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Abstract 

The accuracy of structure-based (SB) virtual screening (VS) is heavily affected by the scoring 

function used to rank a library of screened compounds. Even in cases where the docked pose 

agrees with the experimental binding mode of the ligand, the limitations of current scoring 

functions may lead to sensible inaccuracies in the ability to discriminate between actives and 

inactives. In this context, the combination of SB and ligand-based (LB) molecular similarity 

may be a promising strategy to increase the hit rates in VS.  This study explores different 

strategies that aim to exploit the synergy between LB and SB methods in order to mitigate the 

limitations of these techniques, and to enhance the performance of VS studies by means of a 

balanced combination between docking scores and 3D similarity. Particularly, attention is 

focused to the use of measurements of molecular similarity with PharmScreen, which exploits 

the 3D distribution of atomic lipophilicity determined from quantum mechanical-based 

continuum solvation calculations performed with the MST model, in conjunction with three 

docking programs: Glide, rDock and GOLD. Different strategies have been explored to 

combine the information provided by docking and similarity measurements for reranking the 

screened ligands. For a benchmarking of 44 data sets, including 41 targets, the hybrid methods 

increase the identification of active compounds according to the early (ROCe%) and total 

(AUC) enrichment metrics of VS compared to pure LB and SB methods. Finally, the hybrid 

approaches are also more effective in enhancing the chemical diversity of active compounds. 

The datasets employed in this work are available in 

https://github.com/Pharmacelera/Molecular-Similarity-and-Docking. 
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INTRODUCTION 

Structure-based (SB) and ligand-based (LB) methods have been widely used to perform 

virtual screening (VS) of chemical libraries in computer-aided drug design.1,2 SB techniques 

exploit the three-dimensional (3D) structure of the macromolecular target to provide a putative 

binding mode of fragment-like and drug-like compounds and estimate the strength of the 

ligand-target interaction, often involving simplified approximations of the enthalpic and 

entropic components of the binding affinity.3,4 The most widely used SB technique is 

molecular docking, which predicts the preferred pose of the ligand in the binding pocket 

through the use of scoring functions, often supplemented with pharmacophoric constraints, 

and is exploited to identify hits in VS studies. On the other hand, LB techniques encompass a 

diverse group of strategies, which primarily disclose similarity relationships between 

molecular descriptors of the ligand. Under the framework of the similarity principle property,5 

which assumes that similar compounds should have similar properties, a plethora of methods 

have been developed to disclose structure-activity relationships, derive pharmacophores to 

rationalize the biological activity, and perform similarity measurements in the search of novel 

chemical scaffolds.6–8  

The accuracy and predictive power of both LB and SB methods are limited by several 

challenges. Besides the lack of structural information of the target, LB methods are limited by 

the quality of the descriptors used to characterize the chemical features of the compounds, the 

consistency and chemical diversity of the training set, and the similarity metrics used in the 

comparison of molecules. On the other hand, SB methods may be affected by the accuracy of 

the 3D structural data, the involvement of different conformational states of the target protein, 

often arising from ligand-induced effects, and the assistance of structural waters in mediating 

ligand binding. Even in the case of well-defined structural models of the target protein, the 

predictive power of SB techniques may be affected by the simplifications introduced in the 
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scoring function, and the exhaustiveness of the sampling search, which may lead to a 

substantial computational cost for VS applications.9-15  

In this context, strategies that combine LB and SB methods may be valuable to reinforce the 

success of VS campaigns by minimizing the intrinsic weaknesses of these techniques.16–19 

Following Drwal and Griffith,2 combined LB+SB strategies can be grouped into three 

categories: sequential, parallel, and hybrid approaches. The former splits the screening process 

into various consecutive steps to overcome the computational expensiveness of the SB 

approach. Accordingly, a prefiltering step is performed at the beginning of the VS using the 

less expensive LB techniques, and the retrieved hits are subsequently evaluated using 

molecular docking.20–22 In the parallel approach, LB and SB methods are run independently, 

and then the results are merged to obtain a mixed ranking.16,23–25 Finally, hybrid approaches 

integrate LB and SB techniques, generally through the translation of key protein-ligand 

interactions into pharmacophoric constraints for guiding the screening of compounds26 and 

for profiling purposes,27 or alternatively by exploiting the similarity of molecules to a known 

crystallographic ligand to rerank the docked poses.18,28–30  

The success of these strategies depends not only on the robustness of LB and SB techniques, 

but also on the synergy and complementarity of the molecular descriptors encoded in these 

methods, and the mathematical formalism adopted to combine them into a ranking function 

that alleviates the potential deficiencies of these methods.31,32 Here we address these questions 

by examining the performance of parallel and hybrid approaches to discriminate between 

active and inactive compounds in VS of chemical libraries. To this end, attention is paid to 

the use of lipophilic (Hyphar) descriptors,33–35 which have been examined in the context of 

3D-QSAR studies36,37 and similarity measurements of molecular overlays.38 The lipophilic 

descriptors are based on the atomic decomposition of the global lipophilicity of a given 

compound estimated from quantum mechanical (QM) continuum solvation calculations in 
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water and n-octanol, yielding a 3D lipophilicity distribution of the molecule.39,40 In this work 

the Hyphar-based similarity measurements have been exploited in conjunction with three 

docking programs: rDock,41 GOLD42 and Glide.43-45 In particular, we have evaluated the 

synergy between these LB and SB techniques to enhance the performance of VS through the 

analysis of new rankings obtained by using different parallel and hybrid combination 

strategies. 

 

METHODS 

Test dataset. Since the performance of VS methods is sensitive to the set of compounds, a 

diverse number of receptors should be considered to calibrate the performance of LB and SB 

techniques. For our purposes here, a subset of the Directory of Useful Decoys (DUD; 

http://dud.docking.org/)46,47 has been used. Although DUD is suitable to address the 

weaknesses of docking methods, LB methods can easily account for differences between 

actives and inactives.46 Accordingly, the subset of DUD proposed by Good and Oprea 

(DUD_LIB_VS_1.0; http://dud.docking.org/jahn/) has been chosen,48 as this specific dataset 

was conceived with the aim of avoiding an overestimation of the performance of LB methods. 

In particular, a lead-like filtering and clustering algorithm was applied to eliminate large 

molecules with inappropriate physicochemical properties and to reduce the artificial bias 

between structural analogs and actives during the enrichment test.49–51 This set contains known 

actives and mimetic decoys for 40 targets downloaded from the DUD website. Additionally, 

four sets (DHFR, GR, HIV1PR, and VEGFR2) taken from DEKOIS V2.0 

(http://www.dekois.com),52 which were used to evaluate the combination of LB and SB 

methods,53 were also considered. In this latter benchmark, each different set has the same size 

and the same number of active ligands, selected from BindingDB.54 For ease of reading, these 

sets will be denoted as BS1 (benchmarking set 1; 40 targets) and BS2 (benchmarking set 2; 4 

http://dud.docking.org/
http://www.dekois.com/
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targets), respectively. A detailed description of the datasets is provided in the Supporting 

Information (SI; Table S1). 

Ligand Preparation. In this study, two complementary aspects of ligand-receptor interactions 

were analyzed: the MST-derived lipophilicity (Hyphar) descriptors, and the ligand docking 

into the binding site, which was examined using rDock, GOLD, and Glide. Hyphar descriptors 

were obtained using the MST solvation model55 parametrized at the semiempirical RM1 

level.56 All the compounds were modeled considering a neutral state in order to avoid 

artefactual effects in similarity measurements arising from the large contribution of charged 

chemical groups to the 3D lipophilicity distribution. MolVS,57 a standardization tool in the 

RDKit58 chemistry framework, was applied to neutralize the compounds. The geometry of all 

ligands was minimized using the RM1 Hamiltonian using a locally modified version of 

MOPAC.59 To take into account the conformational flexibility of compounds, up to 100 

conformations were calculated for each ligand using the Distance Geometry method 

implemented in RDKit. With regard to the docking calculations, the ionization and tautomeric 

states assigned to compounds in the original sets were adopted in this study. 

Protein Preparation. For each ligand a protein target was selected to perform the docking 

calculations. For the BS1 set, all targets were directly taken from the DUD Web site (DUD 

release 2). Let us note, however, that the original X-ray structure for the target ADA is not 

correct, and hence it was replaced by the X-ray structure 1NDW taken from the Protein Data 

Band (PDB).60,61 In addition, the PDB codes for COX-1 and SRC (entries 1P4G and 2SRC, 

respectively) in DUD do not correspond to the protein structures compiled in the set, which 

are 1QAG and 1Y57, respectively. On the other hand, only water molecules present in the X-

ray structures prepared by the DUD’s authors were maintained in the binding pocket. 

Although this may be a relevant factor in determining the optimal performance of the SB 



 8 

methods for specific sets, this decision was motivated for the sake of comparison with other 

tests.  

For the BS2 set, the targets were obtained from the PDB, and water molecules and cofactors 

were processed following the approach described by Anighoro and Bajorath.53 For 

calculations performed with Glide and rDock, the protein targets were prepared using the 

Protein Preparation Wizard module in Maestro.62 For GOLD, the protein structures were 

prepared using the CSD Python API following the standard wizard workflow. A detailed 

description of the targets and the changes made to certain protein residues are provided in the 

Supporting Information Tables S1 and S2, respectively. 

Query Preparation. The query structures chosen to perform the similarity search in the LB 

analysis were adopted from previous works.46,47,53 With regard to BS1, the queries proposed 

by Huang et al.,46 which were used in the validation of LB tools,49,63 were selected and the 

structures downloaded from the DUD Web site (DUD release 2). For BS2, the same co-

crystallized ligands used in ref. 53 were extracted from the PDB (Supporting Information 

Table S1).  

LB and SB VS tools. PharmScreen38,64 was used as the LB VS tool using the default 

configuration. PharmScreen exploits the MST-derived atomic lipophilic contributions in 

conjunction with a hydrogen-bond (HB) descriptor, which accounts for the HB donor/acceptor 

properties of atoms in a molecule. These lipophilic contributions were determined from 

quantum mechanical computations of the ligand immersed in water and n-octanol through the 

use of RM1 semiempirical version of the MST model,55 and the subsequent partition of the n-

octanol/water partition coefficient into 3D maps of atomic contributions, which were further 

decomposed into electrostatic and cavitation components (the reader is addressed to refs. 38 

and 39 for details). As an example, Supporting Information Figure S1 provides a graphical 

representation of the comparison between two pairs of molecules according to these 
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hydrophobicity components.  

  

The SB VS was performed using rDock, GOLD and Glide, as these docking programs involve 

distinct sampling algorithms and scoring functions. rDock is an open source molecular 

docking package, while Glide and GOLD are widely distributed and validated docking tools. 

In all cases, the receptor grids were centered on the query molecule selected in the LB method. 

Grid dimensions were defined using the default parameters, except for Glide in BS2, where 

the grid was adjusted to fit the size defined in ref. 23, and docking calculations were performed 

using the default procedure (representative files for docking calculations are provided in the 

Supporting Information), which is briefly detailed as follows: 

i) The rDock calculations were performed using a rigid model for the protein target, keeping 

nevertheless the flexibility of the hydrogen-bond donors, the scoring function “dock.prm”, 

and performing a total of 50 docking runs per ligand.41 rDock uses a combination of stochastic 

and deterministic search techniques to generate low-energy ligand poses. A genetic algorithm 

search was applied as a first stage followed by low temperature Monte Carlo and Simplex 

minimization stages. Generally, rDock is used in conjunction with pharmacophoric 

constraints, which have not been applied in this study. 

ii) GOLD was run using the default options and the GoldScore fitness function.42 GOLD 

employs a genetic algorithm to explore the full range of conformational flexibility of the 

ligand in the protein binding site. Free corners of ligand rings were allowed to flip during 

docking. Also, GOLD was allowed to vary ligand non-fused ring conformations during 

docking based on a library of ring conformations extracted from the Cambridge Structural 

Database.65  

iii) Finally, Glide was used in both HTVS and SP modes.44,45 The general van der Waals 

radius-scaling factor was reduced by a factor of 0.9 in order to decrease the number of rejected 

https://www.ccdc.cam.ac.uk/Solutions/CSDSystem/CSD/
https://www.ccdc.cam.ac.uk/Solutions/CSDSystem/CSD/
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molecules. In addition, the cutoff of Coulomb-van der Waals energy and HB score were 

disallowed (the default value of 0.0 was modified to 1000). Even with these changes, some 

molecules were rejected in docking calculations, and they were relocated at the end of BS1 

and BS2 rankings, first hits and then decoys. A list of relocated molecules is reported in the 

Supporting Information Table S3. A systematic search of the ligand's conformation and 

orientation in the binding pocket was performed through a hierarchical series of filters.  

Protocols applied to combine LB and SB methods. Three LB+SB protocols were tested, 

namely, a parallel ranking, and two hybrid approaches: rescoring ranking and consensus 

ranking. 

i) Parallel ranking (PR). In this case the rankings obtained from separate LB and SB 

screenings are merged to create the final ranking. With the aim to treat both techniques with 

equal parity, the first molecule of the SB ranking and the first molecule of LB ranking occupies 

the first and second positions of the PR. Among this pair of molecules, the first is the 

compound with the lower sum of LB and SB rankings. Accordingly, the molecules ranked 

second for each method would be reranked third and fourth, and so on until all molecules are 

reordered. 

ii) Rescoring ranking (RR). The final ranking is determined according to the score obtained 

from the 3D similarity measurement (relative to the reference template) of the best pose 

generated by the SB docking method.  

iii) Consensus ranking (CR). This strategy mixes both parallel and hybrid approaches, as the 

LB screening used in PR is replaced by the RR ranked compounds. Thus, the final score of 

the compounds is obtained by combining the rankings provided a) directly from the SB 

(docking) method and b) from the RR approach, and performing this combination according 

to the parallel strategy.  

Finally, let us note that the similarity measurement performed in RR and CR was estimated 
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using two metrics: i) a global similarity using the Tanimoto coefficient (Tn), and ii) a local 

similarity using the Tversky coefficient (Tv).66 These coefficients can be described as noted 

in Eq. 1, with a=b=1 for Tn, and a=1 and b=0 for Tv. Accordingly, Tv remarks the 

asymmetric character in the comparison of two molecules, allowing to give more relevance to 

the salient features of a specific compound in the similarity measurement relative to the 

reference template.67 This will be used here in the comparison of molecules with large 

differences in their size (see below). 

 

       (1) 

where C denotes the common feature the intersection of the fields of the two molecules that 

are compared, and the terms  and  stand for the distinctive fields not overlapped 

features of the two molecules.  

 

Performance Evaluation. Two metrics were used to assess the performance of the three 

combined (LB+SB) reranking strategies.68–70 The Receiver Operator Characteristic 

enrichment factor (ROCe, Eq. 2) was used to measure the performance assuming a given 

percentage of false positives and to evaluate the quality in the initial positions of the ranking. 

        

𝑅OCe	X% =
N!"#$%&'	'&)&"#&*
+%

N	total	actives
N*&"-.'	'&)&"#&*
+%

N	total	decoys

=
TP

TP + FN
FP

TN + FP
=

sensitivity
1 − specificity 

 

(2) 

 

 

Following Jan and Nicholls,71 ROCe values at false positive rates of 0.5%, 1.0%, 2.0%, and 

5.0% were determined. Furthermore, the Area Under the ROC curve (AUC) was used as 

metrics to assess the global performance to identify actives in the VS. 

Similarity = C
α(A−C)+β(B−C)+C

A−C B−C
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In addition, chemotype clustering analyses was included to examine the chemical diversity in 

the ranked compounds by means of the awROCe values (Eq. 3).49  

 

𝑎𝑤𝑅OCe	X% =

∑ ∑ 𝑤/0𝑎/0
1%2!

/
2"#$%&'(%
0

N	clusters
N*&"-.'	'&)&"#&*
+%

N	total	decoys

 

 

(3) 

 

where 𝑤/0 =
3
2!

 is the weight of the ith structure from the jth cluster, Nj is the number of 

structures in a given cluster, 𝑎/0
1% is 1 or 0 depending on whether the ith structure of the jth 

cluster already appeared or not in the chosen fraction of the dataset.  

 

By using Eq. 2, the value of a true positive hit is weighted depending on the cluster to which 

it belongs and on the number of molecules in the cluster. The clusters proposed in the DUD 

dataset were used to compute this metric. The awROCe parameter was determined taking into 

account the same percentages adopted for ROCe. 

 

RESULTS AND DISCUSSION 

 

Comparative analysis of LB and SB methods. The VS results obtained by using either LB 

(PharmScreen) or SB (Glide HTVS, Glide SP, rDock, and GOLD) methods are reported in 

Table 1, which shows the averaged values of ROCe and AUC for the whole set of targets 

(results for individual sets are provided in the Supporting Information Tables S4-S7).  

The results obtained with Glide HTVS and Glide SP are highly similar for the BS1 dataset 

(DUD), as noted in the similar values determined for ROCe (ranging from 27.3 to 6.8 at 0.5% 

and 5%, respectively, for Glide HTVS, and from 28.3 to 6.8 for Glide SP), and AUC (0.70 

and 0.74 for Glide HTVS and Glide SP, respectively). This resemblance is remarkable when 
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one takes into account the lower computational cost required for the VS with Glide HTVS 

compared to Glide SP. On the other hand, they compare with the values obtained with 

PharmScreen, as the ROCe values vary from 33.2 to 6.6, and the AUC is 0.66. In contrast, the 

results obtained for the BS2 dataset reveal larger differences between Glide HTVS and Glide 

SP, as the ROCe values obtained for HTVS (ranging from 6.3 to 3.4) are drastically improved 

when Glide SP is used, leading to ROCe values varying from 35.0 to 6.3. Similarly, the AUC 

increases from 0.52 for Glide HTVS to 0.69 for Glide SP. For this set of compounds, the 

results obtained with PharmScreen yields ROCe values ranging from 15.0 to 5.4, and an AUC 

of 0.70.  

 

Table 1. ROCe and AUC for PharmScreen, Glide HTVS, Glide SP, rDock and GOLD. 

Metric PharmScreen Glide  

HTVS 

Glide 

SP 

rDock GOLD 

BS1 dataset 

ROCE 0.5 33.2 27.3 28.3 4.1 17.4 

ROCE 1 21.0 19.7 18.8 4.9 12.2 

ROCE 2 12.5 12.2 12.4 4.6 8.1 

ROCE 5 6.6 6.4 6.8 3.4 4.4 

AUC 0.66 0.70 0.74 0.62 0.55 

BS2 dataset 

ROCE 0.5 15.0 6.3 35.0 5.0 16.3 

ROCE 1 8.1 5.6 18.1 5.6 11.3 

ROCE 2 6.3 4.1 11.9 3.1 5.9 

ROCE 5 5.4 3.4 6.3 3.4 2.6 

AUC 0.70 0.52 0.69 0.64 0.58 
a GS: Global (GS) and local (LS) similarity measurement performed with Tanimoto and Tversky coefficients. 

 

Compared to PharmScreen and Glide, rDock exhibits a lower performance, especially 

regarding the early recovery of actives. This trend agrees with the results reported by Ruiz-

Carmona et al.,41 as the VS performance of rDock was reported to be inferior to Glide for 

most systems unless pharmacophore constraints were used, whereas the inclusion of this 
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information improved significantly the performance of rDock, which was similar to Glide. In 

contrast, whereas the results obtained in the VS of the BS1 dataset with GOLD point out a 

lower performance compared to PharmScreen and Glide, it compares well with PharmScreen 

and outperforms Glide HTVS in the VS for the BS2 dataset. On the other hand, it is worth 

noting that the two docking methods show consistent trends for the two compound datasets. 

Thus, for rDock the ROCe values range from 4.1 to 3.4 for BS1, and from 5 to 3.4 for BS2, 

and the AUC values are 0.62 and 0.64 for BS1 and BS2, respectively. In the case of GOLD, 

the ROCe values range from 17.4 to 4.4 for BS1, and from 16.3 to 2.6 for BS2, whereas the 

AUC amounts to 0.55 and 0.58 for BS1 and BS2, respectively. 

It is worth noting that the active compounds recovered from the VS performed with LB and 

SB techniques exhibit notorious differences. This can be stated in Figure 1, which shows the 

position (normalized from 1% to 100%) occupied by all active compound as ranked by 

PharmScreen and by the four docking methods (Glide HTVS, Glide SP, rDock and GOLD). 

The plots show that most of the compounds recovered in the first 10% with PharmScreen are 

in most cases scattered up to 60% according to Glide HTVS and Glide SP, and can be found 

up to 80-90% according to rDock and GOLD. Similarly, the hits in the first 10% obtained 

with the different docking programs are scattered up to 60-100% with PharmScreen. This 

behavior is also observed in the early recovered actives, as most of the compounds lying in 

the first 1% with docking methods are largely scattered according to the PharmScreen ranking, 

and vice versa.  

Keeping in mind the intrinsic features that underlie similarity measurements and docking 

calculations, the different behavior exhibited by PharmScreen and the three docking programs 

regarding the recovery of actives is not unexpected. However, this also suggests that a 

combined strategy between LB and SB techniques may be valuable not only for enhancing 

the recovery of actives, but also for the enrichment in the diversity of chemical scaffolds. 



 15 

 

Figure 1. Distribution of the active compounds for the 40 targets included in the BS1 dataset as ranked 
by PharmScreen and by the four docking methods (Glide HTVS, Glide SP, rDock and GOLD). The 
position of the actives recovered in the LB and SB screenings has been normalized relative to the total 
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number of compounds in every set (from 1 to 100%). (Left) Representation obtained for the whole set 
of actives. (Right) Detailed view of the distribution of actives in the first 10%.  

 

Assessment of the combination strategies derived using global similarity. The effect of 

combining LB and SB methods for the two datasets can be examined from the ROCe and 

AUC values reported in Tables 2-5. The performance of the combined strategies is different 

for the two datasets. For the BS1 dataset, the PR approach enhances the performance of Glide 

HTVS and Glide SP, reaching ROCe 0.5% values of 37.5, which compare with values of 27.3 

and 28.3 for Glide HTVS and Glide SP respectively, whereas there is a slight improvement in 

the AUC (values of 0.75 and 0.77, which compare with 0.70 and 0.74 for Glide HTVS and 

Glide SP). In contrast, while PR also improves the VS outcome for the BS2 dataset in the case 

of Glide HTVS (ROCe 0.5% = 15.0, AUC = 0.72), there is in fact a worsening of the 

performance obtained with Glide SP (ROCe 0.5% of 35), as the ROCe 0.5% is reduced to 

23.8, although the AUC increases from 0.69 to 0.79. 

The results obtained for the two hybrid approaches, RR and CR, generally exhibit a large 

resemblance. For the BS1 dataset the RR and CR strategies lead to a slight improvement in 

recovering actives in the initial stages of the VS as compared to Glide HTVS and Glide SP, 

this trait being more relevant wit the CR strategy (ROCe 0.5% of 43.0). However, the largest 

impact is observed for the BS2 dataset, as the final CR ranking outperforms the behavior of 

Glide SP, leading to ROCe values ranging from 43.8 to 8.6. Nevertheless, the effect on the 

AUC is less significant.  
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Table 2. ROCe and AUC for the three combined strategies (PR, RR, CR) using PharmScreen and 

Glide HTVS. For each row, the best performing configuration is highlighted in bold. 

Metric PR RR 

GS a 

CR 

GS 

RR 

LS 

CR 

LS 

BS1 dataset 

ROCE 0.5 37.5 30.4 39.7 31.7 43.0 

ROCE 1 24.9 18.3 25.0 20.8 26.1 

ROCE 2 15.8 11.3 14.4 13.2 16.1 

ROCE 5 8.2 5.9 7.4 7.0 8.3 

AUC 0.75 0.67 0.71 0.72 0.75 

BS2 dataset 

ROCE 0.5 15.0 17.5 16.3 17.5 12.5 

ROCE 1 8.8 11.9 10.0 10.6 8.1 

ROCE 2 6.6 7.8 6.6 5.9 6.6 

ROCE 5 5.7 5.5 3.4 5.0 4.0 

AUC 0.72 0.56 0.59 0.56 0.58 
a GS: Global (GS) and local (LS) similarity measurement performed with Tanimoto and Tversky coefficients. 

 

Table 3. ROCe and AUC for the three combined strategies (PR, RR, CR) using PharmScreen and 

Glide SP. For each row, the best performing configuration is highlighted in bold. 

Metric PR RR 

GS 

CR 

GS 

RR 

LS 

CR 

LS 

BS1 dataset 

ROCE 0.5 37.5 33.1 43.0 31.6 42.9 

ROCE 1 24.1 22.1 27.4 22.6 27.6 

ROCE 2 15.4 13.1 16.9 14.3 17.7 

ROCE 5 8.2 6.7 8.5 8.0 9.4 

AUC 0.77 0.71 0.76 0.76 0.80 

BS2 dataset 

ROCE 0.5 23.8 35.0 43.8 30.0 37.5 

ROCE 1 19.4 20.0 28.8 15.0 26.3 

ROCE 2 12.5 12.5 16.9 9.7 15.3 

ROCE 5 7.5 6.8 8.6 5.5 8.4 

AUC 0.79 0.69 0.74 0.69 0.73 
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The consistency in the behavior of both rDock and GOLD for the two datasets is kept in their 

combined methods. Thus, the combination with PharmScreen within the PR framework leads 

to a significant improvement in the recovery of actives, as the ROCe 0.5% increases from 4.1 

to 23.3 (BS1) and 5.0 to 13.8 (BS2) for rDock, and from around 17.0 to 28.0 (BS1) and 18.8 

(BS2) for GOLD. The better performance obtained for the hybrid combination with GOLD 

reflects the larger recovery of actives provided by this docking method compared to rDock 

(see Tables 4 and 5). 

With regard to the two hybrid approaches, the RR combination shows better performance than 

the CR approach, reaching ROCE 0.5% values close to 30.0 and 34.0 for the poses generated 

by rDock and GOLD, respectively. In these cases, therefore, the correction of the score 

provided by these docking methods with the similarity measurement between the best pose 

and the ligand template leads to a sizable improvement in the overall VS performance. This 

trait is also reflected in the AUC values, which increase from around 0.60 for the two docking 

methods to around 0.72 in the combined strategies.  

The enhanced performance of the RR rescoring compared to the PR is remarkable from a 

computational point of view, because this latter strategy requires carrying out both LB and SB 

screenings of the compounds. In contrast, the RR (and CR) approach rely on a single (SB) 
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screening, as the LB similarity is performed only for the best docked pose of each compound, 

which leads to a marginal increase in the expensiveness of the VS. 

 

 

 

 

 

 

 

Table 4. ROCe and AUC for the three combined strategies (PR, RR, CR) using PharmScreen and 

rDock. For each row, the best performing configuration is highlighted in bold. 

Metric PR RR 

GS 

CR 

GS 

RR 

LS 

CR 

LS 

BS1 dataset 

ROCE 0.5 23.3 31.5 21.8 39.1 25.6 

ROCE 1 17.0 19.2 15.6 24.6 18.0 

ROCE 2 11.1 12.2 10.8 15.6 13.1 

ROCE 5 6.3 6.4 6.3 7.8 7.7 

AUC 0.70 0.68 0.72 0.73 0.76 

BS2 dataset 

ROCE 0.5 13.8 27.5 22.5 25.0 11.3 

ROCE 1 10.6 18.8 16.3 17.5 15.0 

ROCE 2 6.9 11.6 11.3 11.6 10.9 

ROCE 5 4.5 6.4 5.9 6.0 5.8 

AUC 0.75 0.70 0.73 0.72 0.73 
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Table 5. ROCe and AUC for the three combined strategies (PR, RR, CR) using PharmScreen and 

GOLD. For each row, the best performing configuration is highlighted in bold. 

Metric PR RR 

GS 

CR 

GS 

RR 

LS 

CR 

LS 

BS1 dataset 

ROCE 0.5 28.0 34.2 29.2 45.9 35.3 

ROCE 1 19.9 20.6 19.2 27.8 23.4 

ROCE 2 12.3 12.4 11.9 16.1 14.8 

ROCE 5 6.9 6.4 6.4 8.3 7.6 

AUC 0.66 0.68 0.66 0.73 0.72 

BS2 dataset 

ROCE 0.5 18.8 31.3 25.0 25.0 22.5 

ROCE 1 15.6 16.3 21.3 17.5 16.9 

ROCE 2 9.4 11.9 12.8 10.3 12.5 

ROCE 5 5.5 6.8 6.8 6.1 5.9 

AUC 0.77 0.72 0.72 0.72 0.71 

 

 

 

 

The analysis of the results obtained for the individual sets reveals the occurrence of significant 

improvements due to the use of combined strategies, which are partially masked in the analysis 

of the average results presented in Tables 2-5. This is illustrated by the behavior observed for 

the set of dihydrofolate reductase (DHFR) ligands in the BS2 dataset. A narrow and deep 

pocket defines a single binding mode in this target (Figure 2). Moreover, the chemical 

structure of the template molecule and 24 hits share a pyrido[2-3]pyrimidine ring, which can 

form HBs with three residues (Glu30A, Ile7A, and Val115A) at the bottom of the pocket,71 

thus favoring the definition of a unique binding mode. Most of the hits docked with Glide, 

rDock and GOLD exhibit a high overlap with the template compound (Figure 2; see also the 

Supporting Information Figure S2). These conditions are suited for the application of the 

hybrid RR protocol, as the LB-guided reranking of the docked poses leads to an effective 
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enhancement in the VS performance. At this point, let us note that the BS1 dataset also 

contains a subset of compounds targeting the DHFR enzyme, and the RR approach performs 

better than the rest of methods, as noted in ROCe 0.5% values that are increased from 25 

(Glide SP), 15 (rDock) and 35 (GOLD) to 75 for the RR method (see Supporting Information 

Tables S4-S7). 

Conversely, trypsin (in BS1 dataset) presents an open and superficial pocket, where a 

significant part of the crystallized ligand is exposed to the solvent (Figure 3).73 In this case, 

the ligands exhibit a higher diversity in their binding mode, and hence the RR method, which 

relies on the similarity of the docked pose to the reference template, performs worse. 

Nevertheless, the challenges posed by the existence of multiple binding modes are alleviated 

by the CR strategy. 

 

 

Figure 2. Binding mode of DHFR (PDB code: 1KMV) ligands. The surface of the pocket is shown in 

green, and the co-crystallized template molecule is shown as green sticks. The hit molecules containing 

a pyrido[2-3]pyrimidine ring docked with Glide are shown as cyan sticks. Dotted lines represent the 

HBs formed with Glu30, Ile7, and Val115A. 
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Figure 3. Binding mode of beta-trypsin, Trypsin_BS1, (PDB code: 1BJU, purple), co-crystallized 

reference molecule (green), docked molecules using Glide (cyan), rDock (orange), and GOLD (blue). 

 

In light of the trends discussed above for DHFR and trypsin, we have analyzed the influence 

of the physicochemical features of the binding pocket on the distribution of the ROCe (5%) 

values determined for the RR strategy. In particular, we have examined both the geometrical 

characteristics and the balance between hydrophobic and hydrophilic residues, as several 

studies have highlighted the relevance of these features in determining the druggability of the 

binding pocket,74-76 and are used to score the suitability of protein cavities to accommodate 

drug-like compounds in several predictors, such as fPocket77 and DoGSiteScorer.78 For our 

purposes here, these descriptors were determined for the whole set of targets included in the 

datasets using fPocket (https://fpocket.sourceforge.net). The results clearly indicate a 

worsening of the ROCe values with the increase in the size of the binding cavity, as estimated 

from either the solvent-exposed surface (data not shown) or the total volume of the pocket 

(Figure 4). This effect can be attributed to the larger number of possible arrangements that can 

be adopted by the ligand in pockets characterized by a large curvature. On the other hand, the 

hydrophilic/hydrophobic character of the cavity was quantified by using the hydrophobicity 

score implemented in fPocket, which estimates the mean hydrophobicity for all residues 

implicated in the binding site using the residue-based hydrophobicity scale reported by 
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Monera et al.79 The results suggests a tendency to provide larger ROCe values for either polar 

or apolar cavities, whereas lower values are obtained for pockets with an intermediate balance 

between hydrophilicity and hydrophobicity. These traits, which are common for the different 

docking methods, must be taken with caution, because the simplified description afforded by 

the normalized hydrophobicity of the pocket may be less relevant that the 3D distribution of 

polar and apolar groups in the binding cavity. 

 

 

 

Figure 4. Distribution of ROCe (5%) values according to the volume and hydrophobicity of the 

binding pockets in the set of targets. (Top) Volume (Å3) of the pockets (the maximum value is close 

to 1.900 Å3; the number of targets in the three categories is 18, 17 and 9). (Bottom) Hydrophobicity 

score (the maximum value is 72; the number of targets in each category is 11, 23 and 9). ADA set was 

discarded, the values reported was not properly computed.  

 

 

Performance of hybrid approaches with measurements of local similarity. Although CR 

appears to be suitable to correct the limitations of both docking and similarity measurements, 
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there are cases where this strategy leads to a negligible improvement in the reranking of 

compounds. This is exemplified by catechol O-methyltransferase (COMT in BS1 dataset), 

which also has a large solvent-exposed pocket that enables multiple binding modes (Figure 4, 

left).80 In this case, the limited impact of the CR technique can be ascribed to not only to the 

limited accuracy of docking methods in predicting the structural arrangement of the ligand, 

but also to the different size of the ligands, which tends to penalize the molecular overlay with 

the template when a global similarity measurement is used. As an example, let us note the 

comparison of five active compounds (Figure 5, right) docked in a small portion of the binding 

site, but with a molecular size notably smaller than the reference template. None of them was 

reranked in the top 5% due to the penalized measurement of the global similarity made with 

the Tanimoto index. Therefore, the performance of the hybrid rankings, although promising 

for enhancing the ligand enrichment in VS, may be limited by the bias introduced in 

measurements of global similarity between molecules with disparate sizes. This limitation 

may be alleviated by the use of local similarity, which may be estimated with the Tversky 

coefficient. 

 

  

Figure 5. (Left) Binding mode of catechol O-methylltransferase (COMT in BS1 dataset; PDB code: 

1H1D, shown as blue surface) with all ligands of DHFR_BS1 docked using Glide, rDock, and GOLD. 

(Right) Overlay of the reference molecule (co-crystallized structure BIA) and five catechol-containing 

ligands with a notorious difference in size relative to the reference compound. The reference molecule 

is shown as green sticks, and hits docked using Glide, rDock, and GOLD are shown as cyan, orange 
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and blue sticks, respectively. Hydrogen bonds between the reference compound and Lys144, Asn170 

and Glu199 are shown as dashed lines. 

 

 

 

Tables 2-5 show the ROCe and AUC values obtained upon application of local similarity 

measurements (the results for all individual sets are reported in the Supporting Information 

Tables S4-S7). Both RR and CR hybrid techniques outperform the ranking obtained from pure 

LB and SB (Glide, GOLD) VS tools in both BS1 and BS2 datasets, whereas the RR approach 

seems to be the best protocol for recovering actives with rDock. Indeed, the RR strategy leads 

to a notable increase in both ROCe for most BS1 sets. On the other hand, the AUC values 

obtained when RR and CR are used with Glide remain mostly unaffected, while larger 

improvements are obtained upon combination with GOLD and rDock. 

Inspection of Tables 2-5 suggest that local similarity yields better results for the BS1 dataset, 

whereas measurements of global similarity are better for the BS2 data set. This behavior can 

be related to the different sensitivity of the hits included in BS1 and BS2 to measurements of 

structural resemblance to the reference ligand (Figure 6), which was estimated from the 

comparison of the molecular connectivity encoded in Morgan fingerprints (radius = 2) using 

both global (Tanimoto) and local (Tversky) similarity metrics calculated by RDKit.58 For the 

BS1 dataset, 75% of the hits have a global similarity lower than 0.4, which increases up to 0.6 

when local similarity is used. In contrast, the similarity of the hits in BS2 increases up to 0.4 

upon replacement of the global similarity by the local one. 
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Figure 6. Distribution of hits in the BS1 (DUD_LIB_VS_1.0) and BS2 (DEKOIS V2) datasets 

according to the structural resemblance to the reference ligand.  

 

These findings may raise the question whether the actives early recovered in the VS are those 

with larger resemblance according to their molecular connectivity with the template. To this 

end, we have examined the structural resemblance of the actives recovered in the ROCe 5% 

from the RR in conjunction with the four docking methods. The structural resemblance has 

been determined using Morgan fingerprints (radius = 2) calculated by RDKit58 and measured 

with both global and local similarity metrics. As noted before, the usage of local similarities 

tends to increase the number of recovered actives, especially for the BS1 dataset. However, 

the number of compounds with high similarity (> 0.7) increases roughly twofold (from around 

60 to 135 compounds) when the local similarity replaces the global one, this factor being 

increased to a factor ranging from 3 (Glide HTVS) to 4 (Glide SP) when the similarity 

threshold is reduced to 0.5. 
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Figure 7. Distribution of actives in the first 5% of the ROCe curve obtained with the RR strategy 

according to the structural (Morgan fingerprint using RDKit, radius = 2) similarity to the reference 

ligand. Results determined by using (top) global and (bottom) local similarities for the BS1 

(DUD_LIB_VS_1.0) and BS2 (DEKOIS V2) data sets. Results obtained for the combined RR strategy 

with Glide HTVS, Glide SP, GOLD and rDock are shown as blue, black, red and green dots, 

respectively. 

 

The behavior of the combined LB+SB strategies is not uniform for all the sets, a trait already 

recognized in previous studies.24 Besides the physicochemical features of the binding pocket 

and the docking method used in the SB screening, the enrichment may be influenced by the 

similarity metrics adopted in the comparison with the reference molecule. As an example, let 

us note that four out of the five hits discussed above (Figure 5, right) are rescored within 1% 

of the ranking using local similarity measurements for the three docking tools. In addition, 
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Figure 8 shows the hits found in the ROCe 0.5% using local similarity for tyrosine kinase c-

src (SRC) and peroxisome proliferator-activated receptor gamma (PPARg).81,82 These systems 

were chosen due to the low number of actives recovered at this ROCe level when a global 

similarity is used: no actives were recovered for both molecular systems using Glide and 

rDock coupled to RR, whereas 1 and 3 actives were identified using GOLD for PPARg and 

SRC, respectively. In contrast, local similarity measurements lead to the recovery of 3/17, 2/6, 

and 2/16 actives for PPARg/SRC at the ROCe 0.5% level using Glide, rDock, and GOLD, 

respectively. 

With regard to the BS2 targets, the use of local similarity leads to slightly lower averaged 

values compared to the global similarity ones. This primarily stems from the results obtained 

for HIV-1 protease (HIVPR_BS2) for the hybrid methods derived from GOLD and Glide, and 

for dihydrofolate reductase (DHFR_BS2) in the case of rDock, whereas the results remain 

unaltered for the rest of targets (see the Supporting Information Tables S4–S7). In particular, 

the decoys found at ROCe 0.5% with local similarity are ranked below position 90 when 

global similarity is used for HIVPR_BS2. Similarly, three out of the six first decoys found for 

DHFR_BS2 at the ROCe 0.5% are located below position 41 with the Tanimoto coefficient. 

This behavior arises from the comparison of compounds with dissimilar sizes, as shown in 

Figure 9, which displays the first decoy recovered for the RR approach in HIV1PR_BS283 

using GOLD and Glide, and DHFR_BS284 with rDock. 

 

 

A  
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B  

  
C  

  
Figure 8. (Left) Binding mode of ligands to tyrosine kinase c-src (SRC in BS1 dataset; PDB code: 

1Y57, green) at the ROCe 0.5% level. (Right) Binding mode of peroxisome proliferator-activated 

receptor gamma (PPARg in BS1 data set; PDB code: 1FM9, green) at the ROCe 0.5% level. In the two 

cases the co-crystallized reference molecule is shown as green sticks, and hits docked using (A) Glide, 

(B) rDock, and (C) GOLD are shown as cyan, orange and blue sticks, respectively. 
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Figure 9. (Left) Binding mode of ligands to HIV-1 protease (HIVPR in BS2 dataset; PDB code: 3NU3, 

light red) at the ROCe 0.5% level. The co-crystallized reference molecule is shown as green sticks, 

and decoys docked with Glide and GOLD as cyan and blue sticks, respectively. (Right) Binding mode 

of ligands to dihydrofolate reductase (DHFR in BS2 dataset; PDB code: 1NHZ, purple) at the ROCe 

0.5% level. The co-crystallized reference molecule is shown as green sticks, and the decoy docked 

using rDock as orange sticks. 

 

 

 

As a final remark, the robustness of the hybrid RR and CR strategies used in conjunction with 

local similarity measurements is supported by the heatmaps provided in Figure 10, which 

displays the hierarchical position of the LB and SB methods as well as of the different LB+SB 

approaches for each of the 44 targets according to ROCe 1% and AUC (see Supporting 

Information Figures S3 and S4 for heatmaps to ROCe 0.5%, 2% and 5%). Figure 10 supports 

the better performance of the CR when used in combination with Glide_SP, as it recovers the 

largest number of hits according to the two metrics not only relative to PharmScreen and 

Glide_SP, but also in comparison with PR and RR. Nevertheless, this latter approach is the 

most robust strategy when used in combination with rDock and especially for GOLD, which 

can be attributed to a better performance of this latter method in predicting the pose of the 

docked ligands.  
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Figure 10. Heatmap of the hierarchical position of the LB, SB, and combined (PR, RR, and CR in 

conjunction with local similarity measurements) techniques for each of the 44 targets according to the 

ROCe 1 % and AUC. Results obtained relative to Glide, rDock and GOLD are provided in the left, 

middle and right columns. The color scale is indicative of the hierarchical position (from first to fifth) 

of a given technique according to the number of identified actives (best position in green, and worst 

position in red). 
 

Analysis of chemotype diversity. An interesting outcome of VS is the feasibility of finding 

molecules with novel chemical scaffolds that expand the chemical diversity of active 

compounds. To evaluate the chemical diversity of the selected hits, a weighting scheme based 

on the ROC metric was applied.49 As this analysis requires a clustered set, only the targets 
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included in the BS1 dataset were considered. Table 6 shows the average awROCe at different 

percentages for PharmScreen, Glide SP, rDock, GOLD and the two best combined methods, 

RR and CR coupled to local similarity, for each SB tool. The combined methods achieve the 

best overall performance in chemotype enrichment, in line with the ROCe values. In the case 

of the combined methods derived from Glide SP, CR improves the performance of RR, which 

is nevertheless the best combined method when used in conjunction with rDock and GOLD. 

In fact, the RR derived from GOLD poses is the best option among all others in the initial 

percentages of awROCe (results for individual sets are provided in the Supporting Information 

Tables S8-S10). 

 

Table 6. awROCe metrics derived for PharmScreen, Glide SP, rDock, GOLD and the hybrid RR and 

CR methods coupled to each docking program. The best configuration is highlighted in bold for each 

column. 

 awROCe 0.5% awROCe 1% awROCe 2% awROCe 5% 

PharmScreen 25.8 17.2 10.3 5.9 

Glide SP 

Docking 29.0 19.6 12.7 6.7 

RR 37.0 24.9 15.1 7.9 

CR 41.5 26.3 16.9 8.9 

rDock 

Docking 2.9 4.0 4.3 3.4 

RR 35.1 22.5 13.9 6.8 

CR 24.3 17.9 12.6 7.1 

GOLD 

Docking 13.8 10.7 8.3 4.1 

RR 45.5 26.6 15.0 7.5 

CR 31.4 22.7 14.5 7.4 

 

 

Figure 11 shows the binding site of thrombin as an example of the dependence of the hybrid 

RR on the docking pose. For this set, an active ligand is recovered at the awROCe 0.5% level 
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using GOLD poses, and none when docked poses generated by Glide and rDock are 

considered. The active recovered on the top of the RR obtained combining PharmScreen local 

similarity measurement with GOLD exhibits a high overlap with the reference molecule, while 

enabling the formation of the hydrogen bond between the ligand with Asp189 and Ser214 

(Figure 11).85 In contrast, rDock and Glide yield poses that have lower overlap with the 

template, leading to lower similarity scores. 

 

 

Figure 11. Binding mode of thrombin (PDB code 1BA8, yellow), co-crystallized reference molecule 

(green sticks), and the docked hit from Glide (cyan sticks), rDock (orange sticks), and GOLD (blue 

stick). Hydrogen bond interactions between the reference compound and Asp189, Ser214, Ser195, and 

the backbone of Gly193 are shown as dashed lines. 

 

 

The heatmap of robustness for the awROCe 1% is shown in Figure 12 (individual values at 

all percentages are shown in the Supporting Information Tables S8-S10, and heatmaps at 

awROCe 0.5%, 2% and 5% in Figures S5 and S6). For all the percentages considered in this 

study, a maximum of two sets are classified in third position using RR in conjunction with the 

poses generated by rDock and GOLD. Likewise, only a single set is classified in third position 

when the CR approach is used with the poses taken from Glide SP. Overall, the improvement 



 34 

of chemotype enrichment (awROCe) gives support to the synergy of combining LB and SB 

methods according to the RR and CR schemes. 

 

 

 

Figure 12. Heatmap of the hierarchical position of the LB, SB, and hybrid (top) RR and (bottom) CR, 

both determined in conjunction with local similarity measurements, according to the awROCe 1% 

level. The method ranked first is shown in green, the second in black and the third in red. 
 

 

CONCLUSIONS 

Since (de)solvation is fundamental for the binding of ligands to their pockets in 

macromolecular targets, it can be expected that active ligands bound to the same pocket share 

hydrophobic/hydrophilic features that are complementary to the residues that shape the 

binding pocket, thus providing clues about the molecular determinants that define the binding 
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mode. Inspired by the concept of 'consensus scoring',86 hydrophobic similarity can be used to 

complement the information provided by SB methods in order to enhance the feasibility of 

discriminating between active and inactive compounds, leading to the three combined 

strategies examined here in conjunction with state-of-the-art molecular docking (Glide, 

rDock, and GOLD) programs. 

The results obtained for the 44 sets of targets support the synergy of the hybrid LB+SB 

approaches, as the combined ranking consistently shows better performance than using only 

either LB or SB methods. Among the proposed protocols, CR and RR using partial similarity 

yield the best average performance in recovering actives in the datasets. The results also 

highlight the influence due to the specific docking formalism in driving the overall 

performance of two combined methods. In particular, the best performance is obtained by 

combining PharmScreen's hydrophobic similarity in conjunction with Glide within the CR 

approach, and with rDock and GOLD within the RR framework. Nevertheless, since the 

results are largely sensitive to the specific physicochemical features of the target, it seems 

desirable to confirm the suitability of these combined strategies in future blind challenges 

(http://drugdesigndata.org). 

Let us note that the use of these strategies only implies a reduced increment in the 

computational expensiveness, making them promising to refine the results of VS studies. 

Finally, an essential feature of the combined methods introduced herein is that 3D similarity 

calculations are independent of the generation of docking poses. Hence, any existing ranking 

might also be re-evaluated based on 3D similarity calculations relative to suitable templates 

taken from available experimental data.  

 

SUPPORTING INFORMATION 

The Supporting Information is available free of charge at  
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https: //pubs.acs.org/doi/ 

Configuration files for docking tools, list of targets included in datasets BS1 and BS2, list of 

changes in protein residues, molecules discarded in docking calculations with SP and HTVS 

modes of Glide, ROCe and awROCe results for individual sets, graphical representation of 

the binding mode of DHFR with docked hits using rDock and Gold, and heatmaps of the 

hierarchical position of RR and CR regarding pure VS methods for ROCe and awROCe 0.5%, 

2% and 5%.  

Datasets available at the GitHub repository https://github.com/Pharmacelera/Molecular-

Similarity-and-Docking. 
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