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ABSTRACT: Fusing high-throughput quantum mechanical screening techniques with modern artificial
intelligence strategies is among the most fundamental �yet revolutionary� science activities, capable of
opening new horizons in catalyst discovery. Here, we apply this strategy to the process of finding
appropriate key descriptors for CO2 activation over two-dimensional transition metal (TM) carbides/
nitrides (MXenes). Various machine learning (ML) models are developed to screen over 114 pure and
defective MXenes, where the random forest regressor (RFR) ML scheme exhibits the best predictive
performance for the CO2 adsorption energy, with a mean absolute error ± standard deviation of 0.16 ±
0.01 and 0.42 ± 0.06 eV for training and test data sets, respectively. Feature importance analysis revealed
d-band center (εd), surface metal electronegativity (χM), and valence electron number of metal atoms
(MV) as key descriptors for CO2 activation. These findings furnish a fundamental basis for designing
novel MXene-based catalysts through the prediction of potential indicators for CO2 activation and their
posterior usage.
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1. INTRODUCTION
The excessive carbon dioxide (CO2) concentration in Earth’s
atmosphere has become a large threat to the environment
given its main role in global warming; therefore, a lot of efforts
have been taken worldwide to remove it. The rise of CO2
concentration in the atmosphere is mainly due to the massive
destruction of forests as well as the extensive exploitation of
fossil fuels, which led to a continuous increase of CO2
concentration, that will reach ∼590 ppm by the year 2100,
causing an expected global temperature raise by 1.9 °C, with
the concomitant acidification of oceans and devastating
consequences for the marine ecosystems.1 At present, the
increasing CO2 emissions are partly controlled through either
converting it into useful carbon-based fuels/chemicals or by
storing it in a stabilized media. To attain a valid impact on both
environment and economy, it is necessary to utilize CO2
instead of just storing it, to thus unlock its potential and
trigger profitable industrial applications. Hitherto, several types
of catalysts were investigated aimed at CO2 activation and
reduction, including different metal oxides, pure metals and
alloys, organometallics, single-atom catalysts, non-metals, and
nano-metals.2−4 Typically, metals such as Cd, Sn, In, Pd, and
Bi mediate the formation of formic acid from CO2,

5−8 while
Ti, Zn, and Au can efficiently convert CO2 into CO.

9−11 These
studies demonstrated that the CO2 molecule can interact with
metal surfaces through either strong or weak binding modes. In
the case of strong interactions, the metal−carbon (M−C)

overbonding may poison the catalyst surface, making the active
sites inaccessible for further reduction of CO2 with a
concomitant reduction of product formation. In contrast, a
weak bonding between CO2 and a given metal surface does not
allow for the CO2 C−O bond dissociation, as desorption
prevails over this bond scission chemical step, which would
favor the formation of the desired products. It should be borne
in mind that the C−O bond enthalpy in the CO2 molecule is
very large, of 803 kJ·mol−1,12 and thus the activation of CO2
can be regarded as a suitable approach to lower the CO2
reaction conditions and energy demands. Therefore, a
thorough activation analysis is highly required when designing
novel catalysts based on rational approaches, to uncover which
factors govern both activity and selectivity during the reactive
processes.
In general, the CO2 binding energy over a potential catalytic

surface is considered as an effective source for predicting the
likelihood of CO2 reduction reactions.13 However, the
experimental accurate measurement of the CO2 binding
energy is far from being a simple issue.14 On the other hand,
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the theoretical modeling of the catalytic activity on a given
material surface requires extensive yet accurate calculations,
preferably from first principles-based methods, leading to a
good understanding of the interaction of CO2 with the surface
of interest and accounting also for coverage effects, but at a
high computational cost, though. In this regard, properties that
provide information about the catalytic activity from a lower
computational cost are highly preferable, particularly to screen
over a pool of chemically related family of materials. In a
simple case scenario, the adsorption energies can be linearly
correlated with electronic descriptors that only require
investigating the substrates, e.g., by density functional theory
(DFT), significantly reducing the computation cost for
predicting the catalytic activity. In particular, Hammer and
Nørskov15 proposed one of the most successful descriptors to
date, the d-band center, capable of predicting the adsorption
energy of a given adsorbate at different TM surfaces using
information of the TM surface electronic structure only. Here,
the essence of the statement indicates that the binding energy
of CO2 to the TM surface does not require entire details of the
density of sates, where instead the d-band center is sufficient to
correlate the interaction strength with the surface chemical
activity and, eventually, the catalytic performance. In addition,
other structural parameters such as bond lengths and angles,
even surface coordination numbers, could be correlated with
adsorption energies. By mapping the adsorption energy with
materials intrinsic properties, one can obtain descriptors that
do not only provide a fast screening over them with a rather
high accuracy but also offer fundamental insights into the
coupling between CO2 and the surfaces of interest.
In the recent years, machine learning (ML) models trained

on a limited number of quantum-mechanical calculations have
become an appealing alternative for high-throughput pre-
diction of chemical reactivity with either algorithm-
derived16−20 or handcrafted features.21−23 The input variables
required for ML modeling are typically accessible from the
relaxed pristine materials surface structures without the
presence of adsorbates. Using such properties with a low
computational cost, one can predict complex parameters such

as catalytic activities or adsorption energy distributions in a
much faster way. Since the ML analysis within the catalysis
field mainly deals with particular chemical or physical
properties, e.g., adsorption energies, d-band centers, selectiv-
ities, limiting potentials, and so on, it is essential to consider
supervised ML algorithms that map the target data set. Linear
regression is a simple procedure with a highly potential and
widespread approach used to analyze descriptors and to
establish scaling relations for predicting valuable information in
the computational heterogeneous catalysis field. More
advanced techniques are currently available to handle multiple
features such as non-linear relationships,24−27 including kernel
ridge regression,28 neural networks,29 random forest regres-
sion,30 and Gaussian processes regression,31 to name a few.
Ultimately, choosing suitable descriptors is essential in any ML
to regulate the prediction power and the learning efficiency.32

In this work, ML models are developed to mine and map the
CO2 activation over pure and defective MXenes based solely
on their pristine properties and the features of gas-phase atoms
that enter in the MXene chemical composition. Note in
passing by that for CO2 activation, we refer here to a strong
interaction between the CO2 molecule and the MXene
surfaces, leading to significant changes in the adsorbed CO2
geometry, including a bent geometry with elongated C−O
bonds and a molecular negative charge, resulting from a charge
transfer from the MXene surface to CO2. This CO2 activation
must not be misled with another widely used meaning,
implying the CO2 conversion into other chemicals, e.g., CO,
formic acid, methanol, and so on, although both definitions are
connected, since the bent CO2 geometry is quite often the key,
decisive state in CO2 conversion, as found in organo-
metallics,33 TM carbides,34 MXenes,35 metals,36 alloys,37 and
oxide-based catalysts.38,39

Thus, the fundamental goal of the present study is to
develop and understand ML models for activated CO2
adsorption on MXenes, which can be quantitatively imple-
mented and leveraged for the predictive analysis in drawing
useful information into the process of CO2 posterior
conversion. Figure 1 displays the schematic diagram of the

Figure 1. Schematic diagram of the ML workflow, trained on a data set generated from previous work and DFT calculations, aimed at identifying
potential descriptors for CO2 activation over two-dimensional TM carbides and nitrides (MXenes).
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ML workflow, trained on a data set generated from our
previous literature and DFT calculations to identify potential
descriptors for CO2 activation over MXenes. To this end, three
regression models, namely, multivariate linear regression
(MLR), decision tree regression (DTR), and random forest
regression (RFR) are set up and evaluated with the aim of
predicting potential descriptors for CO2 activation over these
materials.40 Accordingly, we performed a feature importance
evolution and investigated the effect of each primary feature on
the target adsorption properties. As demonstrated below, the
RFR model is best performing, using d-band center, εd, the
MXene surface metal electronegativity, χM, and valence
electron number of metal atoms, MV, as meaningful features
to predict the activation of CO2 for the chosen MXene class of
materials. This high-throughput screening research based on
first-principles calculations and ML predictions can discover
prominent indicators of CO2 activation over MXene materials,
and it is likely to be transferred to other bulk TM carbides/
nitrides materials as well.

2. METHODOLOGY
2.1. Data Collection and Pre-processing. The data

required to nurture the developed ML tools were collected
from our previous literature on MXenes for CO2 cap-
ture.35,41−44 A total of 114 data points were extracted,
among which 60 points are from pure MXenes with varying
thickness, while remaining 54 points correspond to MXenes
with different sorts of vacancies; see Figure 2. Note that

MXenes are usually surface-terminated as a result of the
synthesis procedure, yet bare MXenes are nowadays attainable
either through molten salts synthesis45 or after applying
cleaning protocols.46 Furthermore, such non-terminated sites
have been appointed to be key catalytic active centers in CO2
conversion, as shown in the dry methane reforming.47 In
addition, some previous cases, where *CO2 was found to
dissociate into *CO and *O adsorbates upon relaxation on the
MXene surfaces �due to a molecular placement too close to

the MXene surface, and so a higher energy level, which led the
dissociation� were reoptimized in order to gain a stable *CO2
adsorption state. In addition, we also observed that a
substantial amount of data was missing, particularly on surface
descriptors, which were here calculated and completed; see
below. Notice that the data source had many aspects in
common, e.g., all being DFT calculations on p(3×3) slab
models, with a minimum vacuum of 10 Å, and using Perdew−
Burke−Ernzerhof (PBE) exchange−correlation functional,48

with Grimme’s D3 correction to account for dispersive
forces.49 However, data slightly differed concerning the
plane-wave basis set kinetic energy-cutoff or the Brillouin
zone k-points density. To assess the possible effect of such
input differences on binding energies, we carried out test
evaluations on 11% of the data set using the same materials,
with representatives from pure MXenes and varying thick-
nesses and cases including different sorts of vacancies. The
evaluated impact on target properties such as adsorption
energies, bond lengths, and O�C�O angles were found to be
at most of 0.07 eV, 0.03 Å, and 5.41°, respectively. Such
discrepancies are well below or at least comparable to the
inherent DFT accuracy.
The entire set of data points was then split into randomly

selected training and test subsets. Accordingly, a random 20%
of the total data points were labeled as test data and the
remaining 80% was labeled as training data for the evaluation
of the designed models. To better understand the importance
of the studied models with the set of primary features, we
considered the Pearson correlation coefficient, R, and the mean
absolute error (MAE) as main evaluation indices.

2.2. ML Models and Hyperparameter Tuning. Three
ML models, namely, MLR, DTR, and RFR, were devised and
evaluated to predict the CO2 activation over MXenes on the
set of described input features or descriptors. Based on a
training data set, each model was developed, where the test
data set was employed to evaluate their prediction accuracy.
For more detailed information about the considered three ML
models; see Section S1 of the Supporting Information. To
improve the model prediction quality, a cross-validation was
carried out during the training process to tune the hyper-
parameters. Generally, the hyperparameter tuning (HT) is
used for obtaining optimal model performance by finding a set
of hyperparameters, which are tuned during the model training
process,50 e.g., the DTR and RFR branches and leaf nodes; see
Figures S1 and S2 in the Supporting Information. In the
present study, HT was carried out using a grid search method,
which is reliable methodology, while tuning a lower set of
primary features. All the data processing and ML technique
implementation were performed using the open-source scikit-
learn library.51

2.3. DFT Calculations. Complementary periodic DFT
calculations were carried out using the Vienna ab initio
simulation package (VASP) code,52 using a plane wave basis
set for the valence electron density with an optimal kinetic
energy cutoff of 415 eV. For the scalar-relativistic treatment of
the effect of core electrons on the valence density, projector
augmented wave53 pseudopotentials were used. A generalized
gradient approximation exchange−correlation functional has
been employed, in particular, that proposed by Perdew-Burke-
Ernzerhof (PBE).48 The geometry optimization was consid-
ered converged when forces acting on atoms were all below
0.01 eV·Å−1, while an electronic convergence criterion of 10−5

eV was imposed. An optimal Monkhorst−Pack grid of k-points

Figure 2. Side and top atomic structure views of TM carbides and
nitrides MXenes with formula Mn+1Xn (n = 1−3) with X = C or N and
M metals from groups III−V of the Periodic Table. A total of 114 data
points are extracted, among which 60 points are from pure MXenes
with varying thickness, while remaining points correspond to MXenes
with different vacancies; metal vacancy (VM), carbon/nitrogen
vacancy (VX), and metal and nearby carbon/nitrogen vacancy (VMX).
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of 5×5×1 dimensions was used, overall guaranteeing
adsorption energies to be converged below chemical accuracy
of 1 kcal·mol−1, ca. 0.04 eV. Dispersive forces were accounted
using Grimme’s D3 method,49 being PBE-D3 a suited level of
calculation employed in previous studies.41−44

The adsorption energy, Eads, of CO2 on various MXene
surfaces was obtained from the following equation

E E E E Eads CO /MXene MXene CO ZPE2 2
= + (1)

where ECOd2/MXene, EMXene, and ECOd2
are the total energies of

CO2 adsorbed on the corresponding MXene surface, that of
the relaxed pristine MXene, and that of the isolated CO2
molecule, respectively. For the CO2 molecule, it was placed
within a symmetric box of 10×10×10 Å dimensions and
optimized at the Γ-point. ΔEZPE is the zero point energy
(ZPE) difference in between the adsorbed CO2 and that of the
gas phase within the harmonic approximation. For further
details, we refer to literature.35

As far as descriptors are concerned, the work function, ϕ, is
defined as the amount of energy required to move an electron
from the material Fermi level, EF, and place it in the vacuum
energy level, Evac. Thus

E Evac F= (2)

In the d-band center model, it is defined as the gravimetric
center of the d-projected density of states of a surface TM
atom, within the initial energy level up to the energy level
corresponding to an hypothetical d10 electronic configuration
of the TM; see further details in literature.54 Aside, a Bader’s
atoms-in-molecules electronic density analysis is carried out to
integrate it within regions whose charge is assigned to certain
atoms.55 Thus, a negative Q value implies a negative charge,
and vice versa. Finally, the exfoliation energies, Eexf, are gained,
computed as the energy necessary to remove the A element
from MXene MAX phase precursors,44 and obtained as follows

E E E E S(2 2 )/4exf MXene A MAX A= · + · · (3)

where EMXene and EMAX are the isolated MXene and the MAX
unit cell total energies, respectively, as depicted in Figure S3 of
the Supporting Information. Besides, EA and SA indicate the
bulk phase atomic energy of A species and the cross-section
area of each created MXene unit, respectively. Within this
definition, the larger the Eexf, the stronger the bonding between
MXene layers and the A phase and the costlier is to separate
them.

3. RESULTS AND DISCUSSION
Having consistently gained and gathered all the necessary data,
we first considered four target variable indicators of the CO2
activation. These included CO2 adsorption energy, Eads, in the
sense that, a priori, the stronger the bonding, the higher the
activation. Aside from this energetic feature, we regarded two
geometric parameters, the average C−O bond distance,
d(CO), and the CO2 molecular angle, α(OCO), since, ideally,
the activated CO2 features a reduced angle compared to the
linear gas molecule angle of 180°, plus elongated C−O bonds,
result from the activated bent geometry, and a consequence of
a charge transfer from the substrate material.56,57 Thus, the
smaller the angle and the larger the bond lengths, the more
activated the CO2. Finally, the mentioned charge transfer can
be quantified through the Bader charge of the adsorbed CO2,
Q, in the sense that, the larger the charge, the more activated
CO2 is.
At first, we evaluated these features in a descriptive fashion,

showing fringe limits in the data set and distribution; see
Figure 3. A quick inspection reveals that the distribution of
features is not uniform for none of the target properties. For
instance, Eads shows three peaks, one close to ca. −3.5 eV,
another around −2.1 eV, and a small peak close to −0.4 eV.
According to the Sabatier principle, moderate adsorption
energies �neither too weak nor too strong� would provide

Figure 3. Density distribution of (a) CO2 Eads, (b) C−O bond distance, d(CO), (c) CO2 angle, α(OCO), and (d) Bader charges, Q, for the
complete set of data of 114 MXene cases.
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the better catalytic performances, but, in our case, an activated
CO2 molecule getting bent and negatively charged often
implies strong adsorption energies, suggesting that a surplus of
energy is required for a reaction to occur when using adsorbed
CO2. In any case, among all the studied MXenes, only 6.84%
�6 out of 114� of the Eads are below −1.0 eV, which
indicates overall a strong CO2 chemisorption over the studied
MXenes.
The previous property is accompanied by reduced angles

and elongated C−O bonds, indicators of the CO2 activation.
58

In the latter case, they are concentrated at 1.37 Å, which is 0.20
Å larger than the CO2 distance in vacuum of 1.17 Å, with a
smaller peak at 1.27 Å, and few cases with bond lengths larger
than 1.5 Å, like Cr2C with a d(CO) of 1.54 Å. When it comes
to molecular angles, there are two main peaks around 116 and
132°. Notice thus that all the studied cases imply a bent CO2,
with angles ranging from 112 to 140°. The increase in both C−
O bond elongation and CO2 bending is consistent with a
charge transfer from the surface to the adsorbed molecule.59

Thus, the Bader charge of the adsorbed CO2 is also a potential
indicator of activation, where the average Q is found to be
−1.59 e, with a minimum and maximum value of −2.98 and
−0.83 e, respectively, and a significant peak around −1.1 e.
To understand the efficiency of a catalyst, one requires

descriptors that correlate with the catalyst performance. Hence,
for a practical use, the selected primary features or descriptors
should be much facile to evaluate when compared with that of
the target properties and, whenever possible, connect with
chemical intuition-derived concepts. Thus, for a fruitful
comparison of unique fingerprints, we have considered 18
primary features aimed to characterize the local environment
of the adsorption sites, chosen among the properties of pristine
MXenes, but also including features from the atoms
comprising the MXene. These primary features are rapid to
obtain, unique, and easily accessible. Typically, since the
binding energies scale linearly with the d-band filling, the
adsorption strength could be linked to the TM d-band energy
distribution. Figure S4 displays the linear correlations between
the target properties; Eads, d(CO), α(OCO), and Q, and
primary features of MXenes, including some of the best
performing or alleged descriptors in the literature, such as the
d-band center, εd, the exfoliation energy, Eexf, the work
function, ϕ, the metal electronegativity, χM, the valence
electron number of a metal atom, MV, and Bader charge of
surface metal atom, qM, along with the regression coefficients
R. For a better understanding, the R values of the
aforementioned descriptors are provided separately for pure

and defective MXenes and summarized in Figure 4, also
regarding C- and N-based MXenes separately.
As seen in Figure 4, for both pure and defective MXenes,

Eads shows better linear trends with the primary features, while
d(CO) and α(OCO) show poor correlations when compared
with other target properties. In the case of pure MXenes with
varying thicknesses, the detailed analysis demonstrates that the
R value of Eads as a function of εd improves by increasing it. For
defective systems, the R value is smaller for single vacancies;
VM and/or VX, while the R score increases in the case of double
vacancies, i.e., VMX. Interestingly, the R value of several primary
features exceeds that of the d-band center. For instance, in all
cases, MV shows better scaling relations among the other
descriptors. It should be noted that the d-band center is quite a
universal descriptor for Eads of different adsorbates at transition
meal surfaces representing catalyst models. However, there are
several signatures that the d-band center itself is not an
adequate descriptor for more complex compounds.60−63 On
the other hand, qM shows very small regression coefficients,
indicating that the target properties exhibit poor correlations
with the primary features. Notably, MV and εd appear as the
top two descriptors, independently establishing the relation-
ship with the target properties. However, we were unable to
establish a better relationship with target properties using
simply several single descriptors, which requires integration of
multiple descriptors to reach a more accurate description.
Therefore, these insufficient correlations prompted us to build
a predictive ML model through combination of primary
features that could resemble the contribution of each feature
individually to the model.
Thus, using primary features as input variables, we evaluated

various ML models, including MLR, DTR, and RFR methods
using our database. Their MAE together with the standard
deviation, σ, are shown in Table 1. In the case of Eads, the MAE
values are found to be 0.49 ± 0.06, 0.53 ± 0.10, and 0.45 ±
0.06 eV for MLR, DTR, and RFR, respectively. Notice that

Figure 4. Regression coefficients, R, for the linear correlation between the target properties, Eads, d(CO), α(OCO), and Q, and primary features, εd,
Eexf, ϕ, χM, MV, and qM.

Table 1. MAE ± Standard Deviation, σ, of Eads, d(CO),
α(OCO), and Q Using MLR, DTR, and RFR ML
Regressors, as Well as RFR RUF, and HT over RUF

ML model Eads/eV d(CO)/Å α(OCO)/deg Q/e

MLR 0.49 ± 0.06 0.05 ± 0.01 5.4 ± 0.7 0.22 ± 0.04
DTR 0.53 ± 0.10 0.06 ± 0.01 5.5 ± 1.3 0.27 ± 0.05
RFR 0.45 ± 0.06 0.04 ± 0.01 4.9 ± 0.6 0.21 ± 0.03
RUF 0.43 ± 0.13 0.04 ± 0.01 4.9 ± 0.6 0.21 ± 0.03
HT 0.42 ± 0.06 0.04 ± 0.01 4.8 ± 0.8 0.20 ± 0.03
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such errors are around double the typical DFT accuracy of ca.
0.2 eV and are still too large, especially when predicting cases
with an Eads weaker than −1 eV. However, for the majority of
MXene cases, the accuracy is already enough for a rapid
screening, being the most of the cases between −1 and −4 eV;
see Figure 1. For all the combinations of descriptors, the RFR
model showed better performance than MLR and DFR
models. Typically, feature importance estimates the weightage
of a particular descriptor, thereby revealing the most relevant
features for predicting the target properties by understanding
the direct chemical insights. Especially for catalytic materi-
als,30,64−67 analyzing primary features is meaningful and
interesting to predict the correlation between the target
properties and the descriptors form view point of underlying
physics and chemistry.
For CO2 Eads, the top five important features are the group

number of the metal atom, GM, χM, MV, εd, and Eexf. In the case
of d(CO), α(OCO), and Q, the combinations of (εd, Eexf, ϕ,
qM, and χM), (χM, εd, qM, ϕ, and number of d electrons, NdM),
and (MV, χM, ϕ, εd and NdM) were rendered as the top
features. Among them, GM, χM, MV, and NdM are tabulated
chemical element properties, while εd, Eexf, qM, and ϕ are DFT
computed descriptors. To further understand the importance
of precise features that correlate the target properties, it is
necessary to remove the descriptors that are less relevant in
minimizing the MAE. It should also be noted that an excessive
number of features may lead to high prediction bias and low
training efficiency.68 To alleviate this issue, the feature
dimension is reduced by employing the leave-one-out
approach. Using this method, we eliminate unwanted features
by evaluating their impact on the test set MAE. After
shortlisting the descriptors according to the leave-one-out
approach, HT was performed over RFR by employing cross-
validation on various combinations of parameters. Although
removing unnecessary features (RUF) and HT exhibited
comparable performance, the latter marginally outperformed
the former in terms of least MAE.
As per the size of the data set, Figure 5 shows the Eads MAE

decay with respect to training set size; in other words, the
learning curve, regarding that training set considers randomly
selected 80% of the samples, while the test set comprises the
remaining 20%. For a better analysis, a cross-validation

procedure with 100 shuffle splits was carried out, as done in
previous analysis, where average MAE is shown in Figure 5,
with areas denoting the standard deviations.69 Notice on the
training set that RFR MAE decay is rather good, 0.16 ± 0.01
eV, rapidly below the 0.2 eV DFT accuracy limit, and
especially with an almost negligible standard deviation when
having more than ca. 60 samples. Still, the decay of the test set
is more pronounced, with larger standard deviations; see Table
1, and with the open question whether the evolution would
remain stuck or would still descend when increasing the
number of points of the data set. Alternatively, the reached
plateau may be indicative of the existence of other descriptors,
here not accounted for, which could be critical in improving
the accuracy. Similar MAE evaluation is found for d(CO),
α(OCO), and Q in Figures S5−S7 of the Supporting
Information.
The HT of RFR further improved the accuracy of the model

for Eads by reducing the test set MAE to 0.42 ± 0.06 eV.
Indeed, estimations on the MAE on the HT of RFR ML using
a limit training set of 113 points, and evaluated on the
remaining test point, provides slightly better accuracies of 0.15
and 0.40 eV for training and test sets, respectively, over 114
developed ML models, signaling the convergence of the
accuracy over the data set. The top four descriptors listed by
the RFR model for Eads are the combination of two features of
the TM chemical elements, χM and MV, plus two other
computed for the MXenes, εd and Eexf; see Figure 6,
highlighting how important surface metal atoms are and how
important is their placement within the MXene arrangement. It
should also be noted that the choice of features introduces
biasing, but at the same time, favors to counterbalance the
overfitting, since we narrow their choice to sensible parameters
that have been correlated to the sought, target properties,
according to the literature. In the case of d(CO) and α(OCO),
the MAE of the testing set is rather good as well, which are
found to be 0.04 ± 0.01 Å and 4.84 ± 0.78°, respectively,
essentially four times larger than chemical accuracy limits of
0.01 Å and 1°, respectively. For Q, there is a slight decrease in
the prediction performance of RFR using HT; from 0.21 ±
0.03 to 0.20 ± 0.03 e, when compared to RUF. To reinforce
the employed methodology, we have also compared our results
using the recursive feature elimination (RFE)70 method to
filter the descriptors with extreme asymmetry (skewness) and
with low/zero variance for recognizing more suitable smaller
subset of features. As shown in Table S1 of the Supporting
Information, the leave-one-out approach outperforms the RFE
method by providing better predictive mean absolute errors.
Finally, notice in Figure 6 that εd and χM are common
descriptors of all the explored properties, while others such as
ϕ, qM, and Eexf are also common to a couple of properties,
while MV and NdM are only important to Eads and Q,
respectively.
Notice that the abovementioned ML models work

irrespective of MXenes with or without vacancies, and for
either C- or N-based MXenes, at variance with linear
relationships; see Figure S4 of the Supporting Information,
highlighting the versatility of the ML approach. Inspecting the
descriptor weights in Figure 6, the ranking already states how
εd and χM are determinant in CO2 activation, where the larger
the εd, the stronger the bonding is, as expected from the d-
band model.19 Aside, the smaller the metal electronegativity,
χM, the stronger the Eads, fully physically understandable given
the coulombic contribution of the bond of negatively charged

Figure 5. MAE evolution for the training (blue) and test set (green)
versus training size for the prediction of Eads using the HT of RFR ML
algorithm. Shaded regions define the standard deviation limits.
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CO2 with positively charged surface metal atoms in the
MXenes; see Figure S4 in the Supporting Information. In any
case, the weights of these two primary features are different for
the different properties, e.g., εd weights are 30 and 35% for Q
and d(CO), respectively, while for Eads, actually χM and εd have
similar importance values of 25%. Other secondary features
can be rationalized as well; for instance, the CO2 charge Q also
pretty much affects the molecular angle, α(OCO), and is
influenced by a smaller workfunction, ϕ, which succinctly
implies an easier MXene→CO2 charge transfer. Eexf affects the
bond strengths, and so, the larger the Eexf, the smaller the CO2
adsorption energy and the less elongated becomes d(CO). As
far as geometries are concerned, d(CO) and α(OCO) seem to
be slightly influenced as well by qM, so that the larger the
charge, the smaller the α(OCO) angle and the longer the
d(CO), stabilizing the negatively charged CO2. Finally, the
number of valence electrons and the number of d electrons,
somehow related, affect the Eads and the amount of transferred
Q, in the sense that the smaller the number of valence
electrons, and so, of d electrons, the stronger the Eads and the
more charge transferred, also in line with higher εd. By
identifying these descriptors, we have gained a deeper insight
of the fundamental properties governing CO2 activation on the
studied MXene surfaces, which can ultimately be used to
design and optimize MXene-based compounds for CO2
storage or conversion applications. Thus, the ML tools allowed
us to name which factors govern the CO2 activation, and which
importance they have, which are properties to have in mind

when inspecting other MXenes for CO2 storage or usage
selected processes. For example, from the descriptor weights in
Figure 6, when one would seek for CO2 Eads of −1 eV or
weaker, one should pay attention to the MV, εd, χM, and Eexf
descriptors; which is in line with the trends evaluated in Figure
S4 of the Supporting Information; one would seek the MXene
materials with εd below −1 eV, while having an Eexf above 3.25
J·m−2, a metal electronegativity of the metal, χM, above 1.5, and
a minimum number of 6 e valence electrons of the metal, MV.
Moreover, the coefficient of determination analysis; see heat
map in Figure S8 of the Supporting Information, demonstrates
that the reduced set of features is sufficient for capturing the
complex interactions influencing the Eads, d(CO), α(OCO),
and Q, with no significant linear correlation among the found
descriptors.

4. CONCLUSIONS
In summary, we have developed a ML prediction scheme to
unearth the potential indicators for CO2 activation on MXenes
with the accessible properties of the pristine materials and of
the atoms they are composed of. Three different ML
algorithms were trained, where the hyperparameters tuning
of RFR improved the accuracy of the model for Eads, reducing
the test set MAE to 0.42 ± 0.06 eV when compared with that
of the conventional RFR model, while the training set MAE
was 0.16 ± 0.01 eV. The high ranking of the d-band center, εd,
and surface metal electronegativity, χM, is highlighted for Eads,
but also for other activation properties, including CO2 charge,

Figure 6. Feature importance of top four descriptors for Eads, Q, d(CO), and α(OCO).
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Q, d(CO) bond length elongation, and molecular angle
α(OCO) bending. These primary features are followed by
valence and d electron numbers,MV and NdM, and also MXene
workfunctions, ϕ, exfoliation energies, Eexf, and surface metal
charges, qM, features, predicting the activation of CO2,
demonstrating the importance of such surface properties, and
serving as a guide to select or search certain MXene materials
for CO2 activation and/or use applications. Overall, the
discovery of key descriptors for CO2 activation highlights the
importance of ML strategies for accelerating the catalyst
materials design and development by significantly extracting
the information from a limited set of MXene database.
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