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A B S T R A C T

In this work tailor robust metrics are proposed to be used in the predictors’ space of distance-based predictive
models. The first proposal is a robust version of Gower’s distance, which takes into account the correlation
structure of the data. The second one is a rather complex metric, constructed via Related Metric Scaling,
which is able to discard redundant information coming from different sources. Another novelty is the proposal
of a distance-based trimming statistic to robustify the metrics. The performance of the models based on new
robust metrics is evaluated through a simulation study and compared to those based on Euclidean, Gower’s
and generalized Gower’s metrics in the presence of outliers in several datasets of multivariate heterogeneous
data. Mean squared error (also median and standard deviation) are used to evaluate the effectiveness in the
prediction of responses. Finally, two applications in the areas of sustainable transport and finance and banking
are provided in order to illustrate the predictive power of these models. Computations are made using the
dbstats package for R.
1. Introduction

Methods relying on distances or similarities between sample units
have a rich and longstanding tradition in statistics. Among these,
cluster analysis and multidimensional scaling (MDS) [1] are widely
employed. MDS serves as a multivariate dimensionality reduction tech-
nique that proves effective when information regarding the data is
presented in the form of an inter-individual distance matrix. Orig-
inating from the metric version of MDS, the distance-based linear
model (DB-LM) was introduced by [2] and subsequently expanded
upon in works such as [3–9], and [10]. DB-LM is a prediction tool
which can be applied to qualitative or mixed explanatory variables
while keeping compatibility with ordinary regression by weighted least
squares (WLS), which appears as a particular case when the Euclidean
distance is used among individuals. The model projects the vector of
continuous responses onto a Euclidean space obtained by MDS from
the observed predictors, which are nonlinearly mapped into a set of
latent, i.e., non-observed, variables in this space.

The model allows any distance among predictors, whose choice de-
pends on the specific problem and the nature of the data. In this work,
we focus on data of mixed type, which commonly arise in contexts
such as economics, health, finance, marketing or sociodemographic
surveys, among others. In such situations, when the information comes
from categorical and numerical variables, the classical distance mea-
sure to be considered is Gower’s distance [11], and thus DB-LM was
traditionally built from Gower’s metric (which, form now on, will be
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considered the benchmark model). However, this measure presents
limitations in handling outliers and heavy-tailed data, which can lead to
biased results. To overcome this drawback, in [12] new robust metrics
were proposed for MDS and clustering purposes. We refer to them
as robust generalized Gower’s (G-Gower) and robust Related Metric
Scaling (RelMS). In this paper, a new distance-based trimming statistic
is used to robustify these metrics, and several trimming thresholds
are evaluated. These new proposals are able to deal with outliers
and variable redundancy. That is, to some extent variable selection is
implicit in the construction of the metric. So far, robust metrics have
not been used and studied in distance-based prediction models. Thus,
the main aim of this paper is to robustify the DB-LM using these robust
proposals.

To achieve these goals R code is developed implementing the for-
mulation of the new proposals to allow the calculation of an object
of type dist (or D2 and Gram) following the standards of the db-
stats package [9] for R [13]. The performance of the new metrics
is evaluated in the context of distance-based prediction and compared
to those of classical Euclidean and Gower’s, and G-Gower’s by means
of the mean square error (MSE). In particular we focus on the DB-LM
which is fitted through the function dblm of the dbstats package for
R.

To evaluate the effectiveness of the predictions, Monte Carlo exper-
iments are performed with three simulated mixed-type datasets with
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different number of predictors and different correlation/association
structure among them. Outlier contamination by predictor’s type is
introduced, giving rise to twelve scenarios, and four different types
of response variable are considered (contaminated/ uncontaminated,
linear/ non linear). Distance models based on different metrics, such
as Euclidean, Gower’s, G-Gower’s, robust G-Gower’s and robust RelMS,
are fitted to each of the datasets and next their performance in the
prediction of the responses is evaluated by cross-validation procedures.
The final goal of the paper is to conclude whether the DB-LM based on
robust metrics is competitive with respect to existing distance-based
models in the presence of anomalous data.

Finally, two applications on real datasets are included to illus-
trate the performance of the new robust DB-LM. Both datasets include
anomalous observations and correlation/association among predictors.
The first application is in the area of sustainable transport, where
the aim is to predict the bike sharing demand in Capital Bikeshare
program, which operates in the District of Columbia, Arlington County,
VA, and the City of Alexandria, VA, from a mixed-type set of pre-
dictors concerning renting details and weather conditions (obtained
from Ronald Reagan Washington National Airport). This dataset was
collected by [10] from different sources and DB-LM with Gower’s
metric was proven to be very effective in front of other competitors.
The second application is in the area of finance and banking, and is
devoted to motor insurance. Data come from a study conducted by a
committee on risk premiums in automobile insurance in Sweden, and
in this case, the objective is to predict claim severity regarding a set
of weighted mixed-type predictors related to the kilometers traveled,
specific car makes and bonus. This dataset was analyzed in [8] were
DB-LM with Gower’s metric outperformed the classical Euclidean one.
In both applications the prediction power of DB-LM with robust pro-
posals is compared to those of other metrics such as Euclidean, Gower’s
and G-Gower’s by cross-validation procedures.

The results of the simulation study and the analysis of two real
datasets lead us to conclude that the performance in the prediction
of the responses of DB-LM with robust proposals outperforms those
of classical Gower’s (which has been used up to date when working
with mixed-type data), Euclidean and G-Gower’s in the presence of
anomalous data. In previous studies, it was seen that DB-LM with
Gower’s metric outperformed other predictive models (see [5–8,10]).
Thus, we believe that using DB-LM with a robust metric is also a good
alternative to these models.

The paper proceeds as follows: Section 2 contains general context
notation, the definition of DB-LM, and distance matrices for predictors
among which new robust proposals can be found. Section 3 contains
the simulation study with a description of the scenarios considered
for models’ evaluation under anomalous individuals and the models’
comparison in the prediction of responses. The predictive power of
these models is illustrated on two real datasets in Section 4 and
conclusions are given in Section 5. Additional results are included in
Appendices A–C.

2. Methodology

2.1. The distance-based linear model

The concept of DB-LM consists of using the principal coordinates
resulting from the MDS applied to a matrix of inter-individual distances
as explanatory variables within a linear regression model. Just as the
standard linear model has been extended to the generalized linear
model (GLM), local linear regression or nonparametric versions of the
GLM, the DB-LM can be extended as well. In this regard, [7] introduced
local DB-LM, a nonparametric prediction technique that extends the
DB-LM. In addition, two further extensions were introduced in [8]:
distance-based generalized linear models (DB-GLM) and its nonpara-
metric version (local DB-GLM) through local likelihood. These models,
among others, are implemented in the dbstats package [9] for R. In
particular the DB-LM can be fitted by means of the dblm function (we
2

refer to the package help for the detail). i
2.1.1. Preliminaries
Let 𝛺 = {𝛺1,… , 𝛺𝑛} be a random sample of individuals from

a given population, for which the value of a random quantitative
response variable 𝑌 ∈ R is observed, that is, Y = (𝑌1,… , 𝑌𝑛)⊤. For each
𝑖 = 1,… , 𝑛, consider 𝑤𝑖 ∈ (0, 1) a constant positive weight for 𝛺𝑖 and
let w = (𝑤1,… , 𝑤𝑛)⊤ be the 𝑛 × 1 weight vector, such that 1⊤ ⋅w = 1,
where 1 represents the 𝑛 × 1 vector of ones.

We consider a distance function 𝛿( ⋅ , ⋅ ) defined on the set 𝛺. Let
∆ =

(

𝛿2(𝛺𝑖, 𝛺𝑗 )
)

1≤𝑖,𝑗≤𝑛 be the 𝑛×𝑛 matrix of pairwise squared distances
between individuals of 𝛺. A specific scenario arises when individuals
in 𝛺 are characterized by a set of variables which may encompass a
combination of quantitative and qualitative measurements or uncon-
ventional quantities like character strings or functions. The distance 𝛿
can be expressed as a function of the variables. In this study we consider
a matrix Z of 𝑝 mixed predictor variables and we denote by (z1,… , z𝑛)⊤
heir corresponding measurements, where z𝑖 ∈ R𝑝 for 𝑖 = 1,… , 𝑛. Then
he squared distance matrix ∆ = (𝛿2(z𝑖, z𝑗 ))1≤𝑖,𝑗≤𝑛 will be the input of
he predictor space in DB-LM. It should be noted that the information
ould come directly in the form of a squared distance matrix and raw
ata (matrix Z of predictor values) may not be available, which is an
dvantage of distance-based prediction models over classical ones.

We define the 𝑛 × 𝑛 inner-products or Gram matrix as

w = −1
2
Jw ⋅∆ ⋅ J⊤w ,

where Jw = I𝑛 −1 ⋅w⊤ is the w-centering matrix, I𝑛 the identity matrix
f size 𝑛 × 𝑛, and the standardized Gram matrix as

w = D1∕2
w ⋅ Gw ⋅ D1∕2

w , (1)

here Dw = diag(w) is a diagonal matrix whose diagonal entries
re the weights in w. A matrix Xw with dimensions 𝑛 × 𝑘 is called a
uclidean configuration of ∆ if Gw = Xw ⋅ X⊤

w , with the requirements
hat 𝑟𝑎𝑛𝑘(Gw ) ≤ 𝑘 ≤ 𝑛 − 1, and matrix Xw is w-centered, that is,
⊤ ⋅ Xw = 0. A decomposition of this kind is feasible if and only if
w is a positive semidefinite matrix. If this is not the case, several

ransformations can be applied to ∆ to fulfill this requirement [1].
hen Gw is positive semidefinite, ∆ is referred to as Euclidean (or it

s said that it fulfills the Euclidean property). In classical MDS matrix
w is obtained through the spectral decomposition of Eq. (1), that is,
iven Fw = U ⋅Λ2 ⋅ U⊤, where Λ2 is a diagonal matrix containing the
igenvalues of Fw , ordered in descending order, and U is the matrix
hose columns are the corresponding eigenvectors, then Xw = D−1∕2

w ⋅
⋅Λ. In this context, the geometric variability of ∆ is defined as

∆ = tr(Fw ) =
1
2
w⊤ ⋅∆ ⋅w, (2)

hich serves as an extension of the concept of total variation.

.1.2. Definition of DB-LM
For the definition of DB-LM we follow [8]. A response variable Y,

eight vector w and a squared distance matrix ∆ follow a DB-LM when
he mean 𝝁 = 𝐸(Y), which is w-centered, belongs to the column space

of Gw . It should be noted that 𝜑 is also the column space of any
uclidean configuration Xw of ∆ because Gw = Xw ⋅ X⊤

w .
Let y represent the observed values of the response variable Y.

he estimation of the DB-LM corresponding to responses y, weights
and squared distances matrix ∆, is carried out by conducting a

eighted least squares (WLS) regression of y on a w-centered Euclidean
onfiguration of ∆, denoted as Xw , and referred to as a latent Euclidean
onfiguration.

Given a new case 𝛺𝑛+1, for which the distances to each individual
n 𝛺 are known, the new case 𝛺𝑛+1 can be expressed as a 𝑘-vector x𝑛+1
n the row space of Xw using Gower’s interpolation formula (see [14]
nd refer to [7] for the weighted version). Subsequently, the predicted
esponse value for 𝛺𝑛+1 is given by x𝑛+1 ⋅ β̂, where β̂ represents
he vector of estimated regression coefficients. Indeed, the DB-LM is

ndependent of a specific Xw , as the final quantities are directly derived



Socio-Economic Planning Sciences 95 (2024) 101992E. Boj and A. Grané

H

w
G

w
n
s

𝑛
i
b
o
a
m

2

m
1
i

𝛿

w
c
m

d
v

w
m

∆

w
t
G
G
o
(

e
p
t
t

p
I
p

from the distances. Typically, there is no necessity to explicitly define
such a configuration, and the same applies to β̂ or x𝑛+1.

In DB-LM the hat matrix is given by

w = Gw ⋅
(

D1∕2
w ⋅ F+w ⋅ D1∕2

w

)

,

here F+w is the Moore–Penrose pseudo-inverse of the standardized
ram matrix Fw defined in Eq. (1). Thus, Hw can be expressed directly

as a function of the distances or, equivalently, the Gram matrix.
The DB-LM fitted values are given by

ŷ = �̄�w ⋅ 1 +Hw ⋅
(

y − �̄�w ⋅ 1
)

,

where �̄�w = w⊤ ⋅ y is the w-mean of y.
The predicted response value for a new case 𝛺𝑛+1 is given by

�̂�𝑛+1 = �̄�w + 1
2
(gw − 𝜹𝑛+1) ⋅

(

D1∕2
w ⋅ F+w ⋅ D1∕2

w

)

⋅
(

y − �̄�w ⋅ 1
)

,

here gw denotes the 1 × 𝑛 row vector containing the necessarily non-
egative diagonal entries of Gw and 𝜹𝑛+1 is the 1 × 𝑛 row vector of
quared distances from 𝛺𝑛+1 to each individual in 𝛺.

DB-LM encompasses WLS as a specific case: if we begin with an
× 𝑟 w-centered matrix Xw containing 𝑟 continuous predictors for 𝑛

ndividuals, and define ∆ as the matrix of squared Euclidean distances
etween the rows of Xw , then Xw is trivially a Euclidean configuration
f ∆. Consequently, the DB-LM hat matrix, response, and predictions
lign with the corresponding WLS quantities of an ordinary linear
odel.

.2. Predictor distance matrices

Let z𝑖, z𝑗 be two rows of the 𝑛 × 𝑝 matrix Z corresponding to the
easurements of the predictor variables for individuals 𝛺𝑖, 𝛺𝑗 , 𝑖, 𝑗 =
,… , 𝑛. A well-known and commonly used distance for mixed type data
s Gower’s distance, which was defined in [11] as

(z𝑖, z𝑗 ) = 1 −

∑𝑝1
ℎ=1

(

1 − |

|

|

𝑧𝑖ℎ − 𝑧𝑗ℎ
|

|

|

∕𝐺ℎ

)

+ 𝑎 + 𝛼

𝑝1 +
(

𝑝2 − 𝑑
)

+ 𝑝3
,

ith 𝑝1 the number of continuous variables, 𝐺ℎ the range of the ℎth
ontinuous variable, 𝑎 and 𝑑 the number of positive and negative
atches, respectively, for the 𝑝2 binary variables, and 𝛼 the number

of matches for the 𝑝3 multi-state categorical variables. Note that the
total number of variables is 𝑝 = 𝑝1 + 𝑝2 + 𝑝3.

Gower’s distance can be defined as the Pythagorean sum of three
istance measures for quantitative, binary and multi-state categorical
ariables, ∆1 = 𝛿21 (z𝑖, z𝑗 )), ∆2 = 𝛿22 (z𝑖, z𝑗 )) and ∆3 = 𝛿23 (z𝑖, z𝑗 )) for

1 ≤ 𝑖, 𝑗 ≤ 𝑛, where 𝛿1 is the range-normalized city-block distance, 𝛿2
distance is associated to Jaccard’s similarity coefficient and 𝛿3 is the
Hamming distance. However, this classical distance presents two main
drawbacks: It does not take into account the correlations between
quantitative variables and it is a not robust metric.

In [12,15] two robust alternatives to Gower’s distance were pro-
posed in the context of MDS and clustering for the non-weighted case.
In the latter, authors studied a robustification of Gower’s distance
by taking 𝛿1 as a robust Mahalanobis distance, instead of the range-
normalized city-block one, and 𝛿2 and 𝛿3 were left unchanged (all
of them conveniently standardized to equal geometric variability in
order to be commensurate). In the former, these three distances were
combined via Related Metric Scaling (RelMS) [16] to obtain a joint
metric able to discard redundant information coming from different
sources. We explicit here the formulation in the weighted context
(see [17] for an extension to 𝑚 > 3 sources). Let ∆𝑙 for 𝑙 = 1, 2, 3, be
three matrices of squared distances, each corresponding to a different
variable type (considered here as different sources of information), with
equal geometric variability. For each ∆𝑙, consider its Gram matrix Gw,𝑙
and its standardized version F = D1∕2 ⋅ G ⋅ D1∕2. Then the joint
3

w,𝑙 w w,𝑙 w
metric is obtained by combining the corresponding standardized Gram
matrices as follows:

F𝐽w =
3
∑

𝑙=1
Fw,𝑙 −

1
3
∑

𝑙≠𝑚
F1∕2w,𝑙 ⋅ F1∕2w,𝑚, (3)

here F1∕2w,𝑙 denotes the square root of Fw,𝑙 for 𝑙 = 1, 2, 3. The final RelMS
etric ∆ can be recovered from (3) as follows:

= 1 ⋅ g𝐽w + (g𝐽w )
𝑇 ⋅ 1𝑇 − 2G𝐽

w ,

here G𝐽
w = D−1∕2

w ⋅ F𝐽w ⋅ D−1∕2
w and g𝐽w is a row vector containing

he diagonal of matrix G𝐽
w . Note that the first addend of (3) mimics

ower’s distance by adding the three metrics (through the standardized
ram matrices, in this case), whereas the second one is responsible
f discarding redundant information coming from different sources
see [12,17,18]).

In this paper we propose a new robust distance for quantitative data,
ither when using robust Gower’s distance or robust RelMS. Thus, we
ropose to take 𝛿1 as a new robust Mahalanobis distance, computed in
erms of a robust covariance matrix estimated from a distance-based
rimming estimator.

The distance-based trimming estimator is defined in terms of a
roximity function used in [12] to detect outliers in complex datasets.
n particular, consider z1,… , z𝑛 the rows of the 𝑛 × 𝑝 matrix Z of
redictor measurements and ∆ = (𝛿2(z𝑖, z𝑗 ))1≤𝑖,𝑗≤𝑛 the correspond-

ing matrix of squared pairwise distances. Given a new individual 𝛺0
with measurements z0 ∈ R𝑝, the proximity function of z0 to the set
{z1,… , z𝑛} is defined, in the weighted context, as

𝜙(z0) =
𝑛
∑

𝑖=1
𝑤𝑖 ⋅ 𝛿

2(z0, z𝑖) − 𝑉∆, (4)

where 𝑤𝑖 is the weight for individual 𝛺𝑖 and 𝑉∆ is the geometric
variability of ∆ defined in (2).

The procedure to obtain a robust estimation of the covariance
matrix for the quantitative predictors is as follows: Let Z𝑝1 be the 𝑛×𝑝1
matrix of continuous predictors for the 𝑛 individuals. We start by w-
centering it, that is, Z𝑝1w = D1∕2

w ⋅Jw ⋅Z𝑝1 . Next, we proceed by calculating
the matrix of pairwise squared Mahalanobis distances between the rows
of Z𝑝1w , and denote it by ∆𝑚𝑎ℎ. For each unit in the dataset we use
function (4) to compute its proximity to the remaining 𝑛−1 units taking
into account the entries in ∆𝑚𝑎ℎ and the corresponding geometric
variability. Next, units are sorted in ascending order according to their
𝜙 values. The greater the value of 𝜙 the further the unit from the
bulk of the data. Finally, the trimming is performed by excluding a
given percentage of the data, say 𝛼, according to their 𝜙 values. We
obtain the 𝛼-trimmed sample Z𝑝1𝛼 and the associated Jw,𝛼 and Dw,𝛼 , from
which we calculate Z𝑝1w,𝛼 = D1∕2

w,𝛼 ⋅ Jw,𝛼 ⋅ Z𝑝1𝛼 the w-centered 𝛼-trimmed
sample. Finally, we calculate a distance-based 𝛼-trimmed estimation of
the covariance matrix as

Ŝ𝛼 = Z𝑝1w,𝛼
⊤
⋅ Z𝑝1w,𝛼 = Z𝑝1𝛼

⊤
⋅ J⊤w,𝛼 ⋅ Dw,𝛼 ⋅ Jw,𝛼 ⋅ Z

𝑝1
𝛼 ,

and robust pairwise Mahalanobis distances are obtained accordingly,
i.e.,

𝛿2(z𝑝1𝑖 , z𝑝1𝑗 ) = (z𝑝1𝑖 − z𝑝1𝑗 )⊤ ⋅ Ŝ−1𝛼 ⋅ (z𝑝1𝑖 − z𝑝1𝑗 ),

where z𝑝1𝑖 denotes the quantitative measurements for individual 𝛺𝑖.

3. Simulation study

3.1. Scenarios considered

The performance of the new proposals, robust G-Gower’s and ro-
bust RelMS, is evaluated and compared to those of Euclidean, classi-
cal Gower’s and G-Gower’s metrics in several scenarios with a given

percentage of outlier contamination.
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In particular, three datasets of size 𝑛 = 500 were generated with 𝑝1 =
4 quantitative predictors, 𝑝2 = 2 binary predictors and 𝑝3 = 3 multi-state
ategorical ones, with different correlation/association structure among
redictors. Next, outliers were introduced by perturbing several values
nd/or characteristics in the explanatory variables of existing units as
ollows. For quantitative predictors fluctuations of 3 times the corre-
ponding SD were added to perturbed units, whereas for categorical
redictors unit characteristics were changed in a contradictory way. As
result, twelve scenarios were considered:

1. Highly correlated/associated predictors with a 10% outlier con-
tamination in

(a) All quantitative predictors.
(b) All multi-state categorical predictors.
(c) All binary predictors.
(d) All predictors.

2. Intermediate correlated/associated predictors with a 5% outlier
contamination in

(a) All quantitative predictors.
(b) All multi-state categorical predictors.
(c) All binary predictors.
(d) All predictors.

3. Intermediate correlated/associated predictors with a 5% outlier
contamination in

(a) Only one quantitative predictor.
(b) Only one multi-state categorical predictor,
(c) Only one binary predictor.
(d) One predictor of each type.

or each scenario, two types of response variables were obtained,
ither as a random linear or non-linear combination of the predic-
ors. Additionally, models performance was evaluated on contaminated
nd uncontaminated responses, giving rise to four kinds of response
linear/non-linear, contaminated/uncontaminated) for each considered
cenario.

The linear response was generated from the sum of the main effects
f a linear model with coefficients equal to 1 plus a standardized
ormal random error. The information of the categorical predictors
as included taking into account the binary variables of each class
s usual, including as many binary variables as classes minus one for
ach predictor. In the case of linear response, the underlying model
ould be the one that would correspond to using Euclidean distance,

ince the predictors themselves could already form a possible config-
ration of latent variables. The response that we call non-linear was
enerated from the sum of the main effects of all predictors and with
he subtraction of second order interactions between the three sets of
ariable types, that is, the sets of quantitative, categorical and binary
ariables. The idea in the non-linear case was to generate a response
ariable that included the information of the main effects excluding the
irst order dependencies between the sets of variables. All of them with
oefficients equal to 1 plus a standardized normal random error. The
on-linear model would correspond to a case where the Gower metric
ould, in principle, improve the fit compared to the Euclidean one.
ower tends to have more dimensions than the Euclidean case and fits
on-linear situations better (see e.g. [6,8]). In this paper the idea is to
ompare the fit of the proposed metrics, robust G-Gower and robust
elMS with those of the classical ones, like Euclidean and Gower’s, as
ell as with G-Gower’s.

The contaminated response was generated from the contaminated
redictors. The uncontaminated response was obtained by leaving un-
hanged the response variable of those units whose predictor’s values
ere perturbed.

Fig. 1 contains the MDS configurations of the synthetic datasets
4

egarding scenarios (2a): Intermediate correlated/associated predictors
ith a 5% outlier contamination in all quantitative predictors and (3d):
ntermediate correlated/associated predictors with a 5% outlier con-
amination in one predictor of each type, with the aim of illustrating the
etrics’ behavior in the presence of outliers. Diagonal panels contain

onditional histograms regarding data type (outlier or not) and off-
iagonal panels show the corresponding MDS maps. These multiple
catter plots were produced with Matlab’s function gplotmatrix.
lassical Gower’s metric is compared to two robust proposals, such as
obust G-Gower, where a robust Mahalanobis distance was used for
uantitative predictors instead of range-normalized city block distance,
nd robust RelMS, computed from formula (3) as a combination of
obust Mahalanobis for quantitative predictors, distance associated to
accard’s similarity coefficient for binary predictors and Hamming dis-
ance for multi-state categorical ones. Robust proposals were estimated
y means of the distance-based trimming estimator defined in (4) with
5% trimming threshold. In general, we observe that most of the

utliers are placed apart from the bulk of the data when using any of
he proposed robust metrics. This is the reason why we propose to built
he DB-LM using a robust metric in the predictors’ space. In the next
ection we see that these models are more effective in the prediction of
he response variable when data contain anomalous units.

.2. Results

The effectiveness in the prediction of the response was evaluated
hrough leave-one-out. For each scenario nine predictive models based
n different metrics were fitted using the dblm function of the db-
tats package for R. See Appendix A for the usage of the function.
ext, squared errors (SEs) were computed including its mean, median
nd standard deviations (SDs). In all cases an explanation of 80% of
he geometric variability was required by setting rel.gvar parameter

equal to 0.8 in the dblm function. In this way no model was overparam-
terized and, at the same time, sufficient information from the predictor
pace was included. Indeed, the selection of the number of latent
imensions can be done automatically through argument ‘‘method’’ in
blm and dbglm functions (we refer to the package help in cran for

he detail). Method can be equal to

- eff.rank: the user can choose the effective rank equal to a fixed
number of latent variables.

- rel.gvar: the user can choose a fixed percentage of geometric
variability corresponding to a given number of latent dimensions,
depending on the coordinates of the predictor space in each real
dataset.

- OCV, GCV, AIC or BIC: depending on the function used in
dbstats, it is possible to choose one of the following criteria
(ordinary cross-validation, generalized cross-validation, Akaike or
Bayesian information criteria) to select the number of dimen-
sions optimally. In addition, it is possible to plot the results of
the selected statistic using the plot command by specifying the
argument ‘‘which = c(6)’’.

Since the aim of the paper is to study the use of robust metrics
hat depend on a trimming parameter in the big data context, in this
imulation study the percentage of explained variability was set to 80%.
ther methods for latent variable selection are explored in Section 4.
egarding the robust proposals, we decided to consider a range of trim-
ing thresholds in order to cover the true outlier percentage in each

onsidered scenario and explore accordingly the models’ performance.
etrics under evaluation were:

• Euclidean,
• classical Gower’s,
• Generalized Gower’s (G-Gower), where range-normalized city-
block distance was substituted by Mahalanobis distance,
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Fig. 1. MDS configurations obtained from Gower’s, robust G-Gower and robust RelMS metrics for Scenarios (2a) and (3d). Outliers are depicted in red color.
• Robust generalized Gower (robust G-Gower), where robust Maha-
lanobis distance was used for quantitative predictors, estimated
by means of the distance-based trimming estimator defined in (4)
with trimming thresholds of 5%, 10% and 15%.

• Robust RelMS, computed from formula (3) as a combination
of robust Mahalanobis for quantitative predictors, distance as-
sociated to Jaccard’s similarity coefficient for binary predictors
and Hamming distance for multi-state categorical ones. As be-
fore, the distance-based trimming estimator defined in (4) with
trimming thresholds of 5%, 10% and 15% was used to estimate
Mahalanobis distance.

As an illustration of models’ performance, from Figs. 2 to 6 we
depict the box-plots of the SE distributions concerning DB-LM based
on Gower’s, robust G-Gower’s (with 5% and 10% trimming) and robust
RelMS (with 5% and 10% trimming) for all scenarios considered. In
particular, Fig. 2 contains the models’ performance on uncontaminated
datasets, where we can already observe as general conclusions that in
the case of linear response Gower fits the model worse than robust
G-Gower and robust RelMS, as expected. In all cases, the best fit is
attained by robust RelMS model, observing that when there is an inter-
mediate correlation/association the robust RelMS model outperforms
robust G-Gower for linear and nonlinear responses. In the case of highly
correlated/associated predictors both metrics provide an equally good
fit to the scenario.

Models’ performance on contaminated datasets can be found from
Figs. 3 to 6. Figures’ panels are organized as follows: Scenarios 1–3
corresponding to three datasets with different correlation/association
structure are placed by columns, and cases (a)–(d), which indicate
which predictors were contaminated, are placed by rows. Note that,
the scale of the vertical axis is the same within figures, for better
comparison.

Additionally, summary statistics for the estimated SE values can be
found in Appendix B (see from Tables 6 to 13).

In Fig. 3 we can observe that when the response variable is an
uncontaminated random linear combination of the predictors the best
performance is obtained by DB-LM with robust RelMS metrics in nine
out of twelve scenarios, and by robust G-Gower’s in two out of the three
remaining cases. We reach to similar conclusions by looking at SE mean
and median values shown in Table 6 in Appendix B.

In the case of linear and contaminated response (see Fig. 4) the DB-
LM with robust RelMS metrics has the best performance in nine out
5

of twelve scenarios and robust G-Gower’s in the remaining three cases.
These results can also be observed in Tables 7 and 11 in Appendix B,
where robust RelMS metrics attain the lowest SE mean, median and SD
values in these scenarios.

Fig. 5 contains the SE distributions regarding the uncontaminated
non-linear response, where we see that the DB-LM with robust RelMS
metrics has the best performance in ten out of twelve scenarios, and
classical Gower’s in the remaining two cases. These results can also be
observed in Table 8 and to some extent in Table 12 in Appendix B,
where robust RelMS metrics attain the lowest SE mean, median and SD
values in these scenarios.

Finally, for the case of contaminated non-linear response (see Fig. 6)
the DB-LM with robust RelMS metrics has the best performance in nine
out of twelve scenarios and classical Gower’s in the remaining three
cases. These results can also be observed in Table 9 and to some extent
in Table 13 in Appendix B, where robust RelMS metrics attain the
lowest SE mean, median and SD values in these scenarios.

Thus, the DB-LM based on a robust proposal outperforms the other
studied metrics in 87.5% of the cases (77.1% robust RelMS and 10.4%
robust G-Gower).

4. Application

In this section DB-LMs with different metrics are applied to two real
datasets. A common feature of both real datasets is that they contain
outliers and include predictors that are correlated/associated with each
other, as usually happens in regression model predictor sets. Like in
the simulation study, models’ performance in the prediction of the
response is evaluated in terms of the MSE and some summary statistics
are provided. Additionally, several trimming thresholds are studied and
box-plots with SE distributions are given to illustrate the results. The
trimming threshold was selected within a wide range of values as that
which produced the lowest MSE. One step further would be to monitor
the MSE, or other statistic of interest, in order to make a data-driven
selection (see [19]).

For the comparison of metrics, either a fixed percentage of vari-
ability or a fixed number of dimensions was determined. The former
was used in bike-sharing demand application, whereas the latter was
explored in the motor insurance dataset. The proposed Robust DB-LMs
are compared to two benchmark models, for the one hand, the classical
LM which appears as particular case of DB-LM with Euclidean distance
and, on the other hand, DB-LM with Gower’s distance which has been
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Fig. 2. SE distributions for DB-LM with Gower’s, robust G-Gower (5%, 10% trimmed) and robust RelMS (5%, 10% trimmed) metrics. Uncontaminated datasets.
traditionally used when dealing with mixed type data. In all cases,
Robust DB-LMs outperform benchmark models registering lower MSE.
We leave for further research the treatment of both trimming threshold
and latent dimension selection in the context of big data.

4.1. Bike sharing demand

This dataset was prepared and firstly analyzed by [10]. Data comes
from two different sources. Bike demand information is provided by the
Capital Bikeshare program and it is available at their website (www.
capitalbikeshare.com/system-data, accessed on 3 June 2019). Capital
Bikeshare operates in the District of Columbia, Arlington County, VA,
and the City of Alexandria, VA. The program records several details,
such as travel duration, departure and arrival locations, and time
elapsed between departure and arrival, for each rental in the bike
sharing system. Following [10] we decided to analyze the data on
a daily basis (hourly information was also available) for the period
between 1 January 2013 and 31 December 2018. The scarce days
for which data were not available were deleted from the sample. The
variables appearing in the Capital Bikeshare files for each day are listed
in the first part of Table 1. A second source of information regard-
ing weather conditions was added to the data provided by Capital
Bikeshare (year, month, day, and count of users). Thus, for each day,
variables describing weather conditions that could affect the decision
of picking up or not a bike (second part of Table 1). This information at
Ronald Reagan Washington National Airport (DCA) was gathered from
the website of the National Oceanic and Atmospheric Administration
(NOAA). The reason for choosing the specific DCA location was to
ensure data availability for all days of interest and also because it is
centered in the area covered by the bike stations, and thus it is a good
representative. The NOAA variables in the second part of Table 1 are
treated as quantitative ones. The variables in the first part of Table 1
are treated as qualitative ones (declared as factors in R), except for the
total count of daily users. The response variable is the daily count of
users (casual and registered) scaled by the mean daily number of users
(in the year corresponding to the day). The total number of days in the
dataset is 2903.
6

Table 1
Variables included in Bike sharing dataset.

Capital Bikeshare

Total count of daily users (both registered and not)
Season: winter (1), spring (2), summer (3), autumn (4)
Year, codified to 0 (= 2011), 1 (= 2012), 2 (= 2013), . . . , 7 (= 2018)
Month, codified to 1, 2, . . . , 12
National holiday (1) or not (0)
Weekday, codified to 0 (= Sunday), 1 (= Monday), . . . , 6 (= Saturday)
Working day (1) or weekend day (0)

NOAA at DCA

Average daily wind speed (miles per hour)
Precipitation (inches to hundredths)
Maximum temperature (in Fahrenheit)
Minimum temperature (in Fahrenheit)
Ceiling height dimension (in meters)
Mean daily temperature (in Celsius)
Sea level pressure (in hPa)
Relative humidity (in %)

Cross-validation was used to evaluate the effectiveness in the pre-
diction of responses. Thus, DB-LM with eleven different metrics was
estimated with a training sample of 70% of the data and tested in the
remaining 30%, where SE was computed from 300 runs. Despite the
high dimensionality of computations, cross-validation was run a high
number of times to ensure the outlier selection within samples. All
models were fitted with rel.gvar = 0.5. This is because Gower had
2902 latent variables (in this case 𝑛− 1) if all the geometric variability
was included, i.e., rel.gvar = 1. Additionally, box-plots of the SEs
were produced (see Fig. 7).

Several trimming thresholds were considered when studying the
performance of the DB-LM with robust metrics. In particular, 3%, 5%,
10% and 15% thresholds were analyzed in order to study the behavior
of the MSE. From Fig. 7 and Table 2 we observe that for robust G-
Gower the lowest MSEs is attained at 3% and 5% trimming, and at 3%
trimming for RelMS. The model with the lowest MSE among those that
were considered is robust RelMS with a 3% trimming. A summary of
the output for the two best models can be found in Appendix C.

http://www.capitalbikeshare.com/system-data
http://www.capitalbikeshare.com/system-data
http://www.capitalbikeshare.com/system-data
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Fig. 3. SE distributions for DB-LM with Gower’s, robust G-Gower (5%, 10% trimmed) and robust RelMS (5%, 10% trimmed) metrics, scenarios (1a) to (3d). Uncontaminated linear
response.
Table 2
Estimated SE (mean, median and SD values) for the DB-LM with different metrics. Bike
sharing dataset.

Metric Mean Median SD

Euclidean 0.1334 0.1331 0.0038
Gower 0.0410 0.0412 0.0022
G-Gower 0.0366 0.0365 0.0018

Robust G-Gower (3%) 0.0361 0.0361 0.0016
Robust G-Gower (5%) 0.0355 0.0355 0.0016
Robust G-Gower (10%) 0.0411 0.0408 0.0024
Robust G-Gower (15%) 0.0414 0.0410 0.0024

Robust RelMS (3%) 0.0347 0.0347 0.0019
Robust RelMS (5%) 0.0350 0.0350 0.0019
Robust RelMS (10%) 0.0359 0.0359 0.0019
Robust RelMS (15%) 0.0365 0.0365 0.0020
4.2. Motor insurance dataset

We fitted DB-LMs to data on Swedish third-party motor insurance
in 1977 from [20]. Data can be downloaded from faraway R package
named motorins [21]. The data come from a study conducted by a
committee on risk premiums in automobile insurance. A subset of this
data, specifically the records with Zone = 1, corresponds to Stockholm,
Göteburg, and Malmo. The total number of observations (for Zone =
7

1) is 𝑛 = 295. The recorded variables for each risk group include
Payment (total payments in Skr), Claims (number of claims), and Insured
(number of insured, in policy-years). These data could be utilized to
exemplify premium rating, wherein risk premiums are computed as the
product of claim frequency multiplied by claim severity.

Three predictors are included: Distance (Kilometers traveled), Bonus
(No-claims bonus) and Make (specified car makes). Distance and Bonus
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Fig. 4. SE distributions for DB-LM with Gower’s, robust G-Gower (5%, 10% trimmed) and robust RelMS (5%, 10% trimmed) metrics, scenarios (1a) to (3d). Contaminated linear
response.
are considered quantitative variables, while Make is treated as a cat-
egorical one with nine specified car makes, as performed in [8]. The
two continuous predictors, Distance and Bonus, have high values in the
covariance matrix. This fact suggests that the use of metrics that take
into account a normalization with respect to the covariance matrix may
be appropriate and may model the data properly.

This dataset was analyzed in [8], where claim severity was mod-
eled using distance-based generalized linear models with Gamma error
structure and logarithmic link and, as a result, Gower’s metric out-
performed the Euclidean one. Here we analyzed claim severity too,
calculated as 𝑃𝑎𝑦𝑚𝑒𝑛𝑡∕𝐶𝑙𝑎𝑖𝑚𝑠 with weights given by the corresponding
number of claims (Claims) by using the linear model with Gaussian
error and identity link, with the aim of illustrating the performance
of the DB-LM with robust metrics. The analysis was performed for
different dimensions 𝑘 = 3, 4, 5, 6 (latent variables) in order to select
the dimension for each model which minimizes the corresponding
MSE. The parameter in the dblm function to be set was eff.rank
= 𝑘. In the case of robust proposals, several trimming thresholds were
considered, such as 3%, 5%, 10% and 15%. For each model, SEs were
estimated by leave-one-out.

As can be seen in Table 3 the lowest MSE is obtained for all the
metrics when 𝑘 = 3 latent variables are used in the DB-LM. Table 4
8

contains the explained percentage of geometric variability correspond-
ing to the effective rank of 𝑘 = 3. Given 𝑘 = 3, the lowest MSE values
are attained for the DB-LM using a robust G-Gower metric with 3%
trimming and the DB-LM with G-Gower metric. Fig. 8 contains the box-
plots of the SE distributions for several metrics, where it is observed, as
already obtained in [8], that the classical model (when using Euclidean
distance) provides a worse fit than the DB-LMs. A summary of the two
best models is included in Appendix C.

The selection of the number of latent variables based on GVC, AIC
and BIC criteria is illustrated with this dataset. Results are shown in
Table 5 for four selected models: Robust G-Gower and Robust RelMS
metrics for 3% and 5% trimming using 𝑘 = 3, 4, 5, 6. In all cases, the
minimum values are attained for 𝑘 = 3 latent variables. Fig. 9 contains
the graphical output of dbstats for the optimal BIC for a range of
dimensions from 𝑘 = 3, 4, 5, 6, for the Robust DB model with G-Gower’s
with 3% trimming when using method = ‘‘BIC’’. The optimal BIC value
𝑘 = 3, colored in red, is that internally used for the model fitting.

5. Conclusions

In this paper new metrics were proposed to robustify the DB-
LM, by means of a distance-based trimming statistic, in the case of
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Fig. 5. SE distributions for DB-LM with Gower’s, robust G-Gower (5%, 10% trimmed) and robust RelMS (5%, 10% trimmed) metrics, scenarios (1a) to (3d). Uncontaminated
non-linear response.
weighted and multivariate heterogeneous predictors. In particular, the
proposed metrics were robust G-Gower’s and robust RelMS, with dif-
ferent trimming thresholds. The new metrics consider outliers, variable
redundancy and provide implicit variable selection.

The performance of robust DB-LM, i.e., DB-LM using these new
robust metrics, was evaluated in the presence of outliers through a
simulation study involving 48 different scenarios and two real datasets,
and compared to those of classical metrics, such as Euclidean and
Gower’s, as well as G-Gower’s. For each scenario, SEs were computed
via leave-one-out and MSE, median SE and SD of SE were used to
evaluate the effectiveness in the prediction of responses. Box-plots
with the SE distributions were provided for each scenario and sev-
eral metrics. In general, we observed that, first, the DB-LM based on
robust proposals outperformed those based on other metrics, such as
Euclidean, Gower’s or G-Gower’s; second, in the case of linear response,
DB-LM with Gower’s metric exhibited a worse fit than robust G-Gower
and robust RelMS; third, for predictors with an intermediate corre-
lation/association structure DB-LM with robust RelMS outperformed
robust G-Gower for linear and nonlinear responses and, finally, in the
9

case of highly correlation/association among predictors robust metrics
provided a similar fit to the scenario.

Additionally, the DB-LM was illustrated on two real data sets, both
containing outliers and including predictors with a correlation/assoc-
iation structure. The first application, was framed in the area of sustain-
able transport, and focused on the prediction of bike sharing demand
from a mixed-type set of predictors related to renting details and
weather conditions. The second application was in the area of finance
and banking, where the aim was to predict claim severity in motor
insurance regarding a set of weighted mixed-type predictors. Models’
performance was evaluated by cross-validation, and in both cases we
concluded that DB-LM with robust proposals outperformed the fit of
other considered metrics.

The distance-based trimming statistic was defined in a general
setting, and we applied it to get a robust estimation of the covariance
matrix of quantitative variables using Mahalanobis distance. Other met-
rics can be considered depending on the nature of the data. A deeper
study is left for further research. Another interesting direction for future
research is the robustification of DB-GLM, which is a generalization
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Fig. 6. SE distributions for DB-LM with Gower’s, robust G-Gower (5%, 10% trimmed) and robust RelMS (5%, 10% trimmed) metrics, scenarios (1a) to (3d). Contaminated non-linear
response.

Fig. 7. SE distributions for DB-LM with Gower’s, G-Gower, robust G-Gower (3%–15% trimmed) and robust RelMS (3%–15% trimmed) metrics. Bike sharing dataset.
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Table 3
Estimated SE (mean, median and SD values) for the DB-LM with different metrics. For better comparison, values are
standardized with respect to the minimum SE Mean value. Motor Insurance dataset.

Metric SE - Mean valuesa

𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6

Euclidean 1.7653 2.9164 8.1313 8.1313
Gower 1.0045 1.0089 1.0049 1.0347
G-Gower 1.0001 1.0052 1.0096 1.0138
Robust G-Gower (3%) 1.0000 1.0051 1.0096 1.0137
Robust G-Gower (5%) 1.0001 1.0052 1.0097 1.0138
Robust G-Gower (10%) 1.0001 1.0052 1.0097 1.0138
Robust G-Gower (15%) 1.0001 1.0052 1.0097 1.0138
Robust RelMS (3%) 1.0004 1.0055 1.0099 1.0140
Robust RelMS (5%) 1.0004 1.0055 1.0099 1.0140
Robust RelMS (10%) 1.0004 1.0055 1.0099 1.0140
Robust RelMS (15%) 1.0004 1.0055 1.0099 1.0140

Metric SE - Median valuesa

𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6

Euclidean 0.1744 0.1677 0.1677 0.1677
Gower 0.0839 0.0890 0.0933 0.1290
G-Gower 0.0721 0.0755 0.0756 0.0767
Robust G-Gower (3% trimmed) 0.0723 0.0755 0.0756 0.0766
Robust G-Gower (5% trimmed) 0.0721 0.0755 0.0755 0.0767
Robust G-Gower (10% trimmed) 0.0721 0.0755 0.0755 0.0766
Robust G-Gower (15% trimmed) 0.0722 0.0755 0.0755 0.0766
Robust RelMS (3% trimmed) 0.0705 0.0757 0.0792 0.0814
Robust RelMS (5% trimmed) 0.0708 0.0757 0.0792 0.0814
Robust RelMS (10% trimmed) 0.0708 0.0757 0.0791 0.0814
Robust RelMS (15% trimmed) 0.0707 0.0757 0.0791 0.0814

Metric SE - SD valuesa

𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6

Euclidean 9.4523 14.3168 41.4739 41.4739
Gower 8.3846 8.4102 8.3638 8.3757
G-Gower 8.3923 8.3664 8.3876 8.4018
Robust G-Gower (3% trimmed) 8.3917 8.3662 8.3872 8.4015
Robust G-Gower (5% trimmed) 8.3922 8.3665 8.3876 8.4019
Robust G-Gower (10% trimmed) 8.3923 8.3665 8.3877 8.4019
Robust G-Gower (15% trimmed) 8.3922 8.3665 8.3876 8.4019
Robust RelMS (3% trimmed) 8.4030 8.3733 8.3946 8.4085
Robust RelMS (5% trimmed) 8.4021 8.3730 8.3943 8.4083
Robust RelMS (10% trimmed) 8.4021 8.3729 8.3943 8.4082
Robust RelMS (15% trimmed) 8.4022 8.3730 8.3944 8.4083

a Minimum SE Mean value 1085479.3501.
Table 4
Percentage of explained variability for 𝑘 = 3 latent variables. Motor Insurance dataset.

Metric rel.gvar for eff.rank = 3

Euclidean 99.99
Gower 64.92
G-Gower 84.88

Robust G-Gower (3%) 85.54
Robust G-Gower 5%) 85.06
Robust G-Gower (10%) 85.13
Robust G-Gower (15%) 85.23

Robust RelMS (3%) 87.95
Robust RelMS (5%) 87.51
Robust RelMS (10%) 87.61
Robust RelMS (15%) 87.70
11
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Table 5
Selection of the number of latent variables based on GVC, AIC and BIC criteria. Motor Insurance dataset.

Metric GCV

𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6

Robust G-Gower (3%) 1076704.7603 1083201.9426 1090646.9258 1092800.0770
Robust G-Gower (5%) 1076795.9577 1083279.4823 1090721.7813 1092850.7494
Robust RelMS (3%) 1077321.9380 1083661.8078 1091105.5195 1093128.0293
Robust RelMS (5%) 1077307.2209 1083677.1446 1091118.3490 1093133.2411

Metric AIC

𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6

Robust G-Gower (3%) 5386.6712 5388.4219 5390.4116 5390.9554
Robust G-Gower (5%) 5386.6961 5388.4430 5390.4318 5390.9691
Robust RelMS (3%) 5441.8897 5443.5966 5445.5851 5446.0934
Robust RelMS (5%) 5386.8362 5388.5513 5390.5390 5391.0453

Metric BIC

𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6

Robust G-Gower (3%) 5401.4191 5406.8568 5412.5334 5416.7642
Robust G-Gower (5%) 5401.4440 5406.8779 5412.5537 5416.7779
Robust RelMS (3%) 5456.6376 5462.0315 5467.7069 5471.9022
Robust RelMS (5%) 5401.5841 5406.9862 5412.6609 5416.8541
Fig. 8. SE distributions for DB-LM with Euclidean, Gower’s, G-Gower, robust G-Gower
(3% trimmed) and robust RelMS (5% trimmed) metrics. Motor Insurance dataset.

Fig. 9. Graphical output of dbstats for the optimal BIC for 𝑘 = 3, 4, 5, 6, for the
Robust DB model with G-Gower’s (3% trimming). Motor Insurance dataset.

of DB-LM, and a very competitive model to be used, for instance, for
classification purposes.
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Appendix A

In this section we include the usage of function dblm of dbstats
package for R, used in the simulation study of Section 3.

## S3 method for class ’formula’
dblm(formula,data,...,metric="euclidean",method="OCV",

full.search=TRUE, weights,rel.gvar=0.95,eff.rank)

## S3 method for class ’dist’
dblm(distance,y,...,method="OCV",full.search=TRUE,

weights,rel.gvar=0.95,eff.rank)

## S3 method for class ’D2’
dblm(D2,y,...,method="OCV",full.search=TRUE,weights,rel.gvar=0.95,

eff.rank)

## S3 method for class ’Gram’
dblm(G,y,...,method="OCV",full.search=TRUE,weights,rel.gvar=0.95,

eff.rank)

Appendix B

In this section we include additional summary statistics concerning
the simulation study presented in Section 3.

Appendix C

In this section a summary of the two best models fitted in Section 4
is provided.

Bike Sharing dataset
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Table 6
Estimated SE (mean and median values) for the DB-LM with different metrics. Uncontaminated linear response.

SE - Mean values

Scenario Euclidean Gower G-Gower Robust G-Gower Robust RelMS

(5%) (10%) (15%) (5%) (10%) (15%)

No outlier 1.9580 17.0233 2.8106 2.4996 2.5752 2.4862 1.3210 1.3235 1.3193
1 (a) 56.2766 19.5313 19.5953 19.4949 19.6114 19.6127 19.9681 19.9582 19.9561
1 (b) 1.9314 26.9541 1.1467 1.1445 1.1417 1.1414 1.3348 1.3326 1.3335
1 (c) 1.9649 17.0330 3.4566 3.0776 2.9977 3.0314 1.5631 1.5592 1.5606
1 (d) 55.4866 22.9153 17.6539 17.6596 17.6632 17.6640 17.7460 17.7382 17.7361

No outlier 2.2324 19.4220 6.8783 7.4542 6.2207 6.0889 1.2169 1.1971 1.1949
2 (a) 20.8702 22.2078 11.8075 13.1920 12.5830 12.2585 11.7435 11.7502 11.7525
2 (b) 2.1916 23.0635 2.1196 2.4859 1.9747 1.8214 1.2595 1.2496 1.2462
2 (c) 2.2219 19.5431 7.1502 8.0085 6.7605 6.2859 1.4178 1.3730 1.3591
2 (d) 20.8555 27.7483 10.2229 10.2926 10.2605 10.2476 10.9419 10.9483 10.9483

No outlier 2.2324 19.4220 6.8783 7.4542 6.2207 6.0889 1.2169 1.1971 1.1949
3 (a) 4.6395 19.2883 6.8663 10.3831 9.9687 9.3934 3.0310 3.0283 3.0256
3 (b) 2.2033 19.3972 6.6076 7.3602 6.2401 5.8301 1.2017 1.1893 1.1853
3 (c) 2.2125 18.9615 7.4799 8.3638 7.0419 6.5129 1.3012 1.2728 1.2638
3 (d) 4.5856 19.6338 5.8029 8.4498 8.0959 7.6241 2.8186 2.8024 2.7814

SE - Median values

Scenario Euclidean Gower G-Gower Robust G-Gower Robust RelMS

(5%) (10%) (15%) (5%) (10%) (15%)

No outlier 1.0952 6.3648 1.0570 0.9947 0.9874 1.0109 0.5041 0.5057 0.5058
1 (a) 24.0337 7.4969 8.1838 8.2038 8.1966 8.1904 8.0648 8.0723 8.0736
1 (b) 1.0655 8.7608 0.4872 0.4950 0.4930 0.4961 0.5756 0.5775 0.5794
1 (c) 1.0953 6.5447 1.5327 1.3649 1.3387 1.3531 0.6195 0.6159 0.6161
1 (d) 23.6448 5.5489 5.1411 5.0996 5.1008 5.0928 4.9945 4.9822 4.9893

No outlier 1.0097 8.1789 3.4087 3.7769 3.1287 3.0355 0.5359 0.5097 0.5127
2 (a) 4.4264 9.5153 3.4076 5.2418 4.4880 4.0564 3.0013 2.9892 3.0090
2 (b) 0.9777 9.1180 0.8979 1.0009 0.8834 0.8434 0.5598 0.5608 0.5573
2 (c) 0.9936 8.1005 3.6028 4.1721 3.3273 3.1425 0.6283 0.6080 0.5971
2 (d) 4.4749 10.7503 2.5945 2.7363 2.5790 2.5496 2.6450 2.6243 2.6427

No outlier 1.0097 8.1789 3.4087 3.7769 3.1287 3.0355 0.5359 0.5097 0.5127
3 (a) 1.7730 8.2206 3.1175 5.1673 5.0041 4.6478 1.1434 1.1302 1.1413
3 (b) 0.9868 7.8193 3.4245 3.8763 3.2663 2.9949 0.5429 0.5512 0.5499
3 (c) 0.9950 7.9684 3.8958 4.1752 3.7131 3.4262 0.5526 0.5553 0.5432
3 (d) 1.7485 8.0157 2.6350 3.6923 3.5124 3.3808 1.1194 1.1107 1.1122
Table 7
Estimated SE (mean and median values) for the DB-LM with different metrics. Contaminated linear response.

SE - Mean values

Scenario Euclidean Gower G-Gower Robust G-Gower Robust RelMS

(5%) (10%) (15%) (5%) (10%) (15%)

No outlier 1.9580 17.0233 2.8106 2.4996 2.5752 2.4862 1.3210 1.3235 1.3193
1 (a) 2.8595 16.3084 1.0092 0.9911 0.9737 0.9718 1.1793 1.1619 1.1586
1 (b) 2.2187 24.3870 0.9833 0.9811 0.9794 0.9793 1.1365 1.1346 1.1351
1 (c) 2.0919 16.5985 3.4304 3.0538 2.9749 3.0090 1.2539 1.2510 1.2521
1 (d) 3.9314 7.1985 1.0908 1.0477 1.0367 1.0301 1.0682 1.0573 1.0551

No outlier 2.2324 19.4220 6.8783 7.4542 6.2207 6.0889 1.2169 1.1971 1.1949
2 (a) 2.5550 47.2122 2.7358 12.1241 8.5426 6.2762 1.2907 1.2672 1.2486
2 (b) 2.2631 21.9759 1.8717 2.2021 1.7442 1.6087 1.1371 1.1279 1.1250
2 (c) 2.2478 19.1187 6.9756 7.8114 6.5956 6.1335 1.2355 1.1906 1.1764
2 (d) 2.8088 60.5340 1.2730 2.3900 1.9740 1.7451 1.1576 1.1372 1.1238

No outlier 2.2324 19.4220 6.8783 7.4542 6.2207 6.0889 1.2169 1.1971 1.1949
3 (a) 2.1988 22.7100 6.3502 10.5280 10.0397 9.2522 1.1953 1.1904 1.1831
3 (b) 2.2105 19.2463 6.5413 7.2875 6.1766 5.7711 1.1681 1.1562 1.1526
3 (c) 2.2111 18.9234 7.4802 8.3630 7.0433 6.5160 1.2062 1.1825 1.1750
3 (d) 2.2705 23.9345 5.1215 8.3753 7.9129 7.2604 1.2282 1.2148 1.1968

SE - Median values

Scenario Euclidean Gower G-Gower Robust G-Gower Robust RelMS

(5%) (10%) (15%) (5%) (10%) (15%)

No outlier 1.0952 6.3648 1.0570 0.9947 0.9874 1.0109 0.5041 0.5057 0.5058
1 (a) 1.4632 2.7432 0.4687 0.4592 0.4431 0.4448 0.4698 0.4638 0.4561
1 (b) 1.1449 8.4370 0.4127 0.4181 0.4100 0.4096 0.4737 0.4721 0.4720
1 (c) 1.1072 6.3285 1.3101 1.2001 1.1710 1.1868 0.4633 0.4637 0.4607
1 (d) 2.2851 1.2764 0.4747 0.4514 0.4482 0.4457 0.4129 0.4058 0.4115

(continued on next page)
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Table 7 (continued).
No outlier 1.0097 8.1789 3.4087 3.7769 3.1287 3.0355 0.5359 0.5097 0.5127
2 (a) 1.0699 12.0355 1.2796 5.0200 3.5157 2.5504 0.5557 0.5403 0.5305
2 (b) 1.0198 8.9597 0.8576 0.9652 0.8620 0.7788 0.5317 0.5254 0.5261
2 (c) 0.9690 7.6475 3.8032 4.1321 3.4794 3.1549 0.5660 0.5364 0.5322
2 (d) 1.0709 12.0573 0.6132 1.0400 0.9223 0.8370 0.5457 0.5378 0.5202

No outlier 1.0097 8.1789 3.4087 3.7769 3.1287 3.0355 0.5359 0.5097 0.5127
3 (a) 1.0344 9.2760 3.1695 5.1970 4.9968 4.3832 0.5342 0.5342 0.5383
3 (b) 1.0091 7.9243 3.5051 3.9283 3.1627 2.9722 0.5399 0.5385 0.5350
3 (c) 1.0006 7.9867 3.8574 4.0914 3.7382 3.4111 0.5368 0.5613 0.5533
3 (d) 1.0724 9.7907 2.7814 4.3576 4.0048 3.6427 0.5249 0.5393 0.5269
Table 8
Estimated SE (mean and median values) for the DB-LM with different metrics. Uncontaminated non-linear response.

SE - Mean values

Scenario Euclidean Gower G-Gower Robust G-Gower Robust RelMS

(5%) (10%) (15%) (5%) (10%) (15%)

No outlier 238.3173 157.1809 155.1188 154.0918 154.3570 154.0608 133.8524 133.8154 133.8872
1 (a) 299.8464 159.5251 173.1662 172.7206 173.1613 173.1585 170.2995 170.3866 170.3971
1 (b) 237.3054 155.9672 145.4180 145.3795 145.3662 145.3682 136.1690 136.1978 136.1851
1 (c) 237.2702 181.3580 164.4569 162.9331 162.6195 162.7557 146.0514 146.0716 146.0704
1 (d) 296.3721 169.8422 184.9105 184.8163 184.7964 184.7758 178.9406 179.0016 179.0142

No outlier 218.4939 226.1340 199.2341 201.7821 196.6168 196.0155 155.5568 156.1126 156.1677
2 (a) 236.1479 236.1273 192.9356 204.7988 200.6031 197.9733 184.6481 184.8545 185.0808
2 (b) 214.0613 225.7478 169.9376 171.9729 169.5626 168.8704 157.5916 157.9183 158.0297
2 (c) 213.7543 232.9335 200.5033 204.6432 199.0513 196.5159 154.7166 155.5569 155.8759
2 (d) 235.9091 244.6872 191.7630 193.1335 192.8574 192.7281 189.8525 189.8564 189.9269

No outlier 218.4939 226.1340 199.2341 201.7821 196.6168 196.0155 155.5568 156.1126 156.1677
3 (a) 217.8814 224.2229 194.4221 209.7902 208.6269 206.5369 159.6568 159.7351 159.9254
3 (b) 213.6699 223.9224 196.0288 199.0313 194.8861 193.0508 155.1689 155.5982 155.7480
3 (c) 213.6684 224.0319 198.7451 202.5439 197.2227 194.6475 153.6600 154.2439 154.4631
3 (d) 218.2937 224.7703 191.2000 202.7763 201.5916 199.8082 165.9616 165.8027 165.5866

SE - Median values

Scenario Euclidean Gower G-Gower Robust G-Gower Robust RelMS

(5%) (10%) (15%) (5%) (10%) (15%)

No outlier 123.3531 50.0488 67.5421 66.1134 66.5338 66.0257 51.8302 51.9325 51.8763
1 (a) 154.8938 54.8426 66.6913 67.1975 66.7830 66.7634 63.6243 63.9068 64.0383
1 (b) 121.7133 51.6823 62.2546 62.2903 62.2253 62.2890 56.1822 56.1660 56.2701
1 (c) 121.5676 60.0283 70.6065 70.6409 69.4756 70.2544 60.2813 60.0902 59.9119
1 (d) 154.1955 55.6864 76.0208 75.2593 74.8426 74.7895 73.8104 74.0328 74.0538

No outlier 88.3718 86.0277 65.5242 68.1828 62.3379 61.6429 53.6562 52.8028 52.7245
2 (a) 93.9194 86.0255 65.5756 77.7447 74.7492 73.5954 65.8480 65.6486 65.6767
2 (b) 88.8261 84.3103 65.8192 64.4552 66.1555 66.3042 55.9639 55.8997 56.0139
2 (c) 88.2620 85.2808 66.0798 67.1100 64.9764 65.1332 55.6536 56.4550 56.5542
2 (d) 93.2571 87.8864 68.2743 65.3360 66.9787 66.4696 64.7444 64.4468 64.0736

No outlier 88.3718 86.0277 65.5242 68.1828 62.3379 61.6429 53.6562 52.8028 52.7245
3 (a) 87.8727 83.1122 67.9923 79.1322 76.1739 75.3826 55.1581 55.1785 55.2259
3 (b) 88.1882 86.5779 65.9046 70.1526 64.3658 63.6876 55.9725 55.8431 55.8265
3 (c) 88.2662 81.3862 69.9464 74.3170 67.0350 63.5721 54.2485 54.5572 54.8646
3 (d) 87.5141 83.7526 69.5614 71.5030 71.3192 70.1975 59.5665 59.8736 60.1798
R> dblmggower_rob05 <- dblm(Dggower_rob05, Response, method = "rel.gvar",
rel.gvar = 0.5)

R> summary(dblmggower_rob05)

call: dblm(D2 = Dggower_rob05, y = Response, method = "rel.gvar", rel.gvar = 0.5)

Weighted Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.14500 -0.11501 0.00942 0.00000 0.12272 0.84969

R-squared: 0.754931 Adjusted R-squared: 0.754169
Weighted Geometric Variability: 1.000000

Used effective rank = 9
Relative geometric variability = 0.525975

R> dblmggower_rob_Relmds03 <- dblm(Dggower_rob_Relmds03, Response,
method = "rel.gvar", rel.gvar = 0.5)

R> summary(dblmggower_rob_Relmds03)

call: dblm(D2 = Dggower_rob_Relmds03, y = Response, method = "rel.gvar",
rel.gvar = 0.5)

Weighted Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.868893 -0.071424 0.000574 0.000000 0.079289 0.611387

R-squared: 0.883529 Adjusted R-squared: 0.786077
Weighted Geometric Variability: 0.004266
14
Used effective rank = 1322
Relative geometric variability = 0.500106

Motor Insurance dataset

R> dblmggower <- dblm(Dggower, y, weights = w, method = "eff.rank", eff.rank = 3)
R> summary(dblmggower)

call: dblm(D2 = Dggower, y = y, method = "eff.rank", weights = w, eff.rank = 3)

Weighted Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-18728 -6054 -1284 456 5613 37568

R-squared: 0.048320 Adjusted R-squared: 0.038508
Weighted Geometric Variability: 0.651663

Used effective rank = 3
Relative geometric variability = 0.848801

R> dblmggower_rob03 <- dblm(Dggower_rob03, y, weights = w, method = "eff.rank",
eff.rank = 3)
R> summary(dblmggower_rob03)

call: dblm(D2 = Dggower_rob03, y = y, method = "eff.rank", weights = w,
eff.rank = 3)
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Table 9
Estimated SE (mean and median values) for the DB-LM with different metrics. Contaminated non-linear response.

SE - Mean values

Scenario Euclidean Gower G-Gower Robust G-Gower Robust RelMS

(5%) (10%) (15%) (5%) (10%) (15%)

No outlier 238.3173 157.1809 155.1188 154.0918 154.3570 154.0608 133.8524 133.8154 133.8872
1 (a) 554.5634 282.0960 444.3794 447.7025 443.5773 443.5119 407.8975 409.3240 409.5465
1 (b) 238.6875 153.7460 165.1816 165.1608 165.1617 165.1659 157.0000 157.0192 157.0081
1 (c) 235.8697 174.6556 168.4490 167.2659 167.0327 167.1438 146.9566 147.0011 146.9834
1 (d) 652.4852 501.0114 534.3033 534.3620 534.3812 534.3907 533.7185 533.8767 533.8947

No outlier 218.4939 226.1340 199.2341 201.7821 196.6168 196.0155 155.5568 156.1126 156.1677
2 (a) 278.8127 394.8997 235.9094 281.7267 265.5537 254.9256 212.1332 212.4572 212.8673
2 (b) 215.6545 221.0478 174.0044 175.5232 173.8079 173.3347 164.0965 164.4029 164.5091
2 (c) 213.6516 232.9090 201.5071 205.5283 200.0497 197.5783 154.7521 155.5859 155.9039
2 (d) 317.7182 426.5446 303.0997 303.2137 303.6806 304.0067 290.1317 290.5296 290.9680

No outlier 218.4939 226.1340 199.2341 201.7821 196.6168 196.0155 155.5568 156.1126 156.1677
3 (a) 225.7202 256.6361 214.3299 234.0348 232.0263 228.7474 167.7205 167.8369 168.0924
3 (b) 213.7139 223.8310 195.7568 198.7732 194.6097 192.7642 154.8060 155.2351 155.3844
3 (c) 214.7464 225.3363 201.0275 204.7423 199.5131 196.9674 154.5541 155.1755 155.4079
3 (d) 224.8489 255.9227 208.4456 222.8559 221.1599 218.4654 174.1653 174.0238 173.8398

SE - Median values

Scenario Euclidean Gower G-Gower Robust G-Gower Robust RelMS

(5%) (10%) (15%) (5%) (10%) (15%)

No outlier 123.3531 50.0488 67.5421 66.1134 66.5338 66.0257 51.8302 51.9325 51.8763
1 (a) 132.2787 49.2286 60.2295 59.8209 59.0006 58.8267 44.8619 45.1427 44.8210
1 (b) 131.1358 58.0541 78.7007 78.7523 78.6505 78.6597 75.1920 75.2184 75.2201
1 (c) 117.3067 64.2930 69.1175 68.8134 68.8957 68.6412 50.6489 50.6430 50.6507
1 (d) 168.3795 97.7283 112.8336 113.2379 113.2043 113.3078 109.0198 109.0048 109.1882

No outlier 88.3718 86.0277 65.5242 68.1828 62.3379 61.6429 53.6562 52.8028 52.7245
2 (a) 99.2445 103.9791 77.4780 89.9221 88.9706 85.5208 63.0179 63.3059 63.5843
2 (b) 84.4925 85.8134 64.0143 62.3142 63.9714 64.0712 57.4281 57.4219 57.4539
2 (c) 83.9401 85.7369 67.6902 67.9126 66.5492 65.5840 50.3446 51.2212 51.6233
2 (d) 78.8361 109.6602 62.6724 62.8228 63.2006 63.7499 61.5119 61.2971 60.9274

No outlier 88.3718 86.0277 65.5242 68.1828 62.3379 61.6429 53.6562 52.8028 52.7245
3 (a) 88.3744 95.0482 74.6332 77.1671 79.7410 76.3644 54.8303 54.9475 55.1147
3 (b) 87.0042 85.6743 65.4463 69.2360 63.9322 63.6203 55.8833 55.8584 55.8226
3 (c) 85.3812 81.9391 67.3783 72.1421 67.0824 65.0114 53.3714 54.3489 53.9441
3 (d) 87.8703 84.8822 68.5795 78.3703 75.5568 73.7965 58.6059 58.5713 57.8366
Table 10
Estimated SE SD values for the DB-LM with different metrics. Uncontaminated linear response.

SE - SD values

Scenario Euclidean Gower G-Gower Robust G-Gower Robust RelMS

(5%) (10%) (15%) (5%) (10%) (15%)

No outlier 2.4369 36.5427 4.2843 3.7939 3.9170 3.7767 2.1003 2.1033 2.0928
1 (a) 99.5591 37.0878 33.9527 33.8489 33.9736 33.9754 34.6308 34.6184 34.6119
1 (b) 2.3899 64.3067 1.5891 1.5856 1.5813 1.5806 1.9906 1.9867 1.9884
1 (c) 2.4224 36.2553 5.2445 4.6585 4.5346 4.5916 2.5261 2.5168 2.5193
1 (d) 98.9138 60.0598 44.2665 44.3701 44.4046 44.4234 44.7141 44.6814 44.6754

No outlier 3.0476 28.4076 9.2582 10.0500 8.4026 8.2252 1.6971 1.6757 1.6730
2 (a) 80.9630 32.1341 34.8541 24.1602 26.9158 29.4690 36.9050 37.1085 37.2506
2 (b) 3.0131 41.3029 3.6193 4.3586 3.3215 3.0124 1.8018 1.7870 1.7813
2 (c) 3.0376 28.0605 9.2456 10.3886 8.7578 8.1435 2.2136 2.1781 2.1686
2 (d) 80.6868 58.3941 31.4632 29.6451 30.2404 30.6150 34.4525 34.5874 34.6747

No outlier 3.0476 28.4076 9.2582 10.0500 8.4026 8.2252 1.6971 1.6757 1.6730
3 (a) 7.8182 27.9715 8.9961 13.7812 13.2021 12.3823 5.8752 5.8752 5.8765
3 (b) 3.0177 27.8335 8.5953 9.5902 8.1336 7.6039 1.6586 1.6425 1.6368
3 (c) 3.0262 27.5359 9.8979 11.1436 9.3180 8.5947 1.8136 1.7781 1.7663
3 (d) 7.7316 28.4051 7.9016 11.1807 10.7236 10.1281 5.5355 5.5185 5.4978
15
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Table 11
Estimated SE SD values for the DB-LM with different metrics. Contaminated linear response.

SE - SD values

Scenario Euclidean Gower G-Gower Robust G-Gower Robust RelMS

(5%) (10%) (15%) (5%) (10%) (15%)

No outlier 2.4369 36.5427 4.2843 3.7939 3.9170 3.7767 2.1003 2.1033 2.0928
1 (a) 4.1238 37.5187 1.4480 1.4041 1.3902 1.3873 1.8045 1.7675 1.7572
1 (b) 3.2511 55.7483 1.3659 1.3632 1.3618 1.3618 1.7096 1.7054 1.7055
1 (c) 2.8420 35.5106 5.2199 4.6270 4.5011 4.5587 2.0031 1.9969 1.9986
1 (d) 5.2991 23.7958 1.5461 1.4766 1.4602 1.4499 1.5758 1.5565 1.5520

No outlier 3.0476 28.4076 9.2582 10.0500 8.4026 8.2252 1.6971 1.6757 1.6730
2 (a) 3.7830 154.8224 3.7561 21.9191 13.8208 9.3906 2.0715 1.9934 1.9335
2 (b) 3.0906 35.9296 2.6069 3.0963 2.4199 2.2226 1.5934 1.5807 1.5762
2 (c) 3.0828 27.7300 9.1943 10.3392 8.7047 8.0830 1.7015 1.6483 1.6320
2 (d) 4.9504 253.1834 1.7280 3.5337 2.7596 2.3947 1.7797 1.7104 1.6658

No outlier 3.0476 28.4076 9.2582 10.0500 8.4026 8.2252 1.6971 1.6757 1.6730
3 (a) 3.0305 33.3477 8.3783 14.1247 13.4516 12.3974 1.7135 1.7050 1.6918
3 (b) 3.0176 27.5573 8.5967 9.5835 8.1371 7.6075 1.6286 1.6132 1.6080
3 (c) 3.0283 27.5472 9.9634 11.2170 9.3771 8.6471 1.6628 1.6335 1.6244
3 (d) 3.1057 36.9521 6.6602 10.8495 10.2536 9.4344 1.7573 1.7359 1.7058
Table 12
Estimated SE SD values for the DB-LM with different metrics. Uncontaminated non-linear response.

SE - SD values

Scenario Euclidean Gower G-Gower Robust G-Gower Robust RelMS

(5%) (10%) (15%) (5%) (10%) (15%)

No outlier 410.4110 341.5664 276.6520 274.7538 275.3178 274.8358 252.1054 252.0375 252.1751
1 (a) 480.3126 323.0275 321.6728 321.3294 321.6119 321.6143 316.1344 316.2425 316.2459
1 (b) 407.0011 323.1971 257.3756 257.3898 257.4316 257.4568 245.4684 245.5230 245.5060
1 (c) 406.9019 371.3920 276.2363 274.4998 274.3225 274.5533 268.5309 268.6170 268.6138
1 (d) 474.6929 345.3905 334.9428 334.9237 334.8848 334.8875 323.3328 323.3959 323.4167

No outlier 397.6678 364.2506 308.8336 311.9782 306.4142 305.7433 286.1494 286.7466 286.7848
2 (a) 366.3723 379.2846 297.7805 311.3156 304.6721 301.1842 293.7282 294.0861 294.4162
2 (b) 395.3036 358.6080 289.6459 289.0874 290.1187 290.5202 286.5175 287.0004 287.2240
2 (c) 395.3204 375.2875 314.0983 319.0799 312.9316 310.3186 291.8898 292.8470 293.2520
2 (d) 366.3277 399.4877 304.5377 301.9436 302.8515 303.5500 303.4681 303.6224 303.7939

No outlier 397.6678 364.2506 308.8336 311.9782 306.4142 305.7433 286.1494 286.7466 286.7848
3 (a) 384.9863 358.8436 301.6428 322.1438 320.3871 317.5380 278.7906 278.9074 279.2171
3 (b) 395.3324 355.8383 303.9895 307.2463 303.2405 301.5963 285.3593 285.9061 286.1569
3 (c) 395.2893 356.3250 305.7642 310.5427 304.4353 301.7326 284.6054 285.2881 285.5961
3 (d) 385.0498 355.9146 296.3709 309.7553 308.3047 306.4236 280.0942 280.1193 280.2584
Table 13
Estimated SE SD values for the DB-LM with different metrics. Non-contaminated non-linear response.

SE - SD values

Scenario Euclidean Gower G-Gower Robust G-Gower Robust RelMS

(5%) (10%) (15%) (5%) (10%) (15%)

No outlier 410.4110 341.5664 276.6520 274.7538 275.3178 274.8358 252.1054 252.0375 252.1751
1 (a) 1389.3886 753.7295 1331.5333 1357.4035 1335.0443 1335.2742 1262.0137 1265.7996 1266.4750
1 (b) 389.6733 320.9154 294.8955 294.7933 294.8127 294.8463 275.4810 275.5078 275.4867
1 (c) 404.6081 365.9163 296.0253 293.9168 293.6731 293.9518 278.9747 279.0431 279.0021
1 (d) 1875.0122 1548.6199 1598.3354 1598.4075 1598.4196 1598.4388 1597.3180 1597.6821 1597.7075

No outlier 397.6678 364.2506 308.8336 311.9782 306.4142 305.7433 286.1494 286.7466 286.7848
2 (a) 696.7287 1531.7533 650.1827 842.9077 765.0771 715.7555 593.3202 593.8031 594.6338
2 (b) 392.0892 357.3558 295.4163 294.4111 296.1005 296.7432 297.0986 297.4944 297.6887
2 (c) 398.4928 376.6503 315.6249 320.5477 314.4219 311.9001 295.1683 296.1724 296.5916
2 (d) 1135.0675 1723.3369 1399.8033 1307.2651 1338.2538 1356.8192 1333.8906 1340.7895 1345.2792

No outlier 397.6678 364.2506 308.8336 311.9782 306.4142 305.7433 286.1494 286.7466 286.7848
3 (a) 424.2297 453.5577 353.3837 381.8992 378.2835 372.4940 320.2327 320.4497 320.9285
3 (b) 394.9026 355.9919 303.6696 306.9586 302.9063 301.2460 284.9851 285.5320 285.7833
3 (c) 399.3096 369.9716 316.9492 322.1324 315.5196 312.5349 290.5824 291.3097 291.6294
3 (d) 450.5049 532.1365 405.3148 427.5591 424.6896 419.8443 358.4244 358.3291 358.2881
Weighted Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-18724 -6051 -1285 455 5610 37567

R-squared: 0.048381 Adjusted R-squared: 0.038570
Weighted Geometric Variability: 0.681554

Used effective rank = 3
Relative geometric variability = 0.855434
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