
Universitat de Barcelona

Advanced Mathematics Master’s Thesis

Fundamental Principles of Binary Latent
Diffusion

Author:
Àlex Pujol

Supervisors:
Dr. Carles Casacuberta

Dr. Sergio Escalera

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Advanced Mathematics

in the

Facultat de Matemàtiques i Informàtica

September 2, 2024

http://www.ub.edu
https://alex-pv01.github.io/
https://hupba.com/
https://hupba.com/
http://mat.ub.edu

i

UNIVERSITAT DE BARCELONA

Abstract
Facultat de Matemàtiques i Informàtica

MSc

Fundamental Principles of Binary Latent Diffusion

by Àlex Pujol

In this thesis we explore the fundamental principles of Binary Latent Diffusion Models
(BLDM), a novel class of generative models that leverage probabilistic deep latent variable
models and diffusion processes to approximate complex data distributions. The research delves
into probability theory, generative models, and latent space representations, with a focus on
Variational Autoencoders (VAE) that lead to Bernoulli Variational Autoencoders (BVAE).
The study provides a comprehensive overview of the foundations of Diffusion Models, lead-
ing to the formal definition of Discrete Bernoulli Diffusion Models (DBDM) and its training
objective. Both, BVAE and DBDM, are the building blocks of the BLDM. Additionally, a
practical application is presented. This exploration highlights the mathematical formaliza-
tion and implementation strategies for BLDMs, paving the way for future advancements in
generative modeling.

HTTP://WWW.UB.EDU
http://mat.ub.edu

ii

Acknowledgements
I extend my sincere gratitude to my thesis supervisor, Carles Casacuberta and Sergio Escalera,
for their invaluable guidance and support throughout the research process. I also thank
Christos Kantas and Anders Skaarup for their insightful comments, and fruitful advices.
Appreciation goes to Paula, Marco and Maren for enriching discussions and support, and to
my friends and family for their continuous encouragement. This thesis reflects not only my
effort but also the collaborative contributions of a supportive academic community, for which
I am truly thankful.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction and Motivation 1
1.1 Probabilistic Modelling . 1

1.1.1 Probability Space . 2
1.1.2 Conditional Probability . 3
1.1.3 Random Variables . 4
1.1.4 Modelling . 10

1.2 Generative Models . 12
1.2.1 The Likelihood Maximization Approach 13

2 Latent Space 15
2.1 Autoencoders . 16
2.2 Variational Autoencoders . 18

2.2.1 Variational Inference . 18
2.2.2 Variational Autoencoders . 24

2.3 Discrete Variational Autoencoders . 28
2.3.1 The Straight-Through Estimator . 30
2.3.2 Gumbel Softmax . 32
2.3.3 Binary Representations . 33

3 Diffusion Models 36
3.1 Discrete Markov Chains . 36
3.2 Discrete-time Diffusion Models . 38

3.2.1 Forward Process . 38
3.2.2 Reverse Process . 39
3.2.3 Training Objective . 40
3.2.4 Discrete-time Gaussian Diffusion Models 42
3.2.5 Discrete-time Bernoulli Diffusion Models 46

3.3 Energy-Based Models . 51
3.3.1 Langevin Dynamics . 52
3.3.2 Score Matching . 52

3.4 Continuous-Time Diffusion Models . 53
3.5 Conditioning and Guidance Techniques . 54
3.6 Latent Diffusion Models . 55
3.7 Binary Latent Diffusion Models . 56

4 Conclusion 58

iv

A Application and Implementation 60
A.1 Problem Statement: Text-to-Motion Generation 61
A.2 Motion Binary Variational Autoencoder . 62

A.2.1 Frame-wise binary quantization . 63
A.2.2 Some-frames binary quantization . 63
A.2.3 Full-sequence binary quantization . 65

A.3 Motion Binary Latent Diffusion Model . 65
A.3.1 Sampling . 66

B Experimental Setup and Results 67
B.1 Text-to-Motion Datasets . 67
B.2 Evaluation Metrics . 67
B.3 Implementation details . 68
B.4 Results . 69

B.4.1 Comparisons on MBVAE . 69
B.4.2 Exploration on MBLD . 70

Bibliography 74

1

1 Introduction and Motivation

Machine Learning (ML) is a field of computer science that is concerned with developing
algorithms and models that can learn from data and make predictions or decisions based on
that data, aiming to reproduce human like cognition capabilities. The subfield of ML that is
concerned with the generation of creative outputs is known as Generative Modeling. Here,
by creative generation we mean the ability to generate new data samples that are similar to a
given dataset, but do not belong to it. Thus, a generative model, has the capability to create
never-seen-before data samples that are plausible and realistic. This can be useful for a variety
of tasks, such as generating new images, music, or text, or for building a synthetic dataset
for training other machine learning models. Generative models are also used in unsupervised
learning, where the goal is to learn the underlying structure of a dataset without any labels or
annotations. For example, consider the task of generating new images of handwritten digits.
One way to do this is to ask for group of people to draw a diversity of digits, and then train
a generative model on this dataset. Once the process finishes, the model could then generate
new images that are similar to the ones in the dataset. Furthermore, the model could be
provided with a token representing a digit, conditioning it to generate images of a the specific
digit.

In this thesis, we explore the field of Latent Diffusion Models (LDM), which are a class
of generative models based on probabilistic Deep Latent Variable Models that take ideas
from Variational Inference and Thermodynamics and which have been shown to be effective
at approximating very complex data distributions, generating high-quality images, audio or
video (Yang et al., 2023). In particular, we focus in a novel type of LDM called Binary
Latent Diffusion Model (BLDM), which forces the latent spaces to be binary, and can be
used to represent data in a more compact and efficient way (Wang et al., 2023). The goal
of this research is to provide the mathematical formalization and the fundamental concepts
behind such models. In the forthcoming chapter we introduce basic concepts of probability
theory and generative models. Then we relate the concept of the latent space of a generative
model with a dimensionality reduction process, introducing the concept of Autoencoders and
Variational Autoencoders (VAEs). VAEs draw the correlation between the minimization of
the divergence of the data distribution and the generative model, and the maximization of
the likelihood function, by means of a Deep Latent Variable Model. In the third chapter
we formalize the concept of Diffusion Models and introduce the LDM and BLDM. In the
fourth chapter, we discuss the algorithm and implementation of the BLDM, and apply it to
a novel practical example, that is text-to-motion generation. Finally, in the last chapter we
draw conclusions and outline future steps for enhancing the proposed methods. The main
references for this thesis are the papers Kingma and Welling, 2014, Sohl-Dickstein et al., 2015,
Ho, Jain, and Abbeel, 2020 and Wang et al., 2023, as well as the books Bishop, 2006, Barber,
2012, Murphy, 2022 and Murphy, 2023.

1.1 Probabilistic Modelling

Probabilistic modeling is a fundamental approach in machine learning, particularly for gen-
erative models, where the goal is to model the underlying distribution of data. Generative
models leverage probability theory to capture the complexities of data distributions and can

Chapter 1. Introduction and Motivation 2

generate new data points that resemble the original data. This chapter introduces the basic
concepts of probability theory, which are essential for understanding how these models work.
By building a strong foundation in probability, we can better grasp how generative mod-
els make predictions and generate data based on learned distributions. As we explore these
concepts, we will see how probability provides the framework for modeling data distributions.

1.1.1 Probability Space

Probability theory is a branch of mathematics dedicated to studying random phenomena and
modeling uncertainty. It provides a formal framework for reasoning under uncertainty and
making predictions with incomplete information. Central to this framework is the concept of
a probability measure, which assigns a numerical value to each event in a sample space.

Definition 1 (Probability Measure). A measure on a set Ω is a function µ : F → [0,∞]
that assigns a nonnegative real number to each subset of Ω, where F is a σ-algebra over Ω. It
satisfies the following properties:

• Non-negativity: µ(A) ≥ 0 for all A ∈ F .

• Measure 0: µ(∅) = 0, where ∅ is the empty set.

• Countable additivity: If A1, A2, . . . ∈ F are pairwise disjoint sets, then µ (
⋃∞

i=1Ai) =∑∞
i=1 µ(Ai).

If µ additionally satisfies the Normalization property, µ(Ω) = 1, then µ is a probability
measure.

Definition 2 (σ-algebra). Let Ω be a set. A σ-algebra on Ω is a nonempty collection F of
subsets of Ω for which:

• Ω ∈ F .

• Closed under complements: If A ∈ F , then its complement Ac ∈ F .

• Closed under countable unions: If A1, A2, . . . ∈ F , then their union
⋃∞

i=1Ai ∈ F .

A common measure is the Lebesgue measure, which assigns the length of an interval to the
interval itself. Given an open set A = ∪k(ak, bk), containing a countable number of disjoint
intervals, the Lebesgue measure of A is µ(A) =

∑
k(bk − ak).

Definition 3 (Probability Space). A probability space is a triple (Ω,F , P), where:

• (Ω,F) is a measurable space, meaning Ω is a set and F is a σ-algebra of subsets of Ω.

• P is a probability measure on F .

A probability space serves as a mathematical model of a random experiment. Here, Ω
represents the sample space, which is the set of all possible outcomes of the experiment. The
σ-algebra F consists of events that can be measured, while the probability measure P assigns
a probability to each event in F .

Note that the second property of σ-algebras implies that if we can compute the proba-
bility of an event A ∈ F occurring, we must also be able to compute the probability of its
complement Ac ∈ F occurring. The third property ensures that if we can compute the prob-
ability of individual events occurring, we can also compute the probability of any countable
combination of these events occurring.

Chapter 1. Introduction and Motivation 3

Proposition 1 (Monotonicity of Probability). Let A,B ∈ F be events in a probability space
(Ω,F , P). If A ⊂ B, then P (A) ≤ P (B).

Proof. Since A ⊂ B, we have B = A ∪ (B \ A). Since A and B \ A are disjoint, P (B) =
P (A) + P (B \A). Since P (B \A) ≥ 0, we have P (A) ≤ P (B).

A further consequence is that for any A,B ∈ F we have P (A∩B) ≤ P (A) and P (A∩B) ≤
P (B).

1.1.2 Conditional Probability

When we have information about the occurrence of an event, we can update the probabilities
of other events accordingly.

Definition 4 (Conditional Probability). Let A,B ∈ F be events in a probability space
(Ω,F , P). The conditional probability of A given B is defined as

P (A|B) =
P (A ∩B)

P (B)
,

provided that P (B) > 0.

Note that the conditional probability is not defined when P (B) = 0, which is intuitive
since we cannot condition on an event that has zero probability of occurring. Given B, we
can think of P (·|B) as a new probability measure P ′ that is normalized to B, taking non-zero
values only on subsets of B and assigning P ′(B) = 1.

Observe that the conditional probability of B given A is defined as

P (B|A) =
P (A ∩B)

P (A)
,

which differs from P (A|B) only by the normalization factor P (A) > 0. From this definition,
we can derive the product rule of probability:

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A).

Here, if P (A) = 0 or P (B) = 0, the product rule still holds due to the monotonicity of
probability, even though the conditional probabilities are not defined. However, if P (A) > 0,
we obtain Bayes’ rule:

P (B|A) =
P (A|B)P (B)

P (A)
.

This result can be extended to a partition of the sample space.

Proposition 2 (Law of Total Probability). If Ω can be partitioned into B1, . . . , Bk such that
Bi ∩Bj = ∅ for i ̸= j and

⋃k
i=1Bi = Ω, with P (Bi) > 0, then for any event A we have:

P (A) =
k∑

i=1

P (A|Bi)P (Bi).

Chapter 1. Introduction and Motivation 4

Proof. Suppose that Ω can be partitioned into B1, . . . , Bk as above. Then, from the properties
of probability measures and conditional probability, we have:

P (A) = P (A ∩
k⋃

i=1

Bi) = P

(
k⋃

i=1

(A ∩Bi)

)

=
k∑

i=1

P (A ∩Bi) =
k∑

i=1

P (A|Bi)P (Bi).

Therefore, given a partition B1, . . . , Bk of Ω, we have the following extension of Bayes’
rule:

P (Bi|A) =
P (A|Bi)P (Bi)∑k
j=1 P (A|Bj)P (Bj)

.

This is a fundamental result in probability theory, used in many machine learning algorithms,
such as Bayesian inference and probabilistic graphical models, as it allows us to "reverse the
conditioning".

Two events are said to be independent if the occurrence of one does not affect the proba-
bility of the other. More formally:

Definition 5 (Independence). Let (Ω,F , P) be a probability space.

• We say that A,B ∈ F are independent if P (A ∩B) = P (A)P (B), denoted as A ⊥ B.
If P (B) > 0, an equivalent definition is P (A|B) = P (A).

• A collection of events A1, . . . , An is mutually independent if for any subset I ⊂
{1, . . . , n}, we have

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P (Ai).

1.1.3 Random Variables

If the probability measure is the tool to quantify uncertainty, random variables are the tools
to model it. A random variable provides a numerical value depending on the outcome of a
random experiment. More precisely, it can be viewed as a function that maps the sample
space Ω to the real numbers R.

Definition 6 (Random Variable). Let (Ω,F , P) be a probability space. A random variable
on Ω is a measurable function X : Ω → R. That is, for any a ∈ R, the set A = {x ∈ Ω :
X(x) ≤ a} is measurable, i.e., A ∈ F .

For a random variable X, the event {x ∈ Ω : X(x) ≤ a} is often written as {X ≤ a} and is
called "the event that X is less than or equal to a." The probability of this event is well-defined
since it belongs to F . More generally, if B is a subset of the real line, we use the notation
X−1(B) or {X ∈ B} to denote the set {x ∈ Ω : X(x) ∈ B}. The probability PX(B) = P (X ∈
B) = P (X−1(B)) = P ({x ∈ Ω : X(x) ∈ B}) is well-defined since X−1(B) ∈ F . This follows
from a fundamental result in measure theory, which states that the collection of intervals
of the form (−∞, a] generates the Borel σ-algebra B, which is the smallest σ-algebra that
contains all open sets in R. Therefore, if B ∈ B, then B is a countable union, intersection,
or complement of intervals of the form (−∞, a]. Since X is measurable, X−1(B) ∈ F . We
call the function PX : B → [0, 1] the probability law of X. In fact, one can prove that PX is
a probability measure on (R,B). Typically, (Ω,F , P) remains implicit, and we work directly
with the more tangible probability space ((R,B), PX).

Chapter 1. Introduction and Motivation 5

Proposition 3. Let (Ω,F , P) be a probability space, and let X be a random variable. Then,
the probability law PX is a probability measure on (R,B).

Proof. To prove that PX is a probability measure on (R,B), we need to verify three properties:

• Non-negativity: For any B ∈ B, PX(B) ≥ 0. This follows directly from the definition
of PX(B) as the probability of the event X−1(B) ∈ F , and since P is a probability
measure on F , P (X−1(B)) ≥ 0.

• Measure 0: PX(∅) = 0. Note that PX(∅) = P (X−1(∅)) = P (∅) = 0.

• Countable additivity: If {Bi}∞i=1 is a countable collection of disjoint sets in B, then
PX (

⋃∞
i=1Bi) =

∑∞
i=1 PX(Bi). This follows because

PX

(∞⋃
i=1

Bi

)
= P

(
X−1

(∞⋃
i=1

Bi

))
= P

(∞⋃
i=1

X−1(Bi)

)
=

∞∑
i=1

P (X−1(Bi)) =
∞∑
i=1

PX(Bi),

where the third equality follows from the countable additivity of the probability measure
P on F .

• Normalization: PX(R) = 1. Note that PX(R) = P (X ∈ R) = P (X−1(R)). Since
X−1(R) = Ω and P (Ω) = 1, we have PX(R) = 1.

Since PX satisfies all four properties of a probability measure, it follows that PX is a probability
measure on (R,B).

A sequence of random variables X1, X2, . . . , Xn that take values in I ⊆ R, is said to be
Independently and Identically Distributed (i.i.d.) if:

• All random variables are identically distributed, i.e., PX1(x) = · · · = PXn(x), for all
x ∈ I.

• All random variables are independent to one another, i.e., the joint distribution can be
factorized as PX1,...,Xn(x1, . . . , xn) = PX1(x1) · · ·PXn(xn), for all x1, . . . , xn ∈ I.

The i.i.d. assumption is foundational in many statistical methods and machine learning
algorithms, as it simplifies analysis and often enables the application of central limit theorems
and other key results in probability theory.

In many situations, random variables model very complex scenarios that can be in-
tractable. However, it is possible to transform a given random variable to another one via a
continuous transformation. Thus, one can extract knowledge from one random variable and
transfer it to another. Additionally, the continuous combination of multiple random variables
also leads to a random variable.

Theorem 1 (Functions of random variables). Let (Ω,F , P) be a probability space.

1. Let X : Ω→ R be a random variable, and suppose that f : R→ R is a Borel measurable
function. Then, f(X) is a random variable.

2. Let X1, . . . , Xn : Ω → R be random variables, and suppose that f : Rn → R is a Borel
measurable function. Then, f(X1, . . . , Xn) is a random variable.

Proof. We will prove both parts of the theorem:

Chapter 1. Introduction and Motivation 6

1. Let B ∈ B(R) be a Borel set. We need to show that {f(X) ∈ B} ∈ F . Since f is Borel
measurable, f−1(B) ∈ B(R). Now,

{f(X) ∈ B} = {ω ∈ Ω : f(X(ω)) ∈ B} = {ω ∈ Ω : X(ω) ∈ f−1(B)} = X−1(f−1(B)).

Since X is a random variable, X−1(f−1(B)) ∈ F . Therefore, f(X) is a random variable.

2. Similarly, let X = (X1, . . . , Xn) : Ω→ Rn be the vector-valued random variable formed
by X1, . . . , Xn. Let B ∈ B(R) be a Borel set. We need to show that {f(X) ∈ B} ∈ F .
Since f is Borel measurable, f−1(B) ∈ B(Rn). Since X is a random vector (as each
component is a random variable), the same reasoning as before leads to X−1(f−1(B)) ∈
F . Therefore, f(X1, . . . , Xn) is a random variable.

Definition 7 (Change of random variables). Let (Ω,F , P) be a probability space, X : Ω→ R
be a random variable, and f : R→ R be a continuous function. The change of variables from
X to Y = f(X) is the transformation that induces a new probability measure PY on (R,B(R))
defined by:

PY (B) = P (f(X) ∈ B) = P (X ∈ f−1(B))

for all Borel sets B ∈ B(R).

Random variables can be classified into two main categories: discrete and continuous.
Discrete random variables take on a countable number of distinct values, while continuous
random variables can take on any value within a range. In the following subsections we will
state some of the basic definitions and properties of discrete and continuous random variables,
that are relevant for the mathematical formalization of generative models.

Discrete Random Variables

Discrete random variables are characterized by their Probability Mass Function (PMF), which
assigns probabilities to each possible value the random variable can take.

Definition 8 (PMF). Let X be a discrete random variable taking values in a countable set
S. The Probability Mass Function (PMF) of X, denoted pX(x), is defined as:

pX(x) = P (X = x), x ∈ S.

The PMF satisfies the following properties:

1. pX(x) ≥ 0 for all x ∈ S.

2.
∑

x∈S pX(x) = 1.

For discrete random variables, we can define joint, marginal, and conditional PMFs for
multiple random variables.

Proposition 4 (Discrete Random Variables). For discrete random variables X and Y , we
have the following definitions that extend from the definition of PMFs and the basic properties
of probability measures stated above:

1. Joint PMF: pX,Y (x, y) = P (X = x, Y = y).

2. Marginal PMF: pX(x) =
∑

y pX,Y (x, y).

3. Conditional PMF: pX|Y (x|y) =
pX,Y (x,y)
pY (y) if pY (y) > 0.

Chapter 1. Introduction and Motivation 7

Independence of discrete random variables can be defined in terms of their joint and
marginal PMFs.

Proposition 5. Discrete random variables X and Y are independent if and only if:

pX,Y (x, y) = pX(x)pY (y) for all x ∈ SX , y ∈ SY

where SX and SY are the support sets of X and Y respectively.

Lastly, the expectation and conditional expectation, that provide a measure of the average
value of a random variable, will be crucial for understanding generative models, since they
usually aim to generate data samples that are representative of the underlying distribution,
thus having similar expected values.

Definition 9 (Expected Value). The expected value of a discrete random variable X is defined
as:

E[X] =
∑
x∈S

x · pX(x).

Definition 10 (Conditional Expectation). The conditional expectation of X given Y = y is
defined as:

E[X|Y = y] =
∑
x

x · pX|Y (x|y).

The simplest example of a discrete random variable is the Bernoulli distribution. In our
case, such distribution will be used to encode the binary latent space of our generative model,
as well as the main model to generate binary data samples.

Example 1 (Bernoulli distribution). The Bernoulli distribution is a discrete probability dis-
tribution of a random variable which takes the value 1 with probability p and the value 0 with
probability q = 1 − p. A random variable X follows a Bernoulli distribution with parameter
p ∈ [0, 1], denoted X ∼ B(X; p), if its PMF is given by:

pX(x) =

{
p if x = 1

1− p if x = 0.

The expected value of a Bernoulli random variable is:

E[X] = 1 · p+ 0 · (1− p) = p.

Continuous Random Variables

Continuous random variables are characterized by their ability to take on any value within
a continuous range. Unlike discrete random variables, continuous random variables are de-
scribed by probability density functions rather than probability mass functions.

Definition 11 (PDF). Let X be a continuous random variable. The probability density func-
tion (PDF) of X, denoted by fX : R→ [0,∞), is a function that satisfies:

P (a ≤ X ≤ b) =

∫ b

a
fX(x) dx

for all a, b ∈ R with a ≤ b. The PDF must also satisfy:∫ ∞

−∞
fX(x) dx = 1.

Chapter 1. Introduction and Motivation 8

The PDF is related to the Cumulative Distribution Function (CDF) as follows:

Definition 12 (CDF). Let X be a continuous random variable with PDF fX . The cumulative
distribution function (CDF) of X, denoted by FX : R→ [0, 1], is defined as:

FX(x) = P (X ≤ x) =

∫ x

−∞
fX(t) dt

for all x ∈ R.

Theorem 2 (Fundamental Theorem of Calculus for CDFs). If X is a continuous random
variable with PDF fX and CDF FX , then:

fX(x) =
d

dx
FX(x)

at all points x where FX is differentiable.

This correspondence allows us to work interchangeably with CDFs and PDFs, choosing
whichever is more convenient for a given problem. The CDF has several important properties:

Proposition 6 (CDF Properties). Let FX be the CDF of a continuous random variable X.
Then FX satisfies:

1. Monotonicity: If x1 < x2, then FX(x1) ≤ FX(x2) for all x1, x2 ∈ R.

2. Continuity: FX is continuous on R.

3. Limiting behavior:

• limx→−∞ FX(x) = 0

• limx→+∞ FX(x) = 1

4. Probability of an interval: For any a < b,

P (a < X ≤ b) = FX(b)− FX(a).

Similar to discrete random variables, from the definition of continuous random variables
and PDFs, we define joint, marginal, and conditional PDFs:

Proposition 7 (Continuous Random Variables). For continuous random variables X and Y :

• Joint PDF: fX,Y (x, y) is the joint PDF of X and Y , and satisfies:

P ((X,Y) ∈ A) =

∫ ∫
A
fX,Y (x, y) dxdy

for any measurable set A ⊆ R2.

• Marginal PDF: fX(x) is the marginal PDF of X, and is obtained by integrating over
all possible values of Y :

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy.

• Conditional PDF: fX|Y (x|y) is the conditional PDF of X given Y = y, and is defined
as:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

when fY (y) > 0.

Chapter 1. Introduction and Motivation 9

These definitions lead to the chain rule of probability:

Theorem 3 (Chain Rule of Probability). For continuous random variables X and Y :

fX,Y (x, y) = fX|Y (x|y)fY (y) = fY |X(y|x)fX(x).

Independence for continuous random variables can also be defined in terms of their joint
and marginal PDFs:

Proposition 8. Continuous random variables X and Y are independent if and only if:

fX,Y (x, y) = fX(x)fY (y) for all x, y ∈ R.

Expected values for continuous random variables are defined using integrals, as to average
over all possible values of the random variable:

Definition 13 (Expected Value). The expected value of a continuous random variable X with
PDF fX is defined as:

E[X] =

∫ ∞

−∞
xfX(x) dx

provided the integral exists.

Definition 14 (Conditional Expectation). The conditional expectation of X given Y = y is
defined as:

E[X|Y = y] =

∫ ∞

−∞
xfX|Y (x|y) dx

provided the integral exists.

Proposition 9 (Linearity of Expectation). For continuous random variables X and Y , and
constants a, b ∈ R:

E[aX + bY + c] = aE[X] + bE[Y] + c.

A fundamental theorem for computing expectations of functions of random variables is
the Law of the Unconscious Statistician (LOTUS):

Theorem 4 (LOTUS). Let X be a continuous random variable with PDF fX , and let
g : R→ R be a measurable function. Then:

E[g(X)] =

∫ ∞

−∞
g(x)fX(x) dx

provided the integral exists.

Bayes’ rule can also be written in terms of PDFs:

Theorem 5 (Bayes’ Rule). For continuous random variables X and Y :

fX|Y (x|y) =
fY |X(y|x)fX(x)

fY (y)
=

fY |X(y|x)fX(x)∫∞
−∞ fY |X(y|t)fX(t) dt

.

Another important property that will be useful in forthcoming chapters is the PDF under
a change of continuous random variables. If Y = g(X), where g is a monotonous change of
random variables with continuous derivative, then the PDF of Y can be obtained from the
PDF of X as

fY (y) = fX(g−1(y))

∣∣∣∣ ddyg−1(y)

∣∣∣∣ . (1.1)

Chapter 1. Introduction and Motivation 10

Note that if g is increasing, then

P (Y ≤ y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) = FX(g−1(y)),

fY (y) =
d

dy
FX(g−1(y)) = fX(g−1(y))

d

dy
g−1(y).

The Gaussian distribution is a fundamental example of a continuous random variable, and
is widely used in statistics and machine learning. In fact, most advanced generative models
are based on the Gaussian distribution, as it is a simple yet powerful model for continuous
data. We will introduce them since they will be used in the generative models we will study,
and we will try to understand their properties to translate them into a discrete space where
we can work with Bernoulli distributions.

Example 2 (Gaussian Distribution). A random variable X follows a Gaussian distribution
with parameters µ ∈ R and σ2 > 0, denoted X ∼ N (X,µ, σ2), if its PDF is given by:

fX(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, x ∈ R.

Expected value: E[X] = µ
Variance: V ar(X) = σ2

Example 3 (Multivariate Gaussian Distribution). The multivariate Gaussian distribution is
a generalization of the one-dimensional Gaussian distribution to higher dimensions. A random
vector X = (X1, . . . , Xn)

T follows a multivariate Gaussian distribution with mean vector
µ ∈ Rn and covariance matrix Σ ∈ Rn×n (positive definite), denoted X ∼ N (X;µ,Σ), if its
PDF is given by:

fX(x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, x ∈ Rn.

Expected value: E[X] = µ
Covariance matrix: Cov(X) = Σ

These definitions, theorems, and examples provide a rigorous foundation for working with
continuous and discrete random variables. They are essential for understanding and develop-
ing probabilistic models, including generative models in machine learning and statistics. For
the sake of brevity, we have omitted many important results and concepts in basic probabil-
ity theory, as well as some proofs. Further details can be found in the references provided,
especially in Nualart and Sanz-Solé, 1990 and Bishop, 2006.

1.1.4 Modelling

Probabilistic modelling, it is often confounded with other types of modelling. We briefly
discuss probabilistic, statistical and Bayesian models to provide a formal definition and clearly
differentiate between the methods.

Probabilistic Models

We call probability, or probabilistic model, to the probability space (Ω,F , P) corresponding
to a random phenomenon. Often one works with the random variables and their respective
PDFs or PMFs accordingly to P .

For example, the probabilistic model that models the random phenomenon of tossing a
perfect coin corresponds to a Bernoulli random variable with probability of success 1/2. The

Chapter 1. Introduction and Motivation 11

probability space is ({0, 1}, 2{0,1}, P), where P (0) = P (1) = 1/2, and can be specified by the
probability law

p(x) =

(
1

2

)x(1

2

)1−x

, x ∈ {0, 1}.

Statistical Models

A statistical model is a set of probability measures defined on the same sample space Ω,
i.e., a set of random variables that are defined on the same probability space. Usually, we
refer to parametric statistical models, where the random variables Xθ are parameterised by
θ ∈ Θ ∈ Rd. The probability measure Pθ is defined by the probability law of Xθ, and the set
of all probability measures {Pθ : θ ∈ Θ} is the statistical model. The PDFs or PMFs of the
random variables are denoted by pθ(x) = p(x|θ). The goal of statistical modelling is to learn
the parameter θ that best describes the data. The outcome of this process is a probabilistic
model that approximates the data distribution.

For example, the collection of Bernoulli random variables parameterised by the probability
of success θ is a statistical model for coin tossing. After collecting enough data of a perfect
coin, one can estimate that the probability of success is close to θ = 1/2. Arriving to the
probability model from above. This statistical model is specified by

p(x|θ) = θx(1− θ)1−x, x ∈ {0, 1}, θ ∈ [0, 1].

Bayesian Models

A Bayesian model is a statistical model where the parameters θ are considered random
variables. The probability measure P (θ) is called the prior distribution. Each PDF or
PMF pθ(x) is subject to the prior PDF or PMF p(θ), which defines the joint distribution
p(x, θ) = p(x|θ)p(θ). Assuming that the conditional distribution p(x|θ) is defined on Ωx, a
Bayesian model formally corresponds to a probabilistic model on the product space Ωx ×Θ.
The goal of Bayesian modelling is to learn the posterior distribution p(θ|x), which is the con-
ditional distribution of the parameters given the data. This is achieved by applying Bayes’
rule. Then, the posterior distribution can be used to make predictions or decisions.

For example, following the previous example of a Bernoulli random variable, one can
consider a Bayesian model by assuming a prior distribution to θ. A common choice is the
Beta distribution; thus we assume that θ ∼ Beta(α, β),

p(θ) =
θα−1(1− θ)β−1

Z(α, β)
, θ ∈ [0, 1],

where
Z(α, β) =

Γ(α)Γ(β)

Γ(α+ β)

is the normalizing constant. It ensures that the integral of p(θ) over [0, 1] is equal to 1. The
parameters α and β are sometimes called hyperparameters and are assumed to be either fixed,
or unknown. Then, the joint distribution is

p(x, θ) = p(x|θ)p(θ)

= θx(1− θ)1−x θ
α−1(1− θ)β−1

Z(α, β)

=
θx+α−1(1− θ)β−x

Z(α, β)
.

Chapter 1. Introduction and Motivation 12

and is defined on Ωx × Θ = {0, 1} × [0, 1]. Note that if α and β are unknown, then we can
formulate a statistical model p(x, θ|α, β), which once again can be turned into a Bayesian
model by assuming a prior distribution to α and β.

1.2 Generative Models

As discussed in the beginning of this chapter, in generative modelling, we are interested in
learning a model that can generate new data samples from a data space. The essential idea
behind the generation problem is to treat data observations x as samples from a distribution
p(x) that we would like to find, and use them to approximate it.

In this context, we are interested in the real valued case, where Ω = RD for some D ∈ N.
The probability space (RD,B(RD), P) is defined by the Borel σ-algebra B(RD), which is the
smallest σ-algebra that contains all open sets in RD. And the probability measure P is
induced by the Lebesgue measure, P (A) =

∫
A p(x) dx. If D = 1, recall that one can define

the cumulative distribution function F (x) as

F (x) := P ({X ≤ x}) =
∫ x

−∞
p(x) dx.

Note that the probability density function p(x) is the derivative of F (x), p(x) = dF (x)
dx . Since

the probability distribution of a random variable is defined by its density function, we will
use these terms interchangeably.

Assume we have a dataset D = {x1,x2, . . . ,xN} ⊂ RD of N samples, where each data
sample xi is a vector of D dimensions. We call the vector space RD data space. The data dis-
tribution pD(x) is a probability distribution in RD that describes the likelihood of a particular
sample x ∈ D.

For instance, in the case of 64× 64 RGB images, the data space is R64×64×3. If we have a
dataset D of images of cats in this data space, each sample x is a vector of shape 64× 64× 3,
and the data distribution pD(x) describes the likelihood a particular image of a cat within
the image data space.

Definition 15. A generative model qD,θ is a probabilistic model that approximates the data
distribution pD, where D is a dataset, and θ are the prarameters of the model.

To simplify the notation, we will assume that the dataset D is fixed, and we will denote the
generative model as qθ. Usually the data distribution p is unknown, and the goal of generative
modeling is to find the parameters θ for which qθ best approximates pD. To do so, we need a
way to measure the similarity between two probability distributions. A divergence measure
is a function D(p||q) : S × S → R that takes two probability distributions p and q over the a
space of distributions S, with the properties:

• D(p||q) ≥ 0 for all p, q ∈ S.

• D(p||q) = 0 if and only if p = q.

Divergence generalizes the concept of distance, since it is not required to be symmetric, and
does not satisfy the triangle inequality. Therefore, the learning problem for generative models
can be formulated as an optimization problem, where the goal is to minimize the divergence:

argmin
θ∈Θ

D(pD(x)||qθ(x)). (1.2)

Note that given a model qθ, with θ ∈ Θ ⊂ Rm, for some m ∈ N, the generation problem
resembles the statistical modelling problem, and if assuming a prior to the parameters θ, we

Chapter 1. Introduction and Motivation 13

can turn the generative model into a Bayesian model. Thus, many techniques from variational
inference and Bayesian statistics can be applied to find efficient methods to solve the task.
The rise of deep learning and the development of new optimization algorithms have made
it possible to train very complex generative models, which are defined by large deep neural
networks. Together with a huge amount of high-dimensional data, these models have been
able to generate very realistic samples of images, audio, and text.

There are several approaches to generative modeling. One of the most common is to
define a density function for a generative model and maximize the likelihood of observing
the data samples. This approach is known as the likelihood maximization approach. Another
approach, known as the adversarial approach, involves estimating the distance between a
given generative model’s output and the real data, and then minimizing this difference by an
adversarial auxiliar model. The later approach is outside the scope of this thesis, and we will
focus on the likelihood maximization approach.

1.2.1 The Likelihood Maximization Approach

Given a generative model qθ and a dataset D of i.i.d. samples, the likelihood maximization
approach consists of finding the parameters θ that maximize the likelihood of observing the
data samples in the dataset D. This is defined as the probability of observing the data samples
in D given the model qθ, and since samples are i.i.d., this is the product of the likelihood of
each data sample in D:

argmax
θ∈Θ

qθ(x ∈ D) = argmax
θ∈Θ

∏
x∈D

qθ(x) = argmax
θ∈Θ

L(θ),

where L(θ) = qθ(x ∈ D) is the joint distribution of the data samples in D, and is referred as
the likelihood function.

Definition 16. We call maximum likelihood estimation (MLE) of the parameters θ to
the maximizer of the likelihood function:

θMLE = argmax
θ∈Θ

L(θ).

Since L is a product of probabilities, it is often more convenient to work with the log-
likelihood function logL(θ), that uses the logarithm properties to transform the product into
a more manageable optimization objective.

Proposition 10. The MLE of the parameters θ is equivalent to the maximizer of the log-
likelihood function:

θMLE = argmax
θ∈Θ

∑
x∈D

log qθ(x).

Proof. Since the logarithm is a monotonically increasing function,

argmax
x

f(x) = argmax
x

log f(x).

Therefore, the maximizer of the log-likelihood function is the same as the maximizer of the
likelihood function.

We can also see that for any positive constant c,

argmax
x

log f(x) = argmax
x

(c log f(x)).

Chapter 1. Introduction and Motivation 14

Thus, the MLE is invariant to scaling by a positive constant. This is why the log-likelihood is
often written as the average log-likelihood, which is the average of the log-likelihood of each
data sample in the dataset:

θMLE = argmax
θ∈Θ

1

|D|
∑
x∈D

log qθ(x) ≈ argmax
θ∈Θ

EpD [log qθ(x)].

Later, we will see that specific choice of divergence measure can make minimizing the
divergence and maximizing the likelihood equivalent. Whenever the likelihood function is
differentiable, simple and the dataset is small, the MLE can be computed analytically. How-
ever, in practice, the likelihood function is often complex and intractable, and the dataset is
large, which makes the optimization problem infeasible to solve analytically. In such cases,
one can use optimization algorithms to approximate the MLE. One of the most common is
the stochastic gradient descent (SGD) algorithm, which uses a random subset of data samples
to compute the gradient of the log-likelihood function, and then updates the parameters in
the opposite direction of the gradient. This process is repeated until the algorithm converges
to a local maximum.

A common way to model pD is by means of a probabilistic model with a hidden latent
variable, which is a random variable that is not observed in the data space. The latent variable
can be used to represent the data in a more compact and efficient way, and can be used to
generate new data samples.

Definition 17 (Latent Variable Model). A latent variable model (LVM) is a probabilistic
model that includes a hidden latent variable z from a latent data space RD′. The model is
defined by the joint distribution p(x, z), where x is the data sample in the data space RD. A
parameterized latent variable model is defined by the joint distribution pθ(x, z), where θ are
the parameters of the model. Whenever the probabilistic model pθ is defined by a deep neural
network, we call it a deep latent variable model (DLVM).

15

2 Latent Space

The growth of Machine Learning (ML) and Artificial Intelligence has been exponential in
the last decade. Models are increasing in complexity and size and datasets are growing at
an unprecedented rate. In particular, the outstanding capabilities of generative models have
been a key factor in the development of new applications. This success is due in part to the
advances in data representation. Since the early stages of information theory, the problem of
dimensionality reduction and data compression has been a central topic. As the amount of
data grows, the need for efficient data representation becomes a key challenge. The goal is
to find a lower-dimensional representation of the data that retains the relevant information
of the original data. This is particularly important for ML, where large datasets from large-
dimensional spaces are used to train huge models. A data compression process can be defined
as a two step process:

Definition 18 (Data compression process). Given a dataset D ⊂ Rn, the tuple (D, E,D) is
a data compression process if:

• E : D → Z ⊂ Rd is the encoder, which maps the data to a lower-dimensional space Z,
i.e., any x ∈ D, which has dimension n, is mapped to E(x) = z, which has dimension
d < n.

• D : Z → D is the decoder, which maps the lower-dimensional representation back to
the original space.

Note that, in practice, real numbers are stored in computers following the 754-IEEE
standard, stablished in mid 1985 (“IEEE Standard for Binary Floating-Point Arithmetic”
1985). In this regard, numbers are stored in binary format, occupying a fixed number of
bits in memory. Each bit corresponds to a binary digit. The usual representation for storing
real numbers is the 32-bit floating-point representation, which consists of 32 bits, divided into
three parts: the sign bit (s), the exponent (e), and the mantissa (m); with 1, 8, and 23 bits
respectively. The value of the number is given by the formula:

(−1)s × 2e−127 × 1.m.

Observe that the number of bits used to store a real number is fixed, and the precision of
the number is limited by the number of bits used. The precision can be increased by using
more bits, i.e., using float64 or float128 representations. However, this comes at the cost
of memory, which is a limited resource. Integers are stored in a similar way, but they just
require the sign bit and the mantissa, a common representation is the int32 representation,
which uses 32 bits to store an integer, 1 for the sign and 32 for the number. Similarly, we can
define int8, int16, int64, etc. representations, which use 8, 16, and 64 bits, respectively.

With this in mind, we can redefine the data compression process in terms of the number
of bits used to store the data. Ideally, we would like to find an encoder-decoder pair that
maps the data to a lower-dimensional space, that is, using less bits than the original data,
without losing relevant information. We will abuse the notation and when we refer to a
lower-dimensional representation, we will mean a representation that uses less bits to store
the data. In our context, the relevant information consists of the patterns and structures of

Chapter 2. Latent Space 16

the data that are useful for the model to learn the underlying generative factors of the data.
As long as the chapter progresses, the term relevant will gain more meaning.

A classical method for data compression and dimensionality reduction is the so called Prin-
cipal Component Analysis (PCA), which is a linear transformation that finds the directions
of maximum variance in the data. The idea is to project the data into a lower-dimensional
space, such that the variance of the projected data is maximized. The directions of maximum
variance where the projections are done are called the principal components. However, PCA
is a linear method, and it is not able to capture the non-linear structure of the data, and fails
to provide a meaningful representation for complex datasets (Lever, Krzywinski, and Altman,
2017). In the last years, the advances in deep learning have provided new tools for data
compression and representation learning. In particular, the use of Neural Networks has been
a key factor in the development of new models for data compression. In this chapter, we will
provide the foundation for obtaining a Neural Network which is able to compress data into a
binary space. First, we introduce the concept of Autoencoder. Then, inspired by Variational
Inference, we give a formal definition of Variational Autoencoders, which are a type of Au-
toencoder that learns a stochastic mapping between the observed and latent spaces. Finally,
we will introduce Vector quantized Variational Autoencoders, which are a type of Variational
Autoencoder that uses vector quantization to discretize the latent space.

An efficient data representation is crucial for the training of ML models, and an encoder-
decoder pair can be used to map the original data to a more expressive and compressed
representation. In ML, the output space of the encoder is called the latent space or feature
space, where we have a latent representation E(x) = z for any given data sample x ∈ D.

2.1 Autoencoders

An autoencoder, first introduced in Rumelhart and McClelland, 1987, is essentially a neural
network with a bottleneck that learns the identity function in an unsupervised way such that
it can compress and reconstruct an original input. Such low-dimensional representation can
be used as embedding vector in various applications, help data compression, or reveal the
underlying data generative factors.

We call a subfield of ML that deals with finding hidden patterns in unlabeled data, without
the need of human intervention, unsupervised learning (Murphy, 2023). An autoencoder is
a type of unsupervised learning model that learns to compress and decompress data without
explicitly being told how to do it (Baldi, 2012).

Definition 19 (Autoencoder). Given a dataset D ⊂ Rn, the encoder-decorder pair (Eθ′ , Dθ′′)
is an autoencoder if (D, Eθ′ , Dθ′′) is a data compression process, and Eθ′ and Dθ′′ are neural
networks, with parameters θ′ and θ′′, respectively.

The encoder Eθ′ : Rn → Rd, which is the first part of the model and maps the data
x ∈ D ⊂ Rn to a latent representation Eθ′(x) = z ∈ Z ⊂ Rd, with d < n. Then, a decoder
Dθ′′ : Rd → Rn reconstructs the original data sample from z to x. The output of the decoder
is x̂ = Dθ′′(z) = Dθ′′(Eθ′(x)), which is of the same size as the original data.

We can simplify the notation of the autoencoder to be the composition fθ = Dθ′′ ◦Eθ′ . In
practice, the autoencoder is obtained by training the neural networks that compose it. That
is, by solving the optimization problem which consists of minimizing the reconstruction loss,
which can be any measure ∆ that quantifies how the output of the decoder differs from the
original data. Therefore, the goal is to look for the parameters θ such that

argmin
θ

Ex∈D[∆(x, fθ(x))].

Chapter 2. Latent Space 17

The training objective of the model can be further extended to include a regularization
term R, which consists of another measure based on the complexity of the model, added to
the reconstruction loss:

argmin
θ

(Ex∈D[∆(x, fθ(x))] + λR(θ)) ,

where λ ∈ R is a hyperparameter that controls the strength of the regularization term. R can
be any measure; the most common are the L1 and L2 norms of the vector of parameters θ.

Definition 20 (Loss function). We call the Loss Function of a machine learning model the
function L : Θ × Rn → R that defines the training objective of the model, where Θ is the
parameter space of the model, and Rn the data space. The function L returns a scalar value
that quantifies how well the model is performing.

In the simple case on the non-regularized autoencoder, the loss function is L(θ,D) =
Ex∈D[∆(x, fθ(x))]. The choice of the loss function is crucial for the training of the model.
Ideally, the loss function should be differentiable, easy to compute, and have an achievable
minimum. Whenever this is the case, the optimal parameters θ of the model can be obtained
by either solving the optimization problem analytically, or by using optimization algorithms
such as Stochastic Gradient Descent (SGD). Usually, in ML, both model and data are huge,
so the latter option is chosen. The most common loss functions for autoencoders are the Mean
Squared Error (MSE) and the Binary Cross-Entropy (BCE).

Definition 21 (MSE). Given a dataset D ⊂ Rn with M = |D|, the Mean Squared Error
is defined as

LMSE(θ,D) :=
1

M

∑
x∈D
|x− x̂|2,

where x̂ = fθ(x) is the output of the model, and | · | is the Euclidean norm.

Definition 22 (BCE). Given a dataset D ⊂ Rn with M = |D|, the Binary Cross-Entropy
is defined as

LBCE(θ,D) := −
1

M

∑
x∈D

n∑
i=1

[xi log(x̂i) + (1− xi) log(1− x̂i)],

where x̂ = fθ(x) is the output of the model, and log is the natural logarithm.

Observe that both loss functions have a minimum at x̂ = x, which is the identity function.
Although having an Autoencoder close to the identity function may seem desirable, in practice
it is not for the generative case. An overfitted model exhibits an unstable behaviour and fails
to generalize to unseen data. Such model would excel at compressing and reconstructing a
sample from the training dataset, but it would fail when inputed with even a slightly different
data sample. The theorem suggests that Autoencoders suffer from a lack on generalizability
and provide a narrow latent space, due to their deterministic nature. They fail especially
for generation related problems, where we not only want to represent an element of the
dataset, but a distribution of its features in the latent space from which we can sample novel
datapoints, which in furthermore has been largely demonstrated empirically (Steck, 2020).
Thus, the goal is to estimate a latent distribution were we can sample a latent element and
then reconstruct a never-seen data sample. A major breakthrough in this regard comes from
the hand of Variational Autoencoders (Kingma and Welling, 2014).

Chapter 2. Latent Space 18

2.2 Variational Autoencoders

The framework for Variational Autoencoders (VAEs) was introduced in Kingma and Welling,
2014. They differ from regular Autoencoders in that they learn a stochastic mapping between
the observed and latent spaces. The motivation relies on the assumption that the stochastic
mapping allows the model to learn a more diverse and meaningful latent space, that is, a
space that captures the underlying generative factors of the data. The latent space is a
distribution, rather than a single point, which allows the model to generate new samples by
sampling from the latent distribution. As Autoencoders, VAEs are composed of two coupled
independently parameterized models, an encoder and a decoder. To emphasize its generative
capabilities, the two parts are also called the recognition model and the generative model,
respectively. Despite the similarities with Autoencoders, VAEs emerge from a completely
different theoretical framework. As generative models, the goal is to find a probabilistic
model that approximates the data distribution with the density pD for a given dataset D, by
means of a latent variable model. Approximating difficult to compute probability densities
is one of the main problems in core statistics. We will introduce the theoretical framework
behind VAEs, Variational Inference, a technique from Bayesian statistics that allows us to
approximate intractable posterior distributions. Then, we will formalize the definition of
VAEs from the probabilistic perspective, and draw the connection with Autoencoders.

2.2.1 Variational Inference

In the forthcoming discussion, we assume that x ∈ D are i.i.d. samples from the data space.
From the generative perspective, the goal is to estimate the data distribution pD from a dataset
D. To do so, we define a family of parameterized densities pθ, where θ are the parameters of
the probabilistic model, and maximize the likelihood of the data under the model 16:

argmax
θ

∏
x∈D

pθ(x). (2.1)

One way to estimate a probability density pD is by introducing latent variables z, which
are unobserved variables over an auxiliary space Z, and defining the latent variable model
pD,Z(x, z) = pD|Z(x|z)pZ(z). Therefore, the marginal distribution of the data is given by

pD(x) =
∫
Z
pD,Z(x, z) dz =

∫
Z
pD|Z(x|z)pZ(z) dz. (2.2)

To simplify the notation, we will denote with p each of the densities, and distinguish them by
the arguments, e.g. pD,Z(x, z) = p(x, z). To model such unknown densities from the observed
data, the following assumptions are made:

• The term p(x|z) corresponds with the likelihood of the data given the latent variables,
which is a distribution over the observed space and is easy to compute.

• The latent variables are generated by a known prior distribution p(z), which is a dis-
tribution over the latent space.

Given the prior and the likelihood, computing samples from the joint distribution is straight-
forward. However, usually computing the integral in 2.2 is intractable since requires the
evaluation on every latent variable. Note that with the chain rule of probability:

p(z|x) = p(x|z)p(z)
p(x)

.

Chapter 2. Latent Space 19

Therefore, the intractability of computing the marginal distribution p(x) is related to the
intractability of the posterior distribution p(z|x). Thus, to estimate the data distribution,
we can estimate first the posterior distribution p(z|x). This is a main problem in Bayesian
statistics, and it is known as the inference problem. The term inference refers to estimating the
unknown latent variables given the observed data. Variational Inference (VI) is one method
for approximating intractable posterior distributions as such, by transforming a probabilistic
problem into an optimization problem. Although there are other methods that tackle this
problem such as Markov-Chain Monte Carlo (MCMC) (Barber, 2012), VI is the preferred
method when the dataset is large and the probabilistic models are complex, especially in the
case of Machine Learning, where functions are modeled by neural networks and stochastic
gradient descent allows efficiently solving optimization problems with them.

To this end, we define a parameterized statistical model {qϕ : ϕ ∈ Φ} over the latent space
Z, and we look for the parameters ϕ that best approximate the posterior distribution p(z|x).
Thus, the optimization problem is defined as:

argmin
ϕ∈Φ

D(qϕ(z|x)||p(z|x)), (2.3)

where D is a divergence measure between the two distributions. A key point in VI is the
choice of the divergence measure and the statistical model, which need to be flexible enough
to approximate the posterior distribution but also simple enough for an efficient optimization.
A common choice for the divergence measure is the Kullback-Leibler (KL) divergence:

Definition 23 (KL-Divergence). Given two probability distributions p and q, the Kullback-
Leibler (KL) divergence is defined as

DKL(p||q) =
∫

p(z) log
(
p(z)
q(z)

)
dz.

Proposition 11. The KL divergence can equivalently be written as

DKL(p||q) = Ep(z) [log p(z)− log q(z)] .

Proof.

DKL(p||q) =
∫

p(z) log
(
p(z)
q(z)

)
dz

=

∫
p(z) (log(p(z))− log(q(z))) dz

= Ep(z) [log p(z)− log q(z)] .

Proposition 12. The KL divergence satisfies the following properties:

• DKL(p||q) ≥ 0.

• DKL(p||q) = 0 if and only if p = q.

• DKL(p||q) ̸= DKL(q||p).

Proof. • First we have that log(x) ≤ x− 1, which can be proved by taking the derivative
of the function f(x) = x − log(x) − 1 and showing that x = 1 is a global minimum of
its domain and f(1) = 0. Therefore, we have that

log

(
q(z)
p(z)

)
≤ q(z)

p(z)
− 1.

Chapter 2. Latent Space 20

Then, since p(z) is a probability distribution, we can multiply by p(z) and integrate
over z,∫

p(z) log
(
q(z)
p(z)

)
dz ≤

∫
p(z)

(
q(z)
p(z)

− 1

)
dz =

∫
q(z) dz−

∫
p(z) dz = 1− 1 = 0.

Therefore, rearranging terms,∫
p(z) log

(
p(z)
q(z)

)
dz = DKL(p||q) ≥ 0.

• If p = q, then log
(
p(z)
q(z)

)
= 0 and DKL(p||q) = 0. Conversely, if DKL(p||q) = 0, then

log
(
p(z)
q(z)

)
= 0 and p(z) = q(z).

• Assume that DKL(p||q) = DKL(q||p). Then, we have that∫
p(z) log

(
p(z)
q(z)

)
dz =

∫
q(z) log

(
q(z)
p(z)

)
dz.

Then, we can rewrite the right-hand side as∫
q(z) log

(
q(z)
p(z)

)
dz =

∫
q(z)(log(q(z))− log(p(z))) dz,

and the left-hand side as∫
p(z) log

(
p(z)
q(z)

)
dz =

∫
p(z)(log(p(z))− log(q(z))) dz.

Therefore, we have that∫
p(z)(log(p(z))− log(q(z))) dz =

∫
q(z)(log(q(z))− log(p(z))) dz.

Then, ∫
(p(z)− q(z))(log(p(z))− log(q(z))) dz = 0.

Since p and q are density functions, we have that p ≡ q.

Note that the KL divergence is not symmetric; therefore, the optimization problem in 2.3
is not symmetric either. Since, if p is the true distribution and q is the variational distribution,
then,

DKL(p||q) = Ep(z)

[
log

p(z)
q(z)

]
, and

DKL(q||p) = Eq(z)

[
log

q(z)
p(z)

]
.

Observe that the first equation tends to ∞ when q(z)→ 0 and p(z) > 0, thus punishing the
variational distribution for assigning low probability to regions where the true distribution
is positive. On the other hand, the second equation forces q(z) to be zero in regions where
p(z) = 0. Intuitively, this means that the former "stretches" q to cover over the entire
distribution p, while the latter "shrinks" q to regions where p is positive.

Chapter 2. Latent Space 21

The KL divergence turns out to be a good choice for the optimization problem since it
can be computed analytically for many distributions, and can be related to the concept of
entropy in information theory.

Definition 24 (Entropy). Given a probability distribution p, the entropy is defined as

H(p) = −
∫

p(z) log(p(z)) dz.

Definition 25 (Cross Entropy). Given two probability distributions p and q, the cross en-
tropy is defined as

H(p, q) = −
∫

p(z) log(q(z)) dz.

Note that in the case of binary distributions, the cross entropy is equivalent to the binary
cross entropy as defined in the previous section, 22. In information theoty, entropy is a measure
of the uncertainty of a distribution, and the cross entropy is a measure of the uncertainty of
one distribution relative to another. The KL divergence can be expressed in terms of the
entropy as follows:

Proposition 13. The KL divergence can be expressed in terms of the entropy as

DKL(p||q) = H(p, q)−H(p).

Proof.

DKL(p||q) =
∫

p(z) log
(
p(z)
q(z)

)
dz

=

∫
p(z) log(p(z)) dz−

∫
p(z) log(q(z)) dz

= −H(p) +H(p, q).

Thus, minimizing the KL divergence is equivalent to maximizing the entropy of the pos-
terior distribution, while minimizing the cross entropy between the true posterior and the
variational distribution. Furthermore, there is a connection between the KL divergence and
the maximum likelihood estimation, as we will see in the forthcoming sections.

Variational Objective

Given a joint distribution p(x, z), whose intractable posterior p(z|x) we want to approxi-
mate with a variational distribution qϕ(z|x), where ϕ are the parameters of the model, the
optimization problem in VI 2.3 with the KL divergence 23 is defined as

argmin
ϕ∈Φ

DKL(qϕ(z|x)||p(z|x)) = argmin
ϕ∈Φ

Eqϕ(z|x) [log qϕ(z|x)− log p(z|x)] . (2.4)

To solve this optimization problem, we must first rewrite the optimization objective in
terms of known tractable distributions. A common approach to tackle this issue consists in
proving that minimizing the KL divergence is equivalent to maximizing the Evidence Lower
Bound (ELBO) of the term log p(x). This result is a simple application of Jensen’s inequality
Jensen, 1906.

Chapter 2. Latent Space 22

Theorem 6 (Jensen’s Inequality). Let X be and integrable random variable. Given a convex
function f : R→ R such that f ∈ C1(R) and Y = f(X) is also integrable, we have that

f(E[X]) ≤ E[f(X)].

Proof. Recall that a function f ∈ C1(R) is convex if and only if, for all x0 ∈ R, the graph of
f lies above its tangent at point x0:

f(x) ≥ f(x0) + f ′(x0)(x− x0) ∀x ∈ R.

Then, by setting x0 = E[X] and x = X, we have that

f(X) ≥ f(E[X]) + f ′(E[X])(X − E[X]).

Taking the expectation of both sides, and by linearity of the expectation, we have that

E[f(X)] ≥ E
[
f(E[X]) + f ′(E[X])(X − E[X])

]
= E

[
f(E[X])

]
+ f ′(E[X])(E[X]− E

[
E[X]

]
)

= f(E[X]) + f ′(E[X])(E[X]− E[X])

= f(E[X]).

Following the same proof, we can show that, for a concave function, the inequality is
reversed. Since the logarithm is a concave function in the positive real numbers, we can apply
Jensen’s inequality to bound the log-likelihood of the data distribution.

Corollary 1 (Evidence Lower Bound). Let p(x, z) be a joint distribution, and qϕ(z|x) be a
variational distribution. Then, the log-likelihood of the data distribution can be bounded by
Lϕ(x), which is called the Evidence Lower Bound (ELBO):

log p(x) ≥ Eqϕ(z|x) [log p(x, z)− log qϕ(z|x)] ≡ Lϕ(x). (2.5)

Proof.

log p(x) = log

∫
p(x, z)dz = log

∫
qϕ(z|x)

p(x, z)
qϕ(z|x)

dz

= logEqϕ(z|x)

[
p(x, z)
qϕ(z|x)

]
≥ Eqϕ(z|x)

[
log

p(x, z)
qϕ(z|x)

]
≡ Lϕ(x). (Concave Jensen’s Inequality)

Futhermore, the ELBO of a MLE problem 16 is often directly denoted as Lϕ(D) :=
EpD [Lϕ(x)] ≤ EpD [log p(x)]. Lastly, we can show the equivalence between the ELBO and the
KL divergence, by expanding the terms in the ELBO and rearranging them.

Theorem 7. Minimizing the KL divergence is equivalent to maximizing the Evidence Lower
Bound. Furthermore, for any x ∈ D, we have that

log p(x) = Lϕ(x) +DKL(qϕ(z|x)||p(z|x)).

Chapter 2. Latent Space 23

Proof. First, observe that Eqϕ(z|x) [log p(x)] = log p(x), because
∫
qϕ(z|x) dz = 1, ∀ϕ ∈ Φ,

Eqϕ(z|x) [log p(x)] =
∫

qϕ(z|x) log p(x) dz = log p(x)
∫

qϕ(z|x) dz = log p(x).

Then, we have that

log p(x)− Lϕ(x) = log p(x)− Eqϕ(z|x)

[
log

p(x, z)
qϕ(z|x)

]
= Eqϕ(z|x)

[
log p(x)− log

p(x, z)
qϕ(z|x)

]
= −Eqϕ(z|x)

[
log

p(x, z)
qϕ(z|x)

− log p(x)
]

= −Eqϕ(z|x)

[
log

p(x, z)
p(x)

− log qϕ(z|x)
]

= −Eqϕ(z|x) [log p(z|x)− log qϕ(z|x)]
= Eqϕ(z|x) [log qϕ(z|x)− log p(z|x)] ≡ DKL(qϕ(z|x)||p(z|x)).

This provides the equivalence between the ELBO and the KL divergence we were looking
for. Now, we can rewrite the optimization problem in VI as

argmin
ϕ∈Φ

DKL(qϕ(z|x)||p(z|x)) = argmin
ϕ∈Φ

EpD (log p(x)− Lϕ(x)) .

Since the log-likelihood of the data distribution does not depend on ϕ, we can ignore the term
and conclude the proof:

argmin
ϕ∈Φ

DKL(qϕ(z|x)||p(z|x)) = argmax
ϕ∈Φ
Lϕ(D).

Note that due to the non-negativity of the KL divergence, the above theorem implies that
Lϕ(x) is a lower bound on log p(x), without the need of Jensen’s inequality. By rewritting the
ELBO, we can get to another form that is more convenient for optimization, that is known
as the Variational Lower Bound (VLB).

Corollary 2 (Variational Lower Bound). For x ∈ D, the Evidence Lower Bound can be
written as

Lϕ(x) = Eqϕ(z|x) [log p(x|z)]−DKL(qϕ(z|x)||p(z)).

which is known as the Variational Lower Bound (VLB).

Proof.

Lϕ(x) = Eqϕ(z|x) [log p(x, z)− log qϕ(z|x)]
= Eqϕ(z|x) [log p(x|z) + log p(z)− log qϕ(z|x)]
= Eqϕ(z|x) [log p(x|z)] + Eqϕ(z|x) [log p(z)]− Eqϕ(z|x) [log qϕ(z|x)]
= Eqϕ(z|x) [log p(x|z)]−DKL(qϕ(z|x)||p(z)).

Chapter 2. Latent Space 24

Amortized Variational Inference

When solving the VI problem, note that each data point is governed by a separate variational
distribution, that is a latent variable zi with variational parameters θi. For a large dataset, this
can be computationally expensive. To address this issue, amortized variational inference uses
a neural network as inference model. Thus, instead of optimizing the variational parameters
for each data point, we optimize the parameters of the neural network, which are shared across
all data points. Therefore, we will refer to the parameters of the variational distribution and
the parameters of the neural network interchangeably.

Classical mean field variational inference has historically played an important role, however
it is limited in multiple ways when it comes to modern application. Despite Amortized VI,
one of the main challenges is to better scale it to growing datasets. To address this issue,
several lines of research emerged, such as stochastic variational inference, that uses stochastic
optimization such as SGD to scale the method to large datasets, and more complex variational
distributions such as structured variational inference, that allows to capture the dependencies
between the latent variables. This improvements led to the adoption of neural networks and
machine learning techniques to solve the optimization problem in VI, which formalizes the
development of Variational Autoencoders.

Furthermore, emerging lines of research are exploring the use of alternative divergence
measures, that can be more robust to find the optimal parameters of the model. Some of
the most relevant alternatives (Zhang et al., 2019) are the α-divergence, which is a family of
divergence measures that generalizes the KL divergence, and the Stein Discrepancy, which
is a measure of discrepancy between two probability distributions that is based on the Stein
operator. Although, the choice of the divergence measure is still an open question in the field,
in the next section we will focus in the classical introduction of Variational Autoencoders,
which uses the KL divergence.

2.2.2 Variational Autoencoders

We have seen how Variational Inference is used to approximate intractable posterior distribu-
tions of a latent variable model. In the context of Machine Learning, the data distribution is
often approximated by a deep latent variable model. Thus, given the parameters θ ∈ Θ, the
model is defined as pθ(x, z) = pθ(x|z)pθ(z), where the latent variables are unobserved. The
goal is to find the optimal parameters θ∗ that maximize the likelihood of the data distribution.
We have seen that the optimization problem is intractable, and the ELBO provides a lower
bound that can be maximized using the KL divergence and an approximation qϕ(z|x) of the
posterior distribution pθ(z|x). A Variational Autoencoder provides a computationally efficent
way for optimizing DLVMs jointly with the corresponding inference model. For now, we will
focus on the classical introduction of VAEs, and in the next section we will see how they are
used in the context of discrete latent variables.

Definition 26 (Variational Autoencoder). A Variational Autoencoder is a tuple (D, qϕ, pθ),
where qθ : D → P (Z) is the inference model or recognition model, and pθ : Z → D is the
generative model.

Following the amortized variational inference approach, in a VAE, the recognition model
qθ is a neural network that takes the data x as input and outputs the parameters of the
variational distribution qϕ(z|x). The generative model pθ is also a neural network that takes
the latent variables z as input and outputs the parameters of the data distribution pθ(x|z).

Chapter 2. Latent Space 25

ELBO for Variational Autoencoders

Substituting p(x, z) by pθ(x, z) in theorem 7, we have that the ELBO can be written as

Lϕ,θ(x) = Eqϕ(z|x)

[
log

pθ(x, z)
qϕ(z|x)

]
= log pθ(x)−DKL(qϕ(z|x)||pθ(z|x)) ≤ log pθ(x). (2.6)

By maximizing this equation over θ and ϕ, we approximately maximize the log-likelihood
of the data distribution, as well as minimize the KL divergence of the posteriors. The opti-
mization problem in VAEs is then defined as

argmax
θ,ϕ
Lϕ,θ(x). (2.7)

This optimization problem is usually solved by means of a gradient descent method such
as SGD. However, computing the gradients of the ELBO with respect to the parameters of
the model, ∇θ,ϕLϕ,θ(x), is usually intractable. And Monte Carlo methods are not applicable
since

Eqϕ(z|x)

[
∇θ,ϕ log

pθ(x, z)
qϕ(z|x)

]
̸= ∇θ,ϕEqϕ(z|x)

[
log

pθ(x, z)
qϕ(z|x)

]
.

VAEs solve this issue by using the reparameterization trick.

Reparameterization Trick

Let g be a differentiable and invertible function, and consider a sample z ∼ qϕ(z|x). Then,
we can rewrite the sample as z = g(ϵ, ϕ,x), where ϵ ∼ p(ϵ) is a random variable on E ⊂ RD

with a known distribution independent of ϕ and x. Given such a change of variables, we
can use the LOTUS Theorem 4, and the equation of change of variables 1.1 to rewrite the
expectations in terms of the random variable ϵ,

Eqϕ(z|x)[f(z)] = Ep(ϵ)[f(g(ϵ, ϕ,x))]. (2.8)

Another tool that is useful for computing the gradients of the ELBO is the differentia-
tion under the integral sign theorem, which allows to interchange the differentiation and the
integral sign under certain conditions. The proof of this theorem is based on the dominated
convergence theorem, we will refer to the book Folland, 2013 for a detailed proof, and state
the theorem here.

Theorem 8 (Differentiation under the integral sign). Let U be an open subset of R and let
E be a measure space. Let f : U × E → R be a function such that

1. For each x ∈ U , f(x, ·) is integrable on E.

2. For each y ∈ E, f(·, y) is differentiable on U .

3. There exists an integrable function g : E → R such that∣∣∣∣∂f∂x (x, y)
∣∣∣∣ ≤ g(y)

for all x ∈ U and y ∈ E.

Then the function F : U → R defined by

F (x) =

∫
E
f(x, y) dy

Chapter 2. Latent Space 26

is differentiable on U , and

F ′(x) =

∫
E

∂f

∂x
(x, y) dy.

If U is a subset of Rn and E is a subset of Rm, by applying the theorem to each variable, the
result can be generalized to the case where f : U×E → Rk and F : U → Rk. In our case, sub-
stituting f(x, y) from the theorem by f(ϕ, ϵ) = p(ϵ) [log pθ(x, g(ϵ, ϕ,x))− log qϕ(g(ϵ, ϕ,x)|x)],
we can compute the gradients of the ELBO as follows,

∇ϕLϕ,θ(x) = ∇ϕEqϕ(z|x) [f(z)] = ∇ϕEqϕ(z|x) [log pθ(x, z)− log qϕ(z|x)] (2.9)

= ∇ϕEp(ϵ) [log pθ(x, g(ϵ, ϕ,x))− log qϕ(g(ϵ, ϕ,x)|x)] (2.10)

= ∇ϕ

∫
E
p(ϵ) (log pθ(x, g(ϵ, ϕ,x))− log qϕ(g(ϵ, ϕ,x)|x)) dϵ (2.11)

=

∫
E
p(ϵ)∇ϕ [log pθ(x, g(ϵ, ϕ,x))− log qϕ(g(ϵ, ϕ,x)|x)] dϵ (2.12)

= Ep(ϵ) [∇ϕf(g(ϵ, ϕ,x))] . (2.13)

Similarly,

∇θLϕ,θ(x) = ∇θEqϕ(z|x) [f(z)] = ∇θEqϕ(z|x) [log pθ(x, z)− log qϕ(z|x)] (2.14)

= Eqϕ(z|x) [∇θ (log pθ(x, z)− log qϕ(z|x))] . (2.15)

With this setting we can estimate the gradients of the ELBO by a Monte Carlo estimator. In
the case of 2.9, we obtain the following estimator by sampling ϵ ∼ p(ϵ),

∇ϕLϕ,θ(x) = Ep(ϵ) [∇ϕf(g(ϵ, ϕ,x))] (2.16)

≈ ∇ϕf(g(ϵ, ϕ,x)) ≡ ∇ϕL̃ϕ,θ(x), (2.17)

and similarly for 2.14, sampling z ∼ qϕ(z|x),

∇θLϕ,θ(x) = Eqϕ(z|x) [∇θ (log pθ(x, z)− log qϕ(z|x))] (2.18)

≈ ∇θ (log pθ(x, z)− log qϕ(z|x)) = ∇θ log pθ(x, z) ≡ ∇θL̃ϕ,θ(x). (2.19)

Thus,

∇θ,ϕL̃ϕ,θ(x) = ∇θ,ϕ (log pθ(x, z)− log qϕ(z|x))
= (∇θ log pθ(x, z),∇ϕ(log pθ(x, z)− log qϕ(z|x))) = (∇θL̃ϕ,θ(x),∇ϕL̃ϕ,θ(x)).

Note that given the change of variables, a Monte Carlo estimator of a point-wise evaluation
of the ELBO, can also be obtained by sampling ϵ ∼ p(ϵ) and z = g(ϵ, ϕ,x), then the estimator
is

L̃ϕ,θ(x) = log pθ(x, z)− log qϕ(z|x).

Theorem 9. When averaged over the variables ϵ ∼ p(ϵ), the Monte Carlo estimator of the
gradients of the ELBO is equal to the gradients of the point-wise evaluation of the ELBO.

Chapter 2. Latent Space 27

Proof.

Ep(ϵ)

[
∇θ,ϕL̃ϕ,θ(x)

]
= Ep(ϵ) [∇θ,ϕ (log pθ(x, z)− log qϕ(z|x))]

= ∇θ,ϕEp(ϵ) [log pθ(x, z)− log qϕ(z|x)]
= ∇θ,ϕEp(ϵ) [∇ϕf(g(ϵ, ϕ,x))]

= ∇θ,ϕLϕ,θ(x).

The theorem makes it possible to estimate the gradients of the ELBO by a simple sampling
procedure of ϵ ∼ p(ϵ). Finally, the computation of this estimator requires the computation of
log qϕ(z|x), which can be computed from the change of variables g, since it is differentiable
and invertible. Note that applying equation 1.1, qϕ(z|x) = p(ϵ)

Jg
, where Jg = |det(∂z∂ϵ)| =

| det(∂g(ϵ,ϕ,x)∂ϵ)| is the Jacobian of the change of variables. Therefore,

log qϕ(z|x) = log p(ϵ)− log Jg.

Ideally, we would like to find a function g such that the Jacobian is simple to compute, as
well as it leads to a simple and known distribution p(ϵ) where we can sample from. With this
setting, we can follow algorithm 1 and train the VAE model by means of stochastic gradient
descent.

Algorithm 1 Stochastic optimization of the ELBO for VAEs
1: Input:
2: D: Dataset
3: qϕ(z|x): Inference model
4: pθ(x, z): Generative model
5: Output:
6: θ, ϕ: Learned parameters
7: Algorithm:
8: (θ, ϕ)← Initialize parameters
9: while SGD not converged do

10: M ∼ D ▷ Random minibatch of data
11: ϵ ∼ p(ϵ) ▷ Random noise for every datapoint in M
12: Compute L̃θ,ϕ and its gradients ∇θ,ϕL̃θ,ϕ for each datapoint in M and each noise

sample ϵ
13: Update θ and ϕ using SGD optimizer
14: end while

Factorized Gaussian Variational Autoencoders

The classical VAE introduced in Kingma and Welling, 2014, uses an amortized mean-field
Gaussian variational distribution as recognition model,

qϕ(z|x) =
d∏

i=1

qϕi
(zi|x) =

d∏
i=1

N (zi;µi, σ
2
i) = N (z;µ, σ),

where µi(x) and σ2
i (x) are the outputs of a neural network Eϕ, (µ, σ2) = Eϕ(x). Consider

z = g(ϵ, ϕ,x) = µ(x)+σ(x)⊙ ϵ, where ϵ ∼ N (0, I), and ⊙ denotes the element-wise product.

Chapter 2. Latent Space 28

Note that g is a linear function, thus it is differentiable and invertible. Its Jacobian is given
by

Jg =

∣∣∣∣det(∂g(ϵ, ϕ,x)
∂ϵ

)∣∣∣∣ = ∣∣∣∣det(∂(µ(x) + σ(x)⊙ ϵ)

∂ϵ

)∣∣∣∣ = |det(σ(x))| = d∏
i=1

σi(x).

Therefore, the logarithm of the variational distribution is

log qϕ(z|x) = log p(ϵ)− log Jg =
d∑

i=1

[logN (ϵi|0, 1)− log σi(x)] .

The generative model pθ(x|z) is usually a product of Gaussian distributions whose param-
eters are modelled by a neural network Dθ, that is,

pθ(x|z) =
|D|∏
j=1

pθj (xj |z) =
|D|∏
j=1

N (xj |µj , σ
2
j),

where µj(z) and σ2
j (z) are the outputs of a neural network, (µ, σ2) = Dθ(z). In the special

case where σ = I, we obtain a relationship with the reconstruction loss of an autoencoder
that uses MSE as the loss function, given by

− log pθ(x|z) = − logN (x|µ(z), I) = − log

(
1

(2π)D/2
exp

(
−1

2
(x− µ(z))T (x− µ(z))

))
=

1

2
||x− µ(z)||2 + C = MSE(x, µ(z)) + C,

where C is a constant that does not depend on θ nor ϕ. This is the main reason why VAEs
are often seen as regularized autoencoders and the training objective is often implemented as
a combination of the MSE reconstruction loss and the KL divergence.

The neural networks Eϕ and Dθ are trained jointly by maximizing the ELBO following
the algorithm 1. In relation to autoencoders, both networks are often seen as the encoder and
decoder of the VAE, respectively.

VAEs offer a large flexibility in the choice of the generative model, and the recognition
model, which allows to model complex data distributions both in discrete and continuous
latent spaces. Here we have considered the simplest case of a Gaussian VAE; however, more
complex models can be built by using different distributions. In the next section, we will
introduce the VAE variant for discrete latent spaces, and later introduce the Bernoulli VAE,
which is one of the key components of the thesis.

2.3 Discrete Variational Autoencoders

We have seen how Variational Autoencoders can be used to model complex data distributions
by means of a neural network. The latent space of a VAE is usually continuous, which allows
us to generate highly diverse and feasible samples. However, continuous latent spaces suffer
from large variance, which makes them hard to train and unstable. Furthermore, a continuous
latent space offers a continuous representation of the data which can be hard to interpret. In
contrast, in a discrete latent space Z with a finite number of categories |Z| = K, we have a
precise notion of compression, since the bits of information represented by Z is upper bounded
by log2(K).

Chapter 2. Latent Space 29

Definition 27 (Shanon Entropy). Let p be a discrete probability distribution over a set Z.
The Shanon Entropy of p is defined as

H2(p) = −
∑
z∈Z

p(z) log2 p(z) = −Ep(z)[log2 p(z)].

In the field of information theory, as the regular entropy, the Shanon Entropy is a measure
of the uncertainty of a random variable, and since it uses the base 2 logarithm the measure
is given in bits. This is often referred to as the information content of the random variable.

Proposition 14. The Shanon Entropy of a discrete random variable z with K categories is
upper bounded by log2(K),

H(p) ≤ log2(K).

Proof. Using Jensen’s inequality, we have that

H(p) = −Ep(z)[log2 p(z)] = Ep(z)[log2
1

p(z)
]

≤ log2 Ep(z)

[
1

p(z)

]
= log2K.

Assuming a discrete latent space, the model can be trained as a regular VAE, by assuming
a prior discrete distribution p(z) and maximizing the ELBO. Recall from 2 that the ELBO
for VAEs can be given by

Lθ,ϕ(x) = Eqϕ(z|x) [log pθ(x|z)]−DKL(qϕ(z|x)||p(z))

Observe that the KL divergence is now between two discrete distributions, which can be
computed as

Definition 28 (Discrete KL-Divergence). Let p and q be two discrete distributions over a set
Z. The Discrete KL-Divergence between p and q is defined as

DKL(q||p) =
∑
z∈Z

q(z) log
q(z)

p(z)
.

It is easy to see the equivalence between continuous and discrete KL divergences, by
considering the discrete distributions as Dirac deltas.

Usually, the prior distribution is chosen to be a uniform distribution over the categories,
p(z) = Uniform(Z). In this case, the KL divergence can be computed as

DKL(qϕ(z|x)||p(z)) =
∑
z∈Z

qϕ(z|x) log
qϕ(z|x)
p(z)

=
∑
z∈Z

qϕ(z|x) log
qϕ(z|x)
1/K

= logK +
∑
z∈Z

qϕ(z|x) log qϕ(z|x)

= logK −H(qϕ(z|x)).

Chapter 2. Latent Space 30

Therefore, the optimization problem can be rewritten as

argmax
θ,ϕ
Lϕ,θ(x) = argmax

θ,ϕ
Eqϕ(z|x) [log pθ(x|z)]− logK +H(qϕ(z|x)) (2.20)

= argmax
θ,ϕ

Eqϕ(z|x) [log pθ(x|z)]− Eqϕ(z|x) [log qϕ(z|x)] . (2.21)

The problem arises when computing the gradients of the ELBO, since the discrete na-
ture of the latent space makes the optimization problem non-differentiable. There are several
techniques that tackle this issue. A heuristic approach is to use the Straight-Through Estima-
tor, which allows to backpropagate the gradients through the discrete latent space. Another
approach is to use the Gumbel-Softmax trick, which allows to sample from a categorical
distribution by means of a continuous relaxation.

2.3.1 The Straight-Through Estimator

Proposed by Bengio, 2013, the Straight-Through Estimator (STE) is a trick for differentiating
through thresholding operations. Given a step function s : R→ R, e.g., s(x) = 1 if x > 0 and
s(x) = 0 otherwise, and considering f = g ◦ s ◦ h, where g and h are differentiable functions,
we have that ∇xf(x) = 0 since ∇xs ≡ 0,

∇xf(x) = ∇xg(s(h(x))) = ∇xg(s(h(x)))∇xs(h(x))∇xh(x) = 0.

The STE allows to bypass this issue by replacing ∇xs with the constant function 1, which
allows to backpropagate the gradients through the thresholding operation. Thus,

∇̃xf(x) = ∇xg(s(h(x)))∇xh(x).

This can be seen as copying the gradients from the output of the step function to its input.
With this, the gradients of the ELBO can be computed, and the model can be trained by
means of stochastic gradient descent. Although the STE is not theoretically justified, it has
been shown to work well in practice, and it is widely used in the context of discrete VAEs
(Oord, Vinyals, and Kavukcuoglu, 2017). However, in complex cases, it can lead to biased
gradients and fail to be a good estimator for the gradient (Liu and Mattina, 2019).

Vector Quantized Variational Autoencoders

Introduced by Oord, Vinyals, and Kavukcuoglu, 2017, Vector Quantized Variational Autoen-
coders (VQ-VAEs) are a type of VAE that uses Vector Quantization (VQ) to discretize the
latent space. Then assuming a discrete prior on the latent space, the model is able to learn
a discrete representation of the data. The VQ process is done by projecting the continuous
latent variables to the nearest vector in a codebook, which is a set of vectors of the same
dimension as the continuous latent space.

Definition 29 (Vector Quantization). Let D be a dataset, let z ∈ RD be a continuous latent
representation of x ∈ D and VK = {ei}i∈[1,...,K] ⊂ RD be a set of K vectors of dimension D.
The Vector Quantization of a vector x ∈ D to the codebook VK is defined as

zq(x) = min
e∈VK

||z− e||22.

The VQ is incorporated into the VAE by adding the quantization after the continuous
latent representation computed by the encoder NNenc

ϕ : D → RD; see Figure 2.1. This

Chapter 2. Latent Space 31

Figure 2.1: VQVAE architecture. A sample is encoded into a sequence of
tokens, which are then decoded back to the original.

procedure discretizes the latent space into a K categorical discrete distribution defined as

qϕ(z = k|x) = one_hot(zq(x); k) =

{
1 if zq(x) = ek

0 otherwise.
(2.22)

The classic VQ-VAE model defines the prior distribution as a uniform distribution over
the codebook, p(z) = Uniform(VK). Thus, the KL divergence can be computed as

DKL(qϕ(z|x)||p(z)) =
K∑
k=1

qϕ(z = k|x) log
qϕ(z = k|x)
p(z = k)

= log
1

1/K
= logK.

This constant term can be ignored from the optimization problem, and the ELBO can be
maximized by

argmax
θ,ϕ
Lθ,ϕ(x) = argmax

θ,ϕ
Eqϕ(z|x) [log pθ(x|z)] .

This can be further simplified by computing the expectation over the discrete distribution,

Eqϕ(z|x) [log pθ(x|z)] =
K∑
k=1

qϕ(z = k|x) log pθ(x|z = k) = log pθ(x|zq(x)).

Therefore,
argmax

θ,ϕ
Lθ,ϕ(x) = argmax

θ,ϕ
log pθ(x|zq(x)).

In this setting, STE is usually implemented using the stop gradient operator, which is the
identity during the forward pass and has partial derivatives of zero during the backward pass
to avoid updating the gradient.

Definition 30 (Stop Gradient Operator). The Stop Gradient Operator is an operator
sg : RD → RD defined as the identity function

sg[z] = z,

and such that its partial derivatives are zero, i.e., ∂sg[z]
∂z = 0.

Thus, z̃q(x) = sg[zq(x)] + z− sg[z]. Note that, with this operation, the codebook vectors
e ∈ VK receive no gradients, requiring only to add an extra term to the loss function, namely

Chapter 2. Latent Space 32

the VQ objective.

Definition 31 (VQ Objective). The VQ Objective is a term added to the loss function of a
VQ-VAE that penalizes the distance between the encoder output and the codebook vectors. It
is defined as

VQ = ||z− e||22,

where e is the codebook vector that is closest to the encoder output.

Finally, to avoid the encoder output drifting away from the codebook, the authors propose
to split the VQ objective into two terms, the codebook loss and the commitment loss. This is
||sg[z]− e||22 and ||z− sg[e]||22, respectively. Then considering the simplification of the ELBO,
and the addition of the VQ objective, the training objective of the VQ-VAE is given by

argmin
θ,ϕ

LVQVAE = − log pθ(x|zq(x)) + ||sg[z]− e||22 + β||z− sg[e]||22, (2.23)

where β is a hyperparameter that controls the strength of the commitment loss. Heuristically,
with β < 1, the vectors of the codebook learn faster than the encoder, which empirically has
shown to be beneficial for the training of the model.

2.3.2 Gumbel Softmax

The Gumbel Softmax estimation, proposed by Jang, Gu, and Poole, 2017 and Maddison,
Mnih, and Teh, 2017, consists of a continuous relaxation of the categorical distribution by
"reparameterizing" the problem through a Gumbel distribution, which is a continuous distri-
bution over the simplex that can approximate a categorical distribution.

Definition 32 (Gumbel Distribution). Let ϵ ∈ R be a random variable. Then ϵ is distributed
according to a Gumbel Distribution, i.e., ϵ ∼ Gumbel(µ, β), with parameters µ ∈ R and
β ∈ R+, if its probability density function is given by

p(ϵ) =
1

β
exp

[
ϵ− µ

β
− exp

[
ϵ− µ

β

]]
.

The standard Gumbel distribution is defined as Gumbel(0, 1).

One of the main properties of the Gumbel distribution is its connection to Uniform dis-
tributions, which allows for an easy sampling procedure. Given a random variable u ∼
Uniform(0, 1), Gumbel(µ, β) can be sampled as ϵ = g(u) = µ − β log(− log(u)). Note that if
u ∈ (0, 1) then g is well defined; in fact it is differentiable and invertible, and∫

R
p(ϵ)dϵ =

∫
R

1

β
exp

[
ϵ− µ

β
− exp

[
ϵ− µ

β

]]
dϵ

=

∫ 1

0

1

β
exp

[
g(u)− µ

β
− exp

[
g(u)− µ

β

]]
g′(u) du =

∫ 1

0
du

is a change of variables between Gumbel(µ, β) and Uniform(0, 1).
Given a discrete random variable z ∈ {1, . . . ,K}, defined by p(z = k) = θk, with∑K

k=1 θk = 1, we can denote z as a one-hot encoded vector one_hot(z; k) ∈ {0, 1}K , where
one_hot(z; k)k = 1 if z = k and one_hot(z; k)k = 0 otherwise. We will abuse of notation
and consider z as a one-hot encoded vector, and denote z ∼ Dis(θ), where θ = (θ1, . . . , θK).
The standard Gumbel distribution can be used to sample from a categorical distribution by
means of the Gumbel-Max trick, which consists of sampling from the Gumbel distribution
and taking the argmax of the samples. Refer to Gumbel’s original paper for a detailed proof
of this result Gumbel, 1954.

Chapter 2. Latent Space 33

Proposition 15 (Gumbel-Max Trick). If z ∼ Dis(θ) is a discrete random variable, then z
can be sampled by means of the Gumbel-Max trick as

k = argmax
k

[log θk + ϵk] ,

where ϵk ∼ Gumbel(0, 1). Then zk = 1 and zk′ = 0 for k′ ̸= k.

Now, the Gumbel Softmax trick consists of a continuous relaxation of the argmax oper-
ation by means of the softmax function. Given g1, . . . , gK ∼ Gumbel(0, 1), we can generate
K-dimensional vectors z ∈ RK by means of the softmax function,

zi =
exp[(gi + log θi)/τ]∑K
j=1 exp[(gj + log θj)/τ]

, (2.24)

where τ is a temperature parameter that controls the smoothness of the distribution. Observe
that, as τ → 0, the distribution becomes more peaked around the argmax, and as τ → ∞,
the distribution becomes uniform.

With this reparameterization, the ELBO for the discrete case 2.20 can be optimized by
SGD, and considering

Eqϕ(z|x) [pθ(x|z)] = Eqϕ(z|x) [f(z)] = Egi∼Gumbel(0,1)

[
f

(
exp[(gi + log θi)/τ]∑K
j=1 exp[(gj + log θj)/τ]

)]
.

2.3.3 Binary Representations

Given a data point x ∈ D ⊂ RD, the goal is to learn a bidirectional stochastic mapping
between itself and its binary representation, that is an Bernoulli Variational Autoencoder
(BVAE). Consider x ∈ D. The first step is to train an image encoder Eθ, to encode the image
into a real-valued latent tensor y = Eθ(x) ∈ Rd, where d is the latent dimension. Then, before
quantization, a sigmoid σ is applied to normalize the output of the encoder to the range [0, 1]
to makes sure it is a probability.

The quantization into binary vectors can be done in two ways, deterministically or stochas-
tically. In the former, the encoder output is thresholded

z = (σ(Eθ(x)) > 0.5).

In the latter, we sample from a Bernoulli distribution and get

z ∼ B(z;σ(Eθ(x))).

Note that in both cases the method does not permit gradient propagation so the STE technique
is used to copy the gradients from the decoder input to the encoder output,

z̃ = STE(z) = sg[z] + y− sg[y].

Finally, the decoder Dθ′ is given z̃, and is trained to reconstruct the original sample,
x̂ = Dθ′(z̃).

With this setting the training objective is identical as a VAE with stop-through estimator.
Therefore, we aim to maximize the ELBO, 2.20.

Chapter 2. Latent Space 34

Figure 2.2: Binary VAE. The encoder maps the image to a latent space where
Bernoulli vectors are sampled. Then the decoder reconstructs the image from

the binary representation.

Gumbel Softmax for Bernoulli VAEs

Alternatively, the BVAE can be constructed by means of the Gumbel softmax trick. In this
case the generative model is a product of Bernoulli distributions,

pθ(x|z) =
|D|∏
j=1

pθj (xj |z) =
|D|∏
j=1

B(xj ; θj(z)),

where θj(z) is the output of a neural network. The recognition model is a product of Bernoulli
distributions as well,

qϕ(z|x) =
d∏

i=1

qϕi
(zi|x) =

d∏
i=1

B(zi;ϕi(x)),

where ϕi(x) is the output of a neural network. Let us define the prior distribution for the
binary latent variables as the simplest Bernoulli distribution,

p(z) =
d∏

i=1

B(zi; 0.5).

Then, for each element i of the vectors, the KL divergence between the recognition model and
the prior can be computed as

DKL(qϕi
(zi|x)||p(zi)) = DKL(B(zi;ϕi(x))||B(zi; 0.5))

=
∑

k∈{0,1}

log
(
ϕi(x)k(1− ϕi(x))1−k

)
− log (0.5)

Also, given g0, g1 ∼ Gumbel(0, 1), and for any j-th element of D, equation 2.24 becomes

zi =
exp[

(
gi + log

(
θj(z)i(1− θj(z))1−i

))
/τ]

exp[(g1 + log (θj(z))) /τ] + exp[(g0 + log (1− θj(z))) /τ]
.

With this setting, the Bernoulli distribution is relaxed to be continuous, and the ELBO 2.20
can be optimized by SGD.

Once trained, on the one hand, the BVAE is able to encode any image in a much expressive
way than a one-hot vector, for instance, a 32-bit binary vector can represent 232 different
values, which is much more than the 32 values that a one-hot vector can represent. On
the other hand, the image information is compacted over less bits compared to a real-valued.
Wang et al., 2023 empirically showed that 8k-bit binary representation compares to a 131k-bit
real-valued representation, in terms of reconstruction quality; see 2.3.

Chapter 2. Latent Space 35

Figure 2.3: Heuristic comparison of model expressivity between the binary,
continuous and quantized latent spaces. A one-hot vector can only represent a
single element of a codebook. A real-valued vector can be any continuous com-
bination of vectors in a codebook. A binary vector lies in between, balancing

expressivity and compression.

36

3 Diffusion Models

In previous chapters, we introduced the concept of generative models, focusing on Variational
Autoencoders (VAEs) and their ability not only to reduce the dimensionality of data but
also to generate new samples. In this chapter, we will introduce Diffusion Models (DMs), a
family of generative models that have gained popularity in recent years due to their impressive
results in image (Podell et al., 2023), audio (Zhang et al., 2023a), video (Yang, Srivastava, and
Mandt, 2022), and 3D (Xu et al., 2023) generation. The primary distinction between diffusion
models and VAEs is that DMs are autoregressive and do not reduce the dimensionality of data.
However, the mathematical formulation of their training objective is similar to that of VAEs,
as both are generative models trained by maximizing the likelihood of the data.

Given a dataset D = {x1,x2, . . . ,xN}, recall that a generative model is a probabilistic
model pθ that approximates the data distribution pD, as shown in 15.

Definition 33 (Diffusion Model). A Diffusion Model (DM) is a generative model pθ(x),
with parameters θ, that approximates the data distribution pD(x) by learning the reverse pro-
cess of a stochastic diffusion process that transforms the complex distribution pD(x) into a
simpler, more tractable one.

Since their introduction, DMs have undergone significant evolution. Various approaches
have been proposed to define these models, including energy-based models, continuous-time
DMs, and discrete-time DMs. The foundational concept of DMs can be traced back to the
principles of stochastic processes and stochastic differential equations, where the diffusion
problem has been extensively studied.

Although we will not delve deeply into the theory of stochastic processes, we will intro-
duce some basic concepts related to discrete Markov chains and present relevant results for
understanding DMs. We will then thoroughly discuss the training objective for discrete-time
DMs and briefly mention other types of DMs, highlighting their connections to discrete-time
DMs.

3.1 Discrete Markov Chains

A stochastic process is a collection of random variables {Xt, t ∈ T}, where the index t is often
interpreted as time, and Xt represents the state of the process at time t. The set T is referred
to as the index set of the process. If T is discrete, the process is termed a discrete-time
process, whereas if T is continuous, it is called a continuous-time process. The set of possible
values that Xt can take for all t ∈ T is known as the state space of the stochastic process. A
Discrete Markov Chain is a specific type of discrete-time stochastic process that satisfies the
Markov property.

Definition 34 (Markov Property). A stochastic process {Xt, t ∈ T} satisfies the Markov
property if the conditional probability of the next state depends only on the current state and
not on the sequence of events that preceded it. Formally, this can be written as:

P (Xt+1 = xt+1 | Xt = xt, Xt−1 = xt−1, . . . , X0 = x0) = P (Xt+1 = xt+1 | Xt = xt),

for all t ∈ T and all states x0, x1, . . . , xt+1.

Chapter 3. Diffusion Models 37

A key concept in discrete Markov chains is the transition matrix, which describes the
probabilities of moving from one state to another.

The transition matrix of a discrete Markov chain is a matrix P = [pij] where each element
pij represents the probability of transitioning from state i to state j in one time step. Formally,
if the states are indexed by integers, then:

pij = P (Xt+1 = j | Xt = i).

The transition matrix must satisfy two properties:

1. All elements must be non-negative: pij ≥ 0 for all i, j.

2. The sum of the probabilities for each row must equal 1:
∑

j pij = 1 for all i.

These properties ensure that the matrix correctly represents the probabilities of transitioning
between states within the Markov chain.

Definition 35 (Irreducible Markov Chain). A Markov chain is said to be irreducible if,
for any two states i and j in the state space, there exists a positive integer n such that the
probability of transitioning from state i to state j in n steps is greater than zero. Formally,
this can be expressed as:

P (Xn = j | X0 = i) > 0,

for some n > 0 and all states i and j in the state space.

An invariant distribution (or stationary distribution) π for a Markov chain is a probability
distribution over the states that remains unchanged as the system evolves over time. If
π = [π1, π2, . . . , πN] is the invariant distribution, it satisfies the following condition:

πj =
∑
i

πipij for all j,

or, in matrix form:
πP = π.

This means that if the system starts in the invariant distribution, it will remain in that
distribution at all future time steps. The significance of the invariant distribution lies in its
role in determining the long-term behavior of the Markov chain, as it describes the proportion
of time the process spends in each state.

Definition 36 (Reversibility). A Markov chain with an invariant distribution π is said to be
reversible if it satisfies the detailed balance condition, which ensures that the process behaves
the same in forward and reverse time. Mathematically, the chain is reversible if, for all states
i and j, the following condition holds:

πipij = πjpji.

This condition implies that the flow of probability from state i to state j is balanced
by the flow from state j to state i. Reversibility is an important property because it often
simplifies the analysis of the system, particularly Discrete-time Bernoulli DMs take profit of
the reversibility property to simplify learning a model that approximates the reverse step of
diffusion, see 3.2.5.

Chapter 3. Diffusion Models 38

3.2 Discrete-time Diffusion Models

Discrete-time DMs, are a subset of DMs that aim to approximate the data distribution by
means of reversing a discrete Markov chain that progressively transforms a complex distri-
bution into a simple and tractable one. They were first introduced by Sohl-Dickstein et al.,
2015 and later gained popularity through the work of Ho, Jain, and Abbeel, 2020.

Therefore, the goal is first to define a forward (or inference) discrete Markov chain that
converts the data distribution pD into π(y), which we assume to be known and easy to compute
and sample from. Then a model pθ(x) is trained to learn the reverse process, bringing the
simple distribution to an approximation of the complex original one. Thus, the diffusion
process is divided into two steps.

3.2.1 Forward Process

Let D ⊂ Rn be a dataset and x ∈ D a datapoint. Let pD(x) be the data distribution of
the elements in D. Consider the discrete Markov chain X0, X1, . . . , XT such that the random
variable Xt is the state of the system at time t, and X0 is the initial state that follows the data
distribution pD(x). The element x will be denoted as x(0), q(x(0)) = pD(x) and the values of
Xt will be denoted as x(t). The transition probability between states is given by the Markov
kernel q(x(t)|x(t−1)) = Tπ(x(t)|x(t−1);βt), where βt, called the noise scales, are the parameters
of the distribution. The kernels and the noise scales are chosen such that the distribution of
the states x(T) resembles to π(y) as T →∞. Such a process is called a forward trajectory.

Definition 37 (Forward Trajectory). Given a dataset D and a data distribution pD(x), the
forward trajectory of a diffusion model is defined by the kernel

q(x(t)|x(t−1)) = Tπ(x(t)|x(t−1);βt), (3.1)

where {βt ∈ (0, 1)}Tt=1 are the noise scales, and such that,

lim
T→∞

q(x(T)|x(0)) = π(y).

From the definition, and the Markov property, the probability density function of a
forward trajectory after T steps of diffusion is given by the joint probability of the states
x(0),x(1), . . . ,x(T),

q(x(0...T)) = q(x(0),x(1), . . . ,x(T)) = q(x(0))
T∏
t=1

q(x(t)|x(t−1)).

Also, we have that

q(x(1...T)|x(0)) =
q(x(0...T))

q(x(0))
=

T∏
t=1

q(x(t)|x(t−1)) (3.2)

Chapter 3. Diffusion Models 39

Furthermore, by means of Bayes’ rule, we can compute the forward trajectory q(x(t)|x(t−1))
when conditioned to the data x(0):

q(x(t)|x(t−1)) = q(x(t)|x(t−1),x(0))

=
q(x(t),x(t−1),x(0))

q(x(t−1),x(0))

=
q(x(t−1)|x(t),x(0))q(x(t),x(0))

q(x(t−1),x(0))

=
q(x(t−1)|x(t),x(0))q(x(t)|x(0))q(x(0))

q(x(t−1)|x(0))q(x(0))

=
q(x(t−1)|x(t),x(0))q(x(t)|x(0))

q(x(t−1)|x(0))
.

We will focus on the Gaussian and Bernoulli forward trajectories, despite that, extending on
the theory of stochastic processes, it is possible to proof that this works in a more general
setting (Pavliotis, 2014). The nice properties of such simple trajectories are mainly two-fold.
First is that they can be easily computed in a closed form given x(0) and {βt}Tt=1, as we will see
in 3.2.4 and 3.2.5. Second, is that according, the reverse diffusion process will also be Gaussian
or Bernoulli, respectively, and as long as {βt}Tt=1 are small enough. Feller, 1949 proves this
property using the fact that a discrete-time diffusion process can be seen as a process described
by a stochastic differential equation when the time step is small enough. In other words, a
discrete-time diffusion process can be seen as a discretization of a continuous-time diffusion
process, as we will discuss in 3.4.

3.2.2 Reverse Process

Given the above procedure, we would like to compute the reverse steps, i.e. the posterior dis-
tribution q(x(t−1)|x(t)). This is a similar setting to the Variational Inference problem discussed
in the previous chapter, which requires computing an intractable integral. Therefore, instead
of computing each reverse step q(x(t−1)|x(t)), it is approximated by a model pθ(x(t−1)|x(t)).

Definition 38 (Reverse Trajectory). Given a dataset D with data distribution pD(x), and a
forward trajectory defined by the kernel q(x(t)|x(t−1)), the reverse trajectory is defined by the
model pθ(x(t−1)|x(t)) that approximates the reverse distribution q(x(t−1)|x(t)).

The probability density function of the reverse trajectory is given by

pθ(x
(T...0)) = pθ(x

(T))

T∏
t=1

pθ(x
(t−1)|x(t)),

pθ(x
(T−1...0)|x(T)) =

T∏
t=1

pθ(x
(t−1)|x(t)).

If the chosen forward trajectory is reversible, the space of the variational distribution for
the reverse trajectory is reduced to the distribution space of the forward trajectory. Therefore,
q(x(t−1)|x(t)), q(x(t)|x(t−1)) and pθ(x(t−1)|x(t)) are all the same type of distribution, and we
only need to learn the parameters θ that best approximate the reverse distribution, drastically
simplifying the problem. As we will see later, both Gaussian 3.2.4 and Bernoulli 3.2.5 forward
trajectories have this property.

The forward trajectory is also called inference diffusion process, since the variable x(0) is
observed and the goal is to infer the distribution of the variable x(T) given x(0). The reverse

Chapter 3. Diffusion Models 40

trajectory, on the other hand, is called generative diffusion process, since the variable x(T) is
easily sampled and the goal is to generate samples from the distribution of the variable x(0)

by transforming x(T).
Note that the probability density fuction the generative model assigns to the data is given

by

pθ(x(0)) =

∫
pθ(x(0...T)) dx(1...T),

which is intractable. However, by means of the forward and reverse trajectories, we have that

pθ(x(0)) =

∫
pθ(x(0...T))

q(x(1...T)|x(0))

q(x(1...T)|x(0))
dx(1...T)

=

∫
q(x(1...T)|x(0))

pθ(x(0...T))

q(x(1...T)|x(0))
dx(1...T)

=

∫
q(x(1...T)|x(0))pθ(x(T))

T∏
t=1

pθ(x(t−1)|x(t))

q(x(t−1)|x(t))
dx(1...T)

To sample from this distribution, we need first to compute the integral, or at least ap-
proximate it. Is possible to show that for βt small enough and for T large enough, this
process is equivalent to a quasi-static process from statistical physics, where the system is in
equilibrium at each step of the diffusion. In this case, the forward and reverse trajectories
are identical and the above integral can be approximated. More details on non-equilibrium
thermodynamics can be found in Jarzynski, 2011 and Spinney and Ford, 2013. Furthermore,
with this approximation sampling can be done by means of Annealed Importance Sampling
(Neal, 2001). In this thesis, we will not go into further detail on this line since, as we will later
see in the chapter, there are simpler ways to compute the integral and sampling, for Gaussian
and Bernoulli diffusion processes.

3.2.3 Training Objective

Observe that if we treat x(0) as an observed variable, and x(1...T) as latent variables, then the
diffusion process can be seen as a VAE (Bank, Koenigstein, and Giryes, 2021). The forward
and reverse trajectories would be equivalent to the encoder and decoder respectively, going
from data to "latent space" and back.

As we have discussed in previous chapters, the training objective of a generative model
amounts to maximizing the log-likelihood of the model pθ that approximates the data distri-
bution q(x(0)) := pD(x),

argmax
θ

Eq(x(0))[logpθ(x(0))] = argmax
θ

∫
q(x(0))logpθ(x(0)) dx(0).

As solving this integral is intractable, we are interested in finding ELBO of the log-likelihood
and maximizing it instead.

Theorem 10 (ELBO for Discrete-time DMs). Let q(x(t)|x(t−1)) define the forward trajectory
of a DM and pθ(x(t−1)|x(t)) define the reverse trajectory, for t ∈ {1, ..., T}. Then the ELBO
of the log-likelihood of the data distribution is given by

Lθ(D) := −Eq(x(0...T))

[
L1θ(x(0)) +

T−1∑
t=2

Ltθ(x(0)) + LTθ (x(0))

]
(3.3)

Chapter 3. Diffusion Models 41

where

L1θ(x(0)) := − log pθ(x
(0)|x(1))

Ltθ(x(0)) := DKL(q(x
(t−1)|x(t),x(0))||pθ(x(t−1)|x(t)))

LTθ (x(0)) := DKL(q(x
(T)|x(0))||p(x(T))).

Proof. By assigning x = x(0) and z = x(1...T) in the ELBO from 2.5 we have that,

−Lθ(D) = Eq(x(0))

[
Eqϕ(x(1...T)|x(0))

[
log

(
qϕ(x(1...T)|x(0))

p(x(0),x(1...T))

)]]

= Eqϕ(x(0...T))

[
log

(
qϕ(x(1...T)|x(0))

p(x(0...T))

)]
3.2

= Eq

[
log

(∏T
t=1 q(x

(t)|x(t−1))

pθ(x(T))
∏T

t=1 pθ(x
(t−1)|x(t))

)]
(q = q(x(0...T)))

= Eq

[
− log pθ(x

(T)) +

T∑
t=1

log

(
q(x(t)|x(t−1))

pθ(x(t−1)|x(t))

)]

= Eq

[
− log pθ(x

(T)) +

T∑
t=2

log

(
q(x(t)|x(t−1))

pθ(x(t−1)|x(t))

)
+ log

(
q(x(1)|x(0))

p(x(0)|x(1))

)]
= (∗).

Now, we have that the middle term can be simplified as follows:

T∑
t=2

log

(
q(x(t)|x(t−1))

pθ(x(t−1)|x(t))

)
=

T∑
t=2

log

(
1

pθ(x(t−1)|x(t))
· q(x

(t−1)|x(t),x(0))q(x(t)|x(0))

q(x(t−1)|x(0))

)

=
T∑
t=2

log

(
q(x(t−1)|x(t),x(0))

pθ(x(t−1)|x(t))

)
+

T∑
t=2

log

(
q(x(t)|x(0))

q(x(t−1)|x(0))

)
,

where

T∑
t=2

log

(
q(x(t)|x(0))

q(x(t−1)|x(0))

)
= log

(
T∏
t=2

q(x(t)|x(0))

q(x(t−1)|x(0))

)
= log

(
q(x(T)|x(0))

q(x(1)|x(0))

)
.

Then, with

log

(
q(x(T)|x(0))

q(x(1)|x(0))

)
+ log

(
q(x(1)|x(0))

p(x(0)|x(1))

)
= log q(x(T)|x(0))− log p(x(0)|x(1)),

and

− log pθ(x
(T)) + log q(x(T)|x(0)) = log

(
q(x(T)|x(0))

pθ(x(T))

)
.

We have that

(∗) = Eq

[
log

(
q(x(T)|x(0))

pθ(x(T))

)
+

T∑
t=2

log

(
q(x(t−1)|x(t),x(0))

pθ(x(t−1)|x(t))

)
− log p(x(0)|x(1))

]
. (3.4)

Chapter 3. Diffusion Models 42

Also note that, by the the definition of KL divergence, we have that

Eq

[
log

(
q(x(t−1)|x(t),x(0))

pθ(x(t−1)|x(t))

)]
=

∫
q(x(0...T)) log

(
q(x(t−1)|x(t),x(0))

pθ(x(t−1)|x(t))

)
dx(0...T)

=

∫
q(x(t−1)|x(t),x(0)) log

(
q(x(t−1)|x(t),x(0))

pθ(x(t−1)|x(t))

)
dx(t−1)

= DKL(q(x
(t−1)|x(t),x(0))||pθ(x(t−1)|x(t))).

Finally, by taking the expectation of terms with fractions in 3.4 and using 9, we can write the
expresion in terms of KL divergence,

(∗) = Eq

[
Eq

[
log

(
q(x(T)|x(0))

pθ(x(T))

)]
+

T∑
t=2

Eq

[
log

(
q(x(t−1)|x(t),x(0))

pθ(x(t−1)|x(t))

)]
− log p(x(0)|x(1))

]

= Eq

[
DKL

(
q(x(T)|x(0))||pθ(x(T))

)
+

T∑
t=2

DKL(q(x
(t−1)|x(t),x(0))||pθ(x(t−1)|x(t)))− log p(x(0)|x(1))

]
.

With this, the task of maximizing the log-likelihood of the model pθ is reduced to minimiz-
ing the KL divergence of each of the reverse steps of the diffusion process given an observed
data point x(0). Note that, ideally, the forward distribution chosen should facilitate the com-
putation of q(x(t−1)|x(t),x(0)) and the KL divergences. In the next sections, we will see how
this is achieved for Gaussian and Bernoulli forward trajectories.

3.2.4 Discrete-time Gaussian Diffusion Models

Assuming that the forward trajectory of the diffusion process is defined by a Gaussian kernel,
was first introduced in DM by Sohl-Dickstein et al., 2015 and later improved by Ho, Jain,
and Abbeel, 2020, that added the reparameterization trick for such models. This is the
natural choice for the forward trajectory in R, since DMs are inspired by the stochastic
process defined by the diffusion equation, which assumes Gaussian noise. We call this model
Discrete-time Gaussian Diffusion Model (DGDM), although it is better known as Denoising
Diffusion Probabilistic Models (DDPM) in the literature. In short, whener we say Gaussian
diffusion model we will refer to DGDMs.

Definition 39 (Gaussian Forward Trajectory). The forward trajectory of a Gaussian diffusion
model of T steps is defined by the kernel

q(x(t)|x(t−1)) = N (x(t); x(t−1)
√

1− βt, Iβt). (3.5)

Recall that a Gaussian distribution N (x;µ, σ) can be reparameterized as x = µ + σ · ϵ,
where ϵ ∼ N (0, I). Therefore, the kernel 3.5 can be reparameterized as

x(t) = x(t−1)
√
1− βt +

√
βt · ϵt−1. (3.6)

The previous steps can also be reparameterized,

x(t−1) = x(t−2)
√
1− βt−1 +

√
βt−1 · ϵt−2,

· · ·

Chapter 3. Diffusion Models 43

Setting αt = 1− βt, and ᾱt =
∏t

i=1 αi, and joining the reparameterizations, we have that

x(t) =
√
αtαt−1x(t−2) +

√
αt(1− αt−1)ϵt−2 +

√
1− αtϵt−1 =

√
αtαt−1x(t−2) + ϵ̂,

Where ϵ̂ is obtained from the merged distribution N (ϵ̂;0, (1−αtαt−1)I). Repeating this with
every step, we have that

x(t) =
√
ᾱtx(0) +

√
1− ᾱtϵ,

where ϵ ∼ N (0, I). Therefore, the distribution of the forward trajectory can be computed in
a closed form given x(0) and {βt}Tt=1 and sampled from

q(x(t)|x(0)) = N (x(t);x(0)√ᾱt, (1− ᾱt)I). (3.7)

From this parameterization it is straight forward to see that, since βt ∈ (0, 1) for all t,

lim
t→∞

q(x(t)|x(0)) = N (0, I).

With this reparameterization, it is possible to see that the Gaussian diffusion process is
reversible, as long as the noise scales βt are small enough, without relaying on stochastic
differential equations. For a detailed proof of this, we refer to the recent tutorial Nakkiran
et al., 2024.

Provided that the Gaussian case is reversible, we have that

q(x(t−1)|x(t)) = N (x(t−1); µ̃(x(t), t), Σ̃(x(t), t)).

Therefore, the model pθ will be trained to learn the mean and covariance matrix of the reverse
trajectory,

pθ(x
(t−1)|x(t)) = N (x(t−1);µθ(x

(t), t),Σθ(x
(t), t)).

Another important property of Gaussian forward trajectories, is that the reverse trajectory
can be computed in a closed form when conditioned to the data.

Proposition 16. For x(0) observed, the reverse trajectory of a Gaussian diffusion model is
given by

q(x(t−1)|x(t), x(0)) = N (x(t−1); µ̃(x(t),x(0)), β̃tI), (3.8)

where

β̃t =
1− ᾱt−1

1− ᾱt
· βt

µ̃t(x
(t),x(0)) =

√
αt(1− ᾱt−1)

1− ᾱt
x(t) +

√
ᾱt−1βt
1− ᾱt

x(0)

Chapter 3. Diffusion Models 44

Proof. By the Bayes’ rule and 3.7, we have that

q(x(t−1)|x(t),x(0)) =

= q(x(t)|x(t−1),x(0))
q(x(t−1)|x(0))

q(x(t)|x(0))

=
1√

2π(1− αt)
exp

−1

2

(
x(t) −√αtx(t−1)√

(1− αt)

)2
 1√

2π(1−ᾱt)
exp

(
−1

2

(
x(t−1)−√

ᾱt−1x(0)√
(1−ᾱt−1)

)2
)

1√
2π(1−ᾱt)

exp

(
−1

2

(
x(t)−

√
ᾱtx(0)√

(1−ᾱt)

)2
)

∝ exp

(
−1

2

(
(x(t) −√αtx(t−1))2

βt
+

(x(t−1) −√ ¯αt−1x(0))2

(1− ᾱt−1)
− (x(t) −

√
ᾱtx(0))2

(1− ᾱt)

))

= exp

(
− 1

2

(
x(t)2 − 2x(t)√αtx(t−1) + αtx(t−1)2

βt
+

x(t−1)2 − 2x(t−1)√ᾱt−1x(0) + ᾱt−1x(0)2

(1− ᾱt−1)
−

− (x(t) −
√
ᾱtx(0))2

(1− ᾱt)

))

= exp

(
− 1

2

(
αtx(t−1)2

βt
+

x(t−1)2

(1− ᾱt−1)
−
2x(t)√αtx(t−1)

βt
− 2x(t−1)√ᾱt−1x(0)

(1− ᾱt−1)
+ C(x(t), x(0))

))

= exp

(
−1

2

((
αt

βt
+

1

(1− ᾱt−1)

)
x(t−1)2−2

(
x(t)√αt

βt
+

√
ᾱt−1x(0)

(1− ᾱt−1)

)
x(t−1) + C(x(t),x(0))

))
.

We want to correspond this expression with a Gaussian distribution. To do so, observe that

f(x) =
1√
2πσ2

exp
(
−1

2

(x− µ

σ

)2)
∝ exp

(
−1

2

(x− µ

σ

)2)
= exp

(
−1

2

(1

σ2
x2 − 2µ

σ2
x+

µ2

σ2

))
.

Similarly, we can obtain the same for the multivariate case. Corresponding this result with
q and denoting the matrix correlation by the diagonal vector β̃t, we obtain what we were
looking for:

β̃t =
1− ᾱt−1

1− ᾱt
· βt

µ̃t(x(t),x(0)) =

√
αt(1− ᾱt−1)

1− ᾱt
x(t) +

√
ᾱt−1βt
1− ᾱt

x(0)

Observe that from the reparameterization of the Gaussian, since x(t) =
√
ᾱtx(0)+

√
1− ᾱtϵ,

we have that x(0) = 1√
ᾱt
(x(t)−

√
1− ᾱtϵ), which leads to a further simplification of the mean

µ̃t as

µ̃t =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt
1− ᾱt

1√
ᾱt

(xt −
√
1− ᾱtϵt)

=
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
In Ho, Jain, and Abbeel, 2020, the authors provided empirical evidence for an improvement

in the performance of the diffusion model when reducing the amount of variables to be learned

Chapter 3. Diffusion Models 45

by fixing the covariance matrix according to the noise schedule. For the reverse process
pθ(x

(t−1)|x(t)) = N (x(t−1);µθ(x
(t), t),Σθ(x

(t), t)), the covariance matrix is predefined as a
diagonal matrix σθ(x

(t), t) = σ2
t I. Although this simplification reduces the flexibility of the

model, it has been shown to improve the performance of the model in practice when choosing
σ2
t = βt or σ2

t = 1−ᾱt−1

1−ᾱt
βt. Such choice of σ2

t comes from the upper and lower bounds of the
entropy of the reverse process, Hq(x(t−1)|x(t)).

Proposition 17 (Entropy of the reverse process). The entropy of the reverse process q(x(t−1)|x(t))
is bounded as

1− ᾱt−1

1− ᾱt
βt ≤ Hq(x(t−1)|x(t)) ≤ βt.

The reparameterization trick, together with the fixed covariance matrix, allows the model
to be trained to learn the denoising function between steps, with a simpler training objective
given by the following theorem. For a detailed calculations we refer to Ho, Jain, and Abbeel,
2020.

Corollary 3 (Simplified Training Objective). The training objective of the DGDM model is
given by

argmin
θ
Lθ(D) = argmin

θ
Lsimple(D, θ) := argmin

θ
Et,x(0),ϵ

[
||ϵ− ϵθ(

√
ᾱtx(0) +

√
1− ᾱtϵ, t)||22

]
.

(3.9)

The reparameterization trick and makes sampling from p(x(t−1)|x(t)) much easier, we can
obtain samples from the reverse process by iterating over the following steps:

x(t−1) =
1
√
αt

(
x(t) − βt√

1− ᾱt
ϵθ(x(t)) + σtz

)
,

where z ∼ N (0, I).
With this setting algorithms 2 and 3 can be used to train and sample from the DGDM

model.

Algorithm 2 DGDM Training
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform({1, . . . , T})
4: ϵ ∼ N (0, I)

5: Take gradient descent step on ∇θ

∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2
6: until converged

Algorithm 3 DGDM Sampling
1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: xt−1 =
√

1
αt

(
xt −

√
1−αt
1−ᾱt

ϵθ(xt, t)
)
+ σtz

5: end for
6: return x0

From this point on, several improvements have been made to the DGDM model. Nichol
and Dhariwal, 2021 removes the assumption of the fixed covariance matrix and learn the full

Chapter 3. Diffusion Models 46

covariance matrix of the reverse process, subjected to more flexible constraints. Since the
simple loss function does not depend on Σθ(x(t), t), the authors propose minimizing instead
the Hybrid Loss Function,

argmin
θ

Lhybrid(θ) := argmin
θ

Lsimple(D, θ)− λLθ, (3.10)

where Lθ is the ELBO of the Gaussian forward trajectory from 10, and λ is a hyperparameter
that balances the two terms. The gradients of Lθ can be computed in a closed form, and the
gradients of Lsimple(D, θ) can be computed using the reparameterization trick. However, we
only have empirical evidence that 3.10 performs better than 3.9.

The simple training objective can be shown to be equivalent to the loss weighting used
Noise-Conditioned Score Networks (NCSN), an energy-based generative model (Song and
Ermon, 2019a), which estimates the gradients of the data distributions at different levels of
added noise. This connects the discrete-time diffusion models with another class of generative
models, the energy-based models, which instead of estimating the data distribution, estimate
the gradients of the data distribution and follow Langevin dynamics to generate samples. A
definition of energy-based models will be given in the next section, but its properties are not
discussed in this thesis and the reader is referred to Song and Ermon, 2019a and Song and
Ermon, 2019b for more details.

3.2.5 Discrete-time Bernoulli Diffusion Models

In section 3.2 we have seen the classical definition of DGDM, where the forward and reverse
trajectories are defined by Gaussian distributions. We have seen that by means of the repa-
rameterization trick for Gaussian distributions, we can obtain an easier version of the ELBO.
Our interest now is the case of binary state spaces. We will assume a forward trajectory
defined by a Bernoulli distribution, and find a reparameterization trick for the reverse trajec-
tory similar to the one used in DGDM that leads to a simple loss function. We call this the
Discrete-time Bernoulli Diffusion Model (DBDM).

Definition 40 (Bernoulli Forward Trajectory). The forward trajectory of a Bernoulli diffusion
model of T steps is defined by the kernel

q(x(t)|x(t−1)) = B(x(t); x(t−1)(1− βt) + 0.5βt), (3.11)

where {βt}Tt=1 is the noise schedule, and βt ∈ (0, 1), for all t.

By recursively applying q(x(t)|x(t−1)) = B(x(t);x(t−1)(1− β1) + 0.5β1), we obtain that,

p0 = P (x(0) = 1),

p1 = P (x(1) = 1|x(0)) = (1− β1)p0 + 0.5β1,

p2 = P (x(2) = 1|x(1)) = (1− β2)p1 + 0.5β2,

· · ·
pt = P (x(t) = 1|x(t−1)) = (1− βt)pt−1 + 0.5βt,

which leads to

pt = p0

t∏
i=1

(1− βi) + 0.5

t∑
i=1

βi

t∏
j=i+1

(1− βj).

Writing ᾱt =
∏t

i=1(1 − βi), and bt = (1 − βt)bt−1 + 0.5βt, were b1 = 0.5β1, we have that
pt = ᾱtp0+ bt. Therefore, the forward trajectory can be computed in a closed form given x(0)

Chapter 3. Diffusion Models 47

and {βt}Tt=1 and its distribution is given by

q(x(t)|x(0)) = B(x(t); ᾱtx(0) + bt). (3.12)

For each bit x(t)i ∈ {0, 1} of the vector x(t), can rewrite q(x(t)|x(0)) in terms of the transition
matrix of the Markov chain by means of

q(x
(t)
i |x

(t−1)
i) = v(x

(t)
i)TQtv(x

(t−1)
i), where Qt =

[
1− βt 0.5βt
0.5βt 1− βt

]
, (3.13)

and v(x
(t)
i) = one_hot(x(t)i). Also, we have that,

q(x
(t)
i |x

(0)
i) = v(x

(t)
i)T Q̄v(x

(0)
i), where Q̄ =

[
1 + bt 1− (ᾱt + bt)
bt ᾱt + bt

]
.

We can work with vector notation and have the same formulation for the whole vector x(t),
and get the tensor Q. Observe that it is possible to define a noise schedule for which the
forward trajectory will transform the complex distribution into B(y; 0.5), by setting a noise
schedule such that

∏T
i=1(1− βi) ≈ 0 and

∑T
i=1 βi

∏T
j=i+1(1− βj) ≈ 1.

Proposition 18. For any {βt ∈ (0, 1)}, the following identity holds

T∑
i=1

βi

T∏
j=i+1

(1− βj) = 1−
T∏
i=1

(1− βi).

Proof. Let’s prove it by induction. For T = 1, we have that

1∑
i=1

βi

1∏
j=i+1

(1− βj) = β1 = 1− (1− β1).

For T = 2, also holds,

2∑
i=1

βi

2∏
j=i+1

(1− βj) = β1(1− β2) + β2 = 1− (1− β1)(1− β2).

Assume that the proposition holds for T = k, then for T = k + 1 we have that

k+1∑
i=1

βi

k+1∏
j=i+1

(1− βj) =
k∑

i=1

βi

k+1∏
j=i+1

(1− βj) + βk+1

k+1∏
j=k+2

(1− βj)

=

 k∑
i=1

βi

k∏
j=i+1

(1− βj)

 (1− βk+1) + βk+1

=

[
1−

k∏
i=1

(1− βi)

]
(1− βk+1) + βk+1

= 1−
k+1∏
i=1

(1− βi).

Chapter 3. Diffusion Models 48

Therefore, we want
∑T

i=1 βi
∏T

j=i+1(1− βj) = 1−
∏T

i=1(1− βi) ≈ 1, which is the same as∏T
i=1(1− βi) ≈ 0. Consider the infinite product,

∞∏
i=1

(1− βi).

This converges to 0 if and only if the series
∑∞

i=1 log(1 − βi) diverges to −∞. It is possible
to refine this even more, since it is possible to see that this series diverges to −∞ if and only
if the series

∞∑
i=1

−βi diverges to −∞. (3.14)

Therefore, for a large enough T , we can choose a βt noise schedule such that at step T ,
q(x(T)|x(0)) ≈ B(y; 0.5). Thus, the Bernoulli forward trajectory is well defined.

Looking at the transition matrix Qt, we can see that the Bernoulli forward trajectory
is reversible. Note that the process is irreducible, and that π = [0.5, 0.5] is the invariant
distribution, since πQt = π for all t. With this, the reversibility condition is satisfied, since

π0Q0,1 = π1Q1,0 where Q = Qt, ∀t.

Doing the same for the entire tensor Q, we have that the Bernoulli forward trajectory is
reversible.

Therefore, we have that there exists some b̃(x(t)) for which

q(x(t−1)|x(t)) = B(x(t−1); b̃(x(t))).

Therefore, the model pθ will be trained to learn the bit flip probability of the reverse trajectory,

pθ(x
(t−1)|x(t)) = B(x(t−1); b̃θ(x

(t))).

Note that from 3.12, the reverse trajectory can be computed in a closed form when con-
ditioned to the data,

q(x(t−1)|x(t),x(0)) =
q(x(t)|x(t−1),x(0))q(x(t−1)|x(0))

q(x(t)|x(0))

=
q(x(t)|x(t−1))q(x(t−1)|x(0))

q(x(t)|x(0))
.

Also, from the definition, we have that the KL divergence between two Bernoulli distri-
butions B(p) and B(q) is given by

DKL(B(p)||B(q)) = p log
p

q
+ (1− p) log

1− p

1− q
. (3.15)

Therefore, the KL divergences DKL(q(x
(t−1)|x(t),x(0))||pθ(x(t−1)|x(t))) from ELBO 10,

can be computed in a closed form and minimized by SGD. However, optimizing b̃θ to fit
the probabilities of the reverse kernel can be a hard problem and has empirically shown to
be an unstable process and fail to converge, as it needs to accurately regress the complex
interpolations between x(0) and x(T). Therefore, Wang et al., 2023 propose two different
approaches, either to predict x(0) directly at each step, or to predict the residual similar to
the DGDM model. It is the main goal of this thesis to provide all the necessary details to
understand the training and sampling procedures of the Bernoulli diffusion as proposed in
Wang et al., 2023, and ilustrated in figure 3.1.

Chapter 3. Diffusion Models 49

Direct Prediction

Since defining an analog reparameterization as in the Gaussian case to predict the "noise"
between steps, is not straightforward, we directly set the prediction target to pθ(x(0)|x(t)) =
B(x(0); fθ(x(t), t)). Here, fθ is a model that predicts the logits of x(0) at each step. This is
inspired from the fact that

q(x(t−1)|x(t)) = q(x(t−1)|x(t),x(0) = 0)q(x(0) = 0|x(t))

+ q(x(t−1)|x(t),x(0) = 1)q(x(0) = 1|x(t)).

Thus, once trained, pθ(x(0)|x(t)) can be used to compute the approximation of the denoising
kernel as

pθ(x(t−1)|x(t)) = q(x(t−1)|x(t),x(0) = 0)pθ(x(0) = 0|x(t)) (3.16)

+ q(x(t−1)|x(t),x(0) = 1)pθ(x(0) = 1|x(t)). (3.17)

If we assume to have obtained fθ and given x(t), the reversed kernel can be computed in
closed form. By substituting 3.12 into 3.16 we obtain the following proposition

Proposition 19. Let q(x(t)|x(t−1)) define the forward trajectory of a Bernoulli diffusion model
and pθ(x(t−1)|x(t)) define the reverse trajectory, for t ∈ {1, ..., T}. Let fθ be a model that
predicts the logits of x(0) at each step, such that pθ(x(0)|x(t)) = B(x(0); fθ(x(t), t)). Then, the
denoising kernel for inference is given by

pθ(x(t−1)|x(t)) = B(x(t−1); b̃θ(x
(t),x(0))) = B

(
x(t−1);

[(1− βt)x(t) + 0.5βt]⊙ [ᾱfθ(x(t), t) + 0.5bt]

Z

)
,

(3.18)
with

Z = [(1−βt)x(t)+0.5βt]⊙[ᾱfθ(x(t), t)+0.5bt]+[(1−βt)(1−x(t))+0.5βt]⊙[ᾱ(1−fθ(x(t), t))+0.5bt],

where ⊙ is the element-wise product.

Austin et al., 2021 and Gu et al., 2022 provide empirical evidence to show that this retarget
in training lead to a more stable optimization process where is easier to learn the denoising
kernel for inference, for more general discrete state spaces.

With this approach, the loss function 3.3 can be minimized, and a further regularization
term enhancing the reparameterization can be added as in 3.10, to improve the performance
of the model. This leads to the following training objective:

argmin
θ

L1
hybrid(θ) := Ldir(θ)− λLθ, (3.19)

where Ldir(θ) = Eq(x(0))Eq(x(t)|x(0))

[
− log pθ(x(0)|x(t))

]
, LBθ is the ELBO of the Bernoulli re-

verse trajectory, and λ is a hyperparameter that balances the two terms.

Residual Prediction:

Another approach is based on the following observation. Let x(0) be a binary vector, then the
residual between x(0) and x(t) can be computed as x(0)⊕x(t), where ⊕ is the XOR operator,
since we have that

x(0) = x(t) ⊕ (x(0) ⊕ x(t)).

Recall that XOR outputs 1 if the inputs are different and 0 otherwise, and from its definition
the following properties are easily obtained:

Chapter 3. Diffusion Models 50

• Commutative: A⊕B = B ⊕A

• Associative: (A⊕B)⊕ C = A⊕ (B ⊕ C)

• Identity: A⊕ 0 = A

• Self-inverse: A⊕A = 0

Furthermore, the following propositi on shows x(0) can be easily obtained from x(t) and the
residual x(0) ⊕ x(t).

Proposition 20. Let A and B be binary vectors, Then

B = [(1−A)⊙ (A⊕B)] + [A⊙ (1− (A⊕B))], (3.20)

where ⊙ is the element-wise product.

Proof. Note that the element-wise product in the binary space corresponds with the logical
AND operator and (1−A) = NOT(A), then we can apply basic properties of logical operators

such as the distributive between AND and XOR operators, to obtain the result:

[(1−A)⊙ (A⊕B)] + [A⊙ (1− (A⊕B))] = [NOT(A)⊙ (A⊕B)] + [A⊙NOT(A⊕B)]

= [(NOT(A)⊙A)⊕ (NOT(A)⊙B)]

+ [(A⊙NOT(A))⊕ (A⊙B)]

= [0⊕ (NOT(A)⊙B)] + [0⊕ (A⊙B)]

= (NOT(A)⊙B) + (A⊙B).

Finally, with the following truth table

A B (A⊙B) (NOTA⊙B)

0 0 0 0
0 1 0 1
1 0 0 0
1 1 1 0

We obtain that (NOT(A)⊙B) + (A⊙B) = B, as we wanted.

By setting A = x(t) and B = x(0), the above proposition allows us to recover x(0) from
x(t)⊕x(0) and x(t) with basic differentiable operations. Therefore, we want to learn the model
pθ(x(0)⊕x(t)|x(t)) = B(x(0)⊕x(t); fθ(x(t), t)), which can be found by directly setting the target
variable of fθ to be x(0) ⊕ x(t). Then, the original sample can be recovered by following the
proposition 3.20 and sampling (x(0) ⊕ x(t))′ from the approximated distribution pθ. Once we
have x(0) we can compute the denoising kernel for inference in a closed form as in 3.18.

With this reparameterization, the training objective 3.10 for the Bernoulli diffusion process
by predicting the residual is given by

argmin
θ

Lhybrid(θ) := Lresidual(θ)− λLθ, (3.21)

where Lresidual(θ) = Eq(x(0))Eq(x(t)|x(0))

[
− log pθ(x(0) ⊕ x(t)|x(t))

]
, and LBθ is the ELBO of the

Bernoulli reverse trajectory. Is easy to see that the training objective 3.21 is equivalent to the
one in 3.19, as the two approaches are just different reparameterizations of the same model
by means of the XOR operator. Furthermore, because minimizing the negative log-likelihood
is equivalent to minimizing the KL divergence, which in turn is equivalent to minimizing the

Chapter 3. Diffusion Models 51

Figure 3.1: Bernoulli Diffusion Process.

cross-entropy between p(x(0) ⊕ x(t)|x(t)) and pθ(x(0) ⊕ x(t)|x(t)), the final objective can be
simplified to

L̄hybrid(θ) = Eq(x(0))Eq(x(t)|x(0))

[
H(fθ(x(t), t),x(0) ⊕ x(t))

]
− λLθ. (3.22)

With this, the discussion on diffusion models for binary state spaces is concluded. The
algorithms for training and sampling can be found in ??. We have seen that the reparameter-
ization trick for Bernoulli diffusion models can be achieved by predicting the residual between
the original sample and the sample at time t. Furthermore, we have seen that the training
objective for Bernoulli diffusion models can be simplified to a cross-entropy loss between the
target and the prediction with the ELBO. This approach has been shown to empirically be
more stable and efficient than the direct prediction of the kernel, and it is the main component
of the Bernoulli diffusion model proposed in Wang et al., 2023.

Before concluding this chapter, we will briefly discuss the connection between diffusion
models, energy-based models, and continuous-time diffusion models.

3.3 Energy-Based Models

The concept of an energy-based model Hinton, 1999 centers on learning an energy functional
Eθ : D → R, instead of directly modeling a probabilistic distribution pθ(x) over a space
D. This energy functional implicitly defines a probability distribution via the Boltzmann
distribution, expressed as

pθ(x) =
1

Zθ
exp(−Eθ(x)),

where Zθ =
∫
D exp(−Eθ(y))dy is a normalization constant, known as the partition function.

While constructing a function Eθ(x) is straightforward, enforcing the constraint
∫
D pθ(x)dx =

1, or calculating the partition function Zθ, can be quite challenging.
To utilize an energy-based model as a generative model, we must address two key chal-

lenges. On one hand, we need a training procedure to optimize the parameters of the energy
function Eθ, so that the implicit distribution pθ(x) approximates the true data-generating
distribution p(x). On the other hand, we need a sampling procedure to generate samples
x ∼ pθ. Crucially, both solutions must avoid the intractable computation of the integral Zθ.

Chapter 3. Diffusion Models 52

3.3.1 Langevin Dynamics

Given a trained model Eθ, we aim to sample from the corresponding distribution x ∼ pθ.
Although direct sampling from pθ is challenging, we can approximate these samples using a
Markov chain with pθ as its stationary distribution. Langevin dynamics (Welling and Teh,
2011) provides a convenient framework for this in the domain D ⊂ Rn. This method is based
on a continuous Markov process governed by the stochastic differential equation (SDE)

∂x
∂t

= ∇x log pθ(xt) dt+
√
2 dWt, (3.23)

where dWt represents white noise, which is the derivative of standard Brownian motion Wt.
According to the Fokker-Planck equation (Feller, 1949), diffusion following these dynamics
asymptotically converges to samples xt ∼ pθ, in the sense that DKL(xt||pθ) approaches zero
as t→∞.

In practice, we cannot simulate the continuous dynamics exactly as given in Equation
3.23. Instead, we discretize the diffusion process and use a discrete Markov chain driven by
i.i.d. Gaussian noise ϵt ∼ N (0, I):

xt+1 = xt − η∇x log pθ(xt) +
√
2ηϵt. (3.24)

This equation can be interpreted as the stochastic analog of an Euler discretization of a de-
terministic differential equation. As the step size η → 0, the approximation of the continuous
dynamics in Equation 3.23 becomes more accurate, but the sampling process may become
slower. An effective acceleration technique for sampling, based on simulated annealing (Neal,
2001), is detailed in Song and Ermon, 2019b.

3.3.2 Score Matching

Langevin dynamics enables sampling from an energy-based model because the gradient of the
log-density is directly related to the energy function:

∇x log pθ(x) = −∇xEθ(x)−∇x logZθ = −∇xEθ(x). (3.25)

In fact, rather than modeling the energy function directly, we can estimate the gradient field of
the log-density, also known as the score function s : Rn → Rn, defined by s(x) = ∇x log pθ(x).
This score function can be modeled using a neural network parameterized by θ, where θ are
the parameters of the neural network. This approach implicitly defines an energy function
Eθ(x) (up to an additive constant) and a corresponding density pθ(x).

The score function sθ is learned by minimizing the score matching objective:

argmin
θ

Ep(x)

[
1

2
||sθ(x)−∇x log p(x)||22

]
. (3.26)

However, directly computing the gradient of the log-density log p(x) is typically infeasible.
Fortunately, it has been shown that the score matching objective can be minimized indirectly
by considering

argmin
θ

Ep(x)

[
1

2
||sθ(x)−∇x log q(x)||22

]
= argmin

θ
Ep(x)

[
tr(∇2

x log sθ(x)) +
1

2
||sθ(x)||22

]
.

(3.27)
This approach, known as Implicit Score Matching, is rigorously derived in Hyvärinen, 2005.
Furthermore, Song and Ermon, 2019b propose an efficient minimization method by projecting
along random directions, while Song and Ermon, 2019a improve the model’s performance by

Chapter 3. Diffusion Models 53

adding noise to the data distribution. These advancements culminate in the development of
the NCSN model, that includes a kernel perturbation qβ(x̃|x) = N (x̃;x, β2I) to the data
distribution pD(x), and qβ(x̃) =

∫
D qβ(x̃|x)pD(x) dx. Then, consider a sequence of positive

noise scales βmin = β1 ≤ β2 ≤ . . . ≤ βN = βmax, where βmin is small enough such that
qmin(x) ≈ pD(x), and βmax is large enough such that qmax ≈ N (x; 0, β2

maxI). With this setting,
Song and Ermon, 2019b optimizes the training objective of NCSN model by minimizing a
weighted sum of denoising score matching objectives:

argmin
θ

N∑
t=1

β2
t Eqmin(x)Eqt(x̃|x)

[
||sθ(x̃, βt)−∇x log qt(x̃|x)||22

]
. (3.28)

It turns out that this formulation is equivalent to 3.9 DGDM model when the diffusion pro-
cess is reinterpreted in terms of perturbed samples and the score function. A more detailed
discussion on this equivalence can be found in Vincent, 2011 and Lim et al., 2023.

3.4 Continuous-Time Diffusion Models

We have observed that Langevin dynamics utilize a SDE to define a continuous Markov
chain for sampling. However, score-based models discretize this process similarly to DGDMs.
Here, we briefly mention that the discrete-time diffusion models have a continuous analog,
specifically continuous-time diffusion generative models, we refer to Lim et al., 2023 for a
deeper discusion.

Consider a forward diffusion process {xt}t∈[0,1], where z0 is the initial state and xt rep-
resents its perturbation at time t. This diffusion process is governed by the following Itô
SDE:

dx = f(t)x dt+ g(t) dW, (3.29)

where f : R → R and g : R → R are scalar functions representing the drift and diffusion
coefficients, respectively, and W is a standard Wiener process. The functions f(t) and g(t)
can be chosen such that the terminal state x1 follows a standard normal distribution, i.e.,
x1 ∼ N (0, I), at the end of the diffusion process. As shown in Lim et al., 2023, the SDE in
Eq. 3.29 can be transformed into a generative model by first sampling x1 ∼ N (0, I) and then
solving the reverse-time SDE:

dx =
[
f(t)x− g(t)2∇x log qt(x)

]
dt+ g(t) dW̄, (3.30)

where W̄ is a reverse-time Wiener process and dt is an infinitesimal negative time increment.
The reverse SDE requires knowledge of the score function ∇x log qt(xt), which corresponds
to the gradient of the log-density of the marginal distribution at time t. One approach to
estimate this score function is by minimizing a continuous extension of the score matching
objective given by:

argmin
θ

EU [0,1]

[
λ(t)Eq0(x)Eqt(x̃|x)

[
||sθ(x̃, t)−∇x log qt(x̃|x)||22

]]
. (3.31)

This objective trains the parametric score function sθ(x̃, t) at time t ∼ U [0, 1] using a weight-
ing coefficient λ(t), where qt(x̃|x) is the diffusion kernel, available in closed form for specific
choices of f(t) and g(t).

Note that there is a close connection between continuous-time diffusion models and DGDMs.
Recall the reparameterization 3.6, we can rewrite DGDM in terms of jumps of ∆t = 1, and

Chapter 3. Diffusion Models 54

obtain

x(t+1) = x(t)
√
1− βt+1 +

√
βt+1 · ϵt

x(t+∆t) = x(t)
√
1− βt+1∆t +

√
βt+1 ·

√
∆tϵt.

In this limit, as ∆t → 0, the DGDM converges to a continuous-time diffusion model with
equation as in 3.29. This connection allows to translate the properties from SDE, such
as the Kolmogorov forward and backward equations, to the discrete-time diffusion models
(Shiryayev, 1992).

Recent advances in training Gaussian-based diffusion models include leveraging well-
established results from SDE theory to reduce the number of sampling steps and accelerate
convergence. However, diffusion models suitable for discrete state spaces, such as binary data,
remain relatively underexplored and represent an important area for future research.

Although diffusion models as stated above are powerful generative models, their capa-
bilities can be further extend by conditioning the model on some input data. This allows
the model to generate samples given a particular piece of information and paves the way
to controlling the synthesis process through inputs y such as text, semantic maps or other
image-to-image translation tasks Yang et al., 2023. Similar to other types of generative mod-
els, diffusion models are in principle capable of modeling conditional distributions of the form
p(x|c). This can be implemented with a neural network that takes an extra input fθ(x(t), c, t),
where c is the conditioning information. This approach is known as explicit conditioning, and
it is the most straightforward way to condition a diffusion model. However, there are other
ways to condition the model, such as classifier guidance and classifier-free guidance, which are
discussed briefly introduced in the next section.

3.5 Conditioning and Guidance Techniques

The wide flexiblity of diffusion models allows them to be used in several different scenarios and
adopt different properties. One of which is conditional generation. It is possible to condition
the model to generate samples given a particular piece of information. For instance, text-to-
image generation using diffusion models has been shown to be even more powerful than other
methods such as GANs (Dhariwal and Nichol, 2021). There are different ways of approaching
this can be summarized into three techniques:

• Explicit Conditioning: Conditinal sampling can be considered as training a model
to learn the conditional distribution pθ(x(0)|c). Here c is the conditioning information,
which can be a text prompt, an image, or any other source of information. This approach
is the most straightforward one, usually implemented by concatenating the conditioning
information to the input of the model or by using an attention mechanism.

• Classifier Guidance: Another approach is to train a classifier to predict the condition-
ing information from the generated samples. Baye’s rule allows us to use the gradient
of the conditional distribution pθ(c|x(t)), which comes from the classifier, to guide the
model towards the desired output pθ(x(0)|c).

• Classifier-free Guidance: By using the Baye’s rule again we can get an implicit
classifier by jointly training a conditional and an unconditional diffusion model (Nichol
et al., 2022). In practice, both models are trained together by randomly sampling the
condition of the diffusion model at a certain chance.Hence, we want to compute

(1 + ω) log pθ(xt|c)− ω log pθ(xt).

Chapter 3. Diffusion Models 55

The difference to explicit conditioning is that this approach additionally accentuates
the distance between the conditional and unconditional distributions, by means of the
implicit classifier.

Usually, c is encoded into a latent space by means of the encoder Eθ′ of a VAE, and is
the latent representation Eθ′(c) that is used as the conditioning information. For example,
the Bernoulli diffusion model in 3.2.5 can be explicitly conditioned to c by

L̄2
hybrid(θ) = EcEq(x(0))Eq(x(t)|x(0))

[
H(fθ(x(t), t, Eθ′(c)),x(0) ⊕ x(t))

]
− λLBθ . (3.32)

Note that in general, the parameters θ′ are fixed, although is not a required condition and
can potentially be optimized jointly with θ.

The theory dicussed both in this and the previous chapters culminates by merging all
together in a single model. In the next chapter we will introduce the Latent Diffusion Model,
which combines the power of VAEs and diffusion models to generate high quality samples in
a computationally efficient way. Furthermore, we will introduce the Binary Latent Diffusion
Model, which extends the LDM to binary state spaces and provides an empirically more stable
and efficient training process.

3.6 Latent Diffusion Models

The first work on Latent Difusion Models was introduced by Rombach et al., 2022. Similar to
Ho, Jain, and Abbeel, 2020, they proposed to use a diffusion model to generate images, but
running the diffusion process after a VAE, in the latent space, instead of the raw data space.

Definition 41 (LDM). Given a dataset D with data distribution pD. A Latent Diffusion
Model (LDM) is a generative model that approximates the distribution pD and is comprised
of two components:

• The first component consists of a VAE (D, Eϕ, Dθ), that encodes x ∈ D ⊂ Rn, into a
latent space z ∈ Z ⊂ Rd, of lower dimension, d < n.

• The second component is a DM that pθ′ that approximates the reverse step of a diffusion
process in the latent space. That is, pθ′(z(t−1)|z(t)) ≈ q(z(t−1)|z(t)), where q is the forward
trajectory of a diffusion process.

This approach cuts down dramatically the training cost of high resolution generators and
makes the inference speed faster. It is motivated by the fact that the semantic information
of the data remains after its compression, and performs there the costly computations of the
DM. There are two important things to notice from this method.

First, the VAE is specifically designed in such a way that the latent space has a perceptual
correlation with the data space. This is done by choosing a well suited architecture of the
neural network for the encoder and the decoder. For instance, in the case of images, the
common choice involves choosing 2D Convolutional Neural Networks (CNN), that have 2D
convolutional layers to capture 2-dimensional local correlations. Second, by reducing to a
perceptually simplified space, LDM exploit a property of the inductive bias in diffusion mod-
els which makes them particularly well suited for long-range signal generation. That is,the
diffusion process deals with the compostition and semantic structure of the data, and leave
the details to the decoder.

The training phase can be divided into two parts, where the VAE is trained to encode
the data and then the diffusion model is trained over the latent space, or both models can
be trained jointly. Also, any of the already discussed guiding techniques can be added to

Chapter 3. Diffusion Models 56

Figure 3.2: Architecture of the latent diffusion model. A sample is encoded
into latent space, and a U-Net ϵθ is used to learn the reverse process of the
diffusion model, given a condition encoded with τθ. Then, the denoised sample

is decoded back to the pixel space of images.

generate samples conditioned to a specific input. In particular, in the case of text-to-image
generation, i.e., generating a new image according to a given text, LDM uses a special CNN
called U-Net, with classifier-free conditioning and a text encoder, as a denoising function.

3.7 Binary Latent Diffusion Models

Inspired from LDMs, Binary Latent Diffusion Models make a step further on data compression
an model efficiency by compressing data into a binary space.

Definition 42 (BLDM). A Binary Latent Diffusion Model (BLDM) is a LDM with a
binary latent dimension. That is, the VAE of is a Bernoulli VAE, and the DM is a Discrete
Bernoulli DM.

Since their introduction, LDMs have been incorporating all the advances in VAEs and
diffusion models, and improved in several ways until achieving outstanding results in diverse
fields and increasing the inference speed to the point of being able to generate high resolution
images in almost real time (Sauer et al., 2023). However, although the leading research
path has been on improving the Gaussian side of the diffusion model, we are interested in
implementing the Bernoulli diffusion model within a LDM with a binary latent space obtained
by means of a Bernoulli VAE. This can be beneficial for several reasons. For instance, the
nature of the data might be better represented by a binary latent space, or the Bernoulli
diffusion process might be more efficient and generate higher quality samples.

This approach has been empirically shown to provide the diffusion model with a compact
yet expressive representations of the data, leading to remarkable improvements in perfor-
mance. Crucially, Wang et al., 2023 provide a series of experiments to see that by means of a
Bernoulli diffusion process it is empirically more efficient to train the model, and it is possible
to achieve similar results to the ones obtained by LDM, with 16 times less inference steps,
without using any test-time acceleration techniques. This puts the BLDM model in a promis-
ing position to be used in real applications and test it in different data modalities. With this
insights, we have applied, for the first time, the BLDM to the specific case of text-to-motion
generation, the results and implementation of which can be found in the appendix.

Finally, all the components discussed in the thesis merge up into algorithms 4 and 5, which
display how to train and sample from a BLDM, respectively. Here we describe with the detail
how to train a DBDM, with the Residual Prediction as target, in the latent space of a BVAE.
The training for the Direct Prediction target is analogous.

Chapter 3. Diffusion Models 57

Algorithm 4 Training DBDM in BLDM with residual target.
1: Input:
2: D: Dataset with conditioning.
3: τ : Conditioning encoder.
4: (D, Eθ′ , Dθ′′): BVAE pretrained on D with STE (or Gumbel-Softmax) and 1.
5: T : Diffusion steps.
6: q, {βt}Tt=1: Bernoulli forward trajectory, and noise schedule satisfying 3.14.
7: fθ: Neural Network parameterized by θ.
8: Output:
9: θ: Learned parameters.

10: Algorithm:
11: θ ← Initialize parameters
12: while SGD not converged do
13: (M,C) ∼ D. ▷ Random minibatch of M data samples and C conditions.
14: L← 0 ▷ Initialize loss.
15: for (x, c) ∈ (M,C) do
16: t ∼ Uniform{1, . . . , T} ▷ Taking a random diffusion step.
17: z(0) = Eθ′(x) ▷ Obtaining binary representation for the data sample.
18: z(t) ∼ q(z(t)|z(0)) ▷ Sample from forward trajecotry.
19: f ← fθ(z(t), t, τ(c)) ▷ Obtaining the Residual Prediction.
20: z(0) ∼ B

(
z(0); (1− z(t))⊙ f + z(t) ⊙ (1− f)

)
▷ Recover original sample using 3.20

21: pθ(z(t−1)|z(t)) ▷ Compute using z(0), f , and z(t), from 3.18.
22: L+ = Lhybrid ▷ Compute loss and its gradients.
23: end for
24: Average the aggregation of losses and gradients to obtain a Monte Carlo estimator.
25: Update θ using SGD optimizer.
26: end while

Algorithm 5 Sampling from BLDM trained with residual target.
1: Input:
2: c: Condition.
3: τ : Conditioning encoder.
4: (D, Eθ′ , Dθ′′): BVAE pretrained on D with STE (or Gumbel-Softmax) and 1.
5: (D, T, q, {βt}Tt=1, fθ): DBDM pretrained on D with Residual Prediction and 4.
6: Output:
7: x: New sampled datapoint.
8: Algorithm:
9: z(T) ∼ B(z(T); 0.5)

10: for {t = T ; t ∈ {T, . . . , 1}; t← t− 1} do
11: f ← fθ(z(t), t, τ(c))
12: z(0) ∼ B

(
z(0); (1− z(t))⊙ f + z(t) ⊙ (1− f)

)
▷ Denoise sample using 3.20

13: pθ(z(t−1)|z(t)) ▷ Compute using z(0), f , and z(t), from 3.18.
14: z(t−1) ∼ pθ(z(t−1)|z(t)) ▷ Sample from reverse trajectory.
15: end for
16: x = Dθ′′(z(0))

58

4 Conclusion

In this thesis we have formalized the definition of Bernoulli diffusion and Bernoulli Variational
Autoencoders. To this end, we first reviewed some basic concepts of probability theory and
probabilistic models. We then stated the definition of generative models and the generative
problem. In the following chapter, we tackled the first component of a Binary Latent Diffusion
model. It started with the foundation BVAEs, alongside the data compression problem,
the first deterministic Autoencoders, as well as Variational Autoencoders and is discrete
counterpart. During that chapter, Variational Inference was the main branch of study, we
established the strong relationship between the inference problem from classical VI and the
generative problem from VAEs. There are several ways to adapt VAEs into a discrete space.
We have reviewed two prominent methods, namely Vector Quantization with Straight-Trough-
Estimator and Gumbel Softmax trick. These ideas were shaped into BVAEs. The third
chapter introduced the concept of Diffusion Models. We went through a detailed study on
a particular type of DMs, namely the Discrete-time DMs. We have seen the details on
Discrete-time Gaussian DMs, widely studied in literature and with application to several
fields in Machine Learning. Then we have translated the properties from Gaussian diffusion
that make DGDMs suitable as generative models, are also applicable to define Discrete-
time Bernoulli DMs, the second component of the Binary Latent Diffusion model. Then,
we briefly related Discrete DMs to other approaches to diffusion processes for generative
modelling, and introduced the tools used in ML for guided generation. Finally, we concluded
the chapter by merging all concepts into a single model, the Binary Latent Diffusion Model.
The last chapter discusses an application of the BLDM to the specific case of Text-to-Motion
generation, providing the insights on how this model relates to the state-of-the-art and how
it can be adapted to the specific needs of motion data. The detailed implementation and
results of the experiments can be found in the appendix. Despite the recent advancements
in DMs and the growing interest in the field, the focus in mainly targeted to Gaussian DMs.
This thesis shares light on the path of exploring other types of diffusion models by providing
a self-contained foundation for BLDMs.

With this project we conclude that the solid foundation for VAEs and DGDM can be for-
mulated also for a binary alternative. We conclude that assuming a Bernoulli distribution in a
latent space and learn a stochastic mapping between data samples in Rn and latent variables
in 0, 1d, not only is an alternative for a data compression process, but also can take profit of
the powerful capabilities of neural networks and optimization algorithms, e.g., by means of
continuous relaxation. Also we conclude that Discrete Bernoulli DM is a promising generative
model with a strong theoretical foundation. The fact that we are working with maybe the
most simple distribution, the Bernoulli distribution, allows us to simplify many of the results
using basic properties of discrete Markov chains, without the need of harder machinery from
stochastic differential equations. Despite this theoretical evidence, few practical experimenta-
tion has been done applying DBDMs. We encourage researchers to try this approach in their
use cases.

As a prospective course of action, there are many open problems yet to be solved. We
have cited many works that prove their improvements empirically, each of them modifying
the training objective in order to simplify it. Therefore, more efforts are required to properly
prove why such changes improve the performance of the models. For example, Wang et al.,

Chapter 4. Conclusion 59

2023 argue that a binary latent space is much more efficient, i.e., "encodes better the informa-
tion" of data into the latent variable, but this must be formalized and properly investigated.
Furthermore, as we have defined VAEs and DMs, they are largely based on Bayesian Inference,
where a distribution for the prior and posterior have to be assumed. Although this approach
has been proven to be viable for high quality generation, other branches of statistics such as
Conformal Inference, which gives an uncertainty interval rather than an output guessed by a
prior, may be worth exploring for defining more comprehensible DMs. These could share light
into one of the main problems in generative modelling, namely the "Hallucination problem",
where a model generates fallacious sampled that not match with reality and were not present
in the dataset. Finally, it is still an open problem to understand the inner workings of neural
networks, which we are using to approximate the variational distributions. But more research
is required to understand how the information is encoded in the parameters of the model, on
how this is embedded into a meaningful latent space.

60

A Application and Implementation

The recent advancements in generative models and conditioning techniques, enables address-
ing the multimodality problem, involving the generation of samples from different data modal-
ities (e.g., images, text, and audio) within a single model, by conditioning the data inputs from
one to another. Multimodal models typically aim to estimate partial conditioned distribu-
tions qdata(x|c), where c represents the conditioning data. When x and c pertain to different
data modalities, the model deals with multimodality. This opens avenues for addressing more
complex tasks, such as text-to-image (Liu et al., 2023, Zhang, Rao, and Agrawala, 2023),
text-to-3D (Xu et al., 2023), or conditioned video generation, where the goal is to generate
temporally coherent images, often accompanied by audio, in response to a given text prompt
(Ho et al., 2022, Qi et al., 2023).

One of the most challenging multimodal tasks is text-to-motion generation, which involves
synthesizing human motion sequences from natural language descriptions. This task is par-
ticularly difficult due to the complexity of human motion, which is non-linear and articulated,
see figure A.1 and A.2.

Figure A.1: Extract of human motion with description "on hands and feet
a person crawls four paces on an angle to the left, turns and crawls back, and

then stands".

In this chapter we explore the use of binary latent diffusion models to generate human mo-
tion sequences from text descriptions, introducing Motion Binary Latent Diffusion (MBLD).
We evaluate the model on the Human3.6M dataset, a large-scale dataset of human motion
sequences, and commonly used metrics for human motion. The results show that MBLD is
able to encode motion in a binary latent space which is semantically rich enough to generate
human motion sequences aligned with the conditioning text.

Appendix A. Application and Implementation 61

Figure A.2: Extract of human motion with description "a person walks for-
ward, turns and walks back".

A.1 Problem Statement: Text-to-Motion Generation

Consider D a dataset of pairs (x, c), where x ∈ RDxL is a sequence of L frames of dimension
D, and c is a text prompt describing the movement represented in x. The goal of text-to-
motion generation is to estimate the conditional distribution q(x|c), by tunning the parameters
θ ∈ RN of the model fθ(x, c).

Such problem encounters several critical challenges. Firstly, the scarcity of large-scale
motion datasets and the inherent complexity of non-linear and articulated human motion, pose
common obstacles in the realm of Human Motion Generation. Secondly, the absence of a clear
and well-defined mapping between text and motion requires models to learn intricate mappings
capable of capturing the semantic nuances of text and generating diverse, plausible, and
realistic sequences of movements. Thirdly, the absence of a clear and well-defined evaluation
metric complicates the comparison of different models’ performance.

Despite these challenges, several models have been proposed. The raise of diffusion-based
models and VQ-VAEs has been a key factor in the development of the this models, dividing
the field into two main approaches: Gaussian diffusion models on one side, and discrete
representations with transformers1 on the other side.

On one hand, inspired by the success of diffusion models in the field of image generation,
efforts have been made to apply these models to human motion generation. Two of the worth
mentioning attempts are Zhu et al., 2023 and Chen et al., 2023a, presenting Motion Diffusion
Models (MDM) and Motion Latent Diffusion (MLD) respectively. Both approches, MDM
and MLD, implement a Gaussian Diffusion model with classifier-free guidance 3.5, to align
the text and motion representations. The main difference between the two models is the way
they encode the motion data. MDM directly apply the diffusion process in the motion data
space, while MLD first trains a VAE that encodes the motion into a discrete latent space, and
then apply diffusion.

Within the two approaches, MLD present better results than MDM. However, both models
demonstrate that diffusion-based techniques are able to properly harness the low-frequency
signals of human motion and generate realistic and diverse motions. Despite of this, there are
still some limitations that need to be addressed. First, the diffusion process is still slow and
resource demanding. Second, the models are not able to generate long sequences of motion.

1A type of autoregressive model based on attention mechanisms

Appendix A. Application and Implementation 62

On the other hand, auto regressive models have been the natural candidates to handle
sequence to sequence problems, and T2M can be seen as such. By factorizing distributions
over the time dimension, predictions can be conditioned on past sequences of arbitrary length.
However, the main drawback of these models is that they are costly and inefficient to train.
Furthermore, during inference, the models accumulate errors over time, which leads to drifts
and artifacts (Fragkiadaki et al., 2015, Martinez, Black, and Romero, 2017). Inspired by
the success of quantization techniques in the field of image generation, several works have
proposed the use of discrete representations for motion generation: PoseGPT (Lucas et al.,
2022), T2M-GPT (Zhang et al., 2023b), and MotionGPT (Jiang et al., 2023).

Using a VQ-VAE to encode the motion allows to train a model in a lower-dimensional dis-
crete space. Thus, an auto regressive learns to generate the motion by predicting a discrete
sequence of tokens, rather than regressing the motion directly. Heuristically, quantizing mo-
tion data into discrete tokens can be seen as a way to reduce a complex and high-dimensional
problem into a sequence of "words", which can be handled by a language model, i.e. a trans-
former. We will review in detail these models, since they are closely related to the work of
this thesis.

The method achieved state-of-the-art results, proving to be a competitive alternative to
the diffusion-based models. However it has a main drawback. Authors observed a slight jitter
on the legs and hands movement, they claim that this is due to the VQ-VAE architecture,
and proposed that with a better design could it be solved.

Furthermore, common to all the models seen until now, the models might miss some
details of the motion when given a long description. This is due to the problems inherited
from the text embedding layer, that is not able to capture the entire semantics of a long text
and encode it into a fixed length vector.

Despite the promising results obtained by MotionGPT, one limitation of the model is that
they assume that motion can be represented as a sequence of words. While this assumption
seems plausible, in practice the codebook of the VQ-VAE is very limited to K vectors, which
might not be enough to represent the entire "motion vocabulary". Based on this, we propose
using a Binary Latent Diffusion model, with a quantization strategy that permits encoding
motion token in a wider vocabulary using a binary space. Recall that in the previous chapter
2.3, we saw that the integers of the codebook can be seen as one-hot vectors of size K, allowing
only K different tokens. However, a binary latent vector of the same size can represent 2K

different tokens, a much higher degree of information.
These methods claim that motion data is highly redundant, specially when recorded at

high FPS. This redundancy can be exploited by a VAE and further compressed into a dis-
crete latent space with a VQ-VAE. We propose a similar approach, but using a compact yet
expressive latent space, given by a binary VAE 2.2. In other to achieve T2M, we propose
adapting the Bernoulli diffusion process to the binarized motion data, exploiting the diffusion
model’s generation capabilities.

A.2 Motion Binary Variational Autoencoder

Let the data domain D be a human motion dataset, x1:L ∈ D a motion sequence of length L,
and cx a text prompt describing the movement. Each frame of the movement consists of a
human pose represented by a vector of rotations of dimension J , thus xi ∈ RJ , for i = 1, ..., L.
Our goal is to define a Motion Binary VAE (MBVAE) similar to 2.2, that encodes the motion
sequence into a binary latent and reconstructs the original motion from it. Within this section
we provide a discussion on how to define the MBVAE and test different versions inspired from
the VQ-VAEs of the models from chapter 3. We will experiment with three different types of
latent space. First, we encode the motion frame-wise, that is, each frame is encoded into a

Appendix A. Application and Implementation 63

binary vector. Second, chunks of frames are encoded into a single binary vector, reducing the
length of the latent motion. Third, the whole sequence is encoded into a single binary vector.
We will refer to these three types of latent space as frame-wise, some-frames and full-sequence
respectively.

A.2.1 Frame-wise binary quantization

Directly applying the binary VAE from 2.2 to the motion sequence requires to encode each
frame into a binary vector. To this purpose, the convolutional layers of the original model
are replaced by 1-dimensional convolutional layers. Thus, if xi ∈ RJ is the i-th frame of
the sequence, the encoder extracts the local relation between the rotations of the pose and
encodes it into a binary vector of reduced dimension. To be more precise, a linear embedding
layer is applied to the input pose, reducing its dimension to J ′ < J . Then, a 1D convolutional
layer with kernel size 3 and stride 1 is applied to the embedded pose. We use c′ of such filters,
thus the output after the convolutional step is a tensor of dimension c′ × J ′. Then a block
of 2 residual layers, an attention layer and a final convolutional layer with kernel size 3 and
stride 2 are applied to the output tensor. The stride of the last CNN reduces the dimension of
the latent joints by a factor of 2, performing as a downsampling layer. Repeating this process
l times leads to a latent representation of dimension c × J ′/2l. Finally, another convolution
with c filters kernel size 3 and stride 1 outputs a real-valued tensor of dimension c × J ′/2l.
The latent space is then obtained by applying a sigmoid function to the output tensor, and
then a binary quantization. The decoder is the inverse of the encoder, with nearest neighbor
interpolation layers as upsamplers.

We propose two different ways of quantizing the motion latent space.

• Binary: As a first approach, we apply the binary quantization straightforwardly to the
latent space. This is, sampling from a Bernoulli distribution with probability of success
equal to the latent value, as in 2.3.3. Therefore, for any x1:L, and given the encoder
Eθ′ , for i = 1, ..., L, the latent representation of the i-th frame is zi = Eθ′(xi), and the
binary latent representation is bi ∼ Bernoulli(zi). The latent motion sequence is then
b1:L = (b1, ...,bL). The decoder Dθ′′ reconstructs the original motion from b1:L.

• BinaryVQ: The second approach is to apply the binary quantization prior to the VQ-
VAE. That is, we define a VQ-VAE as in 2.1, with codebook of size K, and then apply
the binary quantization to the latent space. Thus, for any x1:L, given the encoder
Eθ′ , and the codebook CK , for i = 1, ..., L, the latent representation of the i-th frame
is zi = Eθ′(xi), and the binary latent representation is bi = bin(zi). The binary
quantization function bin(·) is composed by a projection layer that maps zi ∈ Rc×J ′/2l

to bi ∈ {0, 1}K×J ′/2l , and a Bernoulli sampling layer. The resulting binary tensor bi

is then passed to the vector quantization layer, where the binary tensor is multiplied
by the codebook CK to obtain the quantized tensor qi. Heuristically, in this approach,
each column of the tensor bi is a binary vector of length K, with ones in the positions
of the vectors of the codebook that best represent the latent joint of the pose. The
decoder Dθ′′ reconstructs the original motion from q1:L. Observe that both approaches
are equivalent, since the decoder Dθ′′ is the same in both cases, and in the first method
it could learn an implicit codebook inside its convolutional and residual layers. Figure
A.3 shows a comparison between both of them.

A.2.2 Some-frames binary quantization

Although the frame-wise representation successfully encodes the motion sequence into a robust
binary latent space, it has a drawback. Poses in movement data are highly correlated and

Appendix A. Application and Implementation 64

Figure A.3: Top: MBVAE with BinaryVQ. Bottom: MBVAE with Binary.
The latter is equivalent to the former, since the decoder could learn an implicit
codebook inside its convolutional and residual layers. As input, a pose in your

favourite motion representation format. As output, its reconstruction.

redundant, specially when recorded at high frame rates. Therefore, encoding each frame
into a binary vector can be inefficient. To overcome this problem, in spirit of the VQ-VAE
from Zhang et al., 2023b and Jiang et al., 2023, we propose applying the 1D convolutional
layers along the temporal dimension, and then binarize the latent space. Therefore, model
is the same as the frame-wise binary quantization, but x1:L is processed sequentially, that is,
the kernel of the 1D CNNs moves along the L-dimensional temporal sequence, combining the
frames the kernel size permits. With the same notation as before, and the new direction of the
convolutional layers, the encoder extracts the local temporal relation between the rotations
of the pose and outputs z ∈ Rc′×L/2l . Here, c′ can be seen as the latent joints and L/2l as
the number of latent frames. Binary quantization and decoding also remain the same, only
considering the new dimensions of the latent space.

When applying the binary quantization, each of the binary columns of length K of b =
bin(z) represents a latent frame. Therefore, the ones in the binary vector indicate which are
the elements of the codebook that best represent the entire latent frame. Observe that this
representation is more compact than the frame-wise one, since it encodes the whole latent
frame into a single binary vector A.4.

Figure A.4: MBVAE with BinaryVQ and some-frames binary quantization.
As input, a sequence of the entire motion.

Appendix A. Application and Implementation 65

A.2.3 Full-sequence binary quantization

The semantic meaning of a movement is not only encoded in the poses, but also in the temporal
relation between them. In this sense, the frame-wise and some-frames binary quantization
methods may not be able to capture the whole significance of the motion. Therefore, we
propose using the full-sequence binary quantization, that is, the encoder processes the whole
sequence at once, and then binarizes the latent space. Then a transformer decoder manages
the latent representation as cross-attention context, and reconstructs the original motion
given a sequence of zero-motion tokens 0, as in MLD. Thus, x1:L is processed all at once
by the transformer encoder Eθ′ , and outputs the mean µx and variance σx of a Gaussian
distribution N (µx, σx) = N (Eθ′(x)). The binary quantization is done after the sampling
step, z ∼ N (µx, σx), thus b = bin(z). The decoder Dθ′′ reconstructs the original motion
from b and 0, leading to a sequence of poses x̂1:L = Dθ′′(b,0). From the binary vector
quantized perspective this can be seen as choosing the best words from the codebook that
better represent the entire sequence, see Figure A.5.

Figure A.5: MBVAE with BinaryVQ and full-sequence binary quantization.
Input is also a sequence of the entire motion.

A.3 Motion Binary Latent Diffusion Model

With a learned binary latent space, we propose adapting the Binary Latent Diffusion model
to motion data, introducing the Motion Binary Latent Diffusion (MBLD) model. The main
difference with the original model relies within the architecture of the denoising function.
In the original model, they use a transformer decoder with 2-dimensional attention layers.
However, in our case, the latent space is a binary vector, hence we propose using a transformer
decoder with 1-dimensional self-attention layers along the temporal axis that we denote by
fθ. The reason why we use the same architecture as in the MDM model is because it already
has been proven to work well for motion data in the raw motion domain, and we expect it
to work well in the binary latent domain, since the binary latent representation b1:L′ can be
seen as a motion sequence of length L′. Notice that b1:L′ has latent frames and latent joints
or rotations, in concordance with the input from the original model of the MDM.

We explore the performance of the model with the frame-wise binary quantization. In
this case, the sequence x1:L with textual description c is encoded to b1:L, and the Bernoulli
Diffusion Process ?? is applied. The denoising function fθ is trained to predict the flip
probability of each bit at each step of the diffusion process, given the text contidion. Recall
that the procedure begins with b(0)

1:L, where the superindex indicates the step of the diffusion
Markov chain. Then, at each step t, fθ estimates the binary tensor b(0)

1:L ⊕ b(t)
1:L, where ⊕ is

the element-wise XOR operation, or the original sample b(0)
1:L, as in BLD. When training, a

random step t is sampled from a uniform distribution t ∼ U(0, T), where T is the number of

Appendix A. Application and Implementation 66

Figure A.6: MBLD with frame-wise binary quantization. When training
b(0)
1:L is a sequence of binarized poses, encoded from the target motion. When

sampling, input is b(0)
1:L, a random binary tensor, and the models denoise it in

T = 256 steps.

diffusion steps. Adding noise to the binary latent space is done by the schedule ?? defined
in chapter 2, with a linear distribution of the βt. Additionally, the text c is embedded into a
vector of dimension d, projected to fit the dimension of the latent space by means of a linear
layer, and concatenated to the binary tensor. Classifier-free guidance is used to condition the
diffusion process with the text prompt 3.5, that is, at inference time, the denoising step is
computed by the following equation,

(1 + ω)fθ(xt, c, t)− ωfθ(xt, ∅, t).

Therefore, fθ must learn both, the conditional and unconditional denoising steps. Figure A.6
illustrates the diffusion process and sampling procedure.

A.3.1 Sampling

In order to generate new motion sequences from c, we start from a random binary tensor
b(t)
1:L sampled from a Bernoulli distribution with probability of success 0.5. Then, we run the

denoising process. At each step t we estimate fθ
(
b(t)
1:L, c, t

)
and fθ

(
b(t)
1:L,0, t

)
, to compute the

classifier-free guidance. Then, from 3.18 we can compute the transition kernel pθ(b
(t−1)
1:L |b

(t)
1:L)

and sample the next binary tensor b(t−1)
1:L from it. Repeating this process T = 256 times, we

obtain a sequence of binary tensors b(0)
1:L. Finally, we reconstruct the original motion sequence

by means of the decoder Dθ′′ , that is, x̂1:L = Dθ′′(b
(0)
1:L). 4 and 5 illustrate the training and

sampling algorithms.

67

B Experimental Setup and Results

B.1 Text-to-Motion Datasets

Common human motion datasets that include text descriptions are scarce. The most rel-
evants are include KIT (Plappert, Mandery, and Asfour, 2016) and the recently released
HumanML3D (Guo et al., 2022). Since the latter is bigger and common to all state-of-the-
art models, we have decided to use HumanML3D. It is a large-scale dataset that contains
14, 616 motion sequences, along with 44, 970 sentences describing the motion. The motion
data comes from HumanAct12 and AMASS (Mahmood et al., 2019), which are collections of
several smaller motion captured datasets. Authors of HumanML3D have standarized the mo-
tion sequences to 20FPS and to a default human skeletal template. Motion sequences longer
than 200 frames have been randomly cropped to fit this restriction. As a result each motion
clip is of minimum and maximum length of 40 and 200 frames, respectively. Each pose xi of
the motion x1:L, is defined as a 263-dimensional vector, which includes positions, rotations
and orientations of 22 joints, and a global root position.

B.2 Evaluation Metrics

Although assessing the quality of synthesized human movement is not a trivial task, several
metrics have been proposed to measure the performance of the models from different perspec-
tives. They can be summarized in three categories fidelity, diversity and condition consistency
(Zhu et al., 2023, Chen et al., 2023b). Following the autors of MLD and T2M-GPT, we will
focus on the following metrics; MSE, FID, DIV, MM, R-Precision and MMD, each of them
measuring a different aspect of the model’s performance.

Fidelity metrics aim to evaluate the overall quality of the generated motion.

1. Mean Squared Error (MSE): measures the average of the squared differences be-
tween the prediction and the real motion. Relying solely on comparison to the ground
truth joints and rotations is not enough to assess the quality of the generated motion,
since countless of alternative sequences could be equally valid, but not similar to the
ground truth.

2. Fréchet Inception Distance (FID): estimates the distance between the distribution
of a feature space of the generated motion and the ground truth. The metric leverages
well-designed motion feature extractors, and uses the Fréchet distance between two
multivariate Gaussians. To this end, given a generative model fθ and real data D, one
can synthesize an artificial dataset D′, to then fit N (µ, σ) and N (µ′, σ′), respectively.
Then, the FID is computed as follows,

FID = dF (N (µ, σ),N (µ′, σ′))2 = ∥µ− µ′∥22 + tr
(
σ + σ′ − 2(σσ′)

1
2
)
.

Diversity metrics aim to measure the model’s ability to generate different motions.

Appendix B. Experimental Setup and Results 68

1. Diversity (DIV): measures the global diversity of the model by randomly splitting the
generated dataset into two sets of the same size S. Then

DIV =
1

S

S∑
i=1

∥x̂i − x̂j∥22,

where x̂i and x̂j are two random samples from the two sets, respectively. In our exper-
iments we set S = 300.

2. MultiModality (MM): measures the diversity but conditioning to a set C of size C,
of different text prompts. To this end, consider the generated motion sequences that
satisfy a condition c ∈ C, i.e. D′

c := {x̂ ∈ D′ | c is a description of x̂}. Then, split D′
c

into two sets of the same size S′, and compute the diversity as before,

MM =
1

C · S′

∑
c∈C

S′∑
i=1

∥x̂c,i − x̂c,j∥22,

where x̂c,i and x̂c,j are two random samples from the splits of D′
c, respectively.

Condition Consistency metrics aim to measure the accuracy of the model to generate
motions that satisfy a given condition.

1. R-Precision: measures the accuracy of the model to generate motions that satisfy a
given condition. It ranks the Euclidean distances among the features of the generated
motion and the features of the ground truth, and averages the accuracy of the top-k
results.

B.3 Implementation details

Throughout the training process, the models leverage the HumanML3D dataset, and akin
to other methodologies, we employ CLIP ViT-B/16 as a text encoding prior. Such CLIP
version, encodes text into a vector of dimension d = 512. This standardized approach ensures
consistency and facilitates seamless integration with existing frameworks and datasets, con-
tributing to the reproducibility and transparency of the research outcomes. The models are
trained with the Adam optimizer and a learning rate of 10−4. The hyperparameters of the
training objective are set to ωMSE = 1, ω1 = 1, ωKL = 0.1. All versions run for 400 over the
training set of 1528 motion samples from HumanML3D, which are no longer than L = 196,
to avoid selecting randomly cropped clips, and no shorter than 150. We remain with 1528
different motion samples, with 4 descriptions each. Sequences are padded with zeros until
reaching the maximum length. The linear projection fits the J = 263 joints and rotations of
the motion poses into a J ′ = 256-dimensional vector. The codebook size is set to K = 32 for
the binary vector quantized models. For frame-wise models, the downsampling factor is set
to l = 4 and the inner channels of the encoder are c′ = 16, which leads to a latent space of
size 16×16. The some-frames models have downsampling factor l = 2 and a latens dimension
16 × L′, where L′ = 196/22 = 49. This is different in the case of the full-sequence models,
where K = 256 and the latent space for the entire motion is reduced to size 256, as MLD
authors suggest (Chen et al., 2023b). The guidance weight for the Classifier-free Guidance is
set to ω = 0.5. Finally, the steps for the diffusion process and the sampling process are set to
T = 256, as in the BLD (Wang et al., 2023).

All the implemented models are developed using PyTorch and trained efficiently on a
single NVIDIA GeForce RTX 3090 GPU. The complete source code is accessible on GitHub
at motion-binary-latent-diffusion.

https://github.com/alex-pv01/motion-binary-latent-diffusion

Appendix B. Experimental Setup and Results 69

B.4 Results

B.4.1 Comparisons on MBVAE

Experiments were undertaken to evaluate the performance of the MBVAE across various mod-
els. The comparison involved assessing the capabilities of straightforward binary quantization,
binary vector quantization, and models without quantization. The goal of this comparison
was to determine the most effective approach for representing motion in a binary latent space.
Noticeably, the latent space dimensions for frame-wise are the largest, at 16×16×196 for the
complete motion, while the some-frames models have a latent space of size 16 × 49, and the
full-sequence models have a latent space of size 256. Therefore, the frame-wise models have
the most information about the motion at pose level. Consider also that the binary latent
space of the vector quantized models is a bit larger, since it is prior to the codebook projec-
tion, thus, the binary latent spaces are of size 16 × 32 × 196, 32 × 49 and 256, respectively.
The latent space of no quantized models is the default 32-bit float, therefore we achieve up
to a factor of 32 higher compresion rate. The table B.1 summarizes the memory footprint of
a single motion sequence for each model embedded into the latent space.

Model Binary Binary-VQ No-Quant
Frame-wise 50,176bits ≃ 6.3kB 100,352bits ≃ 12.6kB 1,605,632bits ≃ 200.7kB
Some-frames 784bits ≃ 0.1kB 1,568bits ≃ 0.2kB 25,088bits ≃ 3.1kB
Full-sequence 256bits ≃ 0.03kB 256bits ≃ 0.03kB 8,192bits ≃ 1.02kB

Table B.1: Memory footprint of the different models for a latent representa-
tion of a motion sequence of 196 frames and 263 joints and rotations per pose.

The plots B.1 indicate that frame-wise models exhibit superior fitting to the reconstruction
loss, primarily owing to their richer information content about motion at the pose level.
Closely following are the some-frame models, which achieve a lower reconstruction loss than
the full-sequence models. In terms of MSE and L1 losses, the Binary and Binary-VQ models
perform similarly, while the no-quantized models achieve a lower loss. This difference is
accentuated in the total loss, in the case of the VQ models, due to the codebook loss B.2.
However, we can observe that if the binary space is large enough, i.e two times bigger in our
case, the frame-wise Binary can overcome the No-Quant some-frames model. This is due to
the fact that the binary latent space is able to capture the motion information. Therefore,
with this simple training objective, the binary latent space is able to achive comparatively
similar results to the No-Quant models, despite the need of a similar memory footprint in the
latent space. This is a remarkable result, since it indicates that the binary latent space is able
to represent motion information, but it needs further regularization to reduce the memory
footprint effectively.

Regarding the codebook loss B.2, we can observe that all models with Biinary-VQ achieved
a similar codebook even with different latent spaces and codebook sizes, 32 (frame-wise and
some-frames) and 256 (full-sequence). The codebook loss ensures the binary latent space is as
sparse as possible, choosing the minimum number of codewords to represent a binary vector.
Therefore, it will never drop to zero, unless the model collapses. Thus, the fact that all models
achieve similar codebook losses indicates that the proportion of codewords used to represent
the binary latent space is comparable.

Full-sequence models face a trade-off between reconstruction loss and KL divergence,
which hampers the training process. Interestingly, even when removing KL regularization,
full-sequence models fail to achieve a lower reconstruction loss compared to frame-wise and
some-frames models B.3. This discrepancy arises from their reduced ability to capture pose
information, resulting in a latent space that inadequately represents motion.

Appendix B. Experimental Setup and Results 70

Figure B.1: Comparison of the training losses between frame-wise, some-
frames and full-sequence.

Figure B.2: Codebook loss of Binary-VQ versions of the models at training
stage.

B.4.2 Exploration on MBLD

Since we observe that the binary latent space is able to represent motion information, we
proceed to test the performance of the MBLD through a two-pronged approach.

Experiment 1: Frame-wise diffusion. Initially, a diffusion model is trained on the
latent space of the frame-wise MBVAE, utilizing a codebook of size K = 32 for the BinaryVQ
versions. Notably, we observed a pronounced sensitivity to hyperparameter tuning, particu-
larly concerning the balancing weights of the losses. Remarkably, the model exhibits greater
stability when estimating the original poses b(0)

1:L instead of the flip probability—contrary to
the suggestion of the BLD authors for image generation (Wang et al., 2023), see figure B.4.
This is not surprising, since it is equivalent to predicting the original motion x(0)

1:L, which is
the aim of the diffusion process in other relevant works, such as MDM (Zhu et al., 2023) or
BeLfusion (Barquero, Escalera, and Palmero, 2023). As we can see in figure B.4, the model
struggles to minimize the BCE loss when predicting the flip probability. We can also observe
that the VLB regularization term is not able to minimize and bounces back an forth during
the training process, depending on the level of noise of the sampled noise b(t)

1:L of the Bernoulli
diffusion process. Furthermore, if we take a closer look at the accuracy of the model, we
can see that the overall trend is to increase, although also done in a very unstable manner.
These results indicate that the model is able to recover the motion for the very first steps of

Appendix B. Experimental Setup and Results 71

Figure B.3: Left: KL regularization of full-sequence models. Right: Com-
parison between models with and without KL regularization.

the diffusion process, but encounters challenges when denoising the motion for the inherently
noisy steps of the diffusion process.

Despite struggling to achieve complete denoising and resulting in a somewhat shaky move-
ment at inference time, the model successfully recovers the pose of the motion. This implies
that pose information encoded in the binary latent space can be effectively reconstructed
given a text prompt through a conditioned Bernoulli diffusion process, as depicted in Figure
B.5.

Figure B.4: Comparison between models with different prediction target:
flip probability and original pose.

Experiment 2: Full-sequence diffusion. The initial experiment led us to the realiza-
tion that the binary latent space derived from the frame-wise MBVAE lacks sufficient regu-
larization for a denoising model to effectively approximate the reverse process of a Bernoulli
diffusion. Consequently, in a subsequent iteration, a diffusion model was trained on the la-
tent space of the full-sequence MBVAE. Despite yielding suboptimal results when compared
with the other autoencoders, this model is subject to additional regularization through the
inclusion of the KL loss, inherited from MLD (A.2.3).

In this second run, both the diffusion model and the MBLD model undergo training on
identical datasets, employing identical hyperparameters and completing the same number of
epochs (2000). Notably, both latent spaces maintain a consistent size, constituting a 256-
dimensional vector —one continuous (8,192bits) and the other binary (256bits). Evaluation
of the joint-level reconstruction loss, as depicted in Figure B.6, reveals that the MLD model

Appendix B. Experimental Setup and Results 72

Figure B.5: Sampled motion: "A person walks forward and slightly to the
left".

achieves a lower reconstruction loss compared to the Motion Binary Latent Diffusion (MBLD)
model. It is noteworthy that the MBLD model exhibits signs of overfitting, as evidenced by
the increasing reconstruction loss on the validation set. This indicates that a 256-bit binary
latent space rapidly harnesses the information of the training set, and begins to memorize the
training data without generalizing to the validation set. This may indicate that the training
set is not sufficiently large to achieve a more robust binary latent space.

Figure B.6: Reconstruction loss at joint level obtained by the MLD and
MBLD models. The MLD model is able to achieve a lower reconstruction loss

than the MBLD model.

For a comprehensive comparison of metrics, refer to Table B.2. Firstly, it is important to
note that the MLD model does not achive the good results reported by the authors (Chen et
al., 2023b). In order to fit the computational demands, we have reduced the number of layers
of the diffusion model, used a smaller version on CLIP, used a smaller subset of HumanML3D,
and reduced the number of epochs. However, we are interested in comparing the results of
the MLD and MBLD models, which are trained on the same conditions. The FID metric
indicates what we have already seen in the plots; the MBLD, despite being able to recover the

Appendix B. Experimental Setup and Results 73

pose of the motion during training, does not generalize well to the test set increasing higher
the FID. The other metrics, MM and DIV, indicate that both models achieve a similar degree
of diversity, which is remarable since the MBLD latent is 32 times smaller. This suggests
that the binary latent space is able to capture the motion information into a compact yet
expressive representation. Furthermore, regarding the top-k accuracies of R-precision, both
models behave similarly in terms of conditioning to a text prompt. The reason why there is
a large gap between in FID, but not in the other metrics, is due to the fact that the FID, as
well as the MSE and L1 losses, are fidelity metrics. Therefore, it is not surprising that if MSE
and L1 overfit, the FID will also overfit. However, the other metrics measure different aspects
of the motion, and remain similar. In light of these results, we can conclude that the binary
latent space is able to harness the motion information, rapidly overfitting the training set, but
not generalizing well to the test set. Hence, the binary latent space may still require further
regularization and a larger training set to achieve a more robust representation of motion.

Model FID MM DIV Top-1 Top-2 Top-3
GT - - 9.5 0.514 0.705 0.797

MLD 17.504 4.744 5.284 0.03 0.062 0.093
MBLD 31.49 4.041 4.292 0.034 0.067 0.1

Table B.2: Metrics obtained by the MLD and MBLD models on the test set.

74

Bibliography

Austin, Jacob et al. (2021). “Structured Denoising Diffusion Models in Discrete State-Spaces”.
In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato et al. Vol. 34.
Curran Associates, Inc., pp. 17981–17993. url: https://proceedings.neurips.cc/
paper_files/paper/2021/file/958c530554f78bcd8e97125b70e6973d-Paper.pdf.

Baldi, Pierre (2012). “Autoencoders, Unsupervised Learning, and Deep Architectures”. In:
Proceedings of ICML Workshop on Unsupervised and Transfer Learning. Ed. by Isabelle
Guyon et al. Vol. 27. Proceedings of Machine Learning Research. Bellevue, Washington,
USA: PMLR, pp. 37–49. url: https://proceedings.mlr.press/v27/baldi12a.html.

Bank, Dor, Noam Koenigstein, and Raja Giryes (2021). Autoencoders. arXiv: 2003.05991
[cs.LG].

Barber, David (2012). Bayesian Reasoning and Machine Learning. Cambridge University
Press.

Barquero, German, Sergio Escalera, and Cristina Palmero (2023). “BeLFusion: Latent Diffu-
sion for Behavior-Driven Human Motion Prediction”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 2317–2327.

Bengio, Yoshua (2013). “Estimating or Propagating Gradients Through Stochastic Neurons”.
In: ArXiv abs/1305.2982. url: https://api.semanticscholar.org/CorpusID:13985426.

Bishop, Christopher (2006). Pattern Recognition and Machine Learning. Springer. url: https:
/ / www . microsoft . com / en - us / research / publication / pattern - recognition -
machine-learning/.

Chen, Xin et al. (2023a). Executing your Commands via Motion Diffusion in Latent Space.
arXiv: 2212.04048 [cs.CV].

— (2023b). Executing your Commands via Motion Diffusion in Latent Space. arXiv: 2212.
04048 [cs.CV].

Dhariwal, Prafulla and Alex Nichol (2021). Diffusion Models Beat GANs on Image Synthesis.
arXiv: 2105.05233 [cs.LG].

Feller, William (1949). “On the Theory of Stochastic Processes, with Particular Reference to
Applications”. In: url: https://api.semanticscholar.org/CorpusID:121027442.

Folland, G.B. (2013). Real Analysis: Modern Techniques and Their Applications. Pure and
Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley. isbn:
9781118626399. url: https://books.google.dk/books?id=wI4fAwAAQBAJ.

Fragkiadaki, Katerina et al. (2015). Recurrent Network Models for Human Dynamics. arXiv:
1508.00271 [cs.CV].

Gu, Shuyang et al. (2022). “Vector Quantized Diffusion Model for Text-to-Image Synthesis”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 10696–10706.

Gumbel, E.J. (1954). Statistical Theory of Extreme Values and Some Practical Applications:
A Series of Lectures. Applied mathematics series. U.S. Government Printing Office. url:
https://books.google.dk/books?id=l2sLIbIqjK4C.

Guo, Chuan et al. (2022). “Generating Diverse and Natural 3D Human Motions From Text”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 5152–5161.

https://proceedings.neurips.cc/paper_files/paper/2021/file/958c530554f78bcd8e97125b70e6973d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/958c530554f78bcd8e97125b70e6973d-Paper.pdf
https://proceedings.mlr.press/v27/baldi12a.html
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/2003.05991
https://api.semanticscholar.org/CorpusID:13985426
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://arxiv.org/abs/2212.04048
https://arxiv.org/abs/2212.04048
https://arxiv.org/abs/2212.04048
https://arxiv.org/abs/2105.05233
https://api.semanticscholar.org/CorpusID:121027442
https://books.google.dk/books?id=wI4fAwAAQBAJ
https://arxiv.org/abs/1508.00271
https://books.google.dk/books?id=l2sLIbIqjK4C

Bibliography 75

Hinton, Geoffrey E. (1999). “Products of experts”. In: url: https://api.semanticscholar.
org/CorpusID:15059668.

Ho, Jonathan, Ajay Jain, and Pieter Abbeel (2020). “Denoising Diffusion Probabilistic Mod-
els”. In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al.
Vol. 33. Curran Associates, Inc., pp. 6840–6851. url: https://proceedings.neurips.
cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Ho, Jonathan et al. (2022). Imagen Video: High Definition Video Generation with Diffusion
Models. arXiv: 2210.02303 [cs.CV].

Hyvärinen, Aapo (2005). “Estimation of Non-Normalized Statistical Models by Score Match-
ing”. In: Journal of Machine Learning Research 6.24, pp. 695–709. url: http://jmlr.
org/papers/v6/hyvarinen05a.html.

“IEEE Standard for Binary Floating-Point Arithmetic” (1985). In: ANSI/IEEE Std 754-1985,
pp. 1–20. doi: 10.1109/IEEESTD.1985.82928.

Jang, Eric, Shixiang Gu, and Ben Poole (2017). “Categorical Reparameterization with Gumbel-
Softmax”. In: url: https://arxiv.org/abs/1611.01144.

Jarzynski, Christopher (Mar. 2011). “Equalities and Inequalities: Irreversibility and the Sec-
ond Law of Thermodynamics at the Nanoscale”. In: Annual Review of Condensed Matter
Physics 2.1, 329–351. issn: 1947-5462. doi: 10.1146/annurev- conmatphys- 062910-
140506. url: http://dx.doi.org/10.1146/annurev-conmatphys-062910-140506.

Jensen, J L W V (1906). “Sur les fonctions convexes et les inégalités entre les valeurs moyennes”.
In: Acta Math. 30.0, pp. 175–193.

Jiang, Biao et al. (2023). MotionGPT: Human Motion as a Foreign Language. arXiv: 2306.
14795 [cs.CV].

Kingma, Diederik P and Max Welling (2014). Auto-Encoding Variational Bayes. arXiv: 1312.
6114 [stat.ML].

Lever, Jake, Martin Krzywinski, and Naomi Altman (2017). “Principal component analysis”.
In: Nature Methods 14.7, pp. 641–642. issn: 1548-7105. doi: 10.1038/nmeth.4346. url:
https://doi.org/10.1038/nmeth.4346.

Lim, Sungbin et al. (2023). “Score-based Generative Modeling through Stochastic Evolution
Equations in Hilbert Spaces”. In: Advances in Neural Information Processing Systems.
Ed. by A. Oh et al. Vol. 36. Curran Associates, Inc., pp. 37799–37812. url: https://
proceedings.neurips.cc/paper_files/paper/2023/file/76c6f9f2475b275b92d03a83ea270af4-
Paper-Conference.pdf.

Liu, Haotian et al. (2023). Visual Instruction Tuning. arXiv: 2304.08485 [cs.CV].
Liu, Zhi-Gang and Matthew Mattina (July 2019). “Learning Low-precision Neural Networks

without Straight-Through Estimator (STE)”. In: Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-19. International Joint Confer-
ences on Artificial Intelligence Organization, pp. 3066–3072. doi: 10.24963/ijcai.2019/
425. url: https://doi.org/10.24963/ijcai.2019/425.

Lucas, Thomas et al. (2022). “PoseGPT: Quantization-based 3D Human Motion Generation
and Forecasting”. In: European Conference on Computer Vision (ECCV).

Maddison, C, A Mnih, and Y Teh (2017). “The concrete distribution: A continuous relaxation
of discrete random variables”. In: International Conference on Learning Representations,
pp. 1–20.

Mahmood, Naureen et al. (Oct. 2019). “AMASS: Archive of Motion Capture as Surface
Shapes”. In: International Conference on Computer Vision, pp. 5442–5451.

Martinez, Julieta, Michael J. Black, and Javier Romero (2017). On human motion prediction
using recurrent neural networks. arXiv: 1705.02445 [cs.CV].

Murphy, Kevin P. (2022). Probabilistic Machine Learning: An introduction. MIT Press. url:
probml.ai.

https://api.semanticscholar.org/CorpusID:15059668
https://api.semanticscholar.org/CorpusID:15059668
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://arxiv.org/abs/2210.02303
http://jmlr.org/papers/v6/hyvarinen05a.html
http://jmlr.org/papers/v6/hyvarinen05a.html
https://doi.org/10.1109/IEEESTD.1985.82928
https://arxiv.org/abs/1611.01144
https://doi.org/10.1146/annurev-conmatphys-062910-140506
https://doi.org/10.1146/annurev-conmatphys-062910-140506
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140506
https://arxiv.org/abs/2306.14795
https://arxiv.org/abs/2306.14795
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://doi.org/10.1038/nmeth.4346
https://doi.org/10.1038/nmeth.4346
https://proceedings.neurips.cc/paper_files/paper/2023/file/76c6f9f2475b275b92d03a83ea270af4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/76c6f9f2475b275b92d03a83ea270af4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/76c6f9f2475b275b92d03a83ea270af4-Paper-Conference.pdf
https://arxiv.org/abs/2304.08485
https://doi.org/10.24963/ijcai.2019/425
https://doi.org/10.24963/ijcai.2019/425
https://doi.org/10.24963/ijcai.2019/425
https://arxiv.org/abs/1705.02445
probml.ai

Bibliography 76

Murphy, Kevin P. (2023). Probabilistic Machine Learning: Advanced Topics. MIT Press. url:
http://probml.github.io/book2.

Nakkiran, Preetum et al. (2024). “Step-by-Step Diffusion: An Elementary Tutorial”. In: ArXiv
abs/2406.08929. url: https://api.semanticscholar.org/CorpusID:270440143.

Neal, R.M. (2001). “Statistics and Computing”. In: vol. 11. Springer. Chap. Annealed impor-
tance sampling, 125–139. url: https://doi.org/10.1023/A:1008923215028.

Nichol, Alex et al. (2022). GLIDE: Towards Photorealistic Image Generation and Editing with
Text-Guided Diffusion Models. arXiv: 2112.10741 [cs.CV].

Nichol, Alexander Quinn and Prafulla Dhariwal (2021). “Improved Denoising Diffusion Prob-
abilistic Models”. In: Proceedings of the 38th International Conference on Machine Learn-
ing. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine Learning Re-
search. PMLR, pp. 8162–8171. url: https://proceedings.mlr.press/v139/nichol21a.
html.

Nualart, David and Marta. Sanz-Solé (1990). Curs de probabilitats. cat. Estadística y análisis
de datos ; 5. Barcelona: PPU. isbn: 8476657188.

Oord, Aaron van den, Oriol Vinyals, and Koray Kavukcuoglu (2017). “Neural Discrete Rep-
resentation Learning”. In: Advances in Neural Information Processing Systems. Ed. by I.
Guyon et al. Vol. 30. Curran Associates, Inc. url: https://proceedings.neurips.cc/
paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf.

Pavliotis, Grigorios A. (2014). Stochastic Processes and Applications: Diffusion Processes, the
Fokker-Planck and Langevin Equations. Vol. 60. Texts in Applied Mathematics. New York,
NY: Springer. isbn: 978-1-4939-1322-0. doi: 10.1007/978-1-4939-1323-7.

Plappert, Matthias, Christian Mandery, and Tamim Asfour (Dec. 2016). “The KIT Motion-
Language Dataset”. In: Big Data 4.4, 236–252. issn: 2167-647X. doi: 10.1089/big.2016.
0028. url: http://dx.doi.org/10.1089/big.2016.0028.

Podell, Dustin et al. (2023). SDXL: Improving Latent Diffusion Models for High-Resolution
Image Synthesis. arXiv: 2307.01952 [cs.CV].

Qi, Chenyang et al. (2023). FateZero: Fusing Attentions for Zero-shot Text-based Video Edit-
ing. arXiv: 2303.09535 [cs.CV].

Rombach, Robin et al. (2022). “High-Resolution Image Synthesis With Latent Diffusion Mod-
els”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 10684–10695.

Rumelhart, David E. and James L. McClelland (1987). “Learning Internal Representations by
Error Propagation”. In: Parallel Distributed Processing: Explorations in the Microstructure
of Cognition: Foundations, pp. 318–362.

Sauer, Axel et al. (2023). Adversarial Diffusion Distillation. arXiv: 2311.17042 [cs.CV].
Shiryayev, A. N. (1992). “On Analytical Methods In Probability Theory”. In: Selected Works

of A. N. Kolmogorov: Volume II Probability Theory and Mathematical Statistics. Ed. by
A. N. Shiryayev. Dordrecht: Springer Netherlands, pp. 62–108. isbn: 978-94-011-2260-3.
doi: 10.1007/978-94-011-2260-3_9. url: https://doi.org/10.1007/978-94-011-
2260-3_9.

Sohl-Dickstein, Jascha et al. (2015). “Deep Unsupervised Learning using Nonequilibrium Ther-
modynamics”. In: Proceedings of the 32nd International Conference on Machine Learning.
Ed. by Francis Bach and David Blei. Vol. 37. Proceedings of Machine Learning Research.
Lille, France: PMLR, pp. 2256–2265. url: https://proceedings.mlr.press/v37/sohl-
dickstein15.html.

Song, Yang and Stefano Ermon (2019a). “Generative Modeling by Estimating Gradients of
the Data Distribution”. In: Advances in Neural Information Processing Systems. Ed. by
H. Wallach et al. Vol. 32. Curran Associates, Inc. url: https://proceedings.neurips.
cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf.

http://probml.github.io/book2
https://api.semanticscholar.org/CorpusID:270440143
https://doi.org/10.1023/A:1008923215028
https://arxiv.org/abs/2112.10741
https://proceedings.mlr.press/v139/nichol21a.html
https://proceedings.mlr.press/v139/nichol21a.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://doi.org/10.1007/978-1-4939-1323-7
https://doi.org/10.1089/big.2016.0028
https://doi.org/10.1089/big.2016.0028
http://dx.doi.org/10.1089/big.2016.0028
https://arxiv.org/abs/2307.01952
https://arxiv.org/abs/2303.09535
https://arxiv.org/abs/2311.17042
https://doi.org/10.1007/978-94-011-2260-3_9
https://doi.org/10.1007/978-94-011-2260-3_9
https://doi.org/10.1007/978-94-011-2260-3_9
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf

Bibliography 77

Song, Yang and Stefano Ermon (2019b). “Generative Modeling by Estimating Gradients of
the Data Distribution”. In: Advances in Neural Information Processing Systems. Ed. by
H. Wallach et al. Vol. 32. Curran Associates, Inc. url: https://proceedings.neurips.
cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf.

Spinney, Richard and Ian Ford (Feb. 2013). Fluctuation Relations: A Pedagogical Overview.
doi: 10.1002/9783527658701.ch1. url: http://dx.doi.org/10.1002/9783527658701.
ch1.

Steck, Harald (2020). “Autoencoders that don't overfit towards the Identity”. In: Advances
in Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran
Associates, Inc., pp. 19598–19608. url: https://proceedings.neurips.cc/paper_
files/paper/2020/file/e33d974aae13e4d877477d51d8bafdc4-Paper.pdf.

Vincent, Pascal (2011). “A Connection Between Score Matching and Denoising Autoencoders”.
In: Neural Computation 23.7, pp. 1661–1674. doi: 10.1162/NECO_a_00142.

Wang, Ze et al. (2023). “Binary Latent Diffusion”. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 22576–22585.

Welling, Max and Yee Whye Teh (2011). “Bayesian Learning via Stochastic Gradient Langevin
Dynamics”. In: Proceedings of the 28th International Conference on Machine Learning
(ICML-11). Ed. by Lise Getoor and Tobias Scheffer. ICML ’11. Bellevue, Washington,
USA: ACM, pp. 681–688. isbn: 978-1-4503-0619-5.

Xu, Jiale et al. (2023). Dream3D: Zero-Shot Text-to-3D Synthesis Using 3D Shape Prior and
Text-to-Image Diffusion Models. arXiv: 2212.14704 [cs.CV].

Yang, Ling et al. (2023). “Diffusion Models: A Comprehensive Survey of Methods and Ap-
plications”. In: ACM Comput. Surv. 56.4. issn: 0360-0300. doi: 10.1145/3626235. url:
https://doi.org/10.1145/3626235.

Yang, Ruihan, Prakhar Srivastava, and Stephan Mandt (2022). Diffusion Probabilistic Mod-
eling for Video Generation. arXiv: 2203.09481 [cs.CV].

Zhang, Cheng et al. (2019). “Advances in Variational Inference”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 41.8, pp. 2008–2026. doi: 10.1109/TPAMI.
2018.2889774.

Zhang, Chenshuang et al. (2023a). A Survey on Audio Diffusion Models: Text To Speech
Synthesis and Enhancement in Generative AI. arXiv: 2303.13336 [cs.SD].

Zhang, Jianrong et al. (2023b). T2M-GPT: Generating Human Motion from Textual Descrip-
tions with Discrete Representations. arXiv: 2301.06052 [cs.CV].

Zhang, Lvmin, Anyi Rao, and Maneesh Agrawala (2023). Adding Conditional Control to Text-
to-Image Diffusion Models. arXiv: 2302.05543 [cs.CV].

Zhu, Wentao et al. (2023). Human Motion Generation: A Survey. arXiv: 2307.10894 [cs.CV].

https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://doi.org/10.1002/9783527658701.ch1
http://dx.doi.org/10.1002/9783527658701.ch1
http://dx.doi.org/10.1002/9783527658701.ch1
https://proceedings.neurips.cc/paper_files/paper/2020/file/e33d974aae13e4d877477d51d8bafdc4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e33d974aae13e4d877477d51d8bafdc4-Paper.pdf
https://doi.org/10.1162/NECO_a_00142
https://arxiv.org/abs/2212.14704
https://doi.org/10.1145/3626235
https://doi.org/10.1145/3626235
https://arxiv.org/abs/2203.09481
https://doi.org/10.1109/TPAMI.2018.2889774
https://doi.org/10.1109/TPAMI.2018.2889774
https://arxiv.org/abs/2303.13336
https://arxiv.org/abs/2301.06052
https://arxiv.org/abs/2302.05543
https://arxiv.org/abs/2307.10894

	Abstract
	Acknowledgements
	Introduction and Motivation
	Probabilistic Modelling
	Probability Space
	Conditional Probability
	Random Variables
	Modelling

	Generative Models
	The Likelihood Maximization Approach

	Latent Space
	Autoencoders
	Variational Autoencoders
	Variational Inference
	Variational Autoencoders

	Discrete Variational Autoencoders
	The Straight-Through Estimator
	Gumbel Softmax
	Binary Representations

	Diffusion Models
	Discrete Markov Chains
	Discrete-time Diffusion Models
	Forward Process
	Reverse Process
	Training Objective
	Discrete-time Gaussian Diffusion Models
	Discrete-time Bernoulli Diffusion Models

	Energy-Based Models
	Langevin Dynamics
	Score Matching

	Continuous-Time Diffusion Models
	Conditioning and Guidance Techniques
	Latent Diffusion Models
	Binary Latent Diffusion Models

	Conclusion
	Application and Implementation
	Problem Statement: Text-to-Motion Generation
	Motion Binary Variational Autoencoder
	Frame-wise binary quantization
	Some-frames binary quantization
	Full-sequence binary quantization

	Motion Binary Latent Diffusion Model
	Sampling

	Experimental Setup and Results
	Text-to-Motion Datasets
	Evaluation Metrics
	Implementation details
	Results
	Comparisons on MBVAE
	Exploration on MBLD

	Bibliography

