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 35 

Abstract 36 

Objective 37 

T-lymphocytes from visceral and subcutaneous white adipose tissue (vWAT and sWAT, 38 

respectively) can have opposing roles in the systemic metabolic changes associated with 39 

obesity. However, few studies have focused on this subject. Claudin-1 (CLDN1) is a protein 40 

involved canonically in Tight Junctions (TJs) and tissue paracellular permeability. 41 

We evaluated T lymphocytes gene expression in vWAT and sWAT and in the whole adipose 42 

depots in human samples. 43 

Methods 44 

A Clariom D-based transcriptomics analysis was performed on T lymphocytes magnetically 45 

separated from vWAT and sWAT from patients with obesity (Cohort 1; N = 11). Expression of 46 

candidate genes resulting from that analysis was determined in whole WAT from individuals 47 

with and without obesity (Cohort 2; Patients with obesity: N = 13; Patients without obesity: 48 

N=14). 49 

Results 50 

We observed transcriptional differences between T lymphocytes from sWAT compared to 51 

vWAT. Specifically, CLDN1 expression was found to be dramatically induced in vWAT T cells 52 

relative to those isolated from sWAT in patients with obesity. CLDN1 was also induced in 53 

obesity in vWAT and its expression correlates with genes involved in inflammation, fibrosis 54 

and adipogenesis. 55 

Conclusion 56 

mailto:david.sanchezi@urjc.es
mailto:rcereijo@ub.edu
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These results suggest CLDN1 is a novel marker induced in obesity, and differentially expressed 57 

in T lymphocytes infiltrated in human vWAT as compared to sWAT. This protein may have a 58 

crucial role in the crosstalk between T lymphocytes and other adipose tissue cells and may 59 

contribute to inflammation, fibrosis and alter homeostasis and promote metabolic disease in 60 

obesity. 61 

Abbreviations:  62 

Visceral white adipose tissue (vWAT), subcutaneous white adipose tissue (sWAT), white 63 

adipose tissue (WAT), tight junction (TJ), Claudin-1 (CLDN1 for protein; CLDN1 for gene), 64 

body mass index (BMI), Homeostatic model assessment – insulin resistance (HOMA-IR), 65 

fetal bovine serum (FBS), phosphate saline buffer (PBS), magnetic-activated cell sorting 66 

(MACS), bovine serum albumin (BSA), 4’,6-diamidino-2-phenylindole (DAPI) 67 

Significance Statement: 68 

Several studies have shown a direct involvement of Claudin-1 in the development and 69 

progression of multiple cancers.  However, to our knowledge, little information about the role 70 

of Claudin-1 in adipose tissue and obesity has been reported yet. Furthermore, Claudin-1 has 71 

recently been identified as a therapeutic target for tissue fibrosis in different types of organs, 72 

including liver, lung and kidney. In this paper, a novel transcriptomic of human sWAT and 73 

vWAT T lymphocytes has been developed. CLDN1 comes up as a gene strongly regulated in a 74 

depot-dependent manner and correlates with genes involved in inflammation and fibrosis. Our 75 

results postulate claudin-1 as a novel target in lipotoxicity, obesity and metabolism.  76 
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1. Introduction 77 

Obesity is defined as an excessive accumulation of lipids in white adipose tissue (WAT) as a 78 

result of prolonged positive energy balance (1–3). WAT is a heterogeneous tissue consisting of 79 

mature adipocytes and nonadipocyte cells (4–7). Furthermore, WAT has significant endocrine 80 

capabilities mediated by a wide range of adipokines and cytokines and impacting multiple body 81 

processes (8–10). In humans, WAT has been considered the largest endocrine tissue classified 82 

in two main depots, visceral and subcutaneous WAT (vWAT and sWAT, respectively), with 83 

morphologic and metabolic differences (11,12). In obesity, WAT expands, leading to 84 

dysfunctions characterized by immune cell infiltration (13,14). T lymphocytes (CD3+) play a 85 

central role in immune responses and constitute one of the main immune cells infiltrating 86 

adipose depots (14). However, few studies in obese humans have focused on T-cell infiltration 87 

in WAT and its association with inflammation and metabolic disturbances (15–18). 88 

Here, we show for the first time a transcriptomic analysis of human vWAT- and sWAT-89 

infiltrated T lymphocytes and identify CLDN1 as a key factor distinctly up-regulated 90 

specifically in vWAT-infiltrated T-cells compared to those from sWAT in patients with obesity. 91 

 92 

2. Methods  93 

The study was approved by the Ethical Committee of the Hospital Germans Trias i Pujol 94 

(Badalona, Spain) and follows the guidelines of Helsinki convention. Participants gave their 95 

written informed consent before clinical data collection. 96 

 97 

2.1 Study Participants 98 

Two different cohorts of patients were enrolled (Table 1, Supplemental Figure S1). All patients 99 

were evaluated by the same endocrinologist (S.P.) following the institutional protocol for 100 

bariatric surgery (BS) between October 2015 and September 2021, according to BS criteria 101 
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(Spanish Position Statement between Obesity, Endocrinology, Diabetes and Surgery Societies). 102 

Since cohort 1 was made up only of patients with obesity, a cohort 2 made up of patients with 103 

and without obesity was included. The primary reason to use cohort 2 was to have a normal-104 

weight control group to check the levels of CLDN1 gene expression in these individuals to 105 

compare them with obesity condition. The limitation of that was to use total WAT instead of 106 

adipose tissue lymphocytes, but there were no options to isolate T cells from healthy donors in 107 

our hospital. For Cohort 1, 11 patients with obesity (BMI>35 kg/m2) were enrolled, and vWAT 108 

and sWAT from the same patient were collected during BS. For Cohort 2, 27 patients with or 109 

without severe obesity (BMI>35 kg/m2 or BMI<27 kg/m2, respectively) were enrolled. For the 110 

first group, vWAT and sWAT biopsies were collected when they attended to BS; for the latter 111 

on occasion of consultation/minor surgery, mainly cholecystectomy. Exclusion criteria for all 112 

cohorts were having cancer, active infectious or inflammatory pathologies other than those 113 

related to obesity and treatment with immunosuppressant drugs or suffering from other forms 114 

of immunosuppression.  115 

 116 

2.2 Human serological analysis 117 

Serum samples were collected after 12 h fasting and frozen at –20º C. In the case of cohort 2, 118 

serum samples from patients with obesity were obtained at baseline (during the surgery) and 6 119 

months after the surgery. Glucose and insulin levels, as well as lipid profiles (total cholesterol, 120 

HDL and LDL cholesterol, and triglycerides), were measured in the certified core clinical 121 

laboratory. The Homeostatic model assessment-insulin resistance (HOMA-IR) score was 122 

calculated as: 𝐻𝑂𝑀𝐴 − 𝐼𝑅 =
[𝐺𝑙𝑢 cos𝑒

𝑚𝑔

𝑑𝐿
]×[𝐼𝑛𝑠𝑢𝑙𝑖𝑛

𝑚.𝑢.𝑖𝑛𝑡

𝑑𝐿
]

405
. 123 

 124 

2.3 Cohort 1: adipose tissue collection, T-cell extraction and counting. 125 
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vWAT and sWAT samples (n=22 in total) were obtained from the 11 patients from Cohort 1 126 

during BS. Fresh WAT collected during surgeries was transferred into two 50 mL tubes 127 

containing a 2% fetal bovine serum (FBS) in phosphate saline buffer (PBS) solution and placed 128 

on separate multiwell plate submerged in collagenase and Hank's Balanced Salt Solution 129 

(pH=7.1). The tissue was then minced into small pieces followed by several centrifugation and 130 

supernatant removal steps as previously published (19). CD3+ cells were then labeled with anti-131 

CD3+ MicroBeads and magnetically separated from unlabeled cells using magnetic-activated 132 

cell sorting (MACS) columns (Miltenyi Biotec S.L.). Briefly, cell suspension was centrifuged 133 

(300 x g, 10 min) and the supernatant completely discarded. Next, the pellet was resuspended 134 

in 82 µL of MACS buffer and 2 µL were diluted with 18 µl MACS buffer and reserved at 4º C 135 

to evaluate CD3+ cell percentage. Then, 20 µL of CD3+ MicroBeads were added to 80 µL of 136 

cell suspension, mixed and incubated for 15 min in ice. Next, cells were washed by adding 2 137 

mL of MACS buffer and centrifuged (300 x g, 10 min, 4º C). Then the pellet was resuspended 138 

in 500 µL MACS buffer and maintained in ice. 139 

Meanwhile, the MidiMACS™ Starting Kit (LS) separation column was prepared by placement 140 

in the magnetic field on the MidiMACS™ Separator and rinsed with 3 mL of MACS buffer. 141 

Once the column reservoir was empty, the cell suspension was added into the column. When 142 

all suspension passed, the column was washed by adding twice 3 mL MACS buffer. Afterwards, 143 

the column was removed from the magnetic field, and placed onto a new 15 mL conical tube 144 

(collection tube). Then, 5 mL MACS buffer was added and the fraction with the magnetically 145 

labeled cells was immediately flushed out applying the plunger supplied with the column. 20 146 

µL of the eluted fraction was reserved in ice. Next, the CD3+ fraction of cells was centrifuged 147 

(300 x g, 4 min, 4º C), 4 mL of the supernatant was discarded, and the pellet was resuspended 148 

in the remaining volume, transferred into a 1.5 mL conical tube and centrifuged (11000 x g, 5 149 

min). The resulting pellet was used to perform RNA extraction. 150 
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The reserved aliquots from vWAT and sWAT were labeled to quantify the viability and the 151 

number of infiltrated CD3+ cells, respectively. For this purpose, 10 µL of cell samples were 152 

mixed with 48 µL MACS Buffer, 2 µL of 7-AAD and 0.5 µL of CD3+. The mix was incubated 153 

in darkness for 10 min and then 10 µL of counting beads were added. Isolated T-cells were 154 

detected by flow cytometry (FACSCanto II, BD Biosciences). In this system, the optic consists 155 

of an excitation source and a three-laser system: blue (488 nm, air-cooled, 20-mV solid state), 156 

red (633 nm, 17-mV HeNe) and violet (405 nm, 30-mV solid state) allowing measurement of 157 

8 parameters (FSC, SSC and 6 fluorescence detectors) with carrousel acquisition option for 158 

tubes to separate cells are based on their size and fluorescence. FACSDiva and FlowJo (Tree 159 

Star Inc.) were used for quantification analyses, graphical representation and gating strategy. 160 

Viability, percent, and concentration (cells/μL) of T-cells (CD3+) in vWAT and sWAT was 161 

measured. The concentration (cells/mL) was calculated as: 162 

 
#𝐸𝑣𝑒𝑛𝑡𝑠 (𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

2500 𝑏𝑒𝑎𝑑𝑠
×

1036 𝑏𝑒𝑎𝑑𝑠

1 𝜇𝐿
×

103 𝜇𝐿

1 𝑚𝐿
= 𝑐𝑒𝑙𝑙𝑠/𝑚𝐿.  163 

Total RNA was then extracted using an affinity column-based methodology suitable for small 164 

amounts of biological material (NucleoSpin RNA XS; Mecherey-Nagel, Duren, Germany). 165 

RNA yield and purity were determined by spectrophotometry and RNA integrities were 166 

assessed with the Nano 6000 assay on Agilent's 2100 Bioanalyzer. 167 

 168 

2.4 Clariom D Assay 169 

CD3+ cell extracted RNA was reverse transcribed into cDNA, amplified and biotinylated by in 170 

vitro transcription (MultiScribe TaqMan Reverse Transcription Reagents; ThermoFisher 171 

Scientific, Waltham, MA, USA). Labeled cDNAs were hybridized onto Clariom D Human 172 

Assay Microarrays, which include probe sets enabling transcriptome-wide gene- and exon-level 173 

expression profiling (Affymetrix, ThermoFisher Scientific). The arrays were washed and 174 

scanned using the GeneChip 3000 system (Affymetrix). Transcript Analysis Console (TAC 175 
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v4.0; Affymetrix) was used for initial hybridization quality assessment and data inspection. The 176 

experimental design for hybridization processing included 4 batches of 9-11 samples each with 177 

balancing among different batches between the two compared conditions, vWAT and sWAT. 178 

 179 

2.5 Gene expression analysis 180 

All statistical analyses of microarray data were performed using R-based software R-4-0-3 181 

environments. Quality control was performed using the array QualityMetrics package. 182 

Background correction, probe set summarization and normalization were performed with the 183 

oligo package using the most up to date annotation in Bioconductor 3.12. A paired-sample 184 

design comparing vWAT and sWAT from the same individuals was applied. Subsequent 185 

differential expression analysis using the Limma package at the gene level focusing on known 186 

genes (with assigned gene symbols). Transcripts were considered for further analyses if they 187 

matched the double criteria or false detection rate (FDR) < 0.05 and log (fold change) vWAT 188 

vs sWAT > 1.5. Exploratory inference of putatively affected biological functions was 189 

performed using Gorilla, harnessing Gene Ontology categories to perform pathway analyses. 190 

In-depth functional enrichment analyses were undertaken with Gene Set Enrichment Analysis 191 

(GSEA), with results visualized with the Enrichment Map tool in Cytoscape. Pre ranked based 192 

analyses were performed using ranking by log2ratio or signed –log10 p-values on relevant 193 

MaSigDB gene set collections (v7.1).  194 

 195 

2.6 Adipose tissue collection and RNA isolation and processing from Cohort 2 196 

Whole vWAT and sWAT samples were obtained from 27 patients from Cohort 2 (13 with 197 

severe obesity and 14 without obesity). In this case, fresh WAT collected during surgeries was 198 

transferred into liquid nitrogen and then frozen at -80 ºC; another fragment was cut with a sterile 199 

scalpel and reserved for histological analyses.  200 
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 201 

2.7 Immunofluorescence staining  202 

CLDN1 location in AT samples was assessed by immunofluorescence. Briefly, tissue samples 203 

were fixed in 4% formaldehyde overnight and included in paraffin. Paraffin blocks were 204 

histologically cut (5 μm), 3 nonconsecutive sections per sample were collected on slides and 205 

dewaxed. Subsequently, samples were submerged into Tris-EDTA buffer (pH = 7.9), 206 

microwaved until boiling 3x and allowed to cool. Afterwards, they were rinsed with 1x PBS-207 

Triton 100 (0.02%) and blocking was conducted using fish gelatin dissolved in PBS-Triton with 208 

2% bovine serum albumin (BSA). Anti-CLDN1 antibody (Abcam®, ab15098; 1:75) was added 209 

to the prepared histological cuts and incubated overnight at 4º C in darkness. Samples were then 210 

washed with 1x PBS-Triton to remove antibody excess and secondary antibody was added 211 

(Jackson Immuno Research®, 111-585-144; 1:250) and incubated at room temperature for 1 h. 212 

After, the samples were washed again with 1x PBS-Triton prior to nuclei staining with 213 

fluorescent marker 4’,6-diamidino 2-phenylindole (DAPI) for 15 minutes. Finally, mounting 214 

medium (50% glycerin/PBS-Triton) was added to histological preparations before covering 215 

them with coverslips. Samples were stored at 4º C in the darkness until visualization under a 216 

FluoView FV300TM confocal microscope (Olympus, Spain). The fluorescence intensity of the 217 

signal corresponding to CLDN1 in vWAT and sWAT was quantified using ImageJ. 218 

 219 

2.8 Statistical Analysis of Clinical Features.  220 

Additional statistical data analysis beyond Bioinformatics procedures was conducted with 221 

GraphPad Prism 7.01 (GraphPad Software, Inc., La Jolla, CA, USA) and IBM SPSS 25.0 (IBM, 222 

Armond, NY, USA). Assessment of data distribution within groups was analyzed using the 223 

Shapiro–Wilk test, while presence of outliers was determined using Tukey’s rule (see above). 224 

Moreover, the 22 samples included in the study are after outlier removal based on two criteria: 225 
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availability of samples from both T-lymphocytes samples derived from both visceral and 226 

subcutaneous fat depot from the same individual, passing array quality metrics, hierarchical 227 

clustering, and PCA visual inspection. Supplementary figures are included to illustrate the 228 

exclusion procedure (Supplemental Figure S2). 229 

If data had a normal distribution, Student's t-test were performed to conduct comparisons 230 

between two groups; otherwise, Mann-Whitney’s test was used. Likewise, correlations between 231 

CLDN1 and selected genes’ expression levels were conducted using the Pearson’s (normally 232 

distributed) or Spearman’s (non-normally) methods. The threshold of statistical significance for 233 

all analyses was established at the two-tailed 5% level (p < 0.05). 234 

 235 

3. Results 236 

3.1 Clinical parameters  237 

All patients from Cohort 1 exhibited severe obesity, while Cohort 2 included individuals with 238 

severe obesity and controls (Table 1). Specifically, in Cohort 2, the group of patients with severe 239 

obesity had a higher weight, BMI, HbA1c%, triglycerides, and lower HDL-cholesterol 240 

compared to the control group, thus confirming they exhibited an obesity-associated metabolic 241 

disarray beyond an increase in adiposity. 242 

 243 

3.2 Claudin-1 is a novel target gene modulated in adipose tissue T-cells and in obesity.  244 

Considering the lack of information about the role of T lymphocytes in terms of gene expression 245 

in obesity, we focused on this WAT cell subpopulation. We isolated for the first time enough 246 

viable T-cells from vWAT and sWAT in human patients with obesity, and a transcriptomic 247 

analysis of this immune cell population was performed. 248 

T lymphocytes isolated by MACS were confirmed as CD3+ by FACS in both vWAT and 249 

sWAT, and equal amounts of T cell RNA from both adipose tissues was used to perform an 250 
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array (dataset available at GEO repository: GSE236145). It is important to remark that T 251 

lymphocytes from sWAT clustered separately of those from vWAT, and also showed different 252 

transcriptomic data. Moreover, differential gene expression analyses of T-cell populations in 253 

vWAT and sWAT from patients with obesity (Cohort 1) revealed nominally significant 254 

differences in genes (FDR pvalue<0.05, absolute fold change >1.5, Figure 1A). Upon multiple 255 

testing correction only 13 genes were found to be significant (FDR<0.05 highlighted in red in 256 

Figure 1B; Supplemental File S1). Pathway enrichment analysis (Supplemental Figure S3 and 257 

Supplemental File S2) revealed a downregulation of pathways related to cellular component 258 

organization or biogenesis, developmental process, and extracellular matrix organization in 259 

vWAT vs sWAT T lymphocytes. On the other hand, pathways involved in immune response, 260 

cell activation and inflammation were upregulated in vWAT compared to sWAT. 261 

CLDN1 was among the most regulated T-cell genes, showing a dramatic up-regulation in T-262 

cells from vWAT compared to those in sWAT (Figures 1B-C and 2A). Due to the lack of a 263 

control group in Cohort 1, CLDN1 gene expression was measured in Cohort 2 (total sWAT and 264 

vWAT from controls and patients with severe obesity). Besides also showing a depot-dependent 265 

modulation like in T-cell-based Cohort 1 analyses, whole WAT-based analyses in Cohort 2 266 

revealed higher levels of CLDN1 mRNA in vWAT from patients with obesity as compared to 267 

controls, but not in sWAT (Figure 2B). 268 

 269 

3.3 CLDN1 is associated with T-cell extracellular matrix remodeling and adipose tissue 270 

proinflammatory markers, dyslipidemia, and insulin resistance. 271 

Transcriptomics regression analyses of T lymphocytes showed positive and negative 272 

correlations between expression of CLDN1 and different genes involved in the extracellular 273 

matrix function (Supplemental Table S2). However, CLDN1 gene expression in total vWAT 274 

showed a significant inverse correlation with the expression of genes involved in adipogenesis 275 
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and adipose function, such as peroxisome-activated receptor gamma (PPARG), fatty acid 276 

synthase (FASN), hormone-sensitive lipase (HSL) and adiponectin (ADIPOQ) (Figure 3A). 277 

Contrary, CLDN1 transcript levels correlated positively with genes encoding pro-inflammatory 278 

cytokines, including tumor necrosis factor alpha (TNF), chemokine (C-X-C) motif ligand 10 279 

(CXCL10) and interleukin (IL) 18 (IL18), but negatively correlated with other genes encoding 280 

known adipose tissue-expressed anti-inflammatory cytokines such as IL13, IL33 and CXCL14 281 

(Figure 3B). Furthermore, CLDN1 gene expression in total vWAT showed a significant positive 282 

correlation with the expression of genes involved in adipose tissue remodeling by fibrosis, such 283 

as collagen type 1 (COL1A1), transforming growth factor beta (TGFβ), insulin growth factor 1 284 

receptor (IGF1R) and inhibitor of nuclear factor kappa B kinase subunit epsilon (IκBKε) (Figure 285 

3C).  286 

Moreover, when assessing correlations between CLDN1 gene expression and clinical 287 

parameters in Cohort 2 comparing obesity vs control individuals, significant associations were 288 

observed with CLDN1 in vWAT and parameters related to glucose and lipid homeostasis, such 289 

as Hb1Ac and triglycerides (directly) and HDL cholesterol (inversely) before BS (time 0) 290 

(Table 2). Such associations were no longer statistically significant after 6 months (Table 2). 291 

 292 

3.4 CLDN1 protein is detectable in WAT from individuals with obesity.  293 

Finally, we further examined at the protein level whether CLDN1 was distinctly expressed in 294 

vWAT and sWAT in obesity.  CLDN1 was detected in vWAT and sWAT from 7 obese patients 295 

of Cohort 1 indicating that CLDN1 protein detected was notable higher in vWAT than in 296 

sWAT, where it was almost nearly undetectable (Figure 4). 297 

 298 

4. Discussion 299 
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Although obesity is characterized by a chronic low-grade inflammation that is typically more 300 

extensive in visceral compared to subcutaneous fat (20–22), the gene expression pattern of 301 

immune cell types infiltrated in vWAT and sWAT in patients with obesity has not been 302 

extensively studied. Our novel transcriptomic data revealed that vWAT T lymphocytes have a 303 

different gene profile compared to those located in sWAT. Overall, pathways associated with 304 

inflammation were enriched in vWAT T-cells, concordant with the aforementioned previous 305 

whole-tissue and other immune cell-focused reports (20,21), whereas metabolic and tissue 306 

remodeling-related pathways were repressed. This data could suggest a different cross-talk 307 

between T cells and adipocytes occurring in vWAT compared to sWAT, which would lead to 308 

a different behavior in terms of gene expression, inflammatory signaling, and adipokines 309 

secretion in obesity. Among modulated transcripts, INTL1 and CLDN1 were especially 310 

upregulated in vWAT-resident T-cells in obesity. Other studies have previously observed 311 

depot-dependent modulation of INTL1 (intelectin-1, an adipokine also known as omentin) in 312 

vWAT (23) while CLDN1 modulation in obesity has not been fully studied in WAT. 313 

Tight junctions (TJs) require the coordination of different proteins (24). Claudins are a family 314 

of transmembrane proteins that play a critical role in TJs function by regulating paracellular 315 

barrier permeability, as well as apical cell-cell adhesion (25,26). They confer specificity to 316 

permeate across TJs (27). Moreover, they can also participate in tissue fibrosis (27,28). 317 

Claudin-1 (CLDN1) was the first-identified member of the family. It is a 22-kDa protein highly 318 

expressed in the intestine, spleen, brain, liver, kidney, and testis (28). CLDN1 has recently been 319 

identified as a therapeutic target for tissue fibrosis in some organs (e.g., liver, lung, and kidney) 320 

(29). Also, a direct involvement of CLDN1 in the development and progression of multiple 321 

cancers has been described (30), but little is known about the presence and possible role of 322 

CLDN1 in inflammatory processes in WAT depots, especially in obesity. CLDN1 is expressed 323 

in different cell types, including T-cells (31), but no information about its regulation under 324 
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metabolic complications has been reported. Moreover, it has been described that different 325 

isoforms of the claudin family promote T-cells migration and infiltration in different tissues by 326 

inducing inflammation (32,33).  327 

Our results show that CLDN1 expression is higher in T lymphocytes from vWAT compared to 328 

the sWAT in patients with obesity. Moreover, we show that CLDN1 protein is indeed present 329 

in these fat depots, and in higher amount in vWAT than in sWAT. After demonstrating the 330 

specificity of CLDN1 overexpression in vWAT T lymphocytes (Cohort 1), we corroborated this 331 

in whole vWAT compared to sWAT from obese individuals (Cohort 2). We observed that the 332 

expression of CLDN1 was also induced in patients with obesity when compared to controls. 333 

Our findings are supported by another report where CLDN1 expression levels were found to be 334 

higher in whole vWAT in comparison with sWAT (34).  335 

vWAT is recognized as a depot with a high degree of hypertrophic adipocytes with decreased 336 

adipogenesis (35) and high grade of inflammation in obesity (20–22). Moreover, CLDN1 has 337 

been associated with fibrosis and cancer progression, and targeting CLDN1 with a monoclonal 338 

antibody has been proposed as a potential therapeutic approach in liver models (29). 339 

Additionally, to stabilize cell/matrix interactions, the location of CLDN1 in the basal membrane 340 

is needed, allowing the regulation of cell/ECM interactions by interacting with integrin 341 

molecules via integrin-FAK signaling (36). Given this and the fact that our results also indicated 342 

that cell differentiation and extracellular matrix remodeling pathways were downregulated in 343 

vWAT T-cells from patients with obesity, we hypothesized that the dramatic up-regulation of 344 

CLDN1 could be due to a dynamic breaking and reannealing in TJ-like strands as a pathological 345 

reaction against lipotoxicity. This mechanism to try to balance the homeostasis alteration might 346 

cause a leak favoring the transport of inflammatory mediator(s) and effecting the crosstalk 347 

between T lymphocytes and the other cells. 348 
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Our results show that CLDN1 gene expression directly correlates with inflammatory genes and 349 

inversely with markers of adipogenesis. In addition, CLDN1 also shows an inverse correlation 350 

with the levels of CXCL14, a molecule with an anti-inflammation role reported from our 351 

laboratories (37). Moreover, a direct correlation between AT fibrosis markers and CLDN1 gene 352 

expression in whole WAT from patients with obesity was found. These results are concomitant 353 

with an association of vWAT CLDN1 levels and metabolic dysregulation in obese individuals, 354 

which nonetheless disappear after therapeutic intervention (BS), suggesting a detrimental role 355 

of this protein’s actions in obesity-associated clinical alterations. 356 

Our study has several limitations: a) the relatively low number of patients in the Cohort 1 (n = 357 

11), lack of enough statistical power to decipher potential age and gender effect, and the lack 358 

of T lymphocytes samples from control individuals in this cohort. However, the control 359 

individuals from Cohort 2 allowed us to describe the elevated levels of CLDN1 gene expression 360 

in obesity. Moreover, using a publicly available database, a third cohort was analyzed 361 

corroborating the data of our study (Supplemental File S3 and S4); b) this data does not 362 

distinguish between CD4+ and CD8+ T lymphocytes, and it would be important to check these 363 

two subpopulations and their contribution to CLDN1 modulation in vWAT; c) Since patients 364 

with obesity use to show higher infiltration of immune cells including T lymphocytes in vWAT, 365 

we cannot postulate a conclusion about the final responsibility for increased levels of CLDN1. 366 

However, since an equal normalized amount of RNA was used for transcriptomic analyses of 367 

both sWAT and vWAT, our results suggest that such higher levels of CLDN1 are due to a higher 368 

gene expression in T cells from vWAT compared to those from sWAT, independently of the 369 

amount of these cells. 370 

Nonetheless, a strength of our data is the novel transcriptome analysis of vWAT and sWAT 371 

CD3+ T lymphocytes from the same individuals (patients with obesity), allowing specific 372 

intraindividual comparisons to analyze the data. 373 
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In conclusion, we demonstrate the existence of a distinct gene expression profile of T 374 

lymphocytes in vWAT compared to sWAT in humans with obesity, with a marked upregulation 375 

of CLDN1 in the former. Our results suggest that CLDN1 may be involved in the more 376 

pathology-inducing adaptation of the vWAT to lipotoxicity. Moreover, our data highlight the 377 

importance of performing further research on the role of inter-cellular junctions within adipose 378 

depots, in which CLDN1 is likely to be major actor in the context of altered fat plasticity 379 

occurring in obesity. Further studies will be necessary to evaluate potential strategies to combat 380 

obesity and related metabolic diseases by targeting CLDN1-mediated signaling. 381 
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Figure legends 492 

Figure 1: Transcriptomic of T cells infiltrated in white adipose tissue (WAT) from 493 

individuals with obesity showed CLDN1 as a gene modulated in a depot-dependent 494 

manner.  495 

A) Heat map of gene expression comparisons between visceral white adipose tissue (vWAT) 496 

and subcutaneous white adipose tissue (sWAT) T-lymphocytes. Legend: red (up-regulated), 497 

blue (down-regulated) and white (no modulation)., gene symbol, fold change and fdr 498 

significance ("***"=FDR <0.001;"**"=FDR<0.01;"*"=FDR<0.05;"."=FDR<0.1). B) Volcano 499 

plot showing significantly- (red) and non-significantly regulated (black) transcripts using 500 

limma statistics in Cohort 1 dataset (CLDN1 fold change and FDR values shown in inset box). 501 

C) PCA biplot showing overlay of the scorings and loadings, highlighting the genes 502 

contributing with most weight into the two PCA components most correlated with adipose 503 

tissue depot differences (PC2 and PC5). (red vWAT, green sWAT).  504 

Figure 2: CLDN1 is induced in obesity, and its expression levels are higher in T 505 

lymphocytes infiltrated in visceral white adipose tissue (vWAT) as compared 506 

subcutaneous white adipose tissue (sWAT). 507 

A) mRNA expression of CLDN1 in T-cells from vWAT compared to those infiltrated in sWAT 508 

in patients with obesity. After normality assessment, a paired data (Wilcoxon) test was used to 509 

assess statistically significant (p<0.05) differences. The boxplot depicts the median, 510 

interquartile range and maximum/minimum values and gray lines indicate intraindividual 511 

matching. B) mRNA levels of CLDN1 in whole adipose tissue from patients with severe obesity 512 

compared to controls. A t test was used to assess statistical differences. Error bars indicate 513 

means ± SEM. * p < 0.05 and ** p < 0.01 obesity vs control group in vWAT; # p < 0.05 vWAT 514 

vs sWAT. 515 
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Figure 3: CLDN1 transcript levels are associated with T lymphocytes extracellular matrix 516 

remodeling markers, adipose proinflammatory markers, dyslipidemia, insulin resistance 517 

and fibrosis markers. 518 

Spearman’s correlations between CLDN1 mRNA levels and mRNA levels of marker genes in 519 

human vWAT involved in: A) Adipogenesis and adipocyte function. B) Inflammatory and anti-520 

inflammatory genes. C) Fibrosis and tissue remodeling marker genes. Spearman’s rho and 521 

associated p-value are indicated in the graphs. Correlations were considered statistically 522 

significant for p<0.05. 523 

Figure 4: Claudin-1 (CLDN1) protein is located in WAT from individuals with obesity.  524 

 A) Negative control, DAPI, CLDN1 and Merge (DAPI+CLDN1) confocal fluorescent images 525 

of CLDN1 located in visceral white adipose tissue (vWAT) and subcutaneous white adipose 526 

tissue (sWAT) from 7 patients with obesity (Cohort 1). Arrows indicate a higher protein 527 

expression of CLDN1 in vWAT compared to sWAT. For the 20X magnification the scale bar 528 

is 20 µm with a resolution of 4.8272 pixels per micron. For the 60X magnification the scale bar 529 

is 10 µm with a resolution of 11.4887 pixels per micron. Original magnification: 60X. Scale 530 

bar: 10 µm. B) Graphs showing the quantification of the fluorescence intensity of the vWAT 531 

and sWAT localized CLDN1 (****p < 0.0001, vWAT vs. sWAT). Three nonconsecutive 532 

sections sample (vWAT and sWAT) were used from the same patient.    533 
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Table 1. Clinical parameters of Cohorts 1 and 2. Cohort 1: 11 patients with severe obesity 

undergoing bariatric surgery (5 men and 6 women); Cohort 2: 14 controls and 13 patients with severe 

obesity undergoing bariatric surgery (all women). BMI: Body mass index; HbA1c: glycated 

hemoglobin, HOMA-IR: homeostatic model of insulin resistance; LDL-c: low-density lipoprotein 

cholesterol; HDL-c: high-density lipoprotein cholesterol. Differences between controls and patients 

with severe obesity were assessed using Student's t-test (normally-distributed) or Mann-Whitney test 

(nonnormally-distributed) for unpaired data. Normality was checked using the Shapiro–Wilk test. 

Statistical significance (Sig): * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; ns—statistically 

not significant, controls vs patients with severe obesity (Cohort 2). 

 

 

 

 

 Cohort 1 Cohort 2 

 
Obesity  

(n=11) 

Control 

(n=14) 

Obesity 

(n=13) 
Sig. 

 Mean ± SD Mean ± SD Mean ± SD  

Age (years) 50.9 ± 8.1 48.6 ± 8.2 46.2 ± 10.1 ns 

Weight (kg) 113.5 ± 16.3 64.9 ± 9.40 112.2 ± 12.0 **** 

BMI (kg/m2) 40.6 ± 1.9 24.7 ± 2.5 43.5 ± 3.9 **** 

Glucose (mg/dL) 117.6 ± 24.8 92.7 ± 15.4 106.5 ± 23.5 ns 

Insulin ( mIU/L) 13.4 ± 11.3 5.4 ± 1.3 16.5 ± 11.8 ns 

HbA1c (%) 5.5 ± 0.9 4.8 ± 0.8 5.3 ± 1.2 ** 

HOMA-IR (%) 4.1 ± 4.40 1.3 ± 0.4 4.8 ± 4.2 ns 

Triglycerides (mg/dL) 107 ± 39 72 ± 28 126 ± 34 ** 

LDL-c (mg/dL) 110 ± 44 108 ± 31 91 ± 14 ns 

HDL-c (mg/dL) 63 ± 42 68 ± 9 42 ± 8 **** 

Total cholesterol (mg/dL) 187 ± 37 190 ± 34 158 ± 18 * 



Table 2: Simple (Pearson’s) correlation analyses for baseline CLDN1 transcript expression levels in 
visceral (vWAT) and subcutaneous (sWAT) white adipose tissue and anthropometric and circulating 
variables in individuals from Cohort 2 at baseline (0M) and after 6 months of bariatric surgery (BS). 
 

 0M 6M 

 vWAT sWAT vWAT sWAT 

 r p-value r p-value r p-value r p-value 

Age 0.126 0.595 0.454 0.119 NA NA NA NA 

Surgery NA NA NA NA -0.145 0.636 0.671 0.144 

Body weight 0.413 0.089 0.034 0.912 -0.448 0.168 0.570 0.238 

BMI 0.407 0.094 -0.023 0.940 -0.487 0.129 0.792 *0.048 

Glucose 0.231 0.327 0.459 0.115 -0.300 0.370 0.261 0.618 

Insulin -0.057 0.853 0.090 0.817 -0.313 0.413 0.520 0.370 

HOMA1-IR -0.043 0.888 0.121 0.757 -0.360 0.342 0.427 0.474 

Hb1Ac 0.456 *0.043 0.152 0.745 -0.193 0.592 0.130 0.806 

cRP 0.609 0.109 0.608 0.584 0.791 *0.006 0.646 *0.044 

TAG 0.521 *0.045 -0.739 0.153 -0.059 0.863 0.445 0.377 

Total cholesterol -0.359 0.173 0.020 0.974 0.050 0.884 0.568 0.239 

LDL-c -0.222 0.409 0.173 0.781 0.363 0.272 0.441 0.381 

HDL-c -0.587 *0.017 -0.219 0.723 -0.419 0.200 0.001 0.990 

 
N = 20. BMI: Body Mass Index. HOMA1-IR: Homeostatic Model Assessment 1 for Insulin Resistance. 
TAG: Triacylglycerides. LDL-c: Low density lipoprotein cholesterol. HDL-c: High density lipoprotein 

cholesterol. Hb1Ac: glycated haemoglobin 1Ac. cRP: C-reactive protein. : Spearman’s rank 
correlation coefficient. *, bold: Statistically significant correlations (p<0.05). 
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