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Voxel-level analysis of normalized DSC-PWI time-intensity curves: a potential 
generalizable approach and its proof of concept in discriminating glioblastoma 
and metastasis 

 

ABSTRACT 

OBJECTIVE 

Standard DSC-PWI analyses are based on concrete parameters and values, but an 

approach that contemplates all-points in the time-intensity-curves and all-voxels in the 

region-of-interest may provide improved information, and more generalizable models. 

Therefore, a method of DSC-PWI analysis by means of normalized time-intensity-curves 

point-by-point and voxel-by-voxel is constructed, and its feasibility and performance are 

tested in presurgical discrimination of glioblastoma and metastasis. 

METHODS 

In this retrospective study, patients with histologically confirmed glioblastoma or solitary-

brain-metastases and presurgical-MR with DSC-PWI (August2007–March2020) were 

retrieved. The enhancing-tumor and immediate-peritumoral-region were segmented on 

CE-T1wi and coregistered to DSC-PWI. Time-intensity-curves of the segmentations 

were normalized to normal-appearing-white-matter. For each participant, average and 

all-voxel-matrix of normalized-curves were obtained. The 10 best discriminatory time-

points between each type of tumor were selected. Then, an intensity histogram analysis 

on each of these 10 time-points allowed the selection of the best discriminatory voxel-

percentile for each. Separate classifier models were trained for enhancing-tumor and 

peritumoral-region using binary logistic regressions.  

RESULTS 

A total of 428 patients (321glioblastomas, 107metastases) fulfilled the inclusion criteria 

(256men; mean-age, 60years; range, 20-86years). Satisfactory results were obtained to 

segregate glioblastoma and metastases in training and test sets with AUCs 0.71-0.83, 

independent accuracies 65%-79%, and combined accuracies up to 81%-88%. 

CONCLUSION 

This proof-of-concept study presents a different perspective on brain MR DSC-PWI 

evaluation by the inclusion of all-time-point of the curves and all-voxels of segmentations 

to generate robust diagnostic models of special interest in heterogeneous diseases and 

populations. The method allows satisfactory presurgical segregation of glioblastoma and 

metastases.  
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KEY POINTS 

 An original approach to brain MR DSC-PWI analysis, based on a point-by-point 

and voxel-by-voxel analysis of normalized time-intensity curves is presented. 

 The method intends to extract optimized information from MR DSC-PWI 

sequences by impeding the potential loss of information that may represent the 

standard evaluation of single concrete perfusion parameters (cerebral blood 

volume, percentage of signal recovery, or peak height) and values (mean, 

maximum or minimum). 

 The presented approach may be of special interest in technically heterogeneous 

samples, and intrinsically heterogeneous diseases. Its application enables 

satisfactory presurgical differentiation of GB and metastases, a usual but difficult 

diagnostic challenge for neuroradiologist with vital implications in patient 

management. 

 

ABBREVIATIONS 
CBV cerebral blood volume 

ET enhancing tumor 

NAWM normal-appearing white matter 

nTIC  normalized time-intensity curve 

PH peak height 

PR peritumoral region 

PSR percentage of signal recovery 

TIC time-intensity curve 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



3 
 

INTRODUCTION 

Presurgical diagnosis of brain tumors is of vital importance for patient management. 
While histopathology remains the final reference standard, the presurgical approach 
mainly lays on neuroimaging with Magnetic Resonance (MR) as the lead actor. In this 
sense, one of the most challenging differentials for neuroradiologists is glioblastoma 
(GB) versus solitary brain metastasis, the two most common malignant intracranial 
tumors in adults[1, 2]. It is a cause of frequent debate in neurooncology units, whether 
the patient has a known extracranial primary tumor or not. The ability to presurgically 
differentiate these two entities will significantly impact further steps on therapeutic 
decisions[3–8]. Consequently, achieving the highest diagnostic accuracy with non-
invasive assays is an unmet critical need in the clinical practice.  

Unfortunately, both tumor types are highly heterogeneous in their presentations, and 
morphological MR is too often limited to reach a trustable diagnosis[9, 10]. For this 
reason, the use of so-called “advanced” or “functional” MR-imaging techniques in this 
context has been growing in recent years. These techniques go beyond morphology to 
offer information on the metabolic, cellular, or vascular environment levels. One of these 
MR techniques is Dynamic Susceptibility Contrast- Perfusion Weighted Imaging (DSC-
PWI), which has shown promising results for the diagnosis of brain tumors[11–13].  

DSC-PWI has been correlated with different histological features of tumor 
vascularization, microvascularity and blood-brain-barrier integrity[14–20]. In this respect, 
prior work has shown that tumor vasculature significantly differs between glioblastoma 
and metastasis. GB is characterized by heterogeneous blood-brain-barrier disruption, 
while in metastasis, blood-brain-barrier is absent and angiogenesis is the predominant 
phenomenon. Regarding the peritumoral-region, metastases cause pure vasogenic 
edema, while in GB, infiltrative tumor cells may be found among edema[11, 21–24]. 
DSC-PWI exploits these tissular characteristics to try to monitor and discriminate 
different tumor types and environments. 

Many authors have tried to presurgically differentiate GB and metastasis based on DSC-
PWI[25, 26, 35–41, 27–34]. Among the different studies, many different perfusion 
parameters are used, with a high heterogeneity in the results and thresholds. The most 
evaluated classical parameters are cerebral blood volume (CBV), percentage of signal 
recovery (PSR), and peak height (PH). These are all extracted from DSC-PWI time-
intensity curves (TICs). Prior work has suggested that analyzing and comparing the 
entire TIC instead of these concrete parameters may provide better information, by 
means of normalized TICs (nTICs) that can be compared individually or combined to 
train predictive models[42].  

Furthermore, the standard parameters are usually evaluated in terms of mean or extreme 
(minimum or maximum) values obtained from the voxels in the region of interest (ROI). 
We consider this kind of approach further discards potentially useful information by not 
accounting for atypical distributions of these parameters. This atypical spatial distribution 
of perfusion may be, actually, common in some cases of predominant heterogeneity, as 
the current scenario of GB and metastases, which are proved highly heterogeneous 
tumors on histology[21–24].   

We hypothesize that the study of the entire nTIC and the whole range of voxels included 
in the volumetric segmentations of enhancing tumor and peri-enhancing region could 
provide more accurate tissue characterization and improve tumor classification. 
Furthermore, the use of normalized perfusion data and model training based on all-
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timepoints and all-voxels offers a new perspective in MR-perfusion imaging which should 
facilitate the construction of more robust and generalizable models than isolated 
parameters such as CBV, PSR or PH, by being able to take into account tumoral and 
technical heterogeneity more completely. 

With these considerations in mind, we aim to present this novel method of DSC-PWI 
nTICs percentile histogram voxel-level analysis and test it for the clinical discrimination 
of glioblastoma and metastasis. 

 
MATERIAL AND METHODS 

This work was approved by the Research Ethics Committee of Hospital Universitari de 

Bellvitge. A waiver of a specific informed consent was provided by the ethics committee 

for this retrospective study. 

Patients 

Newly diagnosed patients with histologically confirmed GB or solitary brain metastases 
(August 2007–March 2020) were retrospectively retrieved from our center’s database. 
Inclusion criteria for the study were as follows: 1) confirmed tumor diagnosis by histology 
according to The World Health Organization 2007 or 2016 criteria[43, 44], 2) an available 
diagnostic presurgical MR imaging examination including DSC-PWI and contrast-
enhanced T1WI (CE-T1WI), 3) enhancing tumor on CE-T1WI with the shortest diameter 
of at least 10 mm.  

Imaging 

All the MR imaging examinations included in the study were acquired in the same 
hospital with 1 of 3 different scanners: Ingenia 3T with a 32-channel head coil, Ingenia 
1.5T, or Intera 1.5T both with a 16-channel head coil (Philips Healthcare). Acquisition 
parameters for DSC-PWI (all gradient echo) and CE-T1WI sequences are summarized 
in Supplemental Table1, and DSC-PWI technique distribution between groups is 
specified in Supplemental Table2. The intravenous contrast (gadobutrol; 1 mmol/mL, 0.1 
mmol/kg) injection protocol was as follows: 18- or 20-ga peripheral intravenous access. 
No preload was performed. Baseline acquisition was on the order of 10 points. The 
automatic injection start (power injector at 4–5 mL/s) was by a manual setting. A final 
bolus of saline (25–50 mL) was injected at the same speed. The time and number of 
dynamics ranged from 1.26 to 3.55 seconds and 30 to 60, respectively. The quality of 
the sequences was evaluated by visual inspection by 2 neuroradiologists (A.P.-E. and 
C.M.) with more than 6 and 25 years of experience in MR imaging of brain tumors. The 
examinations were labeled as poor quality and excluded from the study under the 
following circumstances: 1) artifacts prevented enhancing tumor segmentation on CE-
T1WI or coregistration of CE-T1WI and DSC-PWI, or 2) an obvious low signal-to-noise 
ratio was observed in the raw TICs. 

Postprocessing 

The enhancing tumor (ET) and contralateral normal-appearing-white-matter (NAWM) 
were segmented on CE-T1WI using a supervised semiautomatic volumetric method with 
histogram thresholding and morphologic operations. The peritumoral region (PR) 
segmentation included a 2 cm wide rim of brain parenchyma immediately around the ET, 
excluding ventricles and extraaxial spaces and structures. Segmentations were then 
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coregistered with DSC-PWI. Necrosis was excluded from the segmentations as it is 
avascular tissue which does not generate time-intensity curves. A 2 cm rim of PR was 
used because this is the distance around the enhancing tumor where it is assumed that 
most brain microinfiltration occurs in GB, and which is consequently used for concomitant 
radiotherapy planning as the “safety-margin” to be treated[45–48]. We used 
semiautomatic volumetric segmentations instead of partial, manual, or single-section 
ROI selection methods in order to minimize operator-dependency as well as to include 
all the intrinsic heterogeneity of the tumors in the analysis. 3D Slicer, Version 4.10 
(http://www.slicer.org) was used for segmentation, and the BRAINSFit module of 3D 
Slicer, for coregistering. 

All TICs included for analysis were normalized following the method proposed by Pons-
Escoda et al [42], generating multiple normalized TICs (nTICs). For each participant, we 
obtained the following nTICs: average curve of all ET voxels, average curve of all PR 
voxels, a matrix of nTICs for all segmented voxels in the ET, and another matrix in the 
PR. The matrices had as many nTICs as voxels included in the segmentations. All 
resultant nTICs are superimposable and comparable between patients in a single graph, 
as they are composed of the same number of time-matching points and intensity units 
normalized to NAWM.  

The TICs were processed using Python 3.6 software (https:// 
www.python.org/downloads/release/python-360/). 

Data Analysis 

The study sample was split into “training” (70%) and “test” (30%) subsets. The groups 
were balanced by date of examination to minimize the impact of quality and technical 
differences between TICs of the more distant-in-time exams. 

The 10 best discriminatory time-points were selected by performing area under the 
curve-receiver operating characteristic (AUC-ROC): the analysis was performed for all 
time-points on the segmentation-average ET and PR nTICs of the training subset, and 
those 10 points with the highest AUC were the chosen. Ten was selected semi-arbitrarily 
as the highest number of information to be included with acceptable AUC-ROCs and 
while avoiding overtraining[49, 50].  

Then, an intensity histogram analysis was performed on each of these 10 time-points to 
select the voxel percentile which showed greater differences between groups. This 
produced 10 histograms for ET segmentation and 10 for the PR segmentation (1 
histogram for each discriminatory time-point). These histograms depict the signal-
intensity distribution of all the voxels included in the segmentations for each 
discriminatory time-point. For each time-point, the voxel percentile that showed greater 
differences between tumor-types was selected. 

Subsequently, separate classifier models were trained for the ET and PR segmentations 
using binary logistic regression on these 10 variables on the “training” subset. The best 
discriminatory thresholds of the algorithms were obtained by receiver operating 
characteristic (ROC) analysis. Finally, the constructed classifiers and thresholds were 
applied to the “test” set.  

Additionally, we also analyzed the classification performance of average nTICs, in order 
to compare the present method with a previous method that compared average nTICs, 
without performing the voxel- level percentile histogram-intensity analysis[42]. 
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All the statistical computations were performed with R statistical and computing software, 
Version 3.5.1 (http://www.rproject.org). 

RESULTS 

Patients 

A total of 428 patients (321 glioblastomas and 107 metastases) fulfilled the inclusion 
criteria (256 men; mean age, 60 years; range, 20-86 years). A partial overlap of 48 
glioblastomas and 49 metastases which participated in a prior published study with 
different objectives and methodology[42] is reported. The flow diagram of study 
participants is shown in Figure1. Demographics of the study sample are summarized in 
Table1. Three GBs and 3 metastases were ruled out by the quality filter. As a result, 318 
GB and 104 metastases were included in the final dataset (total n=422). The Metastases 
dataset was split into training (70%) and test (30%) subsets. The same resultant number 
of GB were included in the training set, and the remaining number was left for testing. 
Our intention with this was to avoid overweighting of the classifier to the most prevalent 
tumor type (glioblastoma) in our set. The resultant subsets were as follows: training, 73 
GB and 73 metastases; test, 245 GB, and 31 metastases. The lesser proportion of 
metastases is justified by the fact that only single or grouped oligometastases, which 
hypothetically created real diagnostic doubts on daily practice, were included in the 
study. 

nTIC and Percentile Histogram Analysis 

Average ET and PR nTICs for each tumor type and the 10 discriminatory time-points are 
shown in Figure2. Notable differences were found between each tumor type nTICs on a 
first visual assessment. The most obvious were around the maximal signal intensity drop 
and the signal recovery segments.  

The classifier algorithms are shown in Figure2 with the 10 best discriminatory points, the 
selected intensity-percentiles, and the model coefficients for each. 

Satisfactory results were obtained to segregate GB and metastases with the constructed 
classifiers. In the training set (ET AUC = 0.81, accuracy = 79%; PR AUC = 0.83, accuracy 
= 78%). In the test set (ET AUC = 0.79, accuracy = 71%; PR AUC = 0.71, accuracy = 
65%). Moreover, improved results were obtained when combining matching 
classifications of the ET and PR (72% of classifications matched in training set providing 
88% accuracy. In the test set, 61% of classifications matched, providing 81% accuracy). 
Results are summarized in Table2 and Figure3.  

Additionally, the performance of whole segmented ROIs average nTICs was poorer in 
training and test sets for both the ET (training accuracy = 71%; test accuracy = 70%) and 
PR (training accuracy = 73%; test accuracy = 61%). 

Figure4 depicts an example of the classifier applicability.  

DISCUSSION 

In this study, we applied the previously reported nTIC methodology[42] to retrospectively 
analyze DSC-PWI studies of glioblastomas and metastasis, and explored its applicability 
for the discrimination between these two tumor-types. We adapted the method to better 
approach the tumors’ inherent high histological, vascular, and microvascular 
heterogeneity. The new modified method allows constructing classifiers that take into 
account the lesions’ heterogeneity on a voxel-level by performing a point-by-point 
percentile histogram analysis of nTICs to generate a classifier model based on optimal 
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time-points and optimal voxels. We obtained satisfactory results that provided up to 81% 
accuracy discrimination between glioblastoma and metastasis in the test set. 
 
Reliable presurgical differentiation of GB and metastasis is crucial as management of 
these two entities differs significantly. While a suspected GB should undergo maximal 
safe gross surgical resection as treatment of choice, suspected metastases require 
systemic staging or re-staging before determining different local therapeutic approaches 
combined with systemic treatments[3, 4]. For example, if a metastasis were to be 
surgically removed under the erroneous assumption of glioblastoma, the overall benefit 
of this potential morbid approach is lost or unknown [5, 6]. Moreover, improving the 
accuracy of the radiological assessment may be also relevant in patients with 
radiologically suspected GB, who are not candidates for specific therapeutic procedures 
due to their performance status or high basal morbidity, and in whom the final diagnostic 
assumption rests solely on neuroimaging[7]. This also applies in a vast majority of 
patients with known systemic primary tumor and brain lesion suspicious of brain 
metastasis, who are directly treated for an assumed brain metastasis without 
confirmative histology[4], despite the knowledge that some of these tumors may end up 
not corresponding to the assumed histology[8]. These different scenarios in which the 
MR imaging diagnosis is the key to patient management warrant the highest possible 
diagnostic accuracy.  
 
DSC-PWI is an MR imaging technique that can currently be performed on most MR 
imaging units and which provides a noninvasive in vivo assessment of microvascular 
systems. It consists of a dynamic temporal acquisition during the vascular first pass of a 
contrast bolus. The injection of gadolinium results in an initial reduction in T2 signal 
intensity of the tissue, followed by signal recovery during contrast washout. The TICs 
can be extracted from this process. Well-studied parameters such as CBV, PSR or PH 
are generated from these curves. The CBV corresponds to the area under the curve and 
is usually measured relative to the NAWM (relative CBV). It has been correlated to 
histologic measurements of tumor vascularization[14, 20, 38]. The PSR and the PH are 
measured relative to the TIC baseline. PSR may quantify the predominant T1 effect 
(signal recovery above baseline) or T2 effect (signal recovery below baseline). These 
effects represent different leakage phenomena, which are explained by a complex 
combination of blood-brain barrier permeability, vascular volume fraction and vessel 
size, and tumor cell size and density[14, 17, 38]. The more recently popularized 
parameter PH is a measure with hypothetical parallelism to rCBV and also potentially 
related to tumor vascularization[29, 31]. Tumor vascularity is known to be different 
between GB and metastasis, and these differences could be monitored with DSC-PWI. 
Both tumors are heterogeneous, but their classical hallmarks are heterogeneous blood-
brain-barrier disruption in GB and angiogenesis in metastases. Regarding the 
peritumoral-region, metastasis cause pure vasogenic edema, while GB associates 
infiltrative tumor cells among the perilesional edema[11, 21–24]. These histological 
features seem to be represented in the case of GB mainly by a higher PSR in the 
enhancing-tumor[25, 26, 30, 31] and a higher CBV in the peritumoral-region[25, 27, 37, 
28–30, 32–36]. Some authors also report higher CBV in the enhancing-tumor[26], or  
higher PSR[31] and PH[29, 31] in peritumoral-region. On the other hand, some papers 
are unable to find significant differences between GB and metastasis with any of these 
variables[38–41]. As previously stated, analyzing the entire TIC instead of these concrete 
parameters, may provide improved information[42]. On the other hand, the 
heterogeneous results in the different papers evaluating DSC-PWI could be at least 
partially explained by technical variability between studies. The nTICs method allows 
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performing unsupervised point-by-point curve analysis to minimize the influence of 
technical parameters on the results.  

DSC-PWI pulse-sequence parameters (Flip Angle and Time of Echo), influence curve 
morphology and thus affect the value of CBV and PSR, often paradoxically[16–18]. For 
this reason, the best results in the literature are obtained from homogeneous 
populations, but the best discriminatory parameters and thresholds vary between these 
studies. Meanwhile, those papers that do include technical heterogeneities, do not 
achieve optimal results. At this respect, our center’s sample has changing DSC-PWI 
parameters between MRI scanners and between years, and may be a paradigm of 
heterogeneity, which is probably also the real-life scenario for most clinical centers 
worldwide. Indeed, this is why it is important to develop a method which can minimize 
the impact of technical variability on perfusion metrics. We hypothesize that in 
heterogeneous samples with non-standardized technical acquisition characteristics, the 
evaluation of the whole nTIC would be more powerful than standard approaches, as the 
paradoxical effects of pulse-sequence parameters would be better integrated.  

Moreover, it is well known that GB and metastases are histologically highly 
heterogeneous tumors[21–24], so an approach which takes into account this 
heterogeneity by selecting the best predictive habitats seems necessary to obtain the 
best performing results.  Most works in this field contemplate only mean, maximum or 
minimum values for each evaluated parameter (CBV, PSR, PH). This kind of approach 
disregards most of the values contained within the whole tumor, even though the best 
discriminating value might not be one of these isolated metrics.  

For all these reasons, we propose an approach for analyzing nTICs based on a 
volumetric voxel-by-voxel histogram evaluation of the enhancing-tumor and the 
immediate peritumoral-region with semi-unsupervised selection of the discriminatory 
time points and voxel percentile. With this approach we aim to face the issue of tumors’ 
vascular heterogeneity and maximize the discriminatory capacity of DSC-PWI. In 
summary, our approach not only minimizes the impact of physiological and technical 
variability, but also avoids the problem of choosing a concrete DSC-PWI parameter to 
analyze. We achieve these goals by selecting the most discriminatory time-points in the 
nTICs and then selecting the most discriminatory voxel-intensity percentile for those 
time-points. 

Another potential weakness in DSC-PWI literature is the inhomogeneity in ROIs selection 
method. Many of these studies do not include the whole tumor, while others are operator 
dependent, focusing on extreme values such as “hot-spots” or tumor average. We 
minimized operator-dependent variability by performing volumetric segmentations of the 
whole enhancing tumor and statistical unsupervised selection of discriminatory variables 
without prior knowledge inputs. 
 
Some limitations of our paper must be considered. The single-site and retrospective 
character of the analysis may affect reproducibility, so multicentric and prospective 
studies in new real clinical scenarios are needed for validation. Nonetheless, our test 
subset results are promising in this regard. Secondly, the inclusion of a wide range of 
MR imaging examination dates and technical differences may have affected the 
consistency of results, although this could be considered a positive aspect in terms of 
generalizability of the method. Thirdly, balancing of cases between tumor types and 
training and test cohorts was necessary, to solve the biased excess of GB in our sample 
compared to the general population, however, our test data maintained the specific 
characteristics of our sample with excess GB, and nonetheless rendered still good 
results. Lastly, our method involves complex data processing, but we believe it is still 
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easy to explain as a method intended to improve generalizability by means of nTIC 
methodology, and to extract the maximum information through the percentile voxel-level 
analysis.  
 
On the other hand, our study has several strengths. First, the large sample of patients 
included. Second, the marked technical parameter heterogeneity, which supports 
credibility and generalizability. Thirdly, the minimal operator dependency with 
semiautomatic segmentation of enhancing components and automatization of the rest of 
the process.  Fourth, the use of a recently described method of perfusion-curve 
normalization, favoring reproducibility. Fifth, the application of a completely novel 
perspective on perfusion-imaging analysis, which considers all time-points and all voxels 
for the diagnostic model generation, instead of isolated summary parameters. Sixth, the 
aforementioned comprehensibility which may lead to clinicians’ trust in the method and 
results. And lastly, potential clinical implementation which could be achieved by 
developing user-friendly tools with visual displays similar to the one presented in figure 
4. 
 
  
Finally, we would like to highlight that we believe the currently proposed method is 
especially useful in situations in which tissue heterogeneity has important implications, 
such as this study’s, but also in many others, such as radionecrosis versus tumor 
recurrence, progression versus pseudoprogression, or post-treatment high grade tumors 
follow-up among others.  

CONCLUSION 

This proof-of-concept study presents a new perspective on DSC-PWI analysis beyond 
the interpretation of isolated parameters such as CBV, PSR or PH and their mean or 
extreme values. Our novel method offers a minimally operator-dependent technique for 
analyzing every single time-point in the normalized perfusion curves and every single 
voxel in the tumor and peritumoral area to generate a robust diagnostic model of special 
interest in heterogeneous tissues and heterogeneous populations. 

We also firmly believe that further development and application of this methodology may 
aid in bridging some of the many problems of comparability and heterogeneity in the field 
of MR-perfusion imaging. It will facilitate data aggregation and result comparison 
between studies, promote more robust and generalizable research, and ultimately favor 
large-scale analyses and clinical implementation.  
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TABLES 

Table1. Demographics of study participants. 

Table2. Summary of the results. 

Supplemental Table1. Imaging acquisition parameters ranges for DSC-PWI and T1CE-
wi. 

Supplemental Table2. Summary of DSC-PWI pulse-sequence parameters and their 
distribution into the study subgroups. 

 

FIGURES 

Figure1. Study participants flow-chart. 

Figure2. Overlapped average nTICs of glioblastoma (line) and metastasis (dashed line), 
discriminatory time-points highlighted by an X, and generated algorithms; everything 
obtained in the training set. Upper-row for enhancing tumor, lower-row for peritumoral 
region. The algorithms depict the best percentile (p) for each time point (X) and the 
relative power for each combination.  

Figure3. Graphic representation of AUC-ROC in training (left) and test (right) groups, for 
enhancing tumor (line), peritumoral region (dashed line) and matching combinations 
(lower row). Training (enhancing tumor AUC = 0.81, peritumoral region AUC = 0.83, 
matching combined AUC = 0.90). Test (enhancing tumor AUC = 0.79, peritumoral region 
AUC = 0.71, matching combined AUC = 0.84). All significant (p<0.00015). 

Figure4. Example problem case. Axial T1CE-wi shows an intraaxial, frontal and insular, 
enhancing, necrotic tumor which could correspond to a GB or to a single brain 
metastasis. The results of the algorithms applied to the problem case (represented by 
an X) are overlapped to scattered boxplots of our training set, those facilitating a visual 
assessment of the diagnostic classification probability. In this problem case, the 
classification favors single brain metastasis for both the enhancing tumor and peritumoral 
region. Pathology confirmed this tumor corresponded to a renal cell carcinoma single 
brain metastasis. 
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Table1. Demographics. 

 Tumor types 

  Cases Men Women Age 

Glioblastoma 321 197 124 60 (20-86) 

Metastasis 107 59 48 60 (24-81) 

Total 428 256 172 60 (20-86) 

 

 Study subgroups 

  Cases Men Women Age 

Train 146 93 53 59 (26-86) 

Test 276 178 98 60 (20-86) 

Total 422 253 169 60 (20-86) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Table2. Summary of the results in training and test subsets. 

 AUC Accuracy Sensitivity Specificity 

Enhancing Tumor     

Training 0.81 78% (114/146) 71% (52/73) 85% (62/73) 

Test 0.79 71% (195/276) 84% (26/31) 69% (169/245) 

Peritumoral Region     

Training 0.83 78% (114/146) 70% (51/73) 86% (63/73) 

Test 0.71 65% (179/276) 55% (17/31) 66% (162/245) 

Combined  Match Accuracy Sensitivity Specificity 

Training 72% (105/146) 88% (92/105) 86% (44/51) 89% (48/54) 

Test 61% (169/276) 81% (135/169) 75% (13/16) 80% (122/153) 
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