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Abstract

Aim: To establish and fully characterize a new cell line from human stem cells of the
apical papilla (SCAPs) through immortalization with an SV40 large T antigen.
Methodology: Human SCAPs were isolated and transfected with an SV40 large T
antigen and treated with puromycin to select the infected population. Expression of
human mesenchymal surface markers CD73, CD90 and CD105 was assessed in the
new cell line named Dental Stem Cells SV40 (DSCS) by flow cytometry at early and
late passages. Cell contact inhibition and proliferation were also analysed. To evalu-
ate trilineage differentiation, quantitative polymerase chain reaction and histological
staining were performed.

Results: DSCS cell flow cytometry confirmed the expression of mesenchymal sur-
face markers even in late passages [100% positive for CD73 and CD90 and 98.9%
for CD105 at passage (P) 25]. Fewer than 0.5% were positive for haematopoietic cell
markers (CD45 and CD34). DSCS cells also showed increased proliferation when
compared to the primary culture after 48 h, with a doubling time of 23.46 h for DSCS
cells and 40.31h for SCAPs, and retained the capacity to grow for >45 passages (150
population doubling) and their spindle-shaped morphology. Trilineage differentia-
tion potential was confirmed through histochemical staining and gene expression of
the chondrogenic markers SOX9 and COL2A1, adipogenic markers CEBPA and LPL,
and osteogenic markers COLIA1 and ALPL.

Conclusions: The new cell line derived from human SCAPs has multipotency, re-
tains its morphology and expression of mesenchymal surface markers and shows
higher proliferative capacity even at late passages (P45). DSCS cells can be used for
in vitro study of root development and to achieve a better understanding of the re-

generative mechanisms.
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INTRODUCTION

Multipotent mesenchymal stromal cells (MSCs) are an
adult cell population with self-renewal potential and the
ability to differentiate into diverse specialized cell types
(Mushahary et al., 2018). MSCs were originally isolated
from rat bone marrow (Friedenstein et al., 1968) and have
subsequently been identified in almost all postnatal tis-
sues (da Silva et al., 2006). Significant differences in their
characteristics have been described depending on the
source tissue (Heo et al., 2016).

Several types of dental MSCs have been iso-
lated from the pulp of human-impacted third molars
(Gronthos et al., 2000), exfoliated deciduous teeth (Miura
et al., 2003), periodontal ligaments (Seo et al., 2004), api-
cal papilla (Sonoyama et al., 2006), dental follicle cells
(Miura et al., 2003), gingiva (Zhang et al., 2009) and bone
chips of dental implant sites (Park et al., 2012). Dental
MSCs, like those from other sources, meet the minimum
criteria proposed in 2006 by the International Society for
Cellular Therapy (Dominici et al., 2006) to establish a set
of standards to define human MSCs for laboratory-based
scientific investigations and preclinical studies. These
characteristics include adherence to plastic in standard
cultures; specific surface antigen expression (95% positive
for CD105, CD73 and CD90, and <2% positive for CD45,
CD34,CD14 or CD11b, CD79a or CD19 and HLA class II);
and that cells must differentiate into osteoblasts, adipo-
cytes and chondroblasts under standard in vitro differen-
tiation conditions.

Stem cells from the apical papilla (SCAPs) are a dental
MSC population derived from the ectomesenchyme that
can be demonstrated in the apical papilla attached to the
apex of the developing tooth root in erupting permanent
teeth (Nagata et al., 2021). SCAPs are also the source of
primary odontoblasts responsible for the formation of
root dentine (Huang et al., 2009). Recent studies have
shown the potential of SCAPs for dental regenerative
procedures (Arslan et al., 2019; El-Kateb et al., 2020) be-
cause they can survive infection and advanced apical peri-
odontitis (Diogenes & Hargreaves, 2017; Lin et al., 2018).
Furthermore, their superior neural stem cell properties
mean that they are a promising source for the therapy of
spinal cord injury (De Berdt et al., 2015). This important
role highlights the ongoing requirement for models of
SCAP in vitro, but the long-term culture of MSCs leads
to their senescence, including morphological changes
and decreased potential for differentiation (Garcia-Bernal
etal., 2021; Yang et al., 2018). To address this problem, sev-
eral methods are available to immortalize cell lines from
primary cultures. The most common ones include trans-
duction with simian virus 40 large T antigen (SV40LT)
to repress p53 and retinoblastoma tumour supressor
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(Rb)-mediated pathways or human telomerase reverse
transcriptase to prevent telomere shortening, either alone
or in combination (Pifieiro-Ramil et al., 2020).

Some authors have shown that simultaneous trans-
duction with SV40LT and human telomerase reverse
transcriptase is needed to achieve stable immortalization
(Darimont et al., 2002; Liu et al., 2013); however, SV40
LT not only transforms cells allowing them to enter S
phase and inhibiting the cell cycle suppressor action of
p53 (Ahuja et al., 2005), furthermore, cell transformation
through SV40 LT could secondarily alter telomerase and
cause maintenance of telomere length (Li et al., 2021;
Toouli et al., 2002), therefore the generation of cell lines
through overexpression of SV40LT alone, could be an
effective method to obtain immortalized cell lines (Li
et al., 2020).

To date, no human SCAP cell lines have been devel-
oped through immortalization with SV40LT. Thus, the
aim of the present study was to establish and characterize
a new dental stem cell line from human SCAPs through
immortalization with SV40LT named Dental Stem Cells
SV40 (DSCS). We also aimed to characterize the new cell
line by analysing the differences in proliferation, differen-
tiation and morphology between the primary culture and
the new cell line.

MATERIALS AND METHODS

The report of this laboratory study has been written ac-
cording to Preferred Reporting Items for Laboratory stud-
ies in Endodontology 2021 guidelines (Nagendrababu
et al., 2021 doi: 10.1111/iej.13542).

SCAP isolation and culture

An immature mandibular third molar at stage 7 of Nolla
was extracted for orthodontic purposes from a healthy
12-year-old boy, after obtaining informed consent from
his legal guardian. The apical papilla of the molar was
minced under sterile conditions into 1-mm?® fragments
and digested by incubation with a solution of 3 mg/ml
collagenase type I (Merck) and 4 mg/ml dispase (Merck)
for 1 h, as described previously (Trevino et al., 2011). The
digested cells were filtered through a 70-pm cell strainer
(BD Falcon). Cells in suspension were centrifuged at 126 g
for 2 min and resuspended in Dulbecco's minimum essen-
tial medium (DMEM) supplemented with 10% foetal bo-
vine serum (FBS), 2mmol/L L-glutamine, and 100 U/ml
penicillin and streptomycin (P/S; Biological Industries).
Cells were plated (Corning) and allowed to expand in
culture until 70%-80% confluency. Cells from the first
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passage (P) were used for immortalization. All the proce-

dures received the approval of the Ethical Committee of

the Hospital Odontologic of the Universitat de Barcelona

(Ceim HOUB protocol number 2018-021-1).

Cell culture

SCAPs were cultured in DMEM supplemented with 10%
FBS, 2mmol/L L-glutamine and 100U/ml P/S and incu-
bated at 37°C with 5% CO,. For osteogenic differentiation,
cells were cultured in a-MEM with 10% FBS, 2mmol/L
L-glutamine, 1 mmol/L sodium pyruvate, 50 pmol/L ascorbic
acid, 10mmol/L p-glycerophosphate and 100U/ml P/S for
14days. For adipogenic differentiation, cells were cultured
in a-MEM with 10% FBS, 2mmol/L L-glutamine, 1 mmol/L
sodium pyruvate, 1 pmol/L dexamethasone, 1 pg/ml insu-
lin, 0.5mmol/L 3-isobutyl-1-methylxanthine and 100U/ml
P/S for 14days. For chondrogenic differentiation, cells were
cultured in high-glucose DMEM with 10% FBS, 2mmol/L
L-glutamine, 1 mmol/L sodium pyruvate, 50 pmol/L ascorbic
acid, 10mmol/L p-glycerophosphate, 100nmol/L dexameth-
asone, 40pg/ml L-proline, 10 ng/ml recombinant human
transforming growth factor-p3, 50mg/ml ITS-premix stock
(BD Biosciences) and 100U/ml P/S for 21 days.

Establishment of an immortalized human
SCAP cell line

Retroviral particles were generated in Platinum-E cells
from pBABE-puro SV40 LT plasmid (plasmid# 13970;
Addgene) using Lipofectamine LTX (Thermo Fisher) as a
transfection reagent, as described previously (Sanchez-de-
Diego et al., 2019). The Platinum-E cells were left for 72h
in the transfection medium and the retroviral superna-
tants were harvested and filtered with a 0.45-pm cellulose
acetate filter (Corning). SCAPs at P1 were seeded at 7 X 10*
per well in a six-well plate (Corning), which resulted in
40%-50% confluence after 24h. Cells were infected with
300pl virus-containing medium, 5 pg/ml Polybrene
(Sigma-Aldrich) and DMEM complete medium up to
1 ml. Cells were incubated for 24h, and then, the virus-
containing medium was replaced with a fresh culture
medium and incubated for 24-48 h to allow the incorpora-
tion of the virus genetic material in the cells and obtain a
higher expression of ectopic proteins. After this, cells were
treated for 48 h with 5 pg/ml puromycin to select the in-
fected population.

Lentiviral infection was confirmed by assessing mRNA
expression of puroR gene by quantitative real-time poly-
merase chain reaction (qRT-PCR). Forward and reverse
primers were:

5'-ATGACCGAGTACAAGCCCAC-3’ and 5-GTTCT
TGCAGCTCGGTGAC-3'.

Flow cytometry

Dental MSCs from the apical papilla infected with SV40
(DSCS cells from now on) were characterized at P4 and
P25 using the Human MSC Analysis Kit (BD Bioscience).
Cells were detached using BD™ Accutase™ Cell
Detachment Solution, washed and resuspended at 107
cells/mlin BD Pharmingen Stain Buffer. One hundred mi-
crolitre of the cell suspension was added to each tube and
stained with the following antibodies: FITC mouse anti-
human CD90, PE mouse anti-human CD44, PerCP-Cy
5.5 mouse anti-human CD105, APC mouse anti-human
CD73, hMSC-positive isotype control Cocktail, PE hMSC-
negative isotype control cocktail, hMSC-positive cocktail
or PE hMSC-negative cocktail. Tubes were incubated in
the dark for 30min on ice. Prior to flow cytometry anal-
ysis, cell suspensions were filtered through a 0.70-pm
nylon mesh to remove aggregates (Corning). Flow cytom-
etry assay was performed in the BD FACSCanto II Flow
Cytometer System (BD Biosciences). Results were ana-
lysed using FlowJo Software.

Multilineage differentiation
gRT-PCR analysis

Total RNA was isolated from primary SCAPs or DSCS
cells using TRIsure reagent (Bioline). Purified RNA
was reverse-transcribed using the High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems). qRT-
PCRs were carried out using the ABI Prism 7900 HT
Fast Real-Time PCR System and Tagman 5’-nuclease
probes (Applied Biosystems). Designed Tagman assays
(Applied Biosystems) were used to quantify the expres-
sion of CCAAT Enhancer Binding Protein Alpha (CEBPA,;
Hs00269972_s1), Lipoprotein Lipase (LPL; Hs00173425_
ml), Alkaline Phosphatase (ALPL; Hs01029144_m1),
Collagen type I, Alpha 1 (COL1A1; Hs00164004_ml),
SRY-Box Transcription Factor 9 (SOX9; Hs00165814_m1),
Collagen Type II, Alpha 1 (COL2A1; Hs00264051_m1)
and TATA-box binding Protein (TBP; Hs00427620_m1)
genes. All transcripts were normalized to TBP expression.

Multilineage differentiation
histochemical analysis

SCAPs at P6, DSCS cells at P15 and DSCS cells at P45 were
seeded in 24-well plates (2 x 10* cells/well) and distributed
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in control and differentiated groups. After 14days in os-
teogenic and adipogenic differentiation media and 21 days
in chondrogenic differentiation media, cells were rinsed
twice with phosphate-buffered saline (PBS) and fixed with
4% paraformaldehyde (PFA) for 20 min.

To evaluate calcified tissue in the osteogenic group,
fixed cells were incubated with Alizarin Red staining
solution (Sigma-Aldrich) at room temperature in the
dark for 45min. Cells were rinsed twice with PBS and im-
ages of the wells were taken with a Canon 90D camera
(Canon) and Tokina macro 100F 2.8 D AT-X PRO objec-
tive (Kenko Tokina). For quantification of tissue mineral-
ization, Alizarin Red was extracted following the protocol
of Gregory et al. (2004). Briefly, 400pl 10% acetic acid
was added to each well. Wells were incubated for 30 min,
followed by neutralization of the acid with 10% ammo-
nium hydroxide. Absorbance was read at 405nm with a
Tecan Sunrise Microplate Reader (Tecan Trading AG).
Absorbance measure was plotted and labelled as arbitrary
absorbance units.

For quantification of glycosaminoglycans in the chon-
drogenic group, each well was incubated with Alcian
Blue 8-GX (Sigma-Aldrich) at room temperature over-
night. Bound Alcian Blue was extracted using guani-
dine HCI and the absorbance was read at 650nm with a
Tecan Sunrise Microplate Reader, as described previously
(Prosser et al., 2019). Absorbance measure was plotted
and labelled as arbitrary absorbance units.

For staining of lipid droplets in the adipogenic group,
each well was incubated with 60% isopropanol for 2 min,
followed by incubation with freshly prepared Oil Red O
working solution (Sigma-Aldrich) for 30 min. The wells
were rinsed four times with PBS. For colorimetric quan-
tification, Oil Red O was extracted from lipid droplet de-
posits using 100% isopropanol for 1 min (Yu et al., 2021).
Absorbance was read at 510nm with a Tecan Sunrise
Microplate Reader. Absorbance measure was plotted and
labelled as arbitrary absorbance units.

Confocal fluorescence microscopy

The actin cytoskeleton was stained with phalloidin to
compare the differences in morphology between primary
culture SCAPs (P6) and DCSC cell line at early (P15) and
late (P45) passages. Cells (1.5x10%) of each group were
seeded in an eight-well chambered coverslip (p-Slide
8 Well Grid 500; Ibidi). After 24h, cells were fixed with
4% PFA for 5 min and rinsed twice with PBS. Cells were
permeabilized with 1% Triton X-100 (Sigma-Aldrich) for
20min and blocked in 3% bovine serum albumin (Sigma-
Aldrich) for 2 h. Double staining with 1: 5000 Hoechst
33342 (Invitrogen) and 1:500 AlexaFluor 633 conjugated
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phalloidin (Thermo Fisher) was performed. Cell morphol-
ogy was analysed under confocal laser scanning micro-
scope (Zeiss LSM880).

Cell proliferation and contact
inhibition assays

SCAPs at P6 and DSCSs at P15 were seeded in 12-well
plates at 3x 10* cells/well and allowed to proliferate for
24, 48 and 72h. At 0 (t0), 24, 48 and 72h, cells were
fixed with 4% PFA and nuclei were stained with 1 pg/ml
4,6-diamidino-2-phenylindole dihydrochloride (D9542;
Merck) for 15min. For each well, images of four mi-
croscopic fields were captured using a fluorescence
microscope (Leica DM-IRB; Leica). The number of cell
nuclei was quantified using ImageJ (National Institutes
of Health). All results were expressed as a percentage
of t0. In parallel, to determine the cell monolayer for-
mation and arrest of cell growth once the cells reached
confluence, SCAPs at P6 and DSCS at P15 and P45 were
seeded in 24-well plates at 1.5x10* cells/well and al-
lowed to proliferate for 1, 3, 5 and 7days. Cells were
fixed with 4% PFA and nuclei were stained with 1: 5000
Hoechst 33342 (Invitrogen). For each well, images of
four microscopic fields were captured using a fluores-
cence microscope (Leica DM-IRB). The number of cell
nuclei was quantified using ImageJ (National Institutes
of Health). All results were expressed as a percentage
of t0.

Statistical analysis

Statistical analysis was performed using GraphPad Prism.
First, Shapiro-Wilk normality test was run per each study
and Q-Q plots were represented to assess the normality
of the samples. Then, statistical analysis was performed
using the Student's t-test (for Gaussian distributions),
nonparametric test (for no normal or lognormal distri-
butions) or two-way analysis of variance. Quantitative
data are presented as the mean+standard error of the
mean. Differences were considered significant at *p <.05,
**p <.01 and ***p <.001. All experiments were performed
twice and in technical triplicates.

RESULTS
Establishment of the DSCS cell line

SCAPs were transduced with the retroviral vector for
expression of SV40LT (Figure 1a) or green fluorescent
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protein (GFP) as a control. After 3 days of cell culture,
GFP expression was assessed as a control of infection.
Due to the presence of a puromycin resistance gene
downstream of SV40LT, we performed the selection
using 5 mg/ml puromycin. After 48 h, almost 100% of
the GFP control cells were dead, while around 40% of
SV40-infected cells remained alive. DSCS cells infected
with SV40 maintained their characteristic spindle-
shaped morphology and no increase in death was
observed.

To confirm the integration of the SV40 plasmid into the
DSCS genome, we cultured DSCS cells for 15 passages and
analysed the expression of PuroR, included in the pBabe
vector. RT-PCR showed a significant increase in PuroR
gene expression in DSCS cells compared with the primary
cells (SCAPs; Figure 1b; Table S1). These data suggest that
PuroR and SV40LT were stably inserted into the DSCS
genome.
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FIGURE 1 Generation of DSCS cells by SV40 infection. (a)

Map of principal sequences of pBABE-puro SV40 LT (Addgene

#13970). Plasmid image created with BioRender. (b) Expression
analysis of PuroR gene in SCAPs and DSCS cells using RT-PCR

assay. *p <.05.

DSCS cells express MSC surface markers

To determine whether immortalization affected the
stemness of DSCS throughout passaging, we assessed
the expression of stem cell surface markers at P4 and
P25. Flow cytometry at P4 showed that <0.9% of cells
presented with haematopoietic cell markers (CD45
and CD34) or immune cell markers (CD11b, CD19 and
HLA-DR; Figure 2). By contrast, >98% of cells expressed
MSC surface markers (99.7% positive for CD73, 98.5% for
CD90 and 99.6% for CD105). Similarly, flow cytometry at
P25 showed that <0.5% of cells presented with haemat-
opoietic cell markers or for immune cell markers, while
>98.9% of the cells at P25 expressed MSC surface mark-
ers (100% positive for CD73, 100% for CD90 and 98.9% for
CD105). These data indicate that DSCS cells maintained
their original cell surface markers even after multiple
passages.

DSCS differentiate into osteoblasts,
adipocytes and chondroblasts under
standard in vitro conditions

To confirm that the new DSCS cell line expressed and
retained its multilineage differentiation potential after
multiple passages, histological staining and colorimetric
quantification were performed with Alizarin Red, Oil Red
O and Alcian Blue stains in P6 SCAPs, P15 DSCS cells
and P45 DSCS cells. In SCAPs and P15 and P45 DSCS
cells, Alizarin Red, Alcian Blue and Oil Red O staining
were significantly higher in all the differentiated groups
compared with the controls, confirming the multilineage
differentiation potential. Alcian Blue staining was signifi-
cantly higher in differentiated DSCS cells than in differen-
tiated SCAPs. By contrast, Oil Red O staining showed an
increase higher of adipogenic phenotype in differentiated
SCAPs than in differentiated DSCS cells (Figures 3a-c, S1;
Table S1).

Multilineage differentiation potential of DSCS cells (P6)
was also assessed through the expression of the chondro-
genic markers SOX9 and COL2AI, adipogenic markers
CEBPA and LPL, and osteogenic markers COLIA1 and
ALPL (Figure 3d; Table S3). Undifferentiated DSCS cells
showed higher basal expression of chondrogenic and osteo-
genic gene markers compared with undifferentiated SCAPs.
In both cell types, chondrogenic or osteogenic media in-
duced differentiation and upregulation of chondrogenic or
osteogenic genes, respectively. In both cases, gene induc-
tion was greater in SCAPs. Undifferentiated SCAPs showed
higher basal expression of adipogenic gene marker CEBPA
compared with undifferentiated DSCS cells. In both cell
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HLA-DR) cell surface markers in DSCS cells at early [passage 4 (P4)] and late [passage 25 (P25)].

types, adipogenic medium induced differentiation and up-
regulation of both adipose gene markers. In this case, gene
induction was significant in the case of DSCS cells.

Cell morphology

Morphology of SCAPs P6, P15 DSCS cells and P45 DSCS
cells was compared under phase contrast and confo-
cal laser scanning microscopy (Figure 4b). DSCS cells
exhibited the typical spindle shape of SCAPs after im-
mortalization and were maintained through passaging
(Figure 4).

SV40 induces increased cell proliferation
and maintains contact inhibition

Proliferation of SCAPs P6 and DSCS P15 cells was com-
pared at 24, 48 and 72h. DSCS cells showed significantly
increased proliferation at 48 and 72h, with a doubling
time of 23.46h for DSCS cells and 40.31h for SCAPs
(Figure 5; Table S4). These results indicate that SV40 LT
enhanced the proliferation capacity of SCAPs. After day 4,
proliferation was inhibited in all cell groups in the culture.
P6 SCAPs, P15 DSCS cells and P45 DSCS cells grew in a
monolayer exhibiting contact inhibition (Figures 5 and
S2; Table S5).
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FIGURE 3 (a-c) Histochemical staining and absorbance measurements showed significantly higher values in the SCAPs (dSCAPS) at
passage 6 (P6), DSCS at early passage [passage 15 (P15)] (dDSCS1) and DSCS at late passage [passage 45 (P45)] (dDSCS2) differentiated cells
when compared to the undifferentiated cells (cSCAPS, cDSCS1 and cDSCS2). (d) Trilineage differentiation potential of SCAPs and DSCS
cells by RT-PCR and normalized to TBP expression. Differentiated dSCAPs and dDSCS cells showed high levels of adipogenic marker LPL
with a significant difference between dSCAPs and dDSCS cells, and a higher level of CEBPA expression in the dDSCS group. After 3weeks
of chondrogenic culture, significantly higher levels of SOX9 were found in dSCAPs and dDSCS cells and significant upregulation of COL2A1
in the dSCAPs. After 2weeks of osteogenic culture, dSCAPs and dDSCS showed higher ALP and COLIA1 activity than the undifferentiated
group. * or “p <.05, ** or *p <.01, *** or **p <.001 using the Student's t-test. *Significance for comparison with undifferentiated SCAP
(control) group; *significance for comparison with undifferentiated DSCS (control) group.
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FIGURE 4 Phase contrast and confocal laser scanning microscopy images of the primary cells at passage 6 (P6) and DSCS cells at early

[passage 15 (P15)] and late [passage 45 (P45)] passage.

DISCUSSION

Caries and dental trauma are high-incidence dental con-
ditions that, when untreated, lead to severe complications
including infection and arrest of root development. Many
adult stem cells have been studied for tissue regeneration,
and among them, SCAPs are of interest because they can
induce root development even after apical periodontitis
has occurred (Chrepa et al., 2017; Lin et al., 2018). Given
their anatomical location, SCAPs are believed to be the
principal source of stem cells during regenerative endo-
dontic therapy (Cui et al., 2021; Lovelace et al., 2011). In
the disease and during regenerative endodontic therapy,
SCAPs face conditions of necrosis, infection and periapi-
cal inflammation, are exposed to different substances (ir-
rigants and intracanal medications) that can affect their
viability, and must be tested in vitro before clinical use
(Althumairy et al., 2014; Ruparel et al., 2012; Trevino
et al.,, 2011). SCAPs have shown potential for promot-
ing repair after spinal cord injury in rats, which is an
area in need of further study (De Berdt et al., 2015; Yang
etal., 2017). Unfortunately, SCAPs isolated from the apical
papilla are a limited source, have a low yield and become
senescent after multiple passages, expressing changes in
morphology (increased size and a flattened morphology)
and multilineage differentiation potential.

In this study, a primary culture of human apical
papilla stem cells (DSCS cells) was immortalized through

lentiviral infection with SV40LT. SV40LT has shown ef-
ficient immortalization of various cell types, including
some dental stem cells such as DPSC cells (Li et al., 2021).
Cell immortalization through pBABE-puro SV40 LT infec-
tion occurs through the interaction of LT antigen with p53
and the Rb family of tumour suppressor proteins (Ahuja
et al., 2005), which are responsible for the initial in vitro
growth arrest (Pifieiro-Ramil et al., 2019). It has also been
reported that SV40LT inhibits apoptosis through the acti-
vation of PI3K/Akt signalling. Therefore, cells expressing
LT antigen can be propagated for an extended period in
culture but do eventually enter replicative senescence, and
reconstitution of telomerase activity in transformed cells
is needed to achieve stable immortalization (Darimont
et al., 2002). Nevertheless, in the present study, the cell
line retained its proliferative capacity and typical MSC
characteristics even at late passages. We observed that
SV40 immortalized MSCs retain their proliferation and
differentiation potential even without the incorporation
of hTERT gene. MSCs from the apical papilla have higher
telomere length and telomerase activity than other MSCs,
such as the ones from the dental pulp and follicle (Jeon
et al., 2011). Additionally, Ruparel reported a primary cell
culture of human apical papilla that did not show signs of
senescence even at late passages. In this study, the cells
of the apical papilla presented high levels of the mesen-
chymal stem cell markers CD73, CD90 and CD105 and
low levels of the cell differentiation markers, maintaining
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FIGURE 5 SV40induces increased cell proliferation. (a) Growth curve of proliferation of primary cells [passage 6 (P6)] and DSCS cells
[passage 15 (P15)] expressed as a ratio of the number of cells normalized by the initial cell number per each condition to control at point 0
(4 h after seeding). Doubling time was 23.46 h for DSCS cells and 40.31 h for SCAPs. *p<.05. (b) Growth curve of number of the SCAPs, and
DSCS at low [passage 15 (P15)] and high [passage 45 (P45)] passage. At day 4, proliferation decreased in all groups. (c) Images of confluence
of P6 SCAPs, P15 DSCS cells and P45 DSCS cells showing monolayer growth and absence of multilayer formation.

proliferation after 20 passages (Ruparel et al., 2013). We In common with other studies (Artigas et al., 2017),
also have to consider that SV40LT can secondarily alter it was shown in this study that the SV40 immortalized
telomerase and cause maintenance of telomere length (Li cells retained the ability to grow reaching confluence over
et al., 2021; Toouli et al., 2002). >45 passages [150 population doubling (PD)], while the
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primary culture became senescent after 15 passages (45
PD). Therefore, immortalization through SV40 infection
provides a useful method for obtaining a large number
of cells that retain most of the characteristics of primary
cultures for biological studies (Gong et al., 2011; Huang
et al., 2015; Lee et al., 2015; Pifieiro-Ramil et al., 2020).
Consistent with previous reports (Gong et al., 2011;
Pineiro-Ramil et al., 2020), we found that DSCS cells re-
tained their morphology (spindle shape) and the expres-
sion of surface markers even at late passages.

There is extensive evidence in the literature that cell
proliferation and differentiation are negatively correlated.
However, DSCS cells retained their multilineage differen-
tiation capacity despite their proliferative capacity. DSCS
cells had the higher basal expression of chondrogenic
and osteogenic gene markers compared with undiffer-
entiated SCAPs. p53 modulates osteoblastic gene expres-
sion; therefore, inhibition of p53 by SV40LT results in the
upregulation of genes implicated in bone development
(Artigas et al., 2017). SV40LT is known to activate PI3K,
a signalling pathway that governs bone formation (Gdmez
et al., 2016). The Rb family, which is also suppressed by
SVA40LT, has a principal role in regulating cell cycle pro-
gression and differentiation of neurons, muscle, adipose
tissue and retina (Khidr & Chen, 2006). In MSCs, Rb plays
a critical role in cell fate decisions. On the one hand, it
binds to Runt-related transcription factor 2 (RUNX2) to
promote osteoblast differentiation, while on the other
hand, it inhibits peroxisome proliferator-activated recep-
tor y subunit; the master activator of adipogenesis (Calo
et al., 2010). Therefore, inactivation of the Rb family may
be related to alterations in adipocyte and osteoblast dif-
ferentiation, explaining our results when comparing ad-
ipogenesis in primary and immortalized cultures. Other
clonal effects can also contribute to the differences in
terms of bone and chondrocyte differentiation. Further
studies are needed to confirm the exact nature of the rela-
tionship involved.

In summary, this study established an immortalized
human multipotent stromal cell line from SCAPs (DSCS
cells) with higher proliferative capacity and retained the
expression of mesenchymal surface markers and multipo-
tency. This new cell line could be a valuable tool for inves-
tigating the role and mechanisms of SCAPs in different
regeneration fields.
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