
Vol:.(1234567890)

Environment Systems and Decisions (2024) 44:980–993
https://doi.org/10.1007/s10669-024-09986-7

The value of perfect information for the problem: a sensitivity analysis

Mercedes Boncompte Pons1   · María del Mar Guerrero Manzano2 

Accepted: 10 August 2024 / Published online: 10 September 2024 
© The Author(s) 2024

Abstract
This paper examines problems in decision theory where the number of alternatives and states of nature are finite. Previous 
studies have defined the concept of “the value of perfect information for the problem” (VPIP). This metric allows us to obtain 
an upper bound on the amount a decision-maker would be willing to pay for perfect information under the specific conditions 
of a problem. This bound is particularly important when the decision is unrepeatable, providing a more accurately adjusted 
measure than the one traditionally obtained with “the expected value of perfect information” (EVPI). Supported by linear 
programming, this work proposes a sensitivity analysis of these bounds by seeking to identify the intervals in which the 
problem values can vary without essentially modifying the structure of the problem. Specifically, the study aims to determine 
how this variation might affect the EVPI and VPIP bounds, as well as the difference in the price a decision-maker would be 
willing to pay for perfect information if any of the problem values were altered. By identifying alternatives and scenarios 
taking into account the role they play in the problem, this research classifies the data involved in a finite decision problem to 
ensure the conclusions can be understood as generally as possible. Although the proposed sensitivity analysis is applied to 
the oil-drilling problem, a classic in decision theory, the conclusions of this work have potential applications in improving 
environmental decision-making processes.

Keywords  Expected value of perfect information · Value of perfect information for the problem · Decision theory · 
Sensitivity analysis · Finite decision problems · Linear programming

1  Introduction

Decisions in the field of environmental policy are sometimes 
difficult to repeat. For instance, allocating resources for bio-
diversity management in a specific protected area (Bolam 
et al. 2019) or deciding whether to invest in satellites to col-
lect data on air quality or freshwater supply (Laxminarayan 
and Macauley 2012) are critical choices. Once made, these 

decisions often have long-term impacts and may not be eas-
ily revisited, necessitating thorough consideration to ensure 
the best possible outcomes. Value of information techniques 
have proven valuable and are used in environmental deci-
sion-making, which often involves uncertainty about both 
current and future states.

“The concept of the expected value of perfect informa-
tion” (EVPI) oriented to finite decision problems was intro-
duced in the 1960s. A formula was also proposed to cal-
culate this value when the decision criterion used was the 
maximization of expected utility.

In 2018, in a paper examining the expected value of 
perfect information in unrepeatable decision-making (Bon-
compte 2018), the author demonstrated the need to define a 
concept to identify the amount a decision-maker would be 
willing to pay to have perfect information in finite decision 
problems. This would provide a more accurate amount than 
the one previously provided by EVPI. In so doing, and tak-
ing into account the specific conditions of each problem, the 
paper introduced “the value of perfect information for the 
problem” (VPIP) and described a method for calculating it. 
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However, the study lacked a sensitivity analysis indicating 
whether a variation in the problem data implied a change in 
the EVPI and VPIP bounds. So far, no sensitivity analysis 
of theoretical EVPI has been proposed in relation to finite 
decision problems. Therefore, the purpose of this paper is to 
complete the VPIP study by performing a sensitivity analy-
sis of both EVPI and VPIP values. This sensitivity analysis 
is conducted with the help of linear programming, which, 
despite being a widely used technique, is novel in this con-
text and allows for a better understanding of the analysis.

Section 2 presents a synthesis of the works that gave rise 
to the concept of EVPI while indicating the articles that 
more recently have dealt with sensitivity analysis in decision 
problems and have related it to EVPI. Section 3 restates the 
prior definitions as used in this paper. Section 4 explains the 
origin of the present reflection based on a problem for which 
EVPI gives a surprising value that is unacceptable for a sen-
sible decision-maker. Section 5 presents “the value of per-
fect information for the problem” (VPIP) and a method for 
calculating it. Section 6 constitutes the core of the present 
paper and reports the development of a sensitivity analysis 
of the EVPI and VPIP bounds. Given that modifying the 
values beyond the intervals presented would originate a dif-
ferent problem requiring a new approach, we present various 
premises to ensure that the problem keeps its essence. Fur-
thermore, we classify the data according to the role they play 
in the decision problem, and present tables to summarize 
the results. We also illustrate the sensitivity analysis by its 
application to the oil-drilling problem and, finally, discuss 
the outcomes. Section 7 concludes.

2 � Related literature

Studies on the value of information, and specifically on the 
value of EVPI, date back to 1926, when Ramsey (1926) 
wrote his note “Weight or the value of knowledge.” Almost 
thirty years later, Savage (1954) developed his Bayesian 
theory in “The Foundations of Statistics,” and it was in the 
1960s that the concept of EVPI appeared. In fact, Chernoff 
and Moses (1959) spoke of a “crystal ball,” although they 
did not develop the concept of EVPI, remaining with “ideal 
action probabilities” and defining the risk of a strategy as its 
expected opportunity cost.

Next, Raiffa and Schlaiffer (1961) defined EVPI as the 
price of perfect information and calculated it for some exam-
ples in the continuous field. Howard (1966), in his paper 
“Information Value Theory,” coined the term “clairvoyance” 
and approached the EVPI concept eliminating uncertain 
parameters. A few years later, Howard (1971) related the 
“clairvoyance” to the risk aversion of the decision-maker.

Furthermore, Szaniawski (1967), in “The Value of Per-
fect Information,” also defined EVPI for finite problems and 

considered it for the different uncertainty criteria (Maximin, 
Minimax, Laplace, etc.).

An overview of the literature on sensitivity analysis shows 
that Felli and Hazen (1998) published an analysis concern-
ing the formulation of the expected value of perfect infor-
mation. This paper, which examines the decision-making 
process in medical field, studies how the values assigned by 
the decision-maker to the uncertain input parameters affect 
the final decision. On the one hand, the authors suggest 
abandoning the measures previously used; on the other, they 
recommend using EVPI to perform the sensitivity analysis. 
Felli and Hazen distinguish between value sensitivity and 
decision sensitivity; the former refers to a modification in 
the magnitude of a model’s optimal value, given a variation 
in the input parameters, and the latter refers to the change in 
the preferred alternative identified by the model.

A year later, Hazen and Sounderpandian (1999) observed 
the behavior of other information measures in the presence 
of an uncertainty X (“the buying price” BPIX , “the certainty 
equivalent” CEX , “the utility increase” EUIX , “the certainty 
equivalent increase” CEIX , “the selling price” SPIX , and “the 
probability price” PPIX ), their possible ordinal equivalence, 
and their relationships.

More recently, Keisler (2004) identified the conditions for 
which EVPI increases when mean and standard deviation are 
both linear functions of an exogenous variable. These results 
provide a generic map of “the value of information space” 
for a significant class of decisions. Moreover, Keisler et al. 
(2014) provided an interesting paper that reviews the preva-
lence of value of information (VoI) applications reported in 
peer-reviewed literature spanning two decades (1990–2011). 
Keisler (2014) offered some later references in the same spe-
cial issue of the journal, which focused on “the value of 
information” (VoI), where several other articles applied VoI 
in environmental or ecological contexts; see, for example, 
Gradowska and Cooke (2014) and Hoang Le et al. (2014).

Many published articles use EVPI or some of its variants 
such as EVPPI (“the expected value of partial perfect infor-
mation”) or EVSI (“the expected value of sample informa-
tion”) to make decisions in different disciplines, especially 
in the medical field; see, for example, Yokota and Thomp-
son (2004), and Ekwunife and Lhachimi (2017). Zafari 
et al. (2016) use EVPI to undertake a sensitivity analysis of 
the input parameters to decide which medical treatment to 
implement.

Among the peer-reviewed articles that apply value of 
information study techniques, specifically the concept of 
EVPI, to decision-making in environmental, biodiversity, 
or ecological contexts, we can cite Bolam et al. (2019) and 
Canessa et al. (2015), who also work with EVSI.

Recently, Haag et al. (2022) employed utility theory and 
EVPPI to measure the expected gain in utility if the optimal 
alternative was decided based on perfect information about a 
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few uncertain parameters. Since data collection is time-con-
suming and expensive, they used information value analysis 
as a form of sensitivity analysis of the choice of new infor-
mation. In a similar sense, Hazen et al. (2023) introduced a 
graphical information-based tool for sensitivity analysis, the 
information density, that conveys both direction and infor-
mation value, and thereby simultaneously accounts for the 
direction and importance of input uncertainty.

In the present paper, we study how the EVPI and VPIP 
bounds vary in finite decision problems. The focus on such 
problems and the use of known a priori probabilities are 
what set this article apart from most of those quoted above. 
Our objective is to assess the difference in the price a deci-
sion-maker is willing to pay for perfect information if some 
value of the problem is altered. Thus, the purpose of this 
paper is not to analyze the sensitivity of the optimal value 
nor the optimal decision, but rather to perform a sensitivity 
analysis of the EVPI and VPIP bounds themselves, as well 
as to show that when dealing with monetary values, it is 
essential to work with the absolute values of the problem.

3 � Notation and definitions

First, let us introduce the definitions and notations that we 
will use throughout the article.

A decision problem is defined (Szaniawski 1967) as the 
ordered triple < A, S, u > , where A is the set of available 
alternatives (or actions) to the decision-maker, S is the set 
of states of nature (or scenarios) that determine the conse-
quences of any action, and u is a real function defined on 
the cartesian product AxS representing the valuation of the 
consequences. We shall restrict our attention to finite deci-
sion problems: A and S have a finite number of elements. 
Moreover, the information on S will be categorical, i.e., the 
actual state of nature will simply be a variable X defined on 
S. It is assumed that exactly one of the statements X = Si 
(read: the actual state of nature is Si ) is true, but the decision-
maker does not know which one. We do not consider the 
case in which the information is probabilistic. In that case, 
the actual state of nature would vary randomly, and X would 
be a random variable.

According to these premises, the columns represent the 
different alternatives or actions Aj ( 1 ≤ j ≤ n ), while the rows 
represent the scenarios or states of nature Si ( 1 ≤ i ≤ m ). The 
outcome of each alternative will depend on the scenario that 
occurs. The payoff with Aj in Si will be denoted as xij , and 
the probabilities pi ( 1 ≤ i ≤ m ) of occurrence of the different 
scenarios are known.

It is understood that the results of the alternatives repre-
sent the decision-maker’s profit and, therefore, the alterna-
tive with the highest expected value is the preferred alterna-
tive or the optimal action ( Aj̃ ). If the preferred alternative 

offered the best outcome in all scenarios, there would be 
no decision problem (the solution would be trivial). It is 
when the optimal action may lead to an undesirable out-
come that the decision problem makes sense. This scenario 
is known as “the worst scenario” since it is the one feared 
by the decision-maker.

Finally, we represent the best result achieved in each sce-
nario Si as x̃i , and the alternative in which this best result is 
obtained as ASi

.
Table 1 lists the notations that will be used in the present 

discussion.

4 � The need to propose a tighter bound 
than EVPI

Boncompte (2018) examined the expected value of perfect 
information in unrepeatable decision-making and high-
lighted the requirement to define a concept to identify the 
amount a decision-maker would be willing to pay to have 
perfect information in finite decision problems.

The problem that gave rise to this discussion was a classic 
one in decision theory: the oil-drilling problem. This prob-
lem appeared in Raiffa and Schlaiffer (1961), but we will 
use the updated version in Hillier and Lieberman (2015), pp. 
683–695:

The GOFERBROKE COMPANY owns a tract of land 
that may contain oil. A consulting geologist has reported 
to management that he believes there is one-in-four chance 
of striking oil. Because of this prospect, another oil com-
pany has offered to purchase the land for $90, 000 . However, 
Goferbroke is considering holding the land in order to drill 
for oil itself. The cost of drilling is $100, 000 . If oil is found, 
the resulting expected revenue will be $800, 000 , so the com-
pany’s expected profit (after deducting the cost of drilling) 
will be $700, 000 . A loss of $100, 000 (the drilling cost) will 
be incurred if the land is dry (no oil).

Table 2 provides a summary of the problem.
To solve the situation, the manager calculates the 

expected values of the two alternatives: drilling and selling.

•	 The expected drilling value = 700, 000 ∗ 0.25 − 100, 000

∗ 0.75 = 100, 000

•	 The expected selling value = 90, 000

Consequently, the manager will drill because drilling is 
the alternative with a higher expected value; then, the best 
expected value provided by alternatives (BEVA) is 100,000. 
So,

•	 The preferred alternative: Drilling.
•	 The worst scenario: Dry.



983Environment Systems and Decisions (2024) 44:980–993	

However, the manager believes that the geological study is 
not sufficient and requests a seismological one. The question 
is, if this study were completely reliable, how much would the 
manager be willing to pay for it?

The manager will be willing to pay EVPI, defined (Raiffa 
and Schlaiffer 1961) as the price of perfect information. It 
is calculated as usual (Szaniawski 1967): as the difference 
between the expected value when we have perfect information 
(EPI) and the best expected value without perfect informa-
tion (BEVA). Note that the best expected value without perfect 
information is just the expected value of the best alternative.

In our problem, if we knew we would strike oil, then we 
would drill; an outcome that will occur in 25% of cases. In 
other contingencies, we would sell ( 75% ). Then, if we had 
perfect information, our expected value EPI would be

(1)

EVPI = EPI − BEVA =

m∑
i=1

x̃ipi − E(Aj̃) =

m∑
i=1

x̃ipi −

m∑
i=1

xij̃pi

EPI = 700, 000 ∗ 0.25 + 90, 000 ∗ 0.75 = 242, 500

If we had no perfect information, our expected value would 
be the expected value of drilling (our preferred alternative). 
Then, we obtain

Consequently, considering EVPI, the answer is as follows: 
the manager would be willing to pay up to $142, 500 for 
perfect information. However, he would be unlikely to pay 
$142,500 for a study that provides perfect information, as 
this value exceeds the cost of drilling, which supplies perfect 
information par excellence. If the decision-maker resorts to 
decision theory, it is due to the cost of drilling; otherwise, if 
drilling had no cost, the company would drill and no deci-
sion problem would arise.

It is true that this high value has its origin in the oppor-
tunity cost of the drilling alternative. As usual, we refer 
to the opportunity cost ( Coij ) of the alternative Aj in the 
scenario Si as the difference between the best payoff in the 
scenario Si and the payoff that takes place with alternative 
Aj in the scenario Si:

Thus, we obtain that EVPI can also be interpreted as “the 
expected value of the opportunity cost of the preferred alter-
native,” that is, the expected value of the amount that we lose 
with the preferred alternative compared to the best option in 
each scenario (Szaniawski 1967):

EVPI = (700, 000 ∗ 0.25 + 90, 000 ∗ 0.75) − 100, 000 = 142, 500

Coij = x̃i − xij

Table 1   Notations
Aj The alternatives or actions ( 1 ≤ j ≤ n)
Si The scenarios or states of nature ( 1 ≤ i ≤ m)
pi The probability of Si
E(Aj) The expected value of Aj

xij The payoff with Aj in Si ( 1 ≤ i ≤ m , 1 ≤ j ≤ n)
x̃i The best value in Si ( 1 ≤ i ≤ m)
Aj̃ The preferred alternative or the optimal action (The alternative with the 

best expected value)
Coij The opportunity cost of Aj in Si ( 1 ≤ i ≤ m , 1 ≤ j ≤ n)
Si The worst scenario (where Aj̃ obtains its worst result)
ASi

The alternative giving the best result in scenario Si
AS The alternative giving the best result in the scenario that has been modified
xij̃ The worst payoff of the preferred alternative Aj̃

L The loss to be avoided
Pc The payment pertaining to the decision-maker in the current moment in Si
FPW The most favorable payoff in the worst scenario
EVPI The expected value of perfect information
VPIP The value of perfect information for the problem
EPI The expected value when we have perfect information
BEVA The best expected value provided by alternatives (The expected value of Aj̃)

Table 2   The oil-drilling problem

Drilling($) Selling($)

Oil (0.25) 700,000 90,000
Dry (0.75) −100,000 90,000
E(Aj) 100,000 90,000
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Table 3 presents the opportunity costs array associated with 
the problem.

It is verified that the opportunity cost of the drilling alter-
native is the same as the value of EVPI of the problem.

The value of EVPI is explained by the fact that, if the deci-
sion-maker drills and the land is dry, he loses not only the 
drilling expenses but also what could have been obtained 
from an hypothetical sale. However, even with this justifi-
cation, does it make sense to pay $142, 500 for the report? 
Boncompte (2018) highlighted that the simple calculation 
of EVPI could sometimes lead to unacceptable results for 
a decision-maker when it involves unrepeatable decisions. 
In that paper, she questioned the role of probability theory 
when applied to unrepeatable decision-making problems, 
since probability theory is based precisely on the study of 
the results obtained by repeating the same experiment a sig-
nificant number of times. For this reason, she emphasized 
that the decision-maker has to use probability theory to ini-
tially discard the alternatives that probabilistically give the 
worst results, but, from then on, the decision-maker enters 
a second phase in which he must take into consideration the 
absolute values of the problem to accept an alternative and 
make a consistent decision.

5 � The value of perfect information 
for the problem VPIP

In Boncompte (2018), a new bound called “the value of 
perfect information for the problem” (VPIP) is proposed. 
VPIP is defined as an upper bound of the set of all possible 
amounts that a decision-maker would be willing to pay in 
order to obtain perfect information considering the specific 
conditions of a problem. To ensure that the cost of the study 
is covered in all cases, VPIP takes into account not only 
EVPI but also the loss to be avoided (in the case of the oil-
drilling problem, it will be, nominally at least, the drilling 
cost) and the most favorable payoff in the worst scenario 
(in the example problem, the selling price). So, to calculate 
VPIP, three parameters should be considered: EVPI, “the 

(2)EVPI =

m∑
i=1

x̃ipi −

m∑
i=1

xij̃pi =

m∑
i=1

(x̃i − xij̃)pi

EVPI = 190, 000 ∗ 0.75 = 142, 500

loss to be avoided” (L), and “the most favorable payoff in 
the worst scenario” (FPW):

The first value to consider has to be EVPI, that has already 
been discussed in Section (4).

The second value in the equation is “the loss to be 
avoided” (L). Indeed, the decision-maker is willing to pay 
for perfect information because the alternative that is proba-
bilistically the best option could give an undesirable result in 
a certain scenario. It is precisely this outcome that leads the 
decision-maker to pay to know in what scenario he is really 
in. Logically, in no circumstances will the decision-maker 
pay an amount higher than the loss he wants to avoid. Bon-
compte (2018) provided a formula to determine the value of 
L relying not only on the worst payment associated with the 
preferred alternative but also on the payment correspond-
ing to the decision-maker in the status quo (Pc). Note that, 
although the current payout could vary depending on the 
scenarios, the current payment in the worst-case scenario is 
the only one relevant for calculating the loss to be avoided.

In the oil-drilling problem, note that, according to Eq. 4, the 
problem of determining L is actually that of determining Pc . 
If the decision-maker understands that at the current moment 
his payment is $0, then “the loss to be avoided” will be the 
drilling cost. Only if the decision-maker reckons that the sale 
of the land is a fact and considers that he has the $90,000 
in his pocket, will “the loss to be avoided" be the $190,000 
indicated by the opportunity cost, and, consequently, the 
decision-maker might be willing to pay $142,500 for per-
fect information.

The third value to consider is “the most favorable payoff 
in the worst scenario” (FPW). This value guarantees that, if 
the worst scenario were to occur, the amount the decision-
maker would pay for perfect information would not exceed 
the best payoff he could obtain in that worst scenario. In 
other words, it is a way of ensuring that the cost of the study 
is covered in all scenarios.

In the oil-drilling problem, FPW = $90, 000 because if 
the land was dry and the decision-maker had perfect infor-
mation, the chosen alternative would be to sell, and the price 
obtained from the sale would have to cover the costs of the 
study.

Then,

(3)VPIP = min{EVPI, L, FPW}

(4)L = max

{
Pc −min

i
xij̃, 0

}
= max

{
Pc − xij̃, 0

}

VPIP = min{EVPI, L, FPW}

= min{142, 500;100, 000;90, 000}

= 90, 000

Table 3   The oil-drilling 
problem. Opportunity costs

Opp. costs Drilling Selling

Oil (0.25) 0 610,000
Dry (0.75) 190,000 0
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It could be argued that, if the decision-maker’s utility func-
tion is correctly fitted with a sufficiently concave function 
to reflect his risk-averse attitude, there is no need to resort 
to the new VPIP bound; but even if we dispense with FPW 
as a more fine-tuned consideration, the absolute value of L 
should always be taken into account to verify that the value 
of EVPI obtained does not exceed L, with the chosen utility 
function. This is the same idea as in the previous section, 
which the authors wish to emphasize: when decision-making 
does not admit repetition, the absolute values of a problem 
cannot be relegated to second place.

Be aware that, of course, VPIP is still only an upper 
bound, since the decision-maker could identify other restric-
tions related to the problem that might further reduce the 
amount to pay for perfect information.

6 � Sensitivity analysis

6.1 � Approach

This section conducts a sensitivity analysis of the EVPI and 
VPIP bounds. By definition, this analysis involves “small” 
modifications that do not alter the core of the problem, as 
substantial changes would necessitate a re-evaluation from 
the start. Therefore, the following premises are suggested to 
maintain the problem’s identity. 

1.	 The preferred alternative should remain the same ( Aj̃ ), 
even though its expected value could vary.

2.	 The worst scenario should not vary ( Si ). This is the sce-
nario that the decision-maker fears the most, and it is the 
origin of the decision problem.

3.	 The alternative with the best result in the modified sce-
nario should not change ( AS ). In each scenario, the alter-
native that is originally the best should be preserved.

First, we examine how EVPI is affected by a variation in the 
problem data. Second, we analyze the effect of the modifi-
cation on VPIP and the interval within which the data can 
vary while still fulfilling the established assumptions using 
linear programming.

Linear programming is a branch of optimization theory 
that studies problems in which all the functions involved are 
linear. It consists of a variety of methods and procedures 
aimed at identifying which points maximize or minimize 
the objective function value within a set of points that meet 
all the established constraints.

For this purpose, and given the Eq. 3, we formulate a 
maximization linear programming problem with two vari-
ables (x,y), where x variable represents the value of VPIP 
and y variable is the value modified.

In this way, a linear programming problem will initially 
arise with six inequality constraints (see Table 4). The first 
three are related to the x variable and are a consequence of 
how the VPIP is defined (see Eq. 3). The last three use the 
y variable and result from imposing the above-mentioned 
three premises. In some cases, an additional restriction must 
be imposed on the y variable to prevent a loss from becom-
ing a gain or vice versa (this constraint is indicated with Neg 
or Pos as required).

By adopting this approach, a set of feasible solutions of 
two variables in ℝ2 is obtained. This outcome allows for 
the graphical representation of the maximum value of x for 
each value of y.

Sometimes, the maximum value of x is bounded by EVPI, 
while at other times it is constrained by L or FPW.

Bear in mind that the set of feasible solutions (x,y) cor-
responds to all possible variations of y in which the premises 
outlined above are respected. However, for each y0 , the set 
of feasible solutions is represented as a horizontal ray where 
the y-coordinate is y0 , and the objective is to maximize the 
x-coordinate.

This maximum value of x will be the VPIP amount, and 
therefore, also the minimum between the EVPI, L, and FPW 
values. The graphs illustrate how, for each value of y-coordi-
nate y0 , the x-coordinate can increase until it is constrained 
by the first intersecting line, whether it corresponds to EVPI, 
L, or FPW. At this point, the value of x-coordinate indicates 
VPIP.

6.2 � Classification of alternatives and scenarios

Given a decision problem with a finite number of alterna-
tives and states of nature, the values displayed in terms of 
alternatives correspond to 

1.	 The alternative with the best expected value; thus, the 
preferred alternative.

2.	 Another alternative different from the preferred alterna-
tive.

Table 4   Linear programming problem

Max x
x ≤ EVPI EVPI (1)
x ≤ L L (2)
x ≤ FPW FPW (3)
The preferred alternative should remain the same (y) Aj̃ (4)
The alternative with the best result in the modified 

scenario should not vary (y)
AS (5)

The worst scenario should not vary (y) Si (6)
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Among the columns representing the different alterna-
tives, there is one that represents the preferred alternative. 
According to the established premises in 6.1, when a data 
point in this column is changed, it must be considered that 
it is the preferred alternative and must remain so.

In the case of states of nature or scenarios, two options 
arise: 

1.	 The worst scenario.
2.	 A scenario other than the worst scenario.

Among the rows representing the different scenarios, 
there is one showing the worst scenario. When the value 
being modified belongs to this row, it should be consid-
ered that the preferred alternative must still obtain its 
worst result in that scenario.

Another case arises when the modified value is the best 
in its scenario. In this situation, whether it corresponds to 
the preferred alternative or not, the alternative in which 
this best result is obtained must remain the same.

6.3 � Sensitivity analysis of EVPI

Recall that EVPI is the difference between “the expected 
value with perfect information” (EPI) and “the expected 
value of the preferred alternative” (BEVA)(see Eq. 1). 
Therefore, note that EVPI does not vary when the modi-
fied y value meets the following: 

1.	 It belongs to the preferred alternative and is the best 
outcome of its scenario. This is because the y value will 
intervene equally in both EPI and BEVA, and conse-
quently, will not affect the final result.

2.	 It neither belongs to the preferred alternative nor is the 
best result of its scenario. This is because y value will 
not be relevant in the EVPI calculation.

In all other cases, the amended y value is only involved 
in a single summand of EVPI. So, if it corresponds to an 
alternative that is not the preferred one but is the best 
result for its scenario, then

because the variation occurs in EPI.
However, if it corresponds to the preferred alternative 

but is not the best result for its scenario, then

for the reason that the variation occurs in BEVA, which is 
subtracted.

ΔEVPI = Δy ∗ pi

ΔEVPI = −Δy ∗ pi

Let us also recall that the variation has to respect the 
established premises in Sect. 6.1.

6.4 � Sensitivity analysis of VPIP

Section 6.3 has shown the cases in which EVPI changes. 
However, it remains to be determined in which situations L 
and FPW can vary.

In accordance with Eq. 4, the data that might cause a 
variation in L are

•	 The minimum payment associated with the preferred 
alternative, i. e., the payment associated with the pre-
ferred alternative in the worst scenario.

•	 The data belonging to alternatives other than the pre-
ferred alternative, representing the current payment in 
the worst scenario (note that this may or may not be the 
best result for its scenario).

The data that might cause a variation in FPW are

•	 The data belonging to alternatives other than the pre-
ferred alternative, which are also the best result for the 
worst scenario.

Note that the data that may cause L and FPW to vary are the 
worst scenario’s data.

Table 5 summarizes the situation of the data that may lead 
to a variation in EVPI, L, FPW, and VPIP. The modified data 
point is labeled as y. Note that this table constitutes the core 
of this work and contains its main results.

Respecting the established premises, the problem data 
can swing between the intervals shown in Table 6.

6.5 � Examples

Below, by way of illustration, we apply the sensitivity analy-
sis developed in the present article to the oil-drilling prob-
lem. Let us recall, according to Sect. 4 and Table 2:

•	 Preferred alternative: Drilling.
•	 The worst scenario: Dry.
•	 VPIP = min{EVPI, L,FPW} = min{142, 500;100, 000;90, 000} = 90, 000

6.5.1 � Variation in the value of the preferred alternative 
belonging to the worst scenario

Let us consider the drilling cost. In what range can this cost 
vary so that the problem does not change in essence? How 
would this affect VPIP? In this case, the proposed amend-
ment corresponds to “the preferred alternative" in “the worst 
scenario." Table 7 shows the location of the y data point that 
will be modified.
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In such circumstances, apart from respecting the premises 
of Section 6.1, the problem as stated does not allow replac-
ing the −$100, 000 , which represents the drilling cost, with 
a positive amount. Consequently, as indicated there, a new 
constraint (Neg) must be added to maintain y as a negative 
value. However, if for some reason y were to take a positive 
value, consider also that the loss to be avoided would be 0 
according to Eq. 4.

Thus, the linear programming problem emerging would 
be the one presented in Table 8 and represented graphically 
in Fig. 1.

Table 5   Variation of EVPI, L, FPW, and VPIP according to the situation of the y data point that is modified

Note: The worst scenario is defined as the scenario in which the preferred alternative gives its worst result. However, this
does not rule out the possibility that it could, in fact, be the best result for that scenario. Nevertheless, in this case, there would
not be any decision problem, since the preferred alternative would also offer the best result
even in the most feared scenario for the decision-maker. For this reason, the possibility of being in the worst scenario
is not considered when modifying a data point in the preferred alternative that is also the best result for that scenario

y is a data point that belongs y is a data point that belongs to an
to the preferred alternative alternative other than the preferred alternative

EVPI does not vary ΔEVPI = Δy ∗ pi

y is the scenario’s

best result L and FPW do not vary: L1 and FPW1 do not vary
VPIP does not vary

y is not the scenario’s ΔEVPI = −Δy ∗ pi EVPI does not vary
best result L2 and FPW do not vary L3 and FPW do not vary:
(other scenario values) VPIP does not vary

1- If y corresponds to the worst scenario, FPW varies and L may vary (only when Pc = FPW).
2- If y corresponds to the worst scenario, L varies, except in the case where the original value of xij̃ is positive
and the modified value is also positive, since in both cases L would be 0.
3- If y corresponds to the worst scenario and Pc ≠ 0 and Pc ≠ FPW , L could vary, and thus, VPIP too.

Table 6   Intervals in which the modified y data point can swing respecting the established premises

y is a data point that belongs y is a data point that belongs to an
to the preferred alternative alternative other than the preferred alternative

y can increase indefinitely y can increase as long as it does not
become the preferred alternative

y is the scenario’s
best result y can fall as long as it remains y can fall as long as it remains

∙ the preferred alternative ∙ the scenario’s best result
∙ the scenario’s best result

y1 can increase as long as it does not y can increase as long as it does not
y is not the scenario’s become the scenario’s best result become the preferred alternative or
best result the scenario’s best result

y can fall as long as it remains y can fall indefinitely
∙ the preferred alternative

1- If y belongs to the worst scenario, it can increase as long as it remains the worst scenario.

Table 7   The oil-drilling problem.  Variation in the value of the pre-
ferred alternative (Drilling) belonging to the worst scenario (Dry)

Drilling($) Selling($)

Oil (0.25) 700,000 90,000
Dry (0.75) y 90,000
E(Aj) 175,000+0.75y 90,000
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The shaded area indicates the set of feasible solutions 
(x, y) formed by all points whose coordinates satisfy all the 
constraints. Therefore, for each value y0 that satisfies the 
premises of Section 6.1, the maximum value of x that is less 
than or equal to EVPI, L, and FPW is the x-coordinate of the 
point (x, y0) that lies on the boundary of the feasible solution 
set and maximizes the x-coordinate values.

Figure 1 shows that as long as the drilling cost is less than 
$90, 000 (the land selling price), VPIP will be given by the loss 
to be avoided, which will match the drilling cost:

Also, when the drilling cost is between $90, 000 and $113, 300 , 
VPIP will indicate that the maximum amount that can be spent 
on perfect information cannot exceed $90, 000 (FPW), which 
is the amount that could be obtained from the sale.

A drilling cost higher than $113, 300 would not respect the 
premises of Sect. 6.1, since drilling would no longer be the 
preferred alternative. Therefore, considering VPIP as a func-
tion of the drilling cost (y), which is the value we modify, 
we can write

VPIP = L = −y y ∈ [−90, 000;0]

VPIP = FPW = 90, 000 y ∈ [−113, 300; − 90, 000]

Figure 2 explains that the horizontal ray represents all 
the points in the feasible solution set where the drilling 
cost is $100, 000 . These are points of the form (x,−100) , 
where the y-coordinate is fixed at the cost of interest for 
us. The objective of the linear problem is to maximize the 
x-coordinate within the feasible set. The arrows indicate 
the direction in which the x-coordinate grows. The point at 
which it reaches the maximum value is (90,−100) . At this 
point, the feasible set is bounded by the constraint FPW. 
Hence, the value of the x-coordinate gives us VPIP for the 
drilling cost of $100, 000 (in the graphical representation, 
it is denoted by VPIP∗ ). It also represents how much could 
the x-coordinate grow if we ignore the FPW limit and it 
continues moving forward until reaching the EVPI limit at 
the point (142.5, -100). Again, the x-coordinate gives us 
the value of EVPI for the drilling cost of $100, 000 (in the 
graphical representation, it is denoted by EVPI∗).

By varying the drilling costs within the feasible set, all 
the values of the VPIP bound will be found. The whole 
VPIP bound is represented by a line of large dots. Observe 
that the specific values taken by VPIP and EVPI when the 
cost of drilling is $100, 000 are located on the x-axis.

Also, note that in the graphical representation the VPIP 
function appears rotated (symmetric with respect to the 
y-axis) since y is the independent variable.

VPIP(y) =

⎧
⎪⎨⎪⎩

FPW = 90, 000 y ∈ [−113, 300; − 90, 000]

L = −y y ∈ [−90, 000;0]

Table 8   Linear programming 
problem that determines the 
value of VPIP when the drilling 
cost varies

Max x
x + 0.75y ≤ 67, 500 EVPI (1)
x + y ≤ 0 L (2)
x ≤ 90, 000 FPW (3)
y ≥ −113, 300 Aj̃ (4)
y ≤ 90, 000 AS (5)
y ≤ 0 Neg (6)

Fig. 1   Graphical representation of the linear programming prob-
lem that determines the value of VPIP when the drilling cost varies. 
Amounts are expressed in thousands of dollars

Fig. 2   Graphical representation of the VPIP and EVPI values when 
the drilling cost is $100, 000 . These values are denoted by VPIP∗ and 
EVPI

∗, respectively. Amounts are expressed in thousands of dollars
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6.5.2 � Variation of the value that gives the best result 
in the worst scenario (and, therefore, belongs 
to a non‑preferred alternative).

Now, it is proposed to vary the price of the possible sale. 
In this case, it represents the best outcome of the worst 
scenario and the change affects both scenarios.

Table 9 shows the location of the y data point that will 
be modified.

Similar to the previous case and as indicated in 
Sect. 6.1, a constraint (Pos) must be added to ensure that 
the selling price is positive. The corresponding linear pro-
gramming problem is presented in Table 10 and repre-
sented graphically in Fig. 3.

It is shown how the selling price could increase up to 
$100,000, as above this value the preferred option would 
be to sell. Also, VPIP will be given by FPW, which will 
grow with the value of the sale:

Analogous to the previous subsection, the horizontal 
ray represents all the points in the feasible solution set 
where the selling price is $90, 000 . These are points of 
the form (x, 90) at which the y-coordinate is fixed at the 
selling price of interest for us. The objective of the lin-
ear problem is to maximize the x-coordinate within the 
feasible set. The arrows indicate the direction in which 
the x-coordinate grows. The point at which it reaches the 
maximum value is (90, 90). At that point the feasible set 
is bounded by the constraint FPW. Therefore, the value 
of the x-coordinate gives us VPIP for the selling price 
of $90, 000 (in the graphical representation, it is denoted 
by VPIP∗ ). It also represents how much the x-coordinate 
could grow if we ignore the FPW limit and it continues 
moving forward until reaching the EVPI limit at the point 
(142.5, 90). Again, the x-coordinate gives us the value 
of EVPI for the selling price of $90, 000 (in the graphical 
representation, it is denoted by EVPI∗).

VPIP = FPW = y y ∈ [0;100, 000]

6.5.3 � Variation in the value of the preferred alternative 
yielding the scenario’s best result

We only need to consider the interval in which the profit of 
$700, 000 might oscillate and how this would affect VPIP. 
This is the case of “the preferred alternative” and “the sce-
nario’s best result.” Table 11 shows the location of the y data 
point that will be modified.

According to Tables 5 and 6, this profit can rise indefi-
nitely without changing EVPI or VPIP. However, it can only 
fall to $660, 000 because at this point the expected value of 
the drilling alternative is equal to the expected value of the 
selling alternative, and below it, drilling would cease to be 
the preferred alternative. Additionally, $660, 000 remains the 
best result if oil is struck (Fig. 4).

The linear programming problem that arises is described 
in Table 12 and represented graphically in Fig. 5.

In this case, note that for any value of y higher than 
$660, 000 , VPIP is given by the vertical FPW = $90, 000 . 
The profit obtained by striking oil may vary in the inter-
val [660,000; + ∞ ]. Then, the premises will be met, and the 
value of VPIP will be maintained at $90, 000.

Table 9   The oil-drilling problem.  Variation of the value that gives 
the best result in the worst scenario (Dry) and, therefore, belongs to a 
non-preferred alternative (Selling)

Drilling($) Selling($)

Oil (0.25) 700,000 y
Dry (0.75) −100,000 y
E(Aj) 100,000 y

Table 10   Linear programming problem that determines the value of 
VPIP when the selling price varies

Max x
x − 0.75y ≤ 75, 000 EVPI (1)
x ≤ 100, 000 L (2)
x ≤ y FPW (3)
y ≤ 100, 000 Not Aj̃ (4)
y ≥ −100, 000 AS (5)
y ≥ 0 Pos (6)

Fig. 3   Graphical representation of the linear programming prob-
lem that determines the value of VPIP when the selling price varies. 
Amounts are expressed in thousands of dollars
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So,

6.5.4 � Sensitivity analysis in linear programming

Since linear programming is a widespread technique with 
many applications, there are plenty of refined tools that 
develop it. One of them is the Solver add-in in Excel, which 
solves linear programming problems and provides sensitiv-
ity analysis tables. Table 13 is obtained by Solver for the 
linear programming problem in Table 8 with the difference 

VPIP = FPW = 90, 000 y ∈ [660, 000; +∞]

that the drilling cost has been set at $100, 000 and the last 
three constraints have been eliminated. We use $1, 000 as 
monetary unit.

In this table, it can be noticed that there is only one 
saturated constraint (the one corresponding to FPW) and 
that its shadow price is 1. This means that if the selling 
price increases by 1 unit, VPIP also increases by 1 unit. 
These results are in agreement with what we have already 
seen in Sect. 6.5.1, since we argued that in the interval 
[−113, 300; − 90] , VPIP meets FPW. In the “allowable 
increase” column, the table also indicates that the increase 
margin for the independent term of the third constraint 
(FPW) is 10 units. Indeed, it is clear from Fig. 2 that keep-
ing the horizontal y0 = −100 , the distance between FPW 
and L is 10 units. If the increase was more than 10 units, the 
constraint that would become saturated would be L.

Therefore, the manager of Goferbroke, taking into 
account Sect. 6.5.1 and Table 13, will know that as long as 
the drilling cost exceeds the offered price to purchase the 
land, the optimal value of the linear programming problem 
(VPIP) will coincide with the selling price (FPW), which 
is the only saturated constraint. That is, he will understand 
that the purchase price of the land indicates the maximum 
amount he would be willing to pay for perfect information. 
However, he will note that if the drilling cost is lower than 
the selling price, VPIP will coincide with the drilling cost, 
and thus, the manager will never pay an amount higher than 
the drilling cost for perfect information.

The “allowable increases” indicate to the manager the 
margin between one situation and another. In this case, since 
the drilling cost (L) has been set at $100, 000 and the selling 
price (FPW) at $90, 000 , it is only allowed to increase the 
selling price by the difference ( $10, 000 ), which is the value 

Fig. 4   Graphical representation of the VPIP and EVPI values when 
the selling price is $90, 000 . These values are denoted by VPIP∗ and 
EVPI

∗, respectively. Amounts are expressed in thousands of dollars

Table 11   The oil-drilling problem. Variation in the value of the pre-
ferred alternative (Drilling), which is also the best result in its sce-
nario (Oil)

Drilling($) Selling($)

Oil (0.25) y 90,000
Dry (0.75) −100,000 90,000
E(Aj) 0.25y-75,000 90,000

Table 12   Linear programming 
problem that determines the 
value of VPIP when the profits 
from striking oil vary

Max x
x ≤ 142, 500 EVPI (1)
x ≤ 100, 000 L (2)
x ≤ 90, 000 FPW (3)
y ≥ 660, 000 Aj̃ (4)
y ≥ 90, 000 AS (5)

Fig. 5   Graphical representation of the linear programming problem 
that determines the value of VPIP when the profits from striking oil 
vary. Amounts are expressed in thousands of dollars
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indicated in the “allowable increase.” In other words, if the 
selling price increases by more than $10, 000 , the optimal 
VPIP would no longer be given by the selling price (FPW) 
but by the drilling cost (L). The shadow price allows us 
to calculate how much VPIP will vary if the selling price 
changes within this interval:

ΔVPIP = Shadow price * Δ Selling price
In this case, the shadow price equal to 1 indicates that if 

the selling price increases by x units, VPIP will also increase 
by x units.

The sensitivity analysis we offer applied to the oil-drilling 
problem could be reproduced with respect to politically chal-
lenging environmental problems, such as those related to the 
so-called “creative destruction” (Kivimaa and Kern 2016) 
within the scope of the phase-out to achieve decarbonisation 
(Trencher et al. 2022). If we manage to reduce these prob-
lems, which involve decisions that are difficult to repeat, to 
their basic structure, we facilitate their understanding and 
decision-making.

6.5.5 � Distance between EVPI and VPIP bounds 
in the oil‑drilling problem

Finally, the following table shows the values EPI, BEVA, 
EVPI, and VPIP for different drilling costs (keeping the orig-
inal values of profit and selling price fixed). Two columns 

are added to indicate the difference between EVPI and 
VPIP, as well as the ratio between EVPI and the drilling 
cost (Table 14).

It should be noted that from a drilling cost of $90, 000 , 
the lower the cost, the greater the difference between EVPI 
and VPIP. This is clearly seen in Figs. 1 and 2. If the price 
of drilling were $10, 000 , would the decision-maker be will-
ing to pay for perfect information 7.5 times the drilling cost? 
And if drilling were free, would the decision-maker be will-
ing to pay just anything for perfect information? Certainly 
not up to three-quarters of the land’s offer price.

EVPI is only an indicator of the value of information, but 
cannot be considered the maximum value that a decision-
maker would be willing to pay for perfect information. The 
primary objective of our study was to highlight the impor-
tance of absolute values when making difficult to repeat 
decisions.

7 � Conclusions

The concept of VPIP defined in Boncompte (2018) has been 
expanded with a sensitivity analysis of the EVPI and VPIP 
bounds in the field of finite decision problems using known 
a priori probabilities.

This paper has consolidated the terms defined in Bon-
compte (2018) to identify decision alternatives and scenarios 

Table 13   Sensitivity analysis 
obtained with the Solver 
add-in in Excel for the linear 
programming problem in 
Table 8 setting the drilling cost 
at $100, 000

 Variable cells Allowable

Cell Name Final Value Reduced Cost Objective Coef-
ficient

Allow-
able Increase

Allowable  
Decrease

C15 x 90 0 1 1E+30 1
D15 y −100 0 0 1E+30 0

 Constraints Allowable

Cell Name Final Value Shadow Price Constraint  
R.H.Side

Allowable  
Increase

Allowable  
Decrease

EVPI ≤ 15 0 67.5 1E+30 52.5
L ≤ -10 0 0 1E+30 10
FPW ≤ 90 1 90 10 1E+30

Table 14   Comparison between 
the values obtained for EVPI 
and VPIP in the oil-drilling 
problem (Table 2) when the 
drilling cost is varied

Drilling cost EPI BEVA EVPI VPIP Difference EVPI/
drilling 
cost

100,000 242,500 100,000 142,500 90,000 52.500 1.425
90,000 242,500 107,500 135,000 90,000 45,000 1.5
40,000 242,500 145,000 97,500 40,000 57,500 2.44
10,000 242,500 167,500 75,000 10,000 65,000 7.5
0 242,500 175,000 67,500 0 67,500
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which allow us to classify the data of a finite decision prob-
lem according to the roles played in it. At the same time, 
the sensitivity analysis has been presented as generally as 
possible through this classification.

First of all, some premises have been established to pre-
vent the problem from losing its essence when proposing 
modifications that exceed the limits associated with a sen-
sitivity analysis. Within these conditions, we have studied 
how data variations can influence EVPI. It is also shown 
that EVPI does not change when a data point that belongs 
to the preferred alternative and is the best result of its sce-
nario is modified within the allowed range. Nor does EVPI 
change when the variation affects a data point belonging 
to a non-preferred alternative that is also not the scenario’s 
best result. In all other cases, the variation in the absolute 
value of EVPI is directly proportional to the probability of 
the scenario to which the modified data point corresponds.

Next, to observe how varying a data point in the problem 
changes VPIP, we have addressed a linear programming 
problem with just two variables (x, y). The x variable repre-
sents the VPIP value and the y variable is the data point to 
be modified. Moreover, it has been explained that a proper 
reading of the graphical resolution of this problem will indi-
cate the behavior of VPIP in each case. It is worth noting the 
novelty of using linear programming to study the behavior 
of these bounds.

Furthermore, the presentation of the results has been 
completed with two tables, whose entries depend on the role 
played in the problem by the data point to be modified. In 
the first table, it is displayed how the variation of this data 
point affects both EVPI and VPIP. In the second one, the 
boundaries of the interval within which the data point can 
oscillate are fixed while respecting the established premises.

Finally, all of the foregoing has been illustrated by apply-
ing the sensitivity analysis to the oil-drilling problem. The 
comparison between the values obtained for EVPI and VPIP 
in this example is particularly interesting. This comparison 
underscores the need to use a more adjusted value than EVPI 
when attempting to determine how much the decision-maker 
would be willing to pay for perfect information. In the spe-
cific case of the oil-drilling problem, it is noted that if the 
cost of drilling were only $10, 000 , EVPI would be $75, 000 . 
Therefore, EVPI would give a value 7.5 times higher than 
the loss that the decision-maker wants to avoid by resorting 
to decision theory. Thus, the aforementioned reiterates the 
requirement to consider the absolute values of the problem 
when decisions are difficult to repeat. This is especially 
important in the environmental context, where many factors 
come into play and data are often provided in the form of 
indices and percentages. We believe that reducing the prob-
lem to its basic structure, properly presenting alternatives 
and scenarios, taking absolute values into account, and con-
sidering the reflections on the concept of VPIP as discussed 

in this article can enhance the acquisition of appropriate 
information and, ultimately, facilitate decision-making.
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