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ABSTRACT In this paper, we propose a novel metaheuristic algorithm called Forgetful SwarmOptimization
(FSO) for Astronomical Observation Scheduling (AOS), a type of combinatorial optimization problem
defined by the tasks and constraints assigned to the telescopes and other devices involved in astrophysical
research. FSO combines local optimization, Destroy and Repair, and Swarm Intelligence methodologies to
create a flexible and scalable global optimization algorithm to handle the challenges of AOS. The proposal
is adapted to the well-justified scenarios of the Ariel Space Mission problem, a particular example of AOS,
and compared with previous algorithms that are applied to it including an Evolutionary Algorithm (EA),
an Iterated Local Search (ILS), a multi-start metaheuristic, a Tabu Search, and a Hill-Climbing greedy
algorithm. The experimental evaluation demonstrates that FSO consistently outperforms other algorithms
in objective completeness, up to 8.4% on average, for all instances of the problem regardless of dimensions
and complexity. Additionally, it has significantly less computational cost than ILS and the base models of a
global optimization algorithm such as EA.

INDEX TERMS Metaheuristics, combinatorial optimization, swarm intelligence, destroy and repair,
telescope scheduling.

I. INTRODUCTION
Combinatorial Optimization (CO) is the process of finding an
optimal object, usually, a subset or permutation, from a finite
set [1]. A particular CO problem, with a variety of constraints
and tasks, is Astronomical Observation Scheduling (AOS)
that applies to scheduling single or multiple telescopes to
maximize the scientific return of the involved devices in a
mission or project [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Daniel Augusto Ribeiro Chaves .

The schedule in AOS is a sequence of non-overlapping
tasks with their execution times. A task (t) is generally
the observation of a celestial object, but other activities
such as maintenance operations of the facilities or aux-
iliary calibration observations should be commonly taken
into account. Each task is defined by their type, their
duration, astrophysical attributes (such as coordinates and
orbital period), and task constraints (Ct ). These parameters
determine the possible periods of time (windows) in which
it can be executed. The smallest unit of scientific value
in AOS however, is not an individual task, but a set of
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dependent ones referred to as a Scheduling Block (B).
Only if all the dependencies in a scheduling block, B, are
resolved, it contributes to the scientific return of a schedule,
proportionally to its assigned priority value (priB).

In general, the constraints in AOS are categorized into two
types depending on the level they affect: task constraints
(Ct ) which are applied to individual tasks, and scheduling
block constraints (CB) which are the dependencies between
the tasks in a scheduling block. As mentioned, Ct is used to
calculate the task windows and could be processed before the
scheduling. For instance, a minimum required elevation of an
object, or a maximum sky brightness for observation. On the
other hand, CB defines the rules for scheduling the tasks in
B to increase the scientific return. Examples of CB include
simple logical relations and set operators such as intersection
or union, and attribute-specific relations between tasks, like
cadence and precedence. With CB, it is also possible to
define different patterns to schedule a scheduling block. For
example, with XOR assigned with different priorities on
its alternatives.1 In addition, the number of tasks in a B
can be fixed or be determined by the constraints during the
scheduling (e.g. periodic tasks with minimum and maximum
interval times). It is important to note that the scheduling
block structure and its diverse range of constraints, make
it difficult to draw parallels with AOS and other more
well-known examples of CO.

Considering the base concepts, the AOS problem is defined
as follows. The input is a set of scheduling blocks (Bin) and a
base schedule that might be empty or contain some scheduled
tasks. The output is a schedule (s) that consists of some or all
the scheduling blocks in Bin with their execution times. The
objectives in AOS vary depending on the specific problem.
However, in general, apart from satisfying the constraints,
there are two main objectives: (1) to propose a schedule that
maximizes the accumulated priority of scheduling blocks in
the schedule without breaking any Ct or CB; (2) to minimize
the idle time of the involved devices.

Besides the diversity of scheduling blocks and the high
number of special cases, which severely limit the competent
and valid results in the solution space and increase the
computational cost of their evaluation, there are two main
challenges that contribute to AOS difficulty:

1) Scalability challenge: The scheduler of AOS should be
able to handle different instances of the same problem
(scenario) that can significantly vary in dimension,
complexity, and available computational time.

2) Flexibility challenge: Introducing new tasks and con-
straints is not rare in AOS. Thus the scheduler should
be able to take on new conditions without going into
major or structural changes.

1consider the example of a scheduling block consisting of the three tasks
t1, t2, and t3. A scheduling block constraint CB: (t1⊕ (t2∧ t3)), with priority
p1 if t1 is scheduled, and p2 if t2 and t3 are both scheduled. In this scenario,
the scheduler tries to schedule only one of the XOR alternatives, preferably
the one with the higher priority.

Researchers have addressed these challenges in two main
ways. Some proceed with one method that suits the most
crucial scenarios of the problem and compromise onmarginal
ones, whereas others develop several scheduling methods in
a system for different needs. The first approach facilitates
handling the flexibility challenge, but it might lack the
optimization power in less common scenarios. On the other
hand, the second approach excels at the scalability challenge,
but it is more difficult to adapt it to new conditions. Research
into a single-method approach that is flexible for all scenarios
is more beneficial in the long term, as it is easier to maintain
and update. In the literature, the solutions to AOS are widely
tailored to a specific type of problem or project, which can
make it challenging to find a universally applicable and
reusable solution.

In this paper, to address the challenges of AOS, we propose
a single algorithm approach with the FSO algorithm to handle
different variants of the problem. FSO combines the Swarm
Intelligence (SI) [3] framework with a Destroy and Repair
(D&R) strategy to utilize a constructive metaheuristic with
a local search and create a scalable algorithm with general
concept definitions. The algorithm uses the fundamental
concept of SI as through interactions of rather simple agents,
like sharing some information or experiences directly or
via the environment, the emergent collective behavior is
capable of solving more complex problems. The constructive
metaheuristic of FSO, which progressively builds a solution
from an initial state by adding components iteratively until
the full solution is formed, applies a local search to individual
task scheduling, to ensure the satisfaction of related Ct and
CB, and the combined SI framework optimizes the schedule
on the objectives and high-level constraints. FSO competence
in complex scenarios is reinforced by high-level exploration
and exploitation in SI methodology, and in less elaborate or
smaller scenarios, by its metaheuristic and local search. The
combination of SI and local search in FSO aims to combine
the benefits of the two approaches and create a scalable and
flexible algorithm. In summary, the contribution of this paper
is as follows:

1) Propose a flexible and scalable algorithm for AOS.
2) Introduce novel Swarm Intelligence interaction to

improve exploration and exploitation of interesting
parts of the solution space.

3) Demonstration of performance and adaptability in
well-founded real problem scenarios, along with their
associated challenges.

4) Comparison with different algorithms and
methodologies.

The proposal is evaluated on different scenarios of a
real example of the AOS problem, and its performance is
compared with the other approaches that are specifically
designed for this problem. These approaches are an Evo-
lutionary Algorithm (EA) [4], a hybrid metaheuristic [5],
an ILS [6], A Tabu Search [7], and a Greedy Hill-Climbing
algorithm. The value of evaluating real problem scenarios lies
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in their complexity. In contrast to generic problems, which are
typically well-defined and stable, real cases often consist of a
combination of challenges, leading to disparity between them
and generic solutions. Testing the methods on real problems
provides insight into how this gap is closed in different ways,
and how the final outputs compare.

II. STATE-OF-THE-ART
The optimization problems can be divided into two main
categories, Combinatorial and Continuous [8]. While com-
binatorial optimization is defined on discrete possibilities,
usually subset or permutation, continuous optimization
applies to continuous domains and often real numbers. The
algorithms applied to the problems in these categories share
many similarities, but their fundamental difference in the
structure of the solution spaces require distinct approaches.
This section reviews the solutions to the combinatorial opti-
mization problems that are relevant to AOS, and details the
methodologies related to FSOmainly as part ofmetaheuristic
research [9].

In the literature, different approaches are applied to
solve the AOS problem. Although metaheuristics are more
commonly used, there are successful applications of other
methods. For example, to schedule for the Hubble Space
Telescope [10], a constraint-satisfaction system supported by
artificial neural networks is used, which is derived from an
earlier version proposed for the Very Large Telescope [11].
This approach is made possible by exploiting the heavily
constrained environment to break down the search and
scheduling into small decision rules. The same system is
later transformed and adapted to other projects with heavily
constrained environments, such as the Subaru Telescope [12].
Metaheuristics in general, have some advantages over

direct optimization in problems with high dimensions
and non-linear constraints [13] and find sufficiently good
solutions in a limited time to problems that are too large
to explore entirely [14]. Additionally, metaheuristics with
few assumptions about the solution space facilitate their
adaption to different problems [1]. These characteristicsmake
them suitable for AOS and have led many researchers in
this field to apply various metaheuristic algorithms to the
problem with success, from less computationally expensive
algorithms, such as Tabu Search [7] used to schedule the
SOLSTICE instrument [15], to heavier population-based
algorithms like MOEA [16] operating on James Webb Space
Telescope (JWST) [17], Evolutionary Algorithm (EA) [18]
on the LOFAR radio telescope [19], and Genetic Algorithm
(GA) [20] on the CARMENES spectrograph [21] mounted on
the telescope at the Calar Alto Observatory and the Canada
France Hawaii Telescope (CFHT) [22].
The popularity of hybrid metaheuristics grows as the

focus is shifted from algorithm-based research toward
problem-based [23]. This approach exploits the good features
of different algorithms to create competent solutions for
specific problems with real-world complexity [24], [25].

Without hybrid algorithms, researchers use either a single
algorithm that fits the most important scenarios of the
problem [4], or break it down into long-term and short-term
scheduling and use different algorithms depending on the
scale of the scenarios. While long-term scheduling utilizes
computationally heavy algorithms with high optimization
capability to plan over a large period and large instances of
the problem, short-term applies a fast algorithm with lower
optimization power to the smaller scenarios. This approach is
mainly used in ongoing projects where the initial long-term
schedule must be updated nightly, based on the previously
executed tasks [21], [26], and varying environmental (e.g.
weather) conditions.

Metaheuristics can be categorized into single-solution
algorithms, such as Simulated Annealing [27] and Vari-
able Neighborhood Search [28], and population-based
approaches [29], like algorithms in Evolutionary Computa-
tion (EC) [30] and Swarm Intelligence (SI). SI is a category
of metaheuristics that is inspired by biological patterns and
behavior in boosting success through iterations and is widely
applied to a variety of CO problems. As population-based
algorithms, they work based on the principle of creating
initial solutions and gradually improving them by iteratively
searching the solution space with a group of simple agents
(Population or Swarm). In particular, the agents in SI
algorithms regularly interact with the environment or each
other, so that an improvement found by one affects the search
of the others in future iterations. This interaction takes the
form of pheromones in Ant ColonyOptimization (ACO) [31],
affects the velocity and position of particles in Particle Swarm
Optimization (PSO) [32], and tips the odds on the selection of
candidate solutions by onlooker bees in Artificial Bee Colony
(ABC) [33], which are all well-known examples of SI.
Population-based global optimization algorithms, such as

SI and EA in their base formats, depend on less specific
knowledge about the solution space. Although this decreases
the quality of individual solutions, it allows these algorithms
to produce large numbers of solutions and optimize not
only by the process of solution-making itself but also with
the information gathered from the agents through iterations.
Having a few assumptions about the solution space helps
these algorithms in dealingwith complex problems. However,
their performance is not optimal on smaller problems due
to the high computational cost and difficulty in converging
on competent solutions. This is a long-known issue [34],
which has led many studies to explore different approaches
to handle it [35]. One approach to improve these algorithms’
performance on small problems is to combine them with
local search algorithms. Memetic Algorithms (MA) [36] is
an example of such a hybrid approach that combines GA
with local search, and outperforms the base version in certain
types of problems. The local search used in MA is commonly
designed to solve specific problems, objectives, and con-
straints, and it helps the GA incorporate more knowledge of
the domain into its process [37]. This type of hybrid algorithm
has global and local optimization characteristics, which
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put it alongside well-known metaheuristics like Simulated
Annealing and Tabu Search.

A well-known strategy that is utilized in metaheuristics is
D&R, which prevents local search algorithms from getting
stuck in local minimums and promotes exploration. D&R
strategies are a form of ILS [6] that have been success-
fully applied to CO problems with close characteristics to
AOS [38], [39]. Large Neighborhood Search (LNS) [40] is
a good example of the algorithms that utilize these strategies
with a diverse range of applications [41], [42] and academic
studies [43], [44].

III. FORGETFUL SWARM OPTIMIZATION (FSO)
FSO is a population-based metaheuristic optimization
algorithm consisting of a swarm (A) of agents (agent ∈ A)
that use a D&R strategy iteratively (through generations) to
optimize solution schedules. The specific form of D&R in
FSO is referred to as Forget&Repair to distinguish it from the
general strategy. The Forget strategy of FSO differs from the
general D&R as it takes into account optimization parameters
of FSO in removing parts of the intermediate solutions and
includes modification on the environment to guide the next
iterations. On the other hand, the Repair strategy of FSO
uses a specific constructive metaheuristic, designed on the
demands of AOS and its complexities.

The main FSO optimization parameters that set the pace
of the algorithm include two values. First is the forget
probability, which is denoted as λmax (0 ≤ λmax ≤ 1), and
is initially assigned to every scheduling block, λB. Second,
is the decay rate or δ (0 ≤ δ ≤ λmax), which is shared
between the agents and is utilized for convergence.With these
parameters, a brief description of the key features of FSO is
as summarized in Figure 1.
Figure 1 illustrates a high-level description of FSO and its

Forget strategy. In the initialization step, FSO creates the
agents, sets the elite schedules, and adjusts the λB values.
The elites (Selite) are the schedules with the highest fitness
found at any point during the optimization process. Initially,
Selite is set with the input schedule which might be empty.
The λB of scheduling blocks are set equal initially, with the
predefined value, however, they are changed independently
in the process. In a generation, FSO calls its agents’ Forget
and Repair processes to create new solutions to the problem,
evaluates their results, and updates the elite schedules if
necessary.

however, they decrease independently by the agents’
Forget process. The λB reduction is applied on the forgotten
set of every agent, whereas its increase is only on the forgotten
sets of the successful agents. If Forget and Repair of an
Agent leads to a schedule with higher fitness than its input,
it is successful. The λB values decrease by a fixed value (δ),
contrary to increment situations where the amount depends
on the number of successful agents (in increasing the fitness)
in that generation. Having fewer successful attempts results
in a higher rise to λB. In this way, success is more impactful
toward the end of the optimization when it is rare. Lowering

FIGURE 1. Flowchart of the FSO key features.

λB on each pass of an agent distributes the search evenly
across different Bs to give them a fair chance at breaking into
the schedule. On the other hand, the encouragement system
increases the exploitation of successful attempts.

Figure 1 illustrates a high-level description of FSO and
its Forget strategy. In the description, elite schedules (Selite)
are the highest fitness schedules found at any point during
the optimization process. Initially, Selite is set with the input
schedule which might be empty. The λB of scheduling blocks
are set equal initially, however, they decrease independently
by the agents’ Forget process. The λB reduction is applied
on the forgotten set of every agent, whereas its increase is
only on the forgotten sets of the successful agents. If Forget
and Repair of an Agent leads to a schedule with higher
fitness than its input, it is successful. The λB values decrease
by a fixed value (δ), contrary to increment situations where
the amount depends on the number of successful agents
(in increasing the fitness) in that generation. Having fewer
successful attempts results in a higher rise to λB. In this way,
success is more impactful toward the end of the optimization
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when it is rare. Lowering λB on each pass of an agent
distributes the search evenly across different Bs to give them
a fair chance at breaking into the schedule. On the other
hand, the encouragement system increases the exploitation of
successful attempts.

FSO starts with a relatively high value λmax and thus
takes significant steps in the solution space during the
early generations. This helps the algorithm focus more on
exploration to find competent neighborhoods. The decrement
strategy outweighs the increase, and the average forgetting
probability in a schedule goes down over generations. Lower
forgetting probability reduces the step size of FSO in later
generations, which along with the higher impact of success,
changes the algorithm focus to exploitation. FSO reaches
the terminal conditions when in a generation, the average
forgetting probability drops below a predefined threshold and
no agent is successful in increasing the fitness of its input
schedule.

Appendix describes the set of conventions for notations
that are followed in this paper and includes Table 13, summa-
rizing the definitions of the important denotations. The FSO
algorithm is further explained in Section III-A (Algorithm 1),
and to facilitate following its details, Section III-B describes
the Forget (Algorithm 2) and Repair (Algorithm 3) of the
agents. Finally, Section III-C describes the base heuristic of
FSO (Algorithm 4), which the agents utilize to traverse the
solution space.

A. FSO ALGORITHM
This section explains the FSO algorithm and the functions
to assess the results of the swarm at each generation and
manipulate the environment to guide the search. On the
generic problem that is defined in Section I, Algorithm 1
describes FSO, where x.y(z) means calling the y function of
the object x with the input of z.

According to Algorithm 1, FSO takes a set of scheduling
blocks (Bin) and a base schedule (sbase) as input and starts by
initializing the necessary variables. The set of elite schedules
(Selite) is initialized with sbase. favg and f prevavg , which are the
average fitness of the current and previous generation, are
respectively set to the fitness of sbase and any value below that
initially. λavg holds the average forgetting probability of the
scheduling blocks in Selite schedules and is initialized with
λmax . In line 2, the algorithm sets the forgetting probability
of every input scheduling block to λmax which is defined in
the optimization parameters.

The main cycle of the algorithm from lines 3 to 16 rep-
resents a generation cycle and it iterates until the terminal
conditions are met. Each generation begins with calling the
Forget (details in Algorithm 2) and the Repair (details in
Algorithm 3) functions of each agent of the swarm (A). The
Forget function receives a schedule sin which is a random
member of the elite schedules and the input scheduling
blocks to produce a temporary schedule (stemp) with some
scheduling blocks removed (line 6). stemp is then passed to
the Repair function to produce a new full solution as sout

Algorithm 1 Forgetful Swarm Optimization

1 Algorithm FSO( Bin, sbase):
1 initialize Selite, favg, f prevavg , and λavg;
2 set λB of every B to λmax ;
3 while λavg > λmin || favg > f prevavg

// Generation cycle.
4 do
5 foreach agent ∈ A do
6 stemp← agent.Forget(sin,Bin); // sin

is a random member of Selite.
7 sout ← agent.Repair(stemp,Bin);
8 end
9 success_counter ← count successful agents;
10 foreach successful agent do
11 foreach B ∈ forgotten_setagent do
12 λB← λB+δ∗(∥A∥/success_counter);

// Rewarding.
13 end
14 end
15 update Selite, favg, f prevavg , and λavg;
16 end
17 return Selite;

(line 7). Once all agents produced their sout , FSO counts the
number of successful agents as indicated in line 9. An agent is
considered successful if the fitness of its sout is higher than its
input schedule, sin. The cycle spanning from lines 10 to 14 is
for rewarding the successful agents. It is doing so by going
through every scheduling block in the forgotten_set of the
successful agents and increasing their λB value proportionate
to the optimization parameter of δ, and the rate of the
swarm size to the success_counter . The maximum value
of the reward matches the maximum drop of a λB in a
generation (∥A∥ ∗ δ). In this way, in the earlier generations
of optimization where success is more common, the reward
is small, and in the later generations, where success rarely
appears, a larger value is rewarded.

After the rewarding process, to finish a generation and
prepare for the next one, FSO updates the necessary variables
as shown in line 15. The schedules with the highest fitness
between current members of Selite and every sout produced by
the agents create a new Selite to be used by the next generation
of agents. f prevavg is copied from favg and the value of favg and
λavg is updated base on the new Selite. Once the generation
cycle stops and the terminal conditions are reached, FSO
returns the latest Selite as its output in line 17.

B. AGENT
The main responsibility of an agent in FSO is to build
new solutions for the algorithm. To achieve this, the agent
stochastically removes parts of the input schedule using the
Forget function (Algorithm 2). With the results from the
Forget function, the agent subsequently builds a new schedule
using the constructive metaheuristic of the Repair function
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(Algorithm 3), and returns it to the main FSO algorithm (see
Section III-A, Algorithm 1).

Algorithm 2 Agent - Forget

1 Algorithm Forget(sin,Bin):
1 initialize forgotten_set and stemp;
2 foreach B ∈ stemp do
3 x ← RandomNumber(0, 1);
4 if x < λB then
5 stemp← stemp − {b}; // Removes all

tasks of B from stemp
6 λB← LambdaDecay(λB, δ);
7 forgotten_set ← forgotten_set ∪ {B};
8 end
9 return stemp;

According to Algorithm 2the agent requires a base
schedule (sin) and a set of scheduling blocks (Bin) to
start Forget. As previously mentioned, each agent has a
forgotten_set which keeps track of the scheduling blocks
it removes from sin. This is initialized as an empty set.
The other initialization of Forget is for stemp set to sin.
stemp is the schedule that is manipulated in the forgetting
process. The main cycle between lines 2 to 8, iterates over
every scheduling block in stemp. For each scheduling block
B, the agent picks a random number between 0 and 1 as
x (line 3), and if this number is less than the forgetting
probability of B (λB) it removes all the scheduled tasks
of that scheduling block from the schedule as shown in
line 5. The λB of the forgotten block is then reduced with
LambdaDecay function, which by default subtracts δ from
λB to the minimum of λmin. This linear variation does not
favor exploration or exploitation, whereas concentrating on
the low λ values promotes exploitation, and focusing on high
values contributes to wider exploration. The final step is to
add the forgotten B to the agent’s forgotten_set in line 7.
Forget returns stemp as output which will be used as input
for the second main function of Agent, that is Repair.

The objective of Repair is to maximize the fitness of
the schedule that has been passed to it as input using the
scheduling blocks that are not in it. The agents utilize
a constructive metaheuristic algorithm, which is derived
from the Hybrid Accumulative Planner (HAP) [5], with
some modifications to its optimization parameters to allow
the algorithm to search a larger space suitable for the SI
framework. The reason behind utilizing this algorithm for
the repair strategy of FSO is the relatively good results
obtained by HAP on AOS, and its lack of proper global
optimization limiting its search capabilities on large and
complex problems. HAP is specifically designed for the AOS
problem, which takes into account its required flexibility and
has performed well in its evaluations [5], [45].

Repair processes every scheduling block that does not
exist in its input schedule (stemp), sequentially in random
order and adds its tasks to the best schedule found so far in

the search. If the result of the additions has higher fitness
than the current best schedule, it replaces the best to be used
as the base for the process of the next B. A single execution
of Repair performs a greedy local optimization to check and
evaluate the specific constraints of different B and its tasks
more directly. FSO however, operates a global optimization
as the result of the random order of input processing in
Repair, the Forget function of the agents, and numerous
repetitions of them through generations. Algorithm 3 details
the process of Repair.

Algorithm 3 Agent - Repair

1 Algorithm Repair(stemp,Bin):
1 Bvalid ← {B : B ∈ Bin&B /∈ stemp};
2 foreach random B ∈ Bvalid do
3 SB← {stemp}; // Set of schedules.
4 foreach t ∈ B // Scheduling block

scheduler cycle.
5 do
6 set lobby, iter , costt , and snext ;
7 while iter < ιmax & lobby ̸= ∅ // Task

scheduler cycle.
8 do
9 snext ← CRU(snext , lobby); // See

algorithm 4.
10 costnext ←

CalculateCost(snext , lobby);
11 if costnext < costt then
12 stemp← snext ;
13 costt ← costnext ;
14 end
15 iter ← iter + 1;
16 end
17 SB← SB ∪ stemp;
18 end
19 stemp←

the schedule with the highest fitness in SB;
20 end
21 return stemp;

According to line 1 in Algorithm 3, the Repair function
first identifies the scheduling blocks B that are members
of Bin but are not in stemp, and saves them in Bvalid . The
main cycle between lines 2 to 20 goes through all members
of Bvalid in random order. The first step of the cycle is to
initialize SB, which is a set to hold the schedules produced
by accumulated tasks of B, by the sole member of stemp. The
secondary cycle spans from lines 3 to 17 and is responsible for
going through the tasks (t) of B. It is worth mentioning that
while by default it goes through all the tasks, the conditions of
this cycle could be adopted for handling specific scheduling
block constraints (CB). Line 5, sets the required variable for
scheduling t by setting lobby (a set of tasks) to t , iteration
counter iter to zero, temporary cost of adding t to the schedule
to the maximum possible value (+∞), and snext to stemp. The
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snext schedule holds the result of the heuristic of FSO, the
Conflict Resolution Unit (CRU, see Section III-C), and the
set lobby keeps the tasks that the algorithm must schedule at
any time.

The task scheduler cycle between lines 6 to 15 schedules t
into snext and while there are tasks in lobby and iter has not
reached its maximum value ιmax (optimization parameter) it
tries to reduce its cost. The cost of adding a task is defined
as the fitness loss of the schedule if the new addition breaks
the constraints or replaces any previously scheduled tasks.
The CRU function, mentioned in line 8 and detailed in
Algorithm 4, takes a schedule snext and lobby as input and
returns an updated schedule, which always contains the initial
task from lobby, but might have lost one or several other tasks
that were already in the input schedule and caused conflicts
with the new addition.

The cost of each iteration is calculated in line 9, and if
it is lower than costt , the algorithm updates it and replaces
stemp with snext (lines 10 to 13). In this way costt and stemp
always hold the best results found in the task scheduler loop.
An important note here is that once CRU schedules a task,
it will not replace it in the next iterations to avoid falling into
a vicious cycle or losing t . there are two possibilities to exit
the loop, reaching an empty lobbymeaning task t is scheduled
without a cost, or iterations reach the maximum number and
there are still tasks in lobby. However, in both scenarios task
t is in snext , and the schedule with minimum cost is saved in
stemp which is used as the base for the next task of B.

In line 16, the algorithm adds stemp to SB so it would have
the best schedules found by CRU on every accumulated task
of B. After all the tasks are accumulated in the schedule, the
algorithm finds the highest fitness between the members of
SB to determine which one to keep for the next scheduling
block (line 18). As SB is initially populated with stemp without
any tasks of the current B (as shown in line 2), it is possible
that Repair ignores that B completely, if no combination of
its tasks manages to increase the overall fitness. When every
B from Bvalid are processed, the last stemp is returned as the
algorithm output as represented in line 20.

C. CONFLICT RESOLUTION UNIT
The CRU that is used in Algorithm 3, is the core heuristic
of FSO, and is how the agents traverse the solution space.
It removes a task (t) from lobby, stochastically selects a
window of t , removes the conflicting tasks, and adds t to the
schedule and the conflicts to lobby. The stochastic selection
of CRU is set to favor the windows that have lower conflict
costs with the tasks that are already on the schedule. In this
way, an empty spot without any conflicts has the highest
selection priority. The algorithm calculates the costs of all the
t windows in the schedule and assigns a normalized weight
to them based on that, in a way that higher costs translate to
lower weights. The stochastic selection favors higher weights
which is illustrated in Algorithm 4.
According to Algorithm 4, CRU starts with taking a

task from lobby to schedule in s as tentry and continues

by initializing the conflict_set variable to an empty set.
conflict_set holds the conflicts (the tasks that need to be
removed to schedule tentry) for every window of tentry along
with their costs. After these steps, CRU enters a cycle from
lines 3 to 7 that goes through every window of tentry. In this
cycle, the conflicts of each window (w) are calculated in
line 4 as Tconflict (a set of tasks), line 5 calculates the cost of
removing Tconflict from the schedule s, and these two values
are added to conflict_set .

Algorithm 4 Conflict Resolution Unit

1 Algorithm CRU(s, lobby):
1 tentry← lobby.RemoveFromSet();
2 conflict_set ← ∅;
3 foreach w ∈Wtentry do
4 Tconflict ← Conflict(s,w);
5 costconflict ← CalculateCost(s, Tconflict );
6 conflict_set ←

conflict_set ∪ {(Tconflict , costconflict )};
7 end
8 weights← NormalizedWeight(conflict_set);
9 Treplaced ←

StochasticSelection(conflict_set,weights);
10 remove Treplaced from s;
11 lobby← lobby ∪ Treplaced ;
12 add tentry to s;
13 return s

After the conflicts and the costs of all windows are added
to conflict_set , CRU calculates the weights of each member
with theNormalizedWeight function. The weight (a positive
real number) of a member has an inverse relation to its cost,
so a higher cost means a lower weight.

With the conflict_set and based on the calculated weights,
the StochasticSelection function selects a random member,
favoring higher weights, and extracts its set of conflicts to
save in Treplaced in line 9. The tasks in Treplaced are removed
from the schedule s and added to lobby, as shown in lines
10 and 11. Finally, the task tentry is added to s in the place of
Treplaced , and the updated s is returned as the CRU output.
The CRU description completes the details of the FSO

algorithm. This Section along with Sections III-A and III-B
illustrate how the components are utilized to schedule tasks of
scheduling blocks and a set of scheduling blocks altogether.

IV. EXPERIMENTAL EVALUATION
This section illustrates the adaptation of FSO to the
particular case of the Ariel mission [46] scheduling that
allows algorithm flexibility and scalability testing on various
scenarios and datasets. Furthermore, FSO performance is
compared against the other approaches that have been
developed for the Ariel problem that consists of a greedy
HC (section IV-C1), an EA [4] (section IV-C2), HAP [5]
(section IV-C3), an ILS (section IV-C4) with a similar
D&R Strategy as FSO, but without the Swarm Intelligence
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framework, and a deterministic variation of the base heuristic
of FSO and HAP, which is a type of Tabu Search referred
to as Accumulative Planner (AP) (section IV-C5). These five
algorithms cover a wide range of complexity, optimization
power, and computational cost, to put FSO performance into
perspective.

A. ARIEL PROBLEM
The Atmospheric Remote-sensing Infrared Exoplanet Large-
survey (Ariel) mission that is used for the evaluation is
a European Space Agency (ESA) space telescope that is
planned to be launched into L2 orbit in 2029. It will study
what exoplanets are made of, how they formed, and how they
evolve, by surveying a diverse sample of exoplanets with
a low-resolution infrared spectrograph. The Ariel problem
is a specific example of AOS, which aims to schedule a
space telescope for time-constrained observations such as
exoplanet transits, occurring when the planet passes in front
of the star, over 3.5 years of operation. A transit event
occurs periodically at specific time windows depending on
the ephemerides of each exoplanet target. The number of
windows for each target, which varies between a few to
hundreds, is determined by its orbital period, ranging from
∼1 day to a few hundred days, and the telescope’s accessible
sky at each moment (see Section IV-B and [45]). Thus the
scheduler of Ariel typically has different opportunities to plan
the observations of each target within the mission lifetime.
However, to ensure the quality of the data received from
the telescope, each transit observation has to be repeated
several times, otherwise, it does not provide a scientific
value or contribute to the fitness. This information creates
the definition for the scientific task (tsci.) of Ariel and the
B that contains it, where tsci. is to observe a transit and its
B is the repetition of tsci. for a specific number of times.
The specific number of repetitions for each transit is declared
in the input as a set of three values RepB = {L1,L2,L3}
(Li ∈ N ,L1 < L2 < L3). Each value represents the number
of repetitions to reach a level of signal-to-noise ratio (SNR),
where L3 is the highest level and L1 is the lowest. The transits
based on their importance are requested to reach one of these
levels. However, if that cannot be achieved, reaching lower
levels is also acceptable but with a reduced added value to
the fitness.

The transits in the Ariel datasets are divided into three Tiers
to represent their scientific importance. The most valuable
tier is Tier 3 (T3), or benchmark, in which the transits require
L3 number of observations. The transits in Tier 2 (T2),
or deep survey, have the second importance after T3 and
require L2 repetitions. The least important tier is Tier 1
(T1), or reconnaissance survey, where the transits are only
requested to be repeated L1 times. In this way, there are three
ways to gain fitness by the scheduling of T3 transits (up to
L1, L2, or L3), two for T2 (up to L1 or L2), and one for T1 (up
to L1). The fitness gain depends on the highest reached level
of SNR and the Priority (pri) value assigned to it.

The objectives in the Ariel problem are broken down into
two parts. The first is to maximize the accumulated fitness
of the scientific tasks in the schedule, and the second is to
maximize the time that the telescope spends on them. For
both objectives, there shouldn’t be any overlap between the
different scheduled tasks. Each tsci. has its specific duration
that should be considered by the scheduler for this objective.
The first objective is measured by the priority fitness (FP),
and the other by the time fitness (FT ). The functions to
calculate these fitness values on a schedule s are described
in Equations 1 and 2.

FP(s) =

∑
B∈s priB∑
B′∈B priB′

(1)

FT (s) =

∑
tsci.∈s ∥tsci.∥

∥mission∥
(2)

In Equation 1, FP of s is calculated on the sum of the
priorities of the B in the schedule, normalized by the sum
of priorities of all the input. The priority values assigned to
the completion of different tiers are 1000, 100, and 10 for T3,
T2, and T1 respectively. Equation 2 notes that FT is obtained
by dividing the accumulated duration of each scientific task
(∥tsci.∥) in s by the mission duration (∥mission∥), which
is defined as 3.5 years. The overall fitness of a schedule
(Fitness(s)) for Ariel is the mean value of FP and FT and
is represented in Equation 3. The single objective format is
preferred in the Ariel problem definition, and it also creates a
fair comparison between the algorithms that do not effectively
support multi-objective optimization, namely HC and AP.

Fitness(s) =
FP(s)+ FT (s)

2
(3)

Besides the scientific ones, there are engineering tasks
(teng.) in the Ariel problem to make sure that the telescope is
working as intended andmonitor its performance. These tasks
consist of Short Calibrations, LongCalibrations, and Station-
keeping operations. Like any task, teng. requires time on the
schedule, however, contrary to tsci. their constraint is to be
repeated with a specific cadence throughout the mission. The
Short Calibration is defined as an observation of any known
celestial body from a long list of suitable ones for 1 hour
every 1.5±0.5 days, and Long Calibration is the same type
of observation but for 6 hours every 30±1 days. As for the
Station-keeping operations, which are regular maintenance
tasks, frequency is set to 4 hours every 28±3 days. The main
difference between tsci. and teng. is that the desired number
of the latter is not known prior to the scheduling, and as the
fitness is defined on the tsci., the scheduler seeks to satisfy
the constraint of teng. but also to reduce the number of them.
To handle this specific constraint, the CRU (see Section III-C)
of FSO is set to calculate the next window of a teng. when
it schedules one and repeats until it reaches the end of the
mission time. Furthermore, to reduce the number of teng.,
the stochastic selection of CRU favors distancing consecutive
teng..
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The exoplanet transits are associated with a host star.
Therefore, they occur at different locations in the sky.
To perform a new observation, the Ariel telescope must first
move to the sky coordinates of the star. The time the telescope
takes to point from the star of the previous task to that in the
next task and stabilize the pointing is referred to as the Slew
Time, and it depends on the angle between the coordinates
of successive tasks, and the rotation speed. The scheduler of
Ariel takes into account the slew time between the tasks when
it checks for conflicts in CRU.

B. DATASETS
There are four available datasets for the Ariel mission
scheduling. Each dataset creates a scenario with specific char-
acteristics to simulate the different demands of the scheduler.
The first and main dataset is the Mission Reference Sample
(MRS) which consists of information on 999 exoplanets to
observe. MRS includes the most interesting set of exoplanets
that define the main scientific goal of Ariel in surveying
around a thousand targets, however, even scheduling all its
tasks only covers around 70% of the mission time. This
time margin is allowed to leave space in the schedule
for engineering tasks (teng.) consisting of short and long
calibrations, and station-keeping operations, as well as to
take into account that, inevitably, some idle time will remain
between the time-constrained scientific tasks. The second
dataset, referred to asMRSB, extendsMRS by adding 1092 T1
exoplanets to its set, to push the limits of the time dedicated to
scientific observations. These additions increase the coverage
time from around 70% to 200%, meaning that at least some
tasks will not be in the final solution. Another way to increase
the time on science is proposed in the third dataset called
MRSPC which adds information on 43 exoplanets to MRS
and requests a special tsci. denoted as Phase Curve (PC) on
them. What differentiates PC tasks from normal transits is
their significantly longer duration which disrupts some teng.,
specifically short calibrations that have a shorter cadence than
the average duration of a PC , and specific handling should
be adapted. PC observations were not initially defined for
the Ariel problem, and they challenged the flexibility of the
algorithms to adapt to new demands. The fourth and final
dataset referred to asMRSPCB , gathers all aforementioned data
fromMRS,MRSB, andMRSPC in one set. The characteristics
of these datasets are summarized in Table 1.

The available datasets create different scenarios with
diverse dimensions and complexities to test the algorithms
in the evaluation, in both the flexibility and scalability
challenges of AOS.

C. ALGORITHMS SETUP
Since the definition of the Ariel scheduling problem, five
approaches have been developed and applied to it. These
approaches include a local optimizer with HC and four
with different global optimization capabilities. The simplest
approach with some global optimization capabilities is the
deterministic AP based on a Tabu Search, followed by its

TABLE 1. Datasets characterization. Considering the following features:
The number of proposals containing tsci ., a count of the proposals of PC
and different tiers from T 3 to T 1, the coverage time of the proposals, the
number of windows, the number of tsci ., and finally, the average number
of overlapping tasks (conflicts) at any time.

expansion, HAP [5] with its multi-start stochastic strategy.
The more capable global optimizers in the evaluation are
ILS, and EA [4]. These methods cover a wide range
of optimization power. Additionally, AP, HAP, and ILS
with largely similar base heuristics as the proposal, put
the effectiveness of their methodologies versus FSO into
perspective.

The FSO parameters in the evaluation find a balance
between computational cost and an effective increase in
fitness. The values are set based on a series of empirical
tests on each parameter to determine the optimal point at
which, whether the rate of fitness gain with respect to the
computational cost is 1 (derivative equal to 1, or the slope of
45 degrees), or there is a clear maximum. The AOS problem
often comes with a time limitation, which emphasizes the
lower computational cost besides the schedule’s fitness. The
values of these parameters are presented in Table 2.

TABLE 2. Algorithm parameters for the FSO method.

For more insight into the effects of different optimization
parameter values on the FSO performance, numerous setups
with 10 repetitions each have been tested. The tests on ∥A∥,
∥Selite∥, λmax , and δ are evaluated on the average number
of generations and Fitness. These parameters do not affect a
single generation time directly, so to measure their effect on
computational cost the number of generations is considered.
On the other hand, the direct effect of ιmax in CRU is on the
time it takes to execute a single generation (generation time),
thus it is evaluated on this time for computational cost effect.
The summary of these tests is illustrated in Figures 2 and 3.
The red points in the figures indicate the default values.

According to Figure 2, increasing ιmax (iter) leads to higher
fitness, however, its effectiveness diminishes in higher values.
That means while low values (e.g. ιmax = 5) do not fully use
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FIGURE 2. Effect of ιmax (iter) on fitness and generation time in seconds.

FIGURE 3. Effect of ∥A∥ (upper left), ∥Selite∥ (upper right), λmax (bottom
left), and δ (bottom right) on fitness and the number of generations.

the CRU search capabilities, high numbers (e.g. ιmax > 80)
exhausts CRU and does not lead tomuch better results. On the
other hand, the effect on generation time is steady throughout
all tested values.

The plots in Figure 3 show a consistent increase in fitness
with more generations, except for ∥A∥. The fitness increase
for the number of generations in ∥Selite∥ is relatively linear,
but for λmax and δ, it diminishes toward their extremum
values, where λmax is closer to 1 and δ reaching 0. The
clearest example is on δ, where the slight fitness gain between
δ = 0.03 and 0.01 requires more than three times generation.
The ∥A∥ plot shows a clear optimal value for this

parameter because its effect on the generations and fitness
is reliant on the other parameters. δ and to some extent
λmax determine the effective ∥A∥ value. This is due to the
dependency of the rewarding system of FSO on δ and ∥A∥.
By selecting a high value for ∥A∥, the algorithm converges
prematurely leading to lower fitness. In conclusion, to select
suitable values for the optimization parameters, it is important
to look into the limitations and restrictions imposed on
specific projects.

1) HILL-CLIMBING
The Greedy algorithms’ main benefits are their low com-
putational cost and due to their simplicity, the relative
ease of adaptation to a problem and implementation. The
benefits come at the cost of weak optimization by its strictly
local search. The adapted version of the algorithm to the
Ariel problem uses a combination of four decision variables

({d1, d2, d3, d4}) to schedule the next task at any moment in
the timeline. The variable τ in the HC scheduler always holds
the latest time that the scheduled tasks end. Starting with an
empty schedule and τ set to the beginning of the timeline,
HC schedules the tasks sequentially based on its decision
variables and moves τ forward on each step accordingly.
The process ends when no more tasks fit into the schedule
between τ and the end of the mission timeline. The decision
variables of HC are calculated on every viable B based on
the current schedule and the value of τ , and are defined in
Equation 4:

d1(B) =

{
1 if B has tasks scheduled
0 otherwise

d2(B) =
∥ remaining tasks of B ∥
∥ remaining windows of B ∥

d3(B) =
prii
primax

d4(B) = 1−
distτB
distmax

(4)

The first decision variable, d1, promotes completing the
B that already exists in the schedule, whereas d2 evaluates
the difficulty of the B scheduling by calculating the ratio
between the number of unscheduled tasks in B and the
number of windows from its tasks that are after the current τ
value. The decision variable of d3 holds a normalized priority
value to emphasize scheduling more important B, and finally,
d4 establishes a measure to minimize the delay between two
consecutive tasks. distτb shows the difference in time between
τ and the start of the closest window of a task in B. This value
is divided by distmax which is the maximum delay between
two tasks in the schedule and is defined in the algorithm
configuration. The combination of the four decision variables
determines which B gets its task scheduled after τ .

2) EVOLUTIONARY ALGORITHMS
The approach on Ariel based on EA divides the problem
into two parts [4]. First, is the scheduling of the engineering
tasks which is done using a Genetic Algorithm (GA), with a
specific variation known as Non-dominated Sorting Genetic
Algorithm 2 (NSGA-II). Second is the scheduling of the
scientific tasks on top of the results from the previous part,
using a Multi-Objective Evolutionary Algorithm (MOEA),
which also uses non-dominated sorting. The reason behind
this division is the inherent difference between the two types
of tasks and their objectives in scheduling. This demands
specific behavior of the scheduler depending on the type. The
incorporated GA for engineering tasks starts on an empty
schedule and assumes a window for each repetition based on
the requested cadence and searches for places to put the tasks
within those windows where it has the minimum conflict
with the potential scientific tasks that could occupy the same
time period. The approach utilizes a Pittsburgh-style GA [35]
where an individual (ind) consists of ∥HC∥+ ∥LC∥+ ∥SK∥
genes of real values that each indicates the shift from the
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center of its window. The fitness function to minimize an
individual’s competence is defined in Equation 5.

Feng.(ind) =
∑
g∈ind

∑
B∈B

∥B∥ · priB
∥remaining w of B∥

if conflict(g,B)

= true (5)

Equation 5 describes the calculation of engineering fitness
(Feng.) for an individual (ind), where if there is a conflict
between a gene of ind and a B from the list of all available
ones (B), Feng. increase. The increase is proportional to the
priority of the conflicting B, and a measure to estimate
the difficulty of its completion. This is represented as the
number of required tasks in B (∥B∥) divided by the number
of remaining windows after the conflict point for B.

After completing the scheduling of taskseng., the best
solutions are passed to the MOEA to add the taskssci.. Each
individual of MOEA consists of

∑
B∈B ∥B∥ genes, and each

gene can take a value between [−1, ∥WB∥ − 1]. The value
of −1 for a gene is interpreted as unscheduled, and the rest
of the values in the range indicate the window where B has
a task scheduled. The objectives for this part are as defined
in the problem definition. However, the EA implementation
works on minimization and its fitness functions are defined
to present the complement of the normalized objectives.
Also during its cycles, MOEA treats the objectives with a
Pareto Optimal Front to further diversify the solutions. The
algorithm parameters, applied to both GA and MOEA, for
the tests, are detailed in Table 3, where |individual| means
the size of an individual. The parameter values are set based
on the results presented in [4].

TABLE 3. Algorithm parameters for the EA method.

3) HYBRID ACCUMULATIVE PLANNER
HAP is a Multi-Start metaheuristic algorithm designed on
the AOS problem [5], and it is used as the base of FSO
development. HAP focuses on local optimization, whereas
FSO concentrates on global optimization. The local position
of HAP is its sensitivity to the input order as it processes
every scheduling block once and decides on whether to
keep them in the schedule or not based on a local greedy
benefit to the fitness. FSO on the other hand, with numerous
attempts to schedule the scheduling blocks in random orders,
through Forget and Repair, breaks the sensitivity of HAP and
explores much wider neighborhoods in the solution space.
HAP searches fewer areas in the solution space than FSO but
to make up for it, spend more time creating better individual
solutions. The heuristic step of both algorithms share many

similarities, however, HAP uses a much higher ιmax and
in its stochastic replacement, uses a configuration value of
Stochastic Range (η) which limits the replacement to a few
of the best options rather than all of them as in FSO. HAP
runs several instances of its metaheuristic simultaneously
(instances) to create different solutions and makes an elitist
selection at the end to return the best ones. HAP uses a
similar strategy as FSO to schedule taskseng. in the same
routine as taskssci. while distancing them to reduce their
number. The algorithm parameters in the test are described in
Table 4. These values are obtained based on the tuned results
presented in [5].

TABLE 4. Algorithm parameters for the HAP method.

In the evaluation, HAP is set with ιmax = 200, η = 3,
and 16 simultaneous instances. In comparison, FSO also runs
on 16 agents, though with ιmax = 20 and tens of repetitions
(generations). As a result, HAP has increased exploitation and
low exploration. These characteristics make it most suitable
for small-sized problems with low complexity where large
exploration has a limited impact on the results.

4) ITERATED LOCAL SEARCH
The ILS used in the evaluation, is derived from a similar
heuristic and D&R of FSO. The main goal of including
this algorithm is to gain insight into the Swarm Intelligence
(SI) framework of FSO, and how it compares with iterations
without agent interaction. As a result, all the scheduling
blocks are assigned with a constant forgetting probability
(λ) which does not increase nor decrease over the iterations.
The stopping criteria consist of two conditions: reaching a
minimum number of iterations and stagnation on the fitness
improvement for certain consecutive iterations. Once both
these conditions are reached, the algorithm stops and returns
the elite schedules of the last iteration as final solutions.
The values of the optimization parameters of the ILS in the
evaluation are selected as closest to FSO, to create a better
comparison between the two. Table 5 shows these values.

TABLE 5. Algorithm parameters for the ILS method.

According to Table 5, the first four parameters and their
values are the same as FSO, however, the last two rows for
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Maximum stagnation (stagmax) and Minimum ILS iterations
(iterationmin) which are the stop criteria of ILS are set to
improve its competitiveness. The value of iterationmin is
set dynamically on the average generations that FSO takes
to reach its solutions, to avoid early convergence of the
algorithm. The value for stagmax is set to 10 meaning that
the condition is reached if ILS does not see an improvement
in fitness in ten consecutive iterations. The performance of
this ILS singles out the effects of guided forgetting and the
reward strategy of FSO through manipulation of λ.

5) ACCUMULATIVE PLANNER
The final method included in the evaluation is based on a
Tabu Search algorithm that is modified to be used in HAP and
FSO. This method referred to as the AP, as opposed to HAP
and FSO is a single solution and deterministic approach. The
deterministic strategy of AP comes from its simplified CRU
(see Section III-C) which instead of stochastic replacement,
always selects the option with the lowest cost to replace a task
from the schedule with a member of the lobby. The search in
this way reduces the overall cost generally, however, if there
is no replacement option available to achieve that, it continues
with the next best option. The optimization parameter of AP
consists of a single parameter which is the CRU maximum
iterations (ιmax). Similar to HAP, AP is also sensitive to the
input scheduling block order and the blocks that are processed
earlier have a slight advantage in being in the final solution.
Table 6 shows the value of ιmax that is used in the tests, which
is similar to HAP and derived from [5].

TABLE 6. Algorithm parameter for the AP method.

D. RESULTS
In this section, test results with the Ariel problem datasets on
FSO, ILS, HAP, EA, AP, and HC are analyzed. Every test is
repeated 10 times on non-deterministic methods (FSO, ILS,
HAP, and EA). The values in all the tables show the median
results, except for the computational cost table in which the
mean result is reported. The tests on every dataset are detailed
in the next sections.

1) MRS DATASET
TheMRS dataset contains the tasks that define the main goal
of Ariel in repeated observation of about 1000 exoplanets’
transit. Thus, it has the highest importance in the scientific
aspect. Scheduling all the tasks in MRS requires less time
than is available, though it is not guaranteed that all of
them could be scheduled due to time constraints, slews, and
taskseng.. Table 7 summarizes the results of the different
algorithms used to schedule theMRS tasks, where the second
to the fourth rows show the number of completed B from the
different tiers, and the fifth row displays the amount of time

dedicated by the algorithms to the taskseng.. The last three
rows indicate the values of time fitness (FT ), priority fitness
(FP), and overall fitness (F) in the percentage format.

According to Table 7, FSO achieves better results than the
rest of the algorithms, as indicated in the fitness rows. This
is a result of consistently completing all the 999 scheduling
blocks provided by the dataset. The second-best performance
is shared between ILS and HAP, which also in some
repetitions of the test schedules all the tasks, however in other
cases it comes short in one or two Tier 1 B. Tier 1 has the
lowest priority value, thus missing a few of them does not
reduce FP significantly. The results from AP closely trail the
top three which shows its high competence in solving the
problem.

HC algorithm ranks fourth in the evaluationwithF = 83.2,
and EA scores the lowest fitness with F = 81.95 ± 0.2.
MRS dataset is relatively simple yet has an extremely large
number of possible solutions. As a result, a fully global
optimization, like EA, without many assumptions about the
solution space is not efficient in narrowing down its search
to more competent areas. On the other hand, this type of
problem suits a greedy algorithm like HC, which has a
strictly narrow and deterministic search. All the methods
based on variations of CRU base heuristic achieve notably
better results than the other two.
Observation 1: On the less complex MRS dataset, FSO

performs similarly to its closest algorithms (ILS and HAP),
and its global search does not negatively affect its competence
as in the EA, for this relatively small scenario.

2) MRSB DATASET
The MRSB dataset represents a more complex scenario than
MRS, where there is a far larger number of B in the
dataset than there is time available (over-subscribed). This
affects the local greedy algorithm like HC negatively by
a significant degree, and at the same time, improves the
problem conditions for global optimizations. Table 8 shows
the performance of the algorithms on theMRSB dataset.

The best performance on MRSB, as indicated in Table 8,
is from FSO with a noticeable difference. The gap in
fitness with ILS and HAP is more significant than in MRS,
specifically in FT , as the result of including about many more
Tier 1 that does not add to FP much (due to their low priority)
but occupy more time on the schedule. The FSO search also
manages to spend the least amount of time on taskseng. which
leaves more availability for taskssci.. The difference between
ILS and HAP on MRSB is larger than on MRS and while
ILS schedules fewer scheduling blocks than HAP, it selects
longer blocks that contribute to higher FT . AP achieves a
lower overall fitness in its solution but remains competitive to
larger global optimizations based on CRU heuristics. Unlike
MRS, in MRSB, EA performs much better than HC, but the
number of Tier 2 B that it completes is below FSO, ILS, and
HAP. There are two main reasons for this performance. First,
is the method that uses the algorithm to schedule the problem.
Separating the scheduling of taskssci. and taskseng., besides
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TABLE 7. Algorithms performance on the MRS dataset.

TABLE 8. Algorithms performance on the MRSB dataset.

TABLE 9. Algorithms performance on MRSPC dataset.

TABLE 10. Algorithms performance on MRSPC
B dataset.

not allowing them to undergo a homogeneous process, takes
some opportunities for optimization away from the final
solution. The second reason is the early convergence of the
EA set by the time limits assigned to the execution of the
scheduler. The flexible structure of FSO allows coherent
optimization across different tasks of the problem, and this
is more significant as the problem scenario grows larger.
Observation 2: The global optimization framework of

FSO and its SI interactions of the agents greatly increases
the performance, compared to other CRU-based methods,
namely ILS, HAP, and AP, in an over-subscribed dataset such
as MRSB. Although purely global optimization algorithms
like EA are significantly better than the greedy local search
algorithm of HC, the difference between EA and the hybrid
approaches of FSO and HAP is much larger.

3) MRSPC AND MRSPC
B DATASETS

The last two datasets of Ariel create scenarios where a new
type of task, PC, with specific constraints and conflicts,
is added to the problem.MRSPC andMRSPCB represent these
scenarios on small and large datasets respectively. The EA
could not be adapted to PC without going under design
change, and extensive work, so it was omitted from the test on
these datasets. The most undemanding adaptation to PC is for
HC due to its simple architecture and strict local search which
allows schedulemanipulation on a precise level. The structure
of handling tasks and scheduling blocks shared between AP,
HAP, ILS, and FSO also gives the algorithms an entry point to
add specific rules for some tasks. By enforcing the scheduling
of the Bs containing taskseng. before PCs, which have a
high priority value, these algorithms make sure the cadence
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of taskseng. are as requested except the situations where a
task of PC occupies its windows. The results of the tests on
MRSPC andMRSPCB datasets are detailed in Tables 9 and 10,
respectively.

Tables 9 and 10 indicate that, like on the other datasets,
FSO has the best performance between the algorithms in
the evaluation on MRSPC and MRSPCB . Unlike the results
from MRS (Section IV-D1) where FSO, HAP, and ILS have
almost similar performances, MRSPC results show a larger
gap in fitness between them. The deterministic approach of
AP struggles to keep up with the other methods and it has the
lowest performance below HC.

As for MRSPCB , FSO covers about 3% more time with
scientific tasks, reflected in FT , than ILS, HAP, and AP.
Combined with higher priority fitness (FP), it has a clear
advantage over the other methods. Unlike in MRSPC , on the
larger and more complicated dataset, AP makes a good
solution, close to HAP, which puts it well above HC. Similar
to MRSB, HC does not handle large datasets well.
Observation 3: FSO consistently obtains better results than

the rest of the algorithm on all datasets including MRSPC

andMRSPCB , demonstrating the algorithm’s adaptation to new
conditions. The core heuristic and solution building of FSO
which is mostly shared with ILS, HAP, and AP provides
the necessary flexibility to these algorithms to handle the
challenges of AOS.

4) COMPUTATIONAL COST
The computational cost of FSO can be viewed from two
perspectives. One view is to assess the worst-case time
complexity (Order), and the other is to compare the execution
times of the results detailed in Sections IV-D1, IV-D2,
and IV-D3. The time complexity of FSO is estimated for a
single generation, as described below:

O(FSO) = ∥A∥ ∗ O(∥T ∥) ∗ (1+ itermax ∗ O(∥Wt∥)), (6)

where ∥A∥ displays the number of agents, ∥T ∥ indicates the
total number of tasks in all the scheduling blocks of B, and
∥Wt∥ shows the average number of windows for a task in T .

According to Equation 6, beside the configuration param-
eters of ∥A∥ and itermax , the time complexity of a single
generation of FSO is bound to O(∥T ∥) and O(∥Wt∥). While
the value of ∥Wt∥ does not necessarily change by adding or
removing scheduling blocks, the number of tasks has a direct
relation with the size of the input and it impacts linearly on
the computational cost.

The worst-case scenario of FSO, assumes that CRU always
reaches its maximum iteration (itermax), which usually does
not happen when the schedule is rather empty. As a result,
the time complexity assessment in Equation 6 applies to the
process on a full schedule. The number of generations, which
was omitted from the time complexity assessment, depends
on several aspects of the inputs such as the data complexity
and constraints, however, it can be controlled by adjusting the
configuration parameters of λmax and δ.

Assessing the execution time of the scheduling methods
on a specific problem depends on factors besides their
algorithm, such as implementation details, and configuration
of optimization parameters. Despite that, the computational
cost of the methods in evaluation are compared, to illustrate
a perspective on the execution time of FSO. Table 11 shows
the average execution time, in seconds, of the tests performed
for Sections IV-D1, IV-D2, and IV-D3.

TABLE 11. Comparison of the computational cost (in seconds) of the
methods.

Based on the values displayed in Table 11, the lowest
average time of the scheduling belongs to HC, despite not
being the fastest on MRS and MRSPC . HC computational
cost is the least affected by the size of the dataset, as it just
increases the number of options to choose from in each step of
the algorithm and does not affect its overall cycles. AP has the
lowest time on MRS and MRSPC , and it is the second fastest
method on average. Despite having 16 instances in HAP,
compared to the single-solution AP, its computational cost
does not increase more than double, due to parallelization.
The EA method in evaluation, due to lack of a local guide
takes much longer time to reach higher fitness.

FSO and ILS as more global optimization algorithms
have access to similar parts of solution space. The average
number of generations in FSO forMRS,MRSPC ,MRSB, and
MRSPCB are 31, 44, 87, and 101 respectively. These values
are set for iterationmin optimization parameter of ILS (see
Section IV-C4). This is to avoid early convergence of ILS,
but usually, it takes more iterations to converge. It is apparent
in the time comparison on each dataset, where ILS on average
takes about 59% more time than FSO. The EA method in
evaluation, due to the large solution space and lack of a
local guide takes a much longer time to reach the potent
neighborhoods in the solution space and converge.
Observation 4: The combination of local and global opti-

mization in FSO allows the algorithm to have a competitive
computational cost with smaller algorithms like HC and HAP
on the simpler scenarios of the problem, and be faster than
ILS and EA on more complex ones.

V. STATISTICAL ANALYSIS
To evaluate the significance of the differences between the
stochastic methods, FSO, ILS, HAP, and EA based on
the repeated tests on the available datasets, we used the
Friedman-Nemenyi [47] test. The Friedman test is commonly
used to identify if there are significant differences between
multiple groups of related data, and the Nemenyi post hoc test
follows it up to pin down which pairs differ significantly. The
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TABLE 12. Friedman-Nemenyi paired p-values on different datasets.

outcome of the test, or p-value, is compared with a confidence
threshold to determine the significance. Table 12 shows the
p-value of the Friedman-Nemenyi test between algorithm
pairs.

According to Table 12 and considering the 90% confidence
level (p-value < 0.10), the results from FSO on all datasets
outperform the other methods by a statistically significant
margin. The ILS approach has the closest results to FSO and
the significance does not reach the 95% (p-value < 0.05)
threshold. However, considering that ILS on average takes
about 59% more time to schedule (see Table 11 ), FSO
has a clear advantage. The paired comparison with HAP
indicates a more significant difference from FSO with 95%
confidence on all datasets except MRS. On MRS, both algo-
rithms can reach maximum fitness, limiting the comparison
capability. The improved results of FSO compared to EA
on the MRS and MRSB datasets are significant with 95%
confidence.

To provide more context to the statistical analysis, Table 12
also includes the p-values of the pairs ILS-HAP, ILS-EA,
and HAP-EA. These results show no significant difference
between ILS and HAP on MRS and MRSB. However,
on MRSPC and MRSPCB , ILS significantly outperforms HAP
with 90% confidence. The comparisons between ILS and
HAP with EA also show significant differences, particularly
between ILS and EA onMRSB.
Finally, another Friedman-Nemenyi test, not shown in

Table 12, has been performed on the average results from each
dataset across all evaluated methods, including AP and HC.
It shows statistically significant differences between FSO and
AP (p-value = 0.022) and between FSO and HC (p-value =
0.014) with 95% confidence.

VI. DISCUSSION
The experimental evaluation of FSO shows the persistent
competence of the algorithm in handling problems of
different complexities and adaptation to new constraints
and conditions. In objective completeness, it consistently
outperforms all the other algorithms including the other
methods based on similar heuristics, AP, HAP, and ILS.
On average, FSO obtains higher total fitness than ILS, HAP,
AP, EA, and HC, by 1.3%, 1.7%, 2.2%, 4.8%, and 8.4%,
respectively. Figure 4 breaks down this advantage on priority
fitness (FP) and time fitness (FT ), and compares relative
computational costs.

FIGURE 4. Algorithms average performance on FT , FP , and the
computational cost. To better distinguish the differences, relative
normalized values are used in the figure. Higher points in every measure,
FT , FP , and Time, represent better performance.

Based on the evaluation results, the gradual improvement
from AP to HAP, HAP to ILS, and ILS to FSO, indicates a
growth in optimization power with efficient search in larger
accessible solution space. The multi-start expansion and
limited stochastic selection (by optimization parameter ofρ
(See Section IV-C3)) of HAP are effective in improving the
single-solution determinism of AP. Repetition of a modified
HAP (without limitation on ρ) through a D&R strategy also
leads to better results in ILS. However, FSO with its added SI
framework not only improves the ILS results in fitness, but
also in a much shorter time. The directed exploration of FSO
with forgetting probability decay strategy, in combination
with rewarding the success to encourage exploitation of
potent areas in the solution space, proves the effectiveness
of FSO in using SI methodology.

The flexibility of the proposed constructive metaheuristics
combined with the design of constraints handling in FSO,
provides the algorithm with a vast range of possibilities to
define special tasks and scheduling blocks, as demonstrated
in scheduling the taskseng. and Phase Curves. CRU manages
Ct by its Tabu Search, Repair maintains CB, and the
objectives are optimized by the swarm of agents in FSO.

Due to the internal cycles of Repair, building solutions in
FSO is computationally costlier than the similar process in
global optimization approaches like EA (with the crossover
and mutation), and in return, it builds better individual
solutions and reduces the number of generations. This results
in overall less computational cost than a typical global
optimization algorithm. The good results of the proposal in
the evaluation are achieved by the combination of building
high-quality starting points and a robust interaction strategy
of the swarm.

FSO consists of novel features to create a population-based
optimization from a D&R strategy that distributes the search
evenly across the tasks and exploits interesting areas found
by its agents to improve the solutions. Although it is
designed for the AOS problem, the algorithm is adaptable
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to other Combinatorial Optimization problems with similar
characteristics that aim for performance and flexibility. The
internal components of the proposal, Repair, and CRU,
contain most of the problem-specific adjustments that fit FSO
into AOS, and the swarm behavior has a generic definition.
Thus, in order to adapt FSO to other CO problems, the focus
should be on the internal components.

In addition, Repair and CRU can be replaced with
algorithms that do the same job. CRU follows a Tabu Search
methodology, as it takes steps to worsen the immediate
solutions if no improvement is found. Tabu Search is
a fast and well-established algorithm that suited AOS
characteristics the most, however, other algorithms based
on different methodologies such as Simulated Annealing
(SA) can replace CRU to fit a problem. As a constructive
metaheuristic, Repair can also be swapped with alternative
algorithms, and as long as the agents of FSO can perform their
Forget and Repair process, the swarm interaction manages
to direct the search into competent neighborhoods of the
solution space.

VII. CONCLUSION
The Astronomical Observation Scheduling (AOS) problem
relies more on computer science solutions, as its complexity
grows with new technologies and connectivities. The specific
challenges of AOS, being scalability and flexibility, add
extra criteria to evaluate an algorithm used to solve it.
The FSO algorithm presented in this paper is designed to
handle this problem and its specifics. FSO’s solution to the
scalability challenge of the AOS problem is to rely on its
global optimization of the high-level components and local
optimization of its agents’ metaheuristics. This combination
reduces the computational cost of the algorithm compared
to fully global optimizations to reach competent results,
especially on problems with less complexity.

The answer to the flexibility challenge is the different com-
ponents of FSO, which have the responsibility to maintain
solutions on different levels of the problem constraints and
facilitate the introduction of new ones. The core heuristic
component of FSO (CRU), schedules the individual tasks and
handles their constraints. This feature is used in scheduling
the engineering tasks of the Ariel problem to create a
cadence between them. The metaheuristic component of FSO
(Repair), has the responsibility to schedule dependant tasks or
scheduling blocks (B), taking into account their constraints.
Repetition of the scientific tasks in the Ariel problem is an
example of B constraints handled by Repair. Finally, the
objectives or the high-level constraints are optimized globally
by the agents of FSO.

The proposed algorithm outperforms the other implemen-
tations of the Ariel scheduler on objective completeness,
consistently throughout different scenarios. The computa-
tional cost of it, though heavier than local optimizations is
meaningfully less than the fully global optimizers such as EA.
In addition, the in-depth analysis of the FSO configuration
demonstrates how to balance the objectives’ completeness

TABLE 13. FSO terminology and denotation.

and the computational cost, and further tune the algorithm
for the different requirements of the problem.

There are several directions to continue this study.
As discussed in Section VI, exploring alternative algorithms
to Repair and CRU of FSO is deemed valuable. The
bulk of the operations in FSO takes place in the CRU
component, thus lowering the computational cost of the CRU
while maintaining its competence is a promising path to
improve FSO. Furthermore, the configuration input of the
algorithm can be embedded as a part of the scheduler and
optimization process to tune the algorithm to the desired
settings automatically. Finally, the applications of FSO on
other variations of the Combinatorial Optimization problems
could be evaluated. Comparison between a generalized
version of the proposal and the state-of-the-art solutions for
well-known examples of Combinatorial Optimization would
provide more insight into its performance.

APPENDIX
TERMINOLOGY AND DENOTATION
To improve the clarity and consistency of the algorithm
description, a set of conventions is followed. The algorithm
parameters are denoted using Greek letters (e.g. λ), while
commonly used objects, which may comprise multiple
variables and functions, are denoted using Latin letters (e.g.
A). Other variables have descriptive or abbreviated names
with all lowercase letters. The functions are also descriptively
denoted with words that start with capital letters. Table 13
describes the important denotations presented in this paper.
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