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1 Abstract

This work aims to study Carleman estimates, a weighted-type of inequalities first
introduced by Carleman in 1939. Such estimates are very important for proving
unique continuation properties of differential and pseudo-differential operators.
We first derive a Carleman estimate for the Laplacian operator as an illustrative
example following the work of Jérôme Le Rousseau and Gilles Lebeau in [7]
which is a summary of a much large study. We try to extend the methodology to
non-local operators. In particular we aim to deal with the fractional Laplacian.
The results are focused on proving unique continuation properties and showing
the significance of weighted estimates and the operators involved. For this
we mainly use: Fourier analysis, Symbol theory and differential and pseudo-
differential analysis.
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2 Introduction.

The aim of this work is to study the so called Carleman estimates, firstly intro-
duced by Carleman in [3] in 1939. Here we refer to the Carleman estimates as
some weigthed inequalities of the form

||eλφu||0 ≤ C||eλφP (x,D)u||0,

for a suitable function φ, u ‘good enough’function, P (x,D) some differential
operator and λ any big enough parameter. To understand one of the purposes of
these estimates, we first need to understand unique continuation. Say we have
an elliptic differential operator P (x,D) with the property that if P (x,D)u = 0
in Ω open and connected, if there exists x0 ∈ Ω and u vanishes at x0 with order
∞, this is

lim
r→0

1

rk

∫
B(x0,r)

|u|2 = 0, ∀k ≥ 0,

then u = 0 in Ω, we say that P (x,D) has the strong unique continuation
property. Now if P (x,D)u = 0 in Ω and u = 0 in some ball contained in Ω
then u = 0, we say P (x,D) has the weak unique continuation property or just
unique continuation property. These are the most common in literature, but
the paper we are taking as a reference ([7]) talks about a particular unique
continuation called unique continuation property across a hypersurface.
If we have a hypersurface S with sides S+, S−, x0 ∈ S, P (x,D)u = 0 in some
V neighborhood of x0 and u ≡ 0 in V ∩ S− then u ≡ 0 in some neighborhood
of x0. Roughly speaking we are saying that having this information in one side
of the hypersurface gives information about the other side. Is pretty clear that
unique continuation across hypersurfaces implies weak unique continuation.

In this work we follow the paper we mention above, where the authors prove
the following Carleman estimate

h||eφ/hu||20 + h3||eφ/h∇xu||20 ≤ Ch4||eφ/hPu||20 (1)

for P = −∆. After this, they use it to prove a unique continuation property
for the Laplacian across hypersurfaces as an illustrative example of how these
estimates can be used for such purpose. One can notice that here the term that
appears is h instead of λ. As we take λ big enough, we will consider h small. As
we said before, this is just illustrative, since this is a well known property for the
Laplacian operator, which can be proved with no needs of Carleman estimates.
The same result can be extended to other and more complex elliptic operators.

To be precise, if we consider second-order elliptic operators with principal
part

∑
∂j(aij(x)∂i), the assumption of the coeffiecients aij being Lipschitz con-

tinuous is optimal for n ≥ 3, with n the dimension of the space, as stated in [10].
Meaning this that for every α < 1 there exists some coefficients (aij) in the class
Cα such that the unique continuation property does not hold for the operator.
Lastly, we try to follow the same path to obtain a Carleman estimate. With
this, we do not only pretend to get familiar with a very important and ubiquous
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operator like the fractional Laplacian, but to go deeper in the conditions and
steps that lead to estimate (1). Such estimate, for the fractional Laplacian case
would be the following.

h(||v||20 + || |ξ|2sv̂ ||20) ≤ Ch4s||eφ/h(−∆)su||20,

for v = eφ/hu.
Along the way we remark the issues we face due to the differences between

the Laplacian and the fractional Laplacian, mainly the different regularity of
their respective symbols.

Lastly, we try to see what kind of unique continuation property we get by
following a similar procedure starting from the previous estimate, which would
extend the one for the Laplacian to the fractional case.
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3 Preliminaries.

3.1 Fourier Theory

In order to work with symbols we first need some background on Fourier analy-
sis. Therefore, we present some definitions and results relating Fourier analysis
which may be used in the study of ‘symbol calculus’. We mainly follow chapter
3 and 4 of [13].
In this chapter we use the notation Dα = 1

iα ∂
α

Definition 3.1. We call the Schwartz space to

S(Rn) := {φ ∈ C∞ : sup
Rn

|xα∂βφ| <∞ for all multiindices α, β}.

Unless, is not clear we will use only S.
We define also its seminorm as

|φ|α,β := sup
Rn

|xα∂φ|

for every pair α, β of multiindices and φ ∈ S.
And we say that

φj → φ in S

given
|φj − φ|α,β → 0

for every pair α, β.

Roughly speaking, Schwartz space consists of all smooth functions such that
derivatives decays faster than any power of |x|−1.

Definition 3.2. Let φ ∈ S, the Fourier transform, Fφ(ξ) is

Fφ(ξ) = φ̂(ξ) :=

∫
Rn

e−i⟨x,ξ⟩φ(x)dx ξ ∈ Rn.
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Proposition 3.3. The following properties hold. .
The map F : S 7→ S is an isomorphism.

F−1 =
1

(2π)n
τ(F)

where τ(f)(x) = f(−x), this leads to

F−1ψ(x) =
1

(2π)n

∫
Rn

ei⟨x,ξ⟩ψ(ξ)dξ.

In addition.

Dα
ξ (Fφ) = F((−x)αφ),

F(Dα
xφ) = ξαFφ.

F(φψ) =
1

(2π)n
F(φ) ⋆ F(ψ).

Theorem 3.4. If φ,ψ ∈ S, then∫
Rn

φ̂ψdx =

∫
Rn

φψ̂dy,

∫
Rn

φψdx =
1

(2π)n

∫
Rn

φ̂ψ̂dξ.

Furthermore,

||φ||2L2 =
1

(2π)n
||φ̂||2L2 .

Proposition 3.5. The following inequalities holds.

||û||L∞ ≤ ||u||L1 ,

||u||L∞ ≤ 1

(2π)n
||û||L1 .

For some constant C > 0 we have

||û||L1 ≤ C max
|α|≤n+1

||∂αu||L1 .
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Similar theory can be developed in the dual space, S ′ or the so called tem-
pered distributions.

Here we define a different Fourier transform, called the semiclassical Fourier
transform which adds an h term and is directly related to quantization of sym-
bols presented in Definition 3.9.

Definition 3.6. Let h > 0, the semiclassical Fourier transform is given by

Fhφ(ξ) :=
∫
Rn

e−
i
h ⟨x,ξ⟩φ(x)dx,

with inverse

F−1
h ψ(x) :=

1

(2πh)n

∫
Rn

e
i
h ⟨x,ξ⟩ψ(ξ)dξ.

Remark. We have the following relation between classical and semi-classical
Fourier

Fφ(ξ/h) = Fhφ(ξ).

Theorem 3.7. We have the following properties:

(hDξ)
αFhφ = Fh((−x)αφ),

Fh((hDx)
αφ) = ξαFhφ,

||φ||L2 =
1

(2πh)n/2
||Fhφ||L2 .

3.2 Symbols

By means of Fourier, we can move between variables x, ξ where x is the space
variable and ξ is the momentum variable, but the best outcome would be to be
able to work with both variables at the same time. That is why we introduce
symbols and its quantization. The operators resulting of such quantization
applied to functions will give us information on the whole phase space (x, ξ).

From now on we consider h0 > h > 0 small and a ∈ S(R2n), a = a(x, ξ, h).
We refer to a as symbol.

Remark. We use the notation ⟨ξ⟩ = (1 + |ξ|)1/2.

Definition 3.8. Let a(x, ξ, h) ∈ S(R2n), h < h0. We say a is in the symbol
class Sm and we write a ∈ Sm with m ∈ R if

|∂αx ∂
β
ξ a(x, ξ, h)| ≤ Cα,β⟨ξ⟩m−|β|

for x ∈ Rn, ξ ∈ Rn, h ∈ (0, h0) and every multiindex α, β.
We will also say that σ(a) ∈ Sm/hSm−1 is the principal symbol.
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With this definition, we can establish what is to quantize a symbol, this
is to associate such symbol with a linear operator, depending on h acting on
functions u in the Schwartz space.

Definition 3.9. We define the standard quantization for a ∈ Sm as:

a(x, hD)u(x) = Op(a)u(x) :=
1

(2πh)n

∫ ∫
ei⟨x−y,ξ⟩/ha(x, ξ, h)u(y)dydξ

Remark. We notice two things:

1.
a(x, hD)u = F−1

h (a(x, h·)Fhu(·))

2. By Fourier theory Op(a) : S(Rn) −→ S(Rn)

In general, we work in the usual Sobolev spaces, here we need to define new
ones adapted to the parameter h, thus, if ||u||0 is the usual L2 norm, for s ∈ R
we set

||u||s := ||Op(⟨ξ⟩s)u||0, Hs(Rn) := {u ∈ S ′(Rn), ||u||s <∞}.

Remark. The special case s ∈ N in this norm is equivalent to

Ns(u) :=
∑
|α|≤s

h2|α|||∂αu||20.

To prove the estimate eventually we need the Garding inequality, so we will
have to use ‘symbol calculus’. For that matter, we have the following theorems
about the asymptotic expansion of symbols and the equivalent of the product
of functions for symbols, this is

Theorem 3.10. Let a ∈ Sm1 and b ∈ Sm2 . Then Op(a) ◦ Op(b) = Op(c) for
some c ∈ Sm1+m2 that can be asymptotic expanded as

c(x, ξ, h) = (a#b)(x, ξ, h) ∼
∑
α

h|α|

i|α|α!
∂αξ a(x, ξ, h)∂

α
x b(x, ξ, h).

Corollary 3.11. The principal symbol of the conmutator [Op(a),Op(b)] is

p([Op(a),Op(b)]) =
h

i
{a, b}.

Theorem 3.12. Let a ∈ Sm. Then the adjoint of Op(a)∗ is Op(b) for some
b ∈ Sm that expand asymptotically as

b(x, ξ, h) ∼
∑ hα

iαα!
∂αξ ∂

α
x a(x, ξ, h).
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3.3 Fractional Laplacian.

Say we have an operator T : X −→ Y , with X,Y spaces of functions u : Rn −→
R, if the value Tu(x) depends only on the values of the function u evaluated on
a small neighborhood of x, we call this operator a local operator.

These operators are the ones we are more used to work with, one example
is the Laplacian operator. On the other hand, if this property does not hold,
i.e. the dependency of the values Tu(x) is not local, we call this operators
non-local.

One example of non-local operator is the fractional Laplacian, which is the
operator that we will use in what follows. The following definitions will show
clearly how this is a non-local operator.

The classical definition of the laplacian operator is given by the sum of the
second partial derivatives

∆f =
∑
i

∂2

∂x2i
f,

an easy computation gives the following

∆f = ∆

∫
Ff(ξ)e2πix·ξdξ

=

∫
Ff(ξ)∆e2πix·ξdξ

=

∫
(−4π2|ξ|2)Ff(ξ)e2πix·ξdξ.

Therefore

F(∆f)(ξ) = (−4π|ξ|2)F(f)(ξ),

and in the semiclassical set up

Fh(∆f)(ξ) = (−4π|ξ/h|2)Fh(f)(ξ).

From now on we assume the normalize Fourier and remove the 4π constant.
We just got a representation of the Laplacian operator in terms of Fourier,

this result in fact lead us to the first definition of the fractional Laplacian, which
is just a generalitation of the last.

Definition 3.13. (Fourier definition) Let C0 be the space of continuous func-
tions vanishing at infinity, and let u ∈ C0, then the fractional Laplacian of u is
given by

F((−∆)su)(ξ) = −|ξ|2sFu(ξ),

for s ∈ (0, 1).
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The following definition is a generalitation of the well known result

λs =
1

|Γ(−s)|
(e−tλ − 1)t−1−sdt.

Definition 3.14. (Bochner definiton) As before let u ∈ C0, then

(−∆)su =
1

|Γ(−s)|

∫ ∞

0

(et∆u− u)t−1−sdt. (2)

The next defintion is derived from some extended computations on a point-
wise representation for the fractional Laplacian obtained by means of spherical
symmetry properties.

Definition 3.15. (Singular operator) Let u ∈ C0 then

(−∆)su = C · P.V
∫
Rn

u(x)− u(y)

|x− y|n−2s
dy.

Another definition that comes in handy, especially with dealing with unique
continuation problems as you can see in [12], is the Caffarelly-Silvestre extension
which came from the generalitation of the following fact, this is, say we have a
smooth bounded function f and we want to solve

u(x, 0) = f(x) x ∈ Rn

∆u(x, y) = 0 x ∈ Rn, y > 0,

which is a classical extension problem and obtein a smooth bounded solution u.
Is not hard to see that −∇yu(x, 0) = (∆)1/2f , therefore (−∆)1/2 can bee seen
as the operator T : f −→ −∇yu(x, 0) in the above problem. For more detail on
the extension problem for the Laplacian see [2].

So we expect to have a generalitation like this for (−∆)s, this generalitation
is precisely the Caffarelly-Silvestre extension, which refers to the following:

Definition 3.16. (Caffarelli Silvestre Extension)
We consider the problem:

v(x, 0) = u(x)

∆xv +
a

y
∇yv +∇yyv = 0

for a = 1− 2s. With this problem we define the fractional Laplacian as follows.

(−∆)su(x) = − lim
y→0+

ya∇yv(x, y).

When you have to make computations with the fractional Laplacian of some
function, this definition proves to be useful, since as long as you can interchange
the desire operation and the limit, you are working with the usual partial deriva-
tives, which may simplify such computation.

We can find different proofs of this in [2].
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Remark. All this definitions are equivalent, see [6].

We now present the following product rule for the Fractional Laplacian, this
can be found in [1].

In chapter 2, we defined the space of symbols Sm, which roughly speaking
are symbols smooth and with derivatives that decay faster than some power of
⟨ξ⟩ and we establish in the first definition of the fractional Laplacian that its
symbol is |ξ|2s, in other words it does not belong to Sm for every s ∈ (0, 1).
This fact will present a problem later on. Notice also that this is not a property
for non-local operators in general, for instance we have (1 − ∆)s with symbol
(1 + |ξ|)2s which belongs to Sm for every s ∈ (0, 1).

Proposition 3.17. Let f and g such their fractional Laplacian exist and∫
Rn

|(f(x)− f(y))(g(x)− g(y))|
|x− y|n+2s

dy <∞.

Then (−∆)s(fg) exists and its given by

(−∆)s(fg) = f(−∆)sg + g(−∆)sf − Is(f, g), (3)

where

Is(f, g) := C

∫
Rn

(f(x)− f(y))(g(x)− g(y))

|x− y|n+2s
dy.

12



4 Carleman Estimate, Laplacian case

Now we have to construct the tools to prove the Carleman estimate, tools that
also afterwards will be a reference for the fractional Laplacian case.

From now on we will refer to the Laplacian operator as ∆ = −P , in general
we will follow the notation of [7]. Let φ(x) : Rn −→ R be a function we will
call the weight function. We define the following operator, usually called the
conjugated operator

Pφ = h2eφ/hPe−φ/h.

Remark. As noted in Tatarus’ notes [11] one is allowed to ask why the estimate
has to be weighted. If we try to remove the weight we get

eλφP (x,D)u = eλφP (x,D)e−λφeλφu = eλφP (x,D)e−λφv,

so operator P (x,D) in (1) would be replace by the operator Pφ = eλφP (x,D)e−λφ,
which may seem similar to P (x,D) but they have different structure. In fact,
is the weight that allow us to prove the unique continuation property, since is
the term that blows up when you make h→ 0.

Here we see an h2 term. Recall that the symbol of the Laplacian we saw in
the semiclassical set up (3.3) was |ξ/h|2, so this h2 term is meant to compensate
this 1/h2. Computing −∆e−φ/h we get the following expression

Pφ = −h2∆− |∇xφ|2 + 2⟨∇x, h∇⟩+ h∆xφ.

The symbol of such operator is given by |ξ|2 − |∇xφ|2 +2i⟨∇xφ, ξ⟩+ h∆φ, and
the principal symbol is of course pφ = |ξ|2 + |∇xφ|2 + 2i⟨∇xφ, ξ⟩.

If we split the operator and the principal symbol into real and imaginary
part, this is pφ = q2 + iq1, Pφ = Q2 + iQ1 where

q2 = |ξ|2 − |∇xφ|2, q1 = 2⟨ξ,∇xφ⟩, Q2 =
Pφ + P ∗

φ

2
, Q1 =

Pφ − Pφ
2i

.

At some point of the proof we will need the following estimate: µ(q22 + q21) +
{q2, q1}C ≥ ⟨ξ⟩4. In order to prove this, we define the following property as
defined in [7], later on we see that a proper weight fits such property and allow
us to proof the mentioned estimate.

Definition 4.1. Let V be a bounded set in Rn. A weight function φ : Rn −→ R
fulfill the sub-ellipticity assumption in V if, |∇xφ| > 0 in V and

pφ(x, ξ) = 0 =⇒ {q2, q1} ≥ C > 0

for every (x, ξ) ∈ V × Rn.
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Notice that this property is defined over the weight, since the principal sym-
bol depend on it. Intuitively you can just extend this property to any symbol.

It is clear that, in this particular case, pφ(x, ξ) = 0 implies q2 = q1 = 0
which is |ξ|2 = |∇xφ|2 and ⟨∇xφ, ξ⟩ = 0.

As mentioned, the goal now is to find a proper weight function fitting this
property. For that issue, the article present the following lemma.

Lemma 4.2. Let V be a bounded open set in Rn and ϕ ∈ S(Rn) be such that
|∇xϕ| > 0 in V . Then φ = eλϕ fits the property 4.1 in V for λ > 0 large enough.

The proof can be found in the original paper and is just a straigthforward
computation. We now proof the following estimation.

Lemma 4.3. Let µ > 0 and ρ = µ(q22 + q21) + {q2, q1}. Then for every (x, ξ) ∈
V × Rn, we have ρ(x, ξ) ≥ C⟨ξ⟩4 for some C > 0 and µ large enough.

Proof. Consider first |ξ| > R outside a compact set. Then since q22 = (|ξ|2 −
|∇xφ|2)2 has degree 4 on ξ the assertion is direct.

Now consider |ξ| ≤ R in a compact set since x ∈ V . Recall that q2 + iq1 = 0
implies {q2, q1} ≥M > 0. Consider then g(x, ξ) = ρ(x, ξ)/⟨ξ⟩4.

Take now y ∈ K with K = V × B(0, R), then either (q22 + q21) = 0 and
thus {q2, q1} > M and g(y) > M or (q22 + q21) > 0 and taking µy large enough
g(y) > 0. Since g is continuous this holds in a neighborhood of y for every y.
Take a cover of K of such neighborhoods and since K is compact choose a finite
cover, say Uy1 , . . . , Uyr , here taking µ = maxµi we have g ≥ C > 0 for every
y ∈ K. ■

Here we present the last tool we need to prove the Carleman estimate: the
Garding inequality:

Theorem 4.4. Let K be a compact set of Rn. If a(x, ξ, h) ∈ Sm, with principal
part am, if there exists C > 0 such that

Ream(x, ξ, h) ≥ C⟨ξ⟩m, x ∈ K, ξ ∈ Rn, h ∈ (0, h0), (4)

then for 0 < C ′ < C and h1 > 0 small enough we have

Re(Op(a)u, u) ≥ C ′||u||2m/2, u ∈ C∞
c , 0 < h ≤ h1.

With the statement of this theorem we give some sense into why we state last
lemma. Notice that equation (4) is the same as in the estimation if somehow,
Re(am(x, ξ, h)) = ρ and m = 4. The proof of Garding’s inqueality can be found
in [7].

We can now proof the Carleman estimate.
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Theorem 4.5. Let V be a bounded open set in Rn and let φ fulfilling 4.1 in V ,
then there exists 0 < h1 < h0 and C > 0 such that

h||eφ/hu||20 + h3||eφ/h∇xu||20 ≤ Ch4||eφ/hPu||20
for u ∈ C∞

c (V ) and 0 < h < h1.

Proof. Recall Pφ = eφ/hPe−φ/h therefore

Pφ(e
φ/hu) = h2eφ/hPu.

Now if we have the problem Pu = f then this is equivalent to Pφv = g where v =
eφ/hu and g = h2eφ/hf . Since Pφ = Q2+iQ1 the last problem isQ2v+iQ1v = g.
Also notice (Qia1, a2) = (a1, Qia2) for a1, a2 ∈ C∞

c (Rn) so with this

||g||20 = ||Q1v||20 + ||Q2v||20 + 2Re(Q2v, iQ1v)

=
((
Q2

1 +Q2
2 + i[Q2, Q1]

)
v, v

)
= h

((
Q2

1 +Q2
2 +

i

h
[Q2, Q1]

)
v, v

)
≥ h

((
µ(Q2

1 +Q2
2) +

i

h
[Q2, Q1]

)
v, v

)
.

By taking h such hµ ≤ 1 and µ > 0, as in lemma 4.3.
Using Corollary 3.11 and that q2 + iq1 is the principal symbol of Q2 + iQ1

we know that the principal symbol of µ(Q2
1 +Q2

2) +
i
h [Q2, Q1] is

µ(q22 + q21) + {q2, q1}.

Now since we have 4.3 for the above symbol and Garding inequality we end up
with

h||v||22 ≤ C||g||20.

If we have this for H2 we have it for H1 therefore

h||eφ/hu||20 + h3||∇xe
φ/h||20 ≤ Ch4||eφ/hf ||20.

Since ∇xe
φ/h = 1

he
φ/h(∇xφ)u+ eφ/h∇xu and placing this in equation above

h3||eφ/h∇xu||20 ≤ Ch||eφ/hu||20 + Ch3||∇x(e
φ/hu)||20.

Now since that |∇xφ| ≤ C then the estimate is proven. ■
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4.1 Unique continuation.

As mentioned in the introduction, using Carleman estimates to prove unique
continuation on the Laplacian is an overkill, since this property is just a direct
consequence of the maximum modulus principle. Even with that, is a good
example to show how these estimates are used. Here we sketch the proof of the
following local unique continuation property, stated as theorem 4.2 in [7], by
means of the last theorem. The authors proved a unique continuation across
surfaces property and this extend to weak unique continuation since the first
implies the last, as mentioned in the introduction. Next theorem proposes a
much more general set up, since the problem the consider is Pu = g(u), where
up to this point we where dealing with a simpler problem, but they manage to
reduce this situation to the easier one.

Theorem 4.6. Let g be such that |g(y)| ≤ C|y|. Let Ω ⊂ Rn a connected open
set and ω ⊂ Ω non empty. If u ∈ H2(Ω) satisfies Pu = g(u) in Ω and u(x) in
ω, then u vanishes in Ω.

They first proved a weaker version of this statement, and then extend the
result with a connectedness argument.

They considering a cutoff X such that ν = Xu ∈ H2
0 (V ) for some V . They

notice that ν fullfil the hypothesis of Theorem 4.5, where

Pν = P (Xu) = XPu+ [P,X ]u.

Thus, by Theorem 4.5 we have

h||eφ/hXu||20 + h3||eφ/h∇x(Xu)||20 ≤ C
(
h4||eφ/hXu||20 + h4||eφ/h[P,X ]u||20

)
.

By choosing h small enough we can cancel h4||eφ/hXu||20 and we get

h||eφ/hu||2L2(V ′′) + h3||eφ/h∇xu||2L2(V ′′) ≤ Ch4||eφ/h[P,X ]u||2L2(S),

for V ′′ and S particular regions. From this, is not hard to deduce the following.

einfB0
φ/h||u||H1(B0) ≤ Cesupφ/h||u||H1(S).

Lastly, we can construct a weight function such infB0 φ > supS φ, therefore in
the last expression letting h → 0 the right hand side goes to 0 hence u = 0 in
B0, we then just prove a local unique continuation result.
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5 Non-Local case, The Fractional Laplacian.

5.1 Carleman Estimate

In this section, we intend to prove a Carleman estimate, analogous to theorem
4.5, but considering the non-local operator Ps = (−∆)s, i.e. the fractional
Laplacian for s ∈ (0, 1). We follow the same steps as in the Laplacian case,
identifying potential issues and looking for alternative ideas that might help
overcoming this potential problems.

First recall that

Pφ = h2eφ/hPe−φ/h.

We define the equivalent operator for the fractional Laplacian Ps = (−∆)s

Pφ,s = h2seφ/hPse
−φ/h.

It is reasonable to think that it might be some expression relating both operators
and, if so, we would already have a huge advantage, since most of the information
we have on the first operator may be extrapolated. For that matter we have the
following proposition.

Proposition 5.1. For s ∈ (0, 1), we have

P sφ = Pφ,s.

Proof. Consider the definition given by (2), then, if we call f = eφ/h:

h−2sP sφ = (f(−∆)f−1)s

=
1

|Γ(−s)|

∫ ∞

0

(e−tf∆f
−1

− 1)t−1−s

=
1

|Γ(−s)|

∫ ∞

0

(fe−t∆f−1 − 1)t−1−s

= f(−∆)sf−1

= h−2sPφ,s.

We used

e−tf∆f
−1

=
∑
k

(−tf∆f−1)k

k!
=

∑
k

f(−t∆)kf−1

k!
= fe−t∆f−1

■
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From this proposition the following corollary is trivial.

Corollary 5.2. Let pφ,s be the principal symbol of Pφ,s and pφ the principal
symbol of Pφ, then

pφ,s = psφ.

Recall that the principal symbol of pφ is given by pφ = q2 + iq1 with q2 =
|ξ|2 − |∇xφ|2 and q1 = ⟨2∇xφ, ξ⟩. Then pφ = q2 + iq1 and therefore pφ,s =
(q2 + iq1)

s = qs,2 + iqs,1. We also have pφ = 0 iff pφ,s = 0. We also notice that,
since pφ is a complex number, we need to properly define zs with a branch-cut
at I = {Re(z) = 0; Im(z) ≤ 0}.

If we follow the Laplacian scenario, the next step would be to define some
sub-ellipticity property 4.1, here it appears our first issue. Notice that since
pφ,s = psφ the Poisson bracket will not be well defined in the region pφ = 0,
since it involves derivatives of psφ for s ∈ (0, 1). Recall that the sub-ellipticity
property was used to prove the Lemma 4.3, that gave the necessary condition
for the Garding inequality. Nevertheless we try to overcome this problem by
proving Garding inequality throughout integral calculus.

As we did for the symbols, with the following lemma we establish a relation
between the two Poisson brackets.

Lemma 5.3. If q2 ̸= 0 and q1 ̸= 0 we have the following result:

{qs,2, qs,1} = s2(q22 + q21)
s−1{q2, q1}.

The proof can be found in the appendix.
We notice this bracket is indeed not defined in pφ = 0 so, as we said, the

sub-ellipticity condition does not make sense. Although the only thing we really
need is the continuity of the bracket {q2, q1}.

With the proper weight function, the principal symbol pφ fits 4.1 so consid-
ering a small neighborhood of pφ = 0, s2 > 0, q22 + q21 > 0 and {q2, q1} ≥ C > 0
and by continuity {qs,2, qs,1} ≥ C ′.

Lemma 4.2 proves that, in the proper set up, the weight φ = eλψ fulfils
definition 4.1 for pφ, this together with the lemma above will help us in the
proof of next lemma.

The purpose of the following lemma is to replace necessary condition of the
Garding inequality. We will use integral calculus and with this we control the
Poisson bracket {qs,2, qs,1} wherever it is not well defined.

Lemma 5.4. Let µ > 0 and ρ = µ(q2s,2 + q2s,1) + {qs,2, qs,1}. Then for all

(x, ξ) ∈ V × Rn, we have∫
ρ(x, ξ)v̂2(ξ)dξ ≥

∫
C⟨ξ⟩4sv̂2(ξ)dξ,

for C > 0, µ large enough and v with compact support.
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Proof.
We can write ρ in terms of q2 and q1, leading to

ρ = µ(q22 + q21)
s + s2(q22 + q21)

s−1{q2, q1}.

Since q2 = |ξ|2 − |φ|2, the term (q22 + q21)
s is of order 4s on ξ and the Poisson

bracket is of order two so, for large ξ and large µ, ρ ≥ C⟨ξ⟩4s (recall s ∈ (0, 1)
so s− 1 ∈ (−1, 0) therefore the term in front of the Poisson bracket is small for
large ξ).

Now consider |ξ| < R. The Poisson bracket {q2, q1} is continuous and has the
Property 4.1 therefore provided q22 + q21 < ε, we have s2(q22 + q21)

s−1{q2, q1} ≥
Cs2|p|s−1.

If q22 + q21 > ε then choosing µ large enough we make ρ ≥ C, with all this we
can make the following computation

∫
ρ(x, ξ)v̂2(ξ)dξ =

∫
|ξ|>R

ρ(x, ξ)v̂2(ξ)dξ +

∫
|ξ|<R,|p|2<ε

ρ(x, ξ)v̂2(ξ)dξ

+

∫
|ξ|<R,|p|2>ε

ρ(x, ξ)v̂2(ξ)dξ

≥
∫
|ξ|>R

|ξ|4sv̂2(ξ)dξ +
∫
|ξ|<R,|p|2<ε

Cs2|p|s−1v̂2(ξ)2dξ

+

∫
|ξ|<R,|p|2>ε

Cv̂2(ξ)dξ

≥
∫
|ξ|>R

|ξ|4sv̂2(ξ)dξ +
∫
|ξ|<R,|p|2<ε

Cεs−1v̂2(ξ)2dξ

+

∫
|ξ|<R,|p|2>ε

Cv̂2(ξ)dξ

≥ min{1, Cε
s−1

1 +R4s
,

C

1 +R4s
}
∫

|ξ|4sv̂2(ξ)dξ.

■

Since the principal symbol is not in Sm, it is reasonable to wonder if ρ is
finite, because if not last computations are kind of meaningless. Let us check
that.

First we notice that the only possible blow up is in |p| < ε, ξ < R, we then
work with that region. Let 2(s− 1) = α so∫

|p|<ε
ρv̂2dξ ≤

∫
|p|<ε

|p|αdξ.

Now estimate the integral of |p|α in {|p|α > εα}.∫
|p|α>εα

|p|αdξ ∼ εα|{|p|α > εα}|+
∫ ∞

εα
|{|p|α > τ}|dτ
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If |p| < ε then

|ξ|2 − |∇xφ|2 < ε, |⟨∇xφ, ξ⟩| < ε.

Thus the measure of |{|p| < ε}| is of order ε2 and then

|{|p|α > εα}| = |{|p| < ε}| ∼ ε2,

∫
|p|α>εα

|p|αdξ ∼ εα+2 + C(τ1+2/α)|∞εα .

The right hand side of this inequality is finite if and only if 1 + 2/α < 0, which
is true for every s ∈ (0, 1) and we are done.

With the last Lemma we can state the following theorem.

Theorem 5.5. Let R be the operator with symbol

ρ = µ(q22 + q21)
s + s2(q22 + q21)

s−1{q2, q1}

then

Re(Op(R)v, v) ≥ C||v||22s
for v with compact support.

At this point, in the Laplacian case, we are done with all we need for proving
the estimate, and Garding inequality is one of the tools we need. What we
proved is the inequality for a particular symbol, this is ρ. Now we need to see
if, somehow, we can absorb the non-principal part, for this we try and do the
following, say am is the principal part of an arbitrary symbol and am−1 the non
principal part:

Re(Op(a)u, u) = Re(Op(am + ham−1)u, u)

= Re(Op(am)u+ hOp(am−1u), u)

= Re((Op(am)u, u) + h(Op(am−1)u, u))

= Re((Op(am)u, u)) + hRe((Op(am−1)u, u).

By last lemma Re((Op(am)u, u)) ≥ ||u||2m/2 and we end up with

Re(Op(a)u, u) ≥ ||u||2m/2 + hRe((Op(am−1)u, u).

Let us assume we can absorb the non principal part and see what we get.
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Remark. Consider the problem Psu = f for u smooth with compact support
and let v = eφ/hu, then

Pφ,sv = h2seφ/hPse
−φ/h(eφ/hu)

= h2seφ/hPsu

= h2seφ/hf.

Calling h2seφ/hf = g our problem is equivalent to Pφ,sv = g.
Set now

Qs,2 =
Pφ,s + P ∗

φ,s

2
, Qs,1 =

Pφ,s − P ∗
φ,s

2i
,

the symmetric operators so Pφ,s = Qs,2 + iQs,1.
These are symmetric with respect to the scalar product, i.e., (Qs,jw1, w2) =

(w1, Qs,jw2) for w1, w2 ∈ C∞
c , then

||g||20 = ||Qs,1v||20+||Qs,2v||20+2Re(Qs,2v,Qs,1v) = ((Q2
s,1+Q

2
s,2+i[Qs,2, Qs,1])v, v).

Now choose µ > 0 as in Lemma 5.4, then for h such that hµ ≤ 1 we end up
with

h(µ(Q2
s,1 +Q2

s,2 +
i

h
[Qs,2, Qs,1])v, v) ≤ ||g||20.

Notice that the principal symbol of µ(Q2
s,1 + Q2

s,2 + i
h [Qs,2, Qs,1]) is µ(q2s,2 +

q2s,1) + {qs,2, qs,1}, then we can use Theorem 5.5 and this leads to

h||v||22s ≤ C||g||20. (5)

This is

h(||v||20 + || |ξ|2sv̂ ||20) ≤ Ch4s||eφ/hf ||20.

In Remark 5.1, we stated the fact that the principal symbol of [Qs,2, Qs,1] is
h/i{qs,2, qs,1} but in this set up this is not so clear because the symbol of the
fractional Laplacian is not in Sm so 3.11 is not valid here, for that matter the
following computation clear things up.

[Qs,2, Qs,1] ∼ [P sφ + P ∗
φ
s, P sφ − P ∗

φ
s]

∼ [P ∗
φ
s, P sφ] + [P sφ,−P ∗

φ
s] + [P ∗

φ
s, P sφ] + [P ∗

φ
s,−P ∗

φ
s]

∼ [P ∗
φ
s, P sφ].

Remark. In equation (5) we could get rid of the 2s norm and keep with some-
thing simplier.
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For 2s ∈ (0, 1/2) we can bounded below by the L2 norm and for 2s ∈ (1/2, 1)
we can stay in H1, both cases lead to similar results as in [7].

Another way to go is to use property 3.17 to decompose (−∆)sv = (−∆)s(eφ/hu)
into

(−∆)s(eφ/hu) = eφ/h(−∆)su+ u(−∆)seφ/h + Is(u, e
φ/h)

and from here try to estimate a bound on Is(u, e
φ/h).

As we mention before, we have the major issue of not being able to ab-
sorb the non principal part of the symbol. We need to try and estimate
hRe((Op(am−1)u, u), to see if this term can be nullified.

For this, write the full symbol of ρ as follows

R = µ(Q2
s,2+Q

2
s,1)+

i

h
[Qs,2, Qs,1] = µ(Q2

s,2+Q
2
s,1+[Qs,2, Qs,1])+

(
i

h
− µ

)
[Qs,2, Qs,1]

where

Qs,2 =
Pφ,s + P ∗

φ,s

2
, Qs,1 =

Pφ,s − P ∗
φ,s

2i
.

By writing R this way we get R ∼ µPφ,sP
∗
φ,s + (i/h − µ)[Pφ,s, P

∗
φ,s]. Now

we can work with Pφ,sP
∗
φ,s and [Pφ,s, P

∗
φ,s]. Let Pφ,s ∼ (pφ,s + hq)s where

q is the non-principal part. Expressing R this way, makes more clear after
some computations that the order of the non-principal terms decreases, making
impossible to know for sure if the the non-principal part can be absorbed for
small values of |p|.

5.2 Unique continuation

Once we proved the last Carleman estimate, we expect to do something similar
to 4.1. First we state the following theorems refering to unique continuation
property for more general elliptic second order fractional operators. These the-
orems can be found in [12].

Consider A a Lipschitz and uniformly elliptic operator with A(0) = id.

Theorem 5.6. Suppose s ∈ (0, 1) and L = div(A(·)∇) is a second order uni-
formly elliptic operator with Lipschitz coefficients. If u ∈ Hs(Rn) is

Lsu = 0

on some open set U ⊂ Rn and

u(x0) = 0,

then the vanishing order of u at x0 is finite.

By making some small changes in the statement, a similar result can be
obtained for bounded domains.
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Theorem 5.7. Suppose s ∈ (0, 1), Ω a bounded Lipstchiz domain in Rn and
L = div(A(·)∇) is a second order uniformly elliptic operator with Lipschitz
coefficients. If u ∈ C2,α

0 (Ω) ∩Hs(Ω) is

Lsu = 0

on some open set U ⊂ Ω and

u(x0) = 0,

then the vanishing order of u at x0 is finite.

When we defined the fractional Laplacian we mentioned the Caffarelli-Silvestre
extension and which is very useful on proving unique continuation properties,
so is not a coincidence that in this paper [12] they use a similar extension for
more general fractional operators.

Now at least we are sure that the fractional Laplacian indeed has a unique
continuation property so it does make sense to try and follow the same path as
in 4.1.

Say we have, in the Carleman estimate set up, v with compact support
supp(v) ⊂ BR/Br and (−∆)sv = 0 in Br for some R > r > 0, then by doing
the same as in section 4.1 we get

h||eφ/hu||BR/Br
≤ Ch4s||eφ/hu||Rn/Br

. (6)

Recall in last section we had infB0
φ > supS φ, so if somehow we could have

something similar we could make the same argument. But notice since we
are working with a non-local operator, we have to consider the whole space
except for some compact, in the right hand side of (6). The best we can get is
infBR/Br

φ = supRn/Br
φ, leading this to

||u||BR/Br
≤ Ch4s−1||u||Rn/Br

.

Here we have two cases:

1. s ∈ (0, 1/4) therefore 4s − 1 ∈ (−1, 0) and making h → 0 give us no
information.

2. s ∈ (1/4, 1) and 4s − 1 ∈ (0, 3) so taking h → 0 the right hand side goes
to 0 so does the left hand side and therefore u ≡ 0 in the ring BR/Br.

It is worth mention that what we just proved, is a weaker version of the
unique continuation property of the fractional Laplacian, in fact in [5], Theorem
1.2 states as follows:

Theorem 5.8. If s ∈ (0, 1), if u ∈ H−r(Rn) for some r ∈ R, and if both u and
(−∆)su vanish in an open set, then u = 0 in Rn.
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For more on this theorem see [8]. You can even get stronger results, for more
detail see [4] or [9].

Although this statement is stronger than what we proved, the main goal was
not the result itself, but to demonstrate that Carleman estimates are useful for
proving unique continuation properties, among other things.
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6 Conclusions

After introducing the fractional Laplacian and the concept of non-local oper-
ators, we work through [7], understanding every step of the way and keeping
track of the details that might change when you try and follow the same path
for the fractional Laplacian. We then use all we learn and try to replicate the
proof, mainly focusing on solving the issues that appear due to the differences
between the Laplacian and the fractional Laplacian. Throughout this work we
notice that the main problem of working in this set up with the fractional Lapla-
cian, is the fact that its symbol is not in the class of symbols Sm for any m, but
it does satisfies the necessary bounds for |ξ| > R. So when computing some-
thing involving derivatives of the symbol, we need to refine the treatment of
such derivatives. Assuming you have such control, the structure of the resulting
estimate seems to be the same as in the usual Laplacian. It is not wild to think
that, if you consider other non-local fractional operator like (1 − ∆)s, which
is in Sm, you will get again the same structure for the estimate and in fact,
the way of proving such estimates may be even easier and more similar to the
non-fractional analogous. As for the unique continuation properties, with the
Carleman estimates we stated we saw that, on specifics conditions on s valid re-
sults can be obtained by using such estimates. Although the results we showed
for the fractional Laplacian are weaker than the ones that are well known in the
literature, are a good illustrative example of how these estimates are useful in
proving this properties, among other things.
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7 Appendix

Proof of lemma 5.3.
Proof. We first notice that since pφ,s = psφ, then we have

qs,2 =
1

2
((q2 + iq1)

s + (q2 − iq1)
s), qs,1 =

1

2i
((q2 + iq1)

s − (q2 − iq1)
s).

To short the notation call q2 + iq1 = z, then:

{qs,2, qs,1} =
∑
j

∂ξjqs,2∂xj
qs,1 − ∂ξjqs,1∂xj

qs,2

=
1

4i

∑
j

∂ξj (z
s + zs)∂xj (z

s − zs)− ∂ξj (z
s − zs)∂xj (z

s + zs)

=
s2

4i

∑
j

(zs−1∂ξjz + zs−1∂ξjz)(z
s−1∂xj

zs − zs−1∂xj
z

− (zs−1∂ξjz − zs−1∂ξjz)(z
s−1∂xj

zs + zs−1∂xj
z))

=
s2

4i

∑
j

−|z|2(s−1)∂ξjz∂xjz + |z|2(s−1)∂ξjz∂xjz

− |z|2(s−1)∂ξjz∂xj
z) + |z|2(s−1)∂ξjz∂xj

z

=
s2|z|2(s−1)

4i

∑
j

i∂ξjq2∂xjq1 − i∂ξjq1∂xjq2 + i∂ξjq2∂xjq1

− i∂ξjq1∂xj
q2 + i∂ξjq2∂xj

q1 − i∂ξjq1∂xj
q2

+ i∂ξjq2∂xjq1 − i∂ξjq1∂xjq2

=
s2|z|2(s−1)

4i
4i

∑
j

∂ξjq2∂xj
q1 − ∂ξjq1∂xj

q2

= s2(q22 + q21)
s−1{q2, q1}.

■
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