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Abstract

Despite the remarkable accuracies attained by machine learning classifiers to separate

complex datasets in a supervised fashion, most of their operation falls short to provide an

informed intuition about the structure of data, and, what is more important, about the phe-

nomena being characterized by the given datasets. By contrast, topological data analysis

(TDA) is devoted to study the shape of data clouds by means of persistence descriptors and

provides a quantitative characterization of specific topological features of the dataset under

scrutiny. Here we introduce a novel TDA-based classifier that works on the principle of

assessing quantifiable changes on topological metrics caused by the addition of new input

to a subset of data. We used this classifier with a high-dimensional electro-encephalo-

graphic (EEG) dataset recorded from eleven participants during a previous decision-making

experiment in which three motivational states were induced through a manipulation of social

pressure. We calculated silhouettes from persistence diagrams associated with each moti-

vated state with a ready-made band-pass filtered version of these signals, and classified

unlabeled signals according to their impact on each reference silhouette. Our results show

that in addition to providing accuracies within the range of those of a nearest neighbour clas-

sifier, the TDA classifier provides formal intuition of the structure of the dataset as well as an

estimate of its intrinsic dimension. Towards this end, we incorporated variance-based

dimensionality reduction methods to our dataset and found that in most cases the accuracy

of our TDA classifier remains essentially invariant beyond a certain dimension.

Introduction

The ability to capture detailed high-dimensional statistics of large datasets has earned deep

learning the reputation of general solver for a wide range of complex problems [1–3]; from

image analysis [4, 5] to object recognition [6], climate prediction [7, 8], genomic analyses and

behavioural prediction [9] or hidden variable identification for brain dynamics [3]. However,

the downside of deep learning, as of any black-box AI technique, is the poor explainability of
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results and of the structure of the datasets, which necessarily bounds interpretability [10–12].

Possibly more puzzling, deep learning commits rare but unpredictable clustering errors, such

as confusing a lion with a library, or a lamp with a traffic light [13]. While odd, it is precisely

the lack of a principled explanation leading to such failures that makes of deep learning a tech-

nique with significant trust issues, in particular for AI in life-threatening decision-making sce-

narios [14, 15].

By contrast, topology is a branch of mathematics devoted to characterize the structure of

high-dimensional datasets by formal means. In brief, if a dataset can be represented as a point

cloud in a hyperspace, topological data analysis (TDA) may characterize its connectivity, or

cycles within the cloud, or other shape features, by means of a set of metric descriptors that

encompass all dimensions. Therefore, although not conceived for problem solving or to cap-

ture data variability per se, if one applies TDA to datasets of different classes within a classifica-

tion problem, it will yield descriptors specific to each class. Consistently with this, some

studies have proposed the use of TDA metrics as a preliminary stage to extract features for

machine learning classifiers, e.g., for medical image analysis [16–18], chemical components

[19, 20], or computer science problems [21]. Such classification problems do not operate in a

multidimensional dataset or in a subsequent reduced dimensionality space [22, 23], but rather

in the domain of meaningful topological feature vectors [24–26], with a consequent interpret-

ability gain.

Topological descriptors, such as persistence landscapes [27, 28] or persistence-based Gauss-

ian kernels [29], have proved to be powerful tools for statistical analyses. While using such

descriptors to improve machine learning classifiers is a promising research avenue that facili-

tates tracing class specificities back to the structure of data, our goal in this work is to use

instead TDA as a classifier by itself. In brief, if different subsets of data—belonging to different

classes—yield different topological descriptors, it is plausible that such differences across

descriptors can be directly implemented for classification purposes.

In this article, we introduce a classifier inspired on this principle. The bonus of such a classi-

fier with respect to a classical machine learning one is that it should provide an informed intui-

tion of the specific aspects of the dataset responsible for separability of classes. The same

principle was used in [30] to obtain a new TDA-based semi-supervised learning method. A dif-

ferent mechanism for TDA-based classification was described in [31, 32] as a refinement of

nearest neighbour classifiers by exploiting the local structure of Vietoris–Rips simplicial com-

plexes associated with a data cloud.

As a testbed for our classifier, we used a challenging classification problem in dire need of

explainability, which is the state cortical brain network during performance of specific tasks

[33–35]. In particular, we focused on the characterization of the brain network of motivation,

as defined in the context of a decision-making task between precision reaches [36] by different

levels of social pressure.

Reward and motivation are two fundamental drives of human behaviour. Consistently with

this, a large number of studies in neuroscience have intended a careful identification and char-

acterization of the brain centers of reward processing, most often based on analyses of func-

tional magnetic resonance imaging (fMRI) recordings in humans. However, one of the

questions that remains to be fully answered is how the different expressions of motivation are

distributed across the brain network.

We analysed a set of electro-encephalograms (EEG) recorded as the decisions unfolded

from eleven participants, by turning the problem into a three-class classification problem, in

which we aimed at explaining the differences across these states on the grounds of our TDA

classifier. This yielded two main results: first, the TDA classifier obtained accuracies compara-

ble to those obtained by a nearest neighbour classifier; second, accuracy strongly depended on

PLOS ONE A topological classifier to characterize brain states

PLOS ONE | https://doi.org/10.1371/journal.pone.0292049 October 2, 2023 2 / 20

the European Union’s Horizon 2020 Framework

Programme for Research and Innovation under the

Specific Grant Agreements No 945539, Human

Brain Project SGA3 (I. Cos), and by MCIN/AEI/

10.13039/501100011033 under grant PRE2020-

094372 (A. Ferrà) and projects PID2019-

105093GB-I00 (I. Cos, A. Ferrà) and PID2020-

117971GB-C22 (C. Casacuberta).

Competing interests: None.

https://doi.org/10.1371/journal.pone.0292049


the shape of data—since TDA operates on simplicial complexes built from datasets—but not

on the amount of explained variance achieved by a dimension-reducing projection. In sum-

mary, specific topological descriptors indeed provide reliable ensemble characterizations of

high-dimension neural states, and yield an avenue for data explainability complementary to

machine learning.

Materials and methods

The main purpose of this work was to introduce a novel classifier based on topological prin-

ciples, as well as the necessary assessment and characterization of its performance. We there-

fore required a rich enough dataset, which had been previously tested by traditional machine

learning classifiers, so as to establish a baseline of performance that enabled an informed

comparison. Because of this, we chose a previously recorded dataset, which is available at

https://www.kaggle.com/ds/3333171, whose specifics are described in the next subsection.

The reader may refer to the original neuroscience study [36] for a more thorough descrip-

tion. In addition to providing an advantageous baseline to fall back on to validate our classi-

fier, we chose this dataset in order to study the underlying structure and latent

dimensionality of electro-encephalographic recordings by means of topological data

analysis.

Brain states of motivation

The dataset used to test our topological classifier was collected during a previous study aimed

at the characterization of the influence of social pressure on movement decisions and on the

choice of movement parameters, both at the behavioural and cortical level [36]. Because of

this, arm kinematics and high-density electro-encephalograms (EEG) were recorded. Specifi-

cally, each participant was instructed to choose one of two targets and to perform a precision

reach towards the target of choice. To be able to perform a controlled manipulation of the par-

ticipant’s motivation, and to obtain reliable measures of its influence at a behavioural and neu-

ral level, each of the two sessions was divided into six blocks of trials, each composed of 108

trials. Each block was performed under one of three levels of social pressure. The order of the

blocks was counterbalanced across participants.

The manipulation of the participant’s motivation was implemented by the presence or

absence of one of several simulated (virtual) partners. In the first (baseline or Solo condition),

the participant performed alone. At the end of each trial, the participant was informed of the

precision attained during the previous reach with a horizontal green bar ranging from 0 to

100%. In the second (Easy) and third (Hard) condition, the participant was informed that a

virtual partner (invisible to the participant) would perform alongside. At the end of each trial,

the participant was informed of his/her precision and of that of the virtual partner. The manip-

ulation was such that the average aiming accuracy of the partner during the Easy condition

was lower than that of the participant, while it was higher at the Hard condition. The level of

social pressure remained constant throughout each block, maintaining the same virtual part-

ner. The goal of this manipulation was to induce an implicit bias that motivated participants to

adapt their aiming performance. To reinforce the implicit nature of this manipulation, partici-

pant were instructed not to compete and to focus on their own performance while disregard-

ing the partner.

The six blocks of trials per session were organized in groups of three. Each group consisted

of one Solo, one Easy and one Hard blocks of trials. The goal of this manipulation was to

induce three distinct motivated states as a function of the level of social pressure exerted.
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Structure of the dataset

A full description of the data conditioning process can be found in the original study [36]. A

summary description is provided next. The dataset consisted of EEG fragments recorded from

each participant while they performed the Solo, Easy and Hard blocks of trials. Since the study

focused on assessing the baseline changes of cortical brain state as a function of experimental

condition, a 1200 ms interval was chosen during the beginning of each trial. It started 800 ms

before the first stimulus onset—the initial cue—and ended 400 ms after (see Fig 5A), before

any movement or stimuli were presented on the screen at that trial.

In brief, the 1200 ms time series resulting from each channel and trial was filtered with a

4th order notch filter at 50, 100 and 150 Hz to remove noise originating from the power supply

line. Furthermore, as customary for scalp EEG recordings, the time series frequency band was

constrained between 0.1 and 100 Hz by means of a 4th order band-pass Butterworth filter.

Electrodes with EEG level exceeding either 200 V or voltage step/sampling 50 V within inter-

vals of 200 ms were removed from further analysis. Baseline was corrected by removing the

overall mean potential across electrodes, and the datasets were z-scored using the recordings

during trial block types 1 and 2 of each session—when the participant was playing solo, as a

baseline reference.

Eye-related artefacts were removed by means of independent component analysis (ICA),

implemented with a custom-made open-source toolbox (www.fieldtrip.com) and EEGLAB

scripts (sccn.ucsd.edu/eeglab, UC San Diego, CA, USA). The procedure to identify

eye-movement related sources was semi-automatized, first correlating each source obtained

with the signal from the electrodes recording eye movements to obtain a first metric of related-

ness. Second, all sources were visually inspected to corroborate that their shape and spatial

location matched those of ocular artefacts. Eye-related sources were removed and the cleaned

signal obtained by inverting the ICA process. A final source space was obtained by applying

ICA again, but forcing the resulting space to be of smaller dimension than the electrode space,

in order to capture a few independent areas of the brain whose signals are sent to the elec-

trodes. Thus the dimension of the source space may be different for each participant—usually

less than fifty [37].

The computation of the projection of the data on the source space was performed with cus-

tom-made MATLAB scripts based on the EEGLAB library, combined with the electrode spa-

tial location map. The Brain Products Unicap 64 configuration (Brain Products GmbH,

Gilching, Germany) was used to establish a spatial reference between the electrode placement

and to perform source localization. A spherical head model was assumed. ICA projections

serve a dual purpose: first, to distribute the information contained in the electrode signals

along directions of maximal inter-independence between dimensions; second, to provide a

rough anatomical estimate for the location of the brain sources generating the signals recorded

by the electrodes, on the brain cortical surface.

In summary, the original dataset consisted, per trial, of a variable number of channels (elec-

trodes or sources), denoted as NC, lasting 1200 ms each. Each participant performed 12 blocks

of 108 trials. Blocks were recorded during two different sessions, containing 6 blocks each, bal-

ancing out the number of motivated blocks.

Ultimately, the time series were averaged across the 1200 ms, yielding a mean characteriza-

tion of the three brain states characterized (Solo, Easy and Hard).

Persistence descriptors

Topological data analysis is a branch of mathematics based on algebraic topology aiming to

detect and represent structural features of datasets, such as sparseness, flares or cycles. Its main
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tool is persistent homology [38–42], an algebraic characteristic of simplicial complexes

equipped with a real-valued filtering function. Persistent homology is well suited for describing

the shape of a point cloud along a range of resolution scales.

Formally, a point cloud is a finite subset X � Rd
for some d� 1 viewed as a metric space by

means of the Euclidean distance. The Vietoris–Rips filtration [43, 44] associated with X is a

nested family of abstract simplicial complexes Vt(X) for t� 0, where Vt(X) has a 0-simplex

(that is, a vertex) for each point in X and a k-simplex with k� 1 for each collection of points

v0, . . ., vk in X such that kvi − vjk � t for all i, j.
The inclusions Vs(X)� Vt(X) for s� t induce morphisms Hn(Vs(X))!Hn(Vt(X)) for

n� 0, whereHn denotes n-dimensional simplicial homology [45]. We use the GUDHI Python

Library [46] for calculations. Although any coefficient field is suitable to compute persistent

homology [47], finite fields of prime order p are commonly used. In GUDHI, the largest possi-

ble choice is p = 46337 and the default choice is p = 11, which is used in the present work.

The birth parameter b of a homology generator in dimension n is the smallest value of t
such thatHn(Vt(X)) contains the given generator, and the death parameter d is the smallest

value of t where that generator is mapped to zero. The persistence or lifetime of a homology

generator is the difference d − b.

The persistence diagram associated with the Vietoris–Rips filtration of X in homological

dimension n consists of all birth-death pairs (b, d) for a basis of n-dimensional homology gen-

erators, drawn above the diagonal y = x of the first quadrant inR2
. Points that are close to the

diagonal (i.e., with a short lifetime) may correspond to inessential phenomena, while those

with large lifetimes reflect persistent shape features of the given dataset. In some cases, how-

ever, the distribution of points near the diagonal carries relevant information that should not

be neglected.

Persistence diagrams in dimension 0 contain information about connected components of

Vietoris–Rips complexes, specifically about the way in which connected components merge as

the parameter t increases. Persistence diagrams in dimension 1 depict the appearance and dis-

appearance of 1-cycles, while persistence diagrams in dimensions n� 2 represent the evolu-

tion of n-dimensional cavities in the Vietoris–Rips complexes.

The total persistence of a persistence diagram is defined as Si(di − bi), where the sum is

taken over all points with finite persistence in the diagram; bi denotes the birth parameter of

the ith point and di is the corresponding death parameter.

Two fundamental results endow persistent homology with the robustness required for a rig-

orous mathematical theory with real-world applications. The first one is the fact that persis-

tence diagrams are well-defined [39], that is, do not depend on the choice of a basis of

homology generators. The second one is stability [48, 49], i.e., small perturbations in the data

can only yield minor perturbations in the corresponding persistence diagrams.

Dissimilarity between persistence diagrams can be measured by the bottleneck distance, to

which the stability theorem refers when claiming that two diagrams are close to each other

[38]. However, persistence diagrams equipped with the bottleneck distance are not well-suited

for statistical analyses, since it is not feasible to compute averages of persistence diagrams [50].

For this purpose, a convenient summary of a persistence diagram is its landscape [27, 28]. A

persistence landscape is a sequence of piecewise linear functions obtained by rotating the dia-

gram 45 degrees clockwise (Fig 1) and choosing the k-highest point for each k� 1 in the result-

ing figure.

More precisely, for each point (b, d) in a given persistence diagram, one considers a tent
function Λ(b,d) (t) = max{0, min{t − b, d − t}}, as depicted in Fig 2, and defines lk: R! R for

each k� 1 as lkðtÞ ¼ kmaxfLðbi ;diÞðtÞg, where {(bi, di)} is the set of all points in the given
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persistence diagram and kmax returns the k-th largest value of a given set of numbers, or zero

if there is no k-th largest value. Consequently, λk = 0 for sufficiently large values of k. The first

landscape levels λ1, λ2 . . . represent the most significant features from the persistence diagram,

while the last ones correspond to points near the diagonal and hence ephimerous phenomena.

Despite their usefulness, persistence landscapes are memory-wise expensive when handling

large datasets. To overcome this problem, silhouettes were introduced in [51] by considering a

weighted average of the tent functions used to build a landscape:

�wðtÞ ¼
Pm

i¼1
wi Lðbi ;diÞðtÞPm
i¼1
wi

:

In this work we chose lifetimes wi = di − bi as weights and used the resulting silhouettes as per-

sistence summaries for our analyses. Since lifetimes need to be finite, points with infinite per-

sistence were discarded.

For the classification purposes in this article, we only used persistence diagrams in homo-

logical dimension zero. Higher dimensions were not considered in the study since, generically,

no significant variation of persistence summaries can be expected by adding a single point to a

training dataset, except possibly in dimension zero. This implies that bi = 0 for all i, and there-

fore lifetimes coincide with death values, while wi = di. Thus a silhouette represents density of

Fig 1. Landscape. Persistence landscape (right) obtained from a persistence diagram (left) by means of a 45˚ rotation

and rescaling (middle). Dot size indicates multiplicity.

https://doi.org/10.1371/journal.pone.0292049.g001

Fig 2. Tent function with birth parameter b and death parameter d.

https://doi.org/10.1371/journal.pone.0292049.g002
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points in the corresponding persistence diagram for each interval of persistence values, yet

weighted by lifetime.

We measure dissimilarity between persistence diagrams by discretizing silhouettes into vec-

tors of 1000 components and computing Euclidean distances between such vectors.

Topological classifier

A typical classification process starts with partitioning a labeled dataset D into training and

testing sets, assuming knowledge of the label class c to which each input x belongs in the train-

ing set. Accuracy is defined as the percentage of correctly classified datapoints from the testing

set.

Thus, if we have a dataset D containingm training datapoints D = {(xi, ci)} with i = 1, . . .,m,

the purpose of classifying is, for any given point x, to return its best predicted class c(x). There-

fore, a critical question for a classifier algorithm is to define an appropriate metric of similarity

between datapoints, so that similar points belong the same class. Typically, given two points x
and y, similarity is quantified by a distance function d(x, y) between them. For example, the

nearest neighbour algorithm uses the Euclidean distance. Given a datapoint x from the testing

dataset, and given the training data {(xi, ci)}, the nearest neighbour algorithm classifies x as

follows:

1. Calculate the Euclidean distance di = d(x, xi) of the point x to each of the training points xi.

2. Find a point xi∗ in the training dataset such that di∗ ¼ mini fdig.

3. Assign the class label cðxÞ ¼ ci∗ . If there are equidistant points with different labels, the

algorithm selects the class containing the largest number of points.

Our persistence-based topological classifier follows instead the next procedure:

1. The training set is split into classes according to given labels.

2. For each class label c in the training set, calculate the corresponding persistence silhouette

Sc in homological dimension 0 with lifetimes as weights.

3. To classify an input x from the testing set, add x to the cloud of training datapoints Xc of

each class label c. Then, recompute the persistence silhouettes Sc,x for the datasets Xc [ {x},

and finally calculate the Euclidean distance d(Sc, Sc,x) between the newly obtained silhou-

ettes and the former ones.

4. Assign the class label c(x) = c* where c* = argminc{d(Sc, Sc, x)}.

The underlying assumption is that point clouds sampled from different classes exhibit rec-

ognizably different shapes, as suggested by S2 Fig. The plausibility of this claim was tested by

means of bootstrapping on each motivational state by repeatedly sampling 75% of each data

cloud randomly with replacement 80 times. The resulting distributions of zero-dimensional

total persistence are shown in Fig 3 for participants 1 and 8. The statistical null hypothesis that

the distributions were pairwise equal was rejected for all participants by means of a Kolmogo-

rov–Smirnov test with p-values below 0.0001.

Further evidence of the difference between persistence descriptors of the three motivational

states was obtained by drawing silhouettes in dimension zero for each state, as depicted in Fig

4 for participants 1 to 3, separated by frequency bands.

If an unlabeled point is added to the point cloud of its own class, the resulting topology

should not fundamentally change. By contrast, if a point is added to a point cloud of a different

class, then the topology should be altered more visibly.
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Analysis pipeline

For each of the eleven participants in the study (four male and seven female aged 55±5.8), the

dataset consisted of 1200 ms × 60 electrodes EEG segments, repeated over 12 blocks (six per

session) of 108 trials each (Fig 5A). The level of social pressure leading to a specific motivated

state was maintained constant across each block, and there were four blocks for each motivated

state (two in each session).

Fig 3. Total persistence by motivational states. Distribution of total persistence Si(di − bi) in dimension zero of participant 1 (left) and participant 8

(right) of the point clouds corresponding to three motivational states:M0 blue,M1 red,M2 green. Numbers in the x-axis are total persistence values,

whose range varies depending on the recordings of each participant.

https://doi.org/10.1371/journal.pone.0292049.g003

Fig 4. Persistence silhouettes. Silhouettes from persistence diagrams in dimension zero for each motivational state (M0: blue,M1: red,M2: green) for

each frequency band (α, β, γ) plus the unfiltered dataset (no filter) for participants 1 to 3 in the space of sources without dimensionality reduction. The

x-axis represents lifetime lengths of connected components of the Vietoris–Rips complex, normalized into 1000 vector units by equating ranges. The y-
axis represents density of points in the persistence diagram weighted by their lifetime, uniformized by equating height in the pictures.

https://doi.org/10.1371/journal.pone.0292049.g004
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Fig 5. A: Pre-processing schematic. Channels are either electrodes or sources. Each channel of raw data was band-

pass filtered into the three typical EEG bands (α: low; β: medium; γ: high). Channels containing artifacts or noisy

information were removed, resulting in a final number ofNC channels. Absolute values of time series were averaged

for each channel. Outliers were removed from the resulting dataset. B: Post-processing schematic. Principal

component analysis (PCA) or recursive feature elimination (RFE) were used. No post-processing was performed on

raw data. C: Classification schematic. 80% of the dataset was used for training purposes and 20% for testing ones.

Persistence silhouettes were used for classification. Abbreviations in the image are freq.: frequency; abs.: absolute; mot.:

motivational; st.: state.

https://doi.org/10.1371/journal.pone.0292049.g005
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Pre-processing. The data used in the present article was provided both in electrode and

source space directly, in three frequency bands of interest. A full description of the data pro-

cessing is available in the original study [36]. However, a summary description is provided

here for completeness and for notational purposes.

• First, data were visually inspected to identify and remove noisy or artefactual channels from

further analysis. The number of channels surviving this process is denoted by NC.

• Second, EEG signals encompass a spectrum ranging 0.01–100 Hz, which were distributed

into three typical frequency bands: α (8–15 Hz), β (15–32 Hz), γ (32–80 Hz), obtaining three

band-passed versions of the original temporal series. Each of these signals was analysed in

the same fashion, and independently of each other, alongside with an unfiltered baseline ver-

sion of the original signal. This distribution of frequency bands responds to the established

association of brain function with power fluctuations in specific bands and electrode loca-

tions. Band-pass filtering was performed with custom-made scripts in Python, using the

iirfilter() function from the scipy.signal library [52]. Previous analyses on pre-

vious studies suggest that motivation-related modulations belong in the high-gamma band,

thus suggesting that motivation related biases should be better encoded in the higher fre-

quency band [36].

• Third, each electrode or source absolute value was averaged across the 1200 ms window of

observation, obtaining a dataset organised as a matrix of NT trials by NC channels. Outliers

exceeding twice the standard deviation from the average of norms of datapoints were disre-

garded from further analysis.

Classification of brain states was conducted within the signals obtained for each band-pass

independently, as well as with an unfiltered version of the original signal.

Post-processing. Two different dimensionality reduction methods were used to the

pre-processed dataset by means of the sklearn library [53], yielding dimensions between

2 and 10.

• Principal component analysis (PCA) is a linear projection onto a lower-dimensional

space of principal components, where the first principal component of a point cloud is

the one that explains the most variance, and each successive principal component

explains the most variance in what is left once the effect of the previous components is

removed [22].

• Recursive feature elimination (RFE) consists of successively removing coordinates with

the lowest impact on the accuracy of a classifier [54]. In our study, RFE was applied to

the pre-processed dataset using a logistic regression model to assign weights to the

features.

Classification. Once each dataset (for each frequency band) was properly formatted, it

was input into our TDA classifier (Fig 5C). From this moment on, trials were considered as

points of a data cloud to be classified. The classification operation was carried out as described

in the topological classifier subsection. Each classification was repeated 5 times and the result-

ing accuracies were averaged over the 5 repetitions. At each repetition, post-processed datasets

were partitioned into 80% training data and 20% testing data. In the case of raw data (no

dimensionality reduction), pre-processed datasets were used.

The analyses were performed with the original signals in electrode space as well as with

their projections onto the brain source space.
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Results

To first establish a baseline of accuracy that would enable an assessment of the influence of

dimensionality reduction techniques on the classificacion process, we tested our DA classifier

on the original EEG signals projected on source space; see Analysis pipeline. Second, we tested

the influence of two dimensionality reduction methods (PCA and RFE) on the classification

process. Third, to further assess the influence of the ICA projection on the classifier, we also

tested the original dataset, as collected in electrode space. Each of the aforementioned tests was

performed with each band-passed version of the EEG signals (α, β, γ) independently.

Classification on source space

We performed the classification for the dataset of each participant within each frequency

band, using the data projected onto source space prior to any dimensionality reduction. Fig 6

shows classification accuracies obtained by the TDA classifier for four typical participants—

corresponding results for all participants are shown in S1 Fig.

Although the classification yielded some differences across participants, the main result

obtained is a consistent top accuracy in the γ band for all participants but one, ranging in aver-

age between 60% to 80%. Violin plots in Fig 6 encode median, interquartile range, and a ker-

nel-smoothed probability density of the data. The violin plots were performed using the

seaborn library [55].

Using this as a baseline, we assessed the influence of dimensionality reduction on classifica-

tion accuracy. For this, we applied two complementary dimensionality reduction techniques.

For each participant dataset, we first performed a principal component analysis (PCA) decom-

position, selecting the dimensions that would explain until 95% of data variance for all partici-

pants, ultimately retaining from 2 to 10 dimensions.

In a complementary fashion, we performed recursive feature elimination (RFE) on the

same datasets. Unlike PCA, recursive feature elimination is based on assessing the contribu-

tion of specific components of the original dataset to the classification process. When per-

formed in source space, this results in a ranking of sources. The datasets resulting from PCA

and RFE were also classified for each participant and for each frequency band. The summary

results obtained from these classifications are shown as violin plots in Fig 7. Accuracy percent-

ages are given in S6 Fig for each of the eleven participants, for each frequency band and for

each dimensionality reduction method, after averaging the accuracies obtained from five repe-

titions in each dimension. Standard deviations are specified in S1 and S2 Tables. Since there

are three distinct classes, chance level equals 0.33.

These analyses yielded two main results. First, consistently with the baseline classification

results of the TDA classifier and with the results of previous machine learning classifiers, the

highest accuracies were obtained in the γ band for all participants but one [36]. Second, consis-

tently with the hypothesis of dimensionality reduction rearranging the point cloud in shapes

that facilitate classification, our results consistently confirm that point clouds in reduced

dimensionality spaces yield higher accuracies than the baseline, high-dimensional dataset.

Effect of dimensionality reduction

Since higher classification accuracies are obtained in low dimensional spaces, the immediate

question is how accuracy depends on dimensionality. In the case of RFE, we aimed at finding

an optimal number of sources as guided by previous results from [36]. To this end, we tested

our topological classifier using the space resulting of applying recursive feature elimination to

the EEG data projected onto the space of sources, increasing the number of selected sources by
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the algorithm from 2 to 10. Classifications were performed for each participant and each fre-

quency band.

Our thesis is that the notion of shape upon which TDA is based is essentially independent

of data variability. Thus, we expected to find an optimal number of principal components such

that the resulting projected spaces would yield shapes more favourable to be classified. We

tested our topological classifier using the data clouds resulting from PCA applied to the space

of sources, gradually increasing the number of selected principal components from 2 to 10.

We recorded the classification accuracy as well as the amount of explained variance by the

number of components at that step. Classifications were performed for each participant and

for each frequency band in parallel. To further assess the effect of ICA to the shape of the data,

we performed the same tests on the space of electrodes, namely the original EEG data prior to

applying the ICA algorithm.

Fig 8 shows the accuracy of two typical participants as a function of the number of sources

as selected by RFE (ranging from 2 to 10), for each frequency band. Results for all participants

can be seen in S5 Fig. The highest accuracy is consistently obtained within the γ band. Further-

more, the accuracy shows that only a few sources are typically required to obtain the best

Fig 6. Classifier accuracies on source space. Accuracies of the topological classifier by frequency band on the space of sources without

dimensionality reduction for participants 1, 3 (top right), 7 and 11. Results for all participants are shown in S1 Fig.

https://doi.org/10.1371/journal.pone.0292049.g006
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Fig 7. Violin plots of accuracies by frequency band. Comparison of baseline accuracies (raw) of the topological classifier on source space for

each frequency band with accuracies obtained after dimensionality reduction with principal component analysis (pca) and recursive feature

elimination (rfe), for participants 1 to 11. Each violin contains accuracy percentages of five repetitions for each participant.

https://doi.org/10.1371/journal.pone.0292049.g007

Fig 8. Classifier accuracy by frequency band. Variation of accuracy of the topological classifier by frequency band (blue: no filter; yellow: α; green: β;

red: γ) depending on the number of sources picked by recursive feature selection for participants 1 and 8. The blue dotted line indicates chance level.

https://doi.org/10.1371/journal.pone.0292049.g008
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accuracy—five sources suffice for the classification task for most participants, in accordance

with results shown in [36].

The top row of Fig 9 shows accuracy as a function of the number of dimensions considered

when applying PCA to the original dataset (in electrode space). A peak is observed when the

number of dimensions ranges around four. The bottom row in Fig 9 shows accuracy as a func-

tion of the number of dimensions when applying PCA to the dataset in source space. A full set

of results for all participants is shown in S3 and S4 Figs. These results suggest that the increase

of accuracy is essentially independent from the explained variance that accumulates when the

number of PCA dimensions increases. This is clearer for the dataset corresponding to elec-

trode space.

Discussion

This study introduced a novel data classification algorithm based on principles derived from

topological data analysis. By contrast to machine learning classifiers, typically based on assess-

ing relative distance metrics across points of different classes, the topological classifier here

described is based on exploiting differences in shape between point clouds from each class.

Fig 9. Classifier accuracy in a range of dimensions. Comparison of accuracy variation (red) with PCA explained variance (blue) as dimension

increases for participants 1 (left) and 8 (right). The upper row corresponds to the space of electrodes and the lower row to the space of sources. The blue

dotted line indicates 95% of explained variance and the red dotted line is chance level. Standard deviations of accuracy (red) are computed after five

repetitions of the classifier. Graphs for all participants are shown in S3 and S4 Figs.

https://doi.org/10.1371/journal.pone.0292049.g009
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Such differences were quantified by calculating dissimilarities between persistence silhouettes

[51].

The stability theorem for persistence barcodes [40, 51] guarantees that small variations of a

point cloud yield small variations on its persistence descriptors. Because of this, if a point

cloud is structured into distinct classes—three in the case of our dataset—, the addition of a

point to the class where it belongs should barely yield any effect on the resulting topological

descriptors, while incorporating the same point to the point cloud of the other classes is likely

to cause perceivable shape changes. This is the principle we here proposed to use for

classification.

We tested this principle with an electro-encephalographic dataset recorded from human

participants during a study of motivated behaviour [36], aimed at quantifying the influence of

three levels of social pressure on the brain state of the human motivational system. As for most

EEG analyses, the data time series were decomposed into three typical frequency bands: α, β
and γ (see Methods), which we analysed alongside to an unfiltered (full frequency band) ver-

sion of the dataset.

Choice of dataset

The choice of dataset from [36] responded to several requirements:

1. The need of a rich, high-dimensional dataset, which contained data clouds of significant

size. Our dataset had data from eleven participants, having performed 1296 trials each, dis-

tributed into three classes.

2. As a means to double validate our tests, it was convenient that the dataset had been previ-

ously analysed by reliable methods, as to offer a clear target of potential accuracies for the

TDA classifier.

3. Previous analyses of this dataset have yielded classification accuracies increasing alongside

with the frequency band considered, ranging from around 50–60% in the low α band to

75–90% in the γ band. This offered a range of results and an overall separability across data-

sets, which we could fall back on to assess the performance of the TDA classifier.

Dimensionality of data

Our study was first performed with the space of electrodes and subsequently with a space of

brain sources obtained from electrodes by means of independent component analysis (ICA).

This technique is convenient from a statistical perspective because the data components in

source space are mostly independent from each other. Furthermore, from the perspective of

analysing neural data, it allows to estimate the brain source localization responsible for the sig-

nals recorded.

We tested the effect of dimensionality by assessing the performance of our TDA classifier

within a range of dimensions by means of a principal component analysis (PCA) decomposi-

tion optimizing the explained variance of the data cloud. To ensure that we covered all cases

until 95% variance, our PCA analysis gradually considered from two to ten dimensions. This

yielded a remarkable result: while the degree of explained variance increased the accuracy

asymptotically towards 100% even when considering over ten dimensions, the TDA classifier’s

accuracy reached a plateau after a given boundary dimension—typically dimension four in the

electrode space. This strongly suggests that the classifier’s operation is more sensitive to the

latent dimension of the data cloud than to the amount of explained variance. This was rein-

forced by a comparative analysis with the performance of a nearest neighbour classifier, which
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monotonically increased its accuracy along with explained variance up to dimension ten (data

not shown).

As an additional validation analysis of our dimensionality tests, we performed a recursive

feature elimination decomposition (RFE) to identify the dimensions in source space contribut-

ing the most to the classification. This analysis yielded a similar ceiling effect on accuracy than

the analysis based on dimensions ranked by explained variance of PCA, close to dimension five.

Our initial prediction was that a projection of the original dataset onto an independent

component space (or source space) would yield a finer defined cloud and ultimately higher

accuracies than those of the original dataset. This hypothesis is supported by our analysis

about the influence of dimensionality with the ICA-dataset on the accuracy, which yielded

lesser sensitivity when ICA was previously applied to the dataset. Likewise, our validation test

with RFE also showed that there is a minimal number of necessary sources to obtain an asymp-

totic accuracy (typically five). The number of dimensions that effectively contributed to the

classification with the TDA classifier matched the number of sources required to represent the

brain network of motivation in the original study [36]. Moreover, the frequency band yielding

the best results was the γ band, consistently with the referenced analysis.

Thus, our results suggest that the effect of the ambient dimension on persistence descriptors

of a point cloud is of a different nature than its effect on data variance. As shown by Fig 9, S3

and S4 Figs, a higher ambient dimension entails greater variance of data and yet it is not neces-

sarily associated with an improved accuracy of our topology-based classifier.

Supporting information

S1 Fig. Classifier accuracies. Accuracies of the TDA-based classifier by frequency band on the

space of sources for participants 1 to 11 without dimensionality reduction.

(TIF)

S2 Fig. Point clouds of brain states. Point clouds corresponding to participant 1 (left) and

participant 8 (right), using the space of sources and the γ band, after applying PCA to obtain

three-dimensional data clouds:M0 blue,M1 red,M2 green. The two clusters in each cloud cor-

respond to the two sessions performed within each block.

(TIF)

S3 Fig. PCA on sources. Comparison of variation of accuracy (red) with PCA explained vari-

ance (blue) as dimension increases for all participants on the space of sources within the γ fre-

quency band. The blue dotted line indicates 95% of explained variance and the red dotted line

is chance level. Standard deviations of accuracy (red) are computed after five repetitions of the

classifier.

(TIF)

S4 Fig. PCA on electrodes. Comparison of variation of accuracy (red) with PCA explained

variance (blue) as dimension increases for all participants on the space of electrodes within the

γ frequency band. The blue dotted line indicates 95% of explained variance and the red dotted

line is chance level. Standard deviations of accuracy (red) are computed after five repetitions of

the classifier.

(TIF)

S5 Fig. RFE on sources. Comparison of variation of accuracy for each frequency band (blue:

no filter; yellow: α; green: β; red: γ) as the number of sources increases from 2 to 10 using the

RFE algorithm, for all participants on the space of sources. The blue dotted line is chance level.

(TIF)
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S6 Fig. Accuracy comparison. Comparison of baseline accuracies (raw) of the topological

classifier on source space for each frequency band with accuracies obtained after dimensional-

ity reduction with principal component analysis (pca) and recursive feature elimination (rfe),
for participants 1 to 11. Highest accuracies are boldfaced.

(TIF)

S1 Table. Classifier accuracies for α band. Comparison of baseline accuracies (raw) of the

topological classifier on source space for each frequency filter with accuracies obtained after

dimensionality reduction with principal component analysis (pca) and recursive feature elimi-

nation (rfe), with no frequency filter and in the α frequency band, for participants 1 to 11 with

standard deviations after five repetitions.

(PDF)

S2 Table. Classifier accuracies for β and γ bands. Comparison of baseline accuracies (raw) of

the topological classifier on source space for each frequency filter with accuracies obtained

after dimensionality reduction with principal component analysis (pca) and recursive feature

elimination (rfe), in the β and γ frequency bands, for participants 1 to 11 with standard devia-

tions after five repetitions.

(PDF)
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