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Abstract. The aim of this work is to study homogeneous stable solutions to the
thin (or fractional) one-phase free boundary problem.

The problem of classifying stable (or minimal) homogeneous solutions in di-
mensions n ≥ 3 is completely open. In this context, axially symmetric solutions
are expected to play the same role as Simons’ cone in the classical theory of
minimal surfaces, but even in this simpler case the problem is open.

The goal of this paper is twofold. On the one hand, our first main contribution
is to find, for the first time, the stability condition for the thin one-phase problem.
Quite surprisingly, this requires the use of “large solutions” for the fractional
Laplacian, which blow up on the free boundary.

On the other hand, using our new stability condition, we show that any axially
symmetric homogeneous stable solution in dimensions n ≤ 5 is one-dimensional,
independently of the parameter s ∈ (0, 1).

1. Introduction

Consider the energy functional

J (u) = [u]2H1(B1) +
∣∣{u > 0} ∩B1

∣∣ =

∫
B1

(
|∇u|2 + χ{u>0}

)
(1.1)

where χA is the characteristic function of the set A.
The study of the critical points and minimizers of (1.1) is known as the (classical)

one-phase free boundary problem (or Bernoulli free boundary problem), which is a
typical model for flame propagation and jet flows; see [BL82, CV95, We03, PY07,
AC81, ACF82, ACF82b, ACF83]. From a mathematical point of view, it was origi-
nally studied by Alt and Caffarelli in [AC81], and since then multiple contributions
have been made; see [Caf87, Caf89, Caf88, CJK04, CS05, DJ09, JS15, EE19, ESV20]
and references therein.

In this paper, we deal with the fractional analogue of (1.1), in which the Dirichlet
energy in the functional is replaced by theHs fractional semi-norm of order s ∈ (0, 1),

Js(u) = [u]2Hs(B1) +
∣∣{u > 0} ∩B1

∣∣, (1.2)
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2 XAVIER FERNÁNDEZ-REAL AND XAVIER ROS-OTON

(see (1.4) below) which corresponds to the case in which turbulence or long-range
interactions are present, and appears in particular in flame propagation; see [CRS10,
DS15] and references therein.

This problem was first studied by Caffarelli, Roquejoffre, and Sire in [CRS10],
where they obtained the optimal Cs regularity for minimizers, the free boundary
condition on ∂{u > 0}, and showed that Lipschitz free boundaries are C1 in dimen-
sion n = 2. More recently, further regularity results for the free boundary have been
obtained in [DS12, All12, DR12, DSS14, DS15b, DS15, EKPSS21] among others.
These results imply that free boundaries are regular outside a certain set of singular
points Σ, with dimH(Σ) ≤ n−k∗s and k∗s ≥ 3. The value of k∗s is the lowest dimension
in which there are stable/minimal cones.

Thus, to understand completely the structure and regularity of free boundaries,
one must answer the following question:

What is the first dimension k∗s in which stable/minimal cones appear?

This is the question that motivates our present work.

1.1. The non-local energy functional. Let us consider the energy functional,

JΛ(v,Rn) = [v]2Hs(Rn) + Λ2
∣∣{v > 0}

∣∣, (1.3)

depending on the parameter Λ ∈ R, with the fractional semi-norm

[v]2Hs(Rn) =
cn,s
2

∫∫
Rn×Rn

(v(x)− v(y))2

|x− y|n+2s
dx dy, where cn,s =

s22sΓ
(
n+2s

2

)
πn/2Γ(1− s)

(1.4)

is the constant appearing in the fractional Laplacian,

(−∆)su(x) = cn,sPV

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy.

Obtaining local minimizers to JΛ is the fractional one-phase free boundary prob-
lem. When s = 1

2 this is equivalent to the thin one-phase free boundary problem.
It is a free boundary problem because, a priori, the zero-level set of the minimizer
is unknown, and its boundary is called the “free boundary”. After understanding
the optimal regularity of minimizers, the study of the free boundary constitutes the
main topic of research for this type of problem.

Let u be a local minimizer (or critical point) to (1.3) in a ball B (see (2.3)). Let
Ω = {u > 0}, and let us suppose Ω is smooth enough. Let

d(x) = dist(x, ∂Ω).

Then, by standard variational arguments we have that (−∆)su = 0 in Ω∩B. More-
over, we have that u solves the following problem involving a condition on the
fractional derivative on ∂Ω,

(−∆)su = 0 in Ω ∩B
u = 0 in Ωc ∩B

Γ(1 + s)
u

ds
= Λ on ∂Ω ∩B.

(1.5)

This is the first variation of the energy functional. It was first proved in [CRS10] but,
unfortunately, with a computational mistake in the derivation of the constant. For
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completeness, in Proposition 2.1 below, we find the precise constant Γ(1 + s) which,
as far as we know, was only explicitly known for the case s = 1

2 (see Remarks 2.2
and 2.3 below). We refer to Section 2 for the definition of critical point.

1.2. The stability condition. A main goal of this paper is to obtain the second
variation of the energy functional. Namely, we will find the stability condition
for (1.3).

In order to state the result, we need the following definition:

Definition 1.1. Let Ω be a C1,α domain outside the origin, and let GΩ,s(x, y) be
the Green function of the operator (−∆)s for the domain Ω. Then, we define the
kernel KΩ,s : ∂Ω× ∂Ω→ R as

KΩ,s(x, y) = lim
Ω3x̄→x
Ω3ȳ→y

GΩ,s(x̄, ȳ)

ds(x̄)ds(ȳ)
. (1.6)

By well-known boundary regularity estimates for the fractional Laplacian ([RS14,
RS17]), (1.6) is well-defined as soon as the boundary is C1,α.

Furthermore, we also define the following curvature-type term

HΩ,s(x) :=

∫
∂Ω
|ν(x)− ν(y)|2KΩ,s(x, y)dσ(y)

for x ∈ ∂Ω, and where ν : ∂Ω→ Sn−1 denotes the unit inward normal vector on ∂Ω,
and σ denotes the area measure on ∂Ω.

We can now state the second-variation condition for the energy functional (1.3).

Theorem 1.2. Let s ∈ (0, 1) and let u ∈ Cs(Rn) be a global s-homogeneous stable
solution to (1.5), in the sense (2.3)-(2.4). Assume that Ω := {u > 0} is a C2,α

domain outside the origin.
Let KΩ,s and HΩ,s be given by Definition 1.1. Then, we have∫

∂Ω

∫
∂Ω

(
f(x)− f(y)

)2KΩ,s(x, y) dσ(x) dσ(y) ≥
∫
∂Ω
HΩ,sf

2 dσ(x) (1.7)

for all f ∈ C∞c (∂Ω \ {0}).
Furthermore, KΩ,s is (−n)-homogeneous and

KΩ,s(x, y) � 1

|x− y|n
for all x, y ∈ ∂Ω, (1.8)

while HΩ,s is (−1)-homogeneous, and

HΩ,s(x) � 1

|x|
for all x ∈ ∂Ω,

if Ω is not a half space.

Here, we have denoted g1(x) � g2(x) if C−1g2(x) ≤ g1(x) ≤ Cg2(x) for some
positive constant C independent of x.

The result stated here is for s-homogeneous solutions since we are mainly inter-
ested in blow-ups at free boundary points. We refer the reader to Theorem 3.3 below
for a more general result dropping the s-homogeneity hypothesis.
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As we will see later on in the paper, the stability condition (1.7) has an equivalent
formulation in terms of large solutions for the fractional Laplacian (which were
introduced and studied in [Aba15, Gru15]). More precisely, (1.7) turns out to be
equivalent to ∫

∂Ω
f TΩ,sf dσ ≥ κs

∫
∂Ω
U1f

2 dσ (1.9)

for all f ∈ C∞c (∂Ω \ {0}), where

U1 := − 1

Λ
∂ν

( u
ds

)
, TΩ,sf := −∂ν

(
F

ds−1

)
,

and F is the unique solution of
(−∆)sF = 0 in Ω

F = 0 in Ωc

F

ds−1
= f on ∂Ω

satisfying F → 0 for |x| → ∞. (Notice that F blows-up on the free boundary ∂Ω.)
Such equivalence is not trivial, and actually U1 is related, but not equal, to HΩ,s.

Remark 1.3. Alternatively, we can rewrite (1.7) in a more symmetric way as∫
∂Ω

∫
∂Ω

{
ν(x) · ν(y)

(
f(x)2 + f(y)2

)
− 2f(x)f(y)

}
KΩ,s(x, y)dσ(x)dσ(y) ≥ 0

for all f ∈ C∞c (∂Ω \ {0}).

Remark 1.4. We emphasize that (1.7) —or (1.9)— is the non-local counter-part of
the result by Caffarelli, Jerison, and Kenig for stable solutions in the classical one-
phase obstacle problem [CJK04]. In particular, one can show that both HΩ,s and
U1 converge to the mean curvature H of ∂Ω when s ↑ 1. In that case, the stability
condition can be written as ∫

Ω
|∇f |2 dx ≥

∫
∂Ω
Hf2 dσ

for all f ∈ C∞c (Rn \ {0}). Unfortunately, we do not have such a simple expression
in the nonlocal case s ∈ (0, 1).

Remark 1.5 (Nonlocal minimal surfaces). Our expression (1.7) also has a similar
structure to the one obtained for the second variation of nonlocal perimeters at
nonlocal minimal surfaces, see [DDW18, Eq. (1.5)-(1.6)] and [FFMMM15, Theorem
6.1], which is then used in [CCS20] to classify stable s-minimal cones in R3 for s ∼ 1.
Notice, however, that our expression is fundamentally different in nature: while the
scalings for the stability condition for nonlocal perimeters are of order 1 + s, our
scalings preserve the local structure independently of s (with order 1). Moreover,
as we will see, obtaining our stability condition (1.7) or (1.9) turns out to be more
delicate, and requires fine estimates for s-harmonic functions near the boundary.
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1.3. Scaling. Note that since ∂Ω is (n− 1)-dimensional, the left-hand side in (1.7)
behaves roughly as a fractional Laplacian of order 1 (i.e., like

√
−∆) on ∂Ω, and

this is exactly true if Ω is a half-space.
On the other hand, HΩ,s is (−1)-homogeneous (i.e. it equals H1|x|−1 for a 0-

homogeneous H1). In particular, it is some kind of non-local curvature term that
nonetheless preserves the local curvature scaling. Thus, the expression (1.7) can
be understood as a Hardy-type inequality on ∂Ω. In particular, as an immediate
consequence of this, one can see by an asymptotic analysis that, in dimension n = 2,
the only stable cones are half spaces. This was known for minimizers, [DS15b,
EKPSS21], and here we give a different and short proof of the following result.

Corollary 1.6. Let s ∈ (0, 1) and let u ∈ Cs(R2) be an s-homogeneous global
solution to the one phase problem (1.5). Assume u is stable in the sense (2.3)-(2.4).
Then, up to a rotation and a multiplicative constant, u is the half-space solution,
u = (x1)s+.

In higher dimensions, n ≥ 3, the situation is much more complicated and cannot
be understood simply by scaling. Indeed, we expect the inequality (1.7) to be always
true for a sufficiently large multiplicative constant.

1.4. Axially symmetric cones. The classification of stable/minimal cones in di-
mension n ≥ 3 is an extremely challenging problem. Even in case of the classical
Alt-Caffarelli functional (1.1), the problem is still not completely understood [JS15].

In the context of minimal surfaces, the Simons cone is the first counter-example
of a non-smooth minimal cone for n ≥ 8. As a consequence, the natural candidates
for non-trivial minimal cones in the context of nonlocal minimal surfaces are those
with symmetry of “double revolution” [DDW18].

The role played by the Simons cone for minimal surfaces is played by axially
symmetric cones in the one phase free boundary problem. Indeed, in this context,
the natural non-trivial solutions have axial symmetry; see [DJ09]. As such, axially
symmetric solutions have also been studied in [CJK04, FR19, LWW21].

Thus, for the thin/fractional one-phase free boundary problem, the first case to
be understood is that of axially symmetric cones. Let us define, for each β ∈ (0,∞),
the axially symmetric cone

C(β) :=
{

(x′, xn) ∈ Rn−1 × R : |x′| > β|xn|
}
.

Let us consider uβ the unique positive solution to{
(−∆)suβ = 0 in C(β)

uβ = 0 in Rn \ C(β),

see Figure 1.1. Then uβ is λ-homogeneous, where λ = λ(β) ∈ (0, 2s). Moreover,
λ is continuous and strictly monotone in β (see [TTV18]), so that there exists a
unique βn,s such that us := uβn,s is homogeneous of degree s. In particular, u/ds

is 0-homogeneous, and therefore, by symmetry, it is constant on ∂C(βn,s). Hence,
up to a multiplicative constant, us is a solution to the fractional one-phase problem
with contact set given by Cn,s := C(βn,s).
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xn

(−∆)suβ = 0

uβ = 0

1
β ∂C(β)

Figure 1.1. The greyed area is the complement of the cone C(β).

In the classical one-phase problem (s = 1), these solutions us are known to be
unstable in dimensions n ≤ 6 (see [CJK04]). Still, even in such case, the proof in
[CJK04] is quite delicate and required some fine numerical computations.

Here, we use our new stability condition (1.9) to prove that stable (and in par-
ticular, minimal) axially-symmetric cones for the fractional one-phase problem are
trivial in dimensions n ≤ 5.

Theorem 1.7. Let s ∈ (0, 1) and let u ∈ Cs(Rn) be a global stable solution to
(1.5), in the sense (2.3)-(2.4). Assume in addition that u is s-homogeneous and
axially-symmetric. Then, if n ≤ 5, u is one-dimensional.

To our surprise, our proof of the previous result gives as a condition on n that
n ≤ 6 − δ for any δ > 0, independently of s. Since we already know that the case
n = 6 is the best we could hope for if s = 1 ([DJ09]), based on Theorem 1.7 (and
its proof), we conjecture the following:

Conjecture 1.8. Let s ∈ (0, 1) and let u ∈ Cs(Rn) be a global, stable, s-homogeneous
solution to the fractional one-phase problem. If n ≤ 6, then u is one-dimensional.

As said above, Caffarelli, Jerison, and Kenig proved in [CJK04] that the analogous
of Theorem 1.7 for s = 1 holds up to dimension n = 6. We show in Section 7 what
would be the analogy for s ∈ (0, 1) to the approach of [CJK04], using our new
stability condition. We believe this could yield our previous result for Cn,s up to
dimension n = 6, for all s ∈ (0, 1), but unfortunately this seems to require some
delicate numerical computations.
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1.5. Ideas of the proofs. Let us present here the ideas of the proofs of our two
main results, Theorems 1.2 and 1.7.

1.5.1. Ideas of the proof of Theorem 1.2. The proof of Theorem 1.2 is done by
constructing explicit competitors and computing the corresponding energy to deduce
an expansion up to second order around a critical point. Roughly speaking, the
inequality (1.7) corresponds to the excess energy at order ε2 of u when perturbing
the domain Ω by εf in the normal direction.

Indeed, given a solution u with Ω = {u > 0} smooth, and given an arbitrary
function f ∈ C∞c (∂Ω), we consider domain perturbations such that ∂Ω is stretched
by εf(z) in the normal direction at z ∈ ∂Ω. In this way, we obtain a new domain
Ωε which is “εf -close” to Ω. The energy of the new stretched u can be lowered by
making it s-harmonic on Ωc

ε, so that we consider vε our ε-close perturbation of u (in
the “direction” f) to be the solution to (−∆)svε = 0 in Ωε ∩B

vε = 0 in Ωc
ε ∩B

vε = u in Rn \B.

Then we compute the expansion of the energy JΛ,B(vε) (see (2.1)) in ε:

JΛ,B(vε) = JΛ,B(u) + εA1(u, f) + ε2A2(u, f) + o(ε2).

The first term, A1(u, f), corresponds to the first variation of the functional. Impos-
ing that this term vanishes for all f ∈ C∞c (∂Ω) is what yields the constant fractional
derivative condition on ∂Ω.

The second term, A2(u, f), corresponds to the second variation. The fact that u
is stable implies that A2(u, f) ≥ 0 for all f ∈ C∞c (∂Ω), and this yields the stability
condition from our main result. Let us very briefly explain how to explicitly compute
A1(u, f) and A2(u, f).

We assume, for simplicity, that f ≥ 0, so that we can separate between semi-norms
and the measure of Ω \ Ωε as follows,

JΛ,B(vε)− JΛ,B(u) = [vε]
2
Hs(Rn) − [u]2Hs(Rn) − Λ2|(Ω \ Ωε) ∩B|.

(In fact, each semi-norm could be infinite, but the difference can be computed, using
(2.1).) For the second term in the previous expression, a simple geometric argument
yields that

|(Ω \ Ωε) ∩B| = ε

∫
∂Ω
f +

ε2

2

∫
∂Ω
Hf2 + o(ε2),

where H is the mean curvature of ∂Ω with respect to {u = 0}. Thus, we just need
to expand the difference of semi-norms, which after some manipulations corresponds
to

[vε]
2
Hs(Rn) − [u]2Hs(Rn) = −

∫
(Ω\Ωε)∩B

u(−∆)svε. (1.10)

Notice that the integral is performed in a region ε-close to ∂Ω (and ∂Ωε). The value
of the previous integral will depend on the function u, and more specifically, on
the behaviour of u near ∂Ω. More precisely, from the boundary regularity for the
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fractional Laplacian in C1,α domains we know that, if z ∈ ∂Ωε is the projection of
x onto ∂Ωε, and we denote dε(x) = dist(x,Ωc

ε), then

vε(x) = U ε0 (z)dsε(x) + o(dsε),

for some function U ε0 ∈ C0(∂Ωε). We can now compute the expansion of (−∆)svε
in Ωc

ε, which is

(−∆)svε(x) = c̄sU
ε
0 (z)d̄−sε (x) + o(d̄−sε ),

and where d̄ε = dist(x,Ωε), and c̄s is an explicit constant. Notice that v0 = u, so that
plugging these expansions in (1.10) and using that U ε0 = U0

0 +o(ε)/ε, dε = d0 +o(ε),
we obtain that

A1(u, f) = C

∫
∂Ω
f(z)

[
cs(U

0
0 (z))2 − Λ2

]
dz

for some constant cs. Imposing that A1(u, f) vanishes for all f ∈ C∞c (∂Ω) gives the
constant fractional derivative condition on ∂Ω.

In order to obtain the term in ε2, A2(u, f), we need to consider the previous
expansions at a higher order. Roughly, in this case we have that

vε(x) ≈ U ε0 (z)dsε(x) + U ε1 (z)d1+s
ε (x) + o(d1+s

ε ).

(There is also an extra tangential term, that ends up having no role.) Thus, the
first step is to expand (−∆)svε(x) from here. This is a delicate argument done in
Lemma 3.2, from which, roughly,

(−∆)svε(x) ≈ c̄sU
ε
0 (z)d̄−sε (x) + c̄∗U

ε
0 (z)H(z)d̄1−s

ε (x) + U ε1 (z)d̄1−s
ε (x) + o(d̄1−s

ε ).

We again want to plug this in (1.10) to get the terms of order ε2. In this case,
for the terms multiplying d̄1−s

ε we use, as before, that U ε0 = U0
0 + o(ε)/ε and U ε1 =

U0
1 + o(ε)/ε, where now U0

0 is constant and U0
1 = ∂ν(u/ds) on ∂Ω (here, ∂ν denotes

the normal derivative to ∂Ω). For the first term, we need a higher order expansion,
in ε, for U ε0 . That is,

U ε0 = U0
0 + εÃ(u, f) + o(ε).

We can now compute Ã(u, f) using that (vε − u)ε−1 → Fs, as ε ↓ 0, and where Fs
solves 

(−∆)sFs = 0 in (Ω ∩B)
Fs = 0 in (Ω ∩B)c

Fs
ds−1

= sf on ∂Ω.

(1.11)

(We remark that (1.11) is a Dirichlet-type problem for the fractional Laplacian
involving large solutions, and was first studied in [Aba15, Gru15]. When s ↑ 1,
such problem converges to the classical Dirichlet problem for the Laplacian.) In

particular, Ã(u, f) depends on u and f through U1
0 and ∂ν(F/ds−1).

Putting all together, the stability condition A2(u, f) ≥ 0 is

Cs
Λ

∫
∂Ω
∂ν

( u
ds

)
f2 dσ ≥

∫
∂Ω
f∂ν

(
Fs
ds−1

)
dσ.

From here, and after some nontrivial manipulations, we can express ∂ν (u/ds) in
terms of Ω through the Green function, to get our desired result, Theorem 1.2.
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1.5.2. Ideas of the proof of Theorem 1.7. To prove Theorem 1.7, we need a local
formulation of the stability condition: an alternative form of the stability condition,
as seen in the extension variable (introduced in Subsection 2.2).

More precisely, if we extend to Rn+1
+ as (x, y) ∈ Rn × R+, and we denote by

u = u(x) our solution (so that, as an abuse of notation u : Rn × {0} → R and
Ω ⊂ Rn × {0}), then in Proposition 5.1 we prove that our stability condition in the
extended variable reads as∫

∂Ω

F

ds−1

{
∂ν

(
F

ds−1

)
− Γ(2 + s)

sΛ
∂ν

( u
ds

) F

ds−1
− 2s−1 1− s

s
y1+sLaF

}
≤

≤ − ds
Γ(1 + s)Γ(s)

∫
Ω
F∂ayF −

ds
Γ(1 + s)Γ(s)

∫
{y>0}

FLaF,

(1.12)

for all F with F ≡ 0 in (Rn \ Ω) × {0} and such that each of the previous terms
is well-defined, and where ds is given by (2.7). (We recall that ν denotes the unit
inward normal to ∂Ω.)

Notice that we are interested in test functions F that blow up like ds−1 when
approaching ∂Ω × {0} (namely, behaving as the large solutions introduced above).
We also denote u = u(x) = u(ζ, τ) where ζ2 = x2

1 + · · ·+ x2
n−1 and τ = xn, that is,

u is axially symmetric in the xn-direction.
Once condition (1.12) is established, we take

F = η ∂ζu

as a test function. Here, we take u to be its own a-harmonic extension towards
{y > 0}, and denote ∂ζ the derivative in the ζ direction. It is important to notice
that ∂ζu is a large solution of the type (1.11).

We show in Proposition 6.1 that, somewhat surprisingly, this yields a new and
much simpler stability condition in the extended variable,∫

{y>0}
(∂ζu)2 |∇η|2 y1−2s dx dy ≥ (n− 2)

∫
{y>0}

(∂ζu)2 η2 ζ−2 y1−2s dx dy (1.13)

for all test functions η. By taking now

η = ζ−α

and optimizing in α, we reach a contradiction with the stability condition for non-
trivial solutions if n < 6.

The idea of taking x · ∇u or ∂ζu in the stability condition goes back to [CC04],
where Cabré and Capella studied radial stable solutions of −∆u = f(u). More
recently, this type of test function has been also used in [CR13, CFRS20] in case of
semilinear equations, and even in the classical one-phase problem in [FR19] when
seen as a limit of semilinear equations. Finally, in case of nonlocal equations of the
type (−∆)su = f(u), this idea has been used in [CDDS11, San18].

Our proof here turns out to be much more delicate, since our stability condition
(1.12)-(1.11) is quite different (and much more singular) than those for semilinear
equations. Still, we end up obtaining a simple stability condition (1.13) with no free
boundary terms, in which we can then take appropriate test functions η.
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1.6. Structure of the paper. The paper is organized as follows.
In Section 2 we introduce some preliminary results that will be useful throughout

the work, and we obtain the critically condition or first variation condition for the
functional (1.3) with the explicit constant Γ(1 + s). In Section 3 we then focus our
attention on second order variations and obtain the stability condition Theorem 1.2
(see also Proposition 3.1). In order to do that we use fine estimates for the ex-
pansion of the fractional Laplacian of an s-harmonic function outside the domain,
in Lemma 3.2. In Section 4 we then use our main result, Theorem 1.2, to prove
Corollary 1.6 on the instability of non-trivial cone-like solutions in R2.

In Section 5 we express the previously obtained stability condition in Rn in terms
of the extension variable towards Rn+1, in Proposition 5.1. We then use it in Sec-
tion 6 to prove Theorem 1.7, stating that axially-symmetric solutions are either
one-dimensional or unstable, for dimensions up to n = 5. We finish, in Section 7,
with what would be the analogous numerical stability condition approach developed
by Caffarelli, Jerison, and Kenig in [CJK04], in the context of the fractional one-
phase problem, and that could yield the optimal dimension n = 6 for the previous
statement.

2. Preliminaries and the first variation

In this section we introduce some preliminaries regarding the definitions of local
minimizer, critical points, and stable solutions for (1.3), as well as the Caffarelli-
Silvestre extension. Then, we find the first variation condition, Proposition 3.1,
computing the explicit constant Γ(1 + s) in (1.5).

We start with the basic definitions for the energy functional (1.3).

2.1. Local minimizer, critical point, and stable solution. Let us define what
we mean by local minimizer for the energy functional JΛ (cf. [EKPSS21]). Let B ⊂
Rn be a fixed ball. We want a function u such that, under perturbations in B, JΛ(u)
cannot decrease its energy. In general, though, such energy could (and, in many
cases, will) be infinite. To avoid this, we instead consider the associated functional
JΛ,B involving only those terms of JΛ that could change under perturbations in B:

JΛ,B(v) =
cn,s
2

∫∫
R2n\(Bc)2

(v(x)− v(y))2

|x− y|n+2s
dx dy + Λ2|{v > 0} ∩B|. (2.1)

We then say that u ∈ L1
loc is a local minimizer of JΛ in B if

JΛ,B(u) ≤ JΛ,B(v) for all v s.t. v − u ∈ Hs(Rn) and u ≡ v in Rn \B. (2.2)

We say that u is a global minimizer of JΛ, if it is a local minimizer for all B ⊂ Rn.
Since the functional JΛ is non-smooth, the notion of critical (and stable) points

is delicate. We will always be dealing with weak/viscosity solutions to the problem,
and in our assumptions we will include that the domain Ω := {u > 0} is smooth
around the points we want to deal with. Under these assumptions, in order to get
the first (and second) variation of our functional it is enough to consider smooth
domain variations. The definition of critical point and stable solution presented here
are made under the assumption that the previous hypotheses hold.
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Given a domain variation Ψ ∈ C∞c (B;Rn) we define

uε(x) := u(x+ εΨ(x)).

We then say that u ∈ L1
loc with Ω = {u = 0} smooth is a critical point (with respect

to domain variations) of JΛ if

d

dε

∣∣∣∣
ε=0

JΛ,B(uε) = 0 for all B ⊂ Rn and Ψ ∈ C∞c (B;Rn). (2.3)

Similarly, we say that u ∈ L1
loc is a stable solution (with respect to domain

variations) of JΛ if it is a critical point, (2.3) and

d2

dε2

∣∣∣∣
ε=0

JΛ,B(uε) ≥ 0 for all B ⊂ Rn and Ψ ∈ C∞c (B;Rn). (2.4)

We now show how to “localize” the problem, by means of the Caffarelli-Silvestre
extension for the fractional Laplacian.

2.2. The extension variable. While we will often work with the nonlocal for-
mulation of the variational problem, (1.3)-(2.1)-(2.2), the fractional one-phase ob-
stacle problem is sometimes referred (and studied) as the thin one-phase problem
(see [CRS10, DS12, DS15b, DS15, EKPSS21] among others). This is due to the
Caffarelli-Silvestre extension for the fractional Laplacian and fractional Sobolev
norms ([CS07]), that allows an equivalent formulation of the previous non-local
variational problem as a local problem defined in one extra dimension. Namely, if
we want to compute (−∆)sv for some v : Rn → R, and we denote the points in Rn+1

as (x, y) ∈ Rn × R, we can consider the a-harmonic extension of v towards Rn+1
+ .

That is, a function v̄ : Rn+1 → R such that

Lav̄ = 0 for y > 0, v̄(x, 0) = v(x),

where

Lav̄ := div(|y|a∇v̄), a = 1− 2s ∈ (−1, 1). (2.5)

Then,

(−∆)sv(x) = −ds∂ay v̄(x, 0), where ∂ayv(x, 0) = lim
y↓0

ya∂yv̄(x, y) (2.6)

and we have denoted

ds = 22s−1 Γ(s)

Γ(1− s)
. (2.7)

We also have the equivalence, in this case,

[v]Hs(Rn) = ds[v̄]H1(Rn+1
+ ,|y|a) (2.8)

where we have introduced the weighted Sobolev space H1(Ω, |y|a) with semi-norm,

[w]2H1(Ω,|y|a) =

∫
Ω
|∇w|2|y|a dx dy.

Thus, we define the following local energy functional in Rn+1

IΛ∗(w,Rn+1) = [w]2H1(Rn+1,|y|a) + Λ2
∗Hn

(
{(x, 0) ∈ Rn+1 : w(x, 0) > 0}

)
, (2.9)
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where Hn is the n-dimensional Hausdorff measure. We can analogously define a
localized energy functional in B ⊂ Rn+1 as

IΛ∗(w,B) = [w]2H1(B,|y|a) + Λ2
∗Hn

(
{(x, 0) ∈ B : w(x, 0) > 0}

)
, (2.10)

where now, due to the local nature of the problem, one can really focus only on the
set B without intervention from Bc.

We say that u∗ is a local minimizer for IΛ∗ in B ⊂ Rn+1 if IΛ∗(u∗, B) ≤ IΛ∗(w,B)
for all w such that u∗ = w in Bc. Similarly, we say that u∗ is a global minimizer for
IΛ∗ if it is a local minimizer for all B ⊂ Rn+1.

We note that, due to the equivalence (2.8) and the fact that a-harmonic functions
are local minimizers of the weighted Dirichlet energy, the a-harmonic extension of a
global minimizer of JΛ∗ is a global minimizer for IΛ, when

2Λ2 = dsΛ
2
∗. (2.11)

The extra factor 2 appears because in the equivalence (2.8) we consider only a half-
space Rn+1

+ . In particular, for s = 1
2 (when a = 0 and La = ∆),

√
2Λ = Λ∗.

2.3. The first variation. The first variation (criticality condition) for the frac-
tional one-phase problem is the following:

Proposition 2.1. Let u be a local minimizer to (1.3), in the sense (2.1)-(2.2); or
a critical point to (1.3) in B ⊂ Rn, in the sense (2.3). Let Ω := {u > 0}, and let us
suppose that ∂Ω ∩B is at least C1,α. Then, u satisfies

(−∆)su = 0 in Ω ∩B
u = 0 in Ωc ∩B

Γ(1 + s)
u

ds
= Λ on ∂Ω ∩B.

(2.12)

Remark 2.2. Even if it is already known, we will prove the previous result for two
reasons: on the one hand, we think it is an opportunity to introduce some of the
expressions that will be used later on; and on the other hand, we compute the ex-
plicit constant for the normal derivative (depending on Λ). The constant appearing
in [CRS10] is incorrect, unfortunately, because of a computational mistake in the
derivation. (Notice that the constant obtained here is actually simpler than the one
in [CRS10].)

Remark 2.3. Our constant for the fractional derivative coincides with the one in
[DS15b, Proposition 3.13] in the case s = 1

2 , where they obtain that the (fractional)

normal derivative is
√

2π−1 for minimizers of (2.10) with Λ∗ = 1. Using that from

(2.11) Λ = 2−
1
2 in this case, we see that both results are the same.

Remark 2.4. While the previous result is originally proved for minimizers in [CRS10],
we do it also for critical points. Both for us, and for [CRS10], the proof is the same
for minimizers and critical points. We think, however, that it is an opportunity
to introduce the competitors that will be used later on for the stable solutions.
Also, our proof of the first variation condition does not use the Caffarelli-Silvestre
extension of the fractional Laplacian.
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Let us start by a couple of lemmas that will be useful throughout the proof of
Proposition 2.1.

The first lemma is a simple (but useful) identity involving fractional semi-norms
and the fractional Laplacian.

Lemma 2.5. Let u and v be such that u ≡ v in Rn \B. Then

cn,s
2

∫∫
R2n\(Bc)2

(v(x)− v(y))2

|x− y|n+2s
dx dy − cn,s

2

∫∫
R2n\(Bc)2

(u(x)− u(y))2

|x− y|n+2s
dx dy =

=

∫
B

(v − u)(−∆)s(v + u).

Proof. We are going to use the following identity from [DRV17]:

〈u, v〉Hs(B) =

∫
B
v(−∆)su+

∫
Bc
vNsu,

where we have denoted by

〈u, v〉Hs(B) :=
cn,s
2

∫∫
R2n\(Bc)2

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dx dy (2.13)

and

Nsu = cn,s

∫
B

u(x)− u(y)

|x− y|n+2s
dy for x ∈ Bc.

Thus, we have (using that u ≡ v in Bc)

〈v, v〉Hs(B) =

∫
B
v(−∆)sv +

∫
Bc
vNsv =

∫
B
v(−∆)sv +

∫
Bc
uNsv

=

∫
B

(v − u)(−∆)sv + 〈v, u〉Hs(B)

=

∫
B

(v − u)(−∆)sv +

∫
Ω
v(−∆)su+

∫
Bc
vNsu

= 〈u, u〉Hs(B) +

∫
B

(v − u)(−∆)s(v + u),

as wanted. �

The second lemma is the first order expansion of the fractional Laplacian of an
s-harmonic function outside of the domain. Here, we denote d(x) = dist(x, ∂Ω).

Lemma 2.6. Let u+ = max{u, 0} and u− = −min{u, 0}. Then

(−∆)s(x1)s+ = c̄s(x1)−s− with c̄s = −Γ(1 + s)

Γ(1− s)
. (2.14)

Moreover, if Ω ⊂ Rn is C1,α, with 0 ∈ ∂Ω, and u solves{
(−∆)su = 0 in B1 ∩ Ω

u = 0 in B1 \ Ω,

then there exists U0 ∈ R such that

u(x) = U0d
s(x) +O(|x|s+α) in Ω,
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and

(−∆)su(x) = c̄sU0d
−s(x) +O(|x|α) d−s(x) in B1 \ Ω,

where c̄s is given by (2.14).

Proof. Notice that

(−∆)sv(x) = −cn,s
2

∫
Rn

v(x+ y) + v(x− y)− 2v(x)

|y|n+2s
dy

= −cn,s
2

∫
Sn−1

1

2

∫ ∞
−∞

v(x+ rθ) + v(x− rθ)− 2v(x)

r1+2s
dr dθ.

Suppose now that v(x) = v(xn) so

(−∆)sv(x) = −cn,s
2

∫
Sn−1

1

2

∫ ∞
−∞

v(xn + rθn) + v(xn − rθn)− 2v(xn)

r1+2s
dr dθ

=
cn,s
2c1,s

∫
Sn−1

(−∆)sRv(xn + θn·) dθ =
cn,s
2c1,s

∫
Sn−1

|θn|2s dθ(−∆)sRv(xn),

where (−∆)sR denotes the one-dimensional fractional Laplacian. Now notice that∫
Sn−1

|θn|2s dθ = 2|Sn−2|
∫ π/2

0
(sin(θ))2s(cos(θ))n−2 dθ

= |Sn−2|
∫ 1

0
ts−

1
2 (1− t)

n−3
2 dt = |Sn−2|

Γ
(
n−1

2

)
Γ
(
s+ 1

2

)
Γ
(
n
2 + s

) .

Notice also that

cn,s
c1,s

=
Γ
(
n
2 + s

)
π
n−1
2 Γ

(
s+ 1

2

) , |Sn−2| = 2π
n−1
2

Γ
(
n−1

2

) .
Putting it all together,

(−∆)sv(x) = (−∆)sRv(xn).

Now, if we denote v(t) = ts+ we can compute

(−∆)s(x1)s+ = ((−∆)sRv)(x1) = c̄s(x1)−s− .

and c̄s is simply given by ((−∆)sRv)(−1),

c̄s = ((−∆)sRv)(−1) = c1,s

∫ ∞
0

−ts

(1 + t)1+2s
dt.

Let us compute with the change of variable t 7→ z = 1
1+t∫ ∞

0

ts

(1 + t)1+2s
dt =

∫ 1

0
(1− z)szs−1 dz =

Γ(s+ 1)Γ(s)

Γ(2s+ 1)
.

Thus, plugging in the value of c1,s,

c̄s = −c1,s
Γ(s+ 1)Γ(s)

Γ(2s+ 1)
= −Γ(1 + s)

Γ(1− s)
,

where we are also using the duplication formula for the gamma function,

Γ(2z) = Γ(z)Γ
(
z + 1

2

)
22z−1π−

1
2 .
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Let now Ω ⊂ Rn be any C1,α domain. Then, by [RS17], we know that u/ds ∈
Cα(Ω ∩B1/2). Thus, if we define U0 := (u/ds)(0) we then have

u(x) = (u/ds)(x) ds(x) =
(
U0 +O(|x|α)

)
ds(x) = U0d

s(x) +O(|x|α) ds(x).

Since ds(x) = O(|x|s), this proves the expansion for u near 0. Notice that such
expansion also implies that

u(x) = U0(x · ν)s+ +O(|x|s+α),

where ν is the normal vector to ∂Ω at the origin.
Now, thanks to the previous expansion, we find that for x = −tν ∈ Ωc, with

t > 0,

(−∆)su(x) = U0(−∆)s(x · ν)s+ +O(t−s+α) = c̄sU0t
−s +O(t−s+α),

where we used the first part of the Lemma (the case n = 1). Since this can be done
not only at the origin but at every boundary point z ∈ ∂Ω, we deduce that for every
x = z − tνz ∈ Ωc

(−∆)su(x) = c̄sUzt
−s +O(t−s+α).

For each x ∈ Ωc we can choose z ∈ ∂Ω such that |x− z| = d(x), and then we deduce

(−∆)su(x) = c̄sUzd
−s(x) +O(d−s+α(x)).

Since Uz = U0 +O(|z|α) = U0 +O(|x|α), we finally get

(−∆)su(x) = c̄sU0d
−s(x) +O(|x|α) d−s(x),

as wanted. �

We now have all the ingredients to give the:

Proof of Proposition 2.1. We divide the proof into two steps. In the first step we
build the right competitors, and in the second step we use them to deduce the de-
sired properties.

Step 1. According to the definition of critical point, (2.3), we need to consider com-
petitors of the form uε(x) = u(x+εΨ(x)) for smooth domain variations variations Ψ
supported in B ⊂ Rn, in order to compute the expansion of the energy JΛ,B(uε) in
ε, for all B ⊂ Rn. We notice two important properties: on the one hand, for ε small,
x + εΨ is a diffeomorphism; on the other hand, we can always lower the energy by
making uε s-harmonic in its positivity region. With these two properties, we have
that it is enough to perform smooth ε-deformations of the contact set {u = 0} while
keeping the positivity region s-harmonic.

Let us now show the theorem by building a competitor vε in B. Let us consider
a fixed function f ∈ C∞c (∂Ω), f ≥ 0, and without loss of generality let us assume
that supp(f) ⊂ B ∩ ∂Ω (the case for general f without sign restriction is discussed
at the end). Let us denote, for x ∈ Rn, z = πΩ(x) for any z ∈ ∂Ω such that
d(x) = dist(x, z). Notice that if d(x) is small enough, since the domain Ω is smooth,
this is uniquely determined. (In the formulation above, we are considering the
surface (Id + εΨ)(∂Ω) as a function over ∂Ω.)

Let us define the domain Ωε for ε > 0 as

Ωε =
{
x ∈ Ω : d(x) ≥ εf(πΩ(x))

}
.
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∂Ω

Ωε

εf(x◦)
x◦

x

ν(x)

B

Figure 2.2. The domains B, Ω, and Ωε.

Namely, we extend the complementary of Ωc by εf(z) for each z ∈ ∂Ω (see Fig-
ure 2.2). Let us denote by vε our competitor, which is the solution to (−∆)svε = 0 in (Ωε ∩B)

vε = u in Bc

vε = 0 in B \ Ωε.

Now, we have that JΛ,B(vε) ≤ JΛ,B(uε) and they coincide for ε = 0; therefore,
the expansion in ε coincides at order 0 and 1 (and second derivatives are ordered).

Step 2. Let us now compute the first order term in the expansion, JΛ,B(vε) −
JΛ,B(u). We have, using the notation from (2.13), and Lemma 2.5

JΛ,B(vε)− JΛ,B(u) = 〈vε, vε〉Hs(B) − Λ〈u, u〉Hs(B) − Λ2|(Ω \ Ωε) ∩B|

=

∫
B

(vε − u)(−∆)s(vε + u)− Λ2|Θε|,

where we have denoted Θε := (Ω \ Ωε) ∩ B. Notice now that, using u(−∆)su =
vε(−∆)svε = vε(−∆)su = 0 in B, and u(−∆)svε = 0 in Ωc ∪ Ωε,

JΛ,B(vε)− JΛ,B(u) = −
∫

Θε

u(−∆)svε − Λ2|Θε|. (2.15)

Now, on the one hand

|Θε| = ε

∫
∂Ω
f + o(ε). (2.16)

On the other hand, let us parametrize the points in Θε as z+tν(z), where z ∈ ∂Ω,
t > 0, and ν(z) is the unit inward normal to ∂Ω at z. Notice also that the volume
element here is dV = (1 +O(t)) dσ(z) dt where dσ is the area element on ∂Ω. Using
this parametrization we can expand u at z ∈ ∂Ω as

u(z + tν(z)) =
u

ds
(z) ts + o(ts), (2.17)
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where
u

ds
(z) = lim

τ↓0

u(z + τν(z))

τ s
.

is the fractional normal derivative. Similarly, we can expand vε around x◦ = z +
εf(z)ν(z) ∈ ∂Ωε as

vε(x) =
vε
dsε

(x◦) d
s
ε(x) + o(|x− x◦|s) in Ωε,

where

dε(x) := dist(x, ∂Ωε).

By Lemma 2.6,

(−∆)svε = c̄s
vε
dsε

(x◦) d
−s
ε + o(d−sε ) in Ωc

ε,

where c̄s is given by (3.3). Notice now that, if x = z + tν(z) ∈ Θε (0 < t < εf(z)),

d2
ε(x)

(
1 + [ε|∇f |+ o(ε)]2

)
= (εf(z)− t)2

so

dε(x) = (εf(z)− t)(1 + o(ε)). (2.18)

That is,

(−∆)svε(z + tν(z)) = c̄s
vε
dsε

(x◦)
(
(εf(z)− t)(1 + o(ε))

)−s
+ o(t−s).

Similarly, since vε → u and (vε/d
s
ε)(x◦) = (u/ds)(z) + o(1) as ε ↓ 0, we have

(−∆)svε(z + tν(z)) = c̄s
u

ds
(z)(εf(z)− t)−s(1 + o(1)) + o(t−s). (2.19)

Putting (2.17) and (2.19) together,∫
Θε

u(−∆)svε =

=

∫
∂Ω

∫ εf(z)

0
tsc̄s

(( u
ds

(z)
)2

(εf(z)− t)−s[1 + o(1)] + o(t−s)

)
dt dσ(z)

= c̄s

∫
∂Ω

( u
ds

(z)
)2
∫ εf(z)

0
ts(εf(z)− t)−s[1 + o(1)] dt dσ(z) + o(ε)

= εc̄s

∫
∂Ω
f(z)

( u
ds

(z)
)2
∫ 1

0
ts(1− t)−s dt dσ(z) + o(ε).

Now notice that ∫ 1

0
ts(1− t)−s dt = Γ (1 + s) Γ (1− s) ,

so that ∫
Θε

u(−∆)svε = −εΓ (1 + s)2
∫
∂Ω
f(z)

( u
ds

(z)
)2

dσ(z) + o(ε). (2.20)

Combining (2.15), (2.16) and (2.20),

JΛ,B(vε)− JΛ,B(u) = ε

∫
∂Ω
f(z)

[
Γ (1 + s)2

( u
ds

(z)
)2
− Λ2

]
dσ(z) + o(ε).
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By (2.3)), we deduce∫
∂Ω
f(z)

[
Γ (1 + s)2

( u
ds

(z)
)2
− Λ2

]
dσ(z) = 0

for all 0 ≤ f ∈ C∞c (B ∩ ∂Ω), and hence

Γ(1 + s)
u

ds
(z) = Λ

for all z ∈ ∂Ω, as we wanted to see. �

3. The stability condition

In this section we will prove the following result, which is our first characterisation
of the stability condition.

Proposition 3.1. Let u be a local minimizer to (1.3), in the sense (2.1)-(2.2); or a
stable critical point to (1.3) in B ⊂ Rn, in the sense (2.3)-(2.4). Let Ω := {u > 0},
and let us suppose that ∂Ω ∩B is at least C2,α. Then, u satisfies

− 1 + s

s
· Γ(1 + s)

Λ

∫
∂Ω
∂ν

( u
ds

)
f2 dσ ≤ −

∫
∂Ω
f∂ν

(
F

ds−1

)
dσ, (3.1)

for all f ∈ C∞c (∂Ω ∩B); where ν is the unit inward normal vector on ∂Ω, and F is
the solution to 

(−∆)sF = 0 in (Ω ∩B)
F = 0 in (Ω ∩B)c
F

ds−1 = f on ∂Ω,
(3.2)

which is a possible analogy of the Dirichlet problem for the fractional Laplacian.

Problem (3.2) is a singular boundary value problem for the fractional Laplacian,
and it is well posed for any boundary value f ∈ C0(∂Ω). It was first studied in
[Aba15, Gru15].

To prove the result we will need the following lemma, which is a higher order
version of Lemma 2.6 above.

Lemma 3.2. Let Ω ⊂ Rn be any C2,α domain, with 0 ∈ ∂Ω, and let u solve{
(−∆)su = 0 in B1 ∩ Ω

u = 0 in B1 \ Ω.

Let us define, for x ∈ Ω,

η(x) =
u(x)

ds(x)
,

where d(x) = dist(x, ∂Ω). Then, η ∈ C1,α(Ω ∩B1/2) and we can express the expan-
sion of u around 0 as

u(x) = η(0)ds(x) + (∇η(0) · x)ds(x) + o(|x|) ds(x) in Ω.

Moreover, we can expand (−∆)su at 0 as

(−∆)su(x) = c̄sη(0)d−s(x) + c̄∗η(0)Hd1−s(x) + c̄1+s∂νη(0)d1−s(x) +

+ c̄s(∇τη(0) · x)d−s(x) + o(|x|) d−s(x) in B \ Ω
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around 0, where H denotes the mean curvature of ∂Ω at 0 (with respect to {u =
0}), ν denotes the unit inward normal derivative to ∂Ω at 0, and ∇τ denotes the
tangential component of the gradient at 0. The constants are given by

c̄s = −Γ(1 + s)

Γ(1− s)
, c̄∗ =

sΓ(1 + s)

Γ(2− s)
, c̄1+s =

Γ(2 + s)

Γ(2− s)
. (3.3)

Proof. Notice that, by [AR20, Theorem 1.4], η ∈ C1,α(Ω ∩B1/2), so

u(x) = η(0)ds(x) + (∇η(0) · x)ds(x) + o(|x|) ds.

Let us now divide the proof into three steps. In the first step we perform some
computations that will be useful in the following ones.

Step 1. Let us denote by δ the signed distance to Ω, so that δ > 0 in Ω and δ ≤ 0 in
Ωc. We also consider the extension problem: by taking coordinates in Rn+1, (x, y)
with x ∈ Rn and y ∈ R+ (see [CS07] and subsection 1.5).

Let us also define by r = r(X) the distance to ∂Ω in Rn × R+, namely

r = (δ2 + y2)
1
2 .

Notice that we also have, on ∂Ω, ∆δ = ∆xδ = H, where H = H(x) is the mean
curvature of the level set of {δ = t} with respect to {δ ≤ t} (in particular, when δ
goes to zero, H is the mean curvature of ∂Ω with respect to {u = 0}).

Let us consider the operator

Lav := div(ya∇v), where a = 1− 2s.

We define also

Us := (r + δ)s.

For convenience to the reader, we collect some identities that are useful in the
computations below.

Laδ = Hya La(F
α) = αFα−1LaF + α(α− 1)Fα−2|∇F |2ya

∇r = 1
r (δ∇δ, y) LaUs = sH Usr y

a

|∇δ|2 = |∇r|2 = 1 ∇Us = s(r + δ)s−1(∇δ +∇r)
rLar = (Hδ + 1 + a)ya ∇δ · ∇r = δ

r
|∇(r + δ)|2 = 2

(
1 + δ

r

)
∇Us · ∇δ = ∇Us · ∇r = sUsr .

From here, we can also compute

La(Usδ) = sHUs
δ

r
ya +HUsya + 2s

Us
r
ya

La(Usr) = HUs
δ

r
ya + sHUsya + 2

Us
r
ya.

In particular,

La(Us(sr − δ)) = −(1− s2)HyaUs,
and, if we denote

Vs := Us −
H

2
Usδ +

1

1− s
H

2
Us(δ − sr) = Us +

H

2
Us

s

1− s
(δ − r),
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we have

LaVs = s
H2

2

Us
r

(r − δ)ya.

Moreover, by considering the region where δ = −t for some t > 0 (i.e., in Ωc)

ya∂yUs =
s

r(r + t)s−1
→ s21−st−s as y ↓ 0, (3.4)

so that

ya∂yVs → s21−st−s −H s2

1− s
21−st1−s as y ↓ 0. (3.5)

We also recall that, if U(x, y) is a-harmonic (LaU = 0 in {y > 0}), then

(−∆)sU(·, 0) = −ds lim
y↓0

ya∂yU(x, y), with ds = 22s−1 Γ(s)

Γ(1− s)
.

(See [ST10].)
Moreover, if ∇δ(0) = en and x = (x′, xn) ∈ Rn−1 × R, given v ∈ Rn−1,

La
[
Usv · x′

]
= sH

Ua
r

(v · x′)ya + 2∇x′Us · vya,

where ∇x′ denotes the gradient in the first n−1 coordinates. We can compute ∇x′Us
as

∇x′Us = sUs
1

r
∇x′δ.

Notice that, since ∇x′δ(0) = 0 and Ω is smooth, so

La
[
Usv · x′

]
=
Us
r
yaO(|x|),

where we have used that ∇x′δ(x) = O(|x|).
Step 2. By [JN17, Proposition 4.1]-[DS15, Theorem 3.1], we can express the a-
harmonic extension of u towards {y > 0} as

u(x, y) = 2−sUs
(
P (x, r) + o(|(x, r)|k+ 1

2 )
)

for a polynomial P in x and r of degree k. Expanding it in terms of δ, and denoting
by ν the unit inward normal vector to ∂Ω at 0, we have that

u(x, y) = 2−sUs
(
a0 + a1δ + a2r +A3 · (x− (x · ν)ν) + o(|(x, r)|

3
2 )
)
,

where we are using that, at first order, (x ·ν)ν is like δ and (x− (x ·ν)ν) corresponds
to the tangential space to ∂Ω at 0.

Without loss of generality, let us assume ν = en and let us denote points in Rn
as x = (x′, xn) ∈ Rn−1 × R (notice that, then, δ(x) = xn + o(|x|)). Then

u(x, y) = 2−sUs
(
a0 + a1δ + a2r +A3 · x′ + o(|(x, r)|

3
2 )
)
,

For future convenience, we re-express it as

u(x, y) = 2−sUs
(
a0 + ã1(δ − sr) + ã2(δ − r) +A3 · x′ + . . .

)
,

so that, from the definition of η(x),

η(x) =
u(x, 0)

δs(x)
= a0 + ã1(1− s)δ +A3 · x′ + o(|x|). (3.6)
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By expanding η(x) at 0 ∈ ∂Ω we also have

η(x) = η(0) +∇η(0) · x+ o(|x|) = η(0) +∇η(0) · x′ + ∂nη(0)xn + o(|x|).

Comparing it with (3.6), and using that δ = xn + o(|x|), we reach

a0 = η(0), ã1(1− s) = ∂nη(0), A3 = ∇x′η(0).

Thus

u(x, y)

2−sUs
= η(0) +

∂nη(0)

1− s
(δ − sr) + ã2(δ − r) +∇x′η(0) · x′ + o(|(x, r)|).

We now use the fact that u(x, y) is the a-harmonic expansion of u, and thus
Lau(x, y) = 0 for y > 0. That is,

y−aLa

(
Us
[
η(0) +

∂nη(0)

1− s
(δ − sr) +∇x′η(0) · x′

])
+

+ ã2y
−aLa

(
Us(δ − r)

)
= o(|(x, r)|s−1).

This implies some cancellations that give the only value of ã2 possible (notice that
we cannot proceed as before, since the term multiplying ã2 cannot be seen from
{y = 0}).

From the calculations in the first step,

La(Us(δ − sr)) = CUsya = CyaO(|(x, r)|s) = yao(|(x, r)|s−1)

and

La(Us∇x′η(0) · x′) =
Us
r
yaO(|x|) = yaO(|(x, r)|s) = yao(|(x, r)|s−1)

are already “almost” a-harmonic, so we have to impose

y−aLa

(
Us
[
η(0) +∇x′η(0) · x′ + ã2(δ − r)

])
= o(|(x, r)|s−1). (3.7)

Therefore, from (3.7)

y−aLa

(
Us
[
η(0) + ã2(δ − r)

])
= o(|(x, r)|s−1).

Notice that, in Step 1, we had y−aLaVs = o(|(x, r)|s−1), so we must have

ã2

η(0)
=
H

2

s

1− s
.

In all, the expansion of u at 0 must be

u(x, y)

2−sUs
= η(0) +

∂nη(0)

1− s
(δ − sr) + η(0)

H

2

s

1− s
(δ − r) +∇η(0) · x′ + o(|(x, r)|

3
2 ).

Alternatively,

2su(x, y) = η(0)Vs +
∂nη(0)

1− s
Us(δ − sr) + Us∇η(0) · x′ + Uso(|(x, r)|

3
2 ),

and this expression will allow us to compute the fractional Laplacian.
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Step 3. Now, the fractional Laplacian (−∆)su(x) can be computed as

(−∆)su(x) = −ds lim
y↓0

ya∂yu(x, y).

As in Step 1, we use that δ = −t for some t > 0 (we are the area where {u = 0}, since
otherwise we already know by assumption that u has vanishing fractional Laplacian),
and we also recall the computations (3.4) and (3.5). We can then compute

ya∂y {Us(−t− sr)} = −s t+ sr

t(r + t)s−1
− sUs

y1+a

r
→ −s(1 + s)21−st1−s as y ↓ 0.

Putting it all together, and from the expansion of u we have

−2−ad−1
s (−∆)su(x) = η(0)

[
st−s −H s2

1− s
t1−s

]
− ∂nη(0)

1− s
s(1 + s)t1−s +

+ st−s∇η(0) · x′ + o(|x|t−s).
Substituting the corresponding values we obtain the desired result. �

Let us now give the proof of the stability condition:

Proof of Proposition 3.1. We divide the proof into four steps. Without loss of gen-
erality we will assume that Λ = Γ(1 + s) so that, by Proposition 2.1, u/ds ≡ 1 on
∂Ω.

Step 1. Let us assume f ≥ 0, and let us build a competitor, as in the proof of
Proposition 2.1. We will take general f in the last step.

That is, let us consider a fixed function f ∈ C∞c (∂Ω), f ≥ 0, and we assume that
supp(f) ⊂ B ∩ ∂Ω. We recall the definition of Ωε and vε as in Proposition 2.1: for
x ∈ Rn, we denote z = πΩ(x) for any z ∈ ∂Ω such that d(x) = dist(x, z). We define
the domain Ωε as

Ωε =
{
x ∈ Ω : d(x) ≥ εf(πΩ(x))

}
.

Denote by vε our competitor, which is the solution of (−∆)svε = 0 in (Ωε ∩B)
vε = u in Bc

vε = 0 in B \ Ωε.

(Recall Figure 2.2.)
We now define the function

Fε =
u− vε
ε

, Fs = lim
ε↓0

Fε.

Notice that Fs satisfies Fs = 0 in (Ω ∩ B)c, and (−∆)sFs = 0 in Ω ∩ B. Let us
now see that Fs is well defined in the interior of Ω. In particular, we will show that
Fε is smooth at any x◦ ∈ Ω, with estimates independent of ε.

Let x◦ ∈ Ω, t◦ := dist(x◦, ∂Ω) > 0. Let us denote wε = u−vε. Then, (−∆)swε = 0
in Ωε ∩ B and dist(x◦,Ωε) >

1
2 t◦ for ε small enough. Let us denote by Pε(x, y) :

(Ωε∩B)× (Ωε∩B)c → R the Poisson kernel associated to the (smooth) domain Ωε.
That is, if w is such that{

(−∆)sw = 0 in (Ωε ∩B)
w = h in (Ωε ∩B)c,
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then

w(x) =

∫
(Ωε∩B)c

Pε(x, y)h(y) dy.

For our function wε, we have that wε = 0 in Ωc, and thus

wε(x◦) =

∫
Θε

Pε(x◦, y)u(y) dy. (3.8)

where Θε = (Ω \Ωε)∩B. From the growth condition of u at the boundary we know
that u ∼ ds on Θε. On the other hand, we have estimates for the Poisson kernel
(see [CS98, Theorem 1.5])

Pε(x, y) ≤ C dsε(x)

dsε(y)(1 + dε(y))s
1

|x− y|n
(3.9)

where dε(z) = dist(z, ∂Ωε), and the constant C depends only on s and the regularity
of Ωε. From the smoothness of Ω and f , we can take a uniform C in ε.

Finally, combining the fact that u ∼ ds, (3.9), (3.8), and f is bounded, we reach
that

wε(x◦) ≤ C
∫
∂Ω

∫ εf(z)

0

(
εf(z)− t

t

)s
dtdσ(z) = Cε,

for some C depending only on n, s, t◦, and the exterior and interior ball condition of
Ω and ‖f‖C2(∂Ω). In particular, Fε is bounded in Bt◦/4(x◦) independently of ε. We
can repeat the same argument for the derivatives of wε to deduce that Fε is smooth
(independently of ε) in Bt◦/4(x◦), so that by Arzelà-Ascoli we can take subsequences
and conclude that Fε → Fs uniformly and Fs is smooth in Bt◦/4(x◦).

In all, we have proved that Fs is well defined (and smooth) in the interior of Ω.
Nonetheless, the function Fs might explode when approaching the boundary ∂Ω.
Notice, however, that from the argumentation above, if z◦ ∈ ∂(B ∩ Ω) \ ∂Ω, then
Fs(z)→ 0 as z → z◦ and Fs is continuous across ∂B.

Step 2. Let us now compute an expansion around boundary points on ∂Ω for Fs.
Recall that Fs = 0 in (Ω∩B)c, and (−∆)sFs = 0 in Ω∩B. On the other hand, if we
denote by ν : ∂Ω→ Sn−1 the unit inward normal vector to ∂Ω, then by Lemma 3.2
we can expand u at z as

u(z + tν(z)) = ts + U1(z)t1+s + o(t1+s),

for t ≥ 0, and where U1(z) = ∂ν
(
u
ds

)
(z), since u is a solution to the one-phase

problem, (1.5), and by Proposition 2.1 the normal derivative is constant (recall
Λ = 1

Γ(1+s)); in particular, the tangential term in the expansion at order 1 + s

vanishes.
Let us also expand vε in the ν(z) direction at the point Pε(z) := z + εf(z)ν(z).

To do so, let us denote by dε(x) = dist(x, ∂Ωε), and ηε(x) = vε(x)/dsε(x) for x ∈ Ωε.
Then, we have that, expanding vε at Pε(z),

vε(x) = ηε(Pε(z))d
s
ε(x) + (∇η(Pε(z)) · x)dsε(x) + o(|x− Pε(z)|dsε(x)).

We can now separate the term ∇η(Pε(z)) · x between its normal and its tangential
directions to ∂Ωε at Pε(z). Thus, we have

vε(x) = V0,εd
s
ε(x) + V1,εd

1+s
ε (x) + (Ṽτ,ε · x)dsε(x) + o(|x− Pε(z)|dsε(x)), (3.10)
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where Ṽτ = ∇τη(Pε(z)) is the tangential (to ∂Ωε) gradient of η at Pε(z), and x ∈ Ωε,
and we have denoted for convenience V0,ε = ηε(Pε(z)) and V1,ε = ∂νηε(Pε(z)). Notice
that, from the convergence of vε → u as ε ↓ 0, we have

V0,ε = 1 + o(1), |Ṽτ,ε| = o(1),

i.e. Ṽτ,ε → 0 and V0,ε → 1 as ε ↓ 0.
As in (2.18) we have that, if x = z + tf(z)ν(z) for t > 0,

dε(x) = (t− εf(z))(1 + o(ε)).

That is,

vε(x) = V0,ε(t− εf(z))s + V1,ε(t− εf(z))1+s +

+ (Ṽτ,ε · x)(t− εf(z))s + o((t− εf(z))1+s) + o(ε),
(3.11)

We can rewrite it as

vε(x) = V0,ε

(
ts − sts−1εf(z) + o(ε)

)
+ V1,ε

(
t1+s − (1 + s)tsεf(z) + o(ε)

)
+

+ (Ṽτ,ε · x)
(
ts − sts−1εf(z) + o(ε)

)
+ o((t− εf(x))1+s) + o(ε).

We want now to consider u−vε
ε and let ε ↓ 0. Notice that (Ṽτ,ε · x) = t o(1), so

(u− vε)(x) = sf(z)εts−1 + (1− V0,ε + (1 + s)εV1,εf(z)) ts +

+ (U1(z)− V1,ε)t
1+s + o(ε) + εo(t1+s).

That is, recalling x = z + tf(z)ν(z),

Fs(x) = lim
ε↓0

(u− vε)(x)

ε
= sf(z)ts−1 +

(
lim
ε↓0

1− V0,ε

ε
+ (1 + s)V1,εf(z)

)
ts +

+ t1+s lim
ε↓0

U1(z)− V1,ε

ε
+ o(t1+s).

In particular, Fs is a solution to
(−∆)sFs = 0 in (Ω ∩B)

Fs = 0 in (Ω ∩B)c

Fs
ds−1

= sf on ∂Ω,

which is a well-posed Dirichlet-type problem for the fractional Laplacian (see [Aba15]).
Moreover, from the expansion of solutions at points on the boundary, we know that
the term in t1+s in the expansion of Fs is bounded, so

lim
ε↓0

V1,ε = U1(z) ⇐⇒ V1,ε = U1(z) + o(1). (3.12)

Finally, from the coefficient of ts, which corresponds to ∂ν
(
Fs
ds−1

)
, and using the

previous expression (3.12), we have

∂ν

(
Fs
ds−1

)
= lim

ε↓0

1− V0,ε

ε
+ (1 + s)U1(z)f(z).
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Alternatively,

V0,ε = V0,ε(z) = 1− ε∂ν
(
Fs
ds−1

)
+ (1 + s)εU1(z)f(z) + o(ε), (3.13)

we have an expansion up to order ε for V0,ε.

Step 3. We now want to perform an expansion of JΛ,B(vε) − JΛ,B(u). This is
formed by two terms (see (2.15)).

On the one hand, let us, as in the proof of Proposition 2.1, consider a parametri-
zation of the points in Θε = (Ω \ Ωε) ∩ B as z + tν(z) with z ∈ ∂Ω, 0 < t <
εf(z). We need another term in the expansion of the volume element, which is
dV = (1 +Ht+ o(t))dσ(z)dt.

Thus, we expand equation (2.16) to one more term as

|{u > 0}| − |{vε > 0}| = |Θε| =
∫
∂Ω

∫ εf(z)

0

(
1 + tH(z) + o(t)

)
dt dσ(z),

where H(z) is the mean curvature of ∂Ω at z (with respect to {u = 0}). Namely,

|{u > 0}| − |{vε > 0}| = ε

∫
∂Ω
f +

ε2

2

∫
∂Ω
Hf2 + o(ε2). (3.14)

On the other hand, let us now compute the remaining term in JΛ,B(vε)−JΛ,B(u).
Namely, ∫

Θε

u(−∆)svε.

We expand both u and (−∆)svε as in the proof of Proposition 2.1, but we need one
more term in the expansion now. First, we already know

u(z + tν(z)) = ts + U1(z)t1+s + o(t1+s). (3.15)

We can also expand vε at x◦ = z + εf(z)ν(z) ∈ ∂Ωε as (3.10). By Lemma 3.2 we
then have that

(−∆)svε(x) = c̄sV0,εd
−s
ε (x) + c̄1+sV1,εd

1−s
ε (x) + c̄∗V0,εHεd

1−s
ε (x) +

+ c̄s(Ṽτ,ε · x)d−sε (x) + o(|x− Pε(z)|dsε(x)) in Ωc
ε,

where Hε(z) = H(z + εf(z)ν(z)) is the mean curvature of ∂Ωε (with respect to
{vε = 0}). That is, from (2.18) and as in the deduction of (3.11),

(−∆)svε(x) =

[
c̄sV0,ε(z)(εf(z)− t)−s + c̄∗V0,ε(z)Hε(εf(z)− t)1−s +

+ c̄1+sV1,ε(z)(εf(z)− t)1−s + c̄s(Ṽτ,ε · x)(εf(z)− t)−s
]
(1 + o(ε)).

(3.16)

Now, we can compute∫
Θε

u(−∆)svε =

∫
∂Ω

∫ εf(z)

0
u(z + tν(z))(−∆)svε(z + tν(z))

(
1 + tH + o(t)

)
dt dσ(z).



26 XAVIER FERNÁNDEZ-REAL AND XAVIER ROS-OTON

Using (3.15) and (3.16), and noticing that the term involving Ṽτ,ε is o(ε2) in the

integral, since Ṽτ,ε = o(1), we have that∫
Θε

u(−∆)svε =

=

∫
∂Ω

∫ εf(z)

0
ts(1 + U1(z)t)(εf(z)− t)−s

{
c̄∗V0,ε(z)Hε(z)(εf(z)− t) +

+ c̄sV0,ε(z) + c̄1+sV1,ε(z)(εf(z)− t)
}

(1 + tH(z))dtdσ + o(ε2)

= ε

∫
∂Ω
f(z)

∫ 1

0

(
t

1− t

)s
(1 + U1(z)εf(z)t)

{
c̄∗V0,ε(z)Hε(z)εf(z)(1− t) +

+ c̄sV0,ε(z) + c̄1+sV1,ε(z)εf(z)(1− t)
}

(1 + εf(z)tH(z))dtdσ + o(ε2).

By making use now of the expansions of V0,ε(z) and V1,ε(z), (3.13) and (3.12),∫
Θε

u(−∆)svε = ε

∫
∂Ω
f(z)

∫ 1

0

(
t

1− t

)s
(1 + U1(z)εf(z)t)

{
c̄∗Hε(z)εf(z)(1− t) +

+ c̄s
(
1− ε∂ν(Fsd

1−s) + (1 + s)εf(z)U1(z)
)

+ c̄1+sU1(z)εf(z)(1− t)
}(

1 + εf(z)tH(z)
)
dt dσ + o(ε2).

Since the terms of order ε will vanish with those in (3.14) (by Proposition 2.1), we
are interested in the terms of order ε2. That is, if∫

Θε

u(−∆)svε = K1ε+K2ε
2 + o(ε2), (3.17)

then we are interested in K2. From the previous expressions, also using that Hε(z) =
H(z) + o(1),

K2 =

∫
∂Ω
f

∫ 1

0

(
t

1− t

)s [
c̄sU1(z)ft+ c̄sfHt− c̄s∂ν(Fsd

1−s)

+ c̄s(1 + s)f(z)U1(z) + c̄∗Hf(1− t) + c̄1+sU1f(1− t)
]
dt dσ.

Now notice that ∫ 1

0

(
t

1− t

)s
dt = sΓ(s)Γ(1− s),

∫ 1

0

(
t

1− t

)s
t dt =

1

2
Γ(2 + s)Γ(1− s),

∫ 1

0

(
t

1− t

)s
(1− t) dt =

1

2
Γ(1 + s)Γ(2− s).
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In particular, using the values of c̄s and c̄1+s we have

K2 =

∫
∂Ω
Hf2

∫ 1

0

(
t

1− t

)s
[c̄st+ c̄∗(1− t)] dt dσ+

+ (Γ(1 + s))2

(∫
∂Ω
f∂ν(Fsd

1−s)dσ − (1 + s)

∫
∂Ω
U1f

2 dσ

)
.

A direct computation yields that

K2 = (Γ(1 + s))2

{∫
∂Ω
f∂ν(Fsd

1−s)dσ − 1

2

∫
∂Ω
Hf2dσ − (1 + s)

∫
∂Ω
U1f

2 dσ

}
.

(3.18)
That is, recalling that Λ = Γ(1 + s), and from (2.15)-(3.14)-(3.17)-(3.18)

JΛ,B(vε)− JΛ,B(u) =

= −(Γ(1 + s))2

{∫
∂Ω
f∂ν(Fsd

1−s)dσ − 1

2

∫
∂Ω
Hf2dσ

− (1 + s)

∫
∂Ω
U1f

2 dσ

}
ε2 − (Γ(1 + s))2 ε

2

2

∫
∂Ω
Hf2dσ + o(ε2).

That is,

JΛ,B(vε)− JΛ,B(u)

Γ(1 + s)2
=

{
(1 + s)

∫
∂Ω
U1f

2 dσ −
∫
∂Ω
f∂ν(Fsd

1−s)dσ

}
ε2 + o(ε2).

Now, since u is a minimizer or a stable critical point, we get the desired result.

Step 4. Let us now show how to take general f ∈ C∞c (∂Ω) without the sign
restriction. Just split f = f+ − f− with f+ = max{f, 0} and f− = −min{f, 0}, so
that f+ ≥ 0 and f− ≥ 0. By the previous steps, we then have that

−(1 + s)

∫
∂Ω
∂ν

( u
ds

)
f2
± dσ ≤ −

∫
∂Ω
f±∂ν

(
F±
ds−1

)
dσ,

where F± is the solution to
(−∆)sF± = 0 in (Ω ∩B)

F± = 0 in (Ω ∩B)c
F±
ds−1 = sf± on ∂Ω.

Let us also consider the solution Fs to
(−∆)sFs = 0 in (Ω ∩B)

Fs = 0 in (Ω ∩B)c
Fs
ds−1 = sf on ∂Ω.

Notice that by linearity (and uniqueness of solution) we have that Fs = F+ − F−.
In particular, we have that

f∂ν(Fsd
1−s) = f+∂ν(F+d

1−s) + f−∂ν(F−d
1−s)− f+∂ν(F−d

1−s)− f−∂ν(F+d
1−s).

Notice, also, that when f+ > 0, then f− = 0 and therefore we must have
∂ν(F−d

1−s) ≥ 0. Thus, f+∂ν(F−d
1−s) ≥ 0 and f−∂ν(F+d

1−s) ≥ 0, and

f∂ν(Fsd
1−s) ≤ f+∂ν(F+d

1−s) + f−∂ν(F−d
1−s). (3.19)
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Thus

−(1 + s)

∫
∂Ω
∂ν

( u
ds

)
f2 dσ = −(1 + s)

∫
∂Ω
∂ν

( u
ds

)
(f2

+ + f2
−) dσ

≤ −
∫
∂Ω
f+∂ν

(
F+

ds−1

)
dσ −

∫
∂Ω
f−∂ν

(
F−
ds−1

)
dσ

≤ −
∫
∂Ω
f∂ν

(
Fs
ds−1

)
dσ,

where in the last inequality we are using (3.19). The proof is now complete, noticing
that Fs = sF . �

Let us now prove our main result, the stability condition in Theorem 1.2. Before
doing so, we first prove the following result, which is valid for non-homogeneous
functions, too.

Theorem 3.3. Let u ∈ Cs(Rn) be a global stable solution for (1.3), in the sense
(2.3)-(2.4). Let Ω := {u > 0}, and assume that ∂Ω is C2,α outside the origin. Let
us consider KΩ,s and HΩ,s as defined in Definition 1.1.

Then, we have∫
∂Ω

∫
∂Ω

(
f(x)− f(y)

)2KΩ,s(x, y)dσ(x)dσ(y) ≥
∫
∂Ω
HΩ,sf

2dσ (3.20)

for all f ∈ C∞c (∂Ω \ {0}).

Proof. Let Ω ⊂ Rn be a smooth domain (not necessarily bounded). Let f ∈ C∞c (∂Ω)
be a smooth function defined on the boundary of Ω. Alternatively, let us assume
∂Ω is smooth in supp f . We then define TΩ(f) : ∂Ω→ R as follows.

Let F be the unique solution to
(−∆)sF = 0 in Ω

F = 0 in Rn \ Ω
F

ds−1
= f on ∂Ω

F (x) → 0 as |x| → ∞,

(3.21)

which can be obtained by a Green kernel representation (as in [Aba15]) or as the
limit, when diam(B)→∞, of solutions to (3.2). Then, we define for x◦ ∈ ∂Ω,

TΩ(f)(x◦) = ∂ν

(
F

ds−1

)
(x◦) = lim

Ω3x→x◦

F (x)− ds−1(x)f(x◦)

ds(x)
, (3.22)

where ν = ν(x) ∈ Sn−1 denotes the unit inward normal vector to ∂Ω at x.
Let us denote by GΩ,s(x, y) the Green function of the operator (−∆)s for the

domain Ω. That is, given a function h : Ω → R, uh(x) =
∫

Ω h(y)GΩ,s(x, y) dy
satisfies {

(−∆)suh = h in Ω
uh = 0 in Rn \ Ω.

Then, we define for each x ∈ Ω, y ∈ ∂Ω,

ḠΩ,s(x, y) := lim
Ω3ȳ→y

GΩ,s(x, ȳ)

ds(ȳ)
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which is well defined by the Green function estimates (see [CS98]). By the arguments
in [Aba15], given f ∈ C∞c (∂Ω) then we have that

F (x) =

∫
∂Ω
f(y)ḠΩ,s(x, y) dσ(y)

satisfies (3.21). Now notice that, from (3.22),

TΩ(f)(x◦) = lim
Ω3x→x◦

1

d(x)

{∫
∂Ω
f(y)

ḠΩ,s(x, y)

ds−1(x)
dσ(y)− f(x◦)

}
= lim

Ω3x→x◦

∫
∂Ω

(f(y)− f(x◦))
ḠΩ,s(x, y)

ds(x)
dσ(y) +

+ f(x◦) lim
Ω3x→x◦

1

d(x)

{∫
∂Ω

ḠΩ,s(x, y)

ds−1(x)
dσ(y)− 1

}
.

We now see that the second term corresponds to the operator TΩ applied to the
constant function 1, f(x◦)TΩ(1). For the first term, we recover the kernel KΩ,s from
Definition 1.1. Thus,

TΩ(f)(x) =

∫
∂Ω

(
f(y)− f(x)

)
KΩ,s(x, y)dσ(y) + f(x)TΩ(1). (3.23)

Taking limits when diam(B) → ∞, condition (3.1) in Proposition 3.1 can be
expressed as

−Cs
∫
∂Ω
∂ν

( u
ds

)
f2 ≤ −

∫
∂Ω
fTΩ(f), Cs =

1 + s

sΛ
Γ(1 + s).

Using (3.23) and from the symmetry of the kernel, KΩ,s, and re-ordering terms we
have∫

∂Ω
(TΩ(1)− CsU1) f2dσ ≤ 1

2

∫
∂Ω

∫
∂Ω

(f(x)− f(y))2KΩ,s(x, y)dσ(x)dσ(y), (3.24)

where we are defining, for x ∈ ∂Ω,

U1(x) := ∂ν

( u
ds

)
(x).

That is, we can expand u at boundary points as

u =
Λ

Γ(1 + s)
ds + U1d

1+s + . . . .

Let now e ∈ Sn−1, and consider the function ∂eu. From the previous expansion,
ue := ∂eu satisfies

(−∆)sue = 0 in Ω
ue = 0 in Rn \ Ω

ue
ds−1

(x) = e · ν(x) sΛ
Γ(1+s) for x ∈ ∂Ω

ue(x) → 0 as |x| → ∞,
where ν(x) denotes the unit inward normal vector at x ∈ ∂Ω. Thus, we can compute
U1(x◦) at x◦ ∈ ∂Ω as

sΛ

Γ(1 + s)
TΩ(vx◦)(x◦) = (1 + s)U1(x◦).
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where vx◦(x) := ν(x◦) · ν(x).
Putting it back in (3.24) we get∫
∂Ω
TΩ(1− vx)(x)f(x)2dσ(x) ≤ 1

2

∫
∂Ω

∫
∂Ω

(f(x)− f(y))2KΩ,s(x, y)dσ(x)dσ(y).

Notice now that 1− vx◦(x) = 1
2 |ν(x◦)− ν(x)|2 so, if we define

HΩ,s(x) := TΩ(|ν(x)− ν(·)|2)(x),

then the stability condition reads as∫
∂Ω
HΩ,sf

2dσ ≤
∫
∂Ω

∫
∂Ω

(f(x)− f(y))2KΩ,s(x, y)dσ(x)dσ(y).

for all f ∈ C∞c (∂Ω) and assuming ∂Ω is smooth on suppf .
On the other hand, if g(y) = |ν(x)− ν(y)|2 then g(x) = 0 and so we can express

HΩ,s(x) :=

∫
∂Ω
|ν(x)− ν(y)|2KΩ,s(x, y)dσ(y),

as we wanted to see. �

In case of homogeneous solutions, we have the following:

Lemma 3.4. Let u be a global s-homogeneous solution to the fractional one-phase
problem, i.e., 

(−∆)su = 0 in Ω
u = 0 in Ωc

Γ(1 + s)
u

ds
= Λ on ∂Ω.

Assume that Ω is a C1,α cone outside the origin. Then, the kernel KΩ,s defined in
(1.6) is homogeneous of degree −n, and satisfies

1

C

1

|x− y|n
≤ KΩ,s(x, y) ≤ C 1

|x− y|n
for all x, y ∈ ∂Ω,

for some constant C depending only on n, s, and Ω.

Proof. The domain Ω is a cone, so the Green function satisfies the scaling property
GΩ,s(rx, ry) = r2s−nGΩ,s(x, y). This implies that

KΩ,s(rx, ry) = r−nKΩ,s(x, y).

Thus, it only remains to prove that, if |x− y| = 1, then

1

C
≤ KΩ,s(x, y) ≤ C for all x, y ∈ ∂Ω s.t. |x− y| = 1.

Notice first that, since u is an s-harmonic function in Ω, then by well-known
estimates in C1,α domains [RS17] we have that u(x) � ds(x) for |x| � 1. Then, since
both u and ds are homogeneous of degree s, we deduce that

u � ds in Ω.

On the other hand, given y0 ∈ Ω, we know that the Green function GΩ,s(x, y0) is
s-harmonic in x in the domain Ω \ {y0}. Thus, if |x− y0| � 1, then by the boundary
Harnack principle for the fractional Laplacian in Lipschitz domains [Bog97] (applied
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to GΩ,s(x, y0) and u(x)) we know that the function G(x, y0) must be comparable to
ds(x), for every such y0 ∈ Ω. This means that

MΩ,s,x(ȳ) := lim
Ω3x̄→x

GΩ,s(x̄, ȳ)

ds(x̄)
∈ (0,∞)

for every fixed x ∈ ∂Ω and ȳ ∈ Ω such that |x − ȳ| � 1. Now notice that, for
every fixed x ∈ ∂Ω, the function MΩ,s,x(ȳ) is s-harmonic in ȳ in a neighborhood
of y ∈ ∂Ω, provided that |x − y| = 1. Hence, using again the boundary Harnack
inequality for the fractional Laplacian, we deduce that actually

MΩ,s,x(ȳ) � ds(ȳ),

which clearly implies KΩ,s(x, y) � 1, as wanted. �

Thus, as a consequence, we have:

Proof of Theorem 1.2. We apply Theorem 3.3 to s-homogeneous solutions u. In
this case, Ω is a cone, and the homogeneity of KΩ,s comes from scaling of the Green
function. The estimate (1.8) follows from Lemma 3.4.

Finally, the (−1)-homogeneity of HΩ,s follows from the (−n)-homogeneity of the
kernel together with the 0-homogeneity of ν. �

4. Stable cones are trivial in 2D

Let us now give the proof of Corollary 1.6, stating that cone-like solutions in R2

are not stable, in the sense (2.3)-(2.4).

Proof of Corollary 1.6. We have that (−∆)su = 0 in Ω
u = 0 in Ωc

u
ds = 1 on ∂Ω,

u ∈ Cs(R2) and Ωc = {u = 0} is a cone. By boundary regularity for s-harmonic
functions, it is not difficult to see that the cone Ωc cannot have zero density points.
In particular, the contact set is the union of circular sectors and they are smooth
outside of the origin.

We argue by contradiction, and we assume that u is not a half-space solution, but
it is stable. In this case, by Theorem 1.2, the stability condition (1.7) implies

C

∫
∂Ω

∫
∂Ω

(f(x)− f(y))2

|x− y|2
dσ(x)dσ(y) ≥

∫
∂Ω

f(x)2

|x|
dσ(x) (4.1)

for some C that depends on Ω, and for all f ∈ C∞c (∂Ω \ {0}). Let us show that, for
an appropriate f , (4.1) does not hold, thus reaching a contradiction.

In particular, we choose f = fR(x) = ϕ(|x|)ζR(|x|) radial with

ζR(t) =

 1 for 0 < t < R
(2R− t)R−1 for R ≤ t < 2R
0 for t ≥ 2R,

and ϕ(t) any smooth function such that ϕ ≡ 1 for t > 1 and ϕ ≡ 0 for t ≤ 1
2 . Thus,

fR is simply a Lipschitz function, that equals 1 for |x| ≤ R, vanishes for |x| ≥ 2R,
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and is linearly (radially) connected in-between. We have also multiplied by ϕ to
avoid dealing with the origin, that will not play a role in the computations below.

Notice that, on the one hand, since ∂Ω is one-dimensional,∫
∂Ω\B1/2

fR(x)2

|x|
≥
∫ R

1

dr

r
= ln(R)→∞, as R→∞. (4.2)

On the other hand, using again that ∂Ω are rays emanating from the vertex and
thus the problem can be reduced to a one dimensional question, we have that∫ ∞

0

∫ ∞
0

(ζR(t)− ζR(τ))2

(t− τ)2
dtdτ =

∫ ∞
0

∫ ∞
0

(ζ1(t)− ζ1(τ))2

(t− τ)2
dt dτ ≤ C <∞

for some C depending only on Ω. We have also used here that ζR(Rt′) = ζ1(t′)
and that ζ1 is Lipschitz and compactly supported. Combined with (4.2), this im-
plies that, for R large enough, (1.7) with f = fR does not hold, thus reaching a
contradiction. �

5. The stability condition in the extension domain

We finish this section by proving the stability condition in the extension domain,
(1.12), expressed in Proposition 5.1 below.

Let us first define the operators λ, γ0, and γ1 acting on a function F = F (x, y) :
Rn+1

+ → R (where Rn+1
+ = Rn × R+) and returning a function on ∂Ω as follows.

Here, Ω ⊂ Rn is a fixed smooth domain (it will be used with Ω = {u > 0}), and
d(x) = dist(x, ∂Ω) (the distance in the thin space), where x ∈ Rn.

Let F̄ (x) = F (x, 0). Then, we define

γ0(F ) : ∂Ω→ R as γ0(F )(x) = lim
t↓0

(
F̄

ds−1

)
(x+ tν(x)), (5.1)

and

γ1(F ) : ∂Ω→ R as γ1(F )(x) = lim
t↓0

[
∂ν

(
F̄

ds−1

)]
(x+ tν(x)), (5.2)

where ν is the unit inward normal vector on ∂Ω. On the other hand, we define

λ(F ) : ∂Ω→ R as λ(F )(x) = lim
y↓0

y1+sLaF (x, y). (5.3)

We sometimes refer to λ(F ), γ0(F ), and γ1(F ) simply as LaFy
1+s, F/ds−1 and

∂ν(F/ds−1) on ∂Ω, respectively.
The stability condition now can be alternatively stated as follows. Here, we use

the notation introduced in Lemma 3.2 by denoting δ(x) the signed distance to ∂Ω
(i.e. δ(x) = dist(x, ∂Ω) for x ∈ Ω, δ(x) = −dist(x, ∂Ω) for x ∈ Ωc), and

Us = (r + δ)s, r = (δ2 + y2)
1
2 .
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Proposition 5.1. Let u be a stable solution for (1.3) in Rn, in the sense (2.3)-(2.4).
Let Ω := {u > 0} ⊂ Rn, and assume that ∂Ω is C2,α. Then, u satisfies∫
∂Ω
γ0(F )γ1(F )− Γ(2 + s)

sΛ

∫
∂Ω
∂ν

( u
ds

)
γ0(F )2 − 2s−1 1− s

s

∫
∂Ω
γ0(F )λ(F ) ≤

≤ − ds
Γ(1 + s)Γ(s)

∫
Ω
F∂ayF −

ds
Γ(1 + s)Γ(s)

∫
{y>0}

FLaF,

(5.4)

for all F : Rn+1
+ → R compactly supported such that F ≡ 0 in Ωc×{0} and F/|∇Us| ∈

C1,α(Rn+1
+ ); where ν is the unit inward normal vector on ∂Ω, and we have used the

notation introduced in (5.1)-(5.2)-(5.3) with Ω = {u > 0}, and (2.5)-(2.6)-(2.7).

The condition that F/|∇Us| is C1,α is natural in order to make sense of λ, γ0(F ),
and γ1(F ); and moreover it is the one satisfied by functions F behaving like large-
solutions to the Dirichlet problem for the fractional Laplacian (as we will see in
Proposition 6.1).

Remark 5.2. In the context of Proposition 3.1, if we extend F to be La-harmonic in
{y > 0}, then we have that γ0(F ) = f and the right-hand side of (3.1) is actually
−
∫
∂Ω γ0(F )γ1(F ).

Finally, before proving Proposition 5.1, let us state the following well-known in-
tegration by parts involving large and standard solutions.

Lemma 5.3. Let Ω ⊂ Rn be a C2 domain. Let u, v be such that u = v ≡ 0 in Ωc.
Assume that v is a large solution (namely, v/ds−1 ∈ C0(Ω) ) and let u be a standard
solution (namely, u ∈ C0(Rn)). Then,∫

∂Ω

v

ds−1
· u
ds

=
1

Γ(1 + s)Γ(s)

∫
Ω

{
v(−∆)su− u(−∆)sv

}
,

where d = dist(x, ∂Ω).

Proof. When (−∆)su ∈ C∞c (Ω), this integration by parts formula corresponds to
[Aba15, Proposition 1.2.2] combined with [CGV21, Lemma B.1]. (In C∞ domains
it was first proved in [Gru18, Corollary 4.5]; see also [Gru19].) By approximation,
we can consider arbitrarily (−∆)su integrable. �

We can now prove the stability condition in the extended variable.

Proof of Proposition 5.1. We divide the proof into two steps.

Step 1. Let us denote F̃ (x) = F (x, 0) and let us split

F̃ = F0 + F1,

where F0 = F1 = 0 in Ωc, and{
(−∆)sF0 = 0 in Ω

γ0(F0) = γ0(F̃ ) on ∂Ω,

{
(−∆)sF1 = (−∆)sF̃ in Ω
γ0(F1) = 0 on ∂Ω,

where we notice that from the condition on F , γ0(F̃ ) is well defined. In particular,
F0 is a large-solution, whereas F1 is a standard-solution.
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From Proposition 3.1 we have that

−(1 + s)
Γ(1 + s)

sΛ

∫
∂Ω
∂ν

( u
ds

)
(γ0(F0))2 dσ ≤ −

∫
∂Ω
γ0(F0)γ1(F0)dσ,

where by approximation we are using that it is enough to assume γ0(F0) ∈ C1
c (∂Ω∩

B). (Notice that we are also taking a global solution by letting diam(B) → ∞
in Proposition 3.1.) Take now F1 such that γ0(F1) ≡ 0 (so it is not a large-type
solution), and suppose F1 ≡ 0 in Ωc.

Notice that, if we denote Cs,Λ := (1 + s)Γ(1+s)
sΛ , then from the previous inequality

we obtain∫
∂Ω
γ0(F̃ )γ1(F̃ )− Cs,Λ

∫
∂Ω
∂ν

( u
ds

)
(γ0(F̃ ))2 ≤

∫
∂Ω
γ0(F0)γ1(F1). (5.5)

We also used here that γ0(F1) = 0. In particular, we have γ1(F1) = F1
ds , and we

can use Lemma 3.2 to get that∫
∂Ω
γ0(F0)γ1(F1) =

1

Γ(1 + s)Γ(s)

∫
Ω
F0(−∆)sF1 ≤

1

Γ(1 + s)Γ(s)

∫
Ω
F̃ (−∆)sF̃ ,

(5.6)
where in the last inequality we have used that F0 is s-harmonic in Ω and

∫
Ω F1(−∆)sF1 ≥

0 (which holds for all functions).

Finally, we want to deal with the last term,
∫

Ω F̃ (−∆)sF̃ . Let us consider F2 to

be the a-harmonic extension of F̃ to {y > 0}. Namely,{
LaF2 = 0 in {y > 0}
F2 = F on {y = 0}, so

∫
Ω
F̃ (−∆)sF̃ = −ds lim

ε↓0

∫
Ω∩{δ>ε}

F2∂
a
yF2.

(Recall (2.5)-(2.6)-(2.7).) We have denoted here ∂ayv = limy↓0 y
a∂yv(x, y), and from

now on we use the notation from Lemma 2.6.
Let us do some manipulations. We use the following Green’s identity:∫

D
(gLaf − fLag) =

∫
∂D

(−f∂~ngya + g∂~nfy
a),

for all pairs of functions f and g such that each of the previous terms is well-defined,
and where ~n denotes the outward normal to corresponding domain. Then we have,
if we denote Ωε = {δ > ε} and A+ := A ∩ {y > 0} for any set A ⊂ Rn+1,∫

Ωε

F2∂
a
yF2 = −

∫
∂({y≥0}\{r≤ε})

F∂~nF2y
a +

∫
(∂{r≥ε})+

F∂~nF2y
a.

For the first term, and using the Green identity above, we have∫
∂({y≥0}\{r≤ε})

F∂~nF2y
a =

∫
∂({y≥0}\{r≤ε})

∂~nFF2y
a −

∫
{r≥ε}+

LaFF2

= −
∫

Ωε

∂ayFF +

∫
(∂{r≥ε})+

∂~nFF2y
a −

∫
{r≥ε}+

LaFF2.

If we denote

Iε :=

∫
(∂{r≥ε})+

(F − F2)∂~nF2y
a −

∫
(∂{r≥ε})+

∂~n(F − F2)F2y
a
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we then have∫
Ωε

F2∂
a
yF2 −

∫
{r≥ε}+

FLaF = Iε +

∫
Ωε

∂ayFF −
∫
{r≥ε}+

(F − F2)La(F − F2).

Letting ε ↓ 0 and using that
∫
{y≥0}(F − F2)La(F − F2) ≤ 0 (where the boundary

term vanishes by scaling and because F = F2 on {y = 0}) we obtain∫
Ω
F̃ (−∆)sF̃ ≤ −ds

(∫
Ω
F∂ayF +

∫
{y>0}

FLaF + lim
ε↓0

Iε

)
, (5.7)

where it remains to be computed the explicit value of limε↓0 Iε in terms of F .

Step 2. In order to do that, we use expansions of F and F2 in the spirit of those in
Lemma 3.2 (from where we take the notation, as well). In this case, the role of the
first order expansion Us2s is played by Us

2sr ; while the a-harmonic function Vs now is

Ṽs defined as

Ṽs :=
Us
r
− H

2

Us
r

(δ − r), LaṼs = −HUsy
a

r3

(
sδr + (1− s)r2 − δ2

)
= O(r−s).

If we assume that 0 ∈ ∂Ω, we can expand F around a free boundary point as

F = h
Us
2sr

+ · · · = h0Ṽs +
Us
2sr

(
h1(δ − r) + h2r +A′ · xτ

)
+ . . . ,

for some function h ∈ C1,α, and where xτ denotes the directions tangent to ∂Ω (or
perpendicular to the unit outward normal to ∂Ω on the thin space, ν).

In this way, the harmonic extension of F |{y=0} towards {y ≥ 0} is

F2 = h0Ṽs +
Us
2sr

(
h2r +A′ · xτ

)
+ . . . so that F − F2 = h1

Us
2sr

(δ − r) + . . . .

Thus, in the definition of Iε we can change variables and decompose the integral
on {r = 0}+ as an integral for x ∈ ∂Ω times an integral on x + ε(ν cos θ + ŷ sin θ)
for θ ∈ (0, π), and where ŷ = en+1 = (0, . . . , 0, 1) ∈ Rn+1. Doing so, and plugging
the previous functions on Iε, we obtain

lim
ε↓0

Iε = 2−2s

∫
∂Ω
h0(x)h1(x)

∫ π

0
(1 + cos(θ))2s(cos θ − 1)(sin θ)1−2s dθ dσ(x),

where h0 and h1 are now functions corresponding to the respective coefficient at
each boundary point x ∈ ∂Ω. We obtain this result by observing that δ = ε cos θ
on {r ≥ ε}+, r = ε, ∂~nδ = − cos θ, and ∂~nr = −1. We now compute the innermost
integral (using Mathematica 11.2 to do this computation)∫ π

0
(1 + cos(θ))2s(cos θ − 1)(sin θ)1−2s dθ = −2πs(1− s)

sin(πs)

to get

lim
ε↓0

Iε = −2−2s+1πs(1− s)
sin(πs)

∫
∂Ω
h0(x)h1(x). (5.8)

To finish, observe that h0(x) = γ0(F ), and that at first order

LaF = h1La

(
Us
2sr

(δ − r)
)

= h12
Usya

2sr3
(rs− δ) + . . .



36 XAVIER FERNÁNDEZ-REAL AND XAVIER ROS-OTON

so that h1 = 21−sr3

Usya(rs−δ)LaF on ∂Ω, understood as a limit. In particular, recalling

the definition (5.3), h1 = s−12s−1λ(F ), and so the result follows joining (5.5)-(5.6)-
(5.7)-(5.8). �

6. Axially symmetric stable cones

Let us use the stability condition to show that, at least in low dimensions, ax-
ially symmetric homogeneous (thus conical) solutions are either unstable or one-
dimensional. Let us also fix

Λ = Γ(1 + s)

from now on, so that the fractional normal derivative at free boundary points is
fixed to be 1.

Namely, let us suppose that we have a (global) solution u that is axially symmetric
and Cs. That is,

u = u(x1, x2, . . . , xn) = u(ζ, τ) where ζ :=
√
x2

1 + · · ·+ x2
n−1 and τ = xn, (6.1)

and it satisfies (1.5) outside of the origin. We denote Ω = {u > 0}.
Let ū : Rn × R+ be the a-harmonic extension of u. Namely (recall (2.5).),

ū(x, 0) = u(x) for x ∈ Rn, and Laū = 0 in {y > 0}. (6.2)

Let us denote by

uζ := ζ̂ · ∇u
the derivative along the direction ζ, so that ζ̂ := ζ

|ζ| , similarly we denote ūζ . Then,

the following stability condition holds for uζ .

Proposition 6.1. Let u ∈ Cs(Rn) be a global minimizer to (1.3), in the sense
(2.1)-(2.2) for all B ⊂ Rn; or a stable critical point to (1.3), in the sense (2.3)-
(2.4). Assume u is that Ω := {u > 0} is a C2,α domain outside the origin.

Let us also assume that u is axially symmetric (see (6.1)). If we denote by ū its
a-harmonic extension, (6.2), then we have that∫

{y>0}
ū2
ζ |∇η|2ya ≥ (n− 2)

∫
{y>0}

ū2
ζη

2ζ−2ya (6.3)

for all η ∈ C∞c (Rn+1) such that ∂yη = 0 on {y = 0}.

Proof. By multiplying our solution by a constant, we assume without loss of gener-
ality that Λ = Γ(1 + s). Let us start by noting that, since u solves the (fractional)
one-phase problem and by Lemma 3.2, we have that the expansion of u around free
boundary points is

u(x) = ds(x) +A(x)d1+s + . . . for x ∈ {u > 0},
where we recall that d(x) = dist(x, {u = 0}), and we have defined A(x) = ∂ν (u/ds)
(from the notation in Lemma 3.2, the tangential direction of ∇η along the free
boundary vanishes, since η is constant there). We can similarly compute an expan-
sion of uζ as

uζ(x) = sds−1(x)(ζ̂ · ν) + (1 + s)A(x)ds(ζ̂ · ν) + . . . for x ∈ {u > 0} (6.4)
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where we recall ζ̂ = ζ/|ζ|. Notice that, from the previous two expressions, we have

1 + s

s
∂ν

( u
ds

) uζ
ds−1

= ∂ν

( uζ
ds−1

)
, (6.5)

where we are using that uζ is a large solution, and so the values of uζd
1−s and

∂ν(uζd
1−s) are well-defined on ∂Ω = ∂{u = 0}, and they are equal to

uζ
ds−1

= s(ζ̂ · ν), ∂ν

( uζ
ds−1

)
= (1 + s)A(x)(ζ̂ · ν) on ∂Ω. (6.6)

Let us now consider the stability condition from Proposition 5.1 in the case Λ =
Γ(1 + s). Namely, for any F such that λ(F ), γ0(F ), and γ1(F ) (recall (5.1)-(5.2)-
(5.3)) are well-defined and F = 0 on (Rn \ Ω)× {0} then∫

∂Ω
γ0(F )γ1(F )− 1 + s

s

∫
∂Ω
∂ν

( u
ds

)
γ0(F )2 − 2s−1 1− s

s

∫
∂Ω
λ(F )γ0(F ) ≤

≤ − ds
Γ(1 + s)Γ(s)

∫
Ω
F∂ayF −

ds
Γ(1 + s)Γ(s)

∫
{y>0}

FLaF.
(6.7)

Take now, as test function F , F = ūζη for some smooth, compactly supported η
such that η|{y=0} is compactly supported outside of {ζ = 0} (so that, ∂Ω is smooth

on supp η), η ∈ C∞c (Rn+1\{ζ = y = 0}). Recall, also, that ū denotes the a-harmonic
extension of u towards {y > 0}. Note that such choice of F satisfies the condition
that F/|∇Us| is C1,α.

On the one hand, by means of (6.5), we have

1 + s

s

∫
∂Ω
∂ν

( u
ds

)
γ0(F )2 =

∫
∂Ω
∂ν

( uζ
ds−1

) uζ
ds−1

η2. (6.8)

On the other hand, let us compute λ(F ). Differentiating the expression Laū = 0 in

{y > 0} in the ζ̂ direction, we obtain that

Laūζ =
n− 2

ζ2
ūζy

a. (6.9)

Thus, La(F ) = ūζLaη + ηLaūζ + 2ya∇ūζ · ∇η, and from the definition of λ(F ),
(5.3), and thanks to (6.9) only the last terms survives,

λ(F ) = ∇η(x) · lim
y↓0

y2−s∇ūζ(x, y).

In order to compute it, let us consider the expansion of ūζ around ∂Ω. Notice that
ū is the a-harmonic extension of our original u towards {y > 0}, so the expansion
around ∂Ω is not simply (6.4) and rather we have to consider the variable y as well.

From the proof of Lemma 3.2, and using the notation there, we have that at first
order around free boundary points,

ū(x, y) = 2−s(δ + r)s + . . .

where we recall that δ denotes the signed distance to ∂Ω (in the first n variables) and

r is the distance in Rn+1
+ to ∂Ω, that is, r = (δ2 +y2)

1
2 . In particular, differentiating
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the previous expression in the direction ζ, we obtain an expansion of the derivative
around ∂Ω,

ūζ(x, y) = s2−s(δ + r)s−1ζ̂ · ∇(δ + r) + · · · = s2−s
(δ + r)s

r
(ζ̂ · ν) + . . . ,

where we used that ∇r = 1
r (δ∇δ, y) and ∇δ = ν at first order. Notice that we

differentiate the expansion to obtain an expansion for the derivative: indeed, since
we are assuming that Ω is a C2,α domain, the function ū

2−s(δ+r)s ∈ C
1,α. That is,

ū = 2−s(δ + r)sφ for some φ ∈ C1,α. We can now differentiate ū to get ∇ū =
s2−s(δ + r)s−1(∇δ + ∇r)φ + 2−s(δ + r)s∇φ. Now, the second term is lower order
with respect to the first one, so we get the desired expansion.

Similarly,

∇η(x) · ∇ūζ(x, y) = s2−s∇η · ν(sr − δ)(δ + r)s

r3
(ζ̂ · ν) + . . . ,

so that

λ(F ) = s22−s+1ην(ζ̂ · ν)

Thus, (6.7) becomes, using (6.6)-(6.8) as well

s3

∫
∂Ω
η∂νη(ζ̂ · ν)2 ≤ − ds

Γ(1 + s)Γ(s)

∫
Ω
F∂ayF −

ds
Γ(1 + s)Γ(s)

∫
{y>0}

FLaF. (6.10)

Let us now deal with the right-hand side of the previous expression. For simplicity,
we are assuming that

∂ayη ≡ 0 on {y = 0}
for all a ∈ (−1, 1) (we will later choose η as such). Notice that the first term is then∫

Ω
F∂ayF =

∫
Ω
η2(uζ)∂

a
y (ūζ) = 0, (6.11)

since ∂ay (ūζ) = (∂ay ū)ζ , and −ds∂ay ū = (−∆)su, so that uζ(∂
a
y ū)ζ = uζC((−∆)su)ζ ≡

0 on Ω. For the second term, we have∫
{y>0}

FLaF =

∫
{y>0}

(ηLaηū
2
ζ + 2ūζη∇ūζ · ∇ηya + ūζLaūζη

2).

We notice that the three terms above are integrable, and we would like to integrate
by parts the first term. However, such integration, if done directly, would yield non-
integrable terms, and we have to be a bit more delicate with this step. Let us, then,
integrate by parts the first term above.

We denote by Eε := {X ∈ Rn+1
+ : dist(X, ∂Ω) = ε} and E>ε := {X ∈ Rn+1

+ :
dist(X, ∂Ω) > ε}. We then want to compute∫

{y>0}
ηLaηū

2
ζ = lim

ε↓0

∫
E>ε

ηLaηū
2
ζ .

Notice that, in E>ε, uζ is smooth and we can integrate by parts the previous ex-
pression, to obtain (recall ∂ayη = 0 on {y = 0})∫

E>ε

ηLaηū
2
ζ = −

∫
E>ε

∇η · ∇(ηū2
ζ)y

a +

∫
Eε

~n · ∇ηηū2
ζy
adHn,
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where the second integral is performed on Eε (which has Hausdorff dimension n).
The vector ~n denotes the outward unit normal vector to E>ε.

Putting it all together and letting ε ↓ 0, we have that∫
{y>0}

FLaF =

∫
{y>0}

(
ūζLaūζη

2 − |∇η|2ū2
ζy
a
)

+ lim
ε↓0

∫
Eε

~n · ∇ηηū2
ζy
adHn.

Let us compute this last term. With this notation, the vector ~n corresponds to
−∇r, and since we were assuming that ∂yη = 0, ~n · ∇η = − δ

rν · ∇η at first order.
That is,

lim
ε↓0

∫
Eε

~n · ∇ηηū2
ζy
adHn = −s22−2s lim

ε↓0

∫
Eε

η∂νηδ
(δ + r)2s

r3
(ζ̂ · ν)2ya.

Notice that r ≡ ε on Eε. We decompose the integral on Eε as an integral for
x ∈ ∂Ω times an integral on x+ ε(ν cos θ + ŷ sin θ) for θ ∈ (0, π), where ŷ = en+1 =
(0, . . . , 0, 1) ∈ Rn+1. Such decomposition has Jacobian ε at leading order, so (also

using that η∂νη(ζ̂ · ν)2 is smooth)

lim
ε↓0

∫
Eε

~n · ∇ηηū2
ζy
adHn =

= −s22−2s lim
ε↓0

ε−3

∫
∂Ω
η(x)∂νη(x)(ζ̂ · ν)2(x)ε

∫ π

0
F(x, θ, ε) dθ dσ(x),

where, if we denote by f0 the function f0(x, y) = δ(δ + r)2sya, then

F(x, θ, ε) = f0(x+ ε(ν cos θ + ŷ sin θ)).

In particular, at leading order we have that δ(x+ ε(ν cos θ+ ŷ sin θ)) = ε cos(θ) and
r = ε so

F(x, θ, ε) = ε2 cos(θ)(1 + cos(θ))2s sin(θ)1−2s.

Now we compute∫ π

0
cos(θ)(1 + cos(θ))2s sin(θ)1−2sdθ =

2πs2

sin(πs)
.

(We used Mathematica 11.2 again to do this computation.) Putting everything
together, we obtain that

lim
ε↓0

∫
Eε

~n · ∇ηηū2
ζy
adHn = −2−2s 2πs4

sin(πs)

∫
∂Ω
ηνη(ζ̂ · ν)2

and therefore,∫
{y>0}

FLaF =

∫
{y>0}

(
ūζLaūζη

2 − |∇η|2ū2
ζy
a
)
− 2−2s 2πs4

sin(πs)

∫
∂Ω
ηνη(ζ̂ · ν)2.

Putting it back in (6.10) and recalling that (6.11),∫
{y>0}

|∇η|2ū2
ζy
a ≥

∫
{y>0}

ūζLaūζη
2
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for all η ∈ C∞c (Rn+1 \{ζ = y = 0}) such that the previous expression is well-defined
on both sides, and with ∂ayη = 0 on {y = 0}. We have used that (recalling (2.7))

s3 =
ds

Γ(1 + s)Γ(s)
2−2s 2πs4

sin(πs)
.

Using now (6.9) we get the desired result.
We end up by noticing that, from the regularity of η, if ∂yη = 0 on {y = 0}

then ∂yη = 0 on y = 0 for all a ∈ (−1, 1). Also, the fact that η is compactly
supported outside of {ζ = y = 0} can also be removed by standard arguments using
the axial symmetry of u (see [San18, Proof of Proposition 1.3] and also [FR19, Proof
of Theorem 1.7]). �

Let us now use an appropriate test function in the expression (6.3) to deduce
properties of axially-symmetric global stable solutions. We will apply such result to
cones, so from now on we will assume that u is a Cs global solution (local minimizer
or stable solution) which is s-homogeneous. In particular, ū is also s-homogeneous,
uζ is (s− 1)-homogeneous and ūζ is (s− 1)-homogeneous as well.

Proof of Theorem 1.7. Let α > 0 to be fixed. For any ε > 0 and R > 1, let us define
ηε,R as

ηε,R =

{
ζ−αρR if ζ > ε
ε−αρR if ζ ≤ ε , ρR(X) =

{
1 in B+

R

0 in Rn+1
+ \B+

2R

,

where ρR ∈ C∞c (Rn+1
+ ), ρR ≥ 0, is a smooth, radial, non-increasing function such

that |∇ρR| ≤ CR−1 for some fixed universal constant C. We have denoted here, as
an abuse of notation,

B+
ρ := {(x, y) ∈ Rn × R : |x|2 + y2 ≤ ρ and y ≥ 0}.

Then,

|∇ηε,R|2 ≤

 α2ζ−2α−2ρ2
R in B+

R ∩ {ζ > ε}
α2(1 + δ)ζ−2α−2ρ2

R + Cδζ
−2α|∇ρR|2 in B+

2R \B
+
R ∩ {ζ > ε}

ε−2α|∇ρR|2 if ζ ≤ ε.

for any δ > 0, and where Cδ is a constant depending on δ.
Let us now use η = ηε,R as a test function in (6.3) (notice that we can do so by

approximation, since ηε,R is Lipschitz). On the right-hand side of (6.3) we get∫
{y>0}

ū2
ζη

2ζ−2ya dx =

∫
{ζ>ε}∩B+

2R

ū2
ζζ
−2α−2ρ2

Ry
a dx+ ε−2α

∫
{ζ≤ε}∩B+

2R

ū2
ζρ

2
Ry

a.

(6.12)
On the other hand, on the left hand-side we have∫
{y>0}

ū2
ζ |∇η|2ya dx ≤ α2(1 + δ)

∫
{ζ>ε}∩B+

2R

ū2
ζζ
−2α−2ρ2

Ry
a dx+

+ CδR
−2

∫
B+

2R\B
+
R∩{ζ>ε}

ū2
ζζ
−2αya + Cε−2αR−2

∫
{ζ≤ε}∩B+

2R

ū2
ζy
a dx.
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where we have used that |∇ρR| ≤ CR−1. Combining this with (6.12) and (6.3) we
deduce that (also notice that ∇ρR vanishes on B+

R)

(n−2− α2(1 + δ))

∫
{ζ>ε}∩B+

2R

ū2
ζζ
−2α−2ρ2

Ry
a dx ≤

≤ CδR−2

∫
B+

2R\B
+
R∩{ζ>ε}

ū2
ζζ
−2αya + CR−2ε−2α

∫
B+

2R\B
+
R∩{ζ≤ε}

ū2
ζy
a dx.

(6.13)

In particular, for the previous inequality to be useful we will assume, from now
on, that

n > 2 + α2

(and we can choose δ appropriately).
Let us bound the two terms on the right-hand side of (6.13). We start with the

second term, by scaling the integral and using that ūζ is (s−1)-homogeneous (recall
that a = 1− 2s):∫

B+
2R\B

+
R∩{ζ≤ε}

ū2
ζy
a dx = Rn

∫
B+

2 \B
+
1 ∩{ζ≤ε/R}

ū2
ζy
a dx.

Notice now that ū2
ζ is bounded in the region B+

2 \ B
+
1 ∩ {ζ ≤ ε/R} if ε/R is small

enough. Indeed, for ε/R small enough, B+
2 \B

+
1 ∩∂Ω = ∅ (we are fixing the function

u) and if {y = 0} we have that either uζ ≡ 0 in this set, or it is s-harmonic; then, for
{y > 0} we can use classical estimates for La-extensions (see, for example, [JN17]).

Thus, the last integral can just be bound by |B+
2 \B

+
1 ∩{ζ ≤ ε/R}| = Cεn−1R−n+1

and we get

CR−2ε−2α

∫
B+

2R\B
+
R∩{ζ≤ε}

ū2
ζy
a dx ≤ Cεn−1−2αR−1.

On the other hand,∫
B+

2R\B
+
R∩{ζ>ε}

ū2
ζζ
−2αya = Rn−2α

∫
B+

2 \B
+
1 ∩{ζ>ε/R}

ū2
ζζ
−2αya.

We now notice that the last integral is bounded by a constant independently of ε
(and therefore, we can let ε ↓ 0). Indeed, we want to show that∫

B+
2 \B

+
1

ū2
ζζ
−2αya ≤ C

for some C that might depend on u.
We separate the integral for {ζ > c} and {ζ ≤ c}, for some c > 0 small enough

such that B+
2 \ B

+
1 ∩ {ζ ≤ c} ∩ ∂Ω = ∅. As before, in this case, ūζ is bounded in

B+
2 \B

+
1 ∩ {ζ ≤ c} so we only need to show that∫

B+
2 \B

+
1

ζ−2αya ≤ C

for some C. Notice now that, by using dxdy 7→ ζn−2dζdtdy we have∫
B+

2 \B
+
1

ζ−2αya ≤ C
∫ 1

0
ya dy

∫ 1

0
ζ−2α+n−2 dζ,
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which is bounded if a > −1 and −2α+n−2 > −1. The first part always holds, and
the second part is true since by assumption n > 2 + α2 ≥ 1 + 2α.

On the other hand, for {ζ > c} we just need to show that∫
B+

2 \B
+
1

ū2
ζy
a ≤ C.

This is just a localised W 1,2(yadX) norm (the extended W s,2 norm), which is
bounded for solutions.

Putting everything together, we have obtained that

(n− 2− α2(1 + δ))

∫
{ζ>ε}∩B+

2R

ū2
ζζ
−2α−2ρ2

Ry
a dx ≤ Cεn−1−2αR−1 + CRn−2α−2.

Since n > 2 + α2, we have n− 1− 2α > 0 and letting ε ↓ 0 we get∫
B+
R

ū2
ζζ
−2α−2ya dx ≤ CRn−2α−2.

Now, if n− 2α− 2 < 0, by letting R→∞ we obtain that ūζ ≡ 0 in Rn+1
+ , so that

uζ ≡ 0. That is, u depends only on t and it is one-dimensional. We just need to
check for which n the previous conditions can be satisfied for some α > 0.

We have that

2α > n− 2 > α2 =⇒
(
n− 2

2

)2

< n− 2,

which holds for 2 < n < 6, with n = 6 being the critical case. The case n = 2 has
been already shown in Corollary 1.6, so u is one-dimensional for n ≤ 5. �

7. Numerical stability condition for axially symmetric cones

Let us consider Cs,n the axially symmetric cone

Cs,n := {x = (x′, xn) ∈ Rn−1 × R : |x′| > βn,s|xn|}
where βn,s > 0 is the unique constant such that there exists an s-homogeneous
solution us to 

(−∆)sus = 0 in Cs,n
us = 0 in Rn \ Cs,n
us
ds

= 1 on ∂Cs,n.

In this section, we will study what is the expression of the stability condition from
Theorem 1.2 when applied to us, for radial functions f = f(r), r = |x|. We already
know that cones Cs,n are unstable for n ≤ 5 by Theorem 1.7, and we expect them to
be stable for n ≥ 7. We believe that this approach might be useful to understand the
case n = 6, in which we expect axially-symmetric cones to be unstable (given that
the previous proposition seemed to hold until n = 6− δ for any δ > 0 independently
of s ∈ (0, 1), and the result holds for s = 1.

We do so by finding an inequality that can be numerically checked, whose validity
would imply the instability of the conical solution us. We refer to [CJK04] for the
analogous result for s = 1.
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Let us denote, from now on, C := Cn,s. The stability condition (3.20) when applied
to the cone C is∫

∂C
HCf

2dσ ≤
∫
∂C×∂C

(f(x)− f(y))2KC(x, y)dσ(x)dσ(y) (7.1)

with

HC(x) :=

∫
∂C
|ν(x)− ν(y)|2KC(x, y)dσ(y),

where KC(x, y) is our boundary kernel, obtained from the Green function GC(x, y)
as

KC(x, y) = lim
C3x̄→x
C∈ȳ→y

GC(x̄, ȳ)

ds(x̄)ds(ȳ)
.

Notice, moreover, that from the symmetry of our problem and the fact that KC
is (−n)-homogeneous, HC(λx) = λ−1HC(x), so

HC(x) =
H1

|x|
, H1 =

∫
∂C
|ν(x1)− ν(y)|2KC(x1, y)dσ(y)

where x1 ∈ ∂C ∩ ∂B1 is arbitrary.

Let f = f(|x|) = f(r) be given by f(r) = r
2−n
2 g(r) for some g. Then, the left-hand

side of (7.1) can be rewritten as∫
C
HCf

2dσ = H1|∂C ∩ Sn−1|
∫ ∞

0
g2(r)

dr

r
,

where |∂C ∩ Sn−1| is explicit depending only on the angle βn,s in the definition of
C = Cn,s (and n).

For the fractional semi-norm part, let us define for any x ∈ C with |x| = r,

K̃C : R+ × R+ → R, K̃C(r, t) := t2−n
∫
|y|=t
KC(x, y)dσ(y)

(notice that in this definition, the value is independent of x, as long as |x| = r, by
symmetry). Then,∫

∂C

∫
∂C

(
f(x)− f(y)

)2KC(x, y)dσ(x)dσ(y) =

= 2

∫
∂C
f(x)

∫
∂C

(f(x)− f(y))KC(x, y)dσ(x)dσ(y)

= 2

∫ ∞
0

∫
|x|=r

f(r)

∫ ∞
0

tn−2(f(r)− f(t))K̃C(r, t)dt dr

= 2|∂C ∩ Sn−1|
∫ ∞

0
f(r)rn−2

∫ ∞
0

tn−2(f(r)− f(t))K̃C(r, t)dt dr

= 2|∂C ∩ Sn−1|
∫ ∞

0
g(r)r

n
2

∫ ∞
0

tn−2(g(r)r
2−n
2 − g(t)t

2−n
2 )K̃C(r, t)dt

dr

r
.

If we denote

(Λ̃g)(r) := 2r
n
2

∫ ∞
0

tn−2(g(r)r
2−n
2 − g(t)t

2−n
2 )K̃C(r, t)dt
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then our condition (7.1) is

H1

∫ ∞
0

g2(r)
dr

r
≤
∫ ∞

0
g(r)Λ̃g(r)

dr

r
.

We now want to apply the Mellin transform (h̃(ξ) :=
∫∞

0 h(r)r−iξ drr ) and use

Plancherel’s theorem. To do so, notice that Λ̃ is invariant under dilations, or 0-
homogeneous ([Λg(λ·)](r) = [Λg](λr)), and so it is represented by a Fourier-Mellin
multiplier operator on L2(R+, dr/r), with symbol that we denotem(ξ) (cf. [CJK04]).
Using Plancherel’s theorem to the previous inequality we have

H1

∫ ∞
−∞
|g̃(ξ)|2dξ ≤

∫ ∞
−∞
|m(ξ)||g̃(ξ)|

for all g̃ such that g ∈ C∞0 (0,∞). This class is dense in L2(R+, dr/r) and thus we
have

H1 ≤ inf
ξ
|m(ξ)| ≤ m(0).

The value of m(0) can be computed as Λ̃(1) (the operator Λ̃ applied to the constant
function equal to 1), which by homogeneity is constant (again, cf. [CJK04]), and so

m(0) = [Λ̃(1)](1) = 2

∫ ∞
0

tn−2
(
1− t

2−n
2
)
K̃C(1, t) dt.

Finally, notice that K̃C(1, t) = t−nK̃C(1, 1/t), so

m(0) = 2

∫ 1

0
tn−2

(
1− t

2−n
2
)
K̃C(1, t) dt+ 2

∫ 1

0
t2−n

(
1− t

n−2
2
)
tnK̃C(1, t)

dt

t2

= 2

∫ 1

0

(
1− t

n−2
2
)2K̃C(1, t) dt.

In all, we need to check for which n does the following inequality fail, to deduce
that for those n the corresponding cones is unstable.∫

∂C
|ν(x1)− ν(y)|2KC(x1, y)dσ(y) ≤ 2

∫ 1

0

(
1− t

n−2
2
)2K̃C(1, t) dt,

which can be numerically computed once the aperture βn,s and the corresponding
Green function GC are computed. As said before, we already know the cases n ≤ 5,
so we are only interested in the case n = 6.
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