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Abstract 
Around 50 years ago, molecular biology opened the path to understand changes in forms, adaptations, complexity, or the basis of human 
diseases through myriads of reports on gene birth, gene duplication, gene expression regulation, and splicing regulation, among other 
relevant mechanisms behind gene function. Here, with the advent of big data and artificial intelligence (AI), we focus on an elusive and 
intriguing mechanism of gene function regulation, RNA editing, in which a single nucleotide from an RNA molecule is changed, with 
a remarkable impact in the increase of the complexity of the transcriptome and proteome. We present a new generation approach to 
assess the functional conservation of the RNA-editing targeting mechanism using two AI learning algorithms, random forest (RF) and 
bidirectional long short-term memory (biLSTM) neural networks with an attention layer. These algorithms, combined with RNA-editing 
data coming from databases and variant calling from same-individual RNA and DNA-seq experiments from different species, allowed 
us to predict RNA-editing events using both primary sequence and secondary structure. Then, we devised a method for assessing 
conservation or divergence in the molecular mechanisms of editing completely in silico: the cross-testing analysis. This novel method 
not only helps to understand the conservation of the editing mechanism through evolution but could set the basis for achieving a better 
understanding of the adenosine-targeting mechanism in other fields. 
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Introduction 
Gene regulation is without a doubt the Rosetta Stone of genetics 
in the 21st century. Among the different posttranscriptional mod-
ifications behind gene regulation, RNA editing has received less 
attention until a few years ago. This is especially true when com-
pared with others as profoundly studied as alternative splicing 
[1–5]. In a common RNA-editing event, a single nucleotide from 
an RNA molecule undergoes a chemical change, turning into a 
different nucleotide, usually before the RNA molecule undergoes 
any kind of splicing [6, 7]. This process is present in all eukaryotic 
organisms [8–10], being the Adenine-to-Inosine (A-to-I) editing 
mediated by proteins of the ADAR (Adenosine Deaminase Acting 
on RNA) family, the most common in metazoans [11–13]. The 
ADAR family includes three paralog groups in vertebrates: ADAR, 
ADARB1, and ADARB2. ADARB1 and ADARB2 are the result of 
the two whole genome duplications (WGD) that took place at 
the origin of vertebrates, with the basal-branching cephalochor-
date Branchiostoma lanceolatum presenting only two of the three 
commonly found paralogs [14]. Interestingly, out of the expected 

up to four vertebrate paralogs for each amphioxus gene, only one 
duplication event was conserved in the vertebrate lineage, with 
one of the two paralogs, ADARB2, being enzymatically inactive 
and acting just as a binding competitor [15, 16]. 

The ADAR-mediated A-to-I modification, although apparently 
small, with just one nucleotide change, can have various trans-
lational consequences. If the editing event takes place inside the 
coding sequence (CDS), it can have an impact on the final protein 
as the new inosine will behave like a guanine in any base-pairing 
process, such as translation [17]. This not only means that an 
amino acid can change completely but also that stop codons can 
be added or ignored, while different codon availability can also 
affect the translation. Even when happening in intronic regions, 
editing can have a great impact, as cryptic splice sites can arise, 
or modulate the specificity of microRNA (miRNA) targets [17]. 

Furthermore, A-to-I editing has been described in a myriad 
of processes. A prominent example is the regulation of innate 
immunity in humans, which modulates the antiviral response. 
ADAR can edit the viral double-stranded RNA (dsRNA), thus
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inactivating the virus [18, 19], but this process can also dampen 
the interferon response (due to mismatches in the dsRNA 
sequence), turning ADAR into a pro-viral agent. In mice, ADAR 
null embryos die before birth due to stress-induced apoptosis, 
while ADARB1 null embryos will die young due to seizure-related 
complications. Alterations in the levels of editing have also been 
found in various diseases, such as Prader–Willi’s syndrome [20] 
or Alzheimer’s disease [21]. Editing in transcripts, such as GLI1 
[22], AZIN1 [23], or ARGHAP26 [24] (in this last case, the editing 
happening on a target of miRNAs) has been shown to be relevant 
in some cancers. The most prominently studied cases of A-to-
I editing are those that affect the brain and nervous system of 
mammals and other vertebrates. Specifically, there are editing 
targets in key mediators of the synaptic transmission of neuronal 
signals, like the GluA2, GluA3, and  GluA4 subunits of the AMPA 
Glutathione receptor [25], the GluK1 and GluK2 kainate-glutamate 
receptor [26–28], or the Nova1 splicing factor [29]. The editing in 
Nova1 is a particularly noteworthy case. Nova1 is a splicing factor 
that regulates more than 700 splicing events, including splicing 
in important synaptic proteins. A specific nucleotide is a target 
of a conserved editing event that creates a serine-to-glycine sub-
stitution, which significantly increases the stability of the Nova1 
protein. This editing event is dynamically regulated during brain 
development. The comparison of the editing levels in different 
regions of the brain shows differences in editing regulation: in 
Mus musculus there are significant regional differences in editing 
level, while in Gallus gallus all the regions have editing levels 
close to 100% [29], suggesting that Nova-editing could have been 
involved in the evolution of particular regions of the mammalian 
brain. 

Being a process as versatile and crucial as it is [18, 30–33], 
whether RNA editing has shaped evolution is of great interest. 
However, even with the several attempts made in recent years to 
shed light on the evolution of this process, how (or if) RNA editing 
has shaped evolution is yet to be discovered [10, 12–14, 29, 34, 
35]. This is mostly due to the difficulty of predicting de novo RNA-
editing events. Little is known about the ADAR target selection 
mechanism besides having to be in a dsRNA region of at least 
20 bp in extent [36]. It seems that secondary structure may have a 
great role in impeding or facilitating the action of ADAR proteins. 
This is more evident when looking at the high levels of editing 
of the adenosines in perfect dsRNA molecules in vitro [36]. These 
perfect dsRNA molecules have a very straightforward secondary 
structure, which would allow ADAR to edit every single adenosine. 
Some studies also suggest that a complementary sequence 
residing in an intron that could generate a double strand in the 
neighboring area of the editing site could also be necessary during 
editing [37]. As the target sequences or structures harboring 
an adenosine that has the potential to be edited are not yet 
clear enough, we must rely on empirical evidence for any kind 
of evolutionary analysis of RNA editing. This evidence comes 
in the form of variant calling using same-individual genomic 
and transcriptomic data in order to avoid polymorphisms 
[38], or in the form of amplification-free techniques, such as 
nanopore sequencing, which can identify inosines natively [39]. 
Even with this empirical data and checking the conservation 
of the primary sequence between distinct clades, however, we 
cannot fully ensure that the mechanism is fully conserved 
independently from its targets. 

Here, we present a new approach to assess the functional con-
servation of the targeting mechanism independently of the con-
servation of editing sites using two machine learning algorithms, 
random forest (RF) and bidirectional long short-term memory 
(biLSTM) neural networks with an attention layer. RF is an 

ensemble method that allows building a classifier based on 
expert descriptors and, therefore, has high interpretability. On 
the contrary, biLSTM networks facilitate a direct approximation 
from sequence windows, although interpretation may not 
be immediate. Using available RNA-editing databases and 
variant calling from same-individual data from different species 
(Homo sapiens, M. musculus, and  Trachurus trachurus), we trained 
an algorithm to predict RNA-editing events using secondary 
structure and primary sequence data in a species. With this, we 
predicted the events from different species to assess if the target 
selection mechanism is conserved between the two species, or 
whether, although sharing a similar active domain, the ADAR 
mechanism changed between those species. This novel method 
permits approaching the, until now elusive, understanding of the 
editing mechanisms through evolution. 

Materials and Methods 
A more detailed section can be found in Extended Methods. 

Origin of the RNA-editing and genomic data 
We obtained the human and mouse RNA data from REDIportal 
[40] (see  Supplementary Table 1 for a distribution of the human 
RNA-editing events according to regions), as well as the RefSeq 
gene notation and the standard genome assemblies (hg38 for 
humans and mm10 for mice). We also obtained an older version of 
the human REDIportal database from the authors. For mackerel, 
we used the DNA-seq and RNA-seq data from the Darwin Tree 
of Life [41], which is from the same specimen. We also used the 
genome assembly and gene annotation from the Darwin Tree 
of Life. We aligned the DNA reads using Magicblast (v1.6.0) [42] 
and the RNA reads using bowtie2 (v2.4.2) [43] and then used 
the SAMtools (v1.15.1) [44] and bcftools (v1,11) [44] libraries to 
obtain separately the DNA and RNA SNVs in vcf format. Then we 
filtered the A-to-G variants that appeared only in the RNA SNVs, 
filtering out the polymorphisms from the DNA SNVs. We also set 
a minimum depth of 10. This resulted in our accepted mackerel 
RNA-editing positions. A more detailed process can be found in 
Extended Methods. 

General pipeline for constructing the random 
forest and neural networks datasets 
We used mostly our own programs to get the datasets for both 
the RF and neural network approach. We extracted the pre-mRNA 
sequences of both coding and non-coding genes that had editing 
events in them, discarding those annotated sequences that are 
statistical outliers in length and those sequences that have more 
than 20% unknown nucleotides (Ns). Note that any RNA-editing 
events that fall outside of the selected sequences are ignored. 
The negative datasets for both RF and NN are randomly selected 
adenosines from the selected sequences that are not annotated 
as edited. We then predicted the secondary structure using lin-
earfold [45]. We annotated the information about the secondary 
structure in two different ways: for RF, we have, for each adeno-
sine in a dataset, a series of descriptors that give information 
about the features of the secondary structure, both close to the 
particular adenosine and for the whole molecule. For the neural 
networks approach, we have an input two-channel sequence, one 
channel with the pre-mRNA sequence and the other with the 
type of secondary structure feature each nucleotide is in. Once 
the genes file is available, with the three channels: nucleotide 
sequence (SEQ), linearfold secondary structure prediction (in Dot-
Parenthesis format, PAIRS), and our Secondary Structure feature
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annotation (STRUCTURES) plus the fourth EDIT annotation chan-
nel, the first step is to go through all the genes and select each 
adenosine as the center of a cut window. Then we will obtain 
a file with a list of sequences, each centered on an adenosine, 
with the selected channels (in our case, we only need SEQ and 
STRUCTURES), where we will also add the name of the gene, the 
position number of the adenosine into the gene, and the editing 
flag (0 if not edited, 1 if edited). 

In the wild, the number of unedited adenosines is much higher 
than the number of edited ones (98% versus 2%), and since the 
number of samples is very high for both classes, we have consid-
ered that the optimal solution to deal with the imbalance consists 
of balancing the samples for training, always choosing as many 
edited as unedited samples. To do this, we always select all the 
edited samples, and then, an equal number of unedited samples 
are randomly selected from the total. Finally, once we have the 
balanced dataset. After obtaining the balanced datasets with 50% 
edited adenosines and 50% unedited adenosines, we performed 
a random partition of the data into three parts: 70% for training, 
15% for validation during training, and 15% for the final test. After 
partition, the three sets continue to be well balanced in positive 
and negative samples. 

The final step for the NN data is to encode it for feeding to the 
bi-LSTM with attention layer model. The coding is done in two 
stages. We first encode each pair (nucleotide, Secondary Struc-
ture) with an integer, and then, in a second stage, we encode each 
integer with a One-hot code. The particularity of our approach is 
that to avoid storing very large files with On-hot codes, we perform 
this second encoding stage in RAM at runtime. 

For RF, we use R 4.2.1, while for the neural networks approach, 
we used a biLSTM with an attention layer neural networks model 
implemented in keras. A more detailed process can be found in 
Extended Methods. 

RF 
RF is a supervised ensemble algorithm based on decision trees. 
Each decision tree is built using a random sample of the original 
data (bootstrap) and a feature randomness selection; in this way, 
a forest of uncorrelated trees is created that will serve to make 
a prediction by committee with better performance than if it 
were an individual. Furthermore, it is possible to determine which 
features are most relevant to build the predictor, which makes this 
algorithm easy to interpret. The R package randomForest has been 
used as the implementation. 

Before running the RF, the presence of missing values and the 
degree of variability of the descriptors must be checked. 

The descriptors used for the RF datasets may have missing 
values for some variables. XClosest descriptors may have missing 
data when the sequence in some type of structure is less than 
five occurrences. In this case, the sequence is removed. Another 
case is when local descriptors, such as localAverageXXXSize, do 
not have any occurrences XXXSize, so it is not possible to compute 
the average. If the number of missing values is >10%, then the 
descriptor is removed, and otherwise, the sequence is removed. 

In addition, variables that have very little variability are elimi-
nated since they do not provide relevant information and simplify 
the model. 

The selection of the two hyperparameters of the RF algorithm, 
the number of trees and the number of variables, was carried 
out individually for each window size of 50, 200, 500, and 1000 
nucleotides and organism. In all cases, it was tuned to a maximum 
number of 1000 trees and a possible number of variables: 2, 4, 5, 
7, 9, 13, 17, 19, 25, 30, 40, 50, 60, 90, 110, 120, all variables. The out-
of-bag (OOB) score was used as a performance measure for the 

selection of hyperparameter values. The Gini index was used as a 
measure of purity to create of trees. 

biLTSM 
We have used a bidirectional LSTM, which processes sequences in 
the two possible directions, along with an additional self-attention 
layer. An LSTM network, or long short-term memory [46], is a type 
of recurrent neural network based on a special type of recurrent 
unit that solves the vanishing gradient problem present in older 
models. The LSTM network is capable of learning relationships, 
both between nearby points and between points far away from the 
sequence. Pre-mRNA sequences, due to their secondary structure, 
can present these types of spatial relationships, even between 
distant nucleotides in the primary sequence. 

Bidirectional networks usually offer better performance than 
unidirectional LSTMs and also treat the tokens in a sequence in a 
symmetrical way. 

We have also added a layer of self-attention, with the aim of 
trying to improve performance. The attention layer is capable of 
assigning different weights to different positions in each input 
sequence, seeking to give more relevance to the positions that are 
most decisive when classifying the sequence. 

To develop the recurrent deep learning models, we have used 
the LSTM implementation made by tensorflow.keras, using the 
layers.Bidirectional and layers.LSTM classes. A more detailed pro-
cess can be found in Extended Methods. 

Software and hardware used 
To carry out this work, the following programming environments 
and libraries were used: 

(1) Python3. 
(2) Spyder IDE for Python Development. 
(3) Tensorflow 2.7.0 [47] y Keras 2.7.0 [48]. 
(4) Conda 4.11.0 and Anaconda Navigator 2.1.2 [49]. 
(5) JupyterLab 3.2.1. [50]. 
(6) Google Colab Pro. [51]. 
(7) The CUDA release 11.6, and cuDNN 8.3 libraries [52, 53]. 

We have used the following computers. 

(1) Personal computer with GPU: We have used a laptop with 
Intel i7 processor, 16 GB RAM and 1 TB SSD disk. In addition, 
it has nVidia GeForce MX450 2 GB GPU. 

(2) Subscription to the Google Colab Pro service, which allows 
you to use a virtual machine with 26 GB of RAM and a Tesla 
T4 GPU card with 15 GB of RAM. 

(3) AMD opteron server, Processor 6386 SE, with 500 GB of RAM, 
64 processors, and NVIDIA TU104GL graphics card [Quadro 
RTX 4000]. It was used for processing genome-wide data. 

Results 
RF and biLSTM algorithms in RNA-editing 
prediction 
The use of an RF approach (see Methods) gave us the opportunity 
to explore the descriptors that are most commonly used to deter-
mine the potentiality of an RNA sequence to be edited. We ran 
four analyses with the RF algorithm, using a local window (Fig. 1A) 
of 50, 200, 500, and 1000 nucleotides. All window sizes performed 
similarly well, reaching an accuracy above 75% in the case of H. 
sapiens, around 74% in the case of M. musculus, and below 65% in 
T. trachurus (Supplementary Fig. 1). Nevertheless, there are some 
changes in the traditional descriptors depending on the window 
size used, especially between 50 and 1000 nt windows. Notably, the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae332#supplementary-data
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Figure 1. RF global and local results. (A) Schematic representation of an RNA molecule with some of the structures used as descriptors. The local window 
(square) provides the data for the local descriptors, while the global descriptors use the whole molecule. Target adenosine tagged in bold. The Xclosest 
descriptors refer to the Xth feature of that type closest to the target adenosine, independently of the local window (B) list of the most used descriptors 
in the RF analysis for the 50 and 1000 nt local windows using human data. See Supplementary Methods Table 1 for the complete descriptor dataset and 
their definition. 

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae332#supplementary-data
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Figure 2. Diagram of the biLSTM data flow. From the raw data to the editability decision output. See Supplementary Methods. 

‘global double strand maximum size’ descriptor is highly used in 
both cases ( Fig. 1B). 

On the other hand, we used a biLSTM with an attention layer 
(see Methods; Fig. 2) with two channels, one for the pre-mRNA 
sequence and another one for the predicted secondary structure. 
Using a sliding window of 50 + 1 + 50 nucleotides, we obtained 
an accuracy of almost 95% using balanced datasets (Fig. 3A). We 
also trained the model again using each of the two channels 
separately to see how they affected the ability to predict. This way, 
the accuracy obtained by the trained model changes when just the 
secondary structure channel is used (84.6%), but when using just 
the sequence channel, it remains similar to using both channels 
(94.7%) (Fig. 3B). If we explore the similarities in sequence and 
structure of the positive cases, we cannot see any distinguishable 
pattern (Fig. 3C). 

Benchmarking the algorithms with previous 
RNA-editing prediction attempts based on 
machine learning 
With the human dataset predictions accuracy, we can now assess 
how our algorithms perform versus already existing data of 
machine learning predictions obtained from the bibliography [54– 
58]. As we can see (Table 1), although our RF algorithm does not 
rank near other available methods, our biLSTM algorithm is the 
best-performing one as well as the only one using the full extent 
of the REDIportal database. 

Predicting a dataset using editing proportions as 
in a case of de novo prediction of RNA-editing 
events 
Changing the balanced dataset to a dataset more akin to what 
we can find in a real-case scenario, gives us clues on how our 
prediction algorithm would perform when used for predicting 
new RNA-editing events. Using the full sequences of 10 random 
genes (as well as 20 and 30, and 100 rounds of 10 genes, see 
Supplementary Fig. 2), we ensure a proper data set with editing 
frequencies similar to the ones present in nature to benchmark 
our trained model. Interestingly, although the accuracy when 
predicting is just below 95%, the highly unbalanced nature of 
the dataset results in the number of false positives greatly 
surpassing the number of true positives (Fig. 4A). If we explore 
the internal score distribution, there is a slight difference 
between true and false positives and true and false negatives 
(Fig. 4B). 

biLSTM training and predictions on non-human 
data 
To further understand the RNA-editing process, we trained the 
model using two additional datasets, one from a mammal (M. mus-
culus) and another from a teleost (T. trachurus). The mouse dataset 
came from the same database as the human dataset, albeit with 
fewer annotated RNA-editing events, while the mackerel dataset 
was obtained from the same individual RNA and DNA, thus being 
a narrow snapshot of the editome at the moment of collection. In 
both cases, the accuracy is lower than that obtained using human 
data, with a slight bias toward declaring an adenosine as non-
editable (Fig. 5). This is especially true when using the mackerel 
dataset, with a 73.4% accuracy and almost 18% of RNA-editing 
events being flagged as non-editable adenosines (Fig. 5B). 

Cross-testing as a tool to infer mechanism 
conservation in silico 
With the data available, we explored how well an algorithm 
trained with the data of one species performs in predicting the 
data of the other species (Supplementary Fig. 3, Table 2). The 
cross-testing shows that, when trained on mammal datasets, 
each model can predict the other mammal’s dataset with better 
accuracy than the baseline of a blind random prediction (50%). 
When predicting T. trachurus data, the algorithms trained with 
human and mouse data achieved only 50% and 51%, respectively. 
Similarly, the algorithm trained with T. trachurus data achieved 
an accuracy of 52% predicting on the human dataset and 48% 
on the mouse dataset, with similar results obtained using the 
algorithm trained with human data predicting on an octopus 
dataset (Supplementary Fig. 4). Interestingly, although the algo-
rithm trained on human data predicts better on humans than the 
algorithm trained on mouse data when predicting on mouse data 
(95% versus 84%), the mouse-trained algorithm predicts better on 
human data (76%) than the other way around (63%). Analyzing the 
distribution of the predictions, there is a clear tendency toward a 
negative prediction on the human-trained algorithm predicting 
mouse editable adenosines (Fig. 6A). 

Discussion 
Using machine learning to predict RNA-editing 
Random forest 
Our data shows how a machine-learning approach is able 
to learn the RNA-editing signal. Although the RF approach

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae332#supplementary-data
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Figure 3. Sequence and structure channels in DL using human data. Confusion matrices for DL analysis of sequence and structure channels from human 
dataset combined (A) or as single-channel (B). True negative (TN), true positive (TP), false negative (FN) and false positive (FP) percentages have been 
rounded. (C) True positive logos for a 20 + 1 + 20 window for sequence and structure. Nucleotide 21 is the editable adenine. 

Table 1. Accuracies of already existing machine learning methods found in the bibliography 

Tool Species Year Algorithm Features SeqLen N Acc Sn Sp 

PAI D. melanogaster 2016 SVM [54] Handcrafted 51 244 0.7951 0.8560 0.7311 
iRNA-A H. sapiens 2017 SVM [55] Handcrafted 51 6000 0.9071 0.8619 0.9523 
PAI-SAE D. melanogaster 2018 SVM + SAE [56] Handcrafted+Learned 51 244 0.8197 0.8720 0.7647 
iMRM H. sapiens 2020 XGBoost [57] Handcrafted 51 6000 0.9157 0.8733 0.9580 
ATTIC H. sapiens 2023 Ensemble learning [58] Handcrafted 51 6000 0.9173 0.8860 0.9487 
Our H. sapiens 2024 Random Forest Handcrafted 51 6620 0.767 0.7916 0.7433 
Our H. sapiens 2024 biLSTM+Attention Learned 101 46,130 0.948 0.9777 0.9183 

SeqLen, Sequence length analyzed; N, Number of sequences used for training; Acc, Accuracy achieved; Sn, Sensitivity achieved; Sp, Specificity achieved. 

is not as accurate as the biLSTM algorithm, it is still well 
above the threshold expected by a random prediction (50%, 
as it is a prediction between two equiprobable classes) ( Fig. 1). 
This may be due to the fact that the descriptors used in the 
RF are not the most suitable for the task. Albeit they were 
curated by us, taking into account all the previous work on 
secondary structure and RNA editing [36, 59–62], some unknown 

descriptors may be missing. Even so, across all the different RF 
models, there is consistency among the most frequently used 
descriptors: the size of the largest double-strand fragment in 
the whole molecule (GlobalMaxDSSize) and the distance to the 
target adenosine of the fourth and fifth closest inner loops 
(X4ClosestILDistanceToEvent and X5ClosestILDistanceToEvent) 
(Fig. 1B, Supplementary Fig. 1). The GlobalMaxDSSize descriptor

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae332#supplementary-data
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Figure 4. Prediction of an unbalanced dataset using DL model. (A) Confusion matrix for the prediction of editability in 10 whole human genes using 
DL model. True negative (TN), true positive (TP), false negative (FN) and false positive (FP) percentages have been rounded. (B) Boxplot of the internal 
prediction of editability score distribution for 10 whole human genes for true negative (TN), true positive (TP), false negative (FN), and false positive (FP). 

Figure 5. Mouse and mackerel DL analysis. Confusion matrices for models generated using mouse data (A) or mackerel data (B). True negative (TN), true 
positive (TP), false negative (FN) and false positive (FP) percentages have been rounded. 

Table 2. Cross-testing accuracies of each possible pair of the three species analyzed 

Prediction 

Homo sapiens Mus musculus Trachurus trachurus 

Training H. sapiens 95% 63% 50% 
M. musculus 76% 84% 51% 
T. trachurus 52% 48% 72% 

may be relevant for discriminating along the decision tree, as it is a 
value describing the whole RNA molecule. Any RNA molecule will 
have either a mixture of editable and non-editable adenosines 
or all non-editable adenosines. Thus, the global parameters 
may play a role in discriminating between these two groups 
[ 63]. The relevance of the fourth and fifth closest inner loops 
is a bit puzzling, as it is counterintuitive that distant features 
are more relevant than closer ones. This could again be an 
early discriminating descriptor between the two aforementioned 
groups. The most relevant local descriptor can be found when the 
local window is set to 50 and 200 nucleotides (Supplementary 

Fig. 1A and B). Here, the local percentage of double-strand 
(localDSperc) is clearly the most used descriptor, which may 
mean that, with smaller local windows, the percentage of double-
stranded nucleotides around the adenosine gains importance to 
assess the editability. Remarkably, changing the local window 
affects the relevance of some of the descriptors, while achieving 
very similar accuracies in all cases (Supplementary Fig. 1). This 
could mean that, with our curated descriptors, there are several 
ways to predict RNA editing. In the end, we see that other than 
the first two or three descriptors for each model, the frequency of 
the other descriptors remains similar, which supports the idea of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae332#supplementary-data
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Figure 6. Differences of mouse model predicting in human new and old databases. Confusion matrices for models generated using human data predicting 
on mouse data (A) and using mouse data predicting on human data (B) and predicting on an old version of the used human database (B′). True negative 
(TN), true positive (TP), false negative (FN), and false positive (FP) percentages have been rounded. 

a very complex decision-making process using a high number of 
different input variables. Although promising, our RF algorithm 
falls short of achieving the accuracies observed using other 
machine-learning methods for RNA-editing prediction ( Table 1). 
This could be due either to the RF algorithm used or, most 
probably, to the curated descriptors selected being based solely 
on secondary structure information obtained from LinearFold. 

biLSTM algorithm 
Looking closely at the biLSTM predictions, we can see that the 
accuracy using both (sequence and structure) channels is almost 
the same as the accuracy using just the sequence channel 
(Fig. 3B). But even with just the structure channel, accuracy is still 
well over 80%. These biLSTM input single-channel experiments 
allow us to infer that the secondary structure is a key element for 
discriminating between editing and non-editing, as suggested 
in previous works [36]. However, the lower accuracy when 
predicting with the structure channel may mean that the biLSTM 
algorithm is better at predicting secondary structures from 
the 101-nucleotide window of the sequence channel than the 
specialized software [45] from the complete molecule. Another 
option could be that using the structure channel narrows all 
the possible structures to one, as this channel eliminates the 
sequence information [45, 64]. Meanwhile, using the sequence 
channel would allow all the possible secondary structures to be 
predicted. In addition, the apparent lack of enrichment or motive 
seen in the separate logos for sequence and structure (Fig. 3C) 
must be due to the existence of multiple highly different signals 
that allow ADAR to access the editable adenosine, which could 
imply that not all the edited adenosines have a 3′ enrichment 
of guanosines. Although this implication seems to conflict with 
the results obtained in other works [35], it could be simply the 
use of a more diverse dataset, or the fact that in this study, we 
did not differentiate between ADAR editing and ADARB1 editing. 
Remarkably, we can see how, when compared to the existing 
methods (Table 1), our biLSTM algorithm performs the best in 
terms of accuracy using human data, even taking into account 
the huge differences in the training datasets, with our dataset 
being the whole A-to-I editing events REDIportal database. 

With the data presented here, not only can we consolidate the 
role of the secondary structure in the RNA-editing target-selection 
mechanism, but we can also narrow the spatial window of the 
mechanism down to ±50 nucleotides from the edited adenosine 

[35, 37]. This is certainly true in the two species where we have 
successfully learned to predict with >80% accuracy, H. sapiens 
and M. musculus. Regarding the de novo prediction capabilities of 
both algorithms, neither is accurate enough to compensate for 
the huge disproportion of edited versus non-edited adenosines. 
One possible way of discriminating between true and false 
positives could be to consider their prediction score, hindering the 
sensitivity of the prediction in the process. While some of the false 
positives detected in the unbalanced dataset could indeed be non-
described RNA-editing events, it remains difficult to differentiate 
them from the actual (and quite more frequent) false positives. 
But if we compare our results from human data with other 
analyses using experimental RNA-editing evidence from 10 
human transcripts obtained from nanopores [39], we see 
similar levels of edited sites. In addition, Chen et al. reported 
only a difference of eight edited sites from the REDIportal 
database. 

Differences in accuracy between human and 
non-human data 
Although M. musculus and T. trachurus prediction accuracies are 
significantly above random chance, they are 10% and 20%, respec-
tively, below the accuracy obtained in H. sapiens. These differ-
ences could be explained by the different characteristics of the 
datasets, e.g. the different sizes. However, the results obtained 
by adjusting the training datasets to the same number of events 
available for M. musculus yielded very similar results for H. sapiens 
(Supplementary Figure 5). This means that between those two 
species, the different accuracies do not arise from the number 
of events but from the kind of events available in each dataset. 
In this light, we decided to train the model with an older ver-
sion from the human database as, akin to the mouse dataset, 
it will have a more generic set of RNA-editing events than its 
newer counterpart (Supplementary Fig. 6) [65, 40]. The algorithm 
trained with the older version of the database, nonetheless, per-
formed similarly to the newer one, with a slight decrease in 
accuracy, meaning that even with the same number of entries, the 
more uncommon editing examples available, the more accurate 
the predictions become. As for T. trachurus, we found a severe 
decrease in accuracy when adjusting its dataset size to the M. 
musculus dataset. This could be caused by the lower quality of 
the dataset, as its origin is a single RNAseq experiment (cou-
pled with same-individual genomic data) from the Darwin Tree

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae332#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae332#supplementary-data
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of Life project [41]. Nonetheless, the possibility of some of the 
false positives being non-described edited sites was also consid-
ered. However, due to the scarceness of editable sites when com-
pared with non-editable sites, and the samples being balanced 
on editable sites, it should not impact the overall accuracy of the 
analysis. 

Cross-testing and mechanism conservation 
One of the most promising applications derived from the 
machine-learning approach studied here is the inference of 
functional conservation completely in silico. With this in mind, we 
used cross-testing: training with datasets from one species and 
testing on datasets from other species. If the mechanism is fully 
conserved between two species (that is, the patterns that ADAR 
recognizes are the same) with a similar completeness database, 
the accuracy between their cross-testings should be similar. Here, 
we see how this happens between the cross-testings from the old 
and the new human databases [65, 40] (Supplementary Fig. 6). In 
the case of the cross-testings between H. sapiens and M. musculus, 
we show how, although similar, the mouse-trained algorithm 
performs better on the human dataset than the other way around. 
The reason for this may be a minor functional difference coupled 
with the aforementioned lower completeness of the database 
from M. musculus. From the bias toward false negatives present 
in the human-trained algorithm, it may be inferred that mouse-
specific structures are being misclassified as non-editable. This 
would explain the higher balance between false negatives and 
false positives when predicting the human dataset with a mouse-
trained algorithm, as well as the already mentioned bias and the 
different accuracies (Fig. 6). These differences are more obvious 
when cross-testing the old human database with M. musculus 
(Fig. 6B′) and are also observed in the RF cross-testing tests, 
where the mouse-trained algorithm predicting on human data 
outperforms the human-trained algorithm predicting on mouse 
data (Supplementary Fig. 7). 

For T. trachurus cross-testing, in all cases, the accuracy is around 
50%, which is expected for a random prediction [66]. While the 
accuracy of the biLSTM algorithm trained in T. trachurus was not 
as high as the one from human or mouse, we did not expect such 
low performance in the cross-testings. The main reason for the 
inability to predict in T. trachurus when training the algorithm in 
human or mouse (or the other way around) may well lie in the 
differences in homeostatic temperature affecting the secondary 
structure of the RNA molecules [67], with similar results obtained 
in cross-testing using human data to predict octopus editable 
sites (Supplementary Fig. 4). If we analyze the single-channel 
biLSTM results from T. trachurus,  we can see how  we fail  to  
predict above random chance when using just the secondary-
structure channel (Supplementary Fig. 8). This could mean that 
the secondary structure prediction software used [45] is not  
working as intended in the case of the cold-blooded mackerel, 
with the biLSTM algorithm completely relying on the sequence 
channel. 

Our results demonstrate the power of machine learning 
approaches to predict RNA editing events. However, despite the 
extremely high accuracy reached, we are not yet able to use 
these algorithms to predict de novo editing events reliably due 
to the unbalanced nature of edited versus non-edited adenosines. 
Nonetheless, thanks to our new cross-testing approach, we can 
further understand the differences in RNA editing between 
different species, and how these differences could have shaped 

evolution. This opens the door to investigate whether some 
species have a fast-evolving RNA-editing machinery, or if the 
absence of one of the ADARs can reshape the RNA-editome. 

Key Points 
• Due to the imbalanced nature of RNA-editability versus 

non-editability de novo prediction needs higher accuracy 
than 95%. 

• Cross-testing allows us to infer the conservation of the 
RNA-editing mechanism between species. 

• While the algorithms perform well with secondary 
structure data, the information within the sequence is 
enough for the biLSTM with attention layer algorithm to 
reach extremely high levels of accuracy. 

Supplementary data 
Supplementary data are available online at Briefings in Bioinformat-
ics online. 
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