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Low-copy repeats (LCRs) constitute 5% of the human genome. LCRs act as substrates for non-allelic homolo-
gous recombination (NAHR) leading to genomic structural variation. The aim of this study was to assess the
potential of Fiber-FISH for LCRs direct visualization to support investigations of genome architecture within
these challenging genomic regions. We describe a set of Fiber-FISH experiments designed for the study of
the LCR22-2. This LCR is involved in recurrent reorganizations causing different genomic disorders. Four
fosmid clones covering the entire length of the LCR22-2 and two single-copy BAC-clones, delimiting the
LCR22-2 proximally and distally, were selected. The probes were hybridized in different multiple color com-
binations on DNA fibers from two karyotypically normal cell lines. We were able to identify three distinct
structural haplotypes characterized by differences in copy-number and arrangement of the LCR22-2 genes
and pseudogenes. Our results show that Multicolor Fiber-FISH is a viable methodological approach for the
analysis of genome organization within complex LCR regions.
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1. Introduction

It has been estimated that the 5% of the human genome is constitut-
ed by segmental duplications or Low Copy Repeats (LCRs) [1]. LCRs are
repetitive DNA elements from 1 to 400 Kb in length sharing a high level
of sequence identity (>95%) [2]. Due to the high degree of homology
between paralogous copies, they are considered highly dynamic regions
leading to genomic instability by non-allelic homologous recombina-
tion (NAHR) [3,4].

As a result, LCRs are susceptible to structural and copy-number var-
iation of their own genes and pseudogenes. This variation has been
directly associated to the occurrence of some diseases [5-7] and to the
formation of specific structural haplotypes, which have been linked to
an increased susceptibility to secondary rearrangements of the region
flanked by the LCR [8]. Rearrangements may be either somatic, causing
sporadic disease in the individual, or in the germ line, leading to an
increase in the risk of transmission to the offspring [8].

Some LCR haplotypes have been suggested to predispose to specific
chromosomal rearrangements: 1) copy number variation (CNV) within
some portions of the LCRs flanking the 7q11.23 region has been linked
to the occurrence of deletions of the Williams-Beuren syndrome critical
region [9], 2) variation in the copy-number and arrangement of the sim-
ple LCRs REPA and REPB at the chromosome region 17p11 is believed to
confer different susceptibility to the formation of 17p isochromosomes
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[10], and 3) CNV of duplicated blocks within the BP1 and BP3 at 16p12.1
has recently been reported to predispose to deletions of this region [11].

Despite the recent advances in copy-number and structural variation
detection [12], the repeated nature and often complex organization of
LCRs hampers their analysis by standard methodologies such as array
comparative genomic hybridization (array-CGH) and single nucleotide
polymorphism (SNP) microarrays. The development of next-generation
sequencing techniques has been successfully used to analyze the CNV
of the whole genome [13], as well as specific LCRs; this is the case of
the LCR22 of the 22q11.2 region [14]. PCR-based techniques have also
allowed the quantification of the number of repeats shaping specific
LCRs (7q11.23; [9]).

Fluorescence in situ hybridization (FISH) provides an alternative
approach for the analysis of the genomic architecture of LCRs. By en-
abling the direct visualization of target DNA sequences in situ, FISH
not only allows copy number assessment, but also facilitates the iden-
tification of balanced structural variants such as inversions and trans-
locations. In particular, FISH on stretched DNA fibers (Fiber-FISH)
with closely spaced probes has been satisfactory applied in several
high-resolution physical mapping studies [15-17] and as a validation
technique in CNV studies [18-23]. Moreover, it has also been used to
assess the number of paralogous copies of the simple LCRs REPA and
REPB on the 17p11.2 region [24].

The pericentromeric area of chromosome 22 contains its own LCRs
(LCR22). These LCRs are involved in recurrent reorganizations caus-
ing different genomic disorders [25]. Among them, the DiGeorege/
Velocardiofacial syndrome (DGS) represents the most common
deletion-caused syndrome in humans with an incidence of 1 every
4,000 newborns (OMIM188400) [26]. DGS is mostly caused by 3 Mb
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hemizygous deletions involving the flanking LCR22-2 and LCR22-4.
These LCRs are complex mosaic of genes, pseudogenes and other re-
petitive elements partially formed by Alu-mediated recombination
events during primate evolution [27]. The functional genes distribut-
ed along the LCR22s, are USP18, BCR, GGT5 and GGT1. Duplications of
these genes and their own pseudogenes during evolution shaped the
LCR22s [28].

In this work, we applied Fiber-FISH to determine structural and
copy number variants within the LCR22-2. The main objective of the
study was to assess the ability of Fiber-FISH - as a high-resolution
mapping technique - to resolve the genomic architecture of complex
LCRs, and to establish its potential as a methodological approach to
assess risk haplotypes for critical regions.

2. Results
2.1. Clone selection and positioning

Four fosmid clones were selected from the Genome Browser database
(UCSC Assembly Feb 2009) [29]: WI2-938L9 (abbr. L9), WI2-451K3
(abbr. K3), WI2-1268B22 (abbr. B22) and WI2-1822121 (abbr. [21).
These clones cover total or partially the following UCSC genes and
pseudogenes of the LCR22-2: USP18, AK129567, AK302545, GGT3P,
DGCR6 and PRODH (Table 1). A single-copy the BAC clone RP11-66F9
(abbr. F9) approximately 1 Mb proximal to the LCR22-2 (UCSC Assembly
February 2009) (Fig. 1), a single-copy the BAC clone RP11-163A10 (abbr.
A10) approximately 330 Kb distal to the LCR22-2 (UCSC Assembly Feb-
ruary 2009) (Fig. 1), and a painting probe for the q arm of chromosome
22 (WCP22) (Cambio) were used as reference probes.

Chromosomal mapping was verified on metaphase chromosomes
using the following combination of probes: F9 and WCP22 (Fig. 2a),
A10 and WCP22 (Fig. 2b), F9 and L9 (Fig. 2c), F9 and B22 (Fig. 2d),
L9 and K3 (Fig. 2e), B22 and L21 (Fig. 2f).

2.2. Experimental design

A set of Fiber-FISH experiments were performed to establish the
LCR22-2 genomic architecture in two karyotypically normal cell lines
(see section 4: Materials and methods). DNA fibers were stretched on
slides as previously described [30]. The experiments were designed as
follows:

2.2.1. Unequivocal identification of the specific LCR22-2 signals

To distinguish between specific signals of LCR22-2 from paralogous
copies distributed in other LCRs on 22q, the control probes F9 (mapping
just outside the LCR22-2, proximally) and A10 (mapping just outside
the LCR22-2, distally), were co-hybridized with the fosmid clone K3 in
two different FISH experiments, allowing to identify patterns - based
on the number of K3 repetitions - to be used as an LCR22-2 reference
in the following hybridizations.

2.2.2. Determination of the LCR22-2 architecture

Once the number of K3 copies was established, three dual-color
fiber-FISH experiments were performed by co-hybridizing K3 and
L9, K3 and B22, B22 and L21. These high-resolution mapping experi-
ments allowed the assessment of the LCR 22-2 genes copy number
and relative arrangement.

2.3. Structure of the LCR22-2 in the Cell line A

A total of 81 informative fiber-FISH images were captured and
analyzed to study the organization of the LCR22-2 in cell line A.

F9 and K3: A larger signal corresponding to F9 followed/preceded
by a consistent pattern of five repeats for K3 was observed. F9
was either separated (55% of the fibers; Fig. 3a) or overlapping
(45% of the fibers; Fig. 3b) with the first/fifth K3 repeat (20 informa-
tive fibers were analyzed).

A10 and K3: A larger signal corresponding to A10 followed/preceded
by a consistent pattern of five repeats for K3 was observed. A10 was
either separated (62%; Fig. 3c) or overlapping (38%; Fig. 3d) with
the first/fifth K3 repeat (13 informative fibers were analyzed).

K3 and L9: K3 displayed the same pattern previously described. Five
signals were identified for L9, totally or partially overlapping with K3
(Fig. 3e) (17 informative fibers were analyzed).

K3 and B22: Overlapped or partially-overlapped signals from these
two probes were observed. Results showed two different patterns
for B22 which either two or three signals (52.4% and 47.6% respec-
tively; Figs. 3f and g) (21 informative fibers were analyzed).

B22 and L21: Two or three signals for B22 (60% and 40% respectively)
were observed followed/preceded by one signal for L21 (Figs. 3hand i)
(10 informative fibers were analyzed).

To determine whether an inversion was the cause of the two differ-
ent signal patterns or “Fiber-FISH haplotypes” observed co-hybridizing
the F9 and K3 clones (Figs. 3a and b) and A10 and K3 (Figs. 3¢ and d),
an additional three-color Fiber-FISH was performed using the probes
F9, K3 and L21. Two different signal patterns with the same frequency
were observed: 1) F9 followed by K3 and 121 (42.8%; Fig. 4a), and 2)
F9 followed by L21 and K3 (57.1%; Fig. 4b). These results strongly suggest
the presence of an inversion involving most of the LCR22-2 in one of the
two chromosome 22 homologs. In order to relate the number of B22 sig-
nals (Figs. 3f and g) with the inversion, a further three-color Fiber-FISH
experiment was performed using the clones F9, B22 and L21. Two
clone distributions were observed: 1) F9, L21 and two signals of B22
(38%; Fig. 4c), and 2) F9, B22 (three signals) and [21 (62%; Fig. 4d).
These results suggest that the inversion segregates with the haplotype
showing two signals for B22.

2.4. Structure of the LCR22-2 in the cell line B

A total of 87 informative images were analyzed using the following
two-color Fiber-FISH experiments.

Table 1
Characteristics of the clones (UCSC Assembly Feb 2009) [27].
Clone Whitehead F.E.S. name Size (Kb) Position UCSC genes Labeling
WI2-938L9 G248P80545F5 37 chr22:18,631,074-18,672,626 UsP18 Biotin
AK129567°
WI2-451K3 G248P8704F2 44 chr22:18,725,757-18,770,041 AK302545% Digoxigenin
GGT3P
WI2-1268B22 G248P82259A11 40 chr22:18,751,182-18,793,055 GGT3P Biotin
WI2-1822L21 G248P86641F11 39 chr22:18,883,978-18,922,962 DGCR6 Digoxigenin
PRODH?
RP11-66F9 - 175 chr22:17,381,569-17,556,908 GAP 4 Biotin
CECR7
RP11-163A10 - 183 chr22:19,323,802-19,506,889 HIRA Biotin

@ Partially covered genes.
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Fig. 1. Map of the LCR22-2 (chr22:18,663,074-18,992,962) according to the Genome Browser database (UCSC Assembly Feb 2009) [27]. The length of the LCR is represented as a
blue box. The Figure shows the clones used in the study. Bar colors represent the color they were detected with (red: Cy3 and green: FITC) in the two-colour Fiber-FISH

experiments.

F9 and K3: As observed in cell line A, five contiguous signals for K3 were
observed, all of them separated to the F9 signal (Fig. 5a) (18 informative
fibers were analyzed).

A10 and K3: As in cell line A, five contiguous signals for K3 were ob-
served, all of them separated to a longer A10 signal (Fig. 5b) (18 infor-
mative fibers were analyzed).

K3 and L9: As in cell line A, five contiguous signals for K3 and 5 partially
overlapped L9 signals were detected (Fig. 5¢) (20 informative fibers
were analyzed).

K3 and B22: Two signals for B22 were consistently found on the second
and third/third and fourth K3 signals (Fig. 5d) (14 informative fibers
were analyzed).

B22 and [21: Two signals for B22 were observed followed/preceded by
one signal for 21 (Fig. 5e) (17 informative fibers were analyzed).

Results allowed us to propose a model for the architecture of the
LCR22-2 in the cell line A and B (Fig. 6).

3. Discussion

This work demonstrates for the first time the ability of Fiber-FISH
coupled to an accurate experimental design to resolve the genomic ar-
chitecture of complex LCRs. The strategy used in our study allows the
identification of structural variation of different segments within the
LCRs. The design consists in: 1) selecting specific clones covering the
LCR, 2) selecting chromosomal markers to be used as positional refer-
ences to facilitate the unequivocal identification of the LCR under inves-
tigation, and 3) developing and applying strict assessment criteria for
the analysis of the Fiber-FISH hybridization patterns.

By direct visualization of haplotypic repeat patterns, Fiber-FISH
allows both inter-chromosomal and inter-individual variability to be
reliably ascertained, as our results on the LCR22-2 show (Fig. 6). Our
observations suggest an arrangement of the LCR22-2 comprising five
copies of the L9 and the K3, and of either two or three copies of the
B22, all of them closely localized to each other and repeated in a

Fig. 2. Clone mapping by metaphase FISH a) co-hybridization of WCP22 (green) with F9 (red), b) co-hybridization of WCP22 (green) with A10 (red), c) co-hybridization of F9
(green) with L9 (red), d) co-hybridization of F9 (green) with B22 (red), e) co-hybridization of L9 (green) with K3 (red) and f) co-hybridization of B22 (green) with L21 (red).

A closer view of the chromosomes 22 are illustrated in each image.
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Fig. 3. Dual-color Fiber-FISH experiments in the cell line A: a) F9 (red) and K3 (green); b) F9 (red) and K3 (green); c) A10 (red) and K3 (green); d) A10 (red) and K3 (green); e) L9
(red) and K3 (green); f) B22 (red) and K3 (green); g) B22 (red) and K3 (green); h) B22 (red) and L21 (green); i) B22 (red) and L21 (green); j) Diagram showing the positions of the

BAC and fosmid probes along the LCR 22-2.

modular fashion (Fig. 6). Furthermore, we observed an inverted haplo-
type. The inversion involves most of the LCR22-2; accordingly, the
relative position of the L21 was close to the clone F9. Besides, the com-
bination in a triple-color fashion of the probes: 1) F9, K3 and L21, and 2)
F9, B22 and L21 confirm again that the signals analyzed unequivocally
identify the LCR22-2.

Some LCR structural haplotypes have been suggested to increase
the likelihood of misalignment and NAHR, thus increasing the risk of
transmission of secondary disease-associated rearrangements to the
offspring [9-11]. Moreover, some data demonstrated a different suscep-
tibility to NAHR among individuals. Our group have recently reported in-
creased rates of deletions of the 15q11-q13 region in spermatozoa of

Fig. 4. Detection of an inverted haplotype in the cell line A by three-color Fiber-FISH. Color-bars show the signal distributions observed for every single haplotype.
a) Co-hybridization of F9 (red), K3 (green) and L21 (purple), signal distribution following the current human genome assembly; b) co-hybridization of F9 (red), K3 (green) and
L21 (purple), signal distribution corresponding to an inversion regarding the current human genome assembly; c) co-hybridization of F9 (green), B22 (purple) and L21 (red), signal
distribution following the current human genome assembly; d) co-hybridization of F9 (green), B22 (purple) and L21 (red), signal distribution corresponding to an inversion

regarding the current human genome assembly.
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Fig. 5. Dual-color Fiber FISH experiments in cell line B: a) F9 (red) and K3 (green); b) A10 (red) and K3 (green); c) L9 (red) and K3 (green); d) B22 (red) and K3 (green); e) B22
(red) and L21 (green); f) Diagram showing the positions of the BAC and fosmid probes along the LCR 22-2.

fathers of children affected by Prader-Willi syndrome [31], as well as in-
creased rates of 7q11.23 and 22q11.2 deletions in spermatozoa of fathers
of Williams-Beuren or DiGeorge/Velocardiofacial children respectively
(unpublished data), thus suggesting the presence of predisposing haplo-
types to NAHR in these subjects.

The results obtained in this work demonstrate the potential of the
Fiber-FISH methodology for the identification of predisposing LCR
haplotypes in the flanking critical regions in parents of individuals
affected by genomic disorders. This would allow the establishment
of a direct relationship between specific LCR structural haplotypes
and increased rates of NAHR in gametes.

3.1. Conclusion

Multicolor Fiber-FISH is a viable methodological approach for the
analysis of genome organization within complex LCR regions.

4. Materials and methods
4.1. Cell culture

Two karyotypically normal B-lymphoblastoid cell lines were used:
1) GMO0171 (Human Genetics Collection, Health Protection Agency

AT I T e ]
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Fig. 6. Proposed model for the genomic architecture of the LCR22-2 in the two cell lines analyzed. The two “Fiber-FISH haplotypes” detected in the cell line A were named A1 and A2,

and the haplotype detected in the cell line B was names B1.
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(HPA), U.K.; no longer available) and 2) DO208915 (European collec-
tion of Cell Cultures, HPA), referred in the manuscript as cell line A
and B respectively. Both cell lines harbor the VCFS/DiGeorge region
since they showed a normal hybridization pattern with A10 (a clone
localized within the critical region).

Cell cultures were grown in RPMI-1640 medium (Sigma-Aldrich),
supplemented with 10% fetal bovine serum (Sigma-Aldrich) and 1%
L-glutamine at 37 °C in a 5% CO, incubator for 72 hours.

4.2. Slide preparation

Two kinds of preparations were performed:

4.2.1) Metaphase chromosomes were obtained following standard
procedures: 1 hour before harvesting, cells were treated with
Colcemid (Invitrogen) at a final concentration of 0.2 pg/mL. They
were then resuspended in hypotonic solution (0.075 M KCl) for
10 minutes at 37 °C and fixed in methanol:acetic acid (3:1).

4.2.2) DNA fibers were stretched on slides as previously described [30].
Briefly, 2 mL of a cell culture were centrifuged and the pellets
were washed in 1x PBS. Pellets were resuspended in 1x PBS to
reach a final concentration of 2x10° cells/mL and spread on
slides. Once the slides were mounted on the Shandon Sequenza
Coverplates DNA fibers were released applying a lysis solution
(0.07 M NaOH in ethanol). Finally, fibers were fixed in methanol.

In both cases, slides were kept at —20 °C until processed.
4.3. Probes

All clones were kindly provided by the Wellcome Trust Sanger
Institute (Cambridge, UK). Clone extraction was carried out using
the QuickClean 5M Miniprep kit (GenScript) following the manufac-
turer's instructions.

4.4. Fluorescence in situ hybridization (FISH)

In two-color FISH experiments, clones were labeled by Nick-
Translation (Abbott Molecular) either with Digoxigenin-11-dUTP
(Roche) or Biotin-16-dUTP (Roche) (Table 1). In three-color experi-
ments, Alexa594-dUTP (Invitrogen) was also used. Probes were ethanol
precipitated with a mix of salmon testis DNA (GIBCO-BRL), Escherichia
coli tRNA (Boehringer) and 3 M sodium acetate. Approximately
200 ng of labeled DNA probe and 4 pg of Cotl competitor DNA
(Invitrogen) were mixed and dried on a heating block at 60 °C, and
resuspended in 1x hybridization buffer (50% formamide, 1x SSC and
10% dextran sulfate) to a final concentration of 40 ng/uL. For Fiber-
FISH experiments, two-fold the labeled DNA probe and Cot1 competitor
DNA were used (final concentration of 80 ng/pL of each probe).

FISH was carried out following standard procedures [30]. Briefly,
probes were denatured at 75 °C for 5 minutes and pre-annealed at
37 °C for 45 minutes. Slides were denatured in 70% formamide/2 x SSC
at 70 °C for 1 minute and hybridized in a moist chamber at 37 °C over-
night. Slides were washed twice in 50% formamide/1 x SSC and once in
2x SSC, for 5 minutes at 42 °C, followed by 5 minutes in 1x PBS at room
temperature. For fiber-FISH experiments milder washes were used: one
wash in 50% formamide/1 x SSC, followed by one wash in 2 x SSC, both
of them for 5 minutes at 42 °C.

In two-color FISH, probes were detected with either fluorescein-
conjugated antidigoxigenin (Roche) or Cy3-conjugated Streptavidin
(Sigma). In the three-color experiments, Alexa594 directly labeled-
probes were used together with probes labeled with digoxigenin and
biotin that were detected by fluorescein-conjugated antidigoxigenin
(Roche) and Cy5-conjugated Streptavidin (CyDye, Amersham Pharmacia
Biotech) respectively. The slides were mounted with Vectashield (Vector
Laboratories) containing 4/, 6-diamidino-2-phenylindole (DAPI) for
chromosome counterstaining,.

4.5. Image acquisition and data analyses

Image capture and analysis were carried out on a CytoVision system
(Leica) consisting of an Olympus BX-51 epifluorescence microscope
coupled to a JAI CVM4 + CCD camera.

Fiber-FISH analysis was performed by applying the following scoring
criteria:

* Fibers were considered informative when at least two signals of dif-
ferent colors were observed overlapping or proximal in a consecu-
tive fashion.

» Two or more signals of the same color were considered indepen-
dent when they were separated by a distance twice the distance
of every single bead-on-string.

» Signals were considered informative regardless of the size.
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