ(n)), and µ(n)({x}) = n−d . We denote the

calar product on L2(n−1Zd ) by ⟨·, ·⟩L2(n−1Zd ) = ⟨·, ·⟩.
Via the identity ⟨−L (n)u, v⟩ = E (n)(u, v), we associate this operator with the bilinear form

E (n)(u, v) = 2nα−d
∑

x∈n−1Zd

∑
y∈n−1Zd

(u(x) − u(y))v(x)C (n)(x, y), u, v ∈ L2(n−1Zd ).

irst, we decompose C (n)
= C (n)

s + C (n)
a into its symmetric part C (n)

s and its antisymmetric part
(n)
a defined by

C (n)
s (x, y) =

C (n)(x, y) + C (n)(y, x)
2

, C (n)
a (x, y) =

C (n)(x, y) − C (n)(y, x)
2

, x, y ∈ n−1Zd .

Then, we observe that we can rewrite E (n) in terms of C (n)
s and C (n)

a as follows:

E (n)(u, v) = 2nα−d
∑

x∈n−1Zd

∑
y∈n−1Zd

(u(x) − u(y))v(x)C (n)
s (x, y)

+ 2nα−d
∑

x∈n−1Zd

∑
y∈n−1Zd

(u(x) − u(y))v(x)C (n)
a (x, y)

=: E (n),C (n)
s (u, v) + E (n),C (n)

a (u, v).

ince by construction C (n)
s (x, y) = C (n)

s (y, x) and C (n)
a (x, y) = −C (n)

a (y, x), it holds:

E (n),C (n)
s (u, v) = nα−d

∑
x∈n−1Zd

∑
y∈n−1Zd

(u(x) − u(y))(v(x) − v(y))C (n)
s (x, y),

E (n),C (n)
a (u, v) = nα−d

∑
x∈n−1Zd

∑
y∈n−1Zd

(u(x) − u(y))(v(x) + v(y))C (n)
a (x, y).

emma 2.1. Assume that for every n ∈ N:

sup
x∈n−1Zd

∑
y∈n−1Zd

C (n)
s (x, y) < ∞. (2.2)

(i) Then it holds E (n)(u, v) < ∞ for every u, v ∈ L2(n−1Zd ). Moreover, (E (n), L2(n−1Zd )) is
a regular lower-bounded semi-Dirichlet form on L2(n−1Zd ).

(ii) The generator of (E (n), L2(n−1Zd )) is given by (L (n), L2(n−1Zd )). Moreover, L (n) is
2 −1 d
bounded in L (n Z ).
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Proof. First of all, note that (2.2) implies (2.1). To see that E (n)(u, v) < ∞ for every
, v ∈ L2(n−1Zd ), we refer the interested reader to [43]. (E (n), L2(n−1Zd )) is a regular

ower-bounded semi-Dirichlet form since (2.2) implies that for every n ∈ N:

sup
x∈n−1Zd

∑
y∈n−1Zd

|C (n)
a (x, y)|2

C (n)
s (x, y)

< ∞. (2.3)

n [48], it was proved that (E (n), L2(n−1Zd )) satisfies a Gårding’s inequality and the sector
ondition under (2.3). However, note that at this point the constants might still depend on n
see Lemma 2.8 for an improved result using assumption (K1), which will be introduced in
ection 2.1). For a proof of (ii), we refer to [43]. □

As a regular lower-bounded semi-Dirichlet form, (E (n), L2(n−1Zd )) is associated with the
o called variable speed random walk X (n), a continuous time Markov chain that jumps from
point x ∈ n−1Zd to y ∈ n−1Zd with probability C (n)(x,y)

C (n)(x)
and waits at x for an exponentially

istributed waiting time with parameter nα−dC (n)(x). Note that X (n) is in general non-reversible
ue to the lack of symmetry of C (n).

emark 2.2. Note that also (E (n),C (n)
s , L2(n−1Zd )) is a regular symmetric Dirichlet form and

s particular nonnegative definite, i.e., E (n),C (n)
s (u, u) ≥ 0 for every u ∈ L2(n−1Zd ).

(E (n),C (n)
s , L2(n−1Zd )) is associated with a symmetric Hunt process Y (n). One can construct

Y (n) as the reversible continuous time Markov chain jumping from x ∈ n−1Zd to y ∈

−1Zd with probability C (n)
s (x, y)

(∑
y∈n−1Zd C (n)

s (x, y)
)−1

and waits at x for an exponentially

istributed waiting time with parameter nα−d
(∑

y∈n−1Zd C (n)
s (x, y)

)
.

Moreover, the following Lévy system formula holds true.

emma 2.3 (Lévy System Formula). Assume (2.2). Let f : [0,∞) × n−1Zd
× n−1Zd be

onnegative, measurable, and vanishing on the diagonal. Then, for any x ∈ n−1Zd and
redictable stopping time τ :

Ex

[∑
t≤τ

f (t, X (n)
t− , X (n)

t )

]
= Ex

⎡⎣∫ τ

0
nα

∑
y∈n−1Zd

f (t, X (n)
t , y)C (n)(X (n)

t , y)dt

⎤⎦ .
roof. According to [45, p. 170–172], one can take N (x, y) = nα+dC (n)(x, y), Ht = t as
Lévy system for X (n). From here, the proof follows along the lines of Lemma 4.7 in [17],

espectively Lemma 4.1 in [36]. □

We have seen above that the condition (2.2) suffices for the family of weights (C (n)) to induce
family of regular lower bounded semi-Dirichlet forms, which allows us to define associated
arkov chains X (n) on n−1Zd for every n ∈ N. However, in order to prove the desired

onvergence results (see Theorem 5.7 and Theorem 5.12), it is crucial to impose assumptions
hat give some control over the behavior of (X (n)) uniformly in n. Therefore, in the sequel we
ill work with a set of assumptions, that will be introduced in the following section.
Let us remark already at this point that assumption (C-Tail0), which will be formulated in

ection 2.1, implies the existence of a uniform bound in (2.2). Together with the assumptions
K1) and (Sob), which will also be defined in Section 2.1, we will be able to prove a Gårding’s
243
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inequality and a sector condition for (E (n), L2(n−1Zd )) with constants that are uniform in n (see
emma 2.8).

.1. Main assumptions

In the following we list the main assumptions on the weights that we assume to be in
lace throughout the remainder of this article. Those are sufficient conditions under which
olutions to ∂t u − L (n)u = 0 respectively −L (n)u = 0 are locally Hölder continuous and
onnegative supersolutions satisfy a weak Harnack inequality with a constant independent of
(see Section 3). We point out that all assumptions are formulated in such a way that all the

ppearing constants are independent of n.
Similar assumptions, as well as their motivation and a discussion can be found in [38] in

he context of integro-differential operators in Rd governed by nonsymmetric integral kernels
K : Rd

×Rd
→ [0,∞].

We define B(n)
r (x0) = {x ∈ n−1Zd

: |x − x0| < r} ⊂ n−1Zd . In contrast to Euclidean space,
(n)(B(n)

r ) ≍ rd does not hold for every r > 0 since the upper bound fails as r ↘ 0. However,
or every σ > 0 there exist c1, c2 > 0 such that for every n ∈ N and r > σ

2n :

c1rd
≤ µ(n)(B(n)

r ) ≤ c2rd . (2.4)

s such volume regularity property is crucial for the derivation of Hölder estimates, we
estrict ourselves to working on balls with large enough radii. This fact is mirrored also in
he statements of the assumptions below.

Let α ∈ (0, 2], σ > 0 and θ ∈ ( d
α
,∞] be fixed. We list the following assumptions on a

amily of weights (C (n))n:
The first assumption is reminiscent of (2.2), but gives us uniform control in n.

ssumption (C-Tail). There exist c, δ > 0 such that for every n ∈ N it holds

sup
x∈n−1Zd

nα
∑

y∈n−1Zd\B(n)
r (x)

C (n)
s (x, y) ≤ cr−α, ∀0 < r ≤ 1, (C-Tail0)

sup
x∈n−1Zd

nα
∑

y∈n−1Zd\B(n)
r (x)

C (n)(x, y) ≤ cr−δ, ∀1 < r < ∞. (C-Tail∞)

Let us make several remarks on the assumption introduced above.

emma 2.4. Assume that (C-Tail0) is satisfied with α ∈ (0, 2]. Then the following hold true:

(i) There exists c > 0 such that for every n ∈ N and 0 < r ≤ 1:

sup
x∈n−1Zd

nα
∑

y∈B(n)
r (x)

|x − y|
2C (n)

s (x, y) ≤ cr2−α. (2.5)

(ii) Let 0 < ρ ≤ r ≤ 1 and x0 ∈ n−1Zd . Every function τ : n−1Zd
→ [0, 1] with

supp(τ ) ⊂ B(n)
r+ρ(x0), τ ≡ 1 in B(n)

r (x0) and maxi=1,...,d ∥∇
(n)
i τ∥L∞(n−1Zd ) ≤ 2ρ−1 satisfies:

sup
x∈n−1Zd

nα
∑

y∈n−1Zd

(τ (x) − τ (y))2C (n)
s (x, y) ≤ cρ−α, (2.6)

where c > 0 is independent of ρ, r, x , n, and we write ∇
(n)
τ (x) := n(τ (x +e /n)−τ (x)).
0 i i
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The proof of this result goes via decomposing B(n)
r (x) =

⋃
∞

k=0 B(n)
2−kr

(x) \ B(n)
2−k−1r

(x) and is
ell-known in the literature.
Note that (2.6) is a discrete version of assumption (Cutoff) from [38].

emark 2.5 ((C-Tail0), (C-Tail∞) for bounded range). Let α = 2 and assume that there exists
> 0 such that C (n)(x, y) = 0, whenever |x − y| > C

n .

(i) In this special case, assumption (C-Tail∞) simplifies significantly since

sup
x∈n−1Zd

nα
∑

y∈n−1Zd\B(n)
r (x)

C (n)(x, y) = 0, (2.7)

for every r > C
n . As for every r > 1, it holds that r > C

n already if n > C , we infer that
(C-Tail∞) follows if there exists c > 0:

C (n)(x) :=

∑
y∈n−1Zd

C (n)(x, y) ≤ c, ∀x ∈ n−1Zd .

(ii) (C-Tail0) follows already if one assumes

sup
n∈N

sup
x∈n−1Zd

∑
y∈n−1Zd

C (n)
s (x, y) < ∞, (2.8)

which is due to (2.7) and the fact that for r ≤ C/n:

n2
∑

y∈n−1Zd\B(n)
r (x)

C (n)
s (x, y) ≤ cr−2

∑
y∈n−1Zd\B(n)

r (x)

C (n)
s (x, y) ≤ c1r−2.

(iii) Assumption (2.8) is natural for symmetric Markov chains (see [7,8,23]). The uniformity
in n usually follows from scaling. Namely, given a symmetric weight Cs : Zd

× Zd
→

[0,∞] with supx∈Zd
∑

y∈Zd Cs(x, y) < ∞, one defines C (n)
s (x, y) := Cs(nx, ny) for

x, y ∈ n−1Zd , and hence (2.8) is immediate.
(iv) In particular, (2.8) is sufficient for both, (C-Tail0) and (C-Tail∞).

Next, we require a suitable coercivity assumption. We express coercivity in terms of a
oincaré - and a Sobolev inequality. For an investigation of the validity of such inequalities
or Markov chains, we refer the interested readers to the monographs [4,40].

ssumption (Poinc). There exists c > 0 such that for every n ∈ N, every ball B(n)
r ⊂ n−1Zd

ith σ
2n < r ≤ 1 and every v ∈ L2(B(n)

r ):

n−d
∑

x∈B(n)
r

(v(x) − [v]B(n)
r

)2
≤ crαE (n),C (n)

s

B(n)
r

(v, v), (Poinc)

here [v]B(n)
r

= µ(n)(B(n)
r )−1n−d ∑

y∈B(n)
r
v(y).

ssumption (Sob). There exists c > 0 such that for every n ∈ N, and every v ∈ L2(n−1Zd ):

∥v2
∥

L
d

d−α (n−1Zd )
≤ cE (n),C (n)

s (v, v). (Sob)
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Remark 2.6.

(i) One can deduce from (Sob) and (2.6) a local Sobolev inequality of the following form:
There exists c > 0 such that for every n ∈ N, every x0 ∈ n−1Zd and σ

2n < r ≤ 1,
0 < ρ ≤ r and every v ∈ L2(B(n)

2r (x0)):

∥v2
∥

L
d

d−α (B(n)
r (x0))

≤ cE (n),C (n)
s

B(n)
r+ρ (x0)

(v, v) + cρ−α
∥v2

∥L1(B(n)
r+ρ (x0)). (2.9)

(ii) Typically, if α ∈ (0, 2), the Markov chains (X (n)) converge to pure jump processes in
Rd . Therefore, the information on jumps of (X (n)) to neighboring points in n−1Zd do
not survive in the limit n ↗ ∞. Consequently, it is natural to impose only minimal
assumptions on short connections. Allowing for σ > 1 in (Poinc) generalizes the class of
admissible long-range weights in the sense that it allows for weights (C (n))n that satisfy
C (n)(x, y) ≡ 0 whenever |x − y| ≤

σ
n . Obviously, (Poinc), (2.9) fail for 1

n < r < σ
2n since

E (n)

B(n)
r

(v, v) = 0 for every v ∈ L2(B(n)
r ).

(iii) (Poinc), (2.9) are trivially satisfied whenever r, r + ρ < 1
n , regardless of C (n).

Finally, we introduce two assumptions that control the behavior of the antisymmetric part
f C (n).

ssumption (K1). There exist A > 0 and a symmetric weight J (n)
: n−1Zd

×n−1Zd
→ [0,∞]

atisfying (C-Tail0) such that for every n ∈ N, x0 ∈ n−1Zd , r > σ
2n and v ∈ L2(B(n)

2r (x0)):nα
∑

y∈n−1Zd

|C (n)
a (·, y)|2

J (n)(·, y)


Lθ (n−1Zd )

≤ A, E (n),J (n)

B(n)
2r (x0)

(v, v) ≤ AE (n),C (n)
s

B(n)
2r (x0)

(v, v). (K1)

ssumption (K2). There exist C > 0, D < 1 and a symmetric weight j (n)
: n−1Zd

×n−1Zd
→

0,∞] such that for every n ∈ N, x0 ∈ n−1Zd , σ
2n < r ≤ 1, and every x, y ∈ B(n)

2 (x0) and
very v ∈ L2(B(n)

2r (x0)):

C (n)(x, y) ≥ (1 − D) j (n)(x, y), E (n),C (n)
s

B(n)
2r (x0)

(v, v) ≤ CE (n), j (n)

B(n)
2r (x0)

(v, v). (K2)

emark 2.7.

(i) (K1) is crucial for the validity of the sector condition with a uniform constant (see
Lemma 2.8). It implies that the antisymmetric part is of lower order.

(ii) The range θ ∈ ( d
α
,∞] is natural. It causes the antisymmetric part E (n),C (n)

a to have
subcritical scaling. It allows us to approximate operators possessing drifts within this
range of integrability.

(iii) (K2) can be regarded as an ellipticity assumption on C (n). It ensures that the weight
C (n)

s − |C (n)
a | is locally coercive with respect to E (n),C (n)

s .
(iv) In the simplest case, (K1) and (K2) hold true with J (n)

= j (n)
= C (n)

s . Allowing for general
kernels J (n), j (n) makes it possible to work with weights C (n) that are not supported in
certain cones of directions (see [38]).

Clearly, assumption (C-Tail0) implies (2.2). Therefore, Lemma 2.1 yields that (E (n),

L2(n−1Zd )) is a regular lower bounded semi-Dirichlet form. We prove that under (K1)
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and (Sob), we have that the constants in Gårding’s inequality and the sector condition are
ndependent of n.

emma 2.8. Assume that (K1), (C-Tail0) hold true for some α ∈ (0, 2] and θ ∈ ( d
α
,∞].

oreover, assume (Sob) if θ < ∞. Then, there are c1, c2 > 0 such that the following estimates
hold true for every u, v ∈ L2(n−1Zd ) and n ∈ N:

E (n)(u, u) ≥
1
2
E (n),C (n)

s (u, u) − c1∥u∥
2
L2(n−1Zd ), (2.10)

E (n)(u, v)2
≤ c2E (n),C (n)

s (u, u)
(
E (n),C (n)

s (v, v) + ∥v∥2
L2(n−1Zd )

)
. (2.11)

roof. First, as an easy consequence of Hölder’s inequality, we obtain

E (n),C (n)
s (u, v)2

≤ E (n),C (n)
s (u, u)E (n),C (n)

s (v, v). (2.12)

To treat the antisymmetric part, let us first denote W (x) = nα
∑

y∈n−1Zd
|C (n)

a (x,y)|
2

J (n)(x,y)
and prove

the following auxiliary estimate (see Lemma 2.4 in [38]) for v ∈ L2(n−1Zd ) and δ > 0:

n−d
∑

x∈n−1Zd

v2(x)W (x) ≤ δE (n),C (n)
s (v, v) + c0δ

d
d−θα ∥W∥

θα
θα−d
Lθ (n−1Zd )

∥v∥2
L2(n−1Zd ), (2.13)

here c0 > 0 is some constant and we write d
d−∞α

= 0, ∞α
∞α−d = 1. Note that in case

= ∞, (2.13) is a direct consequence of Hölder’s inequality. If θ < ∞, we decompose
W (x) = W1(x) + W2(x), where W1(x) = W (x)1{|W (x)|>M} for some M > 0. We compute

∥W1∥
L

d
α (n−1Zd )

≤ 2∥W∥Lθ (n−1Zd )|{W ≥ M}|
α
d −

1
θ

≤ 2∥W∥Lθ (n−1Zd )

(
∥W∥Lθ (n−1Zd )

M

)θ( αd −
1
θ

)

= 2∥W∥

θα
d

Lθ (n−1Zd )
M1−

θα
d .

ow, let us choose M =
(
δ
2

) d
d−θα ∥W∥

θα
θα−d
Lθ (n−1Zd )

. Then, ∥W1∥
L

d
α (n−1Zd )

< δ
c and therefore

n−d
∑

x∈n−1Zd

v2(x)W (x) ≤
δ

c
∥v2

∥
L

d
d−α (n−1Zd )

+ c0δ
d

d−θα ∥W∥

θα
θα−d
Lθ (n−1Zd )

∥v∥2
L2(n−1Zd ),

which yields (2.13) after application of (Sob).
Having (2.13) at hand, we estimate

|E (n),C (n)
a (u, v)|

2
≤ E (n),J (n)

(u, u)

⎛⎝n−d
∑

x∈n−1Zd

v2(x)W (x)

⎞⎠
≤ c1E (n),C (n)

s (u, u)
(
δE (n),C (n)

s (v, v) + c0δ
d

d−θα ∥W∥

θα
θα−d
Lθ (n−1Zd )∥v∥

2
L2(n−1Zd )

)
.

(2.14)
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By combination of (2.12) and (2.14), we immediately obtain (2.11). To prove (2.10), let us
choose δ > 0 so small that c1δ <

1
2 . Then, by application of (2.14) with u = v, we get

E (n)(u, u) ≥ E (n),C (n)
s (u, u) − |E (n),C (n)

a (u, u)| ≥
1
2
E (n),C (n)

s (u, u) − c2∥u∥
2
L2(n−1Zd )

or some c2 > 0, as desired. □

emark 2.9. Note that in case θ =
d
α

, it is in general not possible to get c1, c2 > 0 independent
f n in (2.10), (2.11). However, it is possible to prove Lemma 2.8 for θ =

d
α

if A is small
nough.

.2. Probability and PDEs

Although our main results (see Theorem 5.7, Theorem 5.12, Theorem 5.9 and Theorem 5.13)
re of probabilistic nature, our analysis is based on the study of solutions u to the heat equation,
s well as the corresponding stationary equation

∂t u − L (n)u = f, −L (n)u = f

associated with L (n). This section is meant to set up the weak solution concept in the discrete
setting and to introduce the heat semigroups and resolvents associated with (E (n), L2(n−1Zd ))
n order to prepare the proofs of our main results.

Given a connected set B(n)
⊂ n−1Zd , we introduce the function space

L2
c(B(n)) = { f ∈ L2(n−1Zd ) : supp( f ) ⊂ B(n)

},

hich will serve as a test function space for our solution concept. Solutions will all be contained
n the following space

V (B(n)
|n−1Zd ) = { f : n−1Zd

→ R : f |B(n)∈ L2(B(n)),

( f (x) − f (y))|C (n)
s (x, y)|

1/2
∈ L2(B(n)

× n−1Zd )}.

ote that in particular L2(n−1Zd ) ⊂ V (B(n)
|n−1Zd ) due to Lemma 2.1.

efinition 2.10. Let f ∈ L∞(n−1Zd ), B(n)
⊂ n−1Zd be connected and I ⊂ R be an interval.

(i) Let λ ∈ R. We say that u ∈ V (B(n)
|n−1Zd ) is a supersolution to −L (n)u + λu = f in

B(n) if

E (n)(u, φ) + λ⟨u, φ⟩ ≤ ⟨ f, φ⟩ for all φ ∈ L2
c(B(n)) with φ ≤ 0. (2.15)

u is called a subsolution if (2.15) holds true for every φ ≥ 0. u is called solution, if it is
a supersolution and a subsolution to −L (n)

= f .
(ii) We say that u ∈ L1

loc(I ; L2(B(n))) is a supersolution to ∂t u − L (n)u = f in I × B(n) if the
weak L2(B(n))-derivative ∂t u exists, ∂t u ∈ L1

loc(I ; L2(B(n))) and

n−d
∑

x∈B(n)

∂t u(t, x)φ(x) +E (n)(u(t), φ) ≤ ⟨ f, φ⟩, ∀t ∈ I, ∀φ ∈ L2
c(B(n)) with φ ≤ 0.

(2.16)

u is called a subsolution if (2.15) holds true for every φ ≥ 0. u is called solution, if it is

a supersolution and a subsolution.
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In this article, we will mostly be concerned with solutions that are derived from the
emigroup and resolvent corresponding to E (n). For symmetric Dirichlet forms the interplay

between the bilinear form, the associated semigroup and its Hunt process is a powerful tool and
well-established in the literature. Although most connections remain valid in the nonsymmetric
case, other properties fail in our situation. We provide a list of the features we will rely on in
the sequel. All results are standard and can be found in [23,28,45], or [43].

2.2.1. Semigroups and heat kernels
The heat kernel for X (n), defined by

p(n)
t (x, y) = ndPx (X (n)

t = y)

induces the transition semigroup (P (n)
t )t>0 given as

P (n)
t f (x) = n−d

∑
y∈n−1Zd

p(n)
t (x, y) f (y) = Ex ( f (X (n)

t )), f ∈ L2(n−1Zd ).

P (n)
t ) coincides with the strongly continuous semigroup that is associated to E (n) via the theory

f lower bounded semi-Dirichlet forms and is strongly continuous and Markovian (see Chapter
in [45]). Therefore we denote both objects by (P (n)

t ).
Moreover, it holds that for every f ∈ L2(n−1Zd ), (t, x) ↦→ P (n)

t f (x) is a solution to
t u − L (n)u = 0 in (0,∞) × n−1Zd satisfying ∥P (n)

t f − f ∥L2(n−1Zd ) → 0, as t ↘ 0.
For any set B(n)

⊂ n−1Zd we introduce the restricted form (E (n), L2
c(B(n))). Then

E (n), L2
c(B(n))) is a regular lower-bounded semi-Dirichlet form on L2(B(n)) with heat semi-

roup (P B(n)
t ) on L2(B(n)) defined by

P B(n)

t f (x) = Ex (1{t≤τB(n) } f (X (n)
t )), f ∈ L2(B(n)),

here τB(n) = inf{t > 0 : X (n)
t ̸∈ B(n)

} is the first exit time of B(n).
By the definition of (E (n), L2

c(B(n))) it becomes apparent that ((t, x) ↦→ P B(n)
t f (x)) ∈

L2
c(B(n)) is a solution to ∂t u − L (n)u = 0 in (0,∞) × B(n) with initial data f ∈ L2(B(n)).

The process associated with the restricted form is the killed process X B(n)
given by

X B(n)

t =

{
X (n)

t , 0 ≤ t < τB(n) ,

∂, t ≥ τB(n) ,

here ∂ denotes the cemetery state. We refer to Chapter 3.5 [45] for the exact construction of
he restricted form, the killed process and their correspondence.

.2.2. Resolvent operators
From Gårding’s inequality (2.10), we know that E (n)(u, u) + λ(u, u) ≥ 0 if λ ≥ c1 =: λ0.

or any λ > λ0 one can define the resolvent operator

U (n)
λ f (x) =

∫
∞

0
e−λt P (n)

t f (x)dt, f ∈ L2(n−1Zd ). (2.17)

t holds

E (n)(U (n)
λ f, g) + λ(U (n)

λ f, g) = ( f, g), ∀ f, g ∈ L2(n−1Zd ), (2.18)

hich is why x ↦→ U (n)
λ f (x) solves −L (n)u + λu = f in n−1Zd . U (n)

λ f is the unique element
n L2(n−1Zd ) with this property (see Theorem 1.1.2 in [45]). Moreover, by continuity of U (n)
λ
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and (2.18) there exists c(λ, λ0) > 0 such that

E (n)(U (n)
λ f,U (n)

λ f ) + ∥U (n)
λ f ∥

2
L2(n−1Zd ) ≤ c(λ, λ0)∥ f ∥

2
L2(n−1Zd ). (2.19)

. Regularity properties of solutions

In order to establish convergence of the Markov chains (X (n)), we require several qualitative
roperties of solutions to the parabolic equation ∂t u − L (n)u = 0, respectively the elliptic
quation −L (n)u = 0. Weak Harnack inequalities and interior Hölder estimates can be
educed via the methods applied in [38]. Moreover, we prove a weak maximum principle
or subsolutions to the parabolic equation.

.1. Regularity and weak Harnack inequality

In this section we establish a weak Harnack inequality for supersolutions to ∂t u − L (n)u = 0
and −L (n)u = 0, as well as interior Hölder estimates for solutions to these equations. It is a
crucial feature of these results that the constants do not depend on n, the solution u, or the
diameter of the solution domain, but only on the family of weights (Cn) itself, through the
constants in the underlying assumptions (K1), (K2), (Poinc), (Sob), (C-Tail0), (C-Tail∞). This
uniformity in n renders possible convergence of the laws of the corresponding Markov chains
in our main results. While for symmetric Markov chains on n−1Zd such phenomenon occurs
naturally by appropriate scaling of a given chain on Zd , we have to explicitly prescribe the
orrect behavior for n ↗ ∞ due to the lack of symmetry in our setup (see (K1)).

We now state all regularity results that will be needed in the subsequent chapters. It is
mportant to point out that these results were already established by the author in [38] for
ntegro-differential operators on Rd governed by nonsymmetric jumping kernels under similar
ssumptions. The proofs of the corresponding results in Euclidean space do not differ from
he discrete setting. Therefore, we only present a sketch of the proofs in this article and refer
o [38] for a detailed discussion.

heorem 3.1 (Weak Parabolic Harnack Inequality). Assume that (K1), (K2), (Poinc), (Sob),
C-Tail0) hold true for some α ∈ (0, 2], σ > 0 and θ ∈ ( d

α
,∞]. Then there exists c > 0 such

hat for every n ∈ N, σ
n < R ≤ 1, x0 ∈ n−1Zd , and every nonnegative supersolution u to

t u − L (n)u = 0 in (t0 − Rα, t0 + Rα) × B(n)
2R (x0):

−

∫
(t0−Rα ,t0−Rα+( R

2 )α )

⎛⎜⎜⎜⎝
(

n R
2

)−d ∑
x∈B(n)

R
2

(x0)

u(t, x)

⎞⎟⎟⎟⎠ dt ≤ c inf
(t0+Rα−( R

2 )α ,t0+Rα )×B(n)
R
2

(x0)
u. (3.1)

Remark 3.2. In particular, under the assumption of Theorem 3.1, there exists c > 0 such
that for every n ∈ N, σ

n < R ≤ 1, x0 ∈ n−1Zd , and every nonnegative supersolution u to
L (n)u = 0 in B(n)

2R (x0), it holds(
n R
2

)−d ∑
x∈B(n)

R (x0)

u(t, x) ≤ c inf
B(n)

R
2

(x0)
u. (3.2)
2
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Theorem 3.3 (Parabolic Hölder Estimates). Assume that (K1), (K2), (Poinc), (Sob), (C-Tail0),
C-Tail∞) hold true for some α ∈ (0, 2], σ > 0 and θ ∈ ( d

α
,∞]. Then there exist c > 0 and

γ ∈ (0, 1) such that for every n ∈ N, σ
n < R ≤ 1, x0 ∈ n−1Zd and every solution u to

t u − L (n)u = 0 in (t0 − Rα, t0 + Rα) × B(n)
2R (x0), it holds

|u(t, x) − u(s, y)| ≤ c∥u∥L∞([t0−Rα ,t0+Rα ]×n−1Zd )

(
|t − s|1/α + |x − y|

R

)γ
(3.3)

for a.e. (t, x), (s, y) ∈ (t0 − Rα, t0 + Rα) × B(n)
R (x0) with x ̸= y. Moreover:

|u(t, x) − u(s, x)| ≤ c∥u∥L∞([t0−Rα ,t0+Rα ]×n−1Zd )

(
|t − s|1/α ∨

σ
n

R

)γ
(3.4)

or a.e. t, s ∈ (t0 − Rα, t0 + Rα), x ∈ B(n)
R (x0).

Note that (3.4) does not yield continuity of u in the first argument due to the appearance of
> 0. This is natural due to the lack of volume regularity (2.4) for very small balls.

emark 3.4. In particular, under the assumption of Theorem 3.3, there exist c > 0 and
∈ (0, 1) such that for every n ∈ N, σ

n < R ≤ 1, x0 ∈ n−1Zd , and every solution u to
−L (n)u = 0 in B(n)

2R (x0), it holds

|u(x) − u(y)| ≤ c∥u∥L∞(n−1Zd )

(
|x − y|

R

)γ
(3.5)

or a.e. x, y ∈ B(n)
R (x0).

roof of Theorem 3.1. It is straightforward to adapt all proofs in [38] line by line to the
iscrete setup at hand. First, we define C̃ (n)(x, y) := nα+dC (n)(x, y) and

∫
B(n) f (x)dx :=

−d ∑
x∈B(n) f (x) for f : B(n)

→ R, where B(n)
⊂ n−1Zd . Then, we can rewrite

E (n)(u, v) =

∫
n−1Zd

∫
n−1Zd

(u(x) − u(y))v(x)C̃ (n)(x, y)dydx . (3.6)

his resembles the exact shape of the forms considered in [38] up to a change of measure and
ntegration over n−1Zd instead of Euclidean space. Upon introducing the notation J̃ (n)(x, y) =
α+d J (n)(x, y), j̃ (n)(x, y) = nα+d j (n)(x, y) for the auxiliary jumping kernels J (n) and j (n) from
ssumptions (K1) and (K2), we get the following estimates from the fact that the assumptions
K1), (K2), (Poinc), (Sob), (C-Tail0), and (C-Tail∞) are assumed to hold true:

∫
n−1Zd

|C̃a
(n)(·, y)|

2

J̃ (n)(·, y)
dy


Lθ (n−1Zd )

≤ A,

(1 − D) j̃ (n)(x, y) ≤ C̃ (n)(x, y), x, y ∈ B(n)
2 ,

sup
x∈n−1Zd

∫
n−1Zd\B(n)

r (x)
C̃s

(n)(x, y) ≤ cr−α, 0 < r ≤ 1,

sup
∫

(n)
C̃s

(n)(x, y) ≤ cr−δ, 1 ≤ r < ∞,

x∈n−1Zd n−1Zd\Br (x)
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∫
B(n)

r

(v(x) − [v]B(n)
r

)2dx ≤ crαE (n),C (n)
s

B(n)
r

(v, v),
σ

2n
< r ≤ 1,

∥v2
∥

L
d

d−α (n−1Zd )
≤ cE (n),C (n)

s (v, v).

hese are the exact analogs of the corresponding conditions (K1), (K2), (Cutoff), (Poinc),
Sob), (∞-Tail) from [38]. In particular, the constants A, D, c > 0 do not depend on n. This
llows us to follow the proof in [38] line by line.

Let us mention that the restriction to radii R > σ
n in Theorem 3.1 is due to the fact that in

his regime n−1Zd satisfies the volume regularity property (2.4). This is crucial for the proof
of Theorem 3.1. Moreover, by carefully tracking the proofs in [38], it becomes apparent that
in order to show weak Harnack inequalities for solutions on cylinders (t0 − Rα, t0 + Rα)× B(n)

2R ,
or fixed R > σ

n , it suffices to have (Poinc) for r ∈ (R, 2R) and (Sob) for r ∈ (R/2, R). We
efer the interested reader to [11], from where the exact dependencies can be read off in the
ymmetric case. □

roof of Theorem 3.3. For the proof of Hölder estimates, one finds that Harnack inequalities
or solutions on cylinders as above, where R > σ

n , yield the correct estimate (3.3) for any
t, x), (s, y) ∈ (t0 − Rα, t0 + Rα) × B(n)

R with |t − s|1/α + |x − y| ≥
σ
n (see [38]). For

t, x), (s, y) ∈ (t0 − Rα, t0 + Rα) × B(n)
R with |t − s|1/α + |x − y| ≤

σ
n , the same proof yields

|u(t, x) − u(s, y)| ≤ c∥u∥L∞([t−Rα ,t+Rα ]×n−1Zd )

( σ
n

R

)γ
. (3.7)

However, in this case, there are only two possibilities. Either, we have x = y, in which case
we directly obtain the desired estimate (3.4) from (3.7). Alternatively, it holds x ̸= y, which
mplies that |x − y| ≥

1
n . This already gives the estimate (3.3). □

emark 3.5. It is important to point out that the case α = 2 does not differ from the case α ∈

0, 2). This is due to the fact that all proofs in [38] are robust in the sense that they work for any
ilinear form of type (3.6) governed by an integral kernel as long as assumptions (K1), (K2),
Poinc), (Sob), (C-Tail0), (C-Tail∞) are satisfied for some α ∈ (0, 2]. All constants depend on

only through the constants in the assumptions. However, in comparison to the continuous
ase, assumption (2.1) guarantees that E (n)(u, u) is well-defined for any u ∈ L2(n−1Zd ), also
hen α = 2, and not only for u ≡ 0.

Next, we present a corollary from Theorem 3.3 which yields Hölder estimates for the
resolvent U (n)

λ f and the heat semigroup P (n)
t f , for f ∈ L∞(n−1Zd ). Let λ0 > 0 be as in

emma 2.8. These estimates will become crucial in Section 5.

orollary 3.6. Assume that (K1), (K2), (Poinc), (Sob), (C-Tail0), (C-Tail∞) hold true for
ome α ∈ (0, 2], σ > 0 and θ ∈ ( d

α
,∞]. Then there exist c > 0 and γ ∈ (0, 1) such that for

very λ > λ0, t, s > 0, f ∈ L∞(n−1Zd ) ∩ L2(n−1Zd ) and every n ∈ N and x, y ∈ n−1Zd :

|P (n)
t f (x) − P (n)

t f (y)| ≤ c∥ f ∥L∞(n−1Zd )|x − y|
γ , (3.8)

|P (n)
t f (x) − P (n)

s f (x)| ≤ c∥ f ∥L∞(n−1Zd ) max
(
|t − s|1/α,

σ

n

)γ
, (3.9)

|U (n)
λ f (x) − U (n)

λ f (y)| ≤ cλ−1
∥ f ∥L∞(n−1Zd )|x − y|

γ , (3.10)
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Proof. First, we observe that (3.10) is a direct consequence of (3.8) and the observation that

|U (n)
λ f (x) − U (n)

λ f (y)| ≤

∫
∞

0
e−λt

|P (n)
t f (x) − P (n)

t f (y)|dt ≤
1
λ

sup
t>0

|P (n)
t f (x) − P (n)

t f (y)|.

For the proof of estimate (3.8) we recall that (t, x) ↦→ P (n)
t f (x) solves ∂t u − L (n)u = 0 in

0,∞) × n−1Zd , which is why Theorem 3.3 applied with R = 1 on arbitrary time–space
ylinders in (0,∞) × n−1Zd yields

|P (n)
t f (x) − P (n)

t f (y)| ≤ c∥P (n)
t | f |∥L∞(n−1Zd )|x − y|

γ
≤ c∥ f ∥L∞(n−1Zd )|x − y|

γ

or any t > 0 and |x − y| ≤
1
2 . Note that we also used that |P (n)

t | f || ≤ ∥ f ∥L∞(n−1Zd ) which is
ue to the Markov property of (P (n)

t ). In case |x − y| > 1
2 , estimate (3.8) is trivial since

|P (n)
t f (x) − P (n)

t f (y)| ≤ 2∥P (n)
t | f |∥L∞(n−1Zd ) ≤ 21+γ

∥ f ∥L∞(n−1Zd )|x − y|
γ .

stimate (3.9) can be proved from (3.4) similar to how (3.8) is proved from (3.3). □

The following result is a discrete version of Lemma 3.1 from [38] and can be proved in the
xact same fashion. It is needed in the proof of Lemma 4.2.

emma 3.7 (log(u)-estimate). Assume that (K1), (K2) and (C-Tail0) hold true for some
∈ (0, 2] and θ ∈ ( d

α
,∞]. Then there exist c1, c2 > 0 such that for every σ

2n < r ≤ 1,
< ρ ≤ r and every nonnegative function u ∈ V (B(n)

2r |n−1Zd ) that satisfies u > ε in B(n)
2r for

ome ε > 0:

c1nα−d
∑

x∈B(n)
r+ρ

∑
y∈B(n)

r+ρ

τ (x)τ (y)
(

log
u(x)
τ (x)

− log
u(y)
τ (y)

)2

C (n)
s (x, y)

≤ E (n)(u,−τ 2u−1) + c2ρ
−αµ(n)(B(n)

r+ρ),

here (as in (2.6)) τ : n−1Zd
→ [0, 1] satisfies supp(τ ) = B(n)

r+ρ , τ ≡ 1 in B(n)
r and

maxi=1,...,d ∥∇
(n)
i τ∥L∞(n−1Zd ) ≤ 2ρ−1.

emark 3.8 (Extensions and Simplifications).

(i) For nonnegative solutions u to ∂t u − L (n)u = 0 in a suitable time–space cylinder one
can also establish a full Harnack inequality under slightly stronger assumptions. We refer
to [39] for a discussion of such estimate for nonsymmetric integro-differential operators
in Rd .

(ii) One can prove (3.1), (3.2), (3.3), (3.5) for L (n) and Corollary 3.6, Lemma 3.7 also under
the following localized condition instead of (K1):
There exists C > 0 such that for every n ∈ N, x0 ∈ n−1Zd :nα

∑
y∈B(n)

2 (x0)

|C (n)
a (·, y)|2

C (n)
s (·, y)


Lθ (B(n)

2 (x0))

≤ C. (K1loc)

(iii) We emphasize that one can prove (3.10) directly via establishing a version of (3.5) for
solutions to −L (n)u + λu = f , where f ∈ L∞(n−1Zd ) and λ > 0. The existence of a
killing term λu for λ ≥ 0 in (3.5) does not influence the proofs significantly since the
term λu can be treated in a similar way as a source term.
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3.2. Weak parabolic maximum principle

In this section we provide a parabolic maximum principle for weak subsolutions to ∂t u −

L (n)u = 0 in the spirit of Proposition 5.2 in [33], where such result was proved in the symmetric
ase. An elliptic version for nonsymmetric operators has been established in Theorem 4.1
n [25]. Let us point out that all constants in the proof below might (and are allowed to) depend
n n ∈ N.

roposition 3.9. Assume that (K1), (Sob) hold true for some α ∈ (0, 2], σ > 0 and
∈ ( d

α
,∞]. Let n ∈ N, T > 0 and σ

n < R ≤ 1. Let u be a subsolution to ∂t u − L (n)u = 0 in
0, T ) × B(n)

R for some ball B(n)
R ⊂ n−1Zd , such that

• u+(t) ∈ L2
c(B(n)

R ) for every t ∈ (0, T ),
• u+(t) → 0 in L2(B(n)

R ) as t ↘ 0 and u(0) ≤ 0 in B(n)
R .

hen u ≤ 0 a.e. in (0, T ) × B(n)
R .

roof. Note that

(u(x) − u(y))u+(x) = (u+(x) − u+(y))u+(x) + u−(y)u+(x). (3.11)

y Gårding’s inequality (2.10) it follows that for every t > 0

E (n)(u(t), u+(t)) ≥ E (n)(u+(t), u+(t)) ≥
1
2
E (n),C (n)

s (u+(t), u+(t)) − c1∥u+(t)∥2
L2(n−1Zd )

(3.12)

or some c1 > 0. Since u+(t) ∈ L2
c(B(n)

R ), we can test the weak formulation of ∂t u − L (n)u = 0
ith u+(t) for every t ∈ (0, T ). Then, we integrate in time over an arbitrary interval (t1, t2) ⊂

0, T ), apply integration by parts formula and obtain that for every (t1, t2) ⊂ (0, T ):

n−d
∑

x∈B(n)
R

u2
+

(t2, x) − n−d
∑

x∈B(n)
R

u2
+

(t1, x) +

∫ t2

t1

E (n)(u(t), u+(t))dt ≤ 0. (3.13)

ote that the above explanation can be made rigorous with the help of Steklov averages
see [24], or [39]). From (3.12) and (3.13), it follows:

n−d
∑

x∈B(n)
R

u2
+(t2, x)−n−d

∑
x∈B(n)

R

u2
+(t1, x)+

1
2

∫ t2

t1
E (n),C (n)

s (u+(t), u+(t))dt ≤ c1n−d
∫ t2

t1

∑
x∈B(n)

R

u2
+(t, x)dt.

Let us define A(t) := n−d ∑
x∈B(n)

R
u2

+
(t, x) and set δ :=

1
2c1

. Then, for every t1 ∈ (0, T ):

sup
t∈(t1,t1+δ)

A(t) +
1
2

∫ t1+δ

t1

E (n),C (n)
s (u+(t), u+(t))dt ≤

1
2

sup
t∈(t1,t1+δ)

A(t) + A(t1),

o for every k > 0:

sup
t∈(t1,t1+kδ)

A(t) ≤ 2k A(t1). (3.14)

ince A(t) ↘ 0, as t ↘ 0, by assumption, it follows that A(t) ≤ 0 for every t ∈ (0, T ), which
ives the desired result. □
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Remark 3.10.

(i) As a standard application of Proposition 3.9 we have the following monotonicity property
for the restricted semigroups: Whenever B(n)

1 ⊂ B(n)
2 for two sets B(n)

1 , B(n)
2 ⊂ n−1Zd , it

holds for every nonnegative f ∈ L∞(n−1Zd ):

P
B(n)

1
t f (x) ≤ P

B(n)
2

t f (x), ∀t > 0, x ∈ n−1Zd . (3.15)

A proof can be found in [29] (Lemma 4.16). Note that (3.15) is immediate, when using
the representation via the corresponding Markov chains X (n).

(ii) In particular it holds that P
B(n)

1
t f (x) ≤ P (n)

t f (x), which follows by iteratively applying
(3.15) to a sequence of balls (B(n)

Ri
)i with Ri ↗ ∞.

. Tightness

The goal of this section is to establish the following theorem:

heorem 4.1. Let A > 0, B ∈ (0, 1). Assume that (K1), (K2), (Poinc), (Sob), (C-Tail0) hold
rue for some α ∈ (0, 2], σ > 0 and θ ∈ ( d

α
,∞]. Then there exists t0 ∈ (0, 1) such that for

every 0 < R ≤ 1 there is N ∈ N such that for every n ≥ N and x ∈ n−1Zd it holds:

Px

(
sup

t≤(t0 R)α
|X (n)

t − x | > AR

)
≤ B.

This result implies tightness of the laws of (X (n))n in the Skorohod space D([0, T ];Rd ) for
very T > 0 (see Theorem 5.1). Such statement is standard in the literature for symmetric
arkov chains (see Proposition 3.1 in [8], Proposition 3.4 in [7], or Theorem 3.1 in [36]) and
as also proved in [23] (see Proposition 3.3). The restriction to 0 < R ≤ 1 and n ≥ N stems

rom the admissible range of radii in Theorem 3.1.
We prove Theorem 4.1 by adapting the arguments from Chapter 7 in [11] to a nonsymmetric

etting. The procedure loosely follows the path laid out by Grigor’yan and coauthors (see [31,
2,34]) who investigate the validity of heat kernel bounds for symmetric regular Dirichlet forms
n metric measure spaces in connection to geometric properties of the underlying space. It turns
ut that the weak Harnack inequality (see Theorem 3.1) implies two-sided estimates for exit
imes of X (n)

t , which in turn imply a so-called survival estimate. The survival estimate has
roved to be a helpful tool for the derivation of heat kernel bounds but can also be applied
hen proving Theorem 4.1. Our proof uses an iteration technique reminiscent of [34] but avoids

runcation of weights (see also [30]). We point out that the proofs of all results in this section
re purely analytic, the main tool being the weak Harnack inequality Theorem 3.1 and the
arabolic maximum principle Proposition 3.9.

First, we establish an estimate for the exit times of (X (n)) from balls B(n)
r . While the proof

f the lower bound (4.2) works as for Lemma 5.5 in [31], establishing the upper bound (4.1)
s more involved due to the lack of symmetry. We give a proof, inspired by Proposition 3.1
n [22], that works for long- and bounded range at the same time and does not make use of
he dual semigroup P̂ (n)

t .
Let us introduce the Green operator G B(n)

defined by

G B(n)
f (x) =

∫
∞

0
P B(n)

t f (x)dt = Ex
(∫ τB(n)

0
f (X (n)

t )dt
)
, f ∈ L2(B(n)).

n particular, G B(n)
1(x) = Exτ for every x ∈ B(n).
B(n)
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Lemma 4.2. Assume that (K1), (K2), (Poinc), (Sob), (C-Tail0) hold true for some α ∈ (0, 2],
σ > 0 and θ ∈ ( d

α
,∞]. Then there exist c1, c2 > 0 such that for every n ∈ N, 32σ

n < R ≤ 1,
x0 ∈ n−1Zd :

Ex
(
τ

(n)

B(n)
R/8(x0)

)
≤ c1 Rα, ∀x ∈ B(n)

R/8, (4.1)

Ex
(
τ

(n)

B(n)
R/8(x0)

)
≥ c2 Rα, ∀x ∈ B(n)

R/32. (4.2)

Proof. We start with the proof of the first inequality (4.1). First, we prove the following lower
bound on the heat semigroup (P (n)

t ): There exist c, ε > 0 such that for every y0 ∈ n−1Zd and
32σ

n < R ≤ 1 it holds

P (n)
t0 1B(n)

R/16(y0)(y) ≥ ε, ∀y ∈ B(n)
R/2(y0), (4.3)

here t0 := cRα .
Let y0 ∈ n−1Zd , 32σ

n < R ≤ 1 be given. We define

u(s, w) =

{
1, if s ≤ (R/32)α,
P (n)

s−(R/32)α1B(n)
R/16(y0)(w), if s > (R/32)α.

Then u is nonnegative and solves ∂t u − L (n)u = 0 in (0, 2(R/32)α) × B(n)
R/16(y0). In particular,

ote that ∂t u(w) exists for every w ∈ B(n)
R/16(y0) since t ↦→ u(t, w) is absolutely continuous.

sing the weak parabolic Harnack inequality for L (n) (see Theorem 3.1), we compute:

1 =
n−d

µ(n)(B(n)
R/64(y0))

∑
y∈B(n)

R/64(y0)

−

∫
(0,(R/64)α )

n−d

µ(n)(B(n)
R/64(y0))

∑
w∈B(n)

R/64(y0)

u(s, w)ds

≤ c1(n R/64)−d
∑

y∈B(n)
R/64(y0)

inf
(s,w)∈(2(R/32)α−(R/64)α ,2(R/32)α )×B(n)

R/64(y0)
u(s, w)

≤ c1(n R/64)−d
∑

y∈B(n)
R/64(y0)

−

∫
(2(R/32)α−(R/64)α ,2(R/32)α )

u(s, y)ds

= c1(n R/64)−d
∑

y∈B(n)
R/64(y0)

−

∫
((R/32)α−(R/64)α ,(R/32)α )

P (n)
s 1B(n)

R/16(y0)(y)ds

= c1n−d
∑

z∈B(n)
R/16(y0)

−

∫
((R/32)α−(R/64)α ,(R/32)α )

(n R/64)−d
∑

y∈B(n)
R/64(y0)

p(n)
s (y, z)ds,

here c1 > 0. Note that (s, y) ↦→ p(n)
s (y, z) solves ∂t u − L (n)u = 0 in (0,∞) × n−1Zd .

herefore, the weak parabolic Harnack inequality for L (n) is applicable in the time–space
ylinder ((R/32)α − (R/64)α, (R/32)α − (R/64)α + 2Rα) × B(n)

2R (y0) (see Theorem 3.1) after
nlarging the domain of integration (respectively summation). Then, we obtain by setting
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t0 = cRα , where c := 2 + 32−α
− 64−α

− 2−1−α > 0:

1 ≤ c2n−d
∑

z∈B(n)
R/16(y0)

−

∫
((R/32)α−(R/64)α ,(R/32)α−(R/64)α+(R/2)α )

(n R/2)−d
∑

y∈B(n)
R/2(y0)

p(n)
s (y, z)ds

≤ c3n−d
∑

z∈B(n)
R/16(y0)

inf
(s,y)∈((R/32)α−(R/64)α+2Rα−(R/2)α ,(R/32)α−(R/64)α+2Rα )×B(n)

R/2(y0)
p(n)

s (y, z)

≤ c3 inf
(s,y)∈((R/32)α−(R/64)α+2Rα−(R/2)α ,(R/32)α−(R/64)α+2Rα )×B(n)

R/2(y0)
P (n)

s 1B(n)
R/16(y0)(y)

≤ c3 inf
y∈B(n)

R/2(y0)
P (n)

t0 1B(n)
R/16(y0)(y),

here c2, c3 > 0 and we used that t0 ∈ ((R/32)α − (R/64)α + 2Rα − (R/2)α, (R/32)α −

R/64)α + 2Rα) by definition. We have proved that (4.3) holds true with ε = c−1
3 .

Next, we deduce (4.1): Let now x0 ∈ n−1Zd be arbitrary and 32σ
n < R ≤ 1. Let y0 ∈ n−1Zd

be such that y0 ∈ B(n)
5R/16(x0) \ B(n)

4R/16(x0). Then by (4.3) and the Markov property of (P (n)
t ) it

olds for every x ∈ B(n)
R/2(y0):

1 − P (n)
t0 1B(n)

R/8(x0)(x) ≥ P (n)
t0 1B(n)

R/16(y0)(x) ≥ ε.

ote that B(n)
R/8(x0) ⊂ B(n)

R/2(y0) by construction. Therefore, by rearranging the above inequality
nd applying (3.15), it follows that for every x ∈ B(n)

R/8(x0):

P
B(n)

R/8(x0)
t0 1(x) ≤ P (n)

t0 1B(n)
R/8(x0)(x) ≤ 1 − ε.

Using the semigroup property and the Markov property of (P
B(n)

R/8(x0)
t ), we deduce that for every

∈ N0:

P
B(n)

R/8(x0)
s 1(x) ≤ (1 − ε)k, s ∈ [kt0, kt0 + t0), (4.4)

nd therefore we obtain that for every x ∈ B(n)
R/8(x0)

G B(n)
R/8(x0)1(x) =

∫
∞

0
P

B(n)
R/8(x0)

s 1(x)ds ≤ c4

∞∑
k=0

(1 − ε)k t0 ≤ cRα,

here c4 > 0, as desired for (4.1).
We continue with the proof of the second estimate (4.2). Given t > 0 and ε > 0, we define

(x) =
∫ t

0 P
B(n)

R/8(x0)
s 1(x)ds + ε which is an approximation of G B(n)

R/8(x0). It holds that u > ε and

is a weak solution to −L (n)u = 1 − P
B(n)

R/8(x0)
t 1 ≥ 0 in B(n)

R/8. By applying the weak elliptic
arnack inequality ((3.2)) to u, as well as Jensen’s inequality, we obtain that

inf
B(n)

R/32(x0)
u ≥ c5

(
n R
32

)−d ∑
x∈B(n) (x )

u(x) ≥ c6(n R)d

⎛⎜⎝ ∑
x∈B(n) (x )

u−1(x)

⎞⎟⎠
−1

, (4.5)
R/32 0 R/32 0
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where c5, c6 > 0 are constants. Next, we apply Lemma 3.7 and obtain

n−d
∑

x∈B(n)
R/32(x0)

u−1(x) ≤ ⟨1B(n)
R/8(x0), τ

2u−1
⟩

≤ E (n)(u, τ 2u−1) + ⟨P
B(n)

R/8(x0)
t 1, τ 2u−1

⟩

≤ c7µ
(n)(B(n)

R )R−α
+ ⟨P

B(n)
R/8(x0)

t 1, τ 2u−1
⟩,

(4.6)

where c7 > 0 and τ is a cut-off function with supp(τ ) = B(n)
R/8(x0), τ ≡ 1 in B(n)

R/32(x0) and
maxi=1,...,d ∥∇

(n)
i τ∥L∞(n−1Zd ) ≤ 2(3R/32)−1. By combining (4.5) and (4.6), we obtain

c8

(
R−α

+ R−d
⟨P

B(n)
R/8(x0)

t 1, τ 2u−1
⟩

)−1

≤ c6(n R)d

⎛⎜⎝ ∑
x∈B(n)

R/32(x0)

u−1(x)

⎞⎟⎠
−1

≤ inf
B(n)

R/32(x0)
u

for some c8 > 0. Finally, note that by (4.1) and (4.4), the left hand side converges to c8 R−α ,
as t ↗ ∞. Thus, (4.2) follows by taking the limit ε ↘ 0. □

Remark 4.3. Let us point out that the proof of (4.2) in [32] Lemma 4.1 is not applicable in
our setup since it does not allow for bounded range Markov chains.

Remark 4.4. One can prove the following near diagonal lower heat kernel bound: There exists
c > 0 such that for every c

(
θ
n

)α
< t ≤ c and x, y ∈ n−1Zd with |x − y| ≤

1
64c1/α t1/α it holds

p(n)
t (x, y) ≥ ct−d/α. (4.7)

his follows from running a similar argument as in the proof of (4.3) involving the weak
arabolic Harnack inequality for L̂ (n).

The next result establishes the survival estimate for (X (n)). Its proof is based on the parabolic
aximum principle Proposition 3.9 and Lemma 4.2 and uses the ideas from [32] Lemma 5.6

nd Theorem 7.2.1 in [11].

emma 4.5 (Survival Estimate). Assume that (K1), (K2), (Poinc), (Sob), (C-Tail0) hold true
or some α ∈ (0, 2], σ > 0 and θ ∈ ( d

α
,∞]. Then there exists ε, δ ∈ (0, 1) such that for every

∈ N, 32σ
n < R ≤ 1, 0 < t ≤ (δR)α , x0 ∈ n−1Zd it holds

inf
B(n)

R/32(x0)
P

B(n)
R/8(x0)

t 1B(n)
R/8(x0) ≥ ε. (4.8)

roof. The goal is to prove that for every (t, x) ∈ (0,∞) × B(n)
R/8(x0):

P
B(n)

R/8(x0)
t 1B(n)

R/8(x0)(x) ≥
G B(n)

R/8(x0)1(x) − t

∥G B(n)
R/8(x0)1∥L∞(B(n)

R/8(x0))

. (4.9)

Combining (4.9) with Lemma 4.2, we obtain that for every (t, x) ∈ (0,∞) × B(n)
R/32(x0):

P
B(n)

R/8(x0)
t 1 (n) (x) ≥

c2 Rα − t

BR/8(x0) c1 Rα
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for some constants 0 < c1 < c2. By choosing δ > 0 such that δα < c2
2 , we obtain that for

very 0 < t ≤ (δR)α and x ∈ B(n)
R/32(x0) it holds:

P
B(n)

R/8(x0)
t 1B(n)

R/8(x0)(x) ≥
c2 Rα − c2 Rα/2

c1 Rα
≥ ε

for ε = c2/(2c1). As this proves the desired result, it remains to show (4.9).
The main ingredient in the proof of (4.9) is the parabolic maximum principle Proposition 3.9.

We will apply it on (0, T ) × B(n)
R/8(x0) for some T > 0 to the function w defined by

w(t, x) := u(x) − φ(x)t − ∥u∥L∞(B(n)
R/8(x0)) P

B(n)
R/8(x0)

t 1B(n)
R/8(x0)(x),

here u =
∫ s

0 P
B(n)

R/8(x0)
t 1dt for some fixed s > 0, and φ ∈ L2(n−1Zd ) is chosen such that

≤ φ ≤ 1, φ ≡ 1 on B(n)
R/8(x0) and supp(φ) ⊂ B(n)

R/4(x0).
One immediately sees that w+(t) ∈ L2

c(B(n)
R/8(x0)) for every t > 0, and that w+(t) → 0 in

L2(n−1Zd ) as t ↘ 0. Furthermore, w is a subsolution to ∂t u − L (n)u = 0 in (0, T ) × B(n)
R/8(x0)

ince for every nonnegative ψ ∈ L2
c(B(n)

R/8(x0)) and t > 0 it holds:

⟨∂tw(t), ψ⟩ + E (n)(w(t), ψ) = −⟨φ + ∥u∥L∞(B(n)
R/8(x0))∂t P

B(n)
R/8(x0)

t 1B(n)
R/8(x0), ψ⟩ + E (n)(w(t), ψ)

= −⟨φ,ψ⟩ + E (n)(u, ψ) − tE (n)(φ,ψ)

− ∥u∥L∞(B(n)
R/8(x0))

(
⟨∂t P

B(n)
R/8(x0)

t 1B(n)
R/8(x0), ψ⟩ + E (n)(P

B(n)
R/8(x0)

t 1B(n)
R/8(x0), ψ)

)
≤ ⟨1B(n)

R/8(x0) − φ,ψ⟩ − tE (n)(φ,ψ),

here we used that (t, x) ↦→ P
B(n)

R/8(x0)
t 1B(n)

R/8(x0)(x) solves ∂t u − L (n)u = 0 in (0,∞) × B(n)
R/8(x0)

nd that u solves −L (n)u = 1 − P
B(n)

R/8(x0)
t 1 in B(n)

R/8(x0). By the definition of φ,ψ , note that
1B(n)

R/8(x0) − φ,ψ⟩ ≤ 0 and

−E (n)(φ,ψ) = −2nα−d
∑

x∈B(n)
R/8(x0)

∑
y∈n−1Zd

(1 − φ(y))ψ(x)C (n)(x, y) ≤ 0.

herefore, w is a weak subsolution to ∂t u − L (n)u = 0 in (0, T ) × B(n)
R/8(x0) and the weak

arabolic maximum principle is applicable to w. Since T > 0 was arbitrary, it follows that
≤ 0 in (0,∞) × B(n)

R/8(x0) and therefore (4.9) holds true after taking the limit s ↗ ∞. This
oncludes the proof. □

emark 4.6. In probabilistic terms (4.8) yields the existence of ε, δ ∈ (0, 1) such that for
very σ

4n < R ≤
1
8 and every x0 ∈ n−1Zd :

Px
(
τB(n)

R (x0) ≤ (δR)α
)

≤ 1 − ε, ∀x ∈ B(n)
R/4(x0). (4.10)
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As a consequence, we have that for every x ∈ n−1Zd :

Px

(
sup

t≤(δR)α
|X (n)

t − x | > R

)
≤ 1 − ε.

his estimate is weaker than Theorem 4.1 since ε > 0 cannot be arbitrary in (4.10).

In order to establish Theorem 4.1, we iterate statements of the form (4.8) (resp. (4.10)) using
he following lemma. We adapt the proof of Lemma 7.3.1 in, [11], which is based on Lemma
.6 in [31]. A similar iteration of survival estimates is carried out for the proof of Theorem
.1 in [34] and Theorem 5.7 in [30].

emma 4.7 (Iteration Lemma). Assume that (K1), (K2), (Poinc), (Sob), (C-Tail0) hold true
or some α ∈ (0, 2], σ > 0 and θ ∈ ( d

α
,∞]. Let H > 0, C ∈ (1, 2), n ∈ N and σ

n < R ≤
1
C

ith σ
4n <

(C−1)R
3 ≤

1
8 and x0 ∈ n−1Zd . Assume that for some γ0 ∈ (0, 1) and some open set

M ⊂ B(n)
R (x0):

1 − P
B(n)

R (x0)
t 1(x) ≤ H, ∀x ∈ M, 0 < t ≤ (γ0 R)α. (4.11)

hen there exists κ ∈ (0, 1), independent of H, R,C, n, γ0 and γ ∈ (0, 1), independent of R, n:

1 − P
B(n)

C R (x0)
t 1(x) ≤ κH,∀x ∈ M, 0 < t ≤ (γ R)α.

roof. Let ε, δ0 be the ε, δ from Lemma 4.5 and δ = min(γ0, δ0). Let ψ ∈ L2(n−1Zd ) be such
hat 0 ≤ ψ ≤ 1, ψ ≡ 1 on B(n)

R+
C−1

3 R
(x0) and supp(ψ) ⊂ B(n)

R+
2(C−1)

3 R
(x0). Define for β > 0 the

function

u(t, x) = P
B(n)

R (x0)
t 1(x) −

P
B(n)

C R (x0)
t 1(x) − εψ(x)

1 − ε
− βtψ(x).

e prove that the parabolic maximum principle Proposition 3.9 is applicable to u in (0, T ) ×

B(n)
R (x0), where T = (δ C−1

3 R)α , if β > 0 is chosen suitably.
First, by application of the survival estimate (see Lemma 4.5) to balls of the form B(n)

C−1
3 R

(y)

or y ∈ B(n)
R+

2(C−1)
3 R

(x0), we obtain that

P
B(n)

C R (x0)
t 1(x) ≥ ε, x ∈ B(n)

R+
2(C−1)

3 R
(x0), 0 < t ≤ T .

his is a simple consequence of the fact that B(n)
C R(x0) can be covered by the family of balls

B(n)
C−1

3 R
(y) as above and since P

B(n)
C R (x0)

t 1(x) ≥ P
B(n)

C−1
3 R

(y)

t 1(x) due to (3.15). By definition of ψ ,

we conclude that for every t ≤ T on B(n)
R it holds that P

B(n)
C R (x0)

t 1− εψ ≥ 0. Consequently, we
have that u+(t) ∈ L2

c(B(n)
R (x0)) for every 0 < t ≤ T .

Further, one easily sees that u+(t) → 0 in L2(B(n)
R (x0)), as t ↘ 0, as a consequence of the

B(n)
R (x0) B(n)

C R (x0)

strong continuity of (Pt ) and (Pt ).
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It remains to check that u is a subsolution to ∂t u − L (n)u = 0 in (0, T ) × B(n)
R (x0). We take

n arbitrary function φ ∈ L2
c(B(n)

R (x0)) with φ ≥ 0 and compute for t ∈ (0, T ):

⟨∂t u(t), φ⟩ + E (n)(u(t), φ) =
ε

1 − ε
E (n)(ψ, φ) − β⟨ψ, φ⟩ − tβE (n)(ψ, φ)

≤
ε

1 − ε
E (n)(ψ, φ) − β⟨1, φ⟩,

where we used that

E (n)(ψ, φ) = 2nα−d
∑

x∈n−1Zd

∑
y∈n−1Zd

(ψ(x) − ψ(y))φ(x)C (n)(x, y)

= 2nα−d
∑

x∈B(n)
R

∑
y∈n−1Zd\B(n)

R+
C−1

3 R
(x0)

(1 − ψ(y))φ(x)C (n)(x, y) ≥ 0.

ext, we apply (C-Tail0) with r =
C−1

3 R and compute that

E (n)(ψ, φ) ≤ 2nα−d
∑

x∈B(n)
R (x0)

φ(x)

⎛⎜⎜⎜⎝ ∑
y∈n−1Zd\B(n)

C−1
3 R

(x)

C (n)(x, y)

⎞⎟⎟⎟⎠ ≤ c
(

C − 1
3

R
)−α

⟨1, φ⟩,

here c > 0 is a constant. We choose β =
cε

1−ε

(C−1
3 R

)−α
and obtain that for t ∈ (0, T )

⟨∂t u(t), φ⟩ + E (n)(u(t), φ) ≤ 0,

as desired. Note that when E (n)(ψ, φ) = 0 (i.e., for n large in the bounded range-case), we can
simply choose β = 0.

Next, we apply the parabolic maximum principle (Proposition 3.9), which yields that u ≤ 0
in (0, T ) × B(n)

R (x0). By using the definition of u, as well as (4.11), we obtain that for every
0 < t < T = min(T, (δR)α) it holds:

1 − H − βt ≤ P
B(n)

R (x0)
t 1− βt ≤

P
B(n)

C R (x0)
t 1− ε

1 − ε
, ∀x ∈ M,

which is equivalent to

1 − P
B(n)

C R (x0)
t 1 ≤ (1 − ε)(H + βt), ∀x ∈ M.

Finally, we note that if 0 < t < min
(

T, Hε
2(1−ε)β

)
, we obtain that

1 − P
B(n)

C R (x0)
t 1(x) ≤ κH, ∀x ∈ M, (4.12)

here κ = 1 −
ε
2 . If β = 0, we set Hε

2(1−ε)β = ∞. Note that by the definition of T and β, we
an find a constant γ > 0, independent of R, such that (4.12) holds for every 0 < t ≤ (γ R)α .

This concludes the proof. □

We are finally in the position to prove Theorem 4.1.

Proof of Theorem 4.1. Let A, B ∈ (0, 1) be arbitrary and x0 ∈ n−1Zd . Note that it is enough
o prove Theorem 4.1 for A ∈ (0, 1 ) by inclusion of sets. Our goal is to find t ∈ (0, 1), N ∈ N
4 0
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such that for every 0 < R ≤ 1 and n ≥ N :

1 − P
B(n)

AR (x0)
t 1(x) ≤ B, ∀x ∈ B(n)

AR/2(x0), 0 < t ≤ (t0 R)α.

e set η = A/2 and, for k ∈ N, we define Rk = CkηR, where C ∈ (1, 2) is to be chosen
ater. First, we have the following trivial estimate for every n ∈ N, 0 < R ≤ 1:

1 − P
B(n)

R0
(x0)

t 1(x) ≤ 1, ∀x ∈ B(n)
R0

(x0) = B(n)
AR/2(x0), t > 0.

e observe that Lemma 4.7 yields that

1 − P
B(n)

R1
(x0)

t 1(x) ≤ κ, ∀x ∈ B(n)
AR/2(x0), 0 < t ≤ (γ R)α

or some γ, κ ∈ (0, 1) in case σ
4n ≤

(C−1)AR
6 . After having chosen C ∈ (1, 2), we will determine

N ∈ N (depending on R) such that this condition is satisfied for every n ≥ N . By iterating
he above line, we obtain that for every k ∈ N (as long as Rk ≤

1
4 ):

1 − P
B(n)

Rk
(x0)

t 1(x) ≤ κk, ∀x ∈ B(n)
AR/2(x0), 0 < t ≤ (γk R)α

or some γk ∈ (0, 1) that depend on C but not on R. We want to choose k ∈ N and C ∈ (1, 2)
uch that (i) κk

≤ B and (ii) CkηR ≤ AR hold true. By defining k :=

⌊
log(A/η)

log(C)

⌋
=

⌊
log(2)
log(C)

⌋
, we

uarantee (ii). Note that by definition, k ↗ ∞ as C ↘ 1. Therefore, we can choose C −1 > 0

mall enough, such that (i) holds, namely we choose C =
1
2

(
2

log κ
log B + 1

)
. This yields

1 − P
B(n)

AR (x0)
t 1(x) ≤ 1 − P

B(n)
Rk

(x0)
t 1(x) ≤ κk

≤ B, ∀x ∈ B(n)
AR/2(x0), 0 < t ≤ (γk R)α.

pon our definition of C , it is guaranteed that σ
4n ≤

(C−1)AR
6 is satisfied for every n ≥ N :=

3σ
ARk

(
2

log κ
log B − 1

)−1
⌉

. Therefore, the desired result holds true with the choice t0 = γk . □

5. Convergence

Given T > 0, x ∈ Rd and a sequence (xn) ⊂ n−1Zd with xn → x , our goal is to prove that –
under suitable assumptions – the sequence of Pxn -laws of (X (n)

t )t∈[0,T ] converges weakly, with
respect to the D([0, T ];Rd )-topology, to a probability Px and to identify the limiting process
X by providing the associated bilinear form.

The following two theorems collect statements that outline the path towards the desired weak
convergence of (X (n)). First, tightness of the laws of X (n) is proved and then, weak convergence

f (X (n)) along sub-subsequences is established. These results are contained in Theorem 5.1
and follow from Corollary 3.6 and Theorem 4.1. In order to guarantee convergence of the full
sequence of laws of (X (n)) we need to show that the limits in Theorem 5.1 are independent
of their respective subsequences. We will do so by proving that all limits correspond to the
same bilinear form. In this respect, Theorem 5.2 provides a suitable criterion for the desired
convergence in terms of the corresponding bilinear forms.

Our proofs follow the technique that was developed in [7,8,23,36,51]. Nevertheless, we
clarify some of the arguments since Theorem 4.1 and Corollary 3.6 differ slightly from their
counterparts in the aforementioned articles.
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Given functions f : Rd
→ R, g : n−1Zd

→ R, we define the restriction operator to n−1Zd

y R(n) f (x) = f (x) for every x ∈ n−1Zd and the extension operator E (n)g(x) = g([x]n) for
very x ∈ Rd , where [x]n = (⌊nxi⌋/n)d

i=1 ∈ n−1Zd .

heorem 5.1. Assume that (K1), (K2), (Poinc), (Sob), (C-Tail0), (C-Tail∞) hold true for
ome α ∈ (0, 2], σ > 0 and θ ∈ ( d

α
,∞]. Let (xn)n ⊂ n−1Zd and x ∈ Rd with xn → x and

T > 0. Then, the Pxn -laws of (X (n)) are tight in D([0, T ];Rd ). Moreover, for every subsequence
n j ) ⊂ N there exists a further subsequence (n jk ) ⊂ (n j ) such that

(i) For each f ∈ Cc(Rd ) and λ > λ0, (E (n jk )(P
(n jk )
t R(n jk )( f )))k and E (n jk )(U

(n jk )
λ R(n jk )( f ))k

converge uniformly on compact subsets.
(ii) Write Pt f := limk→∞ E (n jk )(P

(n jk )
t R(n jk )( f )). Then Pt is linear for every t and (Pt ) is a

semigroup on Cc(Rd ), belonging to a strong Markov process on Rd .
(iii) The Pxn jk -laws of (X

(n jk )
t )t∈[0,T ] converge weakly, with respect to the D([0, T ];Rd )-

topology, to a probability Px .

In the statement of the theorem, λ0 > 0 denotes the constant from Lemma 2.8.

roof. Note that from Theorem 4.1 it follows that for every A > 0 and B ∈ (0, 1) there are
constant γ > 0 and N ∈ N such that for every x ∈ n−1Zd and every n ≥ N :

Px
(
τB(n)

A (x) ≤ γ
)

≤ B. (5.1)

ow, let T > 0, x ∈ Rd and (xn)n ⊂ n−1Zd with xn → x . Moreover, let τn ∈ [0, T ] be a
equence of stopping times for X (n), (δn) ⊂ [0, 1] with δn → 0. Then, by (5.1) and the strong

arkov property it follows for every n ≥ N with δn ≤ γ :

Pxn
(
|X (n)
τn+δn

− X (n)
τn

| > A
)

= PX (n)
τn

(
|X (n)
δn

− X (n)
0 | > A

)
≤ sup

x∈n−1Zd
Px

(
τB(n)

A (x) ≤ γ
)

≤ B.

his verifies condition (A) in [1]. Moreover, tightness of
(

supt∈[0,T ] |X
(n)
t − X (n)

t− |

)
n

follows

rom the Lévy system formula for (X (n)) (see Lemma 2.3), which implies that for A > 1:

Px

(
sup

t∈[0,T ]
|X (n)

t − X (n)
t− | > A

)
≤ Ex

(∑
t≤T

1
{|X (n)

t −X (n)
t− |>A}

(t)

)

= Ex

⎛⎝∫ T

0

∑
y∈n−1Zd

1
{|X (n)

t −y|>A}
(t)nαC (n)(X (n)

t , y)dt

⎞⎠
≤ T sup

x∈n−1Zd
nα

∑
y∈n−1Zd :|x−y|>A

C (n)(x, y) ≤ cT A−δ

y (C-Tail∞). Since xn → x , it follows that the laws of (X (n)) are tight in D([0, T ];Rd ).
Now, let (n j ) ⊂ N be a subsequence. We prove the existence of a further subsequence

uch that (i), (ii), (iii) hold true. First, given λ > λ0 and f ∈ Cc(Rd ), one can deduce from
3.10) in Corollary 3.6 that the family (E (n j )(U

(n j )
λ R(n j )( f )) is equicontinuous and equibounded.

herefore, convergence of the family along a subsequence follows from the Arzelà–Ascoli
heorem.

Let (ti )i∈N ⊂ (0,∞) and ( fm)m∈N ⊂ Cc(Rd ) be dense. Note that (3.8) of Corollary 3.6
mplies that the family (E (n j )(P

(n j )
R(n j )( f̃ ))) is equicontinuous and equibounded, where
ti m j,i,m
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we define f̃m := fm/∥ fm∥L∞(n−1Zd ). Again, by the Arzelà–Ascoli theorem one can extract

a subsequence (n jk ) ⊂ (n j ) such that (E (n jk )(P
(n jk )
ti R(n jk )( f̃m)))k converges uniformly on

compacts as k → ∞. We write Pti f̃m for the limit object and point out that it can be extended
to all t > 0 using the same argument, as in [36, p. 373]: Find a subsequence (til )l ⊂ (ti )i such
that til → t as l → ∞ and prove that (E (n jk )(P

(n jk )
t R(n jk )( f̃m)))k is a Cauchy-sequence with

respect to uniform convergence on compacts, using that

|E (n jk )(P
(n jk )
t R(n jk )( f̃m)) − E (n jk )(P

(n jk )
til

R(n jk )( f̃m))| → 0, as k, l → ∞,

|E (n jk )(P
(n jk )
til

R(n jk )( f̃m)) − E (n jk′
)(P

(n jk′
)

til
R(n jk′

)( f̃m))| → 0, as k, k ′
→ ∞,

|E (n jk′
)(P

(n jk′
)

til
R(n jk′

)( f̃m)) − E (n jk′
)(P

(n jk′
)

t R(n jk′
)( f̃m))| → 0, as k ′, l → ∞,

where all convergence statements above are meant to be in the sense of uniform convergence on
compacts. While the second convergence result is already known from above, the first and third
line follow from estimate (3.9) of Corollary 3.6. Therefore, the limit Pt f̃m exists uniformly
on compacts for every t > 0. By density of ( fm) ⊂ Cc(Rd ), we have proved the desired
convergence result in (ii). Following the arguments from [36, p. 373], one can establish that
(Pt ) extends to a semigroup on Cc(Rd ) and therefore is associated to a strong Markov process
on Rd . This proves (ii). (iii) follows from standard arguments (see [36, p. 373–374], [7, Prop.
6.2(b)]): While tightness yields that the laws of (X (n jk )) are precompact in the sense that every
subsequence of the laws must weakly converge along some further subsequence, properties
(i), (ii) guarantee that the weak limit is independent of the actual subsequence since its finite
dimensional distributions are determined by (Pt ), and hence coincide. This implies that the
laws of (X (n jk )) already converge. □

The following result serves as the main lemma for proving the main results of this article.
Having at hand Theorem 3.3 and Theorem 5.1, its proof follows along the lines of [36,
p. 374–375], [8, p. 132–133].

Theorem 5.2. Assume that (K1), (K2), (Poinc), (Sob), (C-Tail0), (C-Tail∞) hold true for some
α ∈ (0, 2], σ > 0 and θ ∈ ( d

α
,∞]. Let (xn)n ⊂ n−1Zd and x ∈ Rd with xn → x and T > 0.

et (E,F) be a regular lower bounded semi-Dirichlet form on L2(Rd ) with core F0 ⊂ F and
λ0 ≥ 0. Assume that for every λ > λ0, f ∈ Cc(Rd ), g ∈ F0 and every sequence (n j ) ⊂ N

uch that (E (n j )(U
(n j )
λ R(n j )( f ))) j converges uniformly on compact subsets, the following holds:

(a) H := lim j→∞ E (n j )(U
(n j )
λ R(n j )( f )) ∈ F ,

(b) there exists a further subsequence (n jk ) ⊂ (n j ) such that for every g ∈ F0, it holds

E (n jk )(U
(n jk )
λ R(n jk ) f, R(n jk )g) → E(H, g), as k → ∞. (5.2)

hen the full sequence of Pxn -laws of (X (n)
t )t∈[0,T ] converges weakly to a probability Px with

espect to the D([0, T ];Rd )-topology. Write X for the canonical process on D([0, T ];Rd ),
hen the process (X,Px ) is the Markov process associated with the form (E,F).

roof. Due to (iii) of Theorem 5.1, we know that given any subsequence (n j ) ⊂ N, the Pxn j

aws of (X (n j )) j converge weakly along some further subsequence (n jk ) to a probability Px . In
rder for convergence of the full sequence (X (n)) to hold true, we need to prove that the limit
f (X (n jk )) is independent of the given subsequence (n ). Write u := U

(n jk )
R(n jk )( f ) and
jk n jk λ
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H := limk→∞ E (n jk )un jk
and assume that (a), (b) hold true. It follows that

E(H, g) = lim
l→∞

E (n jkl
)
(un jkl

, R
(n jkl

)
g)

= lim
l→∞

⟨R
(n jkl

)
f, R

(n jkl
)
g⟩L2(n−1

jkl
Zd ) − λ⟨un jkl

, R(n jk )g⟩L2(n−1
jkl
Zd )

= ( f, g)L2(Rd ) − λ(H, g)L2(Rd )

(5.3)

or every g ∈ F0, where (n jkl
) ⊂ (n jk ) denotes the subsequence from (b) and we used the

act that un jk
is the λ-resolvent for E (n jkl

)
and that (E (n jk )un jk

, g)L2(Rd ) → (H, g)L2(Rd ). The
atter is due to the fact that (E (n jk )un jk

)k converges uniformly on compacts by Theorem 3.3,
g has compact support, and dominated convergence. Using that F0 is dense in F with respect
o the norm induced by E s(·, ·) + λ0∥ · ∥

2
L2(Rd )

, (5.3) holds for every g ∈ F and therefore we
dentify Uλ f = H ∈ F , i.e., H is the λ-resolvent of f for E . Here, E s

:=
1
2 (E(u, v)+E(v, u)).

herefore, the limit H does not depend any more on the choice of (n j ), so we conclude that
(n)
λ (R(n) f ) → H = Uλ f . Thus, also the bilinear form corresponding to the limit process of

X (n j )) j is uniquely determined. This concludes the proof. □

It remains to verify conditions (a), (b) in order to guarantee weak convergence of the full
equence (X (n)

t )t∈[0,T ]. In particular, this amounts to proving that all limits in (5.2) coincide. We
ill do so by providing the limiting bilinear form E being governed by coefficient functions

ai, j )d
i, j=1, (bi )d

i=1 on Rd in the case α = 2 and a jumping kernel K on Rd
×Rd when α ∈ (0, 2),

hich will be determined uniquely through the family of weights (C (n)). The existence of such
unctions will be posed as a separate assumption. We treat the two cases α = 2 and α ∈ (0, 2)
eparately in the following two sections.

.1. Approximation of strongly local forms

In this section, we assume that (K1), (K2), (Poinc) and (C-Tail0) hold true with α = 2,
> 0 and θ ∈ ( d

2 ,∞]. Furthermore, we assume that X (n) dominates the nearest neighbor
andom walk (NNRW) in the following sense:

There exists B > 0 such that for every u ∈ L2(n−1Zd ):

E (n),C (n)
s (u, u) ≥ BE (n)

N N (u, u). (5.4)

ere, the NNRW is defined through the weights C (n)
N N : n−1Zd

× n−1Zd
→ [0, 1

2 ], given by

C (n)
N N (x, y) :=

1
2
1{|x−y|=1/n}(x, y),

E (n)
N N (u, u) := n2−d

∑
x∈n−1Zd

∑
y∈n−1Zd

(u(x) − u(y))2C (n)
N N (x, y).

emark 5.3. A sufficient condition for comparability to the NNRW (see (5.4)) is the existence
f δ > 0 and N ∈ N such that for any pair (x, y) ∈ n−1Zd

×n−1Zd with |x − y| =
1
n there exist

k ≤ N , x0 = x, x1, . . . , xk = y ∈ n−1Zd such that C (n)
s (xi , xi+1) ≥ δ for every i ∈ {0, . . . , k}.

Moreover, we assume that X (n) is of bounded range, i.e., that there exists a constant C > 0
uch that C (n)(x, y) = 0 if |x − y| ≥ C/n.
265
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(

L

Remark 5.4.

(i) We recall that if X (n) is of bounded range, then (2.8) is a sufficient condition for (C-Tail0),
(C-Tail∞).

(ii) It is possible to drop assumption (C-Tail∞) completely because all statements of Theo-
rem 5.1, Theorem 5.2 remain valid due to assumption (C-Tail∞) being trivial for n > C .
Moreover, (Sob) follows from the global Sobolev inequality for E (n)

N N and (2.6).
(iii) We decided to restrict ourselves to processes of bounded range in this section for the

sake of simplicity. However, we believe our method of proof to work also for processes
of unbounded range by adaptations similar to [7].

We require some additional notation (see [23]) in order to introduce the connection between
C (n)) and the coefficient functions ai, j , bi which determine the limiting form (E, H 1(Rd )):

• First, recall that ∇
(n)
i u(x) := n(u(x + ei/n) − u(x)) for any function u : n−1Zd

→ R.
• Define P(x, y) as the set of shortest nearest neighbor paths (SNNP) in n−1Zd from

x ∈ n−1Zd to y ∈ n−1Zd and set

P x,y(w, z) =
1

|P(x, y)|

∑
σ∈P(x,y)

1{σ=(x=σ0,...,y=σl ):∃k≤l:w=σk−1,z=σk }(σ ), w, z ∈ n−1Zd ,

i.e., P x,y(w, z) is the ratio of SNNP from x to y using the edge (w, z) to all SNNP from
x to y.

The quantity P x,y(w, z) is motivated by the following two useful identities (see also [23]):

emma 5.5 (See Lemma 5.1 in [8], p. 138 in [8]). Let f ∈ L2(n−1Zd ). Then, for every
x, y ∈ n−1Zd , the following identities hold true:

f (x) − f (y) =
1
n

d∑
i=1

∑
z∈n−1Zd

(
P x,y(z + ei/n, z) − P x,y(z, z + ei/n)

)
∇

(n)
i f (z), (5.5)

n(xi − yi ) =

∑
z∈n−1Zd

(
P x,y(z + ei/n, z) + P x,y(z, z + ei/n)

)
, i = 1, . . . , d. (5.6)

• For i, j ∈ {1, . . . , d}, z, w ∈ n−1Zd we define as in [23]:

G(n)
i, j (z, w) :=

∑
x∈n−1Zd

∑
y∈n−1Zd

(P x,y(z + ei/n, z) − P x,y(z, z + ei/n))

(P x,y(w + e j/n, w) − P x,y(w,w + e j/n))C (n)
s (x, y).

• We introduce a similar quantity for C (n)
a , namely for i ∈ {1, . . . , d}, x, z ∈ n−1Zd :

H (n)
i (x, z) :=

∑
y∈n−1Zd

(P x,y(z + ei/n, z) − P x,y(z, z + ei/n))C (n)
a (x, y).

• For z ∈ n−1Zd , we define

F (n)
i, j (z) =

∑
w∈n−1Zd

G(n)
i, j (w, z), B(n)

i (z) = n
∑

x∈n−1Zd

H (n)
i (x, z).

(n) (n) (n) (n) (n) (n)
We abuse notation and write Fi, j (z) := E Fi, j (z), Bi (z) := E Bi (z).
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By a straightforward computation, similar to (5.1) in [8], one verifies that

E (n)( f, g) = n2−d
∑

x∈n−1Zd

∑
y∈n−1Zd

( f (x) − f (y))(g(x) − g(y))C (n)
s (x, y)

+ 2n2−d
∑

x∈n−1Zd

∑
y∈n−1Zd

( f (x) − f (y))g(x)C (n)
a (x, y)

= n−d
d∑

i, j=1

∑
z∈n−1Zd

∑
w∈n−1Zd

∇
(n)
i f (z)∇ (n)

j g(w)G(n)
i, j (w, z)

+ 2n1−d
d∑

i=1

∑
x∈n−1Zd

∑
z∈n−1Zd

∇
(n)
i f (z)g(x)H (n)

i (x, z).

We are now ready to formulate an assumption on the coefficient functions (ai, j )d
i, j=1, (bi )d

i=1
f the limiting bilinear form:

ssumption 1. There exist ai, j , bi : Rd
→ R, i, j ∈ {1, . . . , d} with ai, j = a j,i , such

hat ∥F (n)
i, j − ai, j∥L1

loc(Rd ) → 0 and ∥B(n)
i − bi∥L1

loc(Rd ) → 0 as n → ∞, and moreover ai, j is
niformly elliptic, bounded, and bi satisfies |bi |

2
∈ Lθ (Rd ).

Note that Assumption 1 is sufficient for (E, H 1(Rd )) defined by

E( f, g) = Eai, j ( f, g) + Ebi ( f, g)

=

∫
Rd

ai, j (x)∂i f (x)∂ j g(x)dx + 2
∫
Rd

bi (x)∂i f (x)g(x)dx
(5.7)

s a regular lower bounded semi-Dirichlet form on L2(Rd ) (see [41], p. 30–35 in [45]).
Moreover, Assumption 1 implies that F (n)

i, j → ai, j , B(n)
i → bi in measure on each compact

et and that a subsequence converges pointwise a.e.

emark 5.6. Note that F (n)
i, j ∈ L∞(n−1Zd ) and |B(n)

i |
2

∈ Lθ (n−1Zd ) with norms uniform in
. Boundedness of F (n)

i, j can be proved as follows: For every n ∈ N z ∈ n−1Zd :

F (n)
i, j (z) ≤ n2

∑
x∈n−1Zd :|x−z|≤ C

n

∑
y∈n−1Zd :|x−y|≤

C
n

|x − y|
2C (n)

s (x, y)

≤ Cd sup
x∈n−1Zd

n2
∑

y∈n−1Zd :|x−y|≤
C
n

|x − y|
2C (n)

s (x, y) ≤ c1 < ∞

or some c1 > 0, due to (2.5). Moreover, we used (5.6) and the fact that X (n) is of bounded
ange. Besides, we have for every z ∈ n−1Zd :

B(n)
i (z) ≤ n2

∑
x∈n−1Zd :|x−z|≤ C

n

∑
y∈n−1Zd :|x−y|≤

C
n

|x − y||C (n)
a (x, y)|

≤

⎡⎢⎢⎣ ∑
x :|x−z|≤ C

⎛⎜⎝n2
∑

y:|x−y|≤
C

|x − y|
2 J (n)(x, y)

⎞⎟⎠
2θ

2θ−1
⎤⎥⎥⎦

1−
1

2θ
n n
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⎡⎢⎣ ∑
x :|x−z|≤ C

n

⎛⎜⎝n2
∑

y:|x−y|≤
C
n

|C (n)
a (x, y)|2

J (n)(x, y)

⎞⎟⎠
θ⎤⎥⎦

1
2θ

≤ c2Cd
(

1−
1

2θ

)⎡⎢⎣ ∑
x :|x−z|≤ C

n

⎛⎜⎝n2
∑

y:|x−y|≤
C
n

|C (n)
a (x, y)|2

J (n)(x, y)

⎞⎟⎠
θ⎤⎥⎦

1
2θ

for some c2 > 0, due to (2.5), (5.6) and (K1). Consequently,

∥(B(n)
i )2

∥
θ

Lθ (n−1Zd ) ≤ c3n−d
∑

z∈n−1Zd

∑
x :|x−z|≤ C

n

⎛⎜⎝n2
∑

y:|x−y|≤
C
n

|C (n)
a (x, y)|2

J (n)(x, y)

⎞⎟⎠
θ

≤ c4Cd

n2
∑

y∈n−1Zd

|C (n)
a (·, y)|2

|J (n)(·, y)|


θ

Lθ (n−1Zd )

≤ c5

or some c3, c4, c5 > 0.

The following theorem is the main result of this article in case α = 2:

heorem 5.7 (Functional Central Limit Theorem). Assume that (C (n)) satisfies (K1), (K2),
Poinc) and (C-Tail0) with α = 2, σ > 0 and θ ∈ ( d

2 ,∞]. Furthermore, we assume that
X (n) dominates the NNRW and is of bounded range. Assume that there are ai, j , bi such that

ssumption 1 holds true. Let (xn)n ⊂ n−1Zd and x ∈ Rd with xn → x and T > 0. Then
he Pxn -laws of (X (n)

t )t∈[0,T ] converge weakly, with respect to the D([0, T ];Rd )-topology to
he Px -law of (X t )t∈[0,T ], where (X,Px ) is the Markov process corresponding to the form
E, H 1(Rd )).

roof. The proof uses the same ideas as in [8]. We need to verify properties (a), (b) from
heorem 5.2. Let f ∈ Cc(Rd ), g ∈ C2

c (Rd ), (n j ) ⊂ N. We denote un j = U
(n j )
λ R(n j ) f and

H = lim j→∞ E (n j )un j . The proof of (a) works exactly as in [8]. Note that uniform boundedness

f (E
(n jk )
N N (E (n jk )un jk

, E (n jk )un jk
))k follows from Gårding’s inequality for E (n) (see (2.10)), as

ell as (2.19), and (5.4).
It therefore remains to show (b), i.e., that there exists a further subsequence (n jk ) ⊂ (n j ) such

hat E (n jk )(un jk
, R(n jk )g) → E(H, g), as k → ∞. For simplicity of notation, we will assume

hat already (un) converges. It was shown already in [8] that E (n),C (n)
s (un, R(n)g) → Eai, j (H, g)

onverges along some subsequence. Note that (C-Tail0) implies (2.5), i.e., assumption (A3)
n [8], which is required for their argument to work. Therefore, it remains for us to prove that
lso

E (n),C (n)
a (un, R(n)g) → Ebi (H, g), as n → ∞ (5.8)
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along some subsequence. Let us denote K (n)
= supp(g) ∩ n−1Zd . We can write

E (n),C (n)
a (un, R(n)g) = 2n2−d

∑
x∈n−1Zd

∑
y∈n−1Zd

(un(x) − un(y))g(x)C (n)
a (x, y)

= 2n1−d
d∑

i=1

∑
z∈n−1Zd

∑
x∈K (n):|x−z|≤ C

n

∇
(n)
i un(z)g(x)H (n)

i (x, z)

= 2n−d
d∑

i=1

∑
z∈n−1Zd

(
B(n)

i (z)∇ (n)
i un(z)g(z)

+

∑
x∈K (n):|x−z|≤ C

n

nH (n)
i (x, z)∇ (n)

i un(z)(g(x) − g(z))
)

=: I (n)
1 + I (n)

2 .

e separately analyze the summands I (n)
1 and I (n)

2 . It will turn out that I (n)
1 → Ebi (H, g) (up

o a subsequence), while I (n)
2 → 0, yielding (5.8), as desired.

For I (n)
2 , we argue as follows:

|I (n)
2 | =

⏐⏐⏐⏐⏐⏐⏐2n1−d
d∑

i=1

∑
z∈n−1Zd

∑
x∈K (n):|x−z|≤ C

n

H (n)
i (x, z)∇ (n)

i un(z)(g(x) − g(z))

⏐⏐⏐⏐⏐⏐⏐
≤ c1

⎛⎝ sup
|z−z′|≤

1
n

|un(z) − un(z′)|

⎞⎠ ∥∇g∥∞

⏐⏐⏐⏐⏐⏐⏐n1−d
d∑

i=1

∑
z∈n−1Zd

∑
x∈K (n):|x−z|≤ C

n

H (n)
i (x, z)

⏐⏐⏐⏐⏐⏐⏐ ,
here c1 > 0 depends only on C and we used the definition of ∇

(n)
i un(z), and the mean value

heorem for g(x) − g(z), which is applicable since x ∈ K (n)
: |x − z| ≤ C/n is close to z.

Note that the n from ∇
(n)
i cancels with the n−1 from (g(x) − g(z)) ≤ Cn−1

∥∇g∥∞). Finally:⏐⏐⏐⏐⏐⏐⏐n1−d
d∑

i=1

∑
z∈n−1Zd

∑
x∈K (n):|x−z|≤ C

n

H (n)
i (x, z)

⏐⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐⏐n1−d
d∑

i=1

∑
z∈n−1Zd

∑
x∈K (n):|x−z|≤ C

n

∑
y∈n−1Zd :|x−y|≤

C
n

(
P x,y(z + ei/n, z) − P x,y(z, z + ei/n)

)
C (n)

a (x, y)

⏐⏐⏐⏐⏐⏐⏐
≤ n2−d

∑
x∈K (n)

∑
y∈n−1Zd :|x−y|≤

C
n

|x − y||C (n)
a (x, y)|

≤ c2

⎡⎢⎢⎣n−d
∑

x∈K (n)

⎛⎜⎝n2
∑

y:|x−y|≤
C
n

|x − y|
2
|J (n)(x, y)|

⎞⎟⎠
2θ

2θ−1
⎤⎥⎥⎦

2θ−1
2θ n2

∑
y:|·−y|≤

C
n

|C (n)
a (·, y)|

2

J (n)(·, y)


1
2

Lθ (K (n))

≤ c3µ
(n)(K (n))

2θ−1
2θ

for some c2, c3 > 0, where we used (5.6), (2.5) and (K1). Note that the resulting term in the
revious estimate is bounded uniformly in n due to the fact that µ(n)(K (n)) → | supp(g)| <
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∞. Recall that due to (i) in Theorem 5.1, the family (un) is equicontinuous and therefore
up

|z−z′|≤
1
n
|un(z) − un(z′)| → 0 as n → ∞. Consequently, |I (n)

2 | → 0, as desired.

Now, we consider I (n)
1 . We write

I (n)
1 = 2n−d

d∑
i=1

∑
z∈n−1Zd

B(n)
i (z)∇ (n)

i un(z)g(z)

= 2
d∑

i=1

∫
Rd

B(n)
i (z)∇ (n)

i E (n)un(z)E (n) R(n)g(z)dz.

here exists a subsequence of (E (n)
∇

(n)
i un(z))n converging weakly in L2(Rd ) to ∂i H . This

ollows from the proof of (a) in [8]. Moreover, we can extract a further subsequence along
hich B(n)

i → bi boundedly and pointwise almost everywhere and also E (n) R(n)g → g
niformly on compacts. Along this further subsequence, we have that

I (n)
1 → 2

∫
Rd

bi (z)∂i H (z)g(z)dz = Ebi (H, g).

e have shown that properties (a), (b) of Theorem 5.2 hold, which yields the desired result. □

Theorem 5.7 answers question (i) from the beginning for the case α = 2 and bounded
ange weights C (n). Now, we want to address question (ii), namely provide explicit weights

(n) that satisfy the assumptions of Theorem 5.7 and approximate a process that corresponds to
previously given form of type (5.7). The following example contains an explicit computation
f B(n)

i in a special case:

xample 5.8. Let us assume that we are in the special situation that for a given C (n), we have
hat C (n)

a is of the following form:

C (n)
a (x, y) = β (n)(x, y)C (n)

N N (x, y),

nd β (n)
: n−1Zd

× n−1Zd
→ R satisfies β (n)(x, y) = −β (n)(y, x) for every x, y ∈ n−1Zd . In

hat case, it holds for z ∈ n−1Zd :

B(n)
i (z) = n

(
H (n)(z + ei/n, z) + H (n)

i (z, z)
)

= n
(
P z+ei /n,z(z + ei/n, z)C (n)

a (z + ei/n, z)

−P z,z+ei /n(z, z + ei/n)C (n)
a (z, z + ei/n)

)
= 2nC (n)

a (z + ei/n, z)

= nβ (n)(z + ei/n, z).

(5.9)

heorem 5.9 (Concrete Approximation). Let ai, j : Rd
→ R be uniformly elliptic and bounded

nd let bi : Rd
→ R with |bi |

2
∈ Lθ (Rd ) for some θ ∈ ( d

2 ,∞]. Let (E, H 1(Rd )) defined in
5.7) be the associated lower-bounded semi-Dirichlet form and X be the associated Markov
rocess.

Then, there exists a sequence (C (n)) satisfying Assumption 1 with ai, j , bi such that (K1),
K2), (C-Tail0), (Poinc), (Sob) hold true with α = 2 and θ . Furthermore, X (n) dominates the
NRW in the sense of (5.4) and is of bounded range.
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As a consequence, for each T > 0, x ∈ Rd and (xn) ⊂ n−1Zd with xn → x the Pxn -laws
f the continuous time Markov chain (X (n)

t )t∈[0,T ] corresponding to (E (n), L2(n−1Zd )) weakly
onverge to the Px -law of (X t )t∈[0,T ] with respect to the topology of D([0, T ];Rd ).

roof. The proof can be seen as an extension of Theorem 5.5 in [23] in the sense that we
llow for the existence of an additional first order drift term. The idea of proof is the same.

We define rn = ⌊n1−β
⌋/n ∈ n−1Z+ for some β ∈ (0, 1). Then rnZ

d
⊂ n−1Zd . For

x0 ∈ rnZ
d we define the cube

Q(x0, rn) = {y ∈ Rd
: 0 ≤ min

i
(yi − (x0)i ) ≤ max

i
(yi − (x0)i ) < rn}.

learly, the set of all cubes Q(x0, rn) covers the full space Rd and all cubes are pairwise
isjoint. Then, we set for y ∈ Rd

a(n)
i, j (y) =

∑
x0∈rnZd

(
−

∫
Q(x0,rn )

ai, j (z)dz
)
1Q(x0,rn )(y),

b(n)
i (y) =

∑
x0∈rnZd

(
−

∫
Q(x0,rn )

bi (z)dz
)
1Q(x0,rn )(y).

oreover, (a(n)
i, j (y)) is uniformly elliptic and bounded by ∥ai, j∥∞. By Jensen’s inequality and

he construction of the sets Q(x0, rn):

∥|b(n)
i |

2
∥
θ

Lθ (Rd ) =

∑
x0∈rnZd

∫
Q(x0,rn )

(
−

∫
Q(x0,rn )

bi (z)dz
)2θ

dy

≤

∑
x0∈rnZd

−

∫
Q(x0,rn )

∫
Q(x0,rn )

|bi (z)|2θdzdy

= ∥b2
i ∥
θ

Lθ (Rd ).

(5.10)

herefore ∥a(n)
i, j − ai, j∥L1

loc(Rd ) → 0, ∥b(n)
i − bi∥L1

loc(Rd ) → 0. Furthermore, a(n)
i, j , b(n)

i are

iecewise constant functions in the sense that a(n)
i, j (x) = a(n)

i, j ([x]rn ), b(n)
i (x) = b(n)

i ([x]rn ) for
very x ∈ n−1Zd . Note that it remains to find C (n) such that ∥F (n)

i, j − a(n)
i, j ∥L1

loc(Rd ) → 0 and

B(n)
i − b(n)

i ∥L1
loc(Rd ) → 0 in order to verify Assumption 1.

Let us now define C (n)
s according to the procedure laid out in [23] such that ∥F (n)

i, j −
(n)
i, j ∥L1

loc(Rd ) → 0 holds true. Note that from the construction in [23] (Theorem 5.5), it follows
hat (C-Tail0) is satisfied with α = 2, C (n)

s is of bounded range (C = 2) and there exists ε > 0
uch that for every n ∈ N: C (n)

s (x, y) ≥ ε if |x − y| =
1
n . Since (Poinc) and (Sob) are satisfied

for E (n)
N N (see [4,40]), it follows by (5.4) that (Poinc) and (Sob) also hold true for E (n),C (n)

s with
= 2, σ =

1
2n .

It remains to find an antisymmetric sequence of weights C (n)
a such that the kernel C (n)

=
(n)
s +C (n)

a satisfies assumptions (K1), (K2) and ∥B(n)
i −b(n)

i ∥L1
loc(Rd ) → 0. We make the choice

C (n)(x, y) = β (n)(x, y)N N (x, y)1 (x, y),
a {|β(n)(x,y)|≤ε}
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and β (n)
: n−1Zd

× n−1Zd
→ R satisfies β (n)(x, y) = −β (n)(y, x) for every x, y ∈ n−1Zd .

ccording to (5.9):

B(n)
i (z) = nβ (n)(z + ei/n, z)1{|β(n)(z+ei /n,z)|≤ε}(z + ei/n, z), z ∈ n−1Zd .

e define

β (n)(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b(n)
i (x)/n, if ∃x0 ∈ n−1Zd

∃i ∈ {1, . . . , d} : x, y ∈ Q(x0, rn),
x = y + ei/n,

−b(n)
i (x)/n, if ∃x0 ∈ n−1Zd

∃i ∈ {1, . . . , d} : x, y ∈ Q(x0, rn),
y = x + ei/n,

0, else.

ote that since b(n)
i is piecewise constant, β (n) is indeed antisymmetric. Furthermore, it follows:

B(n)
i (z) =

{
b(n)

i (z)1
{|b(n)

i (z)|≤nε}(z), if z, z + ei/n ∈ Q(x0, rn) for some x0 ∈ rnZ
d ,

0, else.

Note that by definition of b(n)
i and since |bi |

2
∈ Lθ (Rd ), there is n0 ∈ N such that for every

≥ n0 it holds that ∥B(n)
i ∥∞ ≤ nε for every i . We define Qi (x0, rn) = {z ∈ n−1Zd

: z, z +

i/n ∈ Q(x0, rn)} and B Qi (x0, rn) = Q(x0, rn)\ Qi (x0, rn). Note that |B Qi (x0, rn)| = rd−1
n n−1.

onsequently, for each compact set K ⊂ Rd and n ≥ n0 it holds by (5.10):

∫
K

|B(n)
i (z) − b(n)

i (z)|dz ≤ ∥b(n)
i ∥L2θ (K )

⏐⏐⏐⏐⏐⏐
⋃

x0∈rnZd :Qi (x0,rn )⊂K

B Qi (x0, rn)

⏐⏐⏐⏐⏐⏐
1−

1
2θ

≤ ∥bi∥L2θ (K )
[
c(K )r−d

n (rd−1
n n−1)

]1−
1

2θ

= ∥b2
i ∥

1
2
Lθ (K )

[
c(K )

⌊n1−β⌋

]1−
1

2θ
→ 0,

where we used that the number of rectangles Qi (x0, rn) that are contained in K can be bounded
y c(K )r−d

n , where c(K ) > 0 is a constant depending on the diameter of K , only. It follows
hat ∥B(n)

i − b(n)
i ∥L1

loc(Rd ) → 0, as desired.
Furthermore (K2) is satisfied by construction with D =

1
2 . In order to prove that (K1) holds

rue with θ , we estimate for n ∈ N, x ∈ n−1Zd :

n2
∑

y∈n−1Zd

|C (n)
a (x, y)|2

C (n)
s (x, y)

= n2
∑

y∈n−1Zd :|x−y|=
1
n

|C (n)
a (x, y)|2

C (n)
s (x, y)

≤ n2
∑

y∈n−1Zd :|x−y|=
1
n

1
2n2 |b(n)

i (x)|
2

ε
≤ c(ε)|b(n)

i (x)|
2

or some c = c(ε) > 0. This impliesn2
∑

y∈n−1Zd

|C (n)
a (·, y)|2

C (n)
s (·, y)


Lθ (n−1Zd )

≤ c(ε)∥(b(n)
i )2

∥Lθ (n−1Zd ) ≤ c(ε)∥(bi )2
∥Lθ (Rd )⌊n1−β

⌋
−

d
θ .

his proves the desired result. □
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Finally, we present a much simpler direct proof of Theorem 5.9 in the case that the drift b
s of the form b(x) = ∇V (x) for a suitable function V ∈ C1(Rd ).

xample 5.10 (Concrete Approximation: b = ∇V ). Assume that b = ∇V for some V ∈
1(Rd ) ∩ L2θ (Rd ) for some θ ∈ ( d

2 ,∞] and ai, j as before. Choose again C (n)
s as in [23] and

et ε > 0 be such that C (n)
s (x, y) ≥ ε for every x, y ∈ n−1Zd with |x − y| = 1/n. Now, we

an set

C (n)
a (x, y) = (V (x) − V (y))N N (x, y)1{|V (x)−V (y)|≤ε}(x, y),

nd define C (n)
= C (n)

s + C (n)
a . We claim that this choice of weights C (n) gives rise to a form

(n) with associated Markov chains (X (n)
t )t∈[0,T ] whose Pxn -laws weakly converge towards the

x -law of (X t )t∈[0,T ], which is associated to E given as in (5.7) for every (xn) ⊂ n−1Zd , x ∈ Rd

ith xn → x and every T > 0.
In fact, one way to see this is to apply Theorem 5.7 as a black box, using the same line of

rguments as in the proof of Theorem 5.9 to verify the assumptions. Indeed for large enough
, according to (5.9):

B(n)
i (z) = n(V (z + ei/n) − V (z)) = ∇

(n)
i V (z), z ∈ n−1Zd ,

rom where one can directly read off that C (n)
a satisfies Assumption 1. (K1), (K2), (C-Tail0),

Poinc), (Sob) are immediate.
However, for this special case one can conveniently reprove Theorem 5.7, simplifying some

rguments along the way. Let us demonstrate how to obtain (5.8). We compute for large enough
:

E (n),C (n)
a (un, R(n)g) = 2n2−d

∑
x∈n−1Zd

∑
y∈n−1Zd

(un(x) − un(y))g(x)(V (x) − V (y))N N (x, y)

= n−d
d∑

i=1

∇
(n)
i un(x)g(x)∇ (n)

i V (x)

+ n−d
d∑

i=1

∇
(n)
i un(x − ei/n)g(x)∇ (n)

i V (x − ei/n)

→ 2
∫
Rd
∂i H (x)g(x)∂i V (x)dx .

he convergence can be justified by similar arguments as in the proof of Theorem 5.7.

.2. Approximation of nonlocal forms

In this section, we assume that (K1), (K2), (Poinc), (Sob), (C-Tail0), (C-Tail∞) hold true
ith α ∈ (0, 2), σ > 0 and θ ∈ ( d

α
,∞]. Moreover, we assume that

sup
n∈N

nα
∑

y∈n−1Zd :|·−y|<r

|C (n)
a (·, y)|2

J (n)(·, y)


Lθ (Ω∩n−1Zd )

→ 0, as r ↘ 0, (5.11)

or every compact set Ω ⊂ Rd . We will demonstrate at the end of this section that these
ssumptions are naturally satisfied for a huge class of weights by providing some examples.
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In this case, the limiting form will be governed by a jumping kernel K : Rd
×Rd

→ [0,∞]
and therefore be of nonlocal type. K will be determined through the following property:

Assumption 2. There exists K : Rd
×Rd

→ [0,∞] such that∫
K

f (x, y)nd+αC (n)([x]n, [y]n)dydx →

∫
K

f (x, y)K (x, y)dydx (5.12)

or every compact set K ⊂ Rd
×Rd

\ diag, f ∈ C(K). Moreover K satisfies

sup
x∈Rd

∫
Rd

(1 ∧ |x − y|
2)Ks(x, y)dy < ∞, [v]2

Hα/2(Rd ) ≤ CEKs (v, v), ∀v ∈ L2(Rd ),

(5.13)
∫
Rd

|Ka(·, y)|2

J (·, y)
dy


Lθ (Rd )

< ∞, E J
B (v, v) ≤ CEKs

B (v, v), ∀v ∈ L2(B), (5.14)

or some C > 0 and some symmetric jumping kernel J and for every ball B ⊂ Rd .

In analogy with the discrete case, we set Ks(x, y) =
1
2 (K (x, y) + K (y, x)), Ka(x, y) =

1
2 (K (x, y) − K (y, x)). Note that Assumption 2 is sufficient for (E, V (Rd

|Rd )) defined by

E( f, g) = 2
∫
Rd

∫
Rd

( f (x) − f (y))g(x)K (x, y)dydx (5.15)

o be a regular lower-bounded semi-Dirichlet form on L2(Rd ) with

V (Rd
|Rd ) =

{
v ∈ L2(Rd ) : (v(x) − v(y))K 1/2

s (x, y) ∈ L2(Rd
×Rd )

}
nd having C li p

c (Rd ) as a core (see [48]). Moreover, (5.14) is a continuous version of (K1).
We refer the reader to the proof of Theorem 5.13 for the construction of a sequence C (n),

atisfying (5.12) given a suitable kernel K . For a discussion of examples satisfying (5.13) and
5.14), we refer the reader to [38, Section 8].

emark 5.11. Note that (5.12) implies that for every sequence ( fn), f ⊂ C(K) with fn → f
niformly on K:∫

K
fn(x, y)nd+αC (n)([x]n, [y]n)dydx →

∫
K

f (x, y)K (x, y)dydx .

We present the following analog of Theorem 5.7 in the case α ∈ (0, 2):

heorem 5.12 (Functional Central Limit Theorem). Assume that (K1), (K2), (Poinc), (Sob),
C-Tail0), (C-Tail∞) hold true with α ∈ (0, 2), σ > 0 and θ ∈ ( d

α
,∞]. Moreover, assume that

here is K such that Assumption 2 holds true. Let (xn) ⊂ n−1Zd , x ∈ Rd with xn → x and
T > 0. Then, the Pxn -laws of (X (n)

t )t∈[0,T ] converge weakly, with respect to the D([0, T ];Rd )-
opology to the Px -law of (X t )t∈[0,T ], where (X,Px ) is the Markov process corresponding to
he form (E, V (Rd

|Rd )).

roof. The proof uses the same ideas as in [8,36]. We need to verify properties (a), (b) from
heorem 5.2. Let f ∈ Cc(Rd ), g ∈ C li p

c (Rd ), (n j ) ⊂ N. We denote un j = U
(n j )
λ R(n j ) f and

(n j )
H = lim j→∞ E un j (see Theorem 5.1(i)), where the convergence holds true uniformly on
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compacts. As in the proof of Theorem 5.7, we assume for simplicity that already (E (n)un)n

onverges to H .
First, we infer from Gårding’s inequality for E (n) (see (2.10)) and (2.19) that the family

(E (n),C (n)
s (un, un))n is uniformly bounded. In order to prove that H ∈ V (Rd

|Rd ), we proceed
imilar to [8]. By Assumption 2 and equicontinuity of (un)n (see Corollary 3.6), as well as the
onvergence E (n)un → H , we obtain for every compact set Ω ⊂ Rd∫

Ω

∫
Ω∩{y:N−1≤|x−y|≤N }

(H (x) − H (y))2 Ks(x, y)dydx

=

∫
Ω

∫
Ω∩{y:N−1≤|x−y|≤N }

(H (x) − H (y))2 K (x, y)dydx

≤ lim
n→∞

nα−d
∑

x∈n−1Zd

∑
y∈n−1Zd :N−1≤|x−y|≤N

(un(x) − un(y))2C (n)(x, y)

= lim sup
n→∞

nα−d
∑

x∈n−1Zd

∑
y∈n−1Zd :N−1≤|x−y|≤N

(un(x) − un(y))2C (n)
s (x, y)

≤ lim sup
n→∞

E (n),C (n)
s (un, un) < ∞.

herefore, by taking N ↗ ∞, and approximating Ω ↗ Rd , we obtain that EKs (H, H ) < ∞.
s H ∈ L2(Rd ) is an immediate consequence of the convergence E (n)un → H and (2.19), we

infer that indeed H ∈ V (Rd
|Rd ).

It remains to prove that there exists a subsequence (nk) ⊂ N such that E (nk )(unk , R(nk )g) →

(H, g). We observe that for every N > 1:

2nα−d
∑

x∈n−1Zd

∑
y∈n−1Zd :N−1≤|x−y|≤N

(un(x) − un(y))g(x)C (n)(x, y)

→

∫
Rd

∫
{N−1≤|x−y|≤N }

(H (x) − H (y))g(x)K (x, y)dydx,

hich is due to Assumption 2 and the fact that (un) is equicontinuous and equibounded by (i)
f Theorem 5.1 and converges to H uniformly on compacts.

It remains to show that the quantities∫
Rd

∫
Rd∩{y:|x−y|̸∈[N−1,N ]}

(H (x) − H (y))g(x)K (x, y)dydx, (5.16)

2nα−d
∑

x∈n−1Zd

∑
y∈n−1Zd :|x−y|̸∈[N−1,N ]

(un(x) − un(y))g(x)C (n)(x, y) (5.17)

an be made arbitrarily small by choosing N large enough. For (5.16) this immediately
ollows from EKs (H, H ) < ∞ and (5.14). In order to estimate (5.17), we denote K (n)

=

upp(g) ∩ n−1Zd and let M > 0 such that {x ∈ n−1Zd
: dist(x, K (n)) < N−1

} ⊂ B(n)
M . On the

ne hand,

2nα−d
∑

x∈K (n)

∑
y∈n−1Zd :|x−y|>N

(un(x) − un(y))g(x)C (n)(x, y)

≤ c1E (n),C (n)
s (un, un)1/2

∥g∥L2(K (n))

⎛⎝nα sup
x∈K (n)

∑
y∈n−1Zd :|x−y|>N

C (n)(x, y)

⎞⎠1/2

≤ c N−δ/2E (n),C (n)
s (u , u )1/2

∥g∥ ,
2 n n L2(K (n))
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where c1, c2 > 0 are constants, and we used (C-Tail∞) in the last step. Note that the quantities
(n),C (n)

s (un, un) and ∥g∥L2(K (n)) are uniformly bounded in n. On the other hand,

2nα−d
∑

x∈n−1Zd

∑
y:|x−y|<N−1

(un(x) − un(y))g(x)C (n)
s (x, y)

= nα−d
∑

x∈n−1Zd

∑
y:|x−y|<N−1

(un(x) − un(y))(g(x) − g(y))C (n)
s (x, y)

≤ c3E (n),C (n)
s (un, un)

1
2

⎛⎜⎝nα−d
∑

x∈B(n)
M

∑
y:|x−y|<N−1

(g(x) − g(y))2C (n)
s (x, y)

⎞⎟⎠
1
2

≤ c4E (n),C (n)
s (un, un)

1
2 ∥∇g∥L∞(Rd )µ

(n)(B(n)
M )

1
2

⎛⎝nα sup
x∈B(n)

M

∑
y:|x−y|<N−1

|x − y|
2C (n)

s (x, y)

⎞⎠ 1
2

≤ c5 N (α−2)/2E (n),C (n)
s (un, un)

1
2 ∥∇g∥L∞(Rd )µ

(n)(B(n)
M )

1
2 ,

here c3, c4, c5 > 0 are constants, and we applied (2.5) in the last step. Again, this quantity
an be made arbitrarily small by choosing N large since E (n),C (n)

s (un, un) and µ(n)(B(n)
M ) are

ounded in n. Finally, the contribution of C (n)
a to (5.17) can be estimated as follows:

2nα−d
∑

x∈n−1Zd

∑
y:|x−y|<N−1

(un(x) − un(y))g(x)C (n)
a (x, y)

≤ c6E (n),J (n)
(un, un)1/2

⎛⎝nα−d
∑

x∈K (n)

∑
y:|x−y|<N−1

g2(x)
|C (n)

a (x, y)|2

J (n)(x, y)

⎞⎠1/2

≤ c7E (n),C (n)
s (un, un)1/2

∥g∥L2θ ′ (K (n))

nα
∑

y:|·−y|<N−1

|C (n)
a (·, y)|2

J (n)(·, y)


1/2

Lθ (K (n))

or c6, c7 > 0. The right hand side can be made arbitrarily small by taking N large due to
5.11) and by uniform boundedness of E (n),C (n)

s (un, un) and ∥g∥L2θ ′ (K (n)) in n.
Consequently, the quantity in (5.17) can be made arbitrarily small and we conclude the

roof. □

We define |h|∞ = maxi∈{1,...,d} |hi |. As in the previous subsection, we provide a result
n concrete approximation of a given process in the nonlocal case. These processes can
e regarded as α-stable like processes with a nonlocal drift term. We refer to [38] for a
ore detailed discussion of the corresponding generator and its associated bilinear form. For

implicity, we consider only the special case, where K (x, y) ≍ |x − y|
−d−α . However, note that

n extension to more general kernels is straightforward provided that Sobolev – and Poincaré
nequalities hold true for Ks and are inherited to C (n)

s .

heorem 5.13 (Concrete Approximation). Let α ∈ (0, 2), θ ∈ ( d
α
,∞], and K : Rd

× Rd
→

0,∞] be such that there exist Λ,C > 0 with

Λ−1
|x − y|

−d−α
≤ K (x, y) ≤ Λ|x − y|

−d−α, ∀x, y ∈ Rd (5.18)
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∫
Rd

|Ka(·, y)|2

Ks(·, y)
dy


Lθ (Rd )

≤ C,


∫
Rd∩{y:|·−y|<r}

|Ka(·, y)|2

Ks(·, y)
dy


Lθ (Rd )

→ 0 as r ↘ 0.

(5.19)

et (E, Hα/2(Rd )) defined in (5.15) be the associated regular lower-bounded semi-Dirichlet
orm on L2(Rd ) and X be the associated Markov process. Then, there exists a sequence (C (n))n

atisfying Assumption 2 with K such that (K1), (5.11), (K2), (C-Tail0), (C-Tail∞), (Poinc),
Sob) hold true with α, σ = 2

√
d and θ .

As a consequence, for each T > 0, x ∈ Rd and (xn) ⊂ n−1Zd with xn → x the Pxn -laws
f the continuous time Markov chain (X (n)

t )t∈[0,T ] corresponding to (E (n), L2(n−1Zd )) weakly
onverge to the Px -law of (X t )t∈[0,T ] with respect to the topology of D([0, T ];Rd ).

roof. We define for x, y ∈ n−1Zd :

C (n)(x, y) = 4dnd−α

∫
{|x−w|∞<

1
2n }

∫
{|y−z|∞<

1
2n }

K (w, z)dwdz1
{|x−y|∞≥

2
n }

(x, y).

t remains to verify assumptions (K1), (K2), (C-Tail0), (C-Tail∞), (Poinc), (Sob), (5.11) and
ssumption 2 for C (n). Then the assertion follows from Theorem 5.12.
We denote B(n)

∞ (x) := {z ∈ n−1Zd
: |x − z|∞ < 1

2n } and observe that for |x − y|∞ > 2
n :

C (n)
s (x, y) = 4dn−d−α

−

∫
B(n)

∞ (x)
−

∫
B(n)

∞ (y)
Ks(w, z)dwdz,

C (n)
a (x, y) = 4dn−d−α

−

∫
B(n)

∞ (x)
−

∫
B(n)

∞ (y)
Ka(w, z)dwdz.

Then, we easily see that by (5.18) there exist c1, c2 > 0:

c1|nx − ny|
−d−α

≤ C (n)
s (x, y) ≤ c2|nx − ny|

−d−α, ∀x, y ∈ n−1Zd
: |x − y|∞ >

2
n
.

rom here, one can prove that (Poinc), (Sob) hold true with σ = 4
√

d . Moreover, (C-Tail0),
C-Tail∞) are immediate upon noticing that C (n)

s (x, y) = 0, whenever |x − y|∞ ≤
2
n . (K1) can

e proved as Proposition 2.14 in [43], estimating for every x ∈ n−1Zd :

nα
∑

y∈n−1Zd

|C (n)
a (x, y)|2

C (n)
s (x, y)

≤ n−d
∑

y∈n−1Zd

(
−

∫
B(n)

∞ (x)
−

∫
B(n)

∞ (y) Ka(w, z)dwdz
)2

(
−

∫
B(n)

∞ (x)
−

∫
B(n)

∞ (y) Ks(w, z)dwdz
)

≤ cn−d
∑

y∈n−1Zd

−

∫
B(n)

∞ (x)
−

∫
B(n)

∞ (y)

|Ka(w, z)|2

Ks(w, z)
dwdz

≤ c−
∫

B(n)
∞ (x)

∫
Rd

|Ka(w, z)|2

Ks(w, z)
dwdz.

ere, we used (5.19). Therefore, by Jensen’s inequality

n−d
∑

x∈n−1Zd

⎛⎝nα
∑

y∈n−1Zd

|C (n)
a (x, y)|

2

C (n)
s (x, y)

⎞⎠θ ≤ cn−d
∑

x∈n−1Zd

(
−

∫
B(n)

∞ (x)

∫
Rd

|Ka(w, z)|2

Ks(w, z)
dwdz

)θ

≤ c
∫

d

(∫
d

|Ka(w, z)|2

K (w, z)
dw

)θ
dz,
R R s
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d
a

a

E

w
s

f

E

w
γ

w
e

D

r

which yields (K1). Analogously, one verifies (5.11). As assumption (K2) is immediate from
(5.18), it remains to check Assumption 2. Note that by the proof of Theorem 2.3 in [36] it
follows that C (n)

→ K in L1(K) for every K ⊂ (Rd
× Rd ) \ diag compact. Their arguments

o not require symmetry of C (n) or K . Therefore, (5.12) holds true and Theorem 5.12 is
pplicable. □

We end this section with an example, demonstrating what kind of weights (C (n)) are
dmissible for Theorem 5.12.

xample 5.14. Consider the sequence (C (n)), defined by

C (n)
s (x, y) = g(n)

1 (nx, ny)|nx − xy|
−d−α

= n−d−αg(n)
1 (nx, ny)|x − y|

−d−α,

C (n)
a (x, y) = n−d−αg(n)

2 (nx, ny)
(
|x − y|

−d−β1{|x−y|≤1}(x, y) + |x − y|
−d−γ1{|x−y|>1}(x, y)

)
,

here g(n)
i : Zd

×Zd
→ [−Mi ,Mi ] for some Mi > 0, i ∈ {1, 2}, and 0 < 2β < α < 2γ < 2,

uch that g(n)
1 (x, y) = g(n)

1 (y, x) ≥ 0 and g(n)
2 (x, y) = −g(n)

2 (y, x) and C (n)
≥ 0.

It is well-known that (Poinc), (Sob), (C-Tail0), (C-Tail∞) hold. Moreover, (K1) is satisfied:

nα
∑

y∈n−1Zd

|C (n)
a (x, y)|

2

C (n)
s (x, y)

≤
M2

2
M1

⎛⎝n2β−α
∑

h∈n−1Zd :|h|≤1

|nh|
−d+(α−2β)

+ n2γ−α
∑

h∈n−1Zd :|h|>1

|nh|
−d−(2γ−α)

⎞⎠
≤

c1 M2
2

M1

⎛⎝n2β−α
∑

h∈Zd :|h|≤n

|h|
−d+(α−2β)

+ n2γ−α
∑

h∈Zd :|h|>n

|h|
−d−(2γ−α)

⎞⎠
≤ c2 < ∞,

where c1, c2 > 0 are constants. Note that (5.11) can be deduced from the following
computation:

nα
∑

y:|x−y|<r

|C (n)
a (x, y)|2

C (n)
s (x, y)

≤
c1 M2

2

M1
n2β−α

∑
h∈Zd :|h|≤nr

|h|
−d+(α−2β)

≤ c3rα−2β, 0 < r < 1,

or some c3 > 0.

xample 5.15. A similar computation as before yields (K1) for C (n) given by

C (n)
s (x, y) = g(n)(nx, ny)|nx − ny|

−d−α,

C (n)
a (x, y) = (V (x) − V (y))|nx − ny|

−d−α1{|x−y|≤1}(x, y),

here g(n)
: n−1Zd

× n−1Zd
→ [λ,Λ] for some 0 < λ ≤ Λ < ∞, V ∈ Cγ (Rd ), where

> α/2, and C (n)
≥ 0. Indeed, write β := α − γ < α/2, and note that

|C (n)
a (x, y)| ≤ c|x − y|

γ
|nx − ny|

−d−α1{|x−y|≤1}(x, y)

≤ cnβ−α
|nx − ny|

−d−β1{|x−y|≤1}(x, y),

here c > 0 is some constant. From here, one inserts the same computation as in the previous
xample and obtains (K1).
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