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Shell-model study of 28Si: Coexistence of oblate, prolate, and superdeformed shapes
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We study the shape coexistence in the nucleus 28Si with the nuclear shell model using numerical diagonal-
izations complemented with variational calculations based on the projected generator-coordinate method. The
theoretical electric quadrupole moments and transitions as well as the collective wave functions indicate that the
standard USDB interaction in the sd shell describes well the ground-state oblate rotational band, but misses the
experimental prolate band. Guided by the quasi-SU(3) model, we show that the prolate band can be reproduced
in the sd shell by reducing the energy of the 0d3/2 orbital. Alternatively, in the extended sd p f configuration
space a modification of the SDPF-NR interaction that accommodates cross-shell excitations also reproduces the
oblate and prolate bands. Finally, we address the possibility of superdeformation in 28Si within the sd p f space.
Our results indicate that superdeformed structures appear at about 18–20 MeV.
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I. INTRODUCTION

The intricate character of nucleon-nucleon forces com-
bined with the complex nature of quantum many-body
systems leads to the emergence of a diverse array of collective
structures in nuclei. Driven by the quadrupole-quadrupole
component of the nuclear force, deformations are notably
prevalent in the nuclear chart for nuclei away from magic
numbers. Moreover, within a limited energy range of a few
MeV, distinct collective structures can appear in the same
nucleus, a phenomenon usually referred to as shape coex-
istence [1–3]. For instance, medium-mass and heavy nuclei
such as 16O [4,5], 40Ca [6], 56Ni [7], or 186Pb [8], among many
others [9–11], show well-established spherical and differently
deformed states at low energies.

The 28Si nucleus, with Z = 14 protons and N = 14 neu-
trons, fills exactly half of the sd shell in the naive shell-model
scheme [12,13]. Specifically, the 0d5/2 orbital—using the con-
ventional nl j notation where n, l, j are the radial, orbital, and
total angular momentum quantum numbers, respectively—is
filled. This configuration leads to a spherical 0+

gs ground state.
However, experimental data indicates the presence of a rota-
tional band on top of the ground state with oblate deformation
[14]. Alternatively, following Elliott’s SU(3) framework [15]
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based on the quadrupole-quadrupole interaction within the
sd shell, the 28Si ground state would exhibit a degenerate
prolate/oblate deformation [16]. This is also in contrast to
experiment, because the prolate rotational band emerges at
an excitation energy of ≈ 6.5 MeV. Furthermore, the oblate
ground state exhibits a β vibration with 0+

2 band head at
≈ 5 MeV. Figure 1(a) presents this coexistence of oblate
and prolate collective structures. The difficulty to describe
these with simple models underscores the complex nature
of 28Si.

Previous theoretical works have attempted at describing
the shape coexistence in 28Si. While algebraic SU(3)-based
approaches predict the main features of the oblate and prolate
deformed bands [16,17], early shell-model studies focus on
the lowest-energy levels of the oblate ground-state band and
its β vibration [18,19]. Likewise, to the best of our knowledge,
more recent shell-model investigations using the phenomeno-
logical USDB [20] and several ab initio interactions based
on the no-core shell model [21,22] and valence-space in-
medium renormalization group (VS-IMSRG) approach [23]
also limit their scope to the excitation spectrum and few
electromagnetic transitions between oblate low-lying states.
In addition, 28Si has been recently studied with the an-
tisymmetrized molecular dynamics approach [24] and the
Hartree-Fock-Bogoliubov (HFB) plus quasiparticle random-
phase approximation method [25]. In all these cases, a quality
description of the measured nuclear structure of 28Si has
been shown to be challenging. First, the ground-state oblate
rotational band does not behave as an ideal rotor, a feature
typically not captured in these studies. Additionally, the de-
formation of the oblate band is either overestimated [21,22]
or underestimated [24,25]. Finally, some works do not find a
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FIG. 1. Band structure of the lowest-lying positive parity states of 28Si: (a) experiment [14]; (b) results for the USDB interaction with
diagonalization (left side) and the variational PGCM (right side); (c) results for the USDB-MOD interaction with diagonalization (left) and the
PGCM (right). The arrows indicate inband B(E2) transition strengths (in e2 fm4), with larger values associated to more deformed shapes.

clear prolate band [21,22,25], while in others its collectivity is
much larger than in experiment [24].

Furthermore, Ref. [24] predicted the existence of a su-
perdeformed shape in 28Si, spurring experimental efforts that
so far have not found such extreme deformation [26–28].
Superdeformed structures have been identified in several
medium-mass sd p f -shell nuclei, such as 24Mg [29], 36Ar
[30], 40Ar [31], 40Ca [6], and 42Ca [32], which are gener-
ally well described by theoretical shell-model [32–35] and
antisymmetrized molecular dynamics [36,37] studies. As in
28Si, a so far unmeasured superdeformed band has been
predicted in 32S, in this case based on a projected HFB
calculation [38].

Overall, a unified description of all collective structures
in 28Si presents a challenge for nuclear theory. We aim to
gain insight into the shape coexistence of this nucleus guided
by analytical models based on the SU(3) symmetry [15,39]
and employing state-of-the-art shell-model calculations. The
latter include standard diagonalizations [40] complemented
with variational calculations based on beyond-mean-field
techniques [41,42]. In both approaches, we use standard
phenomenological nuclear interactions tailored for the shell-
model configuration space.

The paper is organized as follows. Section II introduces
basic notions to characterize deformation in nuclei, and dis-
cusses the analytical SU(3)-based models and the numerical
shell-model calculations performed in this work. The latter
include both standard diagonalizations, outlined in Sec. II C 1,
and variational calculations based on the projected generator-
coordinate method (PGCM), discussed in Sec. II C 2. We
present our theoretical results in Sec. III, covering the oblate
ground-state and β-vibration bands in Sec. III A, the pro-
late band in Sec. III B, and possible superdeformed states in
Sec. III C. Finally, Sec. IV summarizes our main results and
provides an outlook for future work.

II. THEORETICAL FRAMEWORK

A. Deformation in nuclei

A prime signature of nuclear deformation is the appear-
ance of structured bands due to the rotation of a permanently
deformed shape in the intrinsic frame of reference. In the
ideal rotor limit and assuming axial symmetry, these bands
consist of levels with constant moment of inertia, I, and
energies related to its total angular momentum, J , such that
EJ = J (J + 1)/(2I ). For rotational bands with Jπ = 0+ band
heads, where π is the parity of the state, the levels can only
adopt even values Jπ = 0+, 2+, 4+ . . ., due to symmetry re-
strictions [43].

The electric quadrupole moment also characterizes nuclear
deformation. In the laboratory frame, it is defined by [44]

Qspec(J ) =
√

16π

5

1√
2J + 1

〈JJ20|JJ〉〈J||Q20||J〉, (1)

where the operator Q20 = ∑A
i=1 ei r2

i Y20(θi, φi ) sums over
the A = N + Z nucleons in the nucleus and depends on
the charges ei, the spherical harmonic Y20, and the spher-
ical coordinates of the nucleons: ri, θi, φi. The double bar
〈J||Q20||J〉 indicates a reduced matrix element and 〈JJ20|JJ〉
is a Clebsch-Gordan coefficient in 〈 j1 j2m1m2| jm〉 notation,
where m is the projection of the total angular momentum
[45]. The spectroscopic quadrupole moment is related to the
intrinsic one by

Q0,s = −(2J + 3)

J
Qspec(J ). (2)

A positive value of the intrinsic quadrupole moment rep-
resents a prolate shape while a negative one corresponds to
an oblate shape. A complementary measure of the nuclear
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deformation comes from B(E2) transition strengths:

B(E2; Ji −→ Jf ) = 1

2Ji + 1
〈Jf ||Q20||Ji〉2, (3)

where Ji is the angular momentum of the initial state and Jf

that of the final one. For in-band states, the B(E2)s are highly
enhanced, while out-band transition strengths are generally
suppressed if the corresponding intrinsic states have different
deformation. The intrinsic quadrupole moment, in the limit of
large axial deformation, can also be extracted from in-band
B(E2) transition strengths through the relation

Q0,t = ±
√

16πB(E2, J → J − 2)

5|〈J200|J − 2 0〉|2 . (4)

For a well-established rotational band, a common intrinsic
quadrupole moment must emerge from static and transition
quadrupole moments, Q0,s ≈ Q0,t . Moreover, B(E2) transi-
tion strengths may be fragmented across several final states.
For an initial state, we also consider the quadrupole obtained
from the sum rule related to the expectation value of the
squared quadrupole operator:

〈Q2〉 =
∑

f 〈Jf ||Q20||Ji〉2

2Ji + 1
, Q0,SR =

√
16π

5
〈Q2〉. (5)

Thus, a rotational band is characterized by a sequence of ex-
cited levels with energies proportional to J (J + 1), connected
by strong B(E2) transitions with a consistent value of Qspec,
which is close to the quadrupole sum rule value. Nonetheless,
the notion of nuclear shape has to be taken with caution
as fluctuations of expectation values of quadrupole operators
may prove significant [46].

B. SU(3) and quasi-SU(3) models

In the naive shell model, the nucleus is bound through a
spherical mean-field Hamiltonian [12]:

H0 = �p 2

2m
+ �r 2

2mb4
+ A �l2 + B �l · �s, (6)

which features a harmonic oscillator with length parameter
b, complemented by orbital angular momentum (�l) and spin-
orbit (�l · �s) terms, weighted by coefficients A and B. Figure 2
illustrates that in this scheme, the 14 protons and 14 neutrons
in 28Si occupy single-particle states up to filling the 0d5/2

orbital. This configuration represents a spherical state, not
observed experimentally.

In the shell-model framework, the deformation of a given
nucleus can be accommodated within Elliott’s SU(3) model
[15], which considers a Hamiltonian without spin-orbit term
(B = 0) restricted to a major shell with an attractive (χ > 0)
quadrupole-quadrupole interaction:

H = H0 − χ (Q2 · Q2). (7)

Thus, by maximizing the quadrupole moment, nuclei can
lower their energy. For 28Si, in the naive shell model the s and
p shells are full, leading to a spherical configuration with a
vanishing quadrupole moment. Thus, the associated deforma-
tion for 28Si can be obtained by filling the quadrupole diagram

FIG. 2. Shell-model single-particle orbitals. Solid circles rep-
resent the naive shell-model filling for the 28Si ground state, and
colored boxes highlight the two valence spaces considered in this
work: the sd shell (red) and the sd p f space (green).

for the sd shell in Fig. 3(a), where each level—fourfold
degenerated in spin and isospin projections—represents the
contribution of a nucleon to the (dimensionless) quadrupole
moment of the nucleus. Prolate shapes arise from filling lev-
els from above and oblate ones from below. The quadrupole
moment of a given configuration is the sum of the individual
nucleon contributions:

Q0 =
∑

i

(ei Q0,i ± 3 ẽ) b2, (8)

where we add (subtract) 3 ẽ b2 units for prolate (oblate) shapes
to match with ideal rotors [47,48]. We choose the electric
charges en = 0.46e for neutrons and ep = 1.31e for protons
[49], where e is the elementary electric charge, and we define
the average charge of a nucleon as ẽ = (ep + en)/2 	 0.89e.
The oscillator length is approximated by [50]

b2 	 41.4

45A−1/3 − 25A−2/3
fm2. (9)

For 28Si, the two fillings give the same value, |Q0| = 27 ẽ b2,
therefore predicting both shapes to be degenerate in energy.
In contrast, the experimental ground state is oblate and the
prolate band head appears ≈ 6.5 MeV higher.

However, as mentioned above, the SU(3) model neglects
the strong spin-orbit nuclear force. More complex SU(3)-
based models have been suggested to account better for
rotational bands in sd-shell nuclei [51]. Here we use the
quasi-SU(3) model [39], which incorporates the spin-orbit
splitting, and exploits the fact that the � j = 2 single-particle
matrix elements of the Q2 operator are much larger than those
with � j = 1. The quasi-SU(3) model highlights the collec-
tivity driven by � j = 2 orbitals, the 0d5/2 1s1/2 doublet in
the case of the sd shell. Figure 3(b) shows the corresponding
quadrupole diagram for this pair of orbitals. The quasi-SU(3)
scheme treats other single-particle orbitals separately, with Q0
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FIG. 3. Quadrupole diagrams for the SU(3) variants considered in this work: SU(3) in the (a) sd and (d) p f shells, quasi-SU(3) for the
(b) 0d5/2 1s1/2 and (e) 0 f7/2 1p3/2 orbital pairs, and the individual (c) 0d3/2 and (f) 0 f7/2 single-particle orbitals. The dimensionless quadrupole
moment Q0/(eib2) is given for each 2|m| value of the total angular momentum projection. Oblate states are obtained by filling the diagrams
from below and prolate ones from above.

given by [47]

Q0 =
∑

m

(2n + l + 3/2)
j( j + 1) − 3m2

2 j( j + 1)
ei b2. (10)

Figure 3(c) allows one to obtain the contribution of the 0d3/2

orbital to the quadrupole moment.
Table I lists the quadrupole moments, compared to ex-

perimental data, for different 0d5/2 1s1/2 + 0d3/2 quasi-SU(3)
configurations. The notation np − nh denotes the promotion
of n nucleons from the 0d5/2 1s1/2 orbitals to the 0d3/2 one.
For example, we fill Fig. 3(b) with 12 nucleons from below
to study the oblate 0p − 0h configuration, which leads to a
quadrupole moment Q0 = −17 ẽ b2 = −51.4 e fm2. In con-
trast, for a prolate 4p − 4h configuration, we fill Figs. 3(b) and
3(c) with eight and four nucleons from above, respectively,
to reach Q0 = 24.6 ẽ b2 = 74.4 e fm2. The large Q0 value
for the oblate 0p − 0h configuration is remarkable, because
just by populating the 1s1/2 orbital the nucleus gains much
correlation energy with respect to the closed 0d5/2 spherical

TABLE I. 28Si quadrupole moments for the experimental oblate
and prolate bands, from B(E2) transition strengths (top row),
compared to the predictions for np − nh configurations in the quasi-
SU(3) and SU(3) models in the sd shell.

Q0,t (e fm2)

Oblate Prolate

Experiment [14] −57.3 ± 0.7 72 ± 7
Quasi-SU(3): 0d5/2 1s1/2 + 0d3/2 Q0 (e fm2)

0p − 0h −51.4 33.3
2p − 2h −62.9 53.9
4p − 4h −74.4 74.4
6p − 6h −53.9 62.9
8p − 8h −33.3 51.4
SU(3): sd −81.7 81.7

picture. In fact, this gain overcomes the energy difference be-
tween the 1s1/2 and 0d5/2 orbitals, so that the system gravitates
towards an oblate deformed shape instead of the spherical one.
We note that Ref. [52] provides an alternative argument to
motivate the oblate shape of silicon based on the mixing be-
tween 0d5/2 and 1s1/2 orbital configurations. The experimental
value is similar although somewhat larger than the oblate
quasi-SU(3) prediction: Q0,t = −57.3 e fm2 [14], suggesting
that other np − nh contributions are needed to achieve the
experimental deformation.

The results of Table I provide insights on the interplay
between excitations and deformation. On the one hand, in
the quasi-SU(3) scheme, the 0p − 0h prolate configuration
is disfavored due to its reduced quadrupole moment. On the
other hand, the experimental prolate band is predicted to
be dominated by 4p − 4h configurations, because they show
the largest Q0 value. However, 2p − 2h states—which require
less single-particle energy—may contribute as well, since the
experimental Q0,t value is in between those of 2p − 2h and
4p − 4h configurations.

C. Nuclear shell model

Guided by the findings of Sec. II B, we use the nuclear shell
model [33,53,54] to study quantitatively the shape coexistence
of differently deformed states in 28Si. Our shell-model calcu-
lations cover two alternative configuration spaces, shown in
Fig. 2: the sd shell, including the neutron and proton 0d5/2,
1s1/2, and 0d3/2 single-particle orbitals, and the sd p f space,
which additionally includes the 0 f7/2, 1p3/2, 0 f5/2, and 1p1/2

orbitals. In both cases there is a 16O core. Thus, we are left
with Nv = Zv = 6 valence neutrons and protons in the config-
uration space.

The nuclear many-body problem to solve reads

Heff|�eff〉 = E |�eff〉, (11)

where Heff is the effective Hamiltonian suited for the con-
figuration space. Here we use USDB [20], the interaction of
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choice in the sd shell. We also introduce a slightly modified
Hamiltonian in this space, USDB-MOD, as discussed later.
Moreover, we employ a modification of the SDPF-NR [55]
interaction, which gives a good description of neutron-rich
Si isotopes in the sd p f configuration space. In order to get
additional insights and access larger configuration spaces than
in usual shell-model studies, we complement standard shell-
model diagonalizations with a variational approach based on
the PGCM [41,42].

1. Diagonalization

The standard solution of the shell-model many-body prob-
lem involves the diagonalization of Heff in the many-body
basis of Slater determinants in the configuration space. There-
fore, nuclear states are linear combinations,

|�eff〉 =
∑

i

ai|	i〉, (12)

with amplitudes ai, of Slater determinants, |	i〉,
|	i〉 = c†

i1c†
i2 . . . c†

iAv
|0〉, (13)

where |0〉 is the bare vacuum, and Slater determinants are
built with one creation operator c†

l —with corresponding an-
nihilation operator cl — for each of the Av nucleons in the
configuration space. These states have good quantum numbers
Jπ , according to the symmetries of Heff.

We perform diagonalizations in the sd and sd p f spaces
using the Lanczos method through the ANTOINE code [40,56].
These results can be considered as an exact solution, since we
impose that the eigenvalues of the Hamiltonian are converged
to better than 0.5 keV. However, the sd p f space leads to a con-
figuration size of 8.2×1011 Slater determinants for 28Si, which
is beyond our diagonalization capabilities. In this space, we
truncate the configurations considered in our diagonalizations,
see Secs. III B and III C for details.

2. Variational PGCM

We complement our results with a variational solution
of the nuclear shell-model many-body problem based on
beyond-mean-field methods. This framework is well suited
for very large configuration spaces, as it finds an approxima-
tion to the exact nuclear state, and then restores the quantum
symmetries broken at the mean-field level. Here we study the
shape coexistence of 28Si with the PGCM using the TAURUS

suite [41,42], which has been previously applied to other
medium-mass nuclei in good agreement with shell-model di-
agonalizations [57–59]. Similar approaches have been applied
to medium-mass and heavy nuclei [60–62], including the dis-
crete nonorthogonal shell model [63–65].

The PGCM uses a set of reference states {φ} to construct
the many-body basis. We choose the Bogoliubov quasiparticle
states that are vacua of the Bogoliubov quasiparticle operators
{βk, β

†
k } defined through the unitary transformation:

β
†
k =

∑
l

Ulkc†
l + Vlkcl , (14)

βk =
∑

l

U ∗
lkcl + V ∗

lkc†
l , (15)

where Ulk and Vlk are the variational parameters. To ensure
that particle number is conserved on average in the HFB
states, we employ two Lagrange multipliers, λN and λZ , in
the Hamiltonian:

H′
eff = Heff − λZOZ − λN ON −

∑
i

λiOi, (16)

where OZ and ON are particle number operators for pro-
ton and neutron spaces, respectively. Other constraints are
implemented through the additional operators, Oi, and La-
grange multipliers, λi. More specifically, we also constrain the
quadrupole moment operators, as we are interested in nuclear
deformation. However, rather than constraining directly the
Q2μ = r2Y2μ(θ, φ) operators, we use the deformation param-
eters β and γ , defined as [41]

β = 4π

3R2
0A

emass

e

√
〈Q20〉2 + 2〈Q22〉2, (17)

γ = arctan

(√
2〈Q22〉
〈Q20〉

)
, (18)

where Q2μ = (Q2μ + Q2−μ)/2 is the Hermitian average of the
quadrupole moment operator, emass = ep + en = 1.77e and
R0 = 1.2A1/3 fm represents the nuclear radius without defor-
mation. Here, β denotes the magnitude of the deformation
and γ , its type [44]. If Q21 = 0, which we impose as an ad-
ditional constraint, γ = 0◦ represents a prolate deformation,
whereas γ = 60◦ indicates an oblate shape. When comparing
to experimental data, we also use the second-order definition
β = β2(1 + 0.36β2) [3].

The variational parameters Ulk and Vlk can be extracted
by minimizing either the HFB energy or the variation after
particle-number projection (VAP) energy:

EVAP(φ) = 〈φ|HeffPN PZ |φ〉
〈φ|PN PZ |φ〉 −

∑
i

〈φ|λiOi|φ〉, (19)

where PN and PZ are the neutron and proton number projec-
tors [66]. The VAP minimization, albeit computationally more
demanding, provides wave functions with well-defined proton
and neutron numbers. This choice is variationally more gen-
eral and captures more pairing correlations [67], which leads
to lower energies, closer to the exact solution. In this work, we
show results calculated with VAP reference states, although
the HFB approach yields similar deformation properties. We
consider Bogoliubov quasiparticle states that have (positive)
parity symmetry and we do not consider proton-neutron
mixing.

Next, we still need to project the reference states obtained
from the minimization process on neutron and proton numbers
[57] and total angular momenta,

|φNZJ〉 = PN PZ PJ
MK |φ〉, (20)

where PJ
MK projects onto total angular momentum J with

third components M and K in the laboratory and intrinsic
frames of reference, respectively [66]. Finally, we consider
configuration mixing through the GCM:∣∣�NZJM

σ,GCM

〉 =
∑
qK

f NZJM
σ ;qK |φNZJ (q)〉, (21)
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using the deformation parameters as the generator coordinates
q ≡ β, γ . The GCM considers the nuclear wave function as
a linear combination of (projected) reference states spanning
some collective degree of freedom, q. Nevertheless, the initial
reference states are not necessarily orthogonal. Thus, it is
necessary to find a set of linearly independent wave functions,
denoted as the natural basis. This is achieved by diagonalizing
the overlap matrix defined as [59]

N 
qKq′K ′ = 〈φ(q)|PN PZ PJ

KK ′ |φ(q′)〉, (22)

where  ≡ (NZJM ), and taking only the eigenstates u
λ;qK

with eigenvalues above a certain tolerance, n
λ � ε. With this,

the natural basis states are

∣∣�
λ

〉 =
∑
q′K ′

u
λ;q′K ′(

n
λ

)1/2 PN PZ PJ
MK |φ(q)〉, (23)

and the GCM wave function in the natural space is∣∣�
σ,GCM

〉 =
∑

λ

G
σ ;λ

∣∣�
λ

〉
, (24)

with coefficients G
σ ;λ determined by solving the Hill-

Wheeler-Griffin eigenvalue equation,∑
λ′

〈
�

λ

∣∣Heff

∣∣�
λ′
〉
G

σ ;λ′ = E
σ G

σ ;λ. (25)

These combined techniques are very useful for a direct
exploration of quadrupole properties through the collective
wave functions,

∣∣F
σ (q)

∣∣2 =
∣∣∣∣∣
∑
Kλ

G
σ ;λu

λ;qK

∣∣∣∣∣
2

, (26)

which can be interpreted as the weight—not the probability,
because the basis is not orthogonal—of each projected VAP
wave function in the configuration-mixed state. Nonetheless,
to extract firm conclusions the information given by the col-
lective wave functions must be consistent with the intrinsic
quadrupole moments obtained from B(E2) transitions and
quadrupole moments Qspec computed within the PGCM using
Eq. (1).

III. RESULTS

We now discuss our findings for each of the main collective
structures in 28Si: oblate, prolate and superdeformed states.
Whenever possible, we compare the results obtained with
the variational approach and the diagonalization, discussing
the key strengths and weaknesses of each method. In addi-
tion, the corresponding out-band B(E2) transitions, including
those between oblate and prolate states, are collected in the
Appendix.

A. Oblate band and β vibration

We begin by studying the oblate band with the 28Si
ground state as band head. Figure 1 compares the exper-
imental data [Fig. 1(a)] with the band structure obtained
with the USDB interaction using the diagonalization and
the PGCM results [Fig. 1(b)]. Both calculations agree very

TABLE II. Quadrupole moments, Qspec, for the lowest-energy
oblate and prolate 2+ states in 28Si. Experimental values are com-
pared to the PGCM and diagonalization (Diag.) results for the
USDB, USDB-MOD and SDPF-NR* interactions.

Qspec (e fm2)

USDB USDB-MOD SDPF-NR* Experiment

PGCM Diag. PGCM Diag. PGCM Diag.

2+
obl 18.5 18.5 19.4 19.2 21.4 19.0 16 ± 3 [68]

2+
pro −5.0 −7.9 −19.2 −19.2 −16.9 −19.6

well with experiment, showing a clear rotational band with
energies approximately proportional to J (J + 1) and strong
B(E2) transition strengths. In fact, the nonideal behavior of
the moment of inertia for the lowest-energy levels of the
band is well captured by the USDB interaction. Additionally,
the B(E2) transition strengths are comparable to the exper-
imental ones, albeit slightly larger. The same is true for the
USDB quadrupole moment Qspec(2+

1 ) = 18.5 e fm2 listed in
Table II. This is consistent with the B(E2, 2+

1 −→ 0+
gs) value,

which is compatible with the experimental quadrupole mo-
ment Qspec(2+

1 ) = 16 ± 3 e fm2 [68]. The electric quadrupole
moments and transitions obtained with the PGCM agree
very well with the exact results found by diagonalization.
Moreover, the absolute energy of the ground state is only
≈ 0.5 MeV higher than the one obtained in the diagonaliza-
tion, see Table III. The PGCM provides additional insights
on the structure of the oblate band. Figure 4 shows the total
energy surfaces of the reference states in a grid consisting of
63 VAP wave functions spanning the values of the deforma-
tion parameters 0.000 � β � 0.478 and 0◦ � γ � 60◦ with
spacing δβ 	 0.035 and δγ = 15◦. The absolute minimum of
both the unprojected surface [Fig. 4(a)] and the one projected
to Nv = 6, Zv = 6, and J = 0 [Fig. 4(e)] corresponds to an
oblate shape with β 	 0.44 (β2 	 0.39), which is consistent
with the calculated quadrupole moments and B(E2) strengths.
Figures 4(b), 4(c) and 4(d) also show the collective wave func-
tions of the three lowest-energy states of the oblate rotational
band including configuration mixing through the GCM as
discussed in Sec. II C 2. This is equivalent to the contributions
of each projected VAP wave function to the J = 0+

gs, 2+
1 , and

4+
1 mixed states. The common dominance of an oblate defor-

mation across the three states confirms their identification in
Fig. 1 as members of a well-established rotational band.

This picture is further supported by the occupation num-
bers obtained by the diagonalization. Table IV lists the values

TABLE III. 28Si ground-state energies relative to the 16O core
obtained by diagonalization and the PGCM.

0+
gs energy (MeV)

USDB USDB-MOD SDPF-NR*

Diagonalization −135.9 −137.6 −145.1
PGCM −135.4 −137.1 −136.2
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FIG. 4. 28Si reference-state total energy surfaces and PGCM collective wave functions for the USDB interaction. The energy surfaces are
(a) unprojected and (e) projected to Nv = 6, Zv = 6 and J = 0. The collective wave functions correspond to the lowest-energy 0+, 2+ and 4+

states with (b)–(d) oblate and (f)–(h) prolate shape.

for the band heads, but the occupation numbers are con-
sistent across the band: n(0d5/2) ≈ 9.3, n(1s1/2) ≈ 1.4, and
n(0d3/2) ≈ 1.3. On the one hand, the 0d5/2 orbital presents the
largest relative occupancy—n(0d5/2)/[2(2 j + 1)] 	 0.78—
due to the 21% contribution of closed 0d5/2 subshell. On
the other, the occupation numbers indicate that the ground
state is not entirely 0p − 0h as predicted by the quasi-
SU(3) model. Nonetheless, the relative occupancy of the 1s1/2

TABLE IV. Occupation numbers for 28Si, n(orbital), of the sd-
shell and summed p f -shell orbitals from diagonalization. The results
are for the bandheads of the oblate and prolate bands obtained with
the USDB, USDB-MOD, and SDPF-NR* interactions.

n(0d5/2) n(1s1/2) n(0d3/2) n(p f )

USDB
Oblate 9.32 1.43 1.25
Oblate vibration 9.41 1.46 1.13
Prolate 7.84 1.64 2.52

USDB-MOD
Oblate 8.74 1.58 1.68
Oblate vibration 8.86 1.40 1.74
Prolate 7.74 1.28 2.98

SDPF-NR*
Oblate 7.87 1.52 1.68 0.93
Oblate vibration 8.43 1.29 1.47 0.81
Prolate 6.79 1.50 2.71 1.00

orbital (1.4/4 = 0.35) is more than twice that of the 0d3/2

state (1.3/8 	 0.16). This difference is driven by quadrupole
correlations, since in 28Si the two orbitals have very similar ef-
fective single-particle energies [21]. The np − nh excitations
to the 0d3/2 orbital may account for the larger deforma-
tion obtained with the USDB interaction compared to the
quasi-SU(3) value for the quadrupole moment listed in
Table I.

Finally, for the β-vibration band the theoretical transition
strengths in Fig. 1 also agree well with experiment. Our
PGCM calculations support the interpretation of the first ex-
cited 0+

2 state, at an excitation energy of about 5 MeV, as the
band head of a β vibration of the oblate shape. Figure 5(a)
shows a collective wave function that is almost identical to
the ones for the ground state and for the associated rotational
band, depicted in Figs. 4(b), 4(c) and 4(d). Moreover, the
results in Table IV indicate that the occupation numbers of
the 0+

2 state and the ground state are very similar, further
supporting the idea that this band has a β-vibration nature.

B. Prolate band

In contrast with the oblate low-energy structure, a compar-
ison between Figs. 1(a) and 1(b) highlights that the prolate
band with band head at ≈ 6.5 MeV is not well described
by the USDB interaction. Even though in the diagonalization
the 0+

3 , 2+
3 , and 4+

3 states present an apparently rotational
band spacing—albeit with band head ≈ 1 MeV higher than
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FIG. 5. 28Si PGCM collective wave functions of 0+ β-vibration states for the (a) USDB, (b) USDB-MOD and (c) SDPF-NR* interactions.

in experiment—they are connected by much weaker transi-
tions, B(E2; 2+

3 −→ 0+
3 ) = 34 e2 fm4 and B(E2; 4+

3 −→ 2+
3 ) =

49 e2 fm4, than the measured B(E2; 4+
3 −→ 2+

3 ) = 150 ±
20 e2 fm4. Consistently, the quadrupole moment of the 2+

3
state, listed in Table II, does not correspond to a well-
developed prolate state either. The variational results in Fig. 1
and Table II also predict weak electric quadrupole transitions
between these states. Further, the PGCM illustrates even more
clearly the lack of a common structure: the collective wave
functions in Figs. 4(f), 4(g) and 4(h) indicate that the 0+

3
band head presents a larger deformation than the 2+

3 and
4+

3 states. This loss of deformation is consistent with the
quadrupole sum rule of the 0+

3 state, which yields an intrinsic
quadrupole moment Q0,SR = 71.7e fm2 (similar to the exper-
imental Q0,t = 72 ± 7e fm2), but which is fragmented across
several 2+ states. Therefore, even if, for convenience, we label
these USDB states in Fig. 1(b) and Table IV as prolate, they
do not show any feature of such deformed shape.

Nonetheless, the results of the quasi-SU(3) analysis sum-
marized in Table I suggest that a prolate structure can be
accommodated within the sd shell, provided that 2p − 2h
and 4p − 4h excitations to the 0d3/2 orbital do not have to
overcome a too large gap due to the orbital’s single-particle
energies. In order to favor these excitations—while leaving
the oblate rotational and vibrational bands unchanged—we
propose a slightly modified interaction, denoted as USDB-
MOD. We lower the single-particle energy for the 0d3/2 orbital
by 1.2 MeV, thus reducing the single-particle gap. The rest of
the USDB-MOD interaction is the same as USDB.

Figure 1(c) and Table II show the results obtained with the
new USDB-MOD interaction. Energywise the results are very
similar to the ones for USDB, only with the prolate band ap-
pearing at ≈ 1 MeV lower excitation energy. The main change
concerns the electric quadrupole observables. First, the B(E2)
transition strengths are now almost double compared to the
USDB values. Second, the quadrupole moment of the 2+

2
state is consistently large, and supports a prolate shape. Third,
the 2+

2 amounts for an 80%–90% of the quadrupole sum rule
value of the 0+

3 state. Therefore, the results obtained with
USDB-MOD suggest an actual prolate structure, unlike those
predicted by USDB. In turn, the oblate and vibrational bands
remain almost unaltered. The agreement between the diago-
nalization and the variational results is excellent. However, the

deformations we observe still differ moderately compared to
experimental values, with our calculations indicating a larger
deformation for the oblate band and a smaller deformation
for the prolate band. Furthermore, the additional collectivity
seems to be lost for the 6+ −→ 4+ transition. This underscores
the need for further improvement of the theory.

The PGCM calculations also confirm the prolate nature of
the band obtained with the USDB-MOD interaction. First, at
the mean-field level the total energy surface of USDB-MOD,
Fig. 6(a), shows a prolate minimum, in contrast with the
corresponding surface of USDB, Fig. 4(e). More importantly,
Figs. 6(b), 6(c) and 6(d) show that the 0+

3 , 2+
3 , and 4+

3 states
share a common deformation across the band, although there
is a minor loss in collectivity as J increases. Further, Fig. 7
shows that the ground-state band preserves its well-deformed
character, and likewise Fig. 5(b) illustrates that the β vibration
is preserved as well.

Table IV lists the occupation numbers of the prolate
0+

3 band head. The occupancy of the 0d3/2 orbitals for
USDB-MOD is about 0.5 nucleons higher than for USDB—
equivalently, the combined 0d5/2 and 1s1/2 orbitals are less
occupied by around 0.5 nucleons. This change is consistent
with the prediction of the quasi-SU(3) scheme. We note that
very recently Ref. [69], using the variation pair condensate
method, has also pointed out the possibility of taking into
account the coexistence of oblate and prolate shapes in 28Si
in an sd-shell calculation.

However, given the excellent performance of the USDB
interaction across the sd shell, we expect that the change in-
troduced into USDB-MOD will translate into a lower-quality
description of nuclei neighboring 28Si. Additionally, experi-
mental data points out to a non-negligible occupation of the
p f -shell orbitals for states at low energies [70], highlighted
by the presence of negative parity states at only 7 MeV of
excitation energy. Finally, the quasi-SU(3) scheme with an
additional orbital discussed in Eq. (10) and Fig. 3(f) suggests
that, if the 0d5/2 1s1/2 doublet is complemented with 2p − 2h
excitations to the 0 f7/2 orbital—at a cost of overcoming
the sd-p f shell gap—the associated deformation would be
similar to the one achieved by the combination of the dou-
blet with 4p − 4h contributions to the 0d3/2 orbital listed in
Table I.

Therefore, we explore further the structure of the prolate
band expanding the configuration space to include the p f
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FIG. 6. 28Si reference-state total energy surfaces and PGCM prolate collective wave functions. The energy surfaces, projected to
Nv = Zv = 6 and J = 0, are calculated for the (a) USDB-MOD and (e) SDPF-NR* interactions. The collective wave functions correspond
to the lowest-energy 0+, 2+ and 4+ states with prolate shape obtained for (b)–(d) USDB-MOD and (f)–(h) SDPF-NR*.

FIG. 7. Collective wave functions as in Fig. 6, but for the (a)–(c) USDB-MOD and (d)–(f) SDPF-NR* interactions and the lowest-energy
oblate states.
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FIG. 8. Same as Fig. 1, but showing the experimental data (left)
and the results obtained for the SDPF-NR* interaction with diago-
nalization (center) and the PGCM (right).

shell. For this space we start from the SDPF-NR interaction
[55], designed for neutron-rich silicon isotopes. We modify
the interaction to accommodate cross-shell excitations, not
permitted in the calculations of Ref. [55]. To reproduce the
sd-p f shell gap in 28Si, we take as reference the excita-
tion energies of the negative parity states of 28Si: 6.9 MeV
(3−), 8.4 MeV (4−), and 8.9 MeV (1−). By adjusting the
T = 0, 0d5/2 0 f7/2 and 0d5/2 1p3/2, monopole part of the in-
teraction we find that the negative parity states at 6.9 MeV
(3−), 8.0 MeV (1−), and 8.4 MeV (4−), in good agreement
with experiment. We name the modified interaction SDPF-
NR*. Since the configuration space now involves two major
harmonic oscillator shells, we take care of possible spuri-
ous center-of-mass contamination by adding to SDPF-NR the
center-of-mass Hamiltonian, Hcm, scaled by a factor λcm =
0.5 [34]: H′

eff = Heff + λcmHcm. Additionally, in the PGCM
calculations we constrain Q10 = 0 and Q11 = 0.

Since we cannot perform the diagonalization in the full
sd p f space, we restrict the number of excitations from the sd
to the p f shell to up to 4p − 4h. As we discuss in Sec. III C,
this should be sufficient to capture the leading prolate config-
urations involving the p f shell. Figure 8 (right side) shows the
spectrum and electric quadrupole transitions for this truncated
diagonalization. The B(E2; 4+

3 −→ 2+
2 ) transition is consistent

(within 1.5σ ) with the experimental value, supporting the
interpretation as a prolate band. In addition, the quadrupole
moment for the 2+

2 state in Table II is also consistent with
a prolate intrinsic shape and amounts to 90% of the sum
rule value. In contrast, the B(E2; 6+

5 −→ 4+
3 ) transition is

still underestimated in our calculation. Perhaps surprisingly,
Table IV indicates that the 0+

2 prolate bandhead only contains
one nucleon in the p f shell—excited from the 0d5/2 1s1/2

orbitals—but this adds enough deformation to form a prolate
rotational band. Nevertheless, this indicates that 38% of the
prolate state has a 2p − 2h sd-p f character, an important
contribution to the wave function. The oblate and vibrational
bands feature a similar occupation of the p f shell, which
leads to some additional deformation compared to the USDB
results.

In addition to the usual insights, the PGCM allows us to
consider the unrestricted sd p f space. Figure 6(e) hints to a
prolate local minimum at the projected energy surface, and
Figs. 6(f), 6(g) and 6(h) show that the associated collective
wave functions share a common prolate deformation across
the band members. These results confirm that the prolate band
is well reproduced by the sd p f calculation. At the same time,
Figs. 7 and 5(c) show that the ground-state and β-vibration
bands keep their common, well-defined structure in the sd p f
configuration space.

Regarding the reliability of the PGCM in this large
configuration space, Fig. 8 (right side) shows that the oblate
ground-state band is in almost perfect agreement with the
truncated diagonalization, while the vibrational band is
similar but appears ≈ 1 MeV lower in excitation energy. In
both cases, the B(E2) values agree well with experiment.
In contrast, the prolate-band states appear at ≈ 1.5 MeV
higher energy, and with slightly lower deformation than in the
truncated diagonalization. The quadrupole moments of the
oblate and prolate 2+ states in Table II also deviate somewhat
from the diagonalization results. These differences could be
related to the fact that the absolute energies in Table III are
≈ 9 MeV higher for the PGCM than for the diagonalization.
This difference points to noncaptured correlations, such as
pairing, which could be introduced as another generator
coordinate for the configuration mixing; or the lack
of dynamical correlations [71]. Nonetheless, since the
disagreement between the diagonalization and the variational
approach is mild, we expect the conclusions from the PGCM
analysis to hold.

C. Superdeformation

Reference [24] has proposed the appearance of superde-
formed states in 28Si forming a rotational band with 0+ band
head at ≈ 13 MeV excitation energy with β 	 1 (β2 	 0.78).
In particular, this antisymmetrized molecular dynamics study
assigns a 4p − 4h sd-p f structure to the superdeformed band.
This prediction motivated the search in Ref. [28], which how-
ever did not find evidence for superdeformation.

Here, we analyze the possibility for the existence of su-
perdeformed states in 28Si with the shell model. First, we
explore the deformations that can be achieved within the
SU(3) schemes presented in Sec. II B. Figure 9 summarizes
our results. The maximum deformation that can be achieved
within the quasi-SU(3) sd-shell scheme presented in Table I is
limited to β � 0.53 (orange crosses). Thus, in order to build
superdeformed states, we need to consider excitations into
the p f shell. In the pure SU(3) scheme in terms of sd-p f
excitations, superdeformed shapes with β 	 1.0 (β2 	 0.78)
appear at the level of 4p − 4h states (red triangles). Notably,
higher np − nh configurations offer mild gains in quadrupole
correlations in comparison to the energy cost of exciting nu-
cleons to the p f shell. These quadrupole moments result from
adding the contributions of filling the diagrams in Figs. 3(a)
and 3(d) for 28Si. Likewise, the summed contributions of
the diagrams in Figs. 3(b) and 3(e) offer the more realistic
quasi-SU(3) values, where nucleons are excited across the
lowest-energy pair of orbitals in each shell, from 0d5/2 1s1/2

to 0 f7/2 1p3/2 (green times symbols). In spite of the reduced
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FIG. 9. Deformation parameter β (left axis) and the associated
quadrupole moment Q0 (right axis) for 28Si for fixed np − nh struc-
tures in different schemes: SU(3) sd + p f shells (red triangles),
quasi-SU(3) 0d5/2 1s1/2 and 0 f7/2 1p3/2 pairs (green times symbols),
and quasi-SU(3) 0d5/2 1s1/2 plus the 0d3/2 orbital (orange crosses),
compared to the fixed np − nh shell-model results for SDPF-NR*
(blue circles). For the latter, the space for 6p − 6h and 8p − 8h
configurations is truncated to sd + 0 f7/2 1p3/2.

deformation compared to SU(3), the 4p − 4h configuration,
with β 	 0.9 (β2 	 0.72), is superdeformed. Both SU(3) and
quasi-SU(3) schemes predict the superdeformed band to be
prolate.

To verify the validity of the analytical predictions, we
perform fixed np − nh diagonalizations in the sd p f space
using SDPF-NR*. The results, shown in Fig. 9 in blue circles,
resemble closely the deformations of the quasi-SU(3) sd-p f
scheme. Therefore, 4p − 4h excitations into the p f shell could
lead to superdeformed structures in 28Si.

In order to explore the energies associated with these np −
nh configurations, one should diagonalize the SDPF-NR* in-
teraction in the full sd p f space. In our case, to manage the
dimension of the configuration space we restrict the number
of nucleons in the p f orbitals to n(p f ) � 4. According to
Fig. 9 this truncation should capture the main highly deformed
structures of 28Si. In this truncated space we use the Lanczos
strength function method to expand the |0+

np-nh〉 states in terms
of the eigenstates of the sd p f space:

|0+
np−nh〉 =

∑
i

ai|0+
i 〉, (27)

where ai are the amplitudes of the expansion. Figure 10
shows the Lanczos strength functions for the lowest-energy
collective 0+ states with fixed 2p − 2h and 4p − 4h sd-p f
configuration. These states contribute mostly to sd p f ex-
cited states with energies around 10 MeV and 18-20 MeV,
respectively. In fact, in contrast to the 2p − 2h case, Fig. 10
highlights that the superdeformed 4p − 4h structure does not
contribute significantly to any state below 15 MeV in excita-
tion energy.

The PGCM allows us to perform a complementary study
of the possible superdeformation in 28Si considering the
full sd p f configuration space. For the basis, we chose a
grid of 42 VAP wave functions with spacing δβ 	 0.089
up to a maximum β 	 1.06 and δγ = 15◦. Consistently

FIG. 10. Probability of finding the lowest-energy state in 28Si
with fixed 2p − 2h and 4p − 4h sd-p f configuration as part of 0+

states of the sd p f space, for the SDPF-NR* interaction. Each sd p f
state is convoluted with a Gaussian of width 200 keV.

with the diagonalization results, our PGCM calculations fea-
ture the lowest-energy state that could be associated with a
superdeformed 0+ band head at 19 MeV excitation energy.
Figure 11 shows the collective wave function for this state,
with β 	 0.6 (β2 	 0.51). This state has on average three
nucleons in the p f shell. Even though this high-energy state
obtained with the variational approach may not be accurate
enough to correspond to the exact solution [72], the con-
sistency between the diagonalization and the PGCM results
indicate the appearance of superdeformed states in 28Si at
18–20 MeV excitation energy.

Finally, we note that while this conclusion may appear
in tension with the prediction of Ref. [24], our shell-model
configuration space cannot accommodate cluster structures
such as the 24Mg +α suggested for the 28Si superdeformed
band [24].

FIG. 11. PGCM collective wave function of the lowest-energy
candidate superdeformed state (0+

16) for 28Si, obtained with the
SDPF-NR* interaction.
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IV. SUMMARY AND OUTLOOK

In this study, we have analyzed the shape coexistence of
28Si combining different approaches: the analytical quasi-
SU(3) model; standard shell-model diagonalizations, and the
variational PGCM. We have found that the oblate ground-state
rotational band and its associated β-vibration band are well
described with the gold-standard USDB interaction in the sd
shell. However, USDB fails to reproduce the experimental
prolate rotational band. These conclusions are supported by
the comparison between experimental and calculated electro-
magnetic moments and transitions via diagonalization, and by
the analysis of collective wave functions using the PGCM.
Likewise, both the diagonalization and the PGCM results
show that the prolate band can be described in the sd shell,
at the cost of lowering the single-particle energy of the 0d3/2

orbital by about 1 MeV. We name the resulting interaction
USDB-MOD. Alternatively, the band can be reproduced by
considering an extended configuration space including the
p f shell with a modified SDPF-NR interaction that can ac-
commodate cross-shell excitations. In both cases, the oblate
structures of 28Si are still well reproduced. The quasi-SU(3)
model explains qualitatively the key role of the nucleon exci-
tations into the 0d3/2 and p f -shell orbitals in order to build the
prolate deformation.

Additionally, we have explored the possibility of superde-
formation in 28Si, predicted in previous works but not found
experimentally so far [28]. According to the quasi-SU(3)
scheme, such extreme shape requires the promotion of at least
4p − 4h nucleons to the p f shell. Both our diagonalizations

in a truncated sd p f configuration space, and our variational
PGCM calculations considering the full space indicate that su-
perdeformed structures appear at ≈ 18–20 MeV of excitation
energy.

In most cases, the variational PGCM results are in excellent
agreement with the diagonalization. However, in the largest
sd p f space, the difference in absolute energies between
the diagonalization and the PGCM can reach ≈ 5%. These
results could be improved by considering additional gener-
ator coordinates, such as the isovector or isoscalar pairing
[57,58,73], or by including dynamical correlations—which
are more relevant in larger spaces—for instance via multiref-
erence many-body perturbation theory [71].

The shape coexistence in 28Si can also be studied within
our shell-model framework using ab initio interactions
[21,74,75]. For instance, those derived with the VS-IMSRG
[76] have been recently applied to study sd-shell [23,77–79]
and sd p f -shell nuclei [80–83]. It would be actually quite
interesting to explore whether the VS-IMSRG Hamiltonian
for 28Si, which is tailored just for this nucleus, describes both
the oblate and prolate bands within the sd shell—as suggested
by the USDB-MOD interaction. Or if, in contrast, the sd
valence-space correlations that drive the low-energy nuclear
structure of 28Si are not sufficient to capture the prolate band,
as we have found with USDB.

While our results agree very well with experiment in most
cases, some differences remain. For example, the collectivity
of the ground-state oblate band is slightly overpredicted in
all our calculations, while the prolate band is underpredicted,

TABLE V. B(E2) transition strength values involving initial (J+
i ) and final (J+

f ) 0+, 2+, and 4+ states in the oblate, β-vibration and prolate
bands in 28Si, labeled as in Fig. 1. Theoretical PGCM and diagonalization results for the USDB, USDB-MOD, and SDPF-NR* interactions
are compared to experimental data [14].

USDB USDB-MOD SDPF-NR*

Experiment PGCM Diag. PGCM Diag. PGCM Diag.

J+
i J+

f B(E2) (e2 fm4)

2obl 0obl 67 ± 2 78.3 78.3 87.7 86.9 84.7 91.3
4obl 2obl 70 ± 7 110 110 117 117 120 121
2vib 0vib 28 ± 7 18.2 21.8 26.3 25.1 22.1 35.3
2pro 0pro 12.9 34.1 73.3 73.4 65.8 98.4
4pro 2pro 147 ± 25 58.0 49.3 97.1 96.3 95.1 120

2obl 0vib 8.7 ± 1.6 13.1 12.9 12.1 11.5 0.04 39.2
2obl 0pro 0.27 ± 0.02 0.17 0.58 0.27 0.14 0.04 17.7
2vib 0obl 0.15 ± 0.05 0.26 0.04 0.08 0.11 0.00 0.12
2vib 0pro 43.7 39.2 26.6 24.0 31.5 1.27
2pro 0obl 0.15 0.74 0.47 0.20 1.06 0.02
2pro 0vib 5.47 9.58 23.4 16.0 18.9 1.02
4obl 2vib 7.2 ± 2.7 2.66 1.08 3.20 2.60 1.73 10.8
4obl 2pro 2.91 2.68 0.74 0.91 1.67 6.95
4pro 2obl 0.30 0.11 1.27 0.89 6.39 0.91
4pro 2vib 6.15 7.71 1.50 0.81 6.87 0.10

2vib 2obl 0.27 0.14 6.83 6.20 4.25 5.75
2vib 2pro 23.7 10.0 11.0 7.62 23.1 5.94
2pro 2obl 1.18 6.04 6.45 7.10 12.0 15.4
4pro 4obl 2.00 2.18 0.52 0.83 1.72 2.64
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especially when the 6+ state is involved. We have also
predicted so far unknown in-band and out-band electric
quadrupole B(E2) values, that could be tested in forthcoming
measurements. As an outlook, we also plan to expand our
study of 28Si by investigating the different octupole bands
known experimentally [14] within our shell-model frame-
work. In addition, we aim to explore the recently measured
hexadecupole deformation in this nucleus [84].

More generally, our results show the powerful predictive
power of complementing standard shell-model diagonaliza-
tions with the variational PGCM to study shape coexistence in
nuclei. Similar analyses could be carried out in other N = Z
nuclei in the sd shell, such as 24Mg or 32S, or in neutron-
rich Si isotopes such as 30–42Si, which can also exhibit shape
coexistence [29,38,55,84–88]. Eventually, the PGCM enables
us to address nuclei across the nuclear chart.
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APPENDIX: OUT-BAND TRANSITIONS

Here we collect B(E2) transition strengths, including the
in-band transitions given in Figs. 1 and 8, and out-band tran-
sitions, this is, those connecting states that belong to different
bands according to the scheme shown in Fig. 1. Table V lists
all these results obtained by diagonalization and the PGCM,
and compares them to the experimental values when avail-
able.

For out-band B(E2)s, the PGCM and diagonalization
results agree well for both the USDB and USDB-MOD
interactions. However, the two methods present larger dis-
crepancies for the SDPF-NR* interaction, especially for
the transitions connecting the prolate and vibrational bands,
where the PGCM predicts larger B(E2) values. In general,
the calculated outband transitions are in reasonable agreement
with the measured ones, except for the B(E2, 2obl −→ 0pro)
and B(E2, 2obl −→ 0vib) from the SDPF-NR* diagonalization,
which overpredicts the data. On the other hand, it is only
the latter calculation that gives a good agreement with the
experimental B(E2, 4obl −→ 2vib) value.
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