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A B S T R A C T

Understanding how neural networks generalize on unseen data is crucial for designing more robust and reliable
models. In this paper, we study the generalization gap of neural networks using methods from topological
data analysis. For this purpose, we compute homological persistence diagrams of weighted graphs constructed
from neuron activation correlations after a training phase, aiming to capture patterns that are linked to the
generalization capacity of the network. We compare the usefulness of different numerical summaries from
persistence diagrams and show that a combination of some of them can accurately predict and partially explain
the generalization gap without the need of a test set. Evaluation on two computer vision recognition tasks
(CIFAR10 and SVHN) shows competitive generalization gap prediction when compared against state-of-the-art
methods.
1. Introduction

Understanding the generalization capacity of a neural network is
one of the most important questions in deep learning. Unfortunately,
while the fundamental procedures of training neural networks are well
understood, being able to tell why one network is better at generalizing
than another still poses a great challenge. Good performance of a deep
neural network (DNN) depends fundamentally on its architecture and
its neuron functions and parameters. These yield an approximation
of the desired function (prediction or regression) based on neuron
interactions—the better the approximation, the better the generaliza-
tion. However, with the high quantity of neurons and connections of
deep neural networks (sometimes of the order of millions), understand-
ing which interactions between neurons are improving or damaging
a model is a hard problem. Developing new mathematical tools that
capture the effect of these interactions on the output of the networks
is key for increased understanding of network generalization.

A DNN that generalizes will perform well on test data on which
it has not been trained. This is usually measured by the generalization
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gap, which is defined as the difference between the accuracy in training
versus test datasets. Although the two accuracies are correlated to a
certain extent, studying training performance alone can be misleading.
Several papers show how neural network performances on unseen
examples can differ with respect to their training performances due
to many reasons [1–3]. To what extent is it possible to predict the gen-
eralization gap without testing a model? In a practical sense, a measure
of generalization that does not require a test dataset eliminates the
responsibility of maintaining and curating such a dataset.

The issue of finding a generalization measure has been explored
extensively and a recent challenge on the topic provides an excellent
framework for algorithmic benchmarking [4]. However, the most com-
petitive participant methods rely on internal representations of inde-
pendent layers, discarding more global structures that may be created
across the network [5,6] or even discarding structure altogether [7].

An alternative approach is provided by topological data analysis
(TDA), an applied branch of algebraic topology that studies the shape
of sets of points endowed with a metric structure. Such shapes are
described by means of persistence diagrams [8], which are built on
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homological features of simplicial complexes constructed from the
given dataset.

In this paper we present an approach to predict the generalization
gap from persistence diagrams based on neuron interactions in deep
neural networks of any size. For this purpose, we use weighted graphs
computed from activation correlations between neurons after training
a network with a dataset. We compare the performance of different
persistence diagram vectorizations, called persistence summaries, from
which the generalization gap can be regressed, and we find that a
suitable combination of such summaries yields competitive results on
measuring the generalization gap. Moreover, we show that persistence
summaries separate neural network architectures into clusters related
with their generalization capacity.

The findings from this study were applied in a series of proof-
of-concept experiments detailed in [9], which involved the creation
of regularizers for deep learning models. The TDA-based regularizers
introduced in [9] aimed to diminish the most significant correlations
among neurons while still maintaining a degree of redundancy. By
doing so, they surpassed the performance of several commonly utilized
regularizers in minimizing generalization gaps.

The paper is structured as follows: in Section 2 we discuss related
work; in Section 3 we define functional graphs and describe their per-
sistence summaries; in Section 4 we present and discuss experimental
results, and conclusions are written down in Section 5. Supplemental
material is provided in an appendix.4

2. Related work

Predicting generalization. Understanding the generalization gap
is a major area of research in theoretical and practical deep learning.
One of the most influential papers in the last few years has been [3], in
which classical theories on the generalization capabilities of machine
learning models were shown to fail to explain why neural networks
generalize well in practice. This paper motivated a tremendous amount
of original work on generalization of deep neural networks. From
the theoretical point of view, some works tried to correct the flaws
of the previous methods by developing new and tighter generaliza-
tion bounds [10–19], by studying generalization measures [20,21],
or by studying the training process [22–24], among others. From an
experimental point of view, there have been many works studying
generalization measures and trying to predict the generalization gap.
One of the most extensive benchmarks for the robustness of generaliza-
tion measures was developed in [25], where 40 different generalization
measures were tested in more than 10,000 trained models. With the
objective of developing new robust generalization measures, the first
competition on predicting generalization in deep learning (PGDL) was
organized at NeurIPS [4] and its results were published in [26]. The
generalization measures presented there were divided into three main
categories: 1. Measures based on theoretical generalization bounds; 2.
Measures based on data augmentation; and 3. Measures based on the
analysis of intermediate representations. The winners of the competi-
tion, the teams Interpex [6], Always Generalize [7], and BrAIn [5],
presented generalization measures in the last two categories. The In-
terpex team proposed a generalization measure based on neuroscience
ideas that uses the Davies–Bouldin index [27] to quantify the con-
sistency of internal representations of neural networks, the Always
Generalize team proposed to measure the robustness of neural net-
works against data-augmented datasets, and the BrAIn team proposed
a measure based on properties of a graph constructed from the internal
representations of a neural network. After the competition, other robust
generalization measures were published [28,29].

4 The code for this article is available in the following repository: https:
/github.com/rballeba/PredictingGeneralizationGapUsingPersistentHomology.
2

The lack of winners based on theoretical generalization bounds
suggests that theoretical bounds are still far from being usable in
practical scenarios, and that new and original methods are needed to
keep improving our understanding of the generalization phenomenon
in neural networks. On this aspect, our approach, while being novel in
its methodology, obtains state-of-the-art performance when predicting
the generalization gap compared with the winning methods of the
PGDL competition.

Topological data analysis. Topological data analysis (TDA) has
een used very successfully in machine learning. A survey of applica-
ions is offered in [30]. From a theoretical point of view, topological
ata analysis has been used to analyze structural properties of neural
etworks [31], input and output spaces [32–38], generative models and
heir properties [39,40], and internal representations and weights of
eural networks [41–45], among others.

In the intersection of topological data analysis with prediction of
he generalization gap, we find [46–48]. In [46], a novel connection
etween the upper box dimension and the persistent homology dimen-
ion [49,50] is used to bound the generalization gap of neural networks
sing the fractal dimension of training trajectories [18]. In [47,48],
eneralization of neural networks is studied by calculating persistent
omology of activation vectors of the neural network on the training
ataset. In particular, in [48], the generalization gap is predicted with
inear models based on persistence summaries extracted from neuron
ctivations.

However, the existing methods fail to be suitable in certain sce-
arios. On the one hand, [46] cannot be used without the training
nformation of a neural network, which is generally not available when
sing pretrained models. On the other hand, the methods from [47,48]
o not scale to modern neural network architectures, as they compute
escriptors from persistence diagrams, which share in most cases a
omputational complexity higher than cubical on the number of neu-
ons in the network. In addition, the summaries of persistence diagrams
ested in these articles are scarce, and other persistence summaries
ould potentially be better suited to predict the generalization gap.

.1. Contributions

In this article, the following contributions are made:

1. We extend the methodology of [47,48] to make it capable
of processing large neural networks. To achieve this, we pro-
pose a methodology that performs bootstrapping on persistence
summaries computed from persistence diagrams coming from
different samples of neurons from the same network. Samples are
taken following a probability distribution over the set of neurons
of the network, giving more probability to neurons that share
high activation values.

2. We train linear models using eleven different combinations of
persistence summaries to predict the generalization gap and
compare these models with linear models trained on the gen-
eralization measures proposed by the PGDL competition win-
ners [4], obtaining competitive results. We find that basic sta-
tistical parameters of the distribution of points in persistence
diagrams are the best performing summaries to predict gener-
alization gaps.

3. We offer an interpretation of why topological data analysis is
meaningful for predicting the generalization gap from features
learned by a neural network. Fig. 4.3 illustrates a neat cluster-
ing phenomenon of network architectures with respect to their
depth when the generalization gap is represented in relation

with suitable persistence summaries.

https://github.com/rballeba/PredictingGeneralizationGapUsingPersistentHomology
https://github.com/rballeba/PredictingGeneralizationGapUsingPersistentHomology
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3. Methodology

Let 𝑁 ∶ →  denote a classification neural network, where  is a
et of inputs and  is a set of labels. Let  be a loss function on  ×
hat measures the error of a prediction, and let ,  ⊆  × be a pair
f training and test datasets, respectively. Let

[𝑁] = E(𝑥,𝑦)∼P(𝑋,𝑌 )
[(𝑁(𝑥), 𝑦)]

e the expected risk of 𝑁 , where P(𝑋,𝑌 ) is a generally unknown data
istribution, and let

𝑆 [𝑁] = 1
|𝑆|

|𝑆|
∑

𝑖=1
(𝑁(𝑥𝑖), 𝑦𝑖)

e the empirical risk function on a dataset 𝑆 = {(𝑥𝑖, 𝑦𝑖)} ⊆  ×  .
A main objective in classification tasks is to find an optimal network

opt from a given set of neural networks that minimizes the expected
isk [𝑁]. In most cases, [𝑁] cannot be computed, since the data
istribution function P(𝑋,𝑌 ) is not known. Therefore, the usual approach
s to minimize the empirical risk function [𝑁] using the training
ataset .

In the special case of the 0-1 loss function (�̂�, 𝑦) = 1 if �̂� = 𝑦 and 0
therwise, the empirical risk can be written as [𝑁] = 1 − Acc[𝑁],
here Acc[𝑁] is the training accuracy used as benchmarking measure

n most deep learning classification problems. Therefore, minimizing
he empirical risk for this function  is equivalent to maximizing the
raining accuracy.

However, minimization of empirical risks does not necessarily lead
o minimization of expected risks, due to phenomena such as overfit-
ing. The difference [𝑁]−[𝑁] between both quantities is known as
he generalization gap of the neural network 𝑁 . This quantity is usually
pproximated with the empirical generalization gap, which is defined
s the difference  [𝑁] − [𝑁] between the empirical risks for the
raining and test datasets. For the 0-1 loss function, the empirical gener-
lization gap is equal to the difference Acc[𝑁]−Acc [𝑁] between the
ccuracies in train and in test. With the realistic assumption that cur-
ent neural networks obtain better training accuracy than test accuracy
nd that training accuracies are generally high, a lower generalization
ap is an indication of a better network performance.

.1. Objectives

The main purpose of this paper is to predict the empirical gen-
ralization gap using only information from the training dataset 
y gleaming information about the dynamic behavior of a trained
eural network, i.e., the internal representations, structures and re-
ationships between neuron activations during classification. In our
ontext, the network behaves dynamically only in the presence of input
ata, forming a graph of neuron activations.

Our first goal is to define a mathematical structure describing the
ctivation of a network when fed with a specific dataset  consisting of
airs (𝑥, 𝑦) where 𝑥 and 𝑦 represent inputs and ground truth annotations
espectively. To do so, we use a complete weighted graph whose set of
ertices is in bijective correspondence with the set of neurons of the
iven network. Each vertex in this graph is represented by an activation
ector of dimension || where the vector components are the neuron’s
ctivations for all (𝑥, 𝑦) ∈ . Edges are weighted by a correlation
istance between the activation vectors that they are connecting.

From this weighted graph we build a filtered simplicial complex
omputed from the edge weights, whose topological features are de-
cribed by a persistence diagram, from which we extract suitable
ummaries with the purpose of relating them with the empirical gener-
lization gap of the network. Precise definitions are given in the next
3

ubsections. w
.2. Network functional graphs

Let 𝑉 = {𝑣1,… , 𝑣𝑛} be the set of non-input nodes of a neural
etwork 𝑁 trained with a dataset  = {(𝑥, 𝑦)}, where 𝑥 denotes inputs
nd 𝑦 denotes corresponding values from a set of labels. For a node
∈ 𝑉 , we denote by 𝑁𝑣(𝑥) the activation value of 𝑣 on some input 𝑥,

nd define the activation vector of 𝑣 as

𝑣() = (𝑁𝑣(𝑥))(𝑥,𝑦)∈.

he set 𝐴𝑁 () = {𝐴𝑣() ∣ 𝑣 ∈ 𝑉 } of activation vectors is meant to
apture the role of each node of 𝑁 during inference.

A correlation distance between two nodes 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 is defined as

(𝑣𝑖, 𝑣𝑗 ) = 1 − |corr(𝐴𝑣𝑖 (), 𝐴𝑣𝑗 ())|, (3.1)

here corr is the Pearson correlation coefficient. Nodes with constant
ctivations can be safely regarded as not affecting the behavior of the
odel, but rather its structure as a bias. Therefore, nodes with zero

ariance are discarded. Although this function 𝑑 does not satisfy the
xioms of a metric, it is suitable for the application of techniques from
DA —this fact is discussed in Section 3.3.2 below.

The complete weighted graph with vertices the nodes in 𝑉 with
onzero variance and weights 𝑑(𝑣𝑖, 𝑣𝑗 ) on the edges will be called the
unctional graph of the trained neural network 𝑁 . This graph encodes
he functional behavior of 𝑁 . In this article we use Vietoris–Rips
iltrations associated with the distance matrix (𝑑(𝑣𝑖, 𝑣𝑗 )) from the func-
ional graph for a homological persistence study, as defined in the next
ection.

.3. Topological data analysis

.3.1. Vietoris–Rips complexes
An abstract simplicial complex, a basic tool of algebraic topology,

s a finite collection 𝐾 of non-empty finite sets such that if 𝛼 ∈ 𝐾 and
⊆ 𝛼 then 𝛽 ∈ 𝐾. Each abstract simplicial complex 𝐾 determines a

equence of homology groups 𝐻𝑛(𝐾) for 𝑛 ≥ 0, generated by linearly
ndependent 𝑛-dimensional cycles modulo boundaries. In this article
oefficients of homology groups are meant in the field F2 of two
lements.

If 𝑉 is a finite set equipped with a distance function 𝑑, then for each
ubset 𝛼 ⊆ 𝑉 we may consider the diameter diam(𝛼) = max𝑖,𝑗∈𝛼 𝑑(𝑖, 𝑗)
f 𝛼 relative to 𝑑. The Vietoris–Rips complex of 𝑉 at a parameter value
≥ 0 is an abstract simplicial complex defined as

R𝑟(𝑉 ) = {𝛼 ⊆ 𝑉 ∶ diam(𝛼) ≤ 𝑟}.

The set {VR𝑟(𝑉 )}𝑟≥0 is a nested collection of simplicial complexes,
s VR𝑟(𝑉 ) ⊆ VR𝑠(𝑉 ) if 𝑟 ≤ 𝑠. Each such filtration yields a persistence
iagram for every integer 𝑛 ≥ 0, which contains a point (𝑟, 𝑠) for each
omology generator of dimension 𝑛 born at a parameter value 𝑟 and
anishing at 𝑠, where 𝑟 < 𝑠. Further details about persistence diagrams
an be found in [8].

.3.2. Correlation distance
The correlation distance 𝑑 defined in (3.1) can take a zero value

n distinct nodes and the triangle inequality need not hold. How-
ver, Vietoris–Rips filtrations can be associated with arbitrary func-
ions 𝑋 ×𝑋 → R where 𝑋 is any set, and stability holds in such
enerality [51,52].

Although 𝑑 does not necessarily satisfy that 𝑑(𝑥, 𝑦) ≠ 0 when 𝑥 ≠ 𝑦,
his does not affect persistent homology, since the matrix (𝑑(𝑣𝑖, 𝑣𝑗 ))
ields Vietoris–Rips complexes homotopy equivalent to those obtained
y identifying two nodes 𝑥 and 𝑦 if 𝑑(𝑥, 𝑦) = 0. Moreover, while 𝑑 does
ot satisfy the triangle inequality, the following transformation does:

′(𝑣𝑖, 𝑣𝑗 ) =
√

1 − (1 − 𝑑(𝑣𝑖, 𝑣𝑗 ))2.

Since the function 𝛾(𝑡) =
√

1 − (1 − 𝑡)2 is monotonic on [0, 1] and uni-
ormly continuous, 𝑑 and 𝑑′ produce the same Vietoris–Rips filtrations,
lbeit at different thresholds, and share similar continuity properties
ith respect to small displacements in the space of functional graphs.
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3.3.3. Persistence summaries
There is a variety of numerical or vector-valued functions defined

on persistence diagrams available for statistical analyses. We refer to
such functions as persistence summaries or descriptors. In this subsection
we present the summaries that have been used in our work.

Average and standard deviation of lifetime parameters. Different
combinations of birth parameters and death parameters have been
explored in this article, including their squares and the transformation
1∕𝑥 + ln 𝑥 applied element-wise. We used averages and standard devi-
ations of births and deaths as predictors of the generalization capacity
of a network.

The life or lifetime of a point (𝑏, 𝑑) in a persistence diagram is defined
as 𝑑 − 𝑏, while the midlife is (𝑏 + 𝑑)∕2. Average lives and average
midlives also yield useful results when predicting generalization gap
using linear extrapolations; these summaries have been used previously
with a similar purpose in [48]. Standard deviation or variance of lives
and midlives work equally well or better. This technique is based on
the heuristic that the generalization gap of a network is influenced by
the average position and dispersion of points in persistence diagrams.

Persistence entropy. The definition of persistence entropy is an adap-
tation of the concept of entropy used in information theory, which,
according to [53], provides a measure of the uncertainty of some
random variable. The entropy of a persistence diagram 𝑃 is defined as

𝜖(𝑃 ) = −
∑

(𝑏,𝑑)∈𝑃
((𝑑 − 𝑏)∕𝐿) log2((𝑑 − 𝑏)∕𝐿)), (3.2)

where 𝐿 =
∑

(𝑏,𝑑)∈𝑃 (𝑑 − 𝑏). If one defines a discrete random variable
that picks points (𝑏, 𝑑) from 𝑃 weighted according to their life, then the
persistence entropy corresponds to the entropy of this random variable.
This choice of weights is based on the assumption that points near the
diagonal carry less information. More details on persistence entropy can
be found in [54].

Persistence pooling vectors. Persistence pooling vectors were intro-
duced in [55] in order to improve a max-pooling procedure using TDA.
This approach consists of analyzing only the most important points in a
given persistence diagram, where importance is weighted according to
the difference 𝑑−𝑏. We define the 𝑛th persistence pooling vector as the
vector in descending order of the 𝑛 maximum life values. If the persis-
tence diagram has less than 𝑛 points, then the void vector components
are set to 0. We selected the highest 10 life values. This number has
been chosen experimentally in view of the lack of score performance
observed when selecting a larger number of vector components.

Complex polynomials. The persistence summary introduced in [56]
transforms persistence diagrams into polynomials with coefficients in
the field C of complex numbers whose roots are the images of persis-
tence diagram points under a well-chosen mapping from R2 to C. In
our study we used the transformation 𝑇 defined in [56].

4. Results

In the first part of this section, we describe experimental setups and
comment on computational complexity (4.1). In the second part, we
evaluate our approach and discuss results (4.2).

4.1. Experiments

Datasets. We use the dataset of trained DNNs provided by the Pre-
dicting Generalization In Deep Learning (PGDL) competition [4]. The
dataset is divided into eight tasks, each composed of several neural
network architectures trained to provide different generalization gaps
on a particular dataset. We focus on the first two tasks, which were
4

public when the competition was launched. s
The first task consists of 96 VGG-like [57] neural networks, namely
one for each combination of the following hyperparameters: each net-
work is designed with either two or six convolutional layers and one or
two dense layers; either 256 or 512 filters in the last convolutional layer;
a dropout probability, chosen to be 0 or 0.5; a number of convolutional
blocks in each convolutional layer, either one or three; the weight
decay during training, set up to be 0 or 0.001; and the batch size,
varying between 9, 32, and 512. Each network was trained on the
CIFAR10 dataset [58], consisting of 60,000 color images of size 32 × 32
split into ten classes that represent vehicles (airplanes, automobiles,
ships and trucks) and animals (birds, cats, deers, dogs, frogs, and
horses).

The second task is composed of 54 neural networks with network
in network architectures [59], with a varying number of convolutional
layers. Specifically, each network is chosen with either six, nine, or
twelve convolutional layers and trained on the SVHN dataset [60],
a digit classification benchmark dataset that contains 600,000 color
32 × 32 images of printed digits (from 0 to 9) cropped from pictures of
house number plates. Other hyperparameters of Task 2 networks are
the dropout probability, chosen among 0, 0.25, and 0.5; the weight
ecay, either 0 or 0.001; and the batch size, varying between 32, 512,

and 1024.

Experimental procedure. Our experimental procedure is depicted in
Fig. 4.1, while the hyperparameters of our method are detailed as
follows. Initially, we generate 20 distinct persistence diagrams for
imensions zero and one for each neural network, using the sampling
ethods outlined in Section 4.1.1. Subsequently, for each persistence
iagram, we calculate persistence summaries as introduced in Sec-
ion 3.3.3. This results in 20 distinct instances of each persistence
ummary for each network and homology dimension. Following this,
e perform bootstrap analyses on each set of 20 values of persistence

ummaries derived from the same network and homology dimension.
he bootstrapping process involves creating 1000 bootstrap samples

of size 20 selected with replacement from the various persistence
summaries.

We combine bootstrapped persistence summaries to use them as
predictor variables of the generalization gap with a linear regression
for both tasks. The list of persistence summaries that we test is the
following: (1) Persistence pooling of 10 elements; (2) average lives and
average midlives; (3) average births and average deaths; (4) average
and standard deviation of births and deaths; (5) persistence entropy;
(6) complex polynomials with 10 coefficients.

We also test concatenations of (2), (3) and (4) with their element-
wise squared versions, and a concatenation of (3) with its element-wise
logarithmic version, as well as a concatenation of (2) and (3), orig-
inal and squared. All combinations are considered in homological
dimension zero, homological dimension one, and a concatenation of
both.

We compare our models with linear regressions trained from the
three generalization measures that won the PGDL competition; see
Section 2 for further details on these generalization measures.

Evaluation metrics. We train linear regression models with the previ-
ous combinations of persistence summaries and the three state-of-the-
art generalization measures to predict the generalization gap of neural
networks. To measure and compare their performance, we use a 5 × 2-
fold cross-validation statistical test, as recommended in [61], with the
coefficient of determination 𝑅2 as performance metric. The coefficient
of determination 𝑅2 is computed as the proportion of the variation
in the dependent variable that can be predicted from the independent
variables, and it is calculated as

𝑅2(𝑦, �̂�) = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − �̂�𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − �̄�)2
, (4.1)

here 𝑦 denotes the ordered set of actual values, �̂� denotes the ordered
et of predicted values, and �̄� denotes the mean of 𝑦. This coefficient
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Fig. 4.1. Experimental evaluation pipeline. Given a specific PGDL task as described in Section 4.1, let {𝑁𝑖}𝑛𝑖=1 be the set of neural networks associated with the task. (1) Generation
f 𝑘 different persistence diagrams per DNN and dimension 𝑖 ∈ {0, 1} using sampling in CIFAR10/SVHN datasets as described in Section 4.1.1. In our case, 𝑘 = 20. (2) Computation
f persistence summaries 𝑆𝑗 introduced in Section 3.3.3 for each persistence diagram. (3) Bootstrapping for each dimension and each summary computed from the same DNN. The
ootstrapped summary 𝑆𝑗 for dimension 𝑖 and neural network 𝑁 is denoted by 𝑖

𝑗 (𝑁). (4) Generation of the eleven different combinations of bootstrapped persistence summaries
escribed in the experimental procedure of Section 4.1. (5) A 2-fold cross-validation partition into sets with the same cardinality is calculated five times. Each time, for each
ombination of summaries 𝑙 ∈ {1,… , 11}, two linear models to predict the generalization gap are trained on one of the partition sets and tested on the other, obtaining a 𝑅2

core for each model on the test set. (6) We compute the mean and standard deviation of the resulting 𝑅2 scores. Next, using the same partition sets, we train linear models with
he generalization measures of the three winners of the PGDL competition, and we compare our best performing methods with their methods using 5 × 2-fold cross-validation
tatistical tests.
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anges from 0 to 1 in the training dataset but can be outside that range
n unseen data. When the score is 1, the model perfectly predicts the
alues of 𝑦. A score of 𝑅2 = 0 is obtained when one uses a horizontal
ine at the average of the set of 𝑦-values as a model. If a model performs
orse than this (which usually indicates that the choice of model itself
as ill-advised), then the numerator of (4.1) can grow arbitrarily large,
nd thus 𝑅2 can be negative. If an 𝑅2 value is negative, then the
rediction is worse than ignoring the input and predicting the average
f the sample. This can actually happen when the training set yields a
odel that does not generalize in the test set.

The 5 × 2-fold cross-validation statistical test validates if there are
ignificant differences between two models tested in a common dataset.
he null hypothesis of this test is that, for a fixed-size random drawn
raining dataset, two learning algorithms have the same 𝑅2 score on a
andomly drawn test dataset. We compare linear models pairwise for
ach task.

.1.1. Reducing computational complexity

omputational complexity. Computing topological summaries with
he complete set of activations calculated from the entire training
ataset is unfeasible due to the high computational time and memory
omplexities of obtaining activation vectors and persistence diagrams.
f || denotes the number of input samples for a dataset  and
𝑉 | is the number of nodes in a neural network 𝑁 , then the set of
ctivation vectors of nodes in 𝑁 for the dataset  has cardinality
𝐴𝑁 ()| = ||×|𝑉 | (see Section 3.2 for details). Assuming that we have

standard current neural network like VGG16, that has about 8000
eurons [62] only for fully connected layers, a standard dataset like
IFAR10 [58] with 50,000 training examples, and a double precision

loating point format to represent each number, one would need at
east 3 GB only to store the activations of fully connected layers.
dditionally, although zero dimensional persistent homology can be
alculated in 

(

|𝑉 |

2 ⋅ 𝐴−1(|𝑉 |

2)
)

using the algorithm proposed in [63]
5

here 𝐴−1 is the notoriously slowly growing inverse of the Ackermann
unction [64, Chapter 21], persistent homology in higher dimensions
s harder to compute. The complexity of algorithms for computing
ersistent homology for dimension greater than or equal to one is
(𝑛3) if 𝑛 is the number of simplices of the Vietoris–Rips complex and
aussian elimination is used to find ranks of matrices of boundary
perators, or 𝑂(𝑛𝜔) where 𝜔 is the exponent of matrix multiplication
currently 2.37) if sparsity of boundary matrices is taken into account,
s in [65]. In its turn, the number of simplices 𝑛 depends cubically
n the number |𝑉 | of vertices of the functional graph if persistence
iagrams are drawn only in homological dimension one, which requires
etermination of simplices up to dimension two.

In practice, this limits persistence diagram computations to a few
housand vertices. In order to alleviate these problems in neural net-
orks with a large set of neurons, we introduce sampling strategies for
oth the input dataset and the functional graphs.

ampling the input space. We compute activation vectors 𝐴𝑣 for
a fixed subsample ′ ⊆ . In order to justify that this subsam-
ling does not affect the results of the analysis, it is enough to verify
hat corr(𝐴𝑣𝑖 (

′), 𝐴𝑣𝑗 (
′)) is sufficiently close to corr(𝐴𝑣𝑖 (), 𝐴𝑣𝑗 ()),

nd that small variations in the correlation coefficients produce small
hanges in the persistence diagrams. This claim is justified by the fact
hat, if 𝑋 and 𝑌 are random variables with non-null variance and 𝑋𝑛

nd 𝑌 𝑛 denote sequences of 𝑛 samples from 𝑋 and 𝑌 respectively, then
he sample correlation of 𝑋𝑛 and 𝑌 𝑛 converges in probability to the
orrelation between 𝑋 and 𝑌 by the law of large numbers and the
ontinuous mapping theorem [66].

In practice, ′ is fixed to a uniform sample of 2000 elements from
he original training dataset, an experimentally selected size that is
arge enough to obtain sufficient precision.

ampling the functional graph. Because of computational limitations,
n the case of modern DNNs less than 1% of the nodes—a priori, a
tatistically insignificant sample size—can be included in the persistent
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Table 1
Top three combinations of persistence summaries per task according to their respective mean
of 𝑅2 test values in the 10 experiments of the 5 × 2-fold cross-validation statistical test. ASD:
Average and standard deviation of births and deaths. ASDSQ: Average and standard deviation
of births and deaths, concatenated with the corresponding squared values; see Section 4.1.

Task 1

Top TDA summaries Best dim 𝑅2 score

ASDSQ 0 and 1 0.5601 ± 0.13
ASDSQ 1 0.4321 ± 0.12
ASD 1 0.3720 ± 0.14

Task 2

Top TDA summaries Best dim 𝑅2 score

ASD 1 0.9337 ± 0.01
ASD 0 and 1 0.9198 ± 0.02
ASDSQ 1 0.9166 ± 0.03
b

homology calculation. To alleviate this, we sample nodes according to
a notion of importance, following ideas introduced in [67] adapted to
neurons on a neural network instead of inputs of the dataset. Thus, let
′ be some selected subsample of the training dataset. The importance
score of a node 𝑣 ∈ 𝑉 is defined as

𝐼𝑣(′) = |

|

|

{

𝑥 ∈ ′ ∶ 𝑣 = arg max
𝑤∈𝑉

|

|

𝑁𝑤(𝑥)||
}

|

|

|

, (4.2)

where arg max returns only one vertex in case of tie between multiple
vertices—in our case, we use the tie breaking strategy implemented by
the NumPy library [68]. Hence 𝐼𝑣(′) indicates the amount of inputs
from ′ for which the activation of 𝑣 is the largest (or tied-to-largest)
among all nodes. Note that a majority of nodes 𝑣 will have 𝐼𝑣(′) = 0.
This is equivalent to excluding these nodes from analysis, which is
undesirable—not only because it is unclear how this will affect the
application of TDA, but also because the amount of nodes with 𝐼𝑣(′) ≠
0 might be low enough to severely constrain the size of a subsample.
Thus, from 𝐼 we construct a probability distribution 𝑃 on 𝑉 , artificially
inflated to make sure that every element of 𝑉 appears with nonzero
probability. This probability 𝑃 (𝑣) is defined as

𝐼𝑣(′)
|′

| + 1
if 𝐼𝑣(′) > 0, and 1

(|′
| + 1) ⋅ |

|

{𝑢 ∈ 𝑉 ∶ 𝐼𝑢(′) = 0}|
|

otherwise.

(4.3)

Specifically, we sample 3000 nodes (without repetition) according to
this probability distribution, and restrict our analysis to these nodes.
This sampling is non-deterministic, and thus can be repeated a number
of times to obtain 𝑛 different subsamples 𝑉1,… , 𝑉𝑛. Applying the same
transformations on the 𝑛 resulting functional graphs we obtain 𝑛 dif-
ferent persistence diagrams per network. Then, we use bootstrapping
over the 𝑛 summaries (see 3.3.3) combining them into a single one.
This last representation aims to approximate the persistence summary
that would be obtained without sampling.

4.2. Discussion

The combinations of persistence summaries that yielded the top
three mean 𝑅2 scores for the generalization gap prediction experiments
are shown in Table 1. Basic statistical descriptors related to births
and deaths of homology generators obtained highest scores overall,
validating the results obtained in [69], in which simple vectorizations
consisting of elementary statistical descriptors of persistence diagrams
were the persistence summaries that obtained the best performances as
input in a variety of image classification tasks. In particular, the vectors
composed of averages and standard deviations of births and deaths (and
their squares) were those that obtained the best 𝑅2 scores in both tasks.
6

Fig. 4.2 shows the average performance of the entire list of summaries.
These results suggest that the generalization gap is mostly linked with
the average position and dispersion of points in persistence diagrams.
Summaries based on alleged predominance of larger lifetime values,
such as persistence entropy or persistence pooling vectors, showed a
lower predictive value.

Overall, results are more conclusive for Task 2 than for Task 1,
and more significant in homological dimension 1, although some of the
est 𝑅2 scores are achieved using a combination of dimensions 0 and

1 for both tasks. It should also be noticed that 𝑅2 scores grow when
squares of summaries are added to the model, suggesting departure
from linearity.

Explainability. The distribution of points in persistence diagrams is
determined by correlations between neuron activation vectors. Gen-
erators of the zero-homology group 𝐻0 of a Vietoris–Rips simplicial
complex at filtration level 𝑡 correspond to connected components of a
functional graph in which every edge has a weight smaller than or equal
to 𝑡, hence a correlation coefficient of 1 − 𝑡 in absolute value among
the neurons in the group. Hence, for 𝑡 = 0 there is one generator for
each group of neurons that share correlation coefficients equal to ±1.
Points (0, 𝑑) in zero-dimensional persistence diagrams arise whenever
two (or more) connected components merge in the filtration at time 𝑑,
and therefore they correspond to non-zero edge weights of a minimum
spanning tree of the network’s functional graph. High weights in a mini-
mum spanning tree imply that the overall correlations between neurons
are low. The lower the correlation between neurons, the higher the
number of nonlinearly related features learned by the neural network,
and hence the stronger the real expressive power of the network. In
conclusion, a combination of a high average of death values with a
low standard deviation in a zero-dimensional persistence diagram is
a plausible indication of an increased expressive power of the neural
network, that should lead to better generalization capabilities and thus
a smaller generalization gap.

Points in one-dimensional persistence diagrams correspond to cycles
of the network’s functional graph that are not filled by regions in the
Vietoris–Rips complex. Thus a one-dimensional generator appears in
the filtration at time 𝑡 whenever there is a cyclically ordered group of
neurons sharing correlations greater than or equal to 1 − 𝑡 with their
neighbors, which can be interpreted as a group of neurons that have
learned similar features. The earlier a cycle is born, the higher the
correlations among the neurons in the cycle, and the higher the death
value of a cycle, the higher the differences between the features learned
by non-neighboring neurons in the cycle. Therefore, higher lifetime
values may be associated with an increased number of different features
learned by groups of jointly operating neurons. Thus, the higher the

deaths in the one-dimensional persistence diagram of the functional
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Fig. 4.2. Mean 𝑅2 test values after the 10 experiments of the 5 × 2-fold cross-validation statistical test for tasks 1 and 2 for the combinations of persistence summaries described in
the experimental procedure of Section 4.1. Rows correspond to homological dimensions 𝐻0, 𝐻1, and a concatenation of both. Column numbers represent the following combinations
of persistence summaries: (1) persistence pooling of 10 elements; (2) average lives and midlives; (3) average lives and midlives, original and squared; (4) average births and deaths;
(5) average births and deaths, original and squared; (6) average births and deaths with a logarithmic model; (7) concatenation of combinations 3 and 5; (8) persistence entropy;
(9) average and standard deviation of births and deaths; (10) average and standard deviation of births and deaths, original and squared; (11) complex polynomials with 10
coefficients.
Fig. 4.3. Averages and standard deviations of deaths for persistence diagrams in dimension 0 (first two columns) and dimension 1 (last two columns) for Task 1 (first row) and
Task 2 (second row). For Task 1, points represent 96 VGG-like neural networks trained on the CIFAR10 dataset; blue and orange points represent neural networks with one and
three convolutional blocks, respectively. For Task 2, points correspond to 54 network in network architectures trained on the SVHN dataset; blue, orange, and green points represent
neural networks with six, nine, and twelve convolutional layers, respectively.
graph of a neural network, the more expressive power the neural
network may have, and thus the better it may generalize.

Clustering. The interpretations described in the previous subsection
are consistent with what is shown in Fig. 4.3. In this figure, each row
represents a different task, each column represents a different persistent
summary, and each point in a cell corresponds to a neural network for
the given task. The two rows, upper and lower, represent Task 1 and
Task 2, respectively. The first and third columns represent the average
of deaths of zero- and one-dimensional persistence diagrams, whereas
the second and fourth columns represent the standard deviation of
deaths of zero- and one-dimensional persistence diagrams, respectively.
In the first and second rows, neural networks are clustered according
to the number of convolutional blocks and the number of convolutional
layers that each network contains.

Fig. 4.3 suggests that persistence summaries detect very neatly the
clusters of neural networks in each task. Naturally, the generalization
gap is strongly influenced by the depth of the networks, which is almost
7

determined by the number of convolution blocks and layers. When
the number of convolutions is fixed, we see a consistent behavior: the
higher the average deaths and the lower the standard deviations, the
better the network’s performance. This discovery has the potential of
being used for network regularization. Support for this assertion was
provided in [9] through the successful implementation of regularizers
designed to raise the average number of deaths while reducing standard
deviations.

We further analyzed if persistence diagrams for individual labels
in a classification task were different between them, in order to gain
insight about what was influencing TDA methods and functional graphs
the most. We computed persistence diagrams in dimensions 0 and
1 per different neural network and per label. The datasets used to
recreate functional graphs were restrictions of the test set to each label.
Details and figures can be found in Appendix. Similar results were seen
when comparing these persistence diagrams with the original ones. The
majority of class-dependent persistence diagrams whose DNNs obtained
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Fig. 5.1. Lifetime densities in persistence diagrams in homological dimension zero of 96 VGG-like neural networks with minimum and maximum accuracies on the test set per
label for Task 1.
Table 2
Comparison of our best performing summaries with state of the art: Average and standard
deviation of 𝑅2 scores for Task 1 and Task 2 computed from linear models trained in the ten
cases of the 5 × 2-fold cross-validation.

Task 1 Task 2

Interpex −0.0518 ± 0.06 0.9500 ± 0.01
Always Generalize 0.9715 ± 0.01 0.8893 ± 0.02
BrAIn 0.4520 ± 0.08 0.7180 ± 0.04

Ours 0.5601 ± 0.13 0.9337 ± 0.01
Table 3
Statistical 𝑝-values of the pairwise 5 × 2-fold cross-validation significance test proposed in [61], with the
coefficient of determination 𝑅2 as performance metric. The null hypothesis is that, for a fixed-size randomly
drawn training dataset, the two linear models trained with our combinations of persistence summaries or
with the winning generalization measures of the PGDL competition have the same 𝑅2 score on a randomly
drawn test dataset. Boldface 𝑝-values are lower than 0.05. ASD1: Average and standard deviation of births
and deaths of dimension one. ASDSQ01: Average and standard deviation of births and deaths, concatenated
with their squared values, for dimensions zero and one. Their 𝑅2 scores are shown in Table 1.

Task 1 Interpex Always generalize BrAIn ASDSQ01

ASDSQ01 𝟎.𝟎𝟎 𝟎.𝟎𝟏 0.23
ASD1 𝟎.𝟎𝟑 𝟎.𝟎𝟎 0.55 0.13

Task 2

ASDSQ01 0.37 0.80 0.37
ASD1 0.19 𝟎.𝟎𝟎 𝟎.𝟎𝟏 0.51
8
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Fig. 5.2. Persistence diagrams in homological dimension one of 96 VGG-like neural networks with minimum and maximum accuracies on the test set per label for Task 1.
extreme accuracies, i.e., highest and lowest, were analogous to the
diagrams in the class-independent case. This shows that functional
graphs are robust to unbalanced datasets in terms of the number of
samples per label.

Persistence summaries. Results show that linear models of persistence
summaries can predict the generalization gap, since we obtained com-
petitive results in both tasks, as seen in Tables 1 and 2. However, the
fact that a summary based on a combination of non-linear transforma-
tions of persistence features yielded the best score for Task 1 suggests
that more complex models can have better capacity to relate persistence
summaries to the generalization gap.

When it comes to ranking summaries, persistence pooling and com-
plex polynomials produced the lowest 𝑅2 scores overall, as shown in
Fig. 4.2. For persistence pooling, one possible explanation of its low
performance is that it relies on lifetimes of points that live the longest,
in contrast to the most effective summaries, which are based on average
location and dispersion of the whole set of points in a persistence
diagram. Similarly, truncated complex polynomials are not sufficiently
accurate measures of the location and aggregation of the collection of
all points in persistence diagrams. The fact that persistence entropy
achieves non-optimal 𝑅2 scores for Task 2 in Fig. 4.2 is consistent with
the interpretation that the distribution of points near the diagonal in
one-dimensional persistence diagrams is substantial for generalization
gap prediction.

State-of-the-art comparison. Table 2 shows a comparison of the
results of our best performing linear models based on persistence
summaries with state-of-the-art methods. In this table, the 𝑅2 scores
9

describe the ability of each linear model to predict the generalization
gap with respect to the coefficient of determination. Table 3 shows
the pairwise 𝑝-values between the linear models induced by our best
performing combinations of persistence summaries, shown in Table 1,
and the linear models induced by the winning generalization measures
of the PGDL dataset.

We obtain the second-best mean 𝑅2 scores for both tasks, after
Always Generalize and Interpex in the first and second ones, respec-
tively. However, assuming that two methods are significantly different
whenever their pairwise 𝑝-value is lower than 0.05 in Table 3, there
is no significant difference between the 𝑅2 scores of the linear models
of our best combination of persistence summaries in Task 2 and the
linear models induced by the generalization measure of the Interpex
team. Additionally, our models are significantly better than those for
the Interpex generalization measure in Task 1 and than the ones for
the generalization measures of Always Generalize and BrAIn in Task 2.
These results suggest that persistence summaries are a promising tool
to develop robust models to predict the generalization gap.

4.3. Hardware, software and licenses

Persistence diagrams were computed with Python giotto-ph [70]
(GNU AGPLv3) using a Quadro P6000 GPU. Persistence summaries
were computed with the giotto-tda framework [71] (AGPLv3 Li-
cense), and density curves were drawn using SciPy 1.8.0 [72]. Analysis
was performed on a personal computer with an Intel Core i7 (4th gen-
eration) processor with an NVIDIA GeForce GTX 960M 2 GB GDDR5,
using the libraries Jupyter Notebook (New BSD License), NumPy (BSD
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Fig. 5.3. Lifetime densities in persistence diagrams in homological dimension zero of 54 network in network architectures with minimum and maximum accuracies on the test set
per label for Task 2.
3-Clause ‘‘New’’ or ‘‘Revised’’ License) and TensorFlow with Keras
(Apache 2.0 License). Docker (Apache 2.0 License) was also used to
perform the experiments. The dataset of neural networks from [4] is
licensed under Apache 2.0.

5. Conclusions

We have defined a framework that can be used to explore inter-
pretability of DNNs based on topological properties of their functional
graphs. This relaxes the problem of understanding the internal repre-
sentations of a neural network to, in a broad sense, understanding their
shape. Regarding generalization, we have shown examples of how one
can interpret DNN neuron interactions based on their correlations by
means of persistence diagrams. Moreover, we proved that the general-
ization gap can be consistently predicted using topological persistence
summaries extracted from functional graphs, with a competitive pre-
diction accuracy on two different computer vision problems. The most
10
successful summaries were those related with the average location and
dispersion of points in persistence diagrams. Hence, it is not true in
our case that points near the diagonal in persistence diagrams are
irrelevant, as often claimed in TDA studies.

Limitations. A practical limitation of persistent homology comes
from its computational complexity—sampling methods are not neces-
sarily optimal and information might be lost in sampling processes for
datasets and for neurons. Transformations of persistence diagrams into
summaries may also cause a loss of information; however, this seems
unavoidable if one wants to obtain easy-to-compute generalization
measures.

Future work. Although we found strong patterns relating persistence
summaries with generalization gaps (Fig. 4.3), broader experimentation
is required to see if these patterns are consistent among other kinds
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Fig. 5.4. Persistence diagrams in homological dimension one of 54 network in network architectures with minimum and maximum accuracies on the test set per label for Task 2.
of networks and machine learning tasks, and also to make more ex-
plicit which features of the networks are involved in the TDA-driven
clustering effect that we have observed.

The mere definition of functional graphs raises a question: which is
the optimal metric to compare neurons given an architecture? There
might be better alternatives to linear correlation between activation
vectors; for instance, Spearman correlation was used in co-activation
graphs for a similar purpose in [73].

Another problem is to find an optimal neuron sampling strategy.
This is related to the problem of finding the most relevant neurons
in a DNN graph. Persistence summaries suggest that grouping neurons
in terms of their activation structure is feasible for DNNs. However,
understanding which functional phenomena are being captured into
such communities of nodes needs further study. This could lead to
the discovery of new architectural properties useful to develop better
networks.

Fig. 4.3 shows that, fixing the depth of a neural network, there
is a consistent association between a lower generalization gap and a
higher average of death values together with a small dispersion in the
persistence diagrams of the network’s functional graph in dimensions
11
zero and one. This finding has the potential to improve the performance
of a given architecture during training by means of a regularization
term that maximizes averages of deaths while minimizing standard
deviation, using the framework for differential calculus on persistence
diagrams discussed in [74,75]. This work plan was undertaken in [9].
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Appendix

This appendix contains an analysis per label of persistence diagrams
in dimensions 0 and 1. The datasets that we used to recreate functional
raphs were the restriction of the test sets to each label. We computed
ccuracy for each of these test subsets, and plotted persistence diagrams
orresponding to those neural networks that achieved the maximum
nd minimum accuracies on test subsets per label for dimensions 0

and 1. The results can be seen in Figs. 5.1, 5.2, 5.3 and 5.4. These results
are consistent with what we found in persistence diagrams computed
with the whole training dataset. Thus we see that distinction between
inputs of different labels does not have a substantial influence on the
distribution of points in persistence diagrams.

For a more convenient visualization, persistence diagrams in dimen-
sion 0 have been replaced with lifetime density curves, calculated by
means of Gaussian kernels. Lifetime values are equal to death values
for zero-homology generators.

It can be seen in Figs. 5.3 and 5.4 that increased accuracy values
for Task 2 match with scattering of points downwards the diagonal of
the persistence diagram in dimension 1 and with a lower average life
in dimension 0. This pattern is apparently not consistent with other
architectures, such as those used in Task 1. This is explained by the
splitting of network types into clusters as observed in Fig. 4.3, since
for Task 2 the regression line for average deaths has negative slope in
each cluster, while it has positive slope if clustering is not taken into
account.
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