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Abstract

Among the eight forms of vitamin E, only tocopherols are
essential compounds that are distributed throughout the entire
plant kingdom, with a-tocopherol being the most predominant
form in photosynthetic tissues. At the cellular level, a-tocoph-
erol is of special relevance inside the chloroplast, where it
eliminates singlet oxygen and modulates lipid peroxidation.
This is of utmost relevance since tocopherols are the only
antioxidants that counteract lipid peroxidation. Moreover, at the
whole-plant level, a-tocopherol appears to modulate several
physiological processes from germination to senescence. The
antioxidant role of a-tocopherol at the cellular level can have
profound effects at the whole-plant level, including the modu-
lation of physiological processes that are apparently not
related to redox processes and could be considered non-
antioxidant functions. Here, we discuss whether non-
antioxidant functions of a-tocopherol at the whole-plant level
are mediated by its antioxidant role in chloroplasts and the
regulation of redox processes at the cellular level.
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Introduction
a-Tocopherol is one of the eight forms of “vitamin E”
alongside B-, Y-, and 8-tocopherol as well as the four

tocotrienol homologues (a-, B-, Y-, and d-tocotrienols).
Only a-tocopherol is universally distributed in the plant
kingdom, being the major form accumulating in photo-
synthetic tissues and, hence, in chloroplasts (Box 1).
Chloroplasts are one of the main sources of reactive
oxygen species (ROS). ROS can act as signaling mole-
cules, especially when produced transiently, in many
essential plant processes, being particularly relevant in
chloroplast-to-nucleus communication (known as
retrograde signaling). However, ROS can also act as
damaging molecules. Inside chloroplasts, ROS such as
the superoxide anion and the hydroxyl radicals can
induce oxidative modifications of the D1 and D2 pro-
teins, hence, damaging the photosystem II [4].
Furthermore, hydroxyl radicals and, especially, singlet
oxygen, can also damage the photosystem Il and they are
the main cause of lipid damage when produced at high
amounts and in a sustained way, leading to cell death
[5,6]. The functions exerted by o-tocopherol in the
chloroplasts are not only important for the resilience of
the photosynthetic apparatus, but can also influence
signal transduction and nuclear gene expression, with
chloroplasts serving as sentinels for stress sensing and
signaling in plant responses to environmental stress
[7, 8].

Particular attention has been paid to the functions of o-
tocopherol both in animals and plants over the past two
decades. On the one hand, the whole antioxidant
network, including ¢-tocopherol, has been shown to play
a role in signal transduction and gene regulation both in
animals and plants. In plants, the well-coordinated
network of antioxidants modulating ROS levels in chlo-
roplasts has been proven to have a key role in redox
regulation in several physiological processes, with o-
tocopherol shown to influence the production of other
signaling molecules and regulate gene expression [7,8].
On the other hand, there has been a long discussion in
biomedicine on whether o-tocopherol plays a role in
several physiological functions in mammals through non-
antioxidant activities or if all the functions of a-tocoph-
erol are mediated by its antioxidant role [9,10]. Similarly,
a-tocopherol has been related to various physiological
processes in plants, particularly in functions that may not
be necessarily ascribed to cellular redox processes or to
any specific antioxidant function in chloroplasts, thus
paving the way to assign non-antioxidant activities for o-
tocopherol also in plants. Here, we will summarize the
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Box 1. a-Tocopherol: the main form of “vitamin E”.

Since the discovery of vitamin E 100 years ago, several studies have been carried out to find out its role in plants and animals. In humans, o-
tocopherol transfer protein (a-TTP), a hepatic protein, mainly recognizes a-tocopherol, making it practically the only one present in human plasma
and tissues [1]. In plants, where “vitamin E” is synthesized, the content and composition of the different forms of “vitamin E” vary depending on the
species, the tissue, the age, and the growing conditions. Despite this, a-tocopherol is the most abundant form in photosynthetic tissues, where it
exerts an antioxidant function that was well-established two decades ago (for a review see Ref. [2]). The universality of a-tocopherol among
different organisms may be explained through an evolutionary point of view. “Vitamin E” genes arose from the endosymbiosis of an ancestral
heterotrophic eukaryote with cyanobacteria. The biosynthetic pathway and the enzymes involved are homologous in cyanobacteria and plants,
except for MPBQ/MSBQ-MT, which appear to represent non-orthologous functionally equivalent enzymes that are an example of convergent
evolution since they evolved independently in plants and cyanobacteria [3]. Since the antioxidant activity of a-tocopherol is greater than that of the
other forms, it is plausible that it has been selected by evolution, making it the predominant form in photosynthetic tissues (Figure I). Moreover, as
tocopherols are an essential factor in the human diet, hence the concept of “vitamin E”, it is very likely that a-TTP also arose evolutionarily with a
strong specificity for a-tocopherol in order to store the most abundant “vitamin E” form found in vegetables. Although y-tocopherol and,
sometimes, tocotrienols are present in high amounts in seeds and fruits, a-tocopherol is by far the most predominant form in green vegetables and
in some fruits and seeds. It should be noted that vitamin E has been written in quotation marks because this is correct when referring to animals,

but not when dealing with plants, since it is not a vitamin in photosynthetic organisms.

major functions of &-tocopherol in plants that have been
established in the literature and discuss the antioxidant
and non-antioxidant functions of tocopherols at various
organization levels. A special focus will be placed on
analyzing whether or not the non-antioxidant functions
of a-tocopherol in the regulation of various physiological
processes at the whole-plant level can be explained by its
antioxidant effects and involvement in cellular
redox processes.

a-Tocopherol: a key player in the
antioxidant network

Before tackling the possible non-antioxidant functions
of a-tocopherol in plants, it is essential to examine its
unique properties as an antioxidant in chloroplasts and
how ROS are produced in this organelle. ROS are pro-
duced in the electron transport chain of chloroplasts by
two mechanisms. In the first one, which mainly occurs in
the reaction center of photosystem II (PSII) and in the
antenna system, singlet oxygen (102) is produced via
triplet chlorophyll formation. In the second one, which
occurs mainly in PSI, O, accepts electrons through the
Mehler reaction, generating superoxide anion radicals
(0%7). O3 can be dismutated into H,O,, which can be
converted into hydroxyl radicals (OH®), or protonated
into hydroperoxyl radicals (HO3), both of which are
initiators of lipid peroxidation [11]. Lipid peroxidation
can eventually destroy the integrity of membranes and,
if severe, cause cell death. However, it can also generate
oxylipins, which have key signaling functions during
plant development and stress responses [12]. d-
Tocopherol is unique among the chloroplast network of
antioxidants in that it can inhibit the propagation of
lipid peroxidation.

a-Tocopherol is part of a well-coordinated network of
non-enzymatic antioxidants that is necessary to main-
tain chloroplast redox homeostasis, especially when
plants are in unfavorable conditions. This network is

mainly governed by two water-soluble antioxidants
(ascorbate and glutathione) and two lipid-soluble anti-
oxidants (B-carotene and d-tocopherol). Carotenoids
can physically quench 1OZ, producing the carotenoid
triplet state that ends up deactivating through thermal
decay [13]. However, B-carotene can occasionally be
oxidized by IOZ, generating B-carotene derivatives such
as B-cyclocitral (B-CC), which is able to regulate gene
expression [14]. Ascorbate can directly scavenge O3~
and OH® and, as part of the ascorbate/glutathione cycle,
reduces H,;O; into water [5]. Glutathione by itself can
scavenge a range of ROS such as H,O, and OH® and, as a
component of the ascorbate/glutathione cycle, re-
generates ascorbate using the NADPH produced in the
electron transport chain [5,6]. Moreover, through this
cycle, d-tocopherol can be regenerated from its toco-
pheroxyl radical state [15]. Therefore, a-tocopherol
cooperates with B-carotene in modulating the levels of
102 in chloroplasts, while at the same time having a
unique role in inhibiting the propagation of lipid per-
oxidation (Figure 1).

Both B-carotene and @-tocopherol modulate membrane
fluidity in chloroplasts [16,17]. Tocopherols are syn-
thesized in chloroplasts, where they are equally
distributed between the envelope and the thylakoid
membranes, except under stress conditions and leaf
senescence, when some of the ¢-tocopherol accumu-
lates in the plastoglobuli [18]. Since @-tocopherol ac-
cumulates as a reservoir in the plastoglobuli, it is very
difficult to ascertain what fraction of the d-tocopherol
measured in leaves really exerts a direct antioxidant
effect in chloroplasts under stress conditions. In any
case, there is strong evidence in the literature showing
that al-tocopherol plays a major role as an antioxidant in
the plant response to several stresses (Table 1). o-
Tocopherol is a (physical) quencher and a (chemical)
scavenger of "Op, acting in the vicinity of PSII together
with B-carotene [44]. It also reacts with the lipid peroxyl
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radical in thylakoid membranes, inhibiting the propa-
gation of lipid peroxidation [45]. Furthermore, o-
tocopherol stabilizes thylakoid membranes through its
antioxidant effects and by providing fluidity to the lipid
bilayer [46]. It should be noted that a-tocopherol exerts
at least five protective direct roles against oxidative
stress in chloroplasts, which has important implications
for the physiology not only of photosynthetic tissues but
also of several other processes at the whole-plant
level (Figure 2).

Functions of a-tocopherol at the whole-
plant level: do they all have a cellular redox
basis?

Aside from its antioxidant function and role in plant
stress tolerance, which can be attributed to its role in
protecting thylakoid membranes (please see the exam-
ples in Table 1), d-tocopherol also has some intriguing
roles in plant development (Table 2). These include all

Figure 1
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the essential developmental processes in the life cycle
of angiosperms, such as seed longevity, dormancy, and
germination, leaf senescence, as well as flower and fruit
development. The effects of d-tocopherol in all these
processes are not only important for better under-
standing the basic processes of plant biology, but also
have very significant implications for agrifood biotech-
nology. Some of these effects are clearly associated with
the antioxidant functions of a-tocopherol since some of
the processes are undoubtedly related to oxidative
processes (e.g., seed longevity and gemination
[47—51]), but others are unexpected. The most striking
effects observed in plants that may at first sight suggest
that d-tocopherol has non-antioxidant roles at the
whole-plant level are the altered source-sink partition-
ing in tocopherol-deficient plants, thus leading to al-
terations in various physiological processes, such as
flower or fruit development [53—58] and leaf senes-
cence [63—65].
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The chloroplast network of non-enzymatic antioxidants, mainly governed by two water-soluble antioxidants (ascorbic acid (AsA) and glutathione (GSH))
and two lipid-soluble antioxidants (B-carotene (B-car) and a-tocopherol (a-toc)), maintains the redox homeostasis of the organelle. The four antioxidants
can efficiently counteract reactive oxygen species (ROS), an efficiency that increases with their interactions and complementation. Multiple ROS are
produced in the electron transport chain that can oxidize lipid membranes, generating lipid peroxidation products such as lipid peroxyl radicals (LOO*®) and
oxylipins, which have important roles in retrograde signaling (chloroplast-to-nucleus signaling). B-car serves an important role in eliminating '0,. However,
it can occasionally be oxidized by this ROS, generating f-car derivatives such as B-cyclocitral (3-CC), a regulator of gene expression. a-Toc also removes
10,, forming a-toc quinones and epoxides. However, only a-toc can scavenge LOO?®, thus having a tremendous and unique relevance in protecting lipid
membranes. AsA and GSH can directly scavenge ROS and, as part of the AsA/GSH cycle, regenerate a-toc from its tocopheroxyl radical (a-toc®). 0",
superoxide anion; HO3, hydroperoxyl radical; OH®, hydroxyl radical; H»O,, hydrogen peroxide; 'O,, singlet oxygen; LOOH, lipid hydroperoxide. The figure
was created with the help of BioRender.com.
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Table 1

Functions of tocopherols in plant stress responses. A summary is shown of the major roles of tocopherols in plant stress responses described to date, indicating whether the
mechanism is an antioxidant one or unclear. AOX, antioxidant.€ indicates correlative evidence only.

STRESS FUNCTION FORM MODEL MECHANISM REF.
AOX UNCLEAR
Water deficit Increased tolerance a-Tocopherol Tobacco/ Reduces lipid peroxidation and protects chloroplasts v [19-21]
rosemary/oak from photo-oxidative stress
Prevents leaf desiccation Y-Tocopherol Heartleaf iceplant  Unknown® [22]
Heavy metal ions Alleviation of CuSOg4-induced stress  o-Tocopherol Tobacco Reduces ROS accumulation and lipid peroxidation® v [23]
Increased tolerance to Cu- a-Tocopherol Arabidopsis Reduces lipid peroxidation® v [24]
and Cd-induced oxidative stress
Alleviation of Ni-induced stress a-Tocopherol Wheat Reduces lipid peroxidation® v [25]
Alleviation of Cd-induced stress a-Tocopherol Rapeseed Reduces ROS accumulation and Cd absorption by v [26]
the roots®
Salinity Increased tolerance a-Tocopherol Tobacco/rice/ Reduces ROS accumulation and lipid peroxidation v [23,27—-29]
Indian mustard
Increased tolerance a-Tocopherol Potato Allows photoassimilate export by regulating SnRK1 [30]
(sucrose non-fermenting-1-related protein kinase
1) signaling sensitivity
Increased tolerance y-Tocopherol Arabidopsis Protects plants as effectively as a-tocopherol by v [31]
altering lipid peroxidation and hormonal modulation
UV-B radiation Increased tolerance a-Tocopherol Arabidopsis Protects against photo-oxidative damage v [32—34]
Low temperature Increased tolerance a-Tocopherol Arabidopsis/rice/  Stabilizes thylakoid membranes and prevents lipid v [35,36]
Taunton yew peroxidation. Allows photoassimilate export by
preventing callose deposition while modulating
endoplasmic reticulum fatty acid metabolism.
Essential as part of the plastid retrograde signaling
regulating miRNA biogenesis through 3'-
phosphoadenosine 5'-phosphate modulation by
COLD1-mediated calcium influx
High temperature Increased tolerance a-Tocopherol Arabidopsis Essential as part of the plastid retrograde signaling [7]
regulating miRNA biogenesis through 3'-
phosphoadenosine 5’-phosphate modulation
High light Increased tolerance a-Tocopherol Arabidopsis/ Protects photosynthetic complexes against ROS v [37—-39]
lettuce accumulation
High temperature Increased tolerance a-Tocopherol Tomato Protects against photo-oxidative damage and v [40]
and high light reduces membrane fluidity
Biotic Increased resistance o- and y-tocopherol Arabidopsis/ Allow adequate defense mobilization by modulating v [41,42]
drumstick tree lipid peroxidation and membrane fatty acid
composition
Increased resistance a-Tocopherol Arabidopsis Inhibition of root-knot nematodes penetration [43]
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A detailed analysis of the studies summarized in Table 2
revealed striking new evidence that could lead to the
further understanding of the functions of a-tocopherol
in plants. Carbohydrate export has been reported to be
blocked in VT'E5-deficient tomato plants that cannot
synthesize tocopherols, affecting fruit quality [58].
Interestingly, the prenyllipid profile greatly differs be-
tween the source and sink organs in these tomato plants,
revealing  organ-specific  metabolic  adjustments.
Furthermore, o-tocopherol has been shown to play a
crucial role in low-temperature adaptation and phloem
loading in Arabidopsis [65], confirming earlier studies
performed in other species [57,660]. A defect in VTEZ,
which is essential for g-tocopherol biosynthesis, rapidly
reduces photoassimilate export at low temperatures in
Arabidopsis, coinciding with callose deposition exclu-
sively in the phloem parenchyma transfer cell walls
adjacent to the sieve element/companion cell complex
[65]. Although further research is needed to better
understand underlying mechanisms, it is likely that a-
tocopherol deficiency affects the redox state of phloem
cells with the consequent effects in the regulation of

Figure 2
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source—sink relationships and various developmental
processes at the whole-plant level. Alternatively, it is
also likely, and not mutually exclusive, that these effects
reflect the specific interactions of o-tocopherol with
enzymes, structural proteins, lipids, and transcription
factors that have nothing to do with redox regulation. It
is well known that, aside from its antioxidant activity, o-
tocopherol can affect membrane fluidity [46], which
may have profound implications in the activity of
membrane enzymes and the stability of macromolecules
found in the chloroplast envelope, thylakoids and plas-
toglobuli. Therefore, it is essential that new VTE5 or
VT'EI-deficient tomato/Arabidopsis plants with inducible
promoters in phloem cells or other cellular types are
obtained to unravel the mechanisms underlying the
functions of d-tocopherol observed at the whole-
plant level.

Another aspect of special relevance that requires further
research is why plants respond so strikingly to vy-
tocopherol accumulation in chloroplasts. If 'y-tocopherol
acted as a simple precursor of a-tocopherol, its huge
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The function of a-tocopherol in chloroplasts with an impact at various organization levels. a-Tocopherol exerts key roles from the physicochemical to the
organism levels, influencing various plant developmental processes. '0,, singlet oxygen; OH®, hydroxyl radical; LOO®, lipid peroxyl radical; ROS, reactive
oxygen species; RES, reactive electrophile species. The figure was created with the help of BioRender.com.
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Table 2

Tocopherol functions in plant developmental processes. A summary is shown of the major roles of tocopherols in plant development described to date, indicating whether the
mechanism is an antioxidant one or unclear. AOX, antioxidant.€ indicates correlative evidence only.

PROCESS FUNCTION FORM MODEL MECHANISM REF.
Seed longevity Protects against oxidation a-Tocopherol Arabidopsis/rice Protects lipids and embryo from [47—-49]
oxidation
Germination Protects against oxidation a-Tocopherol Arabidopsis/soybean Protects lipids from oxidation, [50,51]
avoiding altered gene expression
Delays seedling development Y-Tocopherol Barley Scavenges nitric oxide® [52]
Flower development Flower induction a- and y-tocopherol Xanthium/Lilium Increase during flowering either in [63,54]
the leaves or flowers®
Flower vigor o-Tocopherol Lilium/grey-leaved cistus Protective effect against oxidative [55,56]
stress and decay in flower vigor®
Tuber formation Ensures tuber formation a-Tocopherol Potato Correct carbohydrate export from [57]
source to sink tissues
Fruit development Ensures fruit development o-Tocopherol Tomato Correct carbohydrate export from [58]
and ripening source to sink tissues
Protects against oxidation o-Tocopherol Citrus Protects the flavedo from [59]
environmental stress
Ensure correct development and o- and y-tocopherol Tomato/mango/pepper Increase during ripening® [60—-62]
ripening
Senescence Photoassimilate remobilization o-Tocopherol Arabidopsis/ Phloem loading [63—65]
tobacco/alfalfa/tomato
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a-Tocopherol exerts essential roles in different plant tissues regulating both developmental processes and stress responses. a-Tocopherol can be found
at mesophyll cells mainly inhibiting ROS accumulation and lipid peroxidation, its main antioxidant role; but also in flower corollas and fruit mesocarp and
epidermis where it has been seen to increase during the chloroplast-to-chromoplast transition, an oxidative process; and in root epidermal and cortical
cells where multiple roles have been described such as protecting storage lipids, improving nodules performance in legume-Rhizobium symbiosis,
increasing its content after mycorrhization and inhibiting heavy metals absorption. Figure created with the help of BioRender.com.

accumulation would not necessarily result in contrasting
phenotypes. In recent years, however, it has been shown
that specific functions can be attributed to the different
forms of tocopherols accumulating in chloroplasts,
particularly o- and y-tocopherol. In the Arabidopsis vied
mutant, which accumulates y-tocopherol instead of a-
tocopherol, multiple specific responses have been
observed, such as an improved response to the osmotic
stress produced by sorbitol or methyl viologen [67] or
major changes in jasmonic acid and ethylene signaling in
the mature leaves of plants exposed to salt stress [31].
These have led to the proposal that y-tocopherol has
specific roles in osmoprotection and gene expression.
However, assigning a specific function to y-tocopherol is
difficult since different pleiotropic effects might be
occurring. Furthermore, the contents of the different
forms of tocopherols are highly altered in the mutants
when compared to the levels found in nature. There-
fore, the results obtained from these studies should be
carefully analyzed and compared with other experi-
mental approaches since a direct extrapolation to what
happens in nature may lead to erroneous assumptions.
In essence, we can speculate that other forms may have
specific roles in nature, but, to date, a-tocopherol is the

only form proven to have an antioxidant function in
photosynthetic tissues.

Conclusions and future perspectives

In this review, we summarize the evidence showing that
a-tocopherol plays a major role as an antioxidant in
chloroplasts, not only eliminating singlet oxygen, but
also inhibiting the propagation of lipid peroxidation, a
function not exerted by the other antioxidants. Hence,
this has important implications for understanding its
protective role against photo-oxidative damage in plant
responses to abiotic stress. However, new functions for
a-tocopherol have been recently identified at the whole-
plant level, with o-tocopherol appearing to modulate
several physiological processes ranging from germination
to senescence (Figure 2). The most striking phenotype
observed in a-tocopherol-deficient plants that might at
first sight suggest non-antioxidant functions of o-
tocopherol in plants (regulation of flower and fruit
development as well as leaf senescence) are the alter-
ations in source-sink partitioning. However, it is possible
that these phenotypes are mediated by the antioxidant
effects of a-tocopherol through the direct or indirect
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regulation of the redox state of phloem companion cells.
Moreover, further research on y-tocopherol is required
to better understand the unique phenotypes observed
in Arabidopsis vre4 mutants and in some plants accumu-
lating large amounts of y-tocopherol in the chloroplasts,
taking into account the antioxidant network and

Figure |

possible pleiotropic effects. Of particular relevance will
also be the study of the function of tocopherols in other
plastid types beyond chloroplasts (Figure 3). In this
regard, o-tocopherol could not only be exerting specific
functions in the chloroplast-to-chromoplast transition in
fruits and flowers, but also in nutrient uptake,
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The universality of a-tocopherol among different organisms may be explained through an evolutionary point of view. Vitamin E genes arose from the

endosymbiosis of an ancestral heterotrophic eukaryote with vitamin E-synthesizing cyanobacteria and MPBQ/MSBQ-MT-carrying archaea. The temporal
occurrence of the latter endosymbiosis is still unclear. Due to its universality, abundance, and high antioxidant activity, a-tocopherol was probably the most
predominant form of vitamin E incorporated into the diet of animals, thus making a-TTP more specific for this form. The figure was created with the help of

BioRender.com.
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nodulation, mycorrhization and lipid storage in the root
[26,68,69], aspects that warrant further investigations.
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