
BACHELOR IN MATHEMATICS

Final degree Thesis

LEARNING THEORY AND OUT
OF DISTRIBUTION DETECTION

Author: Axel Champredon

Supervisors: Dr. Josep Vives & Dr. Santiago Segui

From: Mathematics and Computer Science Department

Barcelona, June 9, 2024

Contents

Introduction iii

1 Introduction to Machine Learning 1
1.1 What is learning? . 1
1.2 When do we need Machine Learning? 2
1.3 Types of learning . 2
1.4 Decision tree classifier . 3

1.4.1 Training . 5
1.4.2 Evaluation measures . 7

2 Learning Theory 9
2.1 The learning framework . 9

2.1.1 Previous definitions . 9
2.1.2 First case of overfitting . 10
2.1.3 Solving overfitting . 11

2.2 Probably Approximately Correct learning theory 14
2.2.1 PAC Learning . 14
2.2.2 Agnostic PAC Learning . 15

2.3 Uniform Convergence . 17
2.3.1 Learnability with uniform convergence 17
2.3.2 Finite classes are Agnostic PAC Learnable 18

2.4 The No-Free Lunch Theorem . 20
2.4.1 Formulation of the NFL Theorem 21

2.5 The VC-dimension . 23
2.5.1 Infinite classes can be learnt 24
2.5.2 The VC-dimension . 25
2.5.3 The Fundamental Theorem of PAC learning 27

2.6 Summary . 32

i

3 Out of distribution Detection 35
3.1 Redefining the key concepts . 36
3.2 Relation with PAC learning . 37
3.3 Learning in prior-unknown spaces . 39
3.4 Impossibility Theorems for OOD detection 40
3.5 Possibility Theorems of OOD detection 44
3.6 Conclusion and continuation . 46

Bibliography 49

Abstract

Nowadays, Machines are starting to have a really important relevance in au-
tomation tasks. Learning could be considered as one of the hardest tasks we can
encounter. The goal of this work is to introduce the theoretical foundations of this
topic.

After a short introduction on general learning and machine learning in chapter
1, we will introduce the fundamental concepts of Learning Theory in chapter 2, we
will find what learning formally means and under which conditions a scenario
can be learnable.

In the last chapter we will introduce a pretty recent topic: Out of Distribution
detection. A theory that appeared for the first time in 2017 and tries to formalize
whether or not it would be possible for a machine to detect if we are trying to
make predictions on data which it hasn’t been trained for. Again, we will try to
find conditions under which a machine could learn this skill.

Resum

Avui en dia, les màquines comencen a tenir una rellevància important en
tasques d’automatització. Una de les tasques que es podria considerar de les
més difícils és aprendre. L’objectiu d’aquest treball serà introduir els fonaments
teòrics d’aquest tema.

Després d’una breu introducció sobre l’aprenentatge i l’aprenentatge automàtic
per les màquines, introduirem els conceptes fonamentals de la Teoria de l’aprenenta-
tge, definirem formalment el significat de l’aprenentatge i posarem condicions sota
les quals un escenari pot ser après per una màquina.

A l’últim capítol introduirem un tema d’actualitat: la Detecció de Fora de dis-
tribució. Una teoria que va néixer l’any 2017 i que intenta formalitzar si seria
possible que una màquina detectés si estem intentant fer prediccions sobre dades
per les quals no ha sigut entrenada. Altre cop, intentarem trobar condicions sota
les quals una màquina podria aprendre aquesta habilitat.

2020 Mathematics Subject Classification. 11G05, 11G10, 14G10

Acknowledgment

I will start by thanking my tutors for this work. Thank you to Santiago Seguí
for providing me with a wonderful topic that made me want to continue studying
and maybe work in the research area. Also thank you to Josep Vives for revising
my work at the last minute and finding every single small inaccuracy.

I also want to thank my parents Olivier and Clarisse, as well as my brother
Gabriel, for the unconditional support during all the process.

Also thank you to Build38 team for the support in the hardest moments, espe-
cially to Edu for staying until late in the office to make sure I don’t lose concen-
tration.

Chapter 1

Introduction to Machine Learning

1.1 What is learning?

The best way to understand what is learning is to see some examples we can
easily encounter in the nature. This will allow us to understand the goal of Ma-
chine Learning and the way to automate the learning process.

When a rat encounters food (or even objects sometimes), they first smell the
item to see if they recognize it, if it is recognized and remembered as eatable, no
danger detected, they will eat it. If the item is not recognized they will taste a
very small amount, the result of the experiment will depend on the flavour and
the physiological effect of the food. If the food produces ill it will be associated to
illness and will be remembered as so.

The rat is indeed generating his knowledge based on his own experience. In
other words, there is a learning mechanism. Let’s see if we can apply this mecha-
nism to a real life case scenario.

Let’s say we want to create a machine that detects spam emails. Using the rat’s
method, we can use a database of spam emails, when an email is received we can
compare it to the saved spam emails and see if there is a match, if not, the email
will be considered as not spam. If it is then reported as spam by the user it will
be added to the database.

The limitation here is that the probability of getting the same email is really
low, which means that not a lot of spam emails will be detected. We have to find
a more accurate way to find spam emails.

We could try to find patterns in the emails, with the risk of finding these
patterns in non spam emails. This is known as superstitious learning and is in fact
not accurate in this scenario.

Learning theory is seemingly not trivial or easy to achieve. We will see now in
what cases we need more advanced tools to obtain algorithms capable of learning

1

2 Introduction to Machine Learning

in more complicated situations.

1.2 When do we need Machine Learning?

Sometimes it is really easy to program a computer to solve specific problems
if we already know how to solve them. For example we can create a program that
finds the title of a music by listening to it, it can be done by analyzing the spectrum
of frequencies of the music, for example the Shazam algorithm distills samples of
a song into fingerprints, and matches these fingerprints against fingerprints from
known songs, taking into account their timing relative to each other within a song.
And it is really effective.

The problem rises when we do not know how to solve a problem or it is too
hard to program or to compute. An easy example is chess, given a specific position
we humanly cannot tell what the best move is in every scenario. And it is really
hard to calculate even with a computer, simply because the number of games that
can be played from a given position is too high, the possible outcomes increases
exponentially based on the depth of the calculations (the number of moves we
calculate ahead).

Clearly this could be programmed but couldn’t be executed by any computer,
the number of possible games is estimated at 10120 according to the Shannon num-
ber.

Another limitation of programming an algorithm by hand is the rigidity, once
the program has been written and installed it cannot be changed. Sometimes
programs need to adapt, either because new data has been found or because data
can change over time. The advantage of Machine Learning is that it adapts to its
input data.

Using the previous example of chess, DeepMind developed AlphaZero in 2017,
a computer program that learned how to play chess by itself, by playing against
himself and learning from its own games, without having access to databases or
previous knowledge. After only 4 hours of training it reached a better level than
Stockfish, the best chess program at that moment.

AlphaZero uses a deep neural network to achieve such a result, but there is
many types of learning. We will now see a concise overview of some of the types
of learning we can find a Machine Learning.

1.3 Types of learning

As expected, Machine Learning is a very wide domain, as a consequence it has
branches to several subfields dealing with different learning scenarios. Here is a

1.4 Decision tree classifier 3

brief explanation of some of these fields.
Supervised and unsupervised learning. The difference between these two

branches lies in the labeling of the input data. Supervised learning consists in
training an algorithm with the input data being labelled, for example in the spam
email detection mentioned before, the training data would consist of a database of
emails and if they are spam or not.

Unsupervised learning would rather try to find unusual behaviours in the
body of each email because they would be no label attached to it. More abstractly,
there is no difference between training and testing data. The learner processes
input data with the goal of coming up with some summary, or compressed ver-
sion of that data. Clustering a data set into subsets of similar objects is a typical
example of such a task.

In this work we will mainly focus on supervised learning as it is easier to
evaluate the effectiveness of a classifier.

Active and Passive learners. These types of learners can be distinguished by
the role of the learner. An active learner will interact with the environment at
learning time. Using the example of the spam emails, an active learner could ask
the user if a chosen email is spam or not, in general it would be a passive learner,
it would only wait for the emails to come to him.

Help of a teacher. The name is quite self explanatory, in a real case scenario, a
scientist has to face the entire environment an choose the useful data by himself,
unlike a child learning with a teacher, in that case the teacher can choose to give
specific data to easier the learning process to the learner.

We can also use an adversarial "teacher", to test the effectiveness of our learner
in the worst case scenario: if you manage to learn against an adversarial teacher
you are guaranteed to succeed interacting with any odd teacher. For example if
the spammer tries to mislead the spam detector.

Online and batch learning. Sometimes the learner has to respond online,
throughout the learning process, and will be effective after having processed a
large amount of data. For example a stockbroker has to make daily decisions, and
at the beginning his decisions will probably be unsuccessfully, but he may become
an expert over time. In most of the cases, the learner has large amounts of data he
can use to learn before having to take any decision.

1.4 Decision tree classifier

In order to get a Machine learning algorithm we need data, all that we can
get. Once we have enough data we divide it into training and testing data, usually
70% of the total data is used as training data. Then we use an algorithm called the

4 Introduction to Machine Learning

learner to output a predictor using the training data, we finally test and evaluate
this predictor using the testing data. The predictor can be either a classifier or a
regressor depending on the labels domain. Here we will briefly see the Decision
tree, a simple example of Machine Learning algorithm.

Definition 1.1. A tree is a data structure in which each node is connected to a
certain amount of children (depending on the type of tree) but can be connected
to only one parent. The only node that has no parent is the root. A node that has
no children is called a leaf.

Definition 1.2. A decision tree is a non-parametric supervised learning algorithm,
which is utilized for both classification and regression tasks. It has a hierarchical,
tree structure, which consists of a root node, branches, internal nodes and leaf
nodes.

Example 1.3. Here we have a decision tree that tries to guess what animal are we
observing given some details about the animal.

Figure 1.1: Decision tree classifier

Remark 1.4. As we can observe each node of the decision tree contains a condition,
if a given data satisfies the condition, the node will bring that data to a certain
child, if not it will bring it to the other child node.

1.4 Decision tree classifier 5

1.4.1 Training

We will now see how such algorithm can be learned, or trained in this case
scenario.

Many ways can be employed to get a trained decision tree, here we will see
one of the easiest ways, using information gain based on the entropy of each node.

Definition 1.5. If we have a dataset X with n classes and p1, ..., pn the proportion
of every class in X, we define the entropy of a dataset as

H(X) = −
n

∑
i=1

pi log2 pi

Remark 1.6. Notice that if we have only 2 classes, the entropy is H(X) = 0 if X
contains data from only one class, and it is H(X) = 1 if half of the dataset is from
one class and the other half of the dataset is from the other class.

Definition 1.7. If we have a dataset X with n classes and a condition C that divides
X in the subsets X1, ..., Xm, we define the information gain of the condition as:

IGX(C) = H(X)−
m

∑
i=1

Pi H(Xi),

where Pi is the number of data items in Xi divided by the number of data items
in X.

Now the training process is easy to define, if we have a training dataset X,
each data item with n features, we choose a given amount of pairs composed by a
random conditions and a random feature for the root node, and we keep the one
that has the highest information gain. Each subset X1, ..., Xm will be inherited by
the children nodes and the same process will be applied recursively. The process
stops if a node contains only one class of data items, in other words the entropy
of the dataset inherited to the node is 0.

Let’s see a quick example.

Example 1.8. Let’s say we are in the unit square [0, 1]2, if a point is placed in the
[0, 1

2]
2 then the point is red, otherwise it is blue. It is important to note that the

learner doesn’t know this rule, that’s what we want it to learn using the training
data. In other words, we want to train a decision tree so it can predict the color of
a point based on its coordinates.

We can see that in this case, we only have 2 features, the x and y coordinates
of each point.

6 Introduction to Machine Learning

Let’s say we have a set of 5 points as training data; p1 = (0, 15; 0, 31), p2 =

(0, 80; 0, 99), p3 = (0, 73; 0, 53), p4 = (0, 88; 0, 85), p5 = (0, 33; 0, 70). Notice that in
our case only p1 is red.

Figure 1.2: Points distribution

Let’s train our model:

• Step 1: We choose a random feature and a random condition. Let’s say we
choose the x coordinates and x < 0, 4 as condition.

• Step 2: We observe that p1 and p5 will be in the same class, and p2, p3 and p4

will be in the other class. We can calculate the entropy of the parent node,
and the children nodes.

H(parent) = − 1
5 · log2(

1
5)−

4
5 · log2(

4
5) ≈ 0, 72192

H(right_child) = − 1
2 · log2(

1
2)−

1
2 · log2(

1
2) = 1

H(le f t_child) = −0 · log2(0)− 1 · log2(1) = 0 (assuming 0 · log2(0) = 0)

We can now calculate the information gain

IG{p1,p2,p3,p4,p5}(x < 0, 4) = 0, 72192 − 2
5 · 1 − 3

5 · 0 = 0.32192

• Step 3: We can choose a given amount of other pairs of feature/condition
and calculate the information gain of each of them, and keep the one with
highest information gain.

• Step 4: The process creates 2 subsets of point, each subset is inherited by a
child, the same process would be applied until the entropy of a node is 0, it
would be the case of the left child with the condition we have chosen.

Remark 1.9. As we can see a decision tree can be different from one execution to
the other as it requires randomness, the predictions can vary because of that. To

1.4 Decision tree classifier 7

avoid this we can create a random forest, a set of a given amount of trees that
will be trained separately, the prediction of the forest will be the average or the
median (or others) of the predictions made by each tree. Other similar models can
be used, they are known as strong learners, but we won’t cover this topic in this
work.

Remark 1.10. In this case we have used the information gain to evaluate the
efficiency of a threshold, but other methods can be used like the gini function.

1.4.2 Evaluation measures

As we discussed previously, we usually keep some data to evaluate the model,
in this case the classifier. Here are some tools used for evaluating a model that has
to classify over only two classes.

Definition 1.11. If we have only two classes, a positive and a negative one, we
define:

• a false positive is data that has been classified as positive but is on fact
negative.

• a false negative is data that has been classified as negative but is in fact
positive.

• a true positive is data that as been successfully classified a positive.

• a true negative is data that has been successfully classified as negative.

This being established, we can define the evalutaion measures.

Definition 1.12. Let FN be the false positives, FP the false positives, TN the true
negatives and TP the true negatives. If N is the total size of the sample:

• The Accuracy is: TP+TN
N

• The Precision is: TP
TP+FP

• The Recall is: TP
TP+FN

• The Specificity is: TN
TN+FP

• The F1-Score is: 2 · Precision·Recall
Precision+Recall

Remark 1.13. We will see in the next chapters that researchers combine these eval-
uation measures to estimate the performance of the learners, the out of distribution
detection in our case.

8 Introduction to Machine Learning

Chapter 2

Learning Theory

2.1 The learning framework

We have seen what learning is all about, and we have introduced an example
of machine learning algorithm. Let’s now deep into the mathematical concepts of
learning.

In order to introduce the learning theory we first have to define rigorously the
key statistical concepts of learning.

In this chapter we will be using knowledge from the books [2], [3] and [7].

2.1.1 Previous definitions

Definition 2.1.

• The domain set is an arbitrary set X that we may wish to label. It is composed by
vectors of features also known as instances. In the decision tree example seen in
the previous chapter we would have X = [0, 1]2

• The label set is the set Y of possible labels. For the example mentioned earlier it
would be Y = {red, blue}.

• The training set is a set S = {(x1, y1), (x2, y2), . . . , (xm, ym)} ⊆ X × Y of finite
pairs of labeled domain points. This is the set that the learner has access to during
the learning phase. In our example it would be the set S = {p1, p2, p3, p4, p5}.

• The learner’s output also known as the predictor will be the algorithm that will
result from the learning phase. In our example it would be the decision tree itself as
it’s the algorithm that we will use to make our predictions on unseen instances.

Something important to point at is how will we know that our algorithm is
learning in the right way. That is when we introduce the measure of success. In

9

10 Learning Theory

the decision tree example we used the entropy function to evaluate how well a
threshold was dividing our inherited dataset.

More generally we have to use a function that returns the probability of our
predictor not predicting correctly on a random instance. Here we define formally
this concept.

Definition 2.2. Given a domain subset A ⊂ X and the indicator function 1A, we define
the distribution D(A) = Px∼D(1A(x)). In other words it will assign a number which
determines how likely it is to observe a point x ∈ A.

Now given a prediction h : X → Y , we define the error, or the risk, as follows:

L(D, f)
def
= Px∼D [h(x) ̸= f (x)]

def
= D({x ∈ X : h(x) ̸= f (x)})

As we can observe, this function returns the probability of choosing a random point x
such as h(x) ̸= f (x). Let us highlight that L stands for loss.

It is now easy to know if our learning process is effective or not, as we men-
tioned in the decision tree example, we can now choose between many possibilities
based on which one return the minimal error, this is known as Risk Minimization.

But a clear problem arises when defining such concepts: we are assuming that
we know D, but generally we won’t. We cannot calculate the error using the
probability distribution. However we can calculate an approximation of the error
by using the data from the training set, the only data we have access to, which
helps us define the following concept.

Definition 2.3. Given a training set S = {(xi, yi), i = 1, . . . , m} and a predictor h :
X → Y , we can define the training error, empirical error or empirical risk as:

LS(h)
de f
=

|{i ∈ {1, . . . , m} : h(xi) ̸= yi}|
m

Now it makes sense to evaluate the progression of our learning process by
using the empirical risk. This is known as the empirical risk minimization (ERM).
It is actually what we were using in the decision tree example, we were using the
training set to evaluate the entropy of each node.

2.1.2 First case of overfitting

Let’s use this method in our example. Let’s choose a random condition and
calculate the entropy of it, let’s take the condition x < 0.2. The division of the
dataset would result as follows

2.1 The learning framework 11

Figure 2.1: Result of the condition x < 0.2

If is clear that the entropy is 0 in this case, which means that the learning
process would stop here, and the predictor would result in a tree with only one
node that would predict that a point is red if his abscissa coordinate is less than
0.2 and blue otherwise.

As we can see, this is really far from what it should be. This is due to the fact
that the predictor is adapting too closely to the training dataset (also because the
dataset is too small in this particular case). This is known as overfitting.

We indeed want to avoid overfitting as it can lead to undesired outputs. A
solution to this is creating a hypothesis class to restrict the search space during
the learning process.

Definition 2.4. The hypothesis class H is a set of hypothesis or predictors

h ∈ H : X → Y

.
The ERMH is the empirical risk minimization algorithm restricted to the hypothesis

class H, in other words it it the empirical risk minimization that chooses hypothesis from
H. Formally,

ERMH(S) ∈ argminh∈HLS(h)

Remark 2.5. The hypothesis class can also be known as concept class.

2.1.3 Solving overfitting

The simplest restriction we can impose is that H is finite. We will proceed to
prove that under that restriction and a sufficiently large training set, we can make
sure that ERMH won’t overfit.

12 Learning Theory

For this purpose we will assume that there exists h∗ ∈ H such that L(D, f)(h∗) =
0. We will call this the Realizability Assumption.

hS will be the result of applying ERMH to the training set S.
We will also assume that S is a set of independent and identically distributed

(i.i.d) points according to D. We will denote this assumption as S ∼ Dm where m
is the size of S and Dm denotes the probability over m-tuples induced by applying
D to pick each element of the tuple independently of the other members of the
tuple.

We can deduce that LD, f (hS) is a random variable as it depends on S, which is
picked randomly. We cannot make sure that S will lead to an accurate classifier, it
will always be possible that the sample S is not representative of the distribution
D, as we have seen in the decision tree example. The only thing we can do is
calculate the probability of getting a predictor with a given accuracy.

Let’s say δ is that probability then 1− δ is the confidence parameter, and ϵ will
be the accuracy of the output predictor.

That being said we can interpret L(D, f)(hS) > ϵ as a failure and we will try to
upper bound the probability of getting a sample of m-tuples of instances that will
lead to failure, formally if S|x = (x1, . . . , xm), we want to upper bound:

Dm({S|x : LD, f (hS) > ϵ}) (2.1)

Let HB ⊂ H the set of bad hypotheses, and M the set of misleading samples.

HB = {h ∈ H : LD, f (h) > ϵ} (2.2)

M = {S|x : ∃h ∈ HB, LS(h) = 0} =
⋃

h∈HB

{S|x : LS(h) = 0} (2.3)

Remember that we want to bound the probability of the event L(H, f)(hS) > ϵ.
Since the realizability assumption implies that LS(hS) = 0 it follows that the event
L(H, f)(hS) > ϵ is possible only if for some h ∈ HB we have LS(h) = 0 which is
possible only if S ∈ M. We have shown that:

{S|x : L(D, f)(hS) > ϵ} ⊆ M (2.4)

Hence,

Dm({S|x : LD, f (hS) > ϵ}) ≤ Dm(M) = Dm(∪h∈HB{S|x : LS(h) = 0}) (2.5)

We can use the union bound lemma to bound the right hand side of the in-
equality.

2.1 The learning framework 13

Lemma 2.6. (Union bound) Given two sets A and B and a distribution D we have

D(A ∪ B) ≤ D(A) +D(B)

Applying the lemma to the previous equation (2.5) we have that

Dm({S|x : L(D, f)(hS) > ϵ}) ≤ ∑
h∈HB

Dm({S|x : LS(h) = 0}) (2.6)

We can observe that the event LS(h) = 0 is equivalent to the event ∀i, h(xi) =

f (xi) and since we have assumed that all the xi in the training set are i.i.d, we have

Dm({S|x : LS(h) = 0}) = Dm({S|x : ∀i, h(xi) = f (xi)}) =
m

∏
i=1

D({xi : h(xi) = f (xi)})

(2.7)
But we have D({xi : h(xi) = yi}) = 1 − L(D, f)(h) ≤ 1 − ϵ

Where the last inequality comes from from the fact that h ∈ HB.
Combining this inequality with the equation (2.7) we have that

Dm({S|x : LS(h) = 0}) ≤ (1 − ϵ)m ≤ e−ϵm, (2.8)

where the last inequality comes from 1 − ϵ ≤ e−ϵ. We can conclude that

Dm({S|x : L(D, f)(hS) > ϵ}) ≤ |HB|e−ϵm ≤ |H|e−ϵm (2.9)

And this makes the first result that can be formulated as follows

Corollary 2.7. Let H be a finite hypotheses class, let δ ∈ (0, 1) and ϵ > 0 and let m ∈ Z

such that

m ≥
log(|H|

δ)

ϵ

Then, for any labeling function, f , and for any distribution, D, for which the real-
izability assumption holds, with probability of at least 1 − δ over the choice of an i.i.d.
sample S of size m, we have that for every ERM hypothesis, hS

L(D, f)(hS) ≤ ϵ

In other words, if we have a sufficiently large training set, the ERMH rule
over a finite hypotheses class H will probably (with confidence 1 − δ) return an
output approximately (with confidence ϵ) correct. This introduces the probably
approximately correct learning theory, we will deep into this in the next section.

14 Learning Theory

2.2 Probably Approximately Correct learning theory

We have just seen in the previous section that if we have a finite hypothesis
class and a training set of size m, with m large enough, then we are sure that the
ERM will return an approximately correct hypothesis. We will now define this
concept in a more general way.

2.2.1 PAC Learning

Definition 2.8. A hypothesis class H is said to be Probably Approximately Correct
learnable (PAC learnable) if there exists a function mH : (0, 1)2 → N and a learning
algorithm with the following property: ∀ϵ, δ ∈ (0, 1), for all distribution D over X and
∀ f : X → Y and if the realizability assumption holds with respect to H,D, f , then we can
run the algorithm on a training set of size m ≥ mH(ϵ, δ) and it will return a hypothesis
such that, with probability 1 − δ, L(D, f)(h) ≤ ϵ

Remark 2.9. The definition of Probably Approximately Correct learnable hypoth-
esis class appeared for the first time in 1984, in a paper published by L.G. Valiant
[1].

This definition is basically saying that given the approximation parameters we
can find the size of the training dataset such as there exists an algorithm that will
return a probably (with confidence parameter 1− δ) approximately (with accuracy
parameter ϵ) correct predictor for any distribution and labeling function. Note that
we are assuming that the realizabilty assumption holds, we will see later how we
can get rid of it.

But we won’t be able to get rid of the approximation parameters, we cannot
make sure that our training set is representative of D, and even if we do, we can’t
make sure that our outputted predictor is totally accurate as our training set is
always finite.

Definition 2.10. mH is also known as sample complexity of learning H.

Remark 2.11. if mH is a polynomial function we say that H is efficiently PAC
learnable.

Example 2.12. Let’s say we want our output to be able to predict if a person
will throw rock, paper or scissors in a game. If the person plays randomly it is
impossible to get such output, in other words, there is no training set size that
would allow us to train a model and get a PAC predictor.

However, if we take the example of the decision tree, if the training set is big
enough, the output will be accurate enough as the tree will get deeper since it will
only stop once the inherited training sets are perfectly split into their respective
classes.

2.2 Probably Approximately Correct learning theory 15

2.2.2 Agnostic PAC Learning

Recall that the realizability assumption states that ∃h∗ ∈ D s.t. Px∼D [h∗(x) =
f (x)] = 1. Unfortunately this is not always true, using again the example of the
decision tree, if instead of the the [0, 1

2]
2 square as a red zone we had a fractal,

it maybe couldn’t be possible to even get a labelling function f in practice. This
is why we would like to wave the realizability assumption, here is why we will
introduce the agnostic PAC learnability in this section.

For this purpose, from now on, D will be the joint distribution of X × Y . In
other words Dx will be the marginal distribution of a random variable x ∈ X , how
likely does x belongs to a certain class, similarly for Dy. That being said we can
now redefine what the empirical and true errors are.

Definition 2.13. We redefine the true error as:

LD(h)
de f
= P

(x,y)∈D
[h(x) ̸= y]

de f
= D({(x, y) : h(x) ̸= y})

As we tried earlier, our main goal is to find a predictor that minimizes this
error, but again the learner won’t have access to the distribution D, as before it
will only have access to the training data. We will only be able to calculate the
empirical risk, which remains the same as in the previous section:

LS(h)
de f
=

|{i = 1, . . . , m : h(xi) ̸= yi|}
m

We can now proceed to define what the agnostic PAC learning concept is.

Definition 2.14. A hypothesis class H is agnostic PAC learnable if there exists a func-
tion mH : (0, 1)2 → N and a learning algorithm that satisfies that ∀ϵ, δ ∈ (0, 1) and
every distribution D over X × Y , when running the algorithm on m ≥ mH(ϵ, δ) i.i.d
examples granted by D, it will return a hypothesis h s.t with probability of at least 1 − δ

LD(h) ≤ min
h′∈H

LD(h′) + ϵ

Remark 2.15. Clearly, if the realizability assumption holds, agnostic PAC learning
provides the same guarantee as PAC learning. In that sense, agnostic PAC learning
generalizes the definition of PAC learning. When the realizability assumption does
not hold, no learner can guarantee an arbitrarily small error. Nevertheless, under
the definition of agnostic PAC learning, a learner can still declare success if its
error is not much larger than the best error achievable by a predictor from the
class H. This is in contrast to PAC learning, in which the learner is required to
achieve a small error in absolute terms and not relative to the best error achievable
by the hypothesis class.

16 Learning Theory

Notice that until now we were using the error function, or the risk function,
to evaluate how accurate our hypothesis are, we can generalize this concept to
scenarios where we are not talking about predictions.

Definition 2.16. A loss function is a function l : H× Z → R+ where H is a hypothesis
set and Z is a domain set.

Notice that we can use this definition of loss function to define what the error
is. We can now define the error function in a more general way.

Definition 2.17. The risk function can be redefined, if l is a loss function

LD(h)
de f
= E

z∼D
[l(h, z)]

And the empirical risk function is

LS(h)
de f
=

1
m

m

∑
i=1

l(h, zi)

Example 2.18.

• The most common loss function is the square loss function, defined as follows:

lsq(h, (x, y)) = (h(x)− y)2

• Another popular loss function is the absolute loss function

labs(h, (x, y)) = |h(x)− y|

This loss function is not as popular as the first one as it can be complicated to
apply some calculations to the absolute value, for example when doing some
differentiation, as the absolute value function could not be differentiable in
all Rn.

• The simplest loss function that one can use is the 0-1 loss function and it is
defined as follows

l0−1(h, (x, y)) =

{
0 if h(x) = y

1 if h(x) ̸= y

We can now review our definition of agnostic PAC learnable hypothesis using
this generalized empirical risk definition.

2.3 Uniform Convergence 17

Definition 2.19. A hypothesis class H is agnostic PAC learnable with respect to a set
Z and a loss function l : H× Z → R+ if there exists a function mH : (0, 1)2 → N and
a learning algorithm that satisfies that ∀ϵ, δ ∈ (0, 1) and every distribution D over Z,
when running the algorithm on m ≥ mH(ϵ, δ) i.i.d examples granted by D, it will return
a hypothesis h s.t with probability of at least 1 − δ

LD(h) ≤ min
h′∈H

LD(h′) + ϵ

where LD(h) = Ez∼D [l(h, z)]

2.3 Uniform Convergence

We have seen in the previous section of this chapter that a finite hypothesis
class is PAC learnable. In this section section we will introduce the uniform conver-
gence, we will show that every finite hypothesis class is learnable in the agnostic
PAC learning model with general loss function, as long as the range loss function
is bounded.

2.3.1 Learnability with uniform convergence

Definition 2.20. Given Z a domain, H a hypothesis class, l a loss function and D a
distribution, a training set S is said to be ϵ-representative if

∀h ∈ H, |LS(h)− LD(h)| ≤ ϵ

Basically, this says that the empirical risk is close enough to the true risk. We
will use this in the following lemma.

Lemma 2.21. Let Z be a domain set, H a hypothesis set, l a loss function and D a
distribution. If a training set S is ϵ

2 -representative, then the output of the ERMH(S), in
other words, hS ∈ argminh∈HLS(h), satisfies

LD(hS) ≤ min
h∈H

LD(h) + ϵ

Remark 2.22. This lemma basically tells us that if the empirical risk of the training
set is close to the true risk with a certain tolerance (ϵ

2 -representative training set),
then the ERM learning rule will return a good hypothesis.

18 Learning Theory

Proof.

S is
ϵ

2
-representative =⇒ ∀h ∈ H, |LS(h)− LD(h)| ≤

ϵ

2
=⇒ LD(hS)− LS(hS) ≤

ϵ

2
=⇒ LD(hS) ≤ LS(hS) +

ϵ

2
hS is an ERM predictor =⇒ LS(hS) +

ϵ

2
≤ LS(h) +

ϵ

2
again as S is

ϵ

2
-representative =⇒ LS(h) +

ϵ

2
≤ LD(h) +

ϵ

2
+

ϵ

2
= LD(h) + ϵ

As this is true ∀h ∈ H we can conclude that LD(hS) ≤ min
h∈H

LD(h) + ϵ

That being said we only have to make sure that we are choosing an ϵ-representative
training set (with ϵ small enough) with a certain probability, in our case 1 − δ, to
confirm the PAC learnability. This is what uniform convergence will be used for
we can introduce it as follows.

Definition 2.23. Given a domain Z and a loss function l, we say that a hypothesis class
H has the uniform convergence property if there exists a function mUC

H : (0, 1)2 → N

such that ∀ϵ, δ ∈ (0, 1) and for all probability distribution D over Z, if S is a sample of
size m ≥ mUC

H (ϵ, δ) drawn according to D then with probability of at least 1 − δ, S is
ϵ-representative.

Similarly to what we saw with PAC learning, mUC
H is called the sample com-

plexity and fixes what the size of the sample should be depending on ϵ and δ to
assure that we get an ϵ-representative sample with probability 1− δ. Of course we
can only assure such thing with a certain probability, we are never safe from being
unlucky and get a non-representative sample.

We can conclude with a Corollary that follows directly from Lemma 2.20 and
the definition of uniform convergence.

Corollary 2.24. If a hypothesis class H has the uniform convergence property with
a function mUC

H then the class is agnostically PAC learnable with sample complexity
mH(ϵ, δ) ≤ mUC

H (ϵ
2 , δ). Moreover, the ERMH paradigm is a successful agnostic PAC

learner for H.

2.3.2 Finite classes are Agnostic PAC Learnable

We have seen in section 2.1.3 that finite hypothesis classes are PAC learnable,
we will extend this to the agnostic PAC learning method in this section.

2.3 Uniform Convergence 19

We would like to use the Corollary 2.23 to prove this. To do so, we have to
prove that uniform convergence holds for finite hypothesis classes.

Corollary 2.25. Let H be a hypothesis set, Z a domain and let l : H× Z → [0, 1] be a
loss function. Then H enjoys the uniform convergence property with sample complexity

mUC
H (ϵ, δ) ≤

⌈
log

(2|H|
δ

)
2ϵ2

⌉
Furthermore, the class is agnostically PAC learnable using ERM algorithm with sam-

ple complexity

mH(ϵ, δ) ≤ mUC
H (ϵ, δ) ≤

⌈
log

(2|H|
δ

)
2ϵ2

⌉
We will first prove Hoeffding’s inequality

Lemma 2.26. (Hoeffding’s Inequality) Let θ1, . . . , θm a sequence of i.i.d random variables
and assume that ∀i, E[θi] = µ, P[a ≤ θi ≤ b] = 1 then for any ϵ > 0

P

[∣∣∣∣ 1
m

m

∑
i=1

θi − µ

∣∣∣∣ > ϵ

]
≤ 2 exp

(
−2mϵ2

(b − a)2

)
Proof. (of Corollary 2.24) Fix some ϵ, δ. We have to find a sample size m that
guarantees that for every distribution D, with probability 1 − δ of the choice of
S = (z1, . . . , zm) sampled i.i.d from D we have that ∀h ∈ H, |LS(h)− LD(h)| ≤ ϵ.
That is,

Dm({S : ∀h ∈ H, |LS(h)− LD(h)| ≤ ϵ}) ≥ 1 − δ

Equivalently we have to show that,

Dm({S : ∃h ∈ H, |LS(h)− LD(h)| > ϵ}) < δ

We can rewrite,

{S : ∃h ∈ H, |LS(h)− LD(h)| > ϵ} = ∪h∈D{S : |LS(h)− LD(h)| > ϵ}

As we did in a previous proof, we can apply the union bound Lemma 2.6

Dm({S : ∃h ∈ H, |LS(h)− LD(h)| > ϵ}) ≤ ∑
h∈H

Dm({S : |LS(h)− LD(h)| > ϵ})

(2.10)

20 Learning Theory

Recall that LD(h) = Ez∼D[l(h, z)]. In other words LD(H) is the expected value
of l(h, z). Also LS(h) = 1

m ∑m
i=1 l(h, zi), by linearity of expectations it follows that

LD(h) is also the expected value of LS(h).
In other words |LS(h) − LD(h)| is the deviation of a random variable LS(h)

from it’s expected value LD(h). We then have to find the size m for which the
probable values of LS(h) are concentrated enough around LS(h).

We could use the law of large numbers to prove that if m gets bigger, the em-
pirical average converge to the expected value. The problem is that such a law
is asymptotically true, this is why we will use the Hoeffding’s inequality (Lemma
2.25).

For more simplicity in the calculations we will set l(h, zi) = θi and µ = LD(h).
Hence, LS(h) = 1

m ∑m
i=1 θi

It is also reasonable to assume that the error function is between 0 and 1. Hence
θi ∈ [0, 1]. We obtain that each of the terms of the sum in the equation (2.10) are

Dm({S : |LS(h)− LD(h)| > ϵ}) = P

[∣∣∣∣ 1
m

m

∑
i=1

θi − µ

∣∣∣∣ > ϵ

]
≤ 2e−2mϵ2

(2.11)

We then obtain from equation (2.10)

Dm({S : ∃h ∈ H, |LS(h)− LD(h)| > ϵ}) ≤ ∑
h∈H

2e−2mϵ2
= 2|H|e−2mϵ2

(2.12)

Finally we only have to choose

m ≥
log

(2|H|
δ

)
2ϵ2 (2.13)

to get the desired result

Dm({S : ∃h ∈ H, |LS(h)− LD(h)| > ϵ}) ≤ δ. (2.14)

2.4 The No-Free Lunch Theorem

We have seen in the previous chapter that learning algorithm can lead to over-
fitting a training set unless we restrict the hypothesis space. In other words we are
using some prior knowledge to influence the behavior of the learning process.

A reasonable question that we can ask is which learning model is the most op-
timal and doesn’t require prior knowledge? Even before that we can ask ourselves

2.4 The No-Free Lunch Theorem 21

if there is a learning algorithm that can give us good result in every scenario?
For example, we have used the decision tree algorithm to classify points into two
classes, could this same algorithm work for image processing? Could we use it to
return the value of a handwritten number?

We will see in this chapter that no such universal learner exists, this is the
No-Free Lunch Theorem. Actually, the NFL Theorem is a general Theorem in
mathematical optimization, we will state a version of that Theorem that is more
applied to our case and prove it, we will state the general Theorem at the end of
this section as additional knowledge.

2.4.1 Formulation of the NFL Theorem

Here we introduce a fundamental theorem in learning theory.

Theorem 2.27. (No-Free Lunch Theorem) Let A be any learning algorithm for the task
of binary classification with respect to the 0-1 loss function over a domain set X . Let m
be any number smaller than |X |

2 , representing the size of a training dataset. Then, there
exists a distribution D over X × {0, 1} such that:

1. There exists a function f : X → {0, 1} with LD(f) = 0.

2. With probability of at least 1
7 over the choice of S ∼ Dm we have that LD(A(S)) ≥ 1

8

Basically, this Theorem states that for every learning algorithm there exists a
task for which it fails but another learner would succeed.

Proof. Let C ⊂ X be a subset of size 2m. Note that there exist T = 22m possible la-
belling functions from C to {0, 1}, we denote f1, f2, . . . , fT these labelling functions.
For each function fi, Di will be the distribution over C × {0, 1} defined by

Di(x, y) =

 1
|C| if y = fi(x)

0 otherwise

Basically the probability to choose a pair (x, y) is 1
|C| if y is the true label ac-

cording to f and the probability is 0 if y ̸= fi(x). Clearly, LDi(fi) = 0.
We want to show that for every algorithm A that receives a training set of size

m from C × {0, 1} and returns A(S) : C → {0, 1}, it holds that

max
i=1,...T

E
S∼Dm

i

[LDi(A(S))] ≥ 1
4

(2.15)

22 Learning Theory

Clearly this means that for every algorithm, A′ that receives a training set of
size m from X × {0, 1} there exists a function f : X → {0, 1} and a distribution D
over X × {0, 1}, such that LD(f) = 0 and

E
S∼Dm

[LD(A′(S))] ≥ 1
4

. (2.16)

We will now proceed to prove equation (2.15). We have k = (2m)m possible
sequences of m examples from C. Denote these sequences by S1, . . . , Sk. Also, if
Sj = (x1, . . . , xm), we denote by Si

j = ((x1, fi(x1)), . . . , (xm, fi(xm))). If the distri-
bution is Di then the possible training sets A can receive Si

i, . . . , Si
k and all these

training sets have the same probability of being sampled. Therefore,

E
S∼Dm

i

[LDi(A(S))] =
1
k

k

∑
j=1

LDi(A(Si
j)). (2.17)

We can use the fact that the maximum is always greater that the average which
is greater than the minimum, we then have

max
i=1,...,T

1
k

k

∑
j=1

LDi(A(Si
j)) ≥

1
T

T

∑
i=1

1
k

k

∑
j=1

LDi(A(Si
j))

=
1
k

k

∑
j=1

1
T

T

∑
i=1

LDi(A(Si
j))

≥ min
j=1,...,k

1
T

T

∑
i=1

LDi(A(Si
j)).

(2.18)

We can now fix some j = 1, . . . , k. Denote Sj = (x1, . . . , xm) and let v1, . . . , vp

be the examples in C that do not appear in Sj. Clearly p ≥ m. Therefore, for every
function h : C → {0, 1} and every i we have

LDi(h) =
1

2m ∑
x∈C

1[h(x) ̸= fi(x)]

≥ 1
2m

p

∑
r=1

1[h(vr) ̸= fi(vr)]

≥ 1
2p

p

∑
r=1

1[h(vr) ̸= fi(vr)].

(2.19)

Hence,

2.5 The VC-dimension 23

1
T

T

∑
i=1

LDi(A(Si
j)) ≥

1
T

T

∑
i=1

1
2p

p

∑
r=1

1[A(Si
j)(vr) ̸= fi(vr)]

=
1

2p

p

∑
r=1

1
T

T

∑
i=1

1[A(Si
j)(vr) ̸= fi(vr)]

≥ 1
2

. min
r=1,...,p

1
T

T

∑
i=1

1[A(Si
j)(vr) ̸= fi(vr)]

.

(2.20)

Now fix some r = 1, . . . , p. We can partition all the functions in f1, . . . , fT into
T
2 disjoint pairs, where for a pair (fi, fi′) we have that for every c ∈ C, fi(c) ̸=
fi′(c) ⇐⇒ c = vr. Since for such a pair we must have Si

j = Si′
j , it follows that

1[A(Si
j)(vr) ̸= fi(vr)]

+ 1
[A(Si′

j)(vr) ̸= fi′ (vr)]
=

1
2

. (2.21)

which yields

1
T

T

∑
i=1

1[A(Si
j)(vr) ̸= fi(vr)]

. (2.22)

Combining this equation with the equations (2.20), (2.18), (2.17) we finally
obtain the equation (2.15), which concludes the proof.

We will now state the general No-Free Lunch theorem as additional knowl-
edge, as we mentioned earlier.

Theorem 2.28. (No-Free Lunch Theorem Generalized) Given a finite set V and a finite set
S of real numbers, assume that f : V → S is chosen randomly according to uniform dis-
tribution on the set SV of all possible functions from V to S. For the problem of optimizing
f over the set V, then no algorithm performs than blind search.

This Theorem states that when all functions f are equally likely, the probability
of observing an arbitrary sequence of m values in the course of optimization does
not depend upon the algorithm.

2.5 The VC-dimension

We have seen until now that finite hypothesis classes can be learnt throw the
ERM rule. Nonetheless we could ask ourselves if classes have to be finite to be
learnable, in other words, are infinite classes learnable? What does actually make
classes learnable?

24 Learning Theory

We will begin the section showing that infinite classes can be learnt, we will
then present the VC-dimension (Vapnik-Chervonenkis dimension) and we will
explore its correlation with learnability of hypothesis classes. We will indeed state
the fundamental theorem of PAC learning.

2.5.1 Infinite classes can be learnt

We will see an example of infinite hypothesis class that can be learnable in this
section.

We could imagine that H is the set of all the thresholds over the real numbers:
H = {ha : a ∈ R} where ha : R → {0, 1}, indeed ha = 1[x<a]. It is clear that the
hypothesis class H is infinite. Nonetheless the following lemma proves that this
hypothesis class can be learnt.

Lemma 2.29. Let H be the set of all the threshold functions over R. Then, H is PAC

learnable, using the ERM rule with sample complexity of mH(ϵ, δ) =

⌈
log(2

δ)
ϵ

⌉
Proof. Let a∗ be the threshold such that the hypothesis h∗(x) = 1[x<a∗] achieves
LD(h∗) = 0. Let Dx be the marginal distribution over the domain X and let
a0 < a∗ < a1 such that

P
x∼Dx

[x ∈ (a0, a∗)] = P
x∼Dx

[x ∈ (a∗, a1)] = ϵ (2.23)

In the case that Dx(−∞, a∗) ≤ ϵ we can set a0 = −∞, similarly for a1. Given
a training set S, let b0 = max{x : (x, 1) ∈ S} and b1 = min{x : (x, 0) ∈ S}, if no
example in S is positive we can set b0 = −∞ and if no example in S is negative,
we can set b1 = ∞. Let bS be the threshold of hS, the hypothesis that we obtain by
running the ERM rule on S. We can deduce that bS ∈ (b0, b1), therefore, a sufficient
condition for LD(hS) ≤ ϵ is that both b0 ≥ a0 and b1 ≤ a1. In other words,

P
S∼Dm

[LD(hS) > ϵ] ≤ P
S∼Dm

[(b0 < a0) ∪ (b1 > a1)] (2.24)

Using the union bound we can deduce:

P
S∼Dm

[LD(hS) > ϵ] ≤ P
S∼Dm

[b0 < a0] + P
S∼Dm

[b1 > a1] (2.25)

The event b0 < a0 happens if and only if all examples in S are not in the interval
(a0, a∗), whose probability is ϵ as defined:

P
S∼Dm

[b0 < a0] = P
S∼Dm

[∀(x, y) ∈ S, x /∈ (a0, a∗)] = (1 − ϵ)m ≤ e−ϵm (2.26)

2.5 The VC-dimension 25

Since we are assuming that m >
log(2

δ)
ϵ it follows that the equation (2.26) is less

than δ
2 . With the same argument we can say that P

S∼Dm
[b1 > a1] ≤ δ

2 . Combining

this result with the equation (2.25) we obtain the desired result, which concludes
the proof.

2.5.2 The VC-dimension

We have seen in the previous section that the finiteness of a hypothesis class
is not necessary for the learnability of that class. We have also seen the No-Free
Lunch Theorem, which says that without any restriction on the hypothesis class,
given a learning algorithm, we will always find an adversary distribution where
the learning process fails, but another one could succeed.

In this section we will introduce the VC-dimension of a hypothesis class, which
will help us determine its learnability. We will first rigorously define what a
restriction stands for.

Definition 2.30. Let H be a class of functions from X to {0, 1} and let C = {c1, . . . , cm} ⊂
X . The restriction of H to C is the set of functions from C to {0, 1} that can be derived
from H. That is,

HC = {(h(c1), . . . , h(cm)) : h ∈ H}

We will represent each function from C to {0, 1} as a vector in {0, 1}|C|

This introduces the definition of shattering, which says:

Definition 2.31. A hypothesis class H shatters a finite set C ⊂ X if the restriction of H
to C is the set of all functions from C to {0, 1}. That is, |HC | = 2|C|.

Example 2.32. We can see an easy example taking H as the set of all possible
thresholds functions over R. If C = {c1}, we can see that if a = c1 + 1, then
ha(c1) = 1, and if a = c1 − 1, then we have that ha(c1) = 0. Therefore HC is the set
of all functions from C to {0, 1}, and H shatters C.

A counter example could be taking C = {c1, c2} with c1 < c2, then any thresh-
old that assigns 0 to c1 will also assign 0 to c2, therefore not all functions from C
to {0, 1} are included in HC , hence C is not shattered by H.

Corollary 2.33. Let H be a hypothesis class of functions from X to {0, 1}. Let m be a
training set size. Assume that there exists a set C ⊂ X of size 2m that is shattered by H.
Then, for any learning algorithm, A, there exists a distribution D over X × {0, 1} and a
predictor h ∈ H such that LD(h) = 0 but with probability of at least 1

7 over the choice of
S ∼ Dm we have that LD(A(S)) ≥ 1

8 .

26 Learning Theory

Remark 2.34. This corollary basically tells us that if H shatters some set C of size
2m then we cannot learn H using m examples. Intuitively, if a set C is shattered
by a hypothesis class H and we receive a training set containing half the instances
of C, the labels of these instances give us no information about the labels of the
rest of the instances in C, every possible labelling of the rest of the instances can
be explained by some hypothesis in H. Summering up, if someone can explain every
phenomenon, his explanations are worthless.

Definition 2.35. (VC-dimension) The VC-dimension of a hypothesis class H is the max-
imal size of a set C ⊂ X that can be shattered by H. If H can shatter any set of any size
we say that H has an infinite VC-dimension. We will denote the VC-dimension of a
hypothesis class H as VCdim(H).

From this definition we can use the Corollary (2.32) to get our first result about
VC-dimension:

Theorem 2.36. Let H be a hypothesis class such as VCdim(H) = ∞. Then, H is not
PAC learnable.

Proof. Since H has an infinite VC-dimension, for any training set size m, there
exists a shattered set size 2m, and the Corollary (2.32) tells us that H is not PAC
learnable.

We will see later that the converse is also true, that is, if a hypothesis class
has a finite VC-dimension then it is PAC learnable. Hence, the VC-dimension
characterizes the PAC learnability of a hypothesis class.

We will now see some examples of how to calculate the VC-dimension of hy-
pothesis classes.

Example 2.37.

• Threshold functions

As we have seen in a previous example if we take C = {c1}, then H shatters
C, therefore VCdim(H) ≥ 1. Moreover, if C = {c1, c2} with c1 ≤ c2, H does
not shatter C. We conclude the VCdim(H) = 1.

• Intervals

Let H be the class of all intervals in R, namely, H = {ha,b : a, b ∈ R, a < b},
where ha,b : R → {0, 1} is a function such that ha,b = 1[x∈(a,b)]. If C = {1, 2}.
We can take a < b < 1 then ha,b(1) = 0 and ha,b(2) = 0. If a < 1 < b < 2, then
ha,b(1) = 1 and ha,b(2) = 0. Finally, if 1 < a < b < 2, then ha,b(1) = 1 and
ha,b(1) = 1. In other words, for every function from C to {0, 1}, we can find

2.5 The VC-dimension 27

a function in H that gives the same output, so H shatters C and therefore
VCdim(H) ≥ 2. But if we take C = {c1, c2, c3}, assuming c1 < c2 < c3,
we cannot find a function in H such that ha,b(c1) = 1, ha,b(c2) = 0 and
ha,b(c3) = 1. This is because ha,b(c1) = 1 =⇒ a < c1

ha,b(c3) = 1 =⇒ b > c3 =⇒ c2 ∈ (a, b) =⇒ ha,b(c2) = 1 ̸= 0. Therefore H
does not shatter C, and VCdim(H) = 2.

• Finite classes

Let H be a finite class. Then we have that for any set C we have |HC | ≤ |H|
and thus C cannot be shattered if |H| < 2|C|. This implies that VCdim(H) ≤
log2(|H|). This shows that PAC learnability of finite classes follows from the
more general statement of PAC learnability of classes of finite VC-dimension,
which we shall see in the next section. Note, however, that the VC-dimension
of a finite class H can be significantly smaller than log2(|H|). For example,
let X = {1, . . . , k}, for some integer k, and consider the class of thresh-
olds functions (as defined in the previous example). Then, |H| = k but
VCdim(H) = 1. Since k can be arbitrarily large, the gap between log2(|H|)
and VCdim(H) can be arbitrarily large.

2.5.3 The Fundamental Theorem of PAC learning

As we mentioned in the previous section, a hypothesis class with infinite VC-
dimension is not PAC learnable, we will now see the converse of that, that is, a
hypothesis class with finite VC-dimension is learnable.

Theorem 2.38. (The Fundamental Theorem of Statistical Learning) Let H be a hypothesis
class of functions from a domain set X to {0, 1} and let the loss function be the 0-1 loss
function. Then, the following are equivalent:

1.H has the uniform convergence property.
2.Any ERM rule is a successful agnostic PAC learner for H.
3.H is agnostic PAC learnable.
4.H is PAC learnable.
5. Any ERM rule is a successful PAC learner for H.
6.H has a finite VC-dimension.

To prove this Theorem we will first state some previous results.

Definition 2.39. (Growth function) Let H be a hypothesis class. Then the growth func-
tion of H is defined as:

τH(m) = max
C⊂H:|C|=m

|HC |

28 Learning Theory

In other words, τH(m) is the number of distinct functions from a set C of size
m to {0, 1} that can be obtained by restricting H to C.

We can remark that if VCdim(H) = d then for any m ≤ d we have that τH(m) =

2m. We will now see a result that states that when m becomes greater than the VC-
dimension, the growth function increases polynomially rather than exponentially
with m.

Lemma 2.40. (Sauer-Shelah-Perles) Let H be a hypothesis class with VCdim(H) ≤ d <

∞. Then, for all m, τH(m) ≤ ∑d
i=0 (

m
i). In particular, if m > d + 1 then τH(m) ≤ (em

d)d

Proof. Observe that we only have to prove that for any C = {c1, . . . , cm} we have

∀H, |HC | ≤ |{B ⊆ C : H shatters B}| (2.27)

The reason why this is sufficient is that if VCdim(H) ≤ d then no set whose size
is larger than d is shattered by H and therefore:

|{B ⊆ C : H shatters B}| ≤
d

∑
i=0

(
m
i

)
When m > d + 1 the right-hand side of the preceding is at most (em

d)d. This
can be proved easily by induction.

We will now use induction in order to prove that the equation (2.27) is true.
For m = 1 we will always have the two sides of the equation (2.27) equal to 1

or 2 (the empty set is considered to be shattered by H). Assume that the equation
(2.27) holds for all the sets of size k < m, let’s prove that it also holds for sets of
size m.

Fix H and let C = {c1, . . . , cm}. Denote C ′ = {c2, . . . , cm}. We define also

Y0 = {(y2, . . . , ym) : (0, y2, . . . , ym) ∈ HC or (1, y2, . . . , ym) ∈ HC}

and

Y1 = {(y2, . . . , ym) : (0, y2, . . . , ym) ∈ HC and (1, y2, . . . , ym) ∈ HC}

We can see that |HC | = |Y0| + |Y1|. Moreover, since Y0 = HC ′ , using the
induction assumption (applied on H and C ′) we have that

|Y0| = |HC ′ | ≤ |{B ⊆ C ′ : shatters B}| = |{B ⊆ C : c1 /∈ B and H shatters B}|

Next, define H′ ⊆ H to be

2.5 The VC-dimension 29

H′ = {h ∈ H : ∃h′ ∈ H s.t (1 − h′(c1), h′(c2), . . . , h′(cm))

= (h(c1), . . . , h(cm))}
(2.28)

Namely, H′ contains pairs of hypothesis that agree on C ′ and differ on c1.
Using this definition, it is clear that if H′ shatters a set B ⊆ C ′ then it also shatters
the set B ∪ {c1} and vice versa. Combining this with the fact that Y1 = H′

C , and
using the inductive assumption (now on H′) and C ′ we obtain that

|Y1| = |H′
C |

= |{B ⊆ C ′ : H′ shatters B}|
= |{B ⊆ C ′ : H′ shatters B ∪ {c1}}|
= |{B ⊆ C : {c1} ∈ B and H′ shatters B}|
= |{B ⊆ C : {c1} ∈ B and H shatters B}|

(2.29)

Overall, we obtain that

|HC | = |Y0|+ |Y1|
≤ |{B ⊆ C : {c1} /∈ B and H shatters B}|+ |{B ⊆ C : {c1} ∈ B and H shatters B}|
= |{B ⊆ C : H shatters B}|

(2.30)

Which concludes the proof

Another important result that we will need in order to prove the Fundamental
Theorem of PAC Learning is that if H has a small effective size then it enjoys the
uniform convergence property. By small effective size we mean a class for which
|HC | grows polynomially with |C|. Formally,

Theorem 2.41. Let H be a a class and let τH be its growth function. Then, for every D
and every δ ∈ (0, 1), with probability of at least 1 − δ over the choice of S ∼ Dm we have

|LD(h)− LS(h)| ≤
4 +

√
log(τH(2m))

δ
√

2m

Proof. Let’s start by showing that

E
S∼Dm

[
sup
h∈H

|LD(h)− LS(h)|
]
≤ 4 +

√
log(τH(2m))√

2m
(2.31)

30 Learning Theory

To bound the left-hand side of the equation (2.31) we first note that for every
h ∈ H, we can rewrite LH(h) = E

S′∼Hm
[LS′(h)], where S′ = {z′1, . . . , z′m} is an

additional i.i.d sample. Therefore,

E
S∼Dm

[
sup
h∈H

|LD(h)− LS(h)|
]
= E

S∼Dm

[
sup
h∈H

∣∣∣∣ E
S′∼Dm

[
LD(h)− LS(h)

]∣∣∣∣] (2.32)

A generalization of the triangle inequality yields∣∣∣∣ E
S′∼Dm

[
LD(h)− LS(h)

]∣∣∣∣ ≤ E
S′∼Dm

∣∣∣∣LD(h)− LS(h)
∣∣∣∣

And the fact that supremum of expectation is smaller than the expectation of
supremum yields

sup
h∈H

E
S′∼Dm

∣∣∣∣LD(h)− LS(h)
∣∣∣∣ ≤ E

S′∼Dm
sup
h∈H′

∣∣∣∣LD(h)− LS(h)
∣∣∣∣

Combining all we obtain

E
S∼Dm

[
sup
h∈H

|LD(h)− LS(h)|
]
≤ E

S,S′∼Dm

[
sup
h∈H

∣∣∣∣LD(h)− LS(h)
∣∣∣∣]

= E
S,S′∼Dm

[
sup
h∈H

1
m

∣∣∣∣ m

∑
i=1

(l(h, z′i)− l(h, zi))

∣∣∣∣] (2.33)

Since all the choices in S and S′ are i.i.d, nothing will change if we change
the name of the random vectors zi with the names of the vectors z′i. This would
replace the term (l(h, z′i)− l(h, zi)) by the term −(l(h, z′i)− l(h, zi)), it follows that
for every σ ∈ {−1, 1}m we have that the equation (2.33) equals

E
S,S′∼Dm

[
sup
h∈H

1
m

∣∣∣∣ m

∑
i=1

σi(l(h, z′i)− l(h, zi))

∣∣∣∣]
Since this is true for every σ ∈ {−1, 1}m, it is also true if we sample each

component of σ uniformly at random from the uniform distribution over {−1, 1}m

(denoted here as U±). This give us,

E
σ∼Um

±
E

S,S′∼Dm

[
sup
h∈H

1
m

∣∣∣∣ m

∑
i=1

σi(l(h, z′i)− l(h, zi))

∣∣∣∣]
By the linearity of the expectations we get that

E
S,S′∼Dm

E
σ∼Um

±

[
sup
h∈H

1
m

∣∣∣∣ m

∑
i=1

σi(l(h, z′i)− l(h, zi))

∣∣∣∣]

2.5 The VC-dimension 31

We can now fix S and S′ and let C be the instances appearing in S and S′, then
we can take the supremum only over h ∈ HC . Then,

E
σ∼Um

±

[
sup
h∈H

1
m

∣∣∣∣ m

∑
i=1

σi(l(h, z′i)− l(h, zi))

∣∣∣∣] = E
σ∼Um

±

[
sup
h∈H

1
m

∣∣∣∣ m

∑
i=1

σi(l(h, z′i)− l(h, zi))

∣∣∣∣]
If we fix some h ∈ HC and denote θh = 1

m ∑m
i=1 σi(l(h, z′i) − l(h, zi)). Since

E[θh] = 0 and θh is an average of independent variables, each of which takes
values in the interval [−1, 1], we can use Hoeffding’s Inequality (Lemma 2.25) and
say that we have that for every ρ > 0

P[|θh| > ρ] ≤ 2exp(−2mρ2)

We can use the following lemma,

Lemma 2.42. Let X be a random variable and x′ ∈ R be a scalar and assume that there
exists a > 0 and b ≥ e such that for all t ≥ 0 we have P[|X − x′| > t] ≤ 2be−t2/a2

.
Then, E[|X − x′|] ≤ a(2 +

√
log(b)).

Using this lemma we can deduce that

E

[
max
h∈HC

|θh| > p

]
≤ 4 +

√
log(τH(2m))√

2m

Combining all with the definition of τH, we have shown that

E
S∼Dm

[
sup
h∈H

|LD(h)− LS(h)|
]
≤ 4 +

√
log(τH(2m))√

2m

And it is now easy to deduce the equation from the Theorem we are proving,
which concludes the proof.

With these results being settled we can now proceed onto proving the Funda-
mental Theorem of PAC Learning.

Proof. (of Theorem 2.37) We have seen in the previous section about Uniform Con-
vergence that 1 → 2. The implications 2 → 3 and 3 → 4 are trivial as we have seen
that the definition of agnostic PAC learning is stronger than the definition of PAC
learning. The implications of 4 → 6 and 5 → 6 follow from the No-Free Lunch
Theorem. The difficult part is to prove that 6 → 1.

Let’s start by proving that if the VC-dimension is finite then the uniform con-
vergence property holds. From Sauer-Shelah-Perles’s Lemma 2.39 we have that for

32 Learning Theory

m > d, τH(2m) ≤ (2em/d)d. Combining this result with the previous Theorem
(2.40) we obtain that with probability of at least 1 − δ

|LS(h)− LD(h)| ≤
4 +

√
d log(2em/d)
δ
√

2m

For simplicity we can assume that
√

d log(2em/d) ≥ 4, hence

|LS(h)− LD(h)| ≤
1
δ

√
2d log(2em/d)

m

To ensure that the proceeding is at most ϵ we need that

m ≥ 2d log(m)

(δϵ)2 +
2d log(2ϵ/d)

(δϵ)2

It is easy to see that after some standard algebraic manipulation we obtain that
it is sufficient to assume that

m ≥ 4
2d

(δϵ)2 log
(

2d
(δϵ)2

)
+

4d log(2ϵ/d)
(δϵ)2

We can deduce from this result that the |HC | grows polynomially with |C|.
Which means it has a small effective size, and we have seen that this means it has
the uniform convergence property.

2.6 Summary

In this chapter we have introduced the fundamentals of Learning Theory, first
of all we have established methods to obtain predictors by minimizing their error
with a training dataset, but as we cannot calculate the true error as we don’t know
the expected result for every prediction, we have used the empirical error. Like
this we have established the empirical risk minimization rule.

We have then formally defined what learning means, making it clear that it
always depends on a probability, as our learning process has an inevitable chance
to fail, and a tolerance, as the output predictor cannot be completely accurate, this
is the probably approximately correct learning theory. We have also seen a more
general approach removing the realizabilty assumption, the agnostic PAC learning
theory.

We have then defined when does a hypothesis class has the uniform conver-
gence property and we have used this condition to prove that every finite hypoth-
esis class is learnable if it has the mentioned property.

2.6 Summary 33

We have then seen our first fundamental result in learning theory, the No-Free
Lunch Theorem, which states that there is no learning algorithm that can work
in every possible learning scenario, in other words, for every learning algorithm,
there exists a learning scenario where it fails, but another algorithm would suc-
ceed.

In the last section we have discussed about the VC-dimension, which gives us
even more information about the learning possibilities. Formally, we have proved
the Fundamental Theorem of PAC learning, which states that a hypothesis class is
learnable if and only if its VC-dimension is finite.

Now we will explore a topic that is a direct application of what we have just
seen, and that is also relevant nowadays: the out of distribution detection.

34 Learning Theory

Chapter 3

Out of distribution Detection

Imagine we want to train an algorithm that is able to detect which number has
been handwritten. First we will collect a lot of handwritten numbers and we will
use them as training data for our learner. Let’s say we achieve a high accuracy, for
the purpose let’s assume we get up to a 100% accuracy, in other words a true loss
of 0. This means that every number that we could write would be recognized by
our algorithm.

What would happen if instead of a number we tried to predict a letter, let’s say
an L? We could argue that the algorithm would predict that it is a 1, as they have
similar shapes.

We observe that even with a perfect algorithm we are not able to predict this
instance correctly. This is because the algorithm has been trained to detect only
numbers, not letter, indeed, the letter L is a novelty and trying to detect it is
known as novelty detection (see [6]). More generally we want to know if it would
be possible for an algorithm to learn to detect when we are making predictions on
instances out of the distribution of the label’s training set.

This is known as out of distribution detection (OOD detection) and it has a
huge impact on nowadays learning requirements for algorithms. It can be applied
to medicine to detect new diseases, in automotive so autonomous cars can react
in situations they haven’t been trained for, or even in cybersecurity to detect some
suspicious behaviours in a user or software.

The term of out of distribution detection appeared for the first time in 2017 and
since then has received increasing attention from the research community, lead-
ing to plenty of methods developed, ranging from classification-based to density-
based to distance-based ones.

Since this topic is extremely vast and still being researched, we will only be
able to introduce it and see some results using the knowledge from the previous
chapters. Certain proofs are rather extensive, for this reason we won’t see them

35

36 Out of distribution Detection

is this work. Nonetheless we will define the key concepts in order to formalize
whether out of distribution detection is learnable or not, and we will prove a few
results. We will try to find conditions that are necessary (and hopefully sufficient)
for learnability of the OOD detection.

3.1 Redefining the key concepts

As we may expect, some key concepts introduced in the previous chapter have
to be revised as not all of them can be used in the same way. The most obvious
one is the label space. We know that we don’t necessarily want to classify OOD
data into the correct OOD classes, but we still want to detect it as OOD data. For
this reason and without loss of generality, let all OOD data be allocated into one
big OOD class.

Definition 3.1. Let Y = {1, . . . , K} be the labels space of the training data. If YO =

{K + 1} is the class of OOD data, we can redefine the labeling space as Yall = Y ∪ YO.
The feature space remains the same as before X ⊂ Rd.

We also have to redefine the concept of distribution, as now, the training and
testing data are from different distributions.

Definition 3.2. We define the in distribution (ID) joint distribution DXIYI over
X × Y , where XI ∈ X and YI ∈ Y are random variables. We also define the out of
distribution (OOD) joint distribution DXOYO , where XO is a random variable from
X , and YO is a random variable whose outputs do not belong to Y . We can now define
the mixture distribution as DXY = (1 − πout)DXIYI + πoutDXOYO where πout is the
unknown class-prior probability.

We also have to redefine the hypothesis class, as the label space is different
from the previous chapter.

Definition 3.3. We define the hypothesis space as H = {h : X → Yall}. We also set
Hin = {h : X → Y} as the ID hypothesis space. Also Hb = {h : X → {1, 2}} will
be the hypothesis space for binary classification, where 1 represents the ID data, and
2 represents the OOD data.

The definition of loss and risk function is pretty similar

Definition 3.4. Given a loss function l : Yall ×Yall → R≥0 satisfying that l(y1, y2) =

0 ⇐⇒ y1 = y2 and any h ∈ H, then the risk function with respect to DXY is:

RD(h) = E
(x,y)∼DXY

l(h(x), y)

3.2 Relation with PAC learning 37

Similarly the α-risk function is defined as

Rα
D = (1 − α)Rin

D(h) + αRout
D (h), ∀α ∈ [0, 1]

where
Rin
D(h) = E

(x,y)∼DXI YI

l(h(x), y), Rout
D (h) = E

x∼DXO

l(h(x), K + 1)

As we can observe, all the definition are a simple extension of the ones we
saw in the previous chapter, adding the OOD data that we could encounter with
a certain unknown probability (πout).

We can now proceed onto defining the key concepts of this chapter. First we
will define formally what an algorithm is to be able to then define the learnability
of OOD detection.

Definition 3.5. an algorithm is a mapping from ∪+∞
n=1(X ×Y)n to H.

Definition 3.6. Given a domain space DXY and a hypothesis space H = {h : X → Yall},
we say that OOD detection is learnable in DXY for H if there exists an algorithm
A : ∪+∞

n=1(X × Y)n → H and a monotonically decreasing sequence ϵcons(n), such that
ϵcons(n) →

n→+∞
0 and for any domain DXY,

E
S∼Dn

XI YI

[RD(A(S))− in f
h∈H

(RD(h))] ≤ ϵcont(n)

An algorithm A for which this holds is said to be consistent with respect to DXY

3.2 Relation with PAC learning

We will now see our first result, which is going to help us link this chapter to
the previous one. We will see that the previous definition is a natural extension of
agnostic PAC learning when l is bounded.

Corollary 3.7. Given a domain space DXY and a hypothesis space H, out of distribution
detection is learnable in DXY for H if and only if H is PAC learnable in DXY.

Proof. We will prove in the first place that OOD detection learnability implies PAC
learnability.

According to definition (3.6)

E
S∼Dn

XI YI

[RD(A(S))− in f
h∈H

(RD(h))] ≤ ϵcont(n)

We will use the Markov’s inequality which tells us:

38 Out of distribution Detection

Lemma 3.8. (Markov’s Inequality) If Z is a non-negative random variable, we have

∀a ≥ 0, P[Z ≥ a] ≤ E[Z]

a
Because E[RD(A(S))− in f

h∈H
(RD(h)) ≥ 0 we can use this inequality and have,

P[RD(A(S))− in fh∈HRD(h) < ϵ] > 1 − E
S∼Dn

XI YI

[RD(A(S))− in f
h∈H

(RD(h))]/ϵ

≥ 1 − ϵcons(n)/ϵ

Because ϵcons(n) is monotonically decreasing, we can find a smallest m such
that ϵcons ≥ ϵδ and ϵcons(m − 1) > ϵδ, for δ ∈ (0, 1). We define that m = m(ϵ, δ).
Therefore, for any ϵ > 0 and δ ∈ (0, 1), there exists a function m(ϵ, δ), such that
when n > m(ϵ, δ), with the probability at least 1 − δ, we have

RD(A(S))− in f
h∈H

RD(h) > ϵ

which is the definition of PAC learnability.
Now we will proceed onto proving that PAC learnability implies OOD detec-

tion learnability.
From the definition of PAC learnability we know that for ϵ > 0 and δ ∈ (0, 1),

there exists a function m(ϵ, δ) such that when the sample size n > m(ϵ, δ), we have
that with probability at least 1 − δ,

RD(A(S))− in f
h∈H

RD(h) ≤ ϵ

Note that the loss function l has upper bound because Yall is finite, we as-
sume that the upper bound of l is M. Hence according to the definition of PAC
learnability, when the sample size n > m(ϵ, δ), we have that

ES[RD(A(S))− in f
h∈H

RD(h)] ≤ ϵ(1 − δ) + 2Mδ < ϵ + 2Mδ

If we set δ = ϵ, then when the sample size n > m(ϵ, ϵ), we have that

ES[RD(A(S))− in f
h∈D

RD(h)] < (2M + 1)ϵ

This implies that

lim
n→+∞

ES[RD(A(S))− in f
h∈D

RD(h)] = 0,

which implies the OOD detection learnability.

3.3 Learning in prior-unknown spaces 39

Since OOD data is not available during the training phase, it is impossible to
know the class-prior probability, indeed, in the real world, πout can be any value
in [0, 1). Therefore, the imbalance issue between ID and OOD data, and the prior-
unknown issue are the core challenges. To eliminate this issue we can revise the
equation from the definition (3.6)

E
S∼Dn

XI YI

[Rα
D(A(S))− in f

h∈H
(Rα

D(h))] ≤ ϵcont(n), ∀α ∈ [0, 1]

If an algorithm A satisfies this equation, then the imbalance issue and the
prior-unknown issue disappear. That is, A can simultaneously classify ID data
and detect OOD data. Based on this, we can define the strong learnability of OOD
detection.

Definition 3.9. Given a domain space DXY and a hypothesis space H = {h : X → Yall},
we say that OOD detection is strongly learnable in DXY for H if there exists an
algorithm A : ∪+∞

n=1(X × Y)n → H and a monotonically decreasing sequence ϵcons(n),
such that ϵcons(n) →

n→+∞
0 and for any domain DXY,

E
S∼Dn

XI YI

[Rα
D(A(S))− in f

h∈H
(Rα

D(h))] ≤ ϵcont(n)

An algorithm A for which this holds is said to be consistent with respect to DXY

Recall the the learnability of supervised learning depends only on the hypoth-
esis space, as we have seen in the previous chapter the learnability depends only
on the finitness of the VC-dimension, which is calculated based on properties of
the hypothesis class. In other words, PAC learnability was distribution free, i.e.,
the set of domains was the set of all domains. However, due to the absence of
OOD data, during the training process, it is obvious that the learnability of OOD
detection is not distribution free. The goal of the theory is now pretty clear:

Goal: given a hypothesis space H and several representative domain spaces
DXY, what are the conditions to ensure the learnability of OOD detection? Are
these conditions sufficient in some scenarios?

3.3 Learning in prior-unknown spaces

Definition 3.10. If DXY is the set of all possible domains, we say that DXY is a priori-
unknown space, if for any domain DXY ∈ DXY and any α ∈ [0, 1), we have Dα

XY =

(1 − α)DXIYI + αDXOYO ∈ DXY.

40 Out of distribution Detection

Theorem 3.11. Given a domain space DXY and D′
XY = {Dα

XY : ∀DXY ∈ DXY, ∀α ∈
[0, 1)}, then

1. D′
XY is a priori-unknown space and DXY ⊂ D′

XY

2. if DXY is a priori- unknown space, then definition (3.6) and definition (3.9) are
equivalent.

3. OOD detection is strongly learnable in DXY if and only if OOD detection is learn-
able in D′

XD

We won’t demonstrate in detail this result but we can find the proof in [4]
Appendix E.

3.4 Impossibility Theorems for OOD detection

We will now state a condition that determines whether OOD detection is learn-
able or not.
Condition 1 (Linear condition). For any DXY ∈ DXY and any α ∈ [0, 1)

in f
h∈H

Rα
D(h) = (1 − α)in f

h∈H
Rin
D + αin f

h∈H
Rout
D (h).

Theorem 3.12. Given a hypothesis set H and a domain DXY, OOD detection is learnable
in the single-distribution space D

DXY
XY = {Dα

XY : ∀α ∈ [0, 1)} for H if and only if the
linear condition holds.

This result tells us that Condition 1 is important for learnability of OOD de-
tection. Due to the simplicity of single-distribution spaces, Theorem (3.12) implies
that Condition 1 is necessary for learnability. The proof of this Theorem is rather
extensive and requires previous definitions and results, for this reason we won’t
see it here, but it can be found in [4] Appendix F. We will now see another result
that shows that Condition 1 is not sufficient, especially, when there is an overlap
between ID and OOD distributions.

Definition 3.13. We say that the domain DXY has overlap between ID and OOD distri-
butions if there is a σ-finite measure µ̃ such that DX is absolutely continuous with respect
to µ̃ and µ̃(Aoverlap) > 0, where Aoverlap = {x ∈ X : f I(x) > 0 and fO(x) > 0}. Here
f I and fO are the representers of DXI and DXO such that

DXI =
∫

f Idµ̃ DXO =
∫

fOdµ̃

3.4 Impossibility Theorems for OOD detection 41

Theorem 3.14. Given a hypothesis space H and a prior-unknown space DXY, if there
is DXY ∈ DXY, which has overlap between ID and OOD, and in fh∈HRin

D = 0 and
in fh∈HRout

D = 0, then Condition 1 does not hold. Therefore, OOD detection is not learn-
able in DXY for H.

Proof. We will first explain how we get f I and fO. Since DX is absolutely con-
tinuous respect to µ(DX << µ), then DXI << µ and DXO . By Radon-Nikodym
Theorem (see [5]), we know there exist two non-negative functions defined over
X : f I and fO such that for any µ-measurable set A ⊂ X

DXI (A) =
∫

A
f I(x)dµ(x), DXO(A) =

∫
A

fO(x)dµ(x)

Secondly, we prove that for any α ∈ (0, 1), in fh∈HDα
D(h) > 0

We define Am = {x ∈ X : f I(x) ≥ 1
m and fO(x) ≥ 1

m}. It is clear that

∪+∞
m=1Am = {x ∈ X : f I(x) > 0 and fO(x) > 0} = Aoverlap

and

Am ⊂ Am+1

Therefore,

lim
m→+∞

µ(Am) = µ(Aoverlap) > 0

which implies that there exists m0 such that

µ(Am0) > 0

For any α ∈ (0, 1), we define

cα = miny1∈Yall ((1 − α)miny2∈Y l(y1, y2) + αl(y1, K + 1)).

42 Out of distribution Detection

It is clear that cα > 0 for α ∈ (0, 1). Then, for any h ∈ H,

Rα
D(h) =

∫
X×Yall

l(h(x), y)dDα
XY(x, y)

=
∫
X×Y

(1 − α)l(h(x), y)dDXIYI (x, y) +
∫
X×{K+1}

αl(h(x), y)dDXOYO(x, y)

≥
∫

Am0×Y
(1 − α)l(h(x), y)dDXIYI (x, y) +

∫
Am0×{K+1}

αl(h(x), y)dDXOYO(x, y)

=
∫

Am0

((1 − α)
∫
Y

l(h(x), y)dDYI |XI
(y|x))dDXI (x) +

∫
Am0

αl(h(x), K + 1)dDXO(x)

≥
∫

Am0

(1 − α)min
y2∈Y

l(h(x), y2)dDXI (x) +
∫

Am0

αl(h(x), K + 1)dDXO(x)

≥
∫

Am0

(1 − α)min
y2∈Y

l(h(x), y2) f I(x)dµ(x) +
∫

Am0

αl(h(x), K + 1) fO(x)dµ(x)

≥ 1
m0

∫
Am0

(1 − α)min
y2∈Y

l(h(x), y2)dµ(x) +
1

m0

∫
Am0

αl(h(x), K + 1)dµ(x)

≥ 1
m0

∫
Am0

(1 − α)min
y2∈Y

l(h(x), y2) + αl(h(x), K + 1)dµ(x)

≥ cα

m0
µ(Am0) > 0

(3.1)

Therefore,
in f
h∈H

Rα
D(c) ≥

cα

m0
µ(Am0) > 0

Condition 1 indicates that

in f
h∈H

Rα
D(h) = (1 − α)in f

h∈H
Rin
D + αin f

h∈H
Rout
D (h) = 0

which contradicts what we have just seen. Therefore, Condition 1 does not hold,
we obtain with this that OOD detection is not learnable for H, which completes
the proof.

This Theorem shows us that under proper conditions, Condition 1 does not
hold, if there exists a domain whose ID and OOD distribution have an overlap.
Therefore OOD detection is not learnable. A similar result can be proved for the
total space for any non trivial hypothesis space.

Definition 3.15. The total space Dall
XY is the set of all possible domains.

Theorem 3.16. OOD detection is not learnable in the total space Dall
XY for H, if |ϕ ◦H| >

1, where ϕ maps ID labels to 1 and maps OOD labels to 2.

3.4 Impossibility Theorems for OOD detection 43

Proof. We need to prove that OOD detection is not learnable in the total space
Dall

XY for H, if H is non-trivial, i.e., {x ∈ X : ∃h1, h2 ∈ H, s.t, h1(x) ∈ Y , h2(x) =

K + 1} ̸= 0.
The main idea is to construct a domain DXY satisfying that:

1. the ID and OOD distribution have an overlap

2. Rin
D(h1) = 0, Rout

D (h2) = 0

According to the condition that H is non-trivial, we know that there exists
h1, h2 ∈ H such that h1(x1) ∈ Y , h2(x1) = K + 1, for some x1 ∈ X . We set
DXY = 0.5 ∗ δ{x1,h1(x1)} + 0.5 ∗ δ{x1,h2(x1)}, where δ is the Dirac measure. It is easy
to check that Rin

D(h1) = 0, Rout
D (h2) = 0, which implies that in fh∈HRin

D(h) = 0
and in fh∈HRout

D (h) = 0. In addition, the ID distribution δ{x1,h1(x1)} and the OOD
distribution δ{x1,h2(x1)} has an overlap x1. By using the Theorem (3.14) we complete
the proof.

Since the overlaps in the ID and OOD distributions may cause that Condition
1 does not hold we can now try to consider studying the learnability of OOD
detection in separate spaces where there are no overlaps between ID and OOD
distributions.

Definition 3.17. The separate space Ds
XY is the set of the domains that satisfy the

separate condition, that is for any DXY ∈ Ds
XY, supp(DXO) ∩ supp(DXI) ̸= ∅, supp

is the support space defined as supp(f) = {x ∈ X : f (x) ̸= 0}

Definition 3.18. We say that a hypothesis space H is separate for OOD, if for each
data point x ∈ X , there exists at least one hypothesis function hx ∈ H such that hx(x) =
K + 1.

With this definition we can state the last Theorem of impossibility of the learn-
ability of OOD detection.

Theorem 3.19. If a hypothesis set H is separate for OOD, VCdim(ϕ ◦ H) < +∞ and
suph∈H|{x ∈ X : h(x) = y}| = +∞. Then OOD detection is not learnable in separate
space DXY for H, where ϕ maps ID data to 1, and maps OOD data to 2.

As we saw in the previous chapter, the finiteness of VC-dimension should
imply learnability of OOD, but this Theorem states that in this particular case, it
cannot guarantee the learnability as we are in separate spaces. The proof of this
result can be found in [4] Appendix H. We will now see some scenarios where the
learnability of OOD detection is possible.

44 Out of distribution Detection

3.5 Possibility Theorems of OOD detection

In this section we will try to find some conditions where OOD detection can
be learnable, we will start where we left it in the previous section: in the case of
separate spaces.

The last stated Theorem shows us conditions under which OOD detection is
not learnable in separate spaces. Formally, we say that VCdim(ϕ ◦ H) < +∞
and suph∈H|{x ∈ X : h(x) = y}| = +∞ are necessary conditions so that OOD
detection is not learnable, we can ask ourselves what would happen if we remove
one of the conditions.

Generally, hypothesis spaces generated in practice have finite VC-dimension,
therefore we will study the case |X | < +∞ which implies that suph∈H|{x ∈ X :
h(x) = y}| = +∞.

For simplicity we will consider the special case where K = 1. This is also
known as the one class novelty detection, as our learning distribution consists of
only one class, and we are trying to learn to detect any new class. We will show
the necessary and sufficient condition for learnability of OOD detection in Ds

XY,
when |X | < +∞.

Theorem 3.20. Let K = 1 and |X | < +∞. Also let H be a hypothesis class which is
separate for OOD data and the constant hin := 1 ∈ H. Then OOD detection is learnable
in Ds

XY for H if and only if Hall − {hout} ⊂ H, where Hall is the set of all hypothesis
functions and hout is a constant function hout := 2, here 1 represents ID data and 2
represents OOD data.

The proof of this result is also pretty long and requires some previous results
and unseen definitions, but the proof can be found in [4] Appendix I. We will state
and prove an extension of this result to a more general case, for K > 1. We will
use a binary classifier hb to classify ID and OOD data. Then another classifier can
be used to classify the ID data in each ID class.

For that purpose we will construct a hypothesis class H composed of Hin, the
hypothesis class for ID data, and Hb, the hypothesis class for binary classification
for ID or OOD data. The hypothesis in H will have the form of

h(x) =

{
i if hin(x) = i and hb(x) = 1

K + 1 otherwise

Let’s first state a necessary condition first.
Condition 2: l(y2, y1) ≤ l(K + 1, y1), for any ID labels y1 and y2 ∈ Y .

3.5 Possibility Theorems of OOD detection 45

Theorem 3.21. Let |X | < +∞ and H = Hin • Hb. If Hall − {hout} ⊂ Hb and
Condition 2 holds, then OOD detection is learnable in Ds

XY for H, where Hall and hout

are defined as in the previous Theorem.

Proof. Since |X | < +∞ we know that |H| < +∞. This implies that Hin is agnostic
PAC learnable for supervised learning. Therefore, there exists an algorithm Ain :
∪+∞

n=1(X × Y)n → Hin and a monotonically decreasing sequence ϵ(n) →
n→+∞

0 and

for any DXY ∈ Ds
XY

E
S∼Dn

XI YI

Rin
D(Ain(S)) ≤ in f

h∈Hin
Rin
D(h) + ϵ(n) (3.2)

Since |X | < +∞ and Hb almost contains all binary classifiers, then using Theorem
(3.20) and Theorem (3.11), we obtain that there exists an algorithm Ab : ∪+∞

n=1(X ×
{1, 2})n → Hb and a monotonically decreasing sequence ϵ′(n) →

n→+∞
0 and for any

DXY ∈ Ds
XY

E
S∼Dn

XI YI

Rin
ϕ(D)(Ab(ϕ(S))) ≤ in f

h∈Hb
Rin

ϕ(D)(h) + ϵ′(n) (3.3)

E
S∼Dn

XI YI

Rout
ϕ(D)(Ab(ϕ(S))) ≤ in f

h∈Hb
Rout

ϕ(D)(h) + ϵ′(n), (3.4)

where ϕ maps ID data to 1 and OOD data to 2.

Rin
ϕ(D)(Ab(ϕ(S))) =

∫
X×Y

l(Ab(ϕ(S))(x), ϕ(y))dDXIYI (x, y) (3.5)

Rin
ϕ(D)(h) =

∫
X×Y

l(h(x), ϕ(y))dDXIYI (x, y) (3.6)

Rout
ϕ(D)(Ab(ϕ(S))) =

∫
X×{K+1}

l(Ab(ϕ(S))(x), ϕ(y))dDXOYO(x, y) (3.7)

Rout
ϕ(D)(h) =

∫
X×{K+1}

l(h(x), ϕ(y))dDXOYO(x, y), (3.8)

here ϕ(S) = {(x1, ϕ(y1) . . . , (xn, ϕ(yn))} if S = {(x1, y1), . . . , (xn, yn)}.
Note that Hb almost contains all classifiers, and Ds

XY is the separate space.
Hence,

E
S∼Dn

XI YI

Rin
ϕ(D)(Ab(ϕ(S))) ≤ ϵ′(n), E

S∼Dn
XI YI

Rout
ϕ(D)(Ab(ϕ(S))) ≤ ϵ′(n) (3.9)

Next, let’s construct an algorithm A using Ain and Ab.

46 Out of distribution Detection

A(S)(x) =

{
K + 1, if Ab(ϕ(S))(x) = 2

Ain(S)(x) if Ab(ϕ(S))(x) = 1

Since in f
h∈H

Rin
ϕ(D)(ϕ ◦ h) = in f

h∈H
Rout

ϕ(D)(ϕ ◦ h) = 0, we can use Condition 2 to check

that
in f

h∈Hin
Rin
D(h) = in f

h∈H
Rin
D(h)

Additionally, the risk function Rin
D(A(S)) is from two parts: one part is about

ID data detected as OOD data and the other part about ID data detected as ID
data, but classified in the wrong class. Therefore, we have the inequality

E
S∼Dn

XI YI

Rin
D(A(S)) ≤ E

S∼Dn
XI YI

Rin
D(A(S)) + c E

S∼Dn
XI YI

Rin
ϕ(D)(Ab(ϕ(S)))

≤ in f
h∈Hin

Rin
D(h) + ϵ(n) + cϵ′(n)

= in f
h∈H

Rin
D(h) + ϵ(n) + cϵ′(n),

(3.10)

where c = max
y1,y2∈Y

l(y1, y2)/min(l(1, 2), l(2, 1))

Note that the risk Rout(A(S)) is about OOD being detected as ID data. There-
fore,

E
S∼Dn

XI YI

Rout
D (A(S)) ≤ c E

S∼Dn
XI YI

Rout
ϕ(D)(Ab(ϕ(S)))

≤ cϵ′(n)

≤ in f
h∈H

Rout
D (h) + cϵ′(n)

(3.11)

Note that (1 − α)in f
h∈H

Rin
D(h) + αin f

h∈H
Rin
D(h) ≤ in f

h∈H
Rα
D(h). Then, using the equation

(3.10) and the equation (3.11), we obtain that for any α ∈ [0, 1]

E
S∼Dn

XI YI

Rα
D(A(S)) ≤ in f

h∈H
Rα
D(h) + ϵ(n) + cϵ′(n)

According to the second result of theorem (3.11), we complete the proof.

3.6 Conclusion and continuation

We have introduced in this chapter the concept of out of distribution detection,
which is, in other words, a generalization of learning theory, as we are assuming
that the training data and the testing data may differ in a more practical scenario.

3.6 Conclusion and continuation 47

We may wish to find a Fundamental Theorem that would state some necessary
and sufficient conditions for learnability of out of distribution detection. But as
this topic is recent and still being investigated such result still doesn’t exist.

Nowadays, researchers can estimate the performance of out of distribution
detection by using functions like AUROC (Area Under Receiving Operator Char-
acteristic), AUPR (Area Under Precision Recall) and FPR95 (False Positive Rate at
95%).

Also some other results exist in other scenarios. For example it would be worth
investigating the conditions and efficiency of OOD detection where the ID space
is finite. Moreover this is a more realistic scenario, as in practice we will only be
able to collect a finite ID dataset.

Some other spaces can be studied, like density-based spaces D
µ,b
XY, which are

prior-unknown spaces consisting of some domains satisfying that: for any DXY,
there exists a density function f with

1
b
≤ f ≤ b in supp(µ) and 0.5 · DXI + 0.5 · DXO =

∫
f dµ,

where µ is a measure defined over X .
In any case, I would definitely keep an eye on this topic as it will evolve quickly

in the next years and will have a huge impact on Learning Theory and Machine
Learning.

48 Out of distribution Detection

Bibliography

[1] L.G. Valiant, A theory of the learnable, David Waltz Editor, (1984).

[2] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From
theory to algorithms, Cambridge University, Cambridge University Press,
(2014), 19-78.

[3] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learn-
ing, MIT Press, ed. 2, (2018), 1-50.

[4] Z.Fang, Y. Li, J.Lu, J. Dong, B. Han, F. Liu Is Out-Of-Distribution Detection
Learnable, in NeurIPS, (2022)

[5] Donald L Cohn, Measure theory, Springer, (2013)

[6] Jingkang Yang, Kaiyang Zhou, Yixuan Li, Ziwei Liu, Generalized Out-of-
Distribution Detection: A Survey, (2024)

[7] Michael J. Kearns, Umesh V. Vazirani, An Introduction to Computational Learn-
ing Theory, The MIT Press, (1994).

49

