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Abstract
AI research is being challenged with ensuring
that autonomous agents learn to behave ethically,
namely in alignment with moral values. A com-
mon approach, founded on the exploitation of Re-
inforcement Learning techniques, is to design en-
vironments that incentivise agents to behave ethi-
cally. However, to the best of our knowledge, cur-
rent approaches do not theoretically guarantee that
an agent will learn to behave ethically. Here, we
make headway along this direction by proposing
a novel way of designing environments wherein it
is formally guaranteed that an agent learns to be-
have ethically while pursuing its individual objec-
tive. Our theoretical results develop within the for-
mal framework of Multi-Objective Reinforcement
Learning to ease the handling of an agent’s indi-
vidual and ethical objectives. As a further contri-
bution, we leverage on our theoretical results to in-
troduce an algorithm that automates the design of
ethical environments.

1 Introduction
As artificial agents become more intelligent and pervade our
societies, it is key to guarantee that situated agents act value-
aligned, that is, in alignment with human values [Soares and
Fallenstein, 2014; Russell et al., 2015]. Otherwise, we are
prone to potential ethical risk in critical areas as diverse as
elder caring [Barcaro et al., 2018], personal services [Wyns-
berghe, 2016], and automated driving [Lin, 2015]. As a con-
sequence, there has been a growing interest in the Machine
Ethics [Yu et al., 2018; Rossi and Mattei, 2019] and AI Safety
[Amodei et al., 2016; Leike et al., 2017] communities in the
use of Reinforcement Learning (RL) [Sutton and Barto, 1998]
to deal with the urging problem of value alignment.

Among these two communities, it is common to find pro-
posals to tackle the value alignment problem by designing an
environment that incentivises ethical behaviours (or penalises
unethical ones) by means of some exogenous reward function
(e.g., [Riedl and Harrison, 2016; Abel et al., 2016; Wu and
Lin, 2017; Noothigattu et al., 2019; Balakrishnan et al., 2019;
Rodriguez-Soto et al., 2020]). We observe that this approach
consists in a two-step process: first, the ethical knowledge is

encoded as rewards (reward specification); and then, these re-
wards are incorporated into the agent’s learning environment
(ethical embedding).

The literature is populated with embedding solutions that
use a linear scalarisation function for weighting the agent’s
individual reward with the ethical reward (e.g. [Wu and Lin,
2017; Rodriguez-Soto et al., 2020]). However, to the best
of our knowledge, there are no studies following the lin-
ear scalarisation approach that offer theoretical guarantees
regarding the learning of ethical behaviours. Furthermore,
[Vamplew et al., 2018] point out some shortages of adopt-
ing a linear ethical embedding: the agent’s learnt behaviour
will be heavily influenced by the relative scale of the individ-
ual rewards. This issue is specially relevant when the ethical
objective must be wholly fulfilled (e.g., a robot in charge of
buying an object should never decide to steal it [Arnold et al.,
2017]). For those cases, the embedding must be done in such
a way that ethical behaviour is prioritised, providing theoret-
ical guarantees for the learning of ethical policies.

Against this background, the objective of this work is
twofold: (1) to offer theoretical guarantees for the linear em-
bedding approach so that we can create an ethical environ-
ment, that is, an environment wherein it is ensured that an
agent learns to behave ethically while pursuing its individ-
ual objective; (2) and to automate the design of such ethi-
cal environment. We address such goals within our view of
ethical environment design process, as depicted in Figure 1.
According to our view, a reward specification task takes the
individual and ethical objectives to yield a multi-objective en-
vironment. Thereafter, an ethical embedding task transforms
the multi-objective environment into an ethical environment,
which is the one wherein an agent learns. Within the frame-
work of such ethical environment design process, we address
the goals above, focusing on the ethical embedding task, to
make the following novel contributions.

Firstly, we characterise the policies that we want an agent
to learn, the so-called ethical policies: those that prioritise
ethical objectives over individual objectives. Thereafter, we
propose a particular ethical embedding approach, and for-
mally prove that the resulting learning environment that it
yields is ethical. This means that we guarantee that an agent
will always learn ethical policies when interacting in such en-
vironment. Our theoretical results are based on the formalisa-
tion of the ethical embedding process within the framework
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Figure 1: The process of designing an ethical environment is performed in two steps: a reward specification and an ethical embedding. Our
algorithm computes the latter. Rectangles stand for objects whereas rounded rectangles correspond to processes.

of Multi-Objective Reinforcement Learning (MORL)[Roi-
jers et al., 2013], which provides Multi-objective MDPs
(MOMDPs) to handle both individual and ethical objectives.
Thus, MOMDPs provide the model for the multi-objective
environment that results from reward specification (Figure 1).

Secondly, based on our theoretical results, we propose an
algorithm to implement our ethical embedding. This novel al-
gorithm tailors current developments in the MORL literature
to build an ethical environment as a single-objective MDP
from the multi-objective MDP that stems from the reward
specification process. Since the resulting single-objective
MDP encapsulates the ethical rewards, the agent can thus
apply a basic RL method to learn its optimal policy there.
Specifically, we ground ethical embedding algorithm on the
computation of convex hulls (as described in [Barrett and
Narayanan, 2008]) as the means to find ethical policies.

To summarise, in this paper we make headway in building
ethical environments by providing two main novel contribu-
tions: (i) the theoretical means to design the learning envi-
ronment so that an agent’s ethical learning is guaranteed; and
(ii) algorithmic tools for automating the configuration of the
learning environment.

In what follows, Section 2 presents our formalisation of
the ethical embedding problem that we must solve to create
an ethical environment. Next, Section 3 studies how to guar-
antee the learning of ethical policies in ethical environments,
and Section 4 introduces our algorithm to build ethical envi-
ronments. Subsequently, Section 5 illustrates our proposal by
means of a simple example, the public civility game. Finally,
Section 6 concludes and sets paths to future work.

2 Formalising the Ethical Embedding
Problem

In this section we propose a formalisation of the ethical em-
bedding of value alignment problems in which an ethical ob-
jective must be fulfilled and an individual objective is pur-
sued. Our main goal is to guarantee that an agent will learn to
behave ethically, that is, to behave in alignment with a moral
value. In the Ethics literature, moral values (also called ethi-
cal principles) express the moral objectives worth striving for
[van de Poel and Royakkers, 2011].

As mentioned above, the value alignment problem can be
divided in two steps: the reward specification (to transform
ethical knowledge into ethical rewards) and the ethical em-
bedding (to ensure that these rewards incentivise the agent to
be ethical). Although both are critical problems in the Ma-
chine Ethics and AI Safety community, in this paper we fo-

cus on the ethical embedding problem, and likewise we as-
sume that we already have a reward specification in the form
of a Multi-Objective Markov Decision Processes (MOMDP)
[Roijers et al., 2013]. This way we can handle an ethical ob-
jective and an agent’s individual objective within the same
learning framework. Precisely, MOMDPs formalise sequen-
tial decision making problems in which we need to ponder
several objectives. Formally:
Definition 1. A (finite)1 n-objective Markov Decision Pro-
cess (MOMDP) is defined as a tuple 〈S,A, ~R, T 〉 where S is
a (finite) set of states, A(s) is the set of actions available
at state s, ~R = (R1, . . . , Rn) is a vectorial reward func-
tion with each Ri as the associated scalar reward function
to objective i ∈ {1, . . . , n}, T is a transition function. Each
MOMDP has its associated multi-dimensional state value
function ~V = (V1, . . . , Vn) in which each Vi is the expec-
tation of the obtained sum of i-objective rewards.

In order to transform an MOMDP into a single-objective
MDP, the vectorial reward function ~V can be scalarised by
means of a scalarisation function f . With f , the agent’s prob-
lem becomes to learn a policy that maximises f(~V ), a single-
objective problem. It is specially notable the particular case in
which f is linear, because in such case the scalarised problem
can be solved with single-objective reinforcement learning al-
gorithms. We refer to any linear f simply as a weight vector
~w. Any policy that maximises f(~V ) = ~w · ~V is thus optimal
in the MDP 〈S,A, ~w · ~R, T 〉.

We define an ethical MOMDP as an MOMDP encoding the
reward specification of a value alignment problem in which
the agent must consider both its individual objective and an
ethical objective. The first component in the corresponding
vectorial reward function characterises the individual agent’s
objective (as usually done in RL), whereas the subsequent
components represent the ethical objective [Horgan and Tim-
mons, 2010]. Following the Ethics literature [Chisholm,
1963; Frankena, 1973; van de Poel and Royakkers, 2011;
Etzioni and Etzioni, 2016], we define an ethical objective
through two dimensions: (i) a normative dimension, which
punishes the violation of normative requirements; and (ii) an
evaluative dimension, which rewards morally praiseworthy
actions. Formally:
Definition 2 (Ethical MOMDP). Given a MOMDP

M = 〈S,A, (R0, RN , RE), T 〉, (1)

1Thorough the paper we refer to a finite Multi Objective MDP
simply as an MOMDP. We also assume that policies are stationary.
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where R0 corresponds to the reward associated to the indi-
vidual objective, we say thatM is an ethical MOMDP if and
only if:

• RN : S × A → R− is a normative reward function
penalising the violation of normative requirements; and

• RE : S×A → R+ is an evaluative reward function that
(positively) rewards the performance of actions evalu-
ated as praiseworthy.

Having two separate ethical reward functions allows us to
avoid the ethical problem of an agent learning to maximise
its accumulation of praiseworthy actions while disregarding
some of its normative requirements.

In the ethical embedding, we transform an ethical MOMDP
into a single-objective MDP (in which the agent will learn
its policy) by means of scalarisation function fe, which we
call the embedding function. In the particular case that fe is
linear, we say that we are applying a linear embedding or a
weighting.

Ethical MOMDPs pave the way to characterise our notion
of ethical policy: an ethical policy is a policy that abides to all
the norms while also behaving as praiseworthy as possible. In
other words, it is a policy that adheres to the specification of
the ethical objective. We capture this notion by means of the
normative and evaluative components of the value function in
an ethical MOMDP:
Definition 3 (Ethical policy). LetM be an ethical MOMDP.
We say that a policy π∗ is an ethical policy inM if and only if
its value function ~V π∗ = (V π∗

0 , V π∗
N , V π∗

E ) is optimal for its
ethical objective (i.e., both its normative VN and evaluative
VE components):

V π∗
N = max

π
V πN ,

V π∗
E = max

π
V πE .

For the sake of simplicity, we refer to a policy that is not
ethical in the sense of Definition 3 as an unethical policy.

With ethical policies, we can now define formally ethical-
optimal policies: the policies that we want an agent to learn.
Ethical-optimal policies correspond to those policies in which
the individual objective is pursued subject to the ethical ob-
jective being fulfilled. Specifically, we say that a policy is
ethical-optimal if and only if it is ethical and it also max-
imises the individual objective V0 (i.e., the accumulation of
rewards R0). Formally:
Definition 4 (Ethical-optimal policy). Given an MOMDP
M = 〈S,A, (R0, RN , RE), T 〉, a policy π∗ is ethical-
optimal in M if and only if

V π∗
0 = max

π∈Πe

V π0 ,

where Πe is the set of ethical policies.
Given an MOMDP encoding individual and ethical re-

wards, our aim is to find an embedding function that guar-
antees that it is only possible for an agent to learn ethical-
optimal policies over the scalarised MOMDP (as a single-
objective MDP). Thus, we must design an embedding func-
tion that scalarises the rewards received by the agent in such

a way that ensures that ethical-optimal policies are optimal
for the agent. In its simplest form, this embedding function
will have the form of a linear combination of individual and
ethical objectives

f(~V π) = ~w · ~V π = w0V
π
0 + wNV

π
N + wEV

π
E (2)

where ~w = (w0, wN , wE) is a weight vector with all weights
w0, wN , wE > 0 to guarantee that the agent is taking into
account all rewards (i.e., both objectives). Without loss of
generality, we fix the individual weight to w0 = 1.

Therefore, we can formalise the ethical embedding prob-
lem as that of computing a weight vector ~w that incentivises
an agent to behave ethically while still pursuing its individual
objective. Formally:
Problem 1 (Ethical embedding). LetM = 〈S,A, (R0, RN ,
RE), T 〉 be an ethical MOMDP. Compute a weight vector
~w with positive weights such that all optimal policies in the
MDP M′ = 〈S,A, w0R0 + wNRN + wERE , T 〉 are also
ethical-optimal inM (as defined in Def. 4).

Any weight vector ~w with positive weights that guarantees
that all optimal policies (with respect to ~w) are also ethical-
optimal is a solution of Problem 1. The next section proves
that such solutions always exist for any ethical MOMDP.

3 Solvability of the Ethical Embedding
Problem

This section is devoted to describe the minimal conditions
under which there always exists a solution to Problem 1, and
to prove that such solution actually exists. This solution (a
weight vector) will allow us to apply the ethical embedding
process to produce an ethical environment (a single-objective
MDP) wherein an agent learns to behave ethically (i.e., an
ethical-optimal policy).

For all the following theoretical results, we assume the fol-
lowing condition for any ethical MOMDP: if we want the
agent to behave ethically, it must be actually possible for it
to behave ethically2. Formally:
Condition 1 (Ethical policy existence). Given an ethical
MOMDP, there is at least one ethical policy (as defined by
Def. 3).

If Condition 1 holds, next Theorem guarantees that Prob-
lem 1 is always solvable, or in other words, that it is always
possible to guarantee that the learnt behaviour of an agent will
be ethical if we give a reward incentive that is large enough.
Furthermore, this Theorem also dictates that, without loss
of generality, we can assume that the normative and evalu-
ative weights in the solution weight vector ~w are identical
(wN = wE). We will be referring thus to wE as the ethical
weight. Formally:
Theorem 1 (Solution existence). Given an ethical MOMDP
M = 〈S,A, (R0, RN , RE), T 〉 for which Condition 1 is
satisfied, there exists a weight vector ~w = (1, wE , wE)
with wE > 0 for which every optimal policy in the MDP
M′ = 〈S,A, w0R0 + wNRN + wERE , T 〉 is also ethical-
optimal inM.

2In the Ethics literature this condition is summarised with the
expression Ought implies can [Duignan, 2018].
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Proof. We provide a sketch of the proof. The proof is done
in two steps: (1) First we prove that if for a weight vector
~w there is a deterministic ~w-optimal policy ρ that is an un-
ethical policy, then we can always increase the weight wE
in ~w enough so that ρ is strictly worse than an ethical policy
π (which exists thanks to Condition 1), so ρ is no longer an
~w-optimal policy.

(2) Once the first step is proven, we can identify the unethi-
cal policy ρ∗ that requires the greatest increase ofwE in order
to be ~w-suboptimal. After increasing wE for ρ∗, all unethi-
cal policies will become ~w-suboptimal. However, since there
always exists at least one deterministic ~w-optimal policy, by
this process of elimination all remaining ~w-optimal policies
must be ethical policies (and at least one exists thanks to Con-
dition 1), and therefore, they will be ethical-optimal.

4 Solving the Ethical Embedding Problem
This section is devoted to explaining how to compute a so-
lution weight vector ~w for the ethical embedding problem
(Problem 1). Such weight vector ~w allows us to combine
individual and ethical rewards into a single reward to create
an ethical environment in which the agent can learn its be-
haviour, that is, an ethical-optimal policy.

In what follows we detail an algorithm to solve the ethi-
cal embedding problem, the so-called Ethical Embedding al-
gorithm. Specifically, our algorithm performs the following
three steps:

1. Computation of the partial convex hull containing a sub-
set P of policies of an ethical MOMDPM that are op-
timal for some weight vector.

2. Extraction of the ethical-optimal policies Π∗ from the
partial convex hull P .

3. Computation of the embedding function: use the ref-
erence policies Π∗ to find a linear weighting ~w of the
rewards pondering individual and ethical objectives to
yield an ethical environment wherein the learning of eth-
ical policies is guaranteed.

The following three subsections provide the theoretical
grounds for computing each step of our algorithm. Then,
Subsection 4.4 presents the algorithm as a whole.

4.1 Computation of the Partial Convex Hull
Our algorithm applies a linear ethical embedding (a weight
vector) to solve Problem 1. Theorem 1 determines a struc-
ture for the solution weight vector ~w of Problem 1. In or-
der to compute a specific value for ~w, we resort to the multi-
objective RL concept of convex hull.

Given a MOMDPM, its convex hull [Roijers et al., 2013]
is composed of those policies that are strictly better than any
other policy for some linear weights. Formally:

Definition 5 (Convex hull). Given an MOMDPM, its con-
vex hull CH is the subset of policies ΠM for which there ex-
ists a weight vector ~w for which the linearly scalarised value
function is maximal:

CH(M) = {π∗ ∈ ΠM | ∃~w : π∗ ∈ arg max
π

~w · ~V π}. (3)

The convex hull of an ethical MOMDP naturally contains
all ethical-optimal policies by definition. Thus, it allows us
to derive the weight vector necessary to guarantee that all op-
timal policies are ethical-optimal, which we know that exist
thanks to Theorem 1. However, computing the whole con-
vex hull of an MOMDP can be computationally demanding.
Fortunately, Theorem 1 naturally characterises the minimal
convex hull that we need to compute to find the solution of
the ethical embedding problem, hence avoiding the computa-
tion of the whole convex hull. Formally:

Theorem 2. Given an ethical MOMDP M = 〈S,A, (R0,
RN , RE), T 〉 in which Condition 1 is satisfied, let P ⊆
CH(M) be the region of the convex hull of M, limited to
weight vectors of the form ~w = (1, wE , wE) with wE > 0.
Then, P contains all ethical-optimal policies.

Proof. From Theorem 1, we know that at least one ethical-
optimal policy is optimal for a weight vector ~w of the form
~w = (1, wE , wE) with wE > 0. Notice that by definition,
all ethical-optimal policies share the same vectorial reward
function and thus, all of them are optimal for the same weight.
Therefore, all of them belong to this partial region P of the
convex hull CH(M).

Henceforth, when referring to the partial convex hull, we
are referring to this particular region P shown in Theorem 2.

To finish this subsection, we remark that this partial region
of the convex hull can be computed by adapting state of the art
algorithms such as Convex Hull Value Iteration [Barrett and
Narayanan, 2008] –which compute the whole convex hull of
an MOMDP– to only compute a region of the convex hull.

4.2 Extraction of the Ethical-optimal Policies
After computing the partial convex hull P ⊆ CH(M), we are
ready to perform the second step of our algorithm, which is
the extraction of ethical-optimal policies from P . Notice that
a policy in P is ethical-optimal if and only if is ethical. Thus,
in order to know which policies in P are ethical-optimal, we
have to find the ones that maximise both the normative and
evaluative reward functions (VN and VE respectively) of the
ethical MOMDP. This corresponds to the process of ethical-
optimal policy computation. Formally, to obtain the ethical-
optimal policies within P we must compute:

Π∗ = arg max
π∈P

(V πN (s) + V πE (s)) for every state s. (4)

Here, Π∗ is the set of all ethical-optimal policies of P ,
which thanks to Theorem 2 it is also in fact the set of all
ethical-optimal policies of the ethical MOMDP M. Notice
that ~V πN and ~V πE are already available for any policy π in the
partial convex hull P because their computation was required
in order to obtain P .

4.3 Computation of the Embedding Function
In the last step of our algorithm, the computation of the em-
bedding function (the weight vector), we use the computed
partial convex hull and the ethical-optimal policies to find
the solution weight vector ~w = (1, wE , wE) that guarantees
that optimal policies are ethical-optimal. In other words, such
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Algorithm 1 Ethical Embedding

1: function EMBEDDING( Ethical MOMDP M = 〈S,A,
(R0, RN , RE), T 〉)

2: Compute P ⊆ CH(M) the partial convex hull ofM
for weight vectors ~w = (1, wE , wE) with wE > 0.

3: Find Π∗ the set of ethical-optimal policies within P
by solving Eq. 4.

4: Find a value for wE that satisfies Eq. 5.
5: Return MDPM′ = 〈S,A, R0 +wE(RN +RE), T 〉.
6: end function

weight vector ~w will create an ethical environment (a single-
objective MDP) in which the agent will learn an ethical-
optimal policy.

Finding the actual values of such weight vector is not
straightforward because ~w ∈ R3. However, thanks to our
previous result in Theorem 2, we can reduce our search space
from R3 to R. In more detail, in order to find our targeted
~w = (1, wE , wE), we only need to consider the problem
of finding the ethical weight wE that guarantees that ethical-
optimal policies are optimal in the partial convex hull P . For-
mally, we need to find a value for wE ∈ ~w such that:

~w · V π∗(s) > max
π∈P\Π∗

~w · V π(s), (5)

for every state s ∈ S . Here, Π∗ is the set of ethical-optimal
policies and π∗ is any policy within Π∗.

Notice that in Eq. 5 the only unknown variable is wE .
This amounts to solving a system of n · |S| linear inequali-
ties (where n is the number of policies in P ) with a single
unknown variable.

4.4 An Algorithm for Designing Ethical
Environments

At this point we now count on all the tools for solving Prob-
lem 1, and hence build an ethical environment where the
learning of ethical policies is guaranteed. Algorithm 1 im-
plements the ethical embedding outlined in Figure 1. The al-
gorithm starts in line 2 by computing the partial convex hull
P ⊆ CH(M) of the input ethical MOMDP M (see Sub-
section 4.1); and then in line 3 it obtains the set of ethical-
optimal policies Π∗ out of those in the partial convex hull P
(see Subsection 4.2). Thereafter, in line 4 our weighting pro-
cess searches, within P , for an ethical weight wE that satis-
fies Equation 5 (see Subsection 4.3). For the obtained weight
vector ~w = (1, wE , wE), all optimal policies of the single-
objective MDPM′ = 〈S,A, w0R0 + wNRN + wERE , T 〉
will be ethical. In other words, such weight vector will solve
the ethical embedding problem (Problem 1). Finally, the al-
gorithm returns the MDPM′ in line 5.

The computational cost of the algorithm mainly resides in
computing the partial convex hull of an MOMDP. The Con-
vex Hull Value Iteration algorithm requiresO(n · log n) times
what its single-objective Value Iteration counterpart [Clark-
son, 1988; Barrett and Narayanan, 2008] requires, where n
is the number of policies in the convex hull. In our case this
number will be n′ ≤ n since we are just allowing a particular

form of weights, as explained in previous subsections. No-
tice that after computing P j CH , solving Eq. 4 is a sorting
operation because we already have calculated ~V π for every
π ∈ P . Similarly, solving Eq. 5 requires to solve n · |S|
inequalities and then sort them to find the ethical weight wE .

5 Example: The Public Civility Game
This section illustrates our process of designing an ethical en-
vironment (Algorithm 1) with a simple example. We use a
single-agent version3 of the Public Civility Game [Rodriguez-
Soto et al., 2020], a value alignment problem where an agent
learns to behave according to the moral value of civility. This
example can be seen as an ethical adaptation of the irre-
versible side effects environment from [Leike et al., 2017].

Figure 2 (left) depicts the environment, wherein two agents
(L and R) move from their initial positions to their respec-
tive goal destinations (GL and GR). Since the L agent finds
garbage (small red square) blocking its way, it needs to learn
how to handle the garbage civically while moving towards its
goal GL. The civic (ethical) behaviour we expect agent L to
learn is to push the garbage to the bin without throwing it to
agent R, which, in our setting, has a fixed behaviour.

5.1 Reward Specification
The Public Civility Game represents an ethical embedding
problem where civility is the moral value to embed in the
environment. As such, we encode it as an ethical MOMDP
M = 〈S,A, (R0, RN , RE), T 〉 in which the agent’s individ-
ual and ethical objectives have been specified as follows.

On the one hand, the agent’s individual objective is to
reach its destination as fast as possible. Thus, the individ-
ual reward function R0 returns a positive reward of 20 to the
agent whenever located at its goal. Otherwise, it returns −1.

On the other hand, the ethical objective is to promote ci-
vility by means of:

• An evaluative reward function RE that rewards the agent
when performing the praiseworthy action of pushing the
garbage inside the bin with a positive reward of 10. It returns
0 in any other circumstance.
• A normative reward function RN that punishes the agent
with a negative reward for not complying with the moral re-
quirement of being respectful with other agents. Thus, agent
L will be punished with a negative reward of -10 if it throws
the garbage to agent R. Otherwise, it returns 0.

5.2 Ethical Embedding
We now apply Algorithm 1 to design an ethical environment
for the Public Civility Game. In what follows, we detail the
three processes involved in obtaining this new environment.
Partial convex hull computation. Considering M, our
ethical MOMDP, we compute the partial convex hull P ⊆
CH . Figure 2 (centre) depicts the resulting P for the initial
state s0. It is composed of 3 different policies named after the
behaviour they encapsulate: (1) an Unethical (uncivil) policy,

3Programmed in Python. Code available at
https://gitlab.iiia.csic.es/Rodriguez/morl-for-ethical-environments.
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Figure 2: Left: Initial state of the public civility game. The agent on the left has to deal with the garbage obstacle, which has been located
in front of it. Centre: Visualisation in Objective Space of the partial convex hull of M composed by 3 policies: E (Ethical), R (Regimented)
and U (Unethical). Right: Visualisation in Weight Space of the partial convex hull of M. Painted areas indicate which policy is optimal for
the varying values of the ethical weight wE .

Policy π Value ~V π(s0) wE ranges
Unethical (4.67, -10, 0) [0.0, 0.24]

Regimented (2.27, 0, 0) [0.24, 0.7]
Ethical (0.59, 0, 2.4) [0.7,∞)

Table 1: Policies π within the partial convex hull of the Public Civil-
ity Game and their associated values ~V π = (V π0 , V

π
N , V

π
E ). Weight

ranges indicate the values of wE for which each policy is optimal.

in which the agent moves towards the goal and throws away
the garbage without caring about any ethical implication; (2)
a Regimented policy, in which the agent complies with the
norm of not throwing the garbage to the other agent; and fi-
nally, (3) an Ethical policy, in which the agent behaves civi-
cally as desired. Table 1 provides the specific vectorial value
~V π = (V π0 , V

π
N , V

π
E ) of each policy π and the range of values

of the ethical weight wE for which each policy is optimal.

Extraction of the ethical-optimal policies. In our case, the
Ethical policy πE is the only ethical-optimal policy within
the partial convex hull P . Indeed, πE is the only policy that
maximises both the normative and the evaluative components
(VN and VE respectively). Last row in Table 1 shows the
value of πE for the initial state s0: ~V πE (s0) = (0.59, 0, 2.4).

Computation of the embedding function. Line 4 in Al-
gorithm 1 computes the weight wE in ~w = (1, wE , wE) for
which πE is the only optimal policy of P , by solving Eq. 5:

~w · V πE (s0) > max
ρ∈P\{πE}

[V ρ0 (s0) + wE · (V ρN (s0) + V ρE(s0))].

By solving it, we find that if wE > 0.7, then the Ethical
policy becomes the only optimal one. We can check it: 0.59+
0.7 · (0 + 2.4) = 2.27 ≥max((4.67 + 0.7 · (−10 + 0)),
(2.27 + 0.7 · (0 + 0)) = max(−2.33, 2.27).

Figure 2 (right) illustrates the scalarised value of the 3 poli-
cies for varying values of wE in [0,1] (for wE>1 tendencies
do not change). In particular, focusing on the green painted
area, we can observe that the Ethical policy becomes the only
optimal one when wE > 0.7.

Therefore, the last step in our algorithm returns an MDP
whose reward comes from scalarising the MOMDP by ~w =
(1, wE , wE), beingwE strictly greater than 0.7. Thus, adding

any ε> 0 will suffice. If, for instance, we set ε = 0.01 then,
the weight vector (1, 0.7+0.01, 0.7+0.01) = (1, 0.71, 0.71)
solves the Public Civility Game. More clearly, an MDP cre-
ated from an embedding function with such wE incentivises
the agent to learn the Ethical policy. Indeed, when we set
up the agent L to learn with Q-Learning [Sutton and Barto,
1998] in the designed ethical environment, it learns to bring
the garbage to the bin while moving towards its goal.

6 Conclusions and Future Work
Designing ethical environments for learning agents is a chal-
lenging problem. We make headway in tackling this problem
by providing novel formal and algorithmic tools that build
upon Multi-Objective Reinforcement Learning. In particular,
our problem consists in ensuring that the agent wholly fulfils
its ethical objective while pursuing its individual objective.

MORL is a valuable framework to handle multiple objec-
tives. In order to ensure ethical learning (value-alignment),
we formalise –within the MORL framework– ethical-optimal
policies as those that prioritise their ethical objective. Over-
all, we design an ethical environment by considering a two-
step process that first specifies rewards and second performs
an ethical embedding. We formalise this last step as the eth-
ical embedding problem and theoretically prove that it is al-
ways solvable. Our findings lead to an algorithm for automat-
ing the design of an ethical environment. Our algorithm en-
sures that, in this ethical environment, it will be in the best
interest of the agent to behave ethically while still pursuing
its individual objectives. We illustrate it with a simple exam-
ple that embeds the moral value of civility.

As to future work, we would like to further examine em-
pirically our algorithm in more complex environments.
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