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Newton-Like Components in the
Chebyshev–Halley Family of Degree n
Polynomials

Dan Paraschiv

Abstract. We study the Chebyshev–Halley methods applied to the fam-
ily of polynomials fn,c(z) = zn + c, for n ≥ 2 and c ∈ C

∗. We prove
the existence of parameters such that the immediate basins of attrac-
tion corresponding to the roots of unity are infinitely connected. We
also prove that, for n ≥ 2, the corresponding dynamical plane contains
a connected component of the Julia set, which is a quasiconformal de-
formation of the Julia set of the map obtained by applying Newton’s
method to fn,−1.
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1. Introduction

Numerical methods have been extensively used to give accurate approxima-
tions of the solutions of systems of nonlinear equations. Those equations or
systems of equations correspond to a wide source of scientific models from
biology to engineering and from economics to social sciences, and so their so-
lutions are the cornerstone of applied mathematics. One of the most studied
families of numerical methods are the so called root-finding algorithms; that
is, iterative methods which asymptotically converge to the zeros (or some of
the zeros) of the non linear equation, say g(z) = 0. Although g could in gen-
eral describe an arbitrary high dimensional problem, in this paper we focus
on the one dimensional case, i.e. g : C → C.
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The universal and most studied root-finding algorithm is known as New-
ton’s method. If g is holomorphic, we generate a sequence {zn}n≥0 of approx-
imations of a root of g, using Newton’s method, defined as follows

zn+1 = zn − g(zn)
g′(zn)

, z0 ∈ C.

It is well known that if z0 ∈ C is chosen close enough to one of the solutions
of the equation g(z) = 0, say α, then the sequence {zn = gn(z0)}n≥0 has
the limit α when n tends to ∞. Moreover the speed of (local) convergence is
generically quadratic (see, for instance, [2]). It was Cayley (see [10]) the first
to consider Newton’s method as a (holomorphic) dynamical system, that is
studying the convergence of these sequences for all possible seeds x0 ∈ C at
once, under the assumption that g was a degree 2 or 3 polynomial. This was
known as Cayley’s problem.

Many authors have studied alternative iterative methods having, for
instance, a better local speed of convergence. Two of the best known root-
finding algorithms of order of convergence 3 are Chebyshev’s method and
Halley’s method (see [2]). They are included in the Chebyshev–Halley family
of root-finding algorithms, which was introduced in [11] (see also [1]), and is
defined as follows. Let g be a holomorphic map. Then

zn+1 = zn −
(

1 +
1
2

Lg(zn)
1 − αLg(zn)

)
g(zn)
g′(zn)

, (1)

where α ∈ [0, 1] and Lg(z) = g(z)g′′(z)
(g′(z))2 . Notice that in a real setting, it suffices

for g to be a doubly differentiable function such that g′′(x) is continuous.
For α = 0, we have Chebyshev’s method and for α = 1

2 Halley’s method.
As α tends to ∞, the Chebyshev–Halley algorithms tend to Newton’s method.
The main goal of the paper is to show that the unbounded connected com-
ponent of the Julia set of the Chebyshev–Halley maps applied to zn − c (for
large enough α) is homeomorphic to the Julia set of the map obtained by
applying Newton’s method to zn − 1.

Next, we give a brief introduction of complex dynamics for holomorphic
maps defined over the Riemann sphere, that is, rational maps. For a more
detailed description of the topic, see, for instance, [4] and [15]. Let Q : Ĉ → Ĉ

be a rational map of degree d ≥ 2. A point z0 ∈ Ĉ is called a fixed point if
Q(z0) = z0. The multiplier λ of the fixed point z0 ∈ C is λ:=Q′(z0) (for
z0 = ∞, the multiplier is computed by conjugating with a map which sends
z0 = ∞ to a finite point). If |λ| < 1, then z0 is an attracting fixed point. If
λ = 0, we say that z0 is a superattracting fixed point. The basin of attraction of
an attracting fixed point z0 is the set AQ(z0) = {z ∈ Ĉ| limn→∞ Qn(z) = z0}.
We denote by A∗

Q(z0) the connected component of the basin of attraction
which contains z0, also known as the immediate basin of attraction of z0.
Any immediate basin of attraction contains at least one critical point, that
is, a point c ∈ Ĉ such that Q′(c) = 0.

The Fatou set F (Q) is defined as the set of points of normality. A
point z ∈ Ĉ is said to be normal if the family {Qn}n≥1 is normal for some
neighborhood U of z. A connected component of the Fatou set is called a
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Fatou component. The complement of the Fatou set is called the Julia set,
denoted by J(Q). Both Fatou and Julia sets are dynamically invariant. The
behaviour of Q on its corresponding Julia set J(Q) is chaotic. Moreover, the
Julia set J(Q) is non-empty.

Root-finding algorithms are a natural topic for complex dynamics. In
particular, maps obtained by applying Newton’s method to polynomials are
a much studied topic (see [3,13,16,18]). It is proven in [16] that the Julia set
of such maps is connected, so all Fatou components are simply connected.

Previously, Campos, Canela, and Vindel have studied the Chebyshev–
Halley family applied to fn,c(z) = zn + c, c ∈ C

∗ (see [6,7]). The maps
obtained by applying the Chebyshev–Halley family to fn,c are all conju-
gated to the map obtained by applying the Chebyshev–Halley family to
fn(z):=fn,−1(z) = zn − 1 (see Lemma 2.1). By applying the Chebyshev–
Halley method to fn(z) = zn − 1 we obtain the map:

On,α(z)

=
(1 − 2α)(n − 1) + (2 − 4α − 4n + 6αn − 2αn2)zn + (n − 1)(1 − 2α − 2n + 2αn)z2n

2nzn−1(α(1 − n) + (−α − n + αn)zn)
.

(2)

The map On,α has degree 2n and it has 4n − 2 critical points, counting
multiplicity. The point z = 0 is a critical point of multiplicity n − 2, which is
mapped to the fixed point z = ∞. The n-th roots of unity are superattracting
fixed points of local degree 3, and therefore, they have multiplicity 2 as critical
points. This leaves n free critical points. They are given by

cn,α,ξ = ξ

(
α(n − 1)2(2α − 1)

n(2n − 1) − α(4n − 1)(n − 1) + 2α2(n − 1)2

) 1
n

, (3)

where ξn = 1. This family is symmetric with respect to rotation by the nth
root of unity (see Lemma 2.2). This symmetry ties the orbits of the n free
critical points, so the family On,α has only one degree of freedom (see Fig. 2).

In [7], the authors studied in detail the topology of the immediate basins
of attraction of the fixed points of On,α(z) given by the nth root of unity,
that is, the zeros of fn(z). In what follows we refer to these basins as

An,α(ξ):=AOn,α
(ξ)

[
A∗

n,α(ξ):=A∗
On,α

(ξ)
]
,

where ξn = 1. For one particular case, the immediate basins of attraction
are infinitely connected (see Fig. 1). We study the Julia set of On,α for this
particular case and relate it to the Julia set of the map obtained by applying
Newton’s method to fn. We realise this using a quasiconformal surgery con-
struction, which erases the holes in the immediate basins of attraction. The
construction is a simpler case of one in [14]. However, realising the surgery is
still needed, as we prove the uniqueness of the resulted quasiconformal map,
to show that the quasirational map presents the necessary symmetries and is
precisely Nfn

.

Theorem A. Fix n ≥ 2 and assume that A∗
n,α(1) is infinitely connected for

some α ∈ C. Then there exists an invariant Julia component Π (which con-
tains z = ∞) which is a quasiconformal copy of the Julia set of Nfn

, where
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Figure 1. Left figure illustrates the dynamical plane of On,α

for n = 3 and α = 10. In the right figure (which shows
z ∈ C such that Re(z) ∈ [1.620; 1.623] and Im(z) ∈
[−0.0015; 0.0015] in the same dynamical plane), we can see
a component of the Julia set which lies in A∗(1)

Nfn
is the map obtained by applying Newton’s method to the polynomial

fn(z) = zn − 1.

We finish the paper by proving that there exist parameters such that the
hypothesis of Theorem A holds. We split the proof of Theorem B in two cases,
n = 2 and n ≥ 3. For the case n = 2, much work was previously done in [6],
and the map is conjugate to a Blaschke product. For the case n ≥ 3, the map is
not conjugate to a Blaschke product. We provide a map conjugate to On,α, for
which we prove, using various properties and computational arguments, that
the immediate basin of attraction of z = ∞ is infinitely connected. Numerical
computations confirm to us the existence of such hyperbolic components (see
Fig. 2).

Theorem B. Let n ≥ 2. Then there exists α0 > 0 large enough such that for
α > α0, α ∈ R, A∗

n,α(1) is infinitely connected. Moreover, for n = 2, the
statement is true for any α ∈ C such that |α| > α0.

The paper is organised as follows. In Sect. 2 we briefly introduce the
tools later used in the paper. In Sect. 3 we prove Theorem A. In Sect. 4 we
prove Theorem B.

2. Preliminaries

In this section we present the main tools that we use along the paper. Before,
we introduce some notation. Let U ⊂ C be a multiply connected open set.
We denote by Fill(U) the minimal simply connected open set which contains
U but not z = ∞. Let γ ∈ C be a Jordan curve. We denote by Ext (γ) and
Int (γ) the connected components of Ĉ \ γ that contain z = ∞ and do not
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Figure 2. Left figure illustrates the parameter plane of On,α

for n = 3. In the right figure we can see the parameter plane
of On,α for n = 5

contain z = ∞, respectively. We denote the circle centered at the origin and
of radius c > 0 by Sc. Finally, if U ⊂ C we denote by U its closure.

Let On,α,c be the map obtained by applying the Chebyshev–Halley
method with parameter α to the map fn,c = zn + c. The following lemma,
indicated but not proven in [6], states that for any c ∈ C

∗, the map On,α,c is
conjugated to On,α,−1 = On,α. We give the proof for the sake of completeness.

Lemma 2.1. Let c ∈ C
∗, c = rei2πk, where r > 0 and k ∈ [0, 1]. Let u =

n
√

rei (2k+1)π
n and ηc(z) = uz, ηc : Ĉ → Ĉ. Then On,α,c and On,α,−1 are

conjugated by the map ηc, i.e. On,α,c ◦ ηc(z) = ηc ◦ On,α,−1(z).

Proof. First, we need to compute On,α,c. We use the Chebyshev–Halley fam-
ily of methods definition (see 1), which can be rewritten as

On,α,c(z) =
2zf ′

n,c(z) − 2fn,c(z) − fn,c(z)Lfn,c (z) + 2αLfn,c (z)(fn,c(z) − zf ′
n,c(z))

2f ′
n,c(z)(1 − αLfn,c (z))

,

where fn,c(z) = zn + c, f ′
n,c(z) = nzn−1, Lfn,c

(z) = (n−1)(zn+c)
nzn . This gives

us the expression of On,α,c:
On,α,c(z)

=
c2(1 − 2α)(n − 1) − c(2 − 4α − 4n + 6αn − 2αn2)zn + (n − 1)(1 − 2α − 2n + 2αn)z2n

2nzn−1[−cα(1 − n) + (−α − n + αn)zn]
.

Now we prove the conjugation. Observe that un = −c, and the map ηc maps
roots of fn,1 to roots of fn,c (therefore, it also maps the superattracting fixed
points of On,α to the superattracting fixed points of On,α,c). Then

On,α,c (ηc(z))

=
c2(1 − 2α)(n − 1) + c2(2 − 4α − 4n + 6αn − 2αn2)zn + c2(n − 1)(1 − 2α − 2n + 2αn)z2n

un−12nzn−1[−cα(1 − n) − c(−α − n + αn)zn]

= u
(1 − 2α)(n − 1) + (2 − 4α − 4n + 6αn − 2αn2)zn + (n − 1)(1 − 2α − 2n + 2αn)z2n

2nzn−1[α(1 − n) + (−α − n + αn)zn]

= ηc (On,α(z)) . �
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The next lemma shows that the map On,α is symmetric with respect to
rotation by an nth root of unity.

Lemma 2.2. [6, Lemma 6.2] Let n ∈ N and let ξ be an nth root of unity,
i.e. ξn = 1. Then Iξ(z):=ξz conjugates On,α with itself, i.e. On,α ◦ Iξ(z) =
Iξ ◦ On,α(z).

For α = 1
2 and α = 2n−1

2n−2 , the family On,α degenerates to maps of a lower
degree (see [7, Lemma 4.1]). For other values of α, the map On,α has degree
2n, hence, it has 4n − 2 critical points. The point z = 0 maps with degree
n − 1 to the fixed point z = ∞. Since the n roots of fn are superattracting
fixed points of local degree 3, there remain precisely n free critical points.
The next lemma follows directly from Lemma 2.2, since the orbits of the free
critical points are symmetric.

Lemma 2.3. [7, Lemma 3.4] Let n ≥ 2 and ξ ∈ C, such that ξn = 1. For
all α ∈ C, the basin of attraction An,α(ξ) contains at most one critical point
other than z = ξ.

The following proposition establishes a trichotomy for rational maps
with the property described in Lemma 2.3. Based on the existence of the
critical point and preimages of the superattracting fixed point in the imme-
diate basin of attraction, we can establish if the immediate basin is simply
connected.

Proposition 2.4. [7, Proposition 3.1] Let f : Ĉ → Ĉ be a rational map and
let z = 0 be a superattracting fixed point of f . Assume that Af (0) contains at
most one critical point other than z = 0. Then, exactly one of the following
statements holds.
(1) The set A∗

f (0) contains no critical point other than z = 0. Then A∗
f (0)

is simply connected.
(2) The set A∗

f (0) contains a critical point c 	= 0 and a preimage z0 	= 0 of
z = 0. Then A∗

f (0) is simply connected.
(3) The set A∗

f (0) contains a critical point c 	= 0 and no preimage of z = 0
other than z = 0 itself. Then A∗

f (0) is multiply connected.

Corollary 2.5. [7, Corollary 3.5] For fixed n ≥ 2 and α ∈ C, the immediate
basins of attraction of the roots of zn −1 under On,α are multiply connected if
and only if A∗

n,α(1) contains a critical point c 	= 1 and no preimage of z = 1
other than z = 1 itself.

Remark 1. An immediate attracting basin may only have connectivity 1 or
∞ (see [4]). Hence, if A∗

n,α(1) is multiply connected, then all the immediate
basins of attraction corresponding to the roots of fn are infinitely connected.

The following lemma in [18] is the critical criterion used to prove The-
orem A (see also [12]).

Lemma 2.6. [18, Lemma 2.2] Any rational map F of degree d having d distinct
superattracting fixed points is conjugate by a Möbius transformation to NP

for a polynomial of degree d. Moreover, if z = ∞ is not superattracting for F
and F fixes ∞, then F = NP for some polynomial P of degree d.
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(a) ∂U = γ2. (b) ∂U = γ1 ∪ γ2.

Figure 3. The two possible configurations, of preimages of
γ, described in Proposition 3.1

Figure 4. Description of the situation in Proposition 3.1,
where n = 3 and α = 0.2 + 1.592i

3. Proof of Theorem A

We start with a proposition that describes two curves in the dynamical plane
of On,α. These curves are used in the proof of Theorem A, as part of a
quasiconformal surgery construction. The proof follows closely an argument
made in the proof of [7, Proposition 3.1].

Proposition 3.1. Let On,α such that A∗
n,α(1) is infinitely connected. Then

there exist Γ and Γ−1, analytic Jordan curves in A∗
n,α(1) which surround

z = 1, such that On,α|Γ−1 : Γ−1 → Γ is a two-to-one map with Γ ⊂ Int(Γ−1).
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Proof. Let U be the maximal domain of definition of the Böttcher coordi-
nates of the superattracting fixed point z = 1. By hypothesis and Corol-
lary 2.5, A∗

n,α(1) contains the critical point c1:=cn, a, 1 (see 3), which lies on
∂U , and no other preimages of z = 1. Since z = 1 has local degree 3, the
map On,α|A∗

n,α(1) : A∗
n,α(1) → A∗

n,α(1) has degree 3. Let V :=On,α(U). Then
γ:=∂V is a Jordan curve. Let γ−1 be the preimage of γ contained in A∗

n,α(1).
Then γ−1 = γ1 ∪ γ2 is the union of two simple closed curves which inter-
sect at the critical point c1. Exactly one of the two curves, say γ2, contains
z = 1 in the Jordan domain bounded by it. There exist two possibilities:
either ∂U = γ2, or ∂U = γ1 ∪ γ2 (see Fig. 3). Assume that ∂U = γ2. By
hypothesis, the critical point c1 lies in A∗

n,α(1) and γ1 is contained in the
Fatou set. Therefore, γ1 ⊂ A∗

n,α(1) and there exists a preimage of V which
lies in Int(γ1). Hence, A∗

n,α(1) contains a preimage of z = 1 other than itself,
which is impossible according to Corollary 2.5. Consequently, we have that
∂U = γ1 ∪ γ2. Let W be the connected component of Ĉ \ γ1 which does not
contain z = 1. Then W is mapped to an open set which contains Ĉ\U , so W
contains a pole. Since z = 0 is mapped to z = ∞ with degree n− 1, z = ∞ is
a fixed point, and the map has degree 2n, there remain exactly n preimages
for z = ∞. By symmetry, the pole in W is simple; therefore, ∂W is mapped
onto ∂V with degree 1. Hence, γ1 is mapped onto γ with degree 1 and γ2 is
mapped onto γ with degree 2.

Let Γ be an analytic Jordan curve which surrounds z = 1 such that
Γ ⊂ U \ V , and let A be the open annulus bounded by Γ and γ. Then A has
precisely 3 preimages in A∗

n,α(1). Since A does not contain any critical value,
its preimages do not contain critical points. It follows from the Riemann–
Hurwitz formula (see, for instance, [17]) that any preimage of A is also an
annulus. One preimage of A lies in W and is mapped onto A with degree 1.
There exists precisely one other preimage of A in A∗

n,α(1), which we denote
by A−1. It lies in A∗

n,α(1) \ Fill(U), surrounds z = 1, and is mapped onto A
with degree 2. Let Γ−1 be the boundary component of A−1 which is mapped
onto Γ. Observe that Γ−1 is an analytic Jordan curve. Since Γ−1 surrounds
z = 1 and lies outside U , we have that Γ ⊂ Int(Γ−1) (see Fig. 4). �

The main tool used in the proof of Theorem A is quasiconformal surgery.
For an introduction of the topic, we refer to [5]. The strategy of the proof is as
follows. We start by defining a quasiregular map f : A∗

n,α(1) → A∗
n,α(1) on the

immediate basin of attraction of z = 1, which we later extend to a quasiregu-
lar map F : Ĉ → Ĉ. Secondly, we construct a symmetric F -invariant Beltrami
coefficient and prove, using the Integrability Theorem (see, for instance, [5,
Theorem 1.28]), the existence of a map NP quasiconformally conjugate to F .
Then, we use Lemma 2.6 to show that NP is a map obtained by applying
Newton’s method to a polynomial of degree n, and it is quasiconformally
conjugated to Nfn

. Finally, we compare the filled Julia sets of Nfn
and On,α.

Proof of Theorem A. Let 0 < ρ < 1. Let R : Int(Γ) → Dρ2 be a Riemann map
such that R(1) = 0. Since Γ is an analytic curve, the Riemann map R extends
analytically to the boundary (see, for instance, [5], Theorem 2.9c). Let ψ2 :
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Γ → Sρ2 be the restriction of R to its boundary. Let ψ1 : Γ−1 → Sρ be an
analytic lift map such that ψ2

(
On,α(z)

)
=

(
ψ1(z)

)2. Let A = Int(Γ−1)\Int(Γ)
and Aρ2,ρ = Dρ\Dρ2 . Let ψ : ∂A → ∂Aρ2, ρ, such that ψ|Γ−1 = ψ1 and
ψ|Γ = ψ2. Since ψ1 and ψ2 are analytic maps, ψ extends quasiconformally to
ψ : A → Aρ2, ρ (see, for instance, [5, Proposition 2.30b]).

We now define f : A∗
n,α(1) → A∗

n,α(1) quasiregular, as follows:

f(z):=

⎧⎪⎨
⎪⎩

R−1
(
(R(z))2

)
if z ∈ Int(Γ),

R−1
((

ψ(z)
)2

)
if z ∈ A,

On,α(z) if z ∈ A∗
n,α(1) \ Int(Γ−1).

Now let ξ:=e
2πi
n . We have that Iξj (z) = Ij

ξ (z), for j ∈ {0, 1, . . . n−1}, where
Iξ is defined as in Lemma 2.2. We extend to a quasiregular map F : Ĉ → Ĉ

defined on the Riemann sphere, as follows:

F (z):=
{

Iξj ◦ f ◦ I−1
ξj (z) z ∈ A∗

n,α(ξj), j ∈ {0, 1, . . . , n − 1},

On,α(z) otherwise.

Observe that F is a quasiregular map which coincides with On,α out-
side the immediate basins of the roots of unity. We intend to construct an
F−invariant and Iξ− invariant Beltrami coefficient μ. We first define an F -
invariant Beltrami coefficient, say μ1, in An,α(1), as follows:

μ1(z):=

⎧⎨
⎩

ψ∗μ0(z) if z ∈ A,
(Fm)∗μ0(z) if Fm−1(z) ∈ A, for m ≥ 2,
μ0(z) otherwise.

Observe that for z ∈ A, we have that ψ∗μ0(z) = F ∗μ0(z). Now, we extend
the previous construction to the rest of the Fatou set, that is, the basins of
attraction of the nth root of unity ξj 	= 1, for 1 ≤ j ≤ n−1. In the following,
instead of using Iξj , we will only refer to invariance with respect to Iξ. Since
Iξj = Iξ ◦ Iξ ◦ · · · ◦ Iξ︸ ︷︷ ︸

j times

, it suffices to prove the symmetry for Iξ. We define an

Iξ−invariant Beltrami coefficient in An,α(ξj):

μ(z):=

⎧⎨
⎩

μ1(z) if z ∈ An,α(1),
(I−1

ξj )∗μ1(z) if z ∈ An,α(ξj),
μ0(z) otherwise.

For z ∈ An,α(ξ) we have that

(F )∗μ = (F )∗(I−1
ξj )∗μ1 = (I−1

ξj F )∗μ1 = (FI−1
ξj )∗μ1 = (I−1

ξj )∗F ∗μ1 = (I−1
ξj )∗μ1 = μ.

It follows that μ is also F−invariant. By hypothesis, the map On,α is hy-
perbolic, hence, the Julia set has measure 0. Since In

ξ (z) = z, by construc-
tion, μ is both F−invariant and I−1

ξ −invariant, with bounded dilatation. By
the Integrability Theorem (see, for instance, [5, Theorem 1.28]), there exists
φ0 : Ĉ → Ĉ quasiconformal map such that φ∗

0μ0 = μ. We normalise φ0 such
that φ0(0) = 0, φ0(∞) = ∞, and φ0 is tangent to the identity at ∞. Let
φξ := Iξφ0I

−1
ξ . We prove that φξ and φ0 coincide by using the uniqueness
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part of the Integrability Theorem. First, we have that φξ satisfies the same
equation as φ0:

φ∗
ξμ0 = (I−1

ξ )∗φ∗
0I

∗
ξ μ0 = (I−1

ξ )∗φ∗
0μ0 = (I−1

ξ )∗μ = μ.

We have that φξ satisfies φ∗
ξμ0 = μ, φξ(∞) = ∞, φξ(0) = 0, and φξ

is tangent to the identity at ∞. It follows from the uniqueness up to post-
composition with Möbius transformations of the Integrability Theorem that
φξ = φ0; therefore, Iξ ◦ φ0 = φ0 ◦ Iξ.

Now let NP : Ĉ → Ĉ, NP := φ0◦F ◦φ−1
0 . Observe that, by construction,

NP ◦ Iξ = Iξ ◦ NP . The map NP is quasiregular and satisfies (NP )∗μ0 =
μ0, therefore, by Weyl’s lemma (see, for instance, [5, Theorem 1.14]) it is
holomorphic and quasiconformally conjugated to F by φ0. Since z = ∞ is
a fixed point of F which is topologically repelling, z = ∞ is a repelling
(therefore, not superattracting) fixed point of NP . It also follows from the
conjugacy that NP has precisely n distinct superattracting fixed points, given
by the set {ξjφ0(1)}, where j ∈ {0, 1, . . . n − 1}.

By Lemma 2.6, the map NP is the map obtained by applying Newton’s
method to

P (z) =
n−1∏
j=0

(
z − ξjφ0(1)

)
= zn − φ0(1)n.

We prove that NP and Nfn
are linearly conjugated by η(z):=φ0(1)z. Analo-

gously to the proof of Lemma 2.1, we first compute

NP =
n − 1

n
z +

φ0(1)n

nzn−1
.

Then,

NP (η(z)) =
n − 1

n
φ0(1)z +

φ0(1)n

nφ0(1)n−1zn−1

= φ0(1)
(

n − 1
n

z +
1

nzn−1

)
= η (Nfn

(z))

completes the proof of the linear conjugation.
The Julia set of Nfn

, J(Nfn
), is connected (see [16, Theorem 3.1]).

Moreover, by construction, Nfn
and On,α are quasiconformally conjugate in

a neighborhood of J(Nfn
), by a conjugacy, say φ. Since the conjugacy sends ∞

to ∞, we can conclude that there is an unbounded connected component Π of
J(On,α), which is a quasiconformal copy of J(Nfn

). The fact that φ(J(Nfn
))

is a connected component of J(On,α) follows from the surgery construction,
since the surgery is done on the Fatou set of On,α. �

4. Proof of Theorem B

We begin by studying the case of n = 2. Let α > 2 and let M2(z):= z+1
z−1

be the Möbius transformation which maps the superattracting fixed points
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z = 1 and z = −1, to z = ∞ and z = 0. Finally, set a = 2(α − 1) > 2, and
consider the map

Ba(z) = z3 z − a

1 − az
(4)

which is conjugated to O2,α by M2. Indeed, for n = 2, the map On,α is

O2,α(z) =
(2α − 3)z4 − 6z2 + (1 − 2α)

4(α − 2)z3 − 4αz
.

We remark that if z = a
b , then M2(z) = a+b

a−b . This gives us

M2 (On,α(z)) =
(2α − 3)z4 + 4(α − 2)z3 − 6z2 − 4αz + (1 − 2α)
(2α − 3)z4 − 4(α − 2)z3 − 6z2 + 4αz + (1 − 2α)

,

and

Ba (M2(z)) =
(z + 1)3 [z(3 − 2α) + (2α − 1)]
(z − 1)3 [z(3 − 2α) − (2α − 1)]

= M2 (On,α(z)) .

The map Ba(z) = z3 z−a
1−az is a rational map of degree 4 studied in [8,9],

and [6]. In [6, Section 4] it is proven that for a ∈ C, |a| > 15.133, c+ ∈
ABa

(∞). More precisely, it is shown that there exists a critical point c+,
such that Ba(c+) ∈ A∗

Ba
(∞). We will prove that this is a sufficient condition

for A∗
Ba

(∞) to be infinitely connected. Therefore, to prove Theorem B when
n = 2, it suffices to prove the statements for the family Ba, and by conjugacy,
they hold for O2,α.

The map Ba is a rational map of degree 4, and it is symmetric with
respect to S

1. The points z = 0 and z = ∞ are superattracting fixed points
of local degree 3. Moreover, z∞ = 1

a ∈ (0, 1) is a pole, and z0 = a is a
preimage of z = 0. Consequently, there are two free critical points given by

c± =
1
3a

(
2 + a2 ±

√
(a2 − 4)(a2 − 1)

)
. (5)

The following lemma is a particular case of [6, Proposition 4.5].

Lemma 4.1. Let a > 1. If |z| > 2a, then z ∈ A∗
Ba

(∞). Equivalently, for a > 1,
we have that Ĉ\D(0, 2a) ⊂ A∗

Ba
(∞).

Proof. If |z| > 2a then

|Ba(z)| = |z3| |z − a|
|1 − az| > |z − a||z| 2a|z|

|1 − az| > a|z| 2a|z|
1 + a|z| > a|z|.

Since |Ba(z)| > |z|, it follows that z ∈ A∗
Ba

(∞). �

In the proof of Proposition 4.6 in [6], the authors show that for a ∈ C

with |a| large enough (indeed |a| > 16), we have Ba(c+) ∈ A∗
Ba

(∞). A similar
proof was previously done in [9, Lemma 2.6] for a family that includes Ba

(but without providing an explicit bound). Here we present an easier proof,
only for real values of the parameter a.

Lemma 4.2. If a ∈ R+ is large enough, then Ba(c+) ∈ A∗
Ba

(∞).
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Proof. It follows from (5) that if a > 2, then a
2 < c+ < a. We write Ba(z) as

Ba(z) = z3 h(z), where h(z) = z−a
1−az , and h′(z) = − (a+1)(a−1)

(az−1)2 . Then

B′
a(z) = 3z2 h(z) + z3 h′(z), so Ba(z) =

zB′(z)
3

− z4

3
h′(z).

We have that

Ba(c+) = c4
+

(a + 1)(a − 1)
3(ac+ − 1)2

> c4
+

a(a − 1)
3a4

.

Since c+ > a
2 > 1, it follows that

Ba(c+) >
a − 1
48

a.

So, for a > 97, we have that Ba(c+) > 2a. According to Lemma 4.1, we
conclude that Ba(c+) ∈ A∗

Ba
(∞). �

Proposition 4.3. Assume a ∈ R+ is large enough such that Lemma 4.2 ap-
plies. Then c+ ∈ A∗

Ba
(∞) and A∗

Ba
(∞) is infinitely connected.

Proof. Observe that, for a > 1, we have that 0 < z∞ < z0 < 2a. By Lemma
4.2, Ba(c+) ∈ A∗

Ba
(∞). Therefore, the critical point c+ lies either in A∗

Ba
(∞)

or in a preimage of A∗
Ba

(∞).
Assume that c+ lies in a preimage of A∗

Ba
(∞), distinct from A∗

Ba
(∞), say

U . Since U contains a critical point, it is mapped onto A∗
Ba

(∞) with degree
at least 2. Hence, U contains at least 2 preimages of z = ∞ (different from
itself), a contradiction with deg(Ba) = 4, and z = ∞ being a superattracting
fixed point with local degree 3.

Since the map is real, by the Schwarz Reflexion Principle, the map is
conjugated to itself by complex conjugation, i.e. I(z) = z. Then, Fatou com-
ponents intersecting the real line are symmetric with respect to the real line.
Since 0 < c+ < z0, it follows that 0 and z0 belong to different connected com-
ponents of the complement of A∗

Ba
(∞). Thus, A∗

Ba
(∞) is multiply connected,

therefore, by Remark 1 it is infinitely connected. �

Remark 2. It follows from [6, Proposition 4.6] that all a ∈ C, with |a| >
15.133, belong to the same hyperbolic component. Since the connectivity of
A∗

Ba
(∞) is an invariant topological property within hyperbolic components,

we conclude from Proposition 4.3 that if |a| > 15.133, then A∗
Ba

(∞) is infin-
itely connected. This completes the proof of Theorem B for n = 2.

To finish the proof of Theorem B we now consider n ≥ 3. As we did
before, we consider a new map Rn,α which is conjugated to On,α via the
Möbius map M(z) = 1

z−1 . More specifically, we consider Rn,α : Ĉ → Ĉ, given
by Rn,α = M ◦ On,α ◦ M−1. Since M sends z = 1 to z = ∞ and z = ∞ to
z = 0, it is clear from (2) that z = ∞ is a superattracting fixed point of Rn,α

with local degree 3 and z = 0 is a fixed point of Rn,α.
We have M(z) = 1

z−1 , M−1(z) = z+1
z , and

On,α(z) =
(1 − 2α)(n − 1) + (2 − 4α − 4n + 6αn − 2αn2)zn + (n − 1)(1 − 2α − 2n + 2αn)z2n

2nzn−1(α(1 − n) + (−α − n + αn)zn)
.



MJOM Newton-Like Components Page 13 of 17 149

We write

On,α(z) =
E3(n, α) + E4(n, α)zn + E5(n, α)z2n

2nzn−1[E1(n, α) + E2(n, α)zn]
,

where Ei(n, α) are polynomials of degree 1 in α. It follows that Rn,α(z) =
M ◦ On,α ◦ M−1(z) =

= M

(
E3(n, α)z2n + E4(n, α)zn(z + 1)n + E5(n, α)(z + 1)2n

2nz(z + 1)n−1[E1(n, α)zn + E2(n, α)(z + 1)n]

)

=
2nz(z + 1)n−1[E1(n, α)zn + E2(n, α)(z + 1)n]

2nz(z + 1)n−1[E1(n, α)zn + E2(n, α)(z + 1)n] − E3(n, α)z2n + E4(n, α)zn(z + 1)n + E5(n, α)(z + 1)2n

which we finally write as

Rn,α(z) =
2nz(z + 1)n−1[E1(n, α)zn + E2(n, α)(z + 1)n]

Q1
2n−3(z) + αQ2

2n−3(z)
=:

zP (z)
Q(z)

, (6)

where Qj
2n−3(z), j = 1, 2 are degree 2n − 3 polynomials, with coefficients

independent of α. We can use this expression of Rn,α, without further com-
putations, since Rn,α is a rational map of degree 2n, being conjugated to
On,α. Furthermore, z = ∞ corresponds to the superattracting fixed point
of local degree 3 of On,α, z = 1. So the denominator of Rn,α has degree
2n − 3 in z. Since Ei(n, α) are polynomials of degree 1 in α, this concludes
the argument of writing Rn,α in this form.

We split the proof of the case n ≥ 3 in several lemmas. We start by
giving an estimate for a zero of Rn,α, which lies on the positive real line.

Lemma 4.4. Let α > 2 and let S(z) = E1(α)zn + E2(α)(z + 1)n.Then
S (α(n − 1)) < 0 < S(αn − α − n). In particular, Rn,α has a zero on the
interval (α(n − 1) − n, α(n − 1)), for all α > 2.

Proof. Direct computations show that S writes as

S(z) = −nzn + [α(n − 1) − n)]
n−1∑
k=0

(
n

k

)
zk. (7)

On one hand,

S (α(n − 1) − n) =
n−2∑
k=0

(
n

k

)
(αn − α − n)k > 0.

On the other hand,

S (α(n − 1)) = −n [α(n − 1)]n + [α(n − 1) − n]
n−1∑
k=0

(
n

k

)
[α(n − 1)]k

= −n [α(n − 1)]n + [α(n − 1)]
n−2∑
k=0

(
n

k

)
[α(n − 1)]k

+[α(n − 1)]n [α(n − 1)]n−1 − n

n−1∑
k=0

(
n

k

)
[α(n − 1)]k

=
n−2∑
k=0

[(
n

k

)
− n

(
n

k + 1

)]
[α(n − 1)]k+1 − n

(
n

0

)
< 0.

�
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The following technical lemma will be useful later.

Lemma 4.5. Let m, k ∈ N
∗, m > k. Let u, vj ∈ C, j = 1, . . . , m. If |u| −

m∑
j=1

|vj | > 0, then
∣∣∣∣∣∣u −

k∑
j=1

vj

∣∣∣∣∣∣ >

∣∣∣∣∣∣
m∑

j=k+1

vj

∣∣∣∣∣∣ .

Proof. Since |u| −
m∑

j=1

|vj | > 0, we have that

∣∣∣∣∣∣u −
k∑

j=1

vj

∣∣∣∣∣∣ ≥ |u| −
k∑

j=1

|vj | >

m∑
j=k+1

|vj | ≥
∣∣∣∣∣∣

m∑
j=k+1

vj

∣∣∣∣∣∣ .

�
We give a sufficient condition for points to lie in A∗

Rn,α
(∞).

Lemma 4.6. Let α > 0 large enough. If |z| > nα, then z ∈ A∗
Rn,α

(∞).

Proof. We show that if |z| > nα, then |Rn,α(z)| > |z|, which is a sufficient
condition for z ∈ A∗

Rn,α
(∞). According to (6), we have to prove that, for α

large enough,
∣∣∣P (z)
Q(z)

∣∣∣ > 1. We write P as

P (z) = 2n
[−nz2n−1 + nα(n − 1)z2n−2 + P2n−2(z) + αP2n−3(z)

]
.

Observe that P2n−2(z) and P2n−3(z) are polynomials of degree 2n − 2 and
2n − 3, respectively, with coefficients independent of α. For α large enough
(recall that we are assuming |z| > nα), the following statements hold:
(1) (n − 1)|z|2n−1 > nα(n − 1)|z|2n−2.
(2) 1

3 |z|2n−1 > |P2n−2(z)|, since

lim
α→∞

n(n − 1)|z|2n−2

|z|2n−1
= 0.

(3) 1
3 |z|2n−1 > |αP2n−3(z)|, since

lim
α→∞

P2n−3(z)
|z|2n−2

= 0.

(4) 1
3 |z|2n−1 > |Q(z)|, since Q1

2n−3 and Q2
2n−3 are polynomials of degree

2n − 3 with coefficients independent of α.
All together imply that

n|z|2n−1 > nα(n − 1)|z|2n−2 + |P2n−2(z)| + α|P2n−3(z)| + |Q(z)|.
By using Lemma 4.5 (recall that for α large enough, there is no root of Q for
|z| > nα), we get that∣∣∣∣P (z)
Q(z)

∣∣∣∣ =
∣∣∣∣2n

−nz2n−1 + α(n − 1)z2n−2 + P2n−2(z) + αP2n−3(z)
Q(z)

∣∣∣∣ > 2n > 1.

Thus, for |z| > nα, we have that |Rn,α(z)| > |z| and z ∈ A∗
Rn,α

(∞). �
The following proposition concludes the proof of Theorem B.
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Figure 5. Description of the situation in proof of Proposition
4.7. The zero z0 is separated by (I ∪ γ1) ⊂ A∗

Rn,α
(∞) from

z = 0. Therefore, A∗
Rn,α

(∞) is multiply connected

Proposition 4.7. Let α > 0 large enough. Then A∗
Rn,α

(∞) is infinitely con-
nected.

Proof. If z ∈ (0, αn − α − n), then nzn < (αn − α − n)nzn−1. It follows that
S(z) (see 7) has no zeros in (0, αn − α − n). In particular, Rn,α has no zeros
in (0, αn − α − n). Let

I =
{

z ∈ C

∣∣∣z = nα

(
1
2

+ it

)
, t ∈ [−1, 1]

}
.

We claim that Rn,α(I) ⊂ A∗
Rn,α

(∞).
Let Tn,α(z):= 1

(1+z)2 Rn,α(z). Firstly, we prove that there exists a con-
stant κ > 0 such that for z ∈ I, we have that |Tn,α(z)| > κ. A direct
computation shows that∣∣∣∣Tn,α

(
nα

(
1
2

+ it

))∣∣∣∣ :=
N(α)
M(α)

,

where N and M are polynomials of degree 2n − 2 in α with coefficients
depending on t. Moreover, if we denote by c(t) the degree 2n − 2 coefficient
of N , we have:

c(t) = 2n2n−1

(
1
2

+ it

)2n−2 [
−n

(
1
2

+ it

)
+ n − 1

]
.

Observe that

min
t∈[−1, 1]

|c(t)| = |c(0)| :=C > 0.
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We denote by d(t) the degree 2n − 2 coefficient of M . Let D:= max
t∈[−1, 1]

|d(t)|,
and let κ:= C

2D . For large enough α, we have that
∣∣Tn,α

(
nα

(
1
2 + it

))∣∣ > κ
and that∣∣∣∣Rn,α

(
nα

(
1
2

+ it

))∣∣∣∣ > κ
∣∣∣nα

2
+ 1 + nαti

∣∣∣2 >
n2

4
κα2 > nα.

It follows from Lemma 4.6 that Rn,α(I) ⊂ A∗
Rn,α

(∞). Hence, I is a subset
of A∗

Rn,α
(∞) or a preimage of this Fatou component. Moreover, for z± =

n
2 α±inα we have |z±| > nα. We conclude from Lemma 4.6 that z± ∈
A∗

Rn,α
(∞). Therefore, I ⊂ A∗

Rn,α
(∞). By Lemma 4.4, there exists a zero

z0 of Rn,α such that nα
2 < z0 < nα. Therefore, there exists a piece-wise

smooth Jordan curve Γ = I ∪ γ1 ⊂ A∗
Rn,α

(∞) such that z0 ∈ Int(Γ) and
0 ∈ Ext(Γ) (see Fig. 5). It follows that A∗

Rn,α
(∞) is multiply connected. By

Remark 1, it is infinitely connected.
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