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It is known that, due to the fact that L1,∞ is not a Banach 
space, if (Tj)j is a sequence of bounded operators so that

Tj : L1 −→ L1,∞,

with norm less than or equal to ||Tj || and 
∑

j ||Tj || < ∞, 
nothing can be said about the operator T =

∑
j Tj . This is 

the origin of many difficult and open problems. However, if 
we assume that

Tj : L1(u) −→ L1,∞(u), ∀u ∈ A1,

with norm less than or equal to ϕ(||u||A1)||Tj ||, where ϕ is 
a nondecreasing function and A1 the Muckenhoupt class of 
weights, then we prove that, essentially,

T : L1(u) −→ L1,∞(u), ∀u ∈ A1.
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We shall see that this is the case of many interesting problems 
in Harmonic Analysis.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

Let {Tθ}θ be a family of operators indexed in a probability measure space such that

Tθ : L1(Rn) −→ L1,∞(Rn) (1.1)

with norm less than or equal to a uniform constant C. What can we say about the 
boundedness of the average operator

TAf(x) =
∫

Tθf(x)dP (θ), x ∈ Rn,

whenever is well defined? The following trivial example shows that, at first sight, nothing 
of interest can be concluded: for 0 < θ < 1, set

Tθf(x) =
∫ 1
0 f(y)dy
|x− θ| , x ∈ (0, 1),

so clearly Tθ satisfies (1.1), but

TAf(x) =
1∫

0

Tθf(x)dθ ≡ ∞, ∀x ∈ (0, 1).

However, things change completely, and this is one of the main goals of this paper, if 
we assume that

Tθ : L1(u) −→ L1,∞(u), ∀u ∈ A1,

where A1 is the class of Muckenhoupt weights defined as follows: we say that u ∈ A1 if u
is a nonnegative locally integrable function (called weight) so that there exists a positive 
constant C such that

Mu(x) ≤ Cu(x), a.e. x ∈ Rn,

where M is the Hardy-Littlewood maximal operator defined by

Mf(x) = sup
Q�x

1
|Q|

∫
|f(y)| dy, f ∈ L1

loc(Rn),

Q

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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with the supremum being taken over all cubes Q ⊆ Rn containing x ∈ Rn. We denote by 
‖u‖A1 the least constant C satisfying such inequality. Besides, it is wellknown ([5,29]) 
that

M : L1(u) −→ L1,∞(u) ⇐⇒ u ∈ A1,

with ||M ||L1(u)→L1,∞(u) ≤ C||u||A1 .
Let us start with a very simple and motivating example. Let m be a bounded variation 

function on R that is right-continuous and normalized by the condition m(−∞) = 0. 
Then,

m(ξ) =
ξ∫

−∞

dm(t) =
∫
R

χ(−∞,ξ)(t) dm(t) =
∫
R

χ(t,∞)(ξ) dm(t), ∀ξ ∈ R,

where dm is the Lebesgue-Stieltjes measure associated with m and it is a finite measure. 
Hence, if we consider the Fourier multiplier operator

Tmf(x) =
∫
R

m(ξ)f̂(ξ)e2πixξdξ, x ∈ R,

for every Schwartz function f , where

f̂(ξ) =
∫
R

f(x)e−2πixξdx, ξ ∈ R,

is the Fourier transform of the function f , a formal computation shows that

Tmf(x) =
∫
R

Htf(x)dm(t), ∀x ∈ R,

where

Htf(x) = Tχ(t,∞)f(x) =
∞∫
t

f̂(ξ)e2πixξdξ, x ∈ R.

Now, Ht is essentially a Hilbert transform operator (recall that Hf = Tmf with m(ξ) =
−i sgn ξ) because

χ(t,∞)(ξ) = sgn(ξ − t) + 1
2 , ∀ξ ∈ R.

Thus, since
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Ht : Lp(R) −→ Lp(R), ∀p > 1,

we have, using the Minkowski’s integral inequality and the density of the Schwartz 
functions on Lp(R), that every right-continuous bounded variation function is a Fourier 
multiplier on Lp(R) for every p > 1. However, even though we also have

Ht : L1(R) −→ L1,∞(R),

we cannot deduce (at least not immediately) that the same boundedness holds for Tm

due to the lack of the Minkowski’s integral inequality for the space L1,∞(R).
The main theorem of this paper will show that since

Ht : L1(u) −→ L1,∞(u), ϕ(||u||A1), ∀u ∈ A1,

with ϕ being a nondecreasing function on [1, ∞) and independent of t ∈ R, then for every 
measurable set E ⊆ Rn,

||TmχE ||L1,∞(u) ≤ C(m)ϕ(C2||u||A1)(1 + log ||u||A1)u(E), ∀u ∈ A1.

The result will be proved using an extended version of the Rubio de Francia’s extrapo-
lation theorem which deals with the theory of Muckenhoupt weights (see Theorem 1.1). 
Other interesting applications will be given in Section 4.

Let us now recall (see [5,29]) that for p > 1,

M : Lp(v) −→ Lp(v) ⇐⇒ v ∈ Ap,

where this class of weights is defined by the condition

‖v‖Ap
= sup

Q⊆Rn

(
1
|Q|

∫
Q

v(x) dx
)(

1
|Q|

∫
Q

v(x)
1

1−p dx

)p−1

< ∞,

and, given a weight v, Lp(v) is the Lebesgue space defined as the set of measurable 
functions f such that

||f ||Lp(v) =

⎛⎝∫
Rn

|f(x)|pv(x) dx

⎞⎠ 1
p

< ∞.

Indeed, (see [18]) for every p ≥ 1,

M : Lp(v) −→ Lp,∞(v) ⇐⇒ v ∈ Ap,

with Lp,∞(v) being the weak Lebesgue space defined as the set of measurable functions 
f so that
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‖f‖Lp,∞(v) = sup
y>0

yλv
f (y)

1
p < ∞.

Here, λv
f is the distribution function of f with respect to v defined by

λv
f (y) = v

({
x ∈ Rn : |f(x)| > y

})
, y > 0.

(Here we are using the standard notation v(E) =
∫
E
v(x) dx for every measurable set 

E ⊆ Rn. If v = 1, we shall write λf and |E|. See [3] for more details about this topic.)
An important result for our purpose concerning Ap weights is the extrapolation 

theorem of Rubio de Francia [32,33] (see also [15,17,19–21]) which, nowadays, can be 
formulated as follows:

Theorem 1.1 ([17]). Let (f, g) be a pair of measurable functions such that for some 
1 ≤ p0 < ∞,

||g||Lp0 (v) ≤ ϕ(‖v‖Ap0
)||f ||Lp0 (v), ∀v ∈ Ap0 ,

with ϕ being a nondecreasing function on [1, ∞). Then, for every 1 < p < ∞,

||g||Lp(v) ≤ C1ϕ
(
C2‖v‖

max
(
1, p0−1

p−1
)

Ap

)
||f ||Lp(v), ∀v ∈ Ap,

with C1 and C2 being two positive constants independent of v.

We have to emphasize here that although p0 can be 1, it is not possible, in general, 
to extrapolate till the endpoint p = 1 (take just T = M ◦ M or see, for instance, [30]
where a counterexample is given in the case of commutators). However, in the recent 
papers [9,12], a Rubio de Francia extrapolation theory for operators satisfying a weighted 
restricted weak-type boundedness for the class of weights Âp (slightly bigger than the 
class Ap) has been developed. The main advantage of this new class of weights is that 
allows to obtain boundedness estimates at the endpoint p = 1.

Definition 1.2. We define

Âp =
{
v ∈ L1

loc(Rn) : ∃h ∈ L1
loc(Rn) and ∃u ∈ A1 with v = (Mh)1−pu

}
,

endowed with the norm

‖v‖Âp
= inf

{
‖u‖

1
p

A1
: v = (Mh)1−pu

}
.

Clearly, Â1 = A1, while for 1 < p < ∞, Ap � Âp.
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It holds that (see [9,14,24]) for every 1 ≤ p < ∞ and every v ∈ Âp,

M : Lp,1(v) −→ Lp,∞(v), ‖M‖Lp,1(v)−→Lp,∞(v) ≤ C‖v‖Âp
,

where the Lorentz space Lp,1(v) is defined as the set of measurable functions f such that

‖f‖Lp,1(v) = p

∞∫
0

λv
f (y)

1
p dy < ∞.

Then, the restricted weak-type Rubio de Francia extrapolation result proved in [9]
can be stated as follows:

Theorem 1.3 ([9]). Let 1 < p0 < ∞ and let T be an operator such that

T : Lp0,1(v) −→ Lp0,∞(v), ϕ(‖v‖Âp0
), ∀v ∈ Âp0 ,

where ϕ is a positive nondecreasing function on [1, ∞). Then, T is of weighted restricted 
weak-type (1, 1) for every weight in A1; that is, for any measurable set E ⊆ Rn, there 
exists a constant C > 0 independent of E such that

‖TχE‖L1,∞(u) ≤ C‖u‖1− 1
p0

A1
ϕ

(
‖u‖

1
p0
A1

)
u(E), ∀u ∈ A1. (1.2)

For simplicity, whenever an operator T satisfies that for every measurable set E,

‖TχE‖L1,∞(u) ≤ Cuu(E),

we shall denote it by

T : L1
R(u) −→ L1,∞(u), Cu.

Remark 1.4. The complete result that T is of weighted weak-type (1, 1) (i.e., that the 
estimate in (1.2) holds for every f ∈ L1(u)) is, in general, false (see [9]). However, under 
certain mild condition in the operator T (see Section 2.2) the weighted weak-type (1, 1)
boundedness can be proved.

Remark 1.5. We should emphasize here that our operators do not need to be sublinear. 
However, if T is sublinear, it was proved in [34] that

T : L1
R(u) −→ L1,∞(u)

is equivalent to have the boundedness on the space
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B∗(u) =

⎧⎨⎩f :
∞∫
0

λu
f (t)

(
1 + log ||f ||1

λu
f (t)

)
dt < ∞

⎫⎬⎭ ,

which can be endowed with a quasi-norm.

Our main goal will be consequence of the fact that the converse of Theorem 1.3 is 
also true, and hence

T : L1
R(u) −→ L1,∞(u), ∀u ∈ A1 ⇐⇒ T : Lp0,1(v) −→ Lp0,∞(v), ∀v ∈ Âp0 .

Indeed, if p′ is the conjugate exponent of p > 1 (that is, 1
p + 1

p′ = 1) our main theorem 
reads as follows:

Theorem 1.6. Let (f, g) be a pair of measurable functions such that

||g||L1,∞(u) ≤ ϕ(‖u‖A1)||f ||L1(u), ∀u ∈ A1,

with ϕ being a nondecreasing function on [1, ∞). Then, for every 1 < p < ∞,

||g||Lp,∞(v) ≤ Φ(‖v‖Âp
)||f ||Lp,1(v), ∀v ∈ Âp,

where

Φ(r) = C1ϕ(C2r
p)rp−1(1 + log r)

2
p′ , r ≥ 1,

with C1 and C2 being two positive constants depending on p.

As a consequence we obtain the following corollary:

Corollary 1.7. Let c = (cj)j ∈ �1 and let {Tj}j be such that

Tj : L1(u) −→ L1,∞(u), ϕ(||u||A1), ∀u ∈ A1,

where ϕ is a positive nondecreasing function on [1, ∞). Then, for every u ∈ A1,∑
j

cjTj : L1
R(u) −→ L1,∞(u), C1||c||�1ϕ(C2||u||A1)(1 + log ||u||A1).

As usual, we shall use the symbol A � B to indicate that there exists a universal 
positive constant C, independent of all important parameters, such that A ≤ CB. When 
A � B and B � A, we will write A ≈ B.

The paper is organized as follows. In Section 2, we will see some previous notions, 
the necessary definitions and some technical results which shall be used later on. Indeed, 
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there we will prove Lemma 2.5 which will be essential in the proof of the main result 
given in Section 3. Further, Section 4 contains our main examples and applications. 
Finally, we also include a last section related with similar results in the context of limited 
extrapolation.

2. Preliminary notions and some technical results

2.1. A1 weights

Let us start by recalling some wellknown facts of the class A1:
i) ([16, Theorem 7.7]) A weight u belongs to A1 if and only if there exists h ∈ L1

loc(Rn)
and K such that K, K−1 ∈ L∞(Rn) satisfying that, for some 0 < μ < 1,

u(x) = K(x)(Mh(x))μ, a.e. x ∈ Rn,

where L∞(Rn) consists of all measurable functions f such that

||f ||∞ := ||f ||L∞(Rn) = ess sup f < ∞.

ii) ([12, Lemma 2.12]) For every h ∈ L1
loc(Rn), every u ∈ A1 and 0 < μ < 1, then 

(Mh)μu1−μ ∈ A1 with ∥∥∥∥(Mh)μu1−μ

∥∥∥∥
A1

� ‖u‖A1

1 − μ
. (2.1)

iii) ([31, Lemma 5.1]) If t = 1 + 1
2n+1‖u‖A1

, then

ut ∈ A1 and ||ut||A1 � ||u||A1 . (2.2)

2.2. (ε, δ)-atomic operators

As mentioned above, in general, the following implication does not hold for every 
u ∈ A1:

T : L1
R(u) −→ L1,∞(u) =⇒ T : L1(u) −→ L1,∞(u),

even if T is a sublinear operator. However, it was proved in [9, Theorem 3.5] that for a 
quite big class of operators the above implication is true.

Definition 2.1. Given δ > 0, a function a ∈ L1(Rn) is called a δ-atom if it satisfies the 
following properties:

(i)
∫

n a(x) dx = 0, and
R
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(ii) there exists a cube Q ⊆ Rn such that |Q| ≤ δ and supp a ⊆ Q.

Definition 2.2. (a) A sublinear operator T is called (ε, δ)-atomic if, for every ε > 0, there 
exists δ > 0 satisfying that

‖Ta‖L1(Rn)+L∞(Rn) ≤ ε‖a‖1,

for every δ-atom a.
(b) A sublinear operator T is said to be (ε, δ)-atomic approximable if there exists a 
sequence {Tj}j of (ε, δ)-atomic operators such that, for every measurable set E ⊆ Rn, 
then |TjχE | ≤ |TχE | and, for every f ∈ L1(Rn) such that ‖f‖∞ ≤ 1,

|Tf(x)| ≤ lim
j

inf |Tjf(x)|, a.e. x ∈ Rn.

Examples: In [6], the author showed that for sublinear operators, the property of being 
(ε, δ)-atomic is not a strong one. For instance, if

Tf(x) = K ∗ f(x) =
∫
Rn

K(y − x)f(y) dy, x ∈ Rn,

with K ∈ Lp(Rn) for some 1 ≤ p < ∞, then T is (ε, δ)-atomic. Further, if

T ∗f(x) = sup
j∈N

∣∣∣∣ ∫
Rn

Kj(x, y)f(y) dy
∣∣∣∣, x ∈ Rn,

with

lim
y→x

‖Kj( · , y) −Kj( · , x)‖L1(Rn)+L∞(Rn) = 0,

then T ∗ is (ε, δ)-atomic approximable (for example, standard maximal Calderón -
Zygmund operators are of this type). In general,

T ∗f(x) = sup
j

|Tjf(x)|, x ∈ Rn,

where {Tj}j is a sequence of (ε, δ)-atomic, is (ε, δ)-atomic approximable and the same 
holds for

Tf(x) =
( ∑

j

|Tjf(x)|q
) 1

q

, x ∈ Rn,

with q ∈ [1, ∞) and
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Tf(x) =
∑
j

Tjf(x), x ∈ Rn.

(See [6,9] for more examples.)

Theorem 2.3 ([9]). Let T be a sublinear operator (ε, δ)-atomic approximable. Then, given 
u ∈ A1,

T : L1
R(u) −→ L1,∞(u), Cu =⇒ T : L1(u) −→ L1,∞(u), 2nCu‖u‖A1 .

2.3. A Sawyer-type inequality

Here we will study one of the often-called Sawyer-type inequalities for weights belong-
ing in the restricted class of weights Âp. First, to do so, we need the following result.

Lemma 2.4. Let 1 < p < ∞ and v ∈ Âp. Take 1
p′ < θ ≤ 1 and set u0 = (Mh)

(p−1)(1−θ)
θ . 

Then,

Mu0 : L
θp′

θp′−1 ,1(v) −→ L
θp′

θp′−1 ,∞(v), (2.3)

with constant less than or equal to

θ2p′Cn,p

1 − p(1 − θ) ‖v‖
2(θp′−1)
θ(p′−1)

Âp
,

and where

Mu0f(x) = sup
Q�x

1
u0(Q)

∫
Q

|f(y)|u0(y) dy, x ∈ Rn.

Proof. Observe that since v ∈ Âp, then v is a doubling weight with constant Δv ≤
C1 ‖v‖pÂp

. Therefore, according to [12, Lemma 2.2 (i)], (2.3) is bounded with constant 
less than or equal to

C1 ‖v‖
θp′−1

θ(p′−1)

Âp
θp′

⎡⎣ sup
E⊆Q

u0(E)
u0(Q)

(
v(Q)
v(E)

) θp′−1
θp′

⎤⎦ ,

where the supremum is taken over all cubes Q and all measurable sets E ⊆ Q.
Now, given a cube Q and a measurable set E ⊆ Q,

(
v(Q)

) θp′−1
θp′

=
(
|Q|

) θp′−1
θ(p′−1)

[(
|E|

)p
v(Q)

] θp′−1
θp′
v(E) |E| |Q| v(E)
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≤ C2 ‖v‖
θp′−1

θ(p′−1)

Âp

(
|Q|
|E|

) θp′−1
θ(p′−1)

and, as well, due to [12, Lemma 2.5],

sup
E⊆Q

u0(E)
u0(Q)

(
|Q|
|E|

) θp′−1
θ(p′−1)

≤ θC3

1 − p(1 − θ) ,

which yields the desired result. �
The following lemma was proved for the case μ = 1 in [12, Lemma 2.6], and the 

extension to other μ’s has been fundamental for our purposes.

Lemma 2.5. Let 1 < p < ∞ and let v = (Mh)1−pu ∈ Âp. Take θ and μ so that 1
p′ < θ <

μ ≤ 1 and set vθ = (Mh)1−puθ. Then,

∥∥∥Mμ(χEvθ)
vθ

∥∥∥
Lp′,∞(v)

� Cp,θ,μ(u)v(E)
1
p′ , ∀E ⊆ Rn,

where Mμf := M(|f |1/μ)μ and

Cp,θ,μ(u) =
(

p2

(p− 1)2(μ− θ)(θ − 1
p′ )2

)θ

‖u‖
2θ− 2

p′
A1

. (2.4)

Proof. Observe that in virtue of the Kolmogorov’s inequality [22] with 1 < r′ = 1
θ < p′, 

it is enough to prove that

sup
F⊆Rn

1
v(F )

1
r′ −

1
p′

( ∫
F

(Mh(x))(p−1)(r′−1)(Mμ(χE(Mh)1−puθ)(x)
)r′

dx

) 1
r′

�Cp,θ,μ(u)v(E)
1
p′ .

Then, using the Fefferman-Stein’s inequality [18], since μr′ > 1, we obtain that∫
F

(Mh(x))(p−1)(r′−1)(Mμ(χE(Mh)1−puθ)(x)
)r′

dx

� μr′

μr′ − 1

∫
E

(Mh(x))(1−p)r′M(χF (Mh)(p−1)(r′−1))(x)u(x)dx.

Now, since u0 = (Mh)(p−1)(r′−1) ∈ A1, we have that, for every x ∈ E and every cube 
Q � x in Rn,
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1
|Q|

∫
Q

χFu0(y) dy ≤ u0(Q)
|Q| Mu0(χF )(x) ≤ ||u0||A1u0(x)Mu0(χF )(x)

� 1
1 − (p− 1)(r′ − 1)u0(x)Mu0(χF )(x),

(2.5)

where in the last estimate we have used (2.1). Hence, taking the supremum over all cubes 
Q ∈ Rn such that Q � x in (2.5), with x ∈ E, we deduce that∫

E

(Mh(x))(1−p)r′M(χF (Mh)(p−1)(r′−1))(x)u(x)dx

� 1
1 − (p− 1)(r′ − 1)

∫
E

Mu0(χF )(x)v(x) dx.

Therefore, since r′ = 1
θ , the inequality we want to prove will hold if we see that

sup
E⊆Rn

1
v(E)

1
p′

⎛⎝∫
E

Mu0(χF )(x)v(x) dx

⎞⎠θ

�
(

(μ− θ)(1 − p(1 − θ))
μθ

)θ

Cp,θ,μ(u)v(F )θ−
1
p′

or equivalently,

sup
E⊆Rn

1

v(E)1−
(
1− 1

θp′

) ∫
E

Mu0(χF )(x)v(x) dx

�
(

(μ− θ)(1 − p(1 − θ))
μθ

)
Cp,θ,μ(u) 1

θ v(F )1−
1

θp′ .

(2.6)

Finally, using again the Kolmogorov’s inequality in (2.6), it is enough to prove that

Mu0 : L
θp′

θp′−1 ,1(v) −→ L
θp′

θp′−1 ,∞(v)

with constant less than or equal to

cn,p
θp′

(
(μ− θ)(1 − p(1 − θ))

μθ

)
Cp,θ,μ(u) 1

θ .

According to Lemma 2.4, this will happen if

Cp,θ,μ(u) �
(

p2

(p− 1)2(μ− θ)(1 − p(1 − θ))2

)θ

‖u‖
2(θp′−1)

p′
A1

,

from which the desired result follows by taking Cp,θ,μ(u) as in (2.4). �
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3. Proof of the main result

We are now ready to prove our main result:

Proof of Theorem 1.6. Let h ∈ L1
loc(Rn) and u ∈ A1 so that v = (Mh)1−pu ∈ Âp. 

Further, let us take

1
p′

< θ < 1, μ := 1 − 1 − θ

t
and vθ := (Mh)1−puθ,

where t = 1 + 1
2n+1‖u‖A1

satisfies ut ∈ A1 and ||ut||A1 � ||u||A1 (see (2.2)). Then, 
θ < μ < 1 and, by (2.1), for every measurable set F ⊆ Rn,

u0 = Mμ(χF vθ)u1−θ = M(χF v
1/μ
θ )μ(ut)1−μ ∈ A1, ||u0||A1 ≤ C||u||A1

1 − μ
.

Let y > 0 and set F = {x : |g(x)| > y} so that v(F ) = λv
g(y). We can assume, without 

lost of generality, that v(F ) < ∞, since on the contrary we can take gN = gχB(0,N) and 
let N go to infinity at the end of our estimate.

By hypothesis we obtain that

yλv
g(y) = y

∫
{x : |g(x)|>y}

v(x) dx ≤ y

∫
F

Mμ(χF vθ)(x)u(x)1−θdx

≤ ϕ

(
C||u||A1

1 − μ

)∫
Rn

|f(x)|Mμ(χF vθ)(x)u(x)1−θdx

= ϕ

(
Ct||u||A1

1 − θ

) ∫
Rn

|f(x)|Mμ(χF vθ)(x)
vθ(x) v(x) dx

≤ ϕ

(
Ct||u||A1

1 − θ

) ∥∥∥∥Mμ(χF vθ)
vθ

∥∥∥∥
Lp′,∞(v)

||f ||Lp,1(v),

where in the last estimate we have used the Hölder’s inequality for Lorentz spaces with 
respect to the measure v(x) dx.

Now, by virtue of Lemma 2.5,∥∥∥∥Mμ(χF vθ)
vθ

∥∥∥∥
Lp′,∞(v)

� Cp,θ,μ(u)v(F )
1
p′ = Cp,θ,μ(u)λv

g(y)
1
p′ ,

so taking the supremum over all y > 0, in particular, we obtain that

‖g‖Lp,∞(v) � Cp,θ,μ(u)ϕ
(
Ct||u||A1

)
||f ||Lp,1(v).
1 − θ
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Finally, concerning about the constant Cp,θ,μ(u), we observe that

Cp,θ,μ(u) =
(

p2

(p− 1)2(μ− θ)(θ − 1
p′ )2

)θ

‖u‖
2θ− 2

p′
A1

≈
(

p2

(p− 1)2(1 − θ)(θ − 1
p′ )2

)θ

‖u‖
3θ− 2

p′
A1

.

Therefore, letting

θ = 1
p′

(
1 + 1

(p + 1)R

)
, 1 ≤ R < ∞,

then

Cp,θ,μ(u) �
(
p5(p + 1)3R2

(p− 1)4

) 1
p′

(
1+ 1

(p+1)R

)
‖u‖

1
p′
A1

‖u‖
3

Rp′(p+1)
A1

� R
2
p′ ‖u‖

1
p′
A1

‖u‖
3
R

A1
.

Furthermore, with the same choice of θ,

ϕ

(
Ct||u||A1

1 − θ

)
≤ ϕ

(
C̃p2||u||A1

)
.

Thus, the result follows by setting R = 1 + log‖u‖A1 and then taking the infimum on 
‖u‖A1 over all possible representations of v ∈ Âp. �
4. Examples and applications to average operators, multipliers and integral operators

4.1. Examples

There are many operators in harmonic analysis for which the weak-type (1, 1) bound-
edness for every weight in A1 has been proved [9,23,26–28,35].

As a consequence of the classical Rubio de Francia extrapolation theory (see The-
orem 1.1) it is known that they are also bounded on Lp(v) for every v ∈ Ap; but, in 
general, the restricted weak-type

T : Lp,1(v) −→ Lp,∞(v), ∀v ∈ Âp,

has been unknown up to now for many examples. This is the case, for instance, of the 
Bochner-Riesz operator at the critical index Bn−1

2
, introduced by S. Bochner in [4] and 

defined as follows (see [7] for some partial results in this context): let a+ = max{a, 0}
denote the positive part of a ∈ R and given λ > 0, the Bochner-Riesz operator Bλ on Rn

is defined by

B̂λf(ξ) =
(
1 − |ξ|2

)λ
f̂(ξ), ξ ∈ Rn.
+
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Proposition 4.1 ([28,35]). For every n > 1,

Bn−1
2

: L1(u) −→ L1,∞(u), C||u||2A1
log(||u||A1 + 1), ∀u ∈ A1.

Thereby, in virtue of Theorem 1.6, we completely answer the open question formulated 
in [7] about the restricted weak-type boundedness of Bn−1

2
.

Corollary 4.2. For every n > 1 and every p > 1,

Bn−1
2

: Lp,1(v) −→ Lp,∞(v), C||v||3p−1
Âp

(1 + log ||v||Âp
)1+

2
p′ , ∀v ∈ Âp.

Same estimates can be obtained for a large list of operators such as those appearing 
in [2,7,9]: rough operators, Hörmander multipliers, radial Fourier multipliers, square 
functions, etc.

4.2. Average operators

Corollary 4.3. Assume that {Tθ}θ is a family of operators indexed in a probability measure 
space such that the average operator

TAf(x) =
∫

Tθf(x)dP (θ), x ∈ Rn,

is well defined and that

Tθ : L1(u) −→ L1,∞(u), ϕ(||u||A1), ∀u ∈ A1, (4.1)

where ϕ is a positive nondecreasing function on [1, ∞). Then,

TA : L1
R(u) −→ L1,∞(u), C1ϕ(C2||u||A1)(1 + log ||u||A1), ∀u ∈ A1. (4.2)

Moreover, if TA is a sublinear (ε, δ)-atomic approximable operator, then

TA : L1(u) −→ L1,∞(u), C̃1ϕ(C2||u||A1)||u||A1(1 + log ||u||A1). (4.3)

Proof. Set 1 < p < ∞. Using Theorem 1.6, we have that (4.1) implies

Tθ : Lp,1(v) −→ Lp,∞(v), Φ(||v||Âp
), ∀v ∈ Âp.

Now, Lp,∞(v) is a Banach function space since there exists a norm || · ||(p,∞,v) so that

||f ||Lp,∞(v) ≤ ||f ||(p,∞,v) ≤
p

p− 1 ||f ||Lp,∞(v).

Hence, by the Minkowski’s integral inequality, TA satisfies that for every p > 1,
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TA : Lp,1(v) −→ Lp,∞(v), p

p− 1Φ(||v||Âp
), ∀v ∈ Âp.

Therefore, using Theorem 1.3 the desired result (4.2) follows by taking the infimum in 
1 < p ≤ 2. Finally, (4.3) is just a consequence of Theorem 2.3. �

In particular, the next result stated in the introduction follows:

Proof of Corollary 1.7. This result is just a direct consequence of Corollary 4.3 since {
cj

||c||�1
Tj

}
j

is a family of operators indexed in the counting probability measure. �
(I) Fourier multipliers

Our next application is in the context of restriction multipliers from Rn+k to Rn. First, 
let us recall that a bounded function m defined on Rn is said to be normalized if

lim
j

ψ̂j ∗m(x) = m(x), ∀x ∈ Rn, (4.4)

where for each j, ψj(x) = ψ(x/j), and ψ ∈ C∞
c (Rn) (i.e., ψ is an infinitely differentiable 

function with compact support), ψ̂ ≥ 0 and ||ψ̂||1 = 1.
It is easy to see that then, for every Lebesgue point x of m, (4.4) holds. In particular, 

every continuous and bounded function is normalized.

Proposition 4.4. Let k ≥ 1 and assume that a normalized bounded function m defined in 
Rn+k satisfies that

Tm : L1(u) −→ L1,∞(u), ϕ(||u||A1), ∀u ∈ A1(Rn+k),

where ϕ is a positive nondecreasing function on [1, ∞). Let φ ∈ L1(Rk) and define

mφ(x) =
∫
Rk

m(x, y)φ(y) dy, x ∈ Rn.

Then, for every v ∈ A1(Rn),

Tmφ
: L1

R(v) −→ L1,∞(v), C1ϕ(C2||v||A1)||v||A1(1 + log ||v||A1).

Proof. Take v ∈ A1(Rn) and define u = v ⊗ χRk , so that

u : Rn × Rk −→ R,
(x, y) �−→ u(x, y) = v(x),

satisfies u ∈ A1(Rn+k) with ||u||A1 ≤ ||v||A1 . Then, Tm : L1(u) −→ L1,∞(u) and, by [11, 
Theorem 4.4] (where here is used that m is normalized),
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Tm(·,y) : L1(v) −→ L1,∞(v), ∀y ∈ Rk,

with

sup
y∈Rk

||Tm(·,y)||L1(v)→L1,∞(v) � ||u||A1 ||Tm||L1(u)→L1,∞(u) ≤ ||v||A1ϕ(||v||A1).

Now, take f ∈ C∞
c (Rn). Then, for every y ∈ Rk we have that m(·, y)f̂ ∈ L1(Rn) and, 

as well, mφf̂ ∈ L1(Rn), so that, by the properties of the Fourier transform,

Tm(·,y)f(x) =
(
m(·, y)f̂

)∨
(x) and Tmφ

f(x) = (mφf̂)∨(x), ∀x ∈ Rn.

Hence, by Fubini’s theorem,

Tmφ
f(x) =

∫
Rn

mφ(ξ)f̂(ξ)e2πix·ξ dξ =
∫
Rn

⎛⎝∫
Rk

m(ξ, y)φ(y) dy

⎞⎠ f̂(ξ)e2πix·ξ dξ

=
∫
Rk

⎛⎝∫
Rn

m(ξ, y)f̂(ξ)e2πix·ξ dξ

⎞⎠φ(y) dy =
∫
Rk

Tm(·,y)f(x)φ(y) dy,

and the result follows as in Corollary 4.3 together with the density of Lp,1(v) by functions 
in C∞

c (Rn) ∩ Lp,1(v). �
(II) Integral operators

Let us now consider the operator

Tf(x) =
∫

Rm

K(x, y)f(y)dy, x ∈ Rn,

where the integral kernel K satisfies some size condition of the form |K(x, y)| � |x −y|−n.

Proposition 4.5. Assume that, for every s > 0,

Tsf(x) =
∫

|x−y|≥s

K(x, y)f(y)dy, x ∈ Rn,

satisfies that

Ts : L1
R(u) −→ L1,∞(u), ϕ(||u||A1), ∀u ∈ A1,

where ϕ is a positive nondecreasing function on [1, ∞). Then, if φ is a bounded variation 
function on (0, ∞) with limx→0+ φ(x) = 0, we have that
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Tφf(x) =
∫

Rm

K(x, y)φ(|x− y|)f(y)dy, x ∈ Rn,

satisfies that

Tφ : L1
R(u) −→ L1,∞(u), C1ϕ(C2||u||A1)(1 + log ||u||A1), ∀u ∈ A1.

Proof. We observe that, by hypothesis,

φ(|x− y|) =
|x−y|∫
0

φ′(s)ds, φ′ ∈ L1(Rn),

and hence, for every x ∈ Rn and every ε > 0, by Fubini’s theorem we have that

Tφf(x) − φ(ε)Tf(x) =
∞∫
0

⎛⎜⎝ ∫
|x−y|≥s≥ε

K(x, y)f(y)dy

⎞⎟⎠φ′(s) ds

=
∞∫
ε

Tsf(x)φ′(s) ds,

is an average operator, and so the result follows by Corollary 4.3 and letting ε tend to 
zero. �
5. Limited extrapolation results

The motivation of this section comes from the fact that there are also many operators 
in harmonic analysis (such as the Bochner-Riesz) so that

T : Lp0(v) −→ Lp0(v)

is not bounded for every v ∈ Ap0 but is bounded for every v in a certain subclass of Ap0 . 
Under this weaker hypothesis, only boundedness on Lp(v) of T can be deduced whenever 
p ∈ (p−, p+) for certain values of p− and p+. The purpose of this section is to establish 
some equivalence, similar to Theorem 1.6, between the boundedness at the endpoint 
p− and restricted weak-type boundedness at the p level. Indeed, the Rubio de Francia 
extrapolation results in this case are called limited extrapolation (see [1,8,10,15,17]).

Definition 5.1. Given 0 ≤ α, β ≤ 1 and 1 ≤ p < ∞, let us define the classes of weights

Ap;(α,β) =
{

0 < v ∈ L1
loc(Rn) : v = vα0 v

β(1−p)
1 , vj ∈ A1

}
with
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||v||Ap;(α,β) = inf
{
||v0||αA1

||v1||β(p−1)
A1

: v = vα0 v
β(1−p)
1

}
,

and

Âp;(α,β) =
{

0 < v ∈ L1
loc(Rn) : v = vα0 (Mh)β(1−p), v0 ∈ A1, h ∈ L1

loc(Rn)
}

with

||v||Âp;(α,β)
= inf

{
||v0||

α
1+β(p−1)
A1

: v = vα0 (Mf)β(1−p)
}
.

Definition 5.2. Given 1 ≤ p0 < ∞ and 0 ≤ α, β ≤ 1, set

p+ = p0

1 − α
, p′− = p′0

1 − β
,

(
or p− = p0

1 + β(p0 − 1)

)
,

where p+ = ∞ if α = 1 and p− = 1 if β = 1. Then, 1 ≤ p− ≤ p+ ≤ ∞ and we can 
associate to every p ∈ [p−, p+] the indices

α(p) = p+ − p

p+
and β(p) = p− p−

p−(p− 1) ,

so that 0 ≤ α(p), β(p) ≤ 1, p+ = p
1−α(p) , p

′
− = p′

1−β(p) and α(p0) = α, β(p0) = β.

Theorem 5.3 ([17]). Let (f, g) be a pair of measurable functions such that for some 
1 ≤ p0 < ∞ and 0 ≤ α, β ≤ 1 (not both identically zero) we have

‖g‖Lp0 (v) ≤ ϕ
(
‖v‖Ap0;(α,β)

)
‖f‖Lp0 (v) , ∀v ∈ Ap0;(α,β),

where ϕ is a nondecreasing function on [1, ∞). Then, for every p− < p < p+,

‖g‖Lp(v) ≤ C1ϕ

(
C2 ‖v‖

max
(

p+−p0
p+−p ,

p0−p−
p−p−

)
Ap;(α(p),β(p))

)
‖f‖Lp(v) , ∀v ∈ Ap;(α(p),β(p)),

with C1 and C2 being two positive constants independent of v.

Observe that in Theorem 5.3 is not possible to extrapolate till the endpoints p− and 
p+. However, in [10, Theorem 3.7] the authors were able to obtain an estimate in the 
endpoint p−. To do so, they needed to assume that the operators satisfy a restricted 
weak-type boundedness for the class of weights Âp;(α,β) which is a slightly bigger class 
than Ap;(α,β).

Theorem 5.4 ([10]). Let 1 ≤ p0 < ∞, 0 ≤ α, β ≤ 1 (not both identically zero) and let T
be an operator. Assume that
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T : Lp0,1(v) −→ Lp0,∞(v), ϕ(‖v‖Âp0;(α,β)
), ∀v ∈ Âp0;(α,β),

where ϕ is a positive nondecreasing function on [1, ∞). Then:

(i) If p− > 1,

T : Lp−,1
(
uα(p−)

)
−→ Lp−,∞

(
uα(p−)

)
,

Φp−(||u||α(p−)
A1

)
p− − 1 , ∀u ∈ A1,

where Φp− is a positive nondecreasing function on [1, ∞).
(ii) If p− = 1,

T : L1
R

(
uα(p−)

)
−→ L1,∞

(
uα(p−)

)
, Φ1(||u||α(p−)

A1
), ∀u ∈ A1.

Our following theorem shows that the converse is also true:

Theorem 5.5. Let (f, g) be a pair of measurable functions such that for some 1 ≤ p0 < ∞
and 0 < α ≤ 1,

||g||Lp0,∞(uα) ≤ ϕ
(
‖u‖αA1

)
||f ||Lp0,1(uα), ∀u ∈ A1,

with ϕ being a nondecreasing function on [1, ∞). Then, for any p0 ≤ p < p0
1−α ,

||g||Lp,∞(v) ≤ Ψ
(
||v||Âp;(α(p),β(p))

)
||f ||Lp,1(v), ∀v ∈ Âp;(α(p),β(p)),

where α(p) = 1 − p(1−α)
p0

, β(p) = p−p0
p0(p−1) and, for every r ≥ 1,

Ψ(r) = C1

(
1

p0 − p(1 − α)

) p−p0
p

ϕ
(
C2r

αp
p0−p(1−α)

)
r

α(p−p0)
p0−p(1−α) (1 + log r)

2(p−p0)
p ,

with C1 and C2 being two positive constants depending on p.

Proof. Let h ∈ L1
loc(Rn) and u ∈ A1 so that

v = (Mh)β(p)(1−p)uα(p) ∈ Âp;(α(p),β(p)).

Further, take t = 1 + 1
2n+1‖u‖A1

so that ut ∈ A1 with ||ut||A1 � ||u||A1 (see (2.2)) and, 
since t > 1,

p− p0

p
= α− α(p)

1 − α(p) <
tα− α(p)
t− α(p) < α.

Hence, we can take
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vθ = (Mh)β(1−p)uα(p)θ with p− p0

p
< θ <

tα− α(p)
t− α(p) .

Besides, since α(p) ≤ α, letting

μ = 1 − α(p)(1 − θ)
αt

∈ (0, 1),

then θ < αμ < 1 and, by (2.1), for every measurable set F ⊆ Rn,

u0 =
(
Mαμ(χF vθ)uα(p)(1−θ)

) 1
α = M

(
χF v

1
αμ

θ

)μ

(ut)1−μ ∈ A1,

with ||u0||A1 ≤ C||u||A1
1−μ .

Now, let y > 0 and set F = {x : |g(x)| > y} so that v(F ) = λv
g(y). We can assume, 

as it was done in the proof of Theorem 1.6, that v(F ) < ∞. Then, by hypothesis, we 
obtain that

yp0λv
g(y) = yp0

∫
{x : |g(x)|>y}

v(x) dx ≤ yp0

∫
F

u0(x)αdx

≤ ϕ
(
||u0||αA1

)p0

⎡⎢⎢⎣p0

∞∫
0

⎛⎜⎝ ∫
{|f(x)|>z}

u0(x)α dx

⎞⎟⎠
1
p0

dz

⎤⎥⎥⎦
p0

� ϕ
(
||u0||αA1

)p0

∥∥∥∥Mαμ(χF vθ)
vθ

∥∥∥∥
L

(
p
p0

)′
,∞

(v)

⎡⎣ ∞∫
0

||χ{|f(x)|>z}||
1
p0

L
p
p0

,1
(v)

dz

⎤⎦p0

� ϕ

([
Cαt||u||A1

α(p)(1 − θ)

]α)p0 ∥∥∥∥Mαμ(χF vθ)
vθ

∥∥∥∥
L

(
p
p0

)′
,∞

(v)
||f ||p0

Lp,1(v),

where in the penultimate estimate we have used the Hölder’s inequality for Lorentz 
spaces with respect to the measure v(x) dx.

Now, since β(p)(1 − p) = 1 − p
p0

, then v ∈ Â p
p0

and, by virtue of Lemma 2.5,

∥∥∥∥Mαμ(χF vθ)
vθ

∥∥∥∥
L

(
p
p0

)′
,∞

(v)
� C p

p0
,θ,αμ(u)v(F )

p−p0
p = C p

p0
,θ,αμ(u)λv

g(y)
p−p0

p ,

so taking the supremum over all y > 0, in particular, we obtain that

‖g‖Lp,∞(v) � C p
p0

,θ,αμ(u)
1
p0 ϕ

(
C̃||u||αA1

(1 − θ)α

)
||f ||Lp,1(v).
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Finally, concerning about the constant C p
p0

,θ,αμ(u), we observe that

C p
p0

,θ,αμ(u) =
(

p2

(p− p0)2(αμ− θ)(θ − p−p0
p )2

)θ

‖u‖2θ− 2(p−p0)
p0

A1

�
(

p2

(p− p0)2(α− θ)(θ − p−p0
p )2

)θ

‖u‖3θ− 2(p−p0)
p0

A1
,

so the behavior of the constant C p
p0

,θ,αμ(u) follows as in the proof of Theorem 1.6. �
As an application, we present some new weighted estimates for the Bochner-Riesz 

operator below the critical index.

Proposition 5.6 ([25]). Let n = 2 and 0 < λ < 1
2 . Then,

Bλ : L
4

3+2λ

(
u

2λ
3+2λ

)
−→ L

4
3+2λ ,∞

(
u

2λ
3+2λ

)
, c(n, λ) ‖u‖

λ(7+4λ)
6+4λ

A1
, ∀u ∈ A1.

Proposition 5.7 ([13]). Let n > 2 and n−1
2(n+1) < λ < n−1

2 . Then

Bλ : L2
(
u

1+2λ
n

)
−→ L2

(
u

1+2λ
n

)
, ϕ

(
||u||

1+2λ
n

A1

)
, ∀u ∈ A1,

where ϕ is a positive nondecreasing function on [1, ∞).

Therefore, as a consequence of Theorem 5.5 and Propositions 5.6 and 5.7, we obtain 
the following result.

Corollary 5.8. Let n = 2 and 0 < λ < 1
2 . For every 4

3+2λ ≤ p < 4
3 ,

Bλ : Lp,1(v) −→ Lp,∞(v), ∀v ∈ Â
p;

(
4−3p

4 , (3+2λ)p−4
4(p−1)

).

Now, let n > 2 and n−1
2(n+1) < λ < n−1

2 . For every 2 ≤ p < 2n
n−1−2λ ,

Bλ : Lp,1(v) −→ Lp,∞(v), ∀v ∈ Â
p;

(
2n−p(n−1−2λ)

2n , p−2
2(p−1)

).

Data availability

No data was used for the research described in the article.
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