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Abstract 

Gifted children learn more rapidly and effectively than others, presumably due to neurophysiological differences 

that affect efficiency in neuronal communication. Identifying the topological features that support its capabilities 

is relevant to understanding how brain structure relates to intelligence. We proposed the analysis of the 

structural covariance network to assess which organizational patterns are characteristic of gifted children. Graph 

theory was used to analyse topological properties of structural covariance across a group of gifted children. The 

analysis was focused on measures of brain network integration, such as, participation coefficient and versatility, 

which quantifies the strength of specific modular affiliation of each regional node. We found that the gifted 

group network was more integrated (and less segregated) than the control group network. Brain regional nodes 

in the gifted group network had higher versatility and participation coefficient, indicating greater inter-modular 

communication mediated by connector hubs with links to many modules. Connector hubs of the networks of 

both groups were located mainly in association neocortical areas (which had thicker cortex), with fewer hubs in 

primary or secondary neocortical areas (which had thinner cortex), as well as a few connector hubs in limbic 

cortex and insula. In the group of gifted children, a larger proportion of connector hubs were located in 

association cortex. In conclusion, gifted children have a more integrated and versatile brain network topology. 

This is compatible with global workspace theory and other data linking integrative network topology to 

cognitive performance. 

 

Keywords: structural covariance, gifted children, cortical thickness, connectome, module, magnetic resonance 

imaging. 
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1. INTRODUCTION 

Intelligence is an attribute that is present in the most cognitively evolved species, etymologically derived from 

the Latin word intelligentia, which means the ability to learn and comprehend. Intelligence is related to the 

ability to solve problems, make decisions and adapt more efficiently to the environment. The neocortex of the 

brain is responsible for the implementation of intelligent cognitive processes, particularly in the associative 

areas, such as prefrontal and inferior parietal cortex.  

 

The first tests of intelligence were created in the early twentieth century (Binet & Simon, 1916) and since 1926 

the intelligence quotient (IQ) has been widely used as a measure of intelligence (Binet & Simon, 1948). 

Wechsler created the most famous and widely used intelligence test and proposed a general definition of 

intelligence as an “individual's ability to adapt and constructively solve problems in the environment” 

(Wechsler, 1939). Intelligence, therefore, is a very broad concept that involves the individual's ability to execute 

an action successfully. The concept includes cognitive intelligence and emotional intelligence. For cognitive 

intelligence we mean the reasoning, memorizing, or use of language to solve problems, while emotional 

intelligence is the set of skills that enable better adaptation to our social environment. Intelligence has also been 

sub-divided, based on its biological or cultural components, into fluid intelligence or crystallized intelligence 

(Davies et al., 2011). The development of intelligence is not static, since it depends on the processes of synaptic 

plasticity and axonal myelination of the brain, and these can be activated during life, provided that the brain has 

an appropriate stimulation (Chevalier et al., 2015; Fields, 2008; Goh et al., 2011). A recent review on human 

neuroimaging findings of structural plasticity can be found in Zatorre, Fields, & Johansen-Berg, 2012.  

 

The term giftedness describes the combination of higher IQ and enhanced executive functioning with 

exceptional creativity and higher motivation (Navas-Sánchez et al., 2016). Gifted children have two important 

characteristics (i) their unique cognitive functioning that uses different strategies for problem solving and (ii) 

their differential mental maturity that reveals a way of thinking more characteristic of older children (Geake, 

2008). Gifted children learn faster and in a more effective way, presumably because of neurophysiological 

differences (Gross, 2006). They have greater interconnectivity between different areas of their brains, 

specifically between hemispheres across the corpus callosum, and between prefrontal and parietal associative 

areas (Navas-Sánchez et al., 2014). It has been found that the brains of math-gifted adolescents mature faster 

than age and gender matched subjects (Navas-Sánchez et al., 2016; Zhang, Gan, & Wang, 2017). 
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The study of structural covariance networks (SCNs) allows us to examine the anatomical connectivity of 

cortical regions, defined as the correlation of cortical thickness or volume between pairs of brain regions 

measured in a sample of magnetic resonance imaging (MRI) data (Alexander-Bloch, Giedd, & Bullmore, 2013; 

Evans, 2013). Structural covariance between regions can be used to construct graphs or connectomes 

representing the strongest correlations as edges drawn between regional nodes. Several studies have been 

carried out analysing structural covariance networks in healthy subjects (Khundrakpam et al., 2013; Zielinski, 

Gennatas, Zhou, & Seeley, 2010), and in groups of patients with disorders including  autism, attention deficit 

hyperactivity disorder, schizophrenia or Alzheimer’s disease (Bassett et al., 2008; Bethlehem et al., 2017; He et 

al., 2009; Sharda et al., 2016). These results are compatible with previous reports of a positive association 

between the global efficiency of functional brain networks and intellectual performance (van den Heuvel et al., 

2009). Moreover, recently a study of the relationship between non-verbal intellectual ability and structural 

network organization showed a strong positive association between the network’s global efficiency and 

intelligence: non-verbal higher intellectual ability children have brain networks that are more highly integrated 

at both global and local levels (Kim et al., 2016). And in a study of 14-25-year-old healthy young people, 

individual differences in the degree of association cortical hub nodes explained about 40% of the variance in 

verbal and non-verbal IQ (Seidlitz et al., 2018). 

 

In the present study, we propose a new approach for understanding structural brain organisation of giftedness 

based on the graph theoretical analysis of structural covariance networks from gifted and control groups. We 

were hypothetically motivated by prior theory and experimental data indicating that giftedness should be 

associated with more integrative brain network topology (Kim et al., 2016). The analysis therefore focused on 

global measures of brain network integration, such as efficiency or path length, and nodal measures of 

connectivity between modules (participation coefficient) and affiliation to more than one module (versatility). 

 

2. MATERIALS AND METHODS 

2.1 Participants 

The sample consisted of 29 healthy right-handed male subjects with no history of psychiatric or neurological 

disorder: a control group (CG, n=14, age=12.53±0.77, IQ=122.71±3.89) and a gifted group (GG, n=15, 

age=12.03±0.54, IQ=148.80±2.93). The groups were not significantly different in terms of age. Criteria for 

gifted children included having an IQ in the very superior range, and also having a performance above the 90th 
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percentile in three of the following aptitudes: spatial, numerical, abstract reasoning, verbal reasoning and 

memory (Santamaría et al., 2005). After providing a complete description of the study to all participants, written 

and verbal informed consent was obtained from a parent and affirmed assent was obtained from the children. 

The research ethics committee Institutional Review Board (IRB00003099) of the University of Barcelona 

(Catalonia) approved the study. 

The raw (anonymized) MRI data and the cortical thickness data are available in the OpenNeuro repository 

(https://openneuro.org/datasets/ds001988). 

 

2.2 Magnetic resonance imaging 

All participants were examined on a 3T MRI scanner (Magnetom Trio Tim, Siemens Medical Systems, 

Germany) at the Centre de Diagnòstic per la Imatge in the Hospital Clínic of Barcelona. High-resolution T1-

weighted images were acquired with the MPRAGE 3D protocol (TR=2300 ms; TE=3 ms; TI=900 ms; 

FOV=244x244 mm2; 1 mm isotropic voxel). These images were pre-processed using FreeSurfer software v5.3 

to estimate regional cortical thickness (CT) from a three-dimensional cortical surface model using intensity and 

continuity information (Fischl and Dale, 2000). Two experienced independent researchers checked cortical 

reconstructions to ensure that all images passed quality control criteria. Each individual brain was parcellated in 

308 regions of approximately equal size (500 mm2 each). This parcellation atlas was constructed in the standard 

FreeSurfer template (fsaverage) by a backtracking algorithm that subdivides the regions defined in the Desikan-

Killiany atlas (Desikan et al., 2006), so that the final parcels were constrained by the original anatomical 

boundaries (Romero-Garcia et al., 2012). We warped the parcellation from the standard template to each 

individual’s MPRAGE native space using surface-based (non-linear) registration (mri_surf2surf, implemented 

in FreeSurfer). According to Ghosh et al., 2010, this approach provides better alignment of cortical landmarks 

than volume-based registration. Moreover, registering children's brains to a common space does not result in an 

age-associated bias between older and younger children, making it feasible to accurately compare structural 

properties and patterns of brain activation in children (Ghosh et al., 2010). Cortical thickness (CT) was 

estimated for each of the 308 cortical regions in each subject.  

 

Each region defined by the parcellation was assigned to a cytoarchitectonic class of cortex defined a priori by 

the von Economo classification (von Economo, 1929). Structural types were manually assigned to cortical 

regions based on visual comparison. The von Economo atlas subdivided the cortex into five types according to 

https://openneuro.org/datasets/ds001988
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the laminar structure of the cortex and roughly corresponding to functional cortical specializations. Briefly, 

regions with poor laminar differentiation, particularly the primary motor cortex/precentral gyrus are structural 

type 1, regions generally considered to be association cortices are structural types 2 and 3, while secondary and 

primary sensory areas are types 4 and 5, respectively. The original classification of structural types does not 

discriminate between true six-layered isocortex and mesocortex or allocortex, which have markedly different 

cytoarchitectures and ontogenies. We therefore defined two additional subtypes: limbic cortex which included 

the entorhinal, retrosplenial, presubicular and cingulate cortices, and thus primarily constitutes allocortex (type 

6); and the insular cortex which contains granular, agranular and dysgranular regions, and is therefore not 

readily assigned a single structural type (type 7) (Seidlitz et al., 2018; Váša et al., 2018; Vértes et al., 2016).  

 

2.3 Graph construction and modular decomposition 

Using the cortical thickness estimates for the 308 cortical regions in each subject, we estimated the correlation 

between thickness of pairs of cortical regions in each group of participants (Figure 1A, regions arranged 

according to the modular community structure of each group’s network). The structural covariance matrix is the 

{308×308} matrix of Pearson’s correlations between each possible pair of regions i and j in a sample of N=14 

(control group) or N=15 (gifted group).    

 

The minimum spanning tree (van Wijk et al., 2010) was used as the starting point for graph construction 

to ensure that all graphs were node-connected, even at the sparsest connection density. Additional edges were 

then included in order of decreasing inter-regional correlation until the graph had arbitrary connection density, 

defined as the number of edges divided by the maximum number of edges possible in a graph of N nodes, i.e., 

(N2-N)/2. We mainly focused on graphs constructed at 10% connection density, but several metrics and results 

were also tested over a range of connection densities.  

 

Each graph was decomposed into a modular community structure using the Louvain algorithm with arbitrary 

resolution parameter, g. This algorithm finds the modules or sub-graphs of the network with maximum 

modularity. When the resolution parameter, g, is small, the community structure is represented by a few large 

modules; as g is increased the community structure becomes more fine-grained, comprising a larger number of 

smaller modules. The Louvain algorithm does not find exactly the same community structure on repeated 

analysis of the same data at the same level of resolution, i.e., there is a stochastic element to the process of 
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modular decomposition. To define a stable modular partition, we used a consensus approach: we ran the 

community algorithm 1000 times and defined a consensus matrix {308×308} where the {i,j}th element 

represents the number of times that nodes i and j have been assigned to the same module across multiple 

iterations of the stochastic algorithm for modular decomposition. Finally, the community structure of the 

consensus matrix was analysed, resulting in a modular decomposition based on consensus over multiple 

iterations. 

 

2.4 Graph topology metrics 

We focused on two classes of graph theoretical measures of network topology: global integration/segregation 

and nodal “hubness”; see Fornito et al., 2016, for an introductory text on graph theory and neuroscience.  

 

Global integration was measured by mean participation coefficient and mean versatility. Global segregation was 

measured by clustering coefficient, and maximum modularity. All the measures were normalized by 

corresponding metrics estimated in 100 null-model networks in which the degrees of all nodes were strictly 

preserved (Maslov and Sneppen, 2002). We used Brain Connectivity Toolbox for global topological analysis 

(Rubinov and Sporns, 2010). 

 

Nodal “hubness” was measured in several ways. The simplest metric was the degree centrality, i.e., the number 

of edges 𝑘 that link it to the rest of the network. We used the cumulative degree distribution 𝑃(𝑘) =

∑ 𝑝(𝑘!)"!#"  to summarise the probability of hub nodes in both the control and gifted group networks. High 

degree hubs are known to be important for integrative global topology of brain networks. But degree is not the 

only way of measuring a node’s integrative role. In a modular network, by construction, connections are dense 

between nodes in the same module (intra-modular) but much sparser between modules (inter-modular). 

Communication between modules is thus a key challenge for modular network integration that can be addressed 

by a specific nodal topology. Nodes with high inter-modular degree compared to their intra-modular degree, or 

high participation coefficient, have been defined as characteristic of so-called connector hubs that mediate much 

of the inter-modular communication in complex spatial networks. 

 

Versatility (V) of nodal affiliation to communities was recently introduced as a metric to quantify how reliably a 

node in a modular decomposition is associated to a specific module (Shinn et al., 2017). A node with low 
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versatility, V ~ 0, will be very consistently assigned to the same module on repeated runs of the Louvain 

algorithm (or any other probabilistic algorithm for modular decomposition). Whereas a node with high 

versatility will be assigned to one of several different modules on repeated analysis, thus inconsistently assigned 

to any single module. The idea is to assign a low value of versatility to the pairs of nodes that, when repeatedly 

running the Louvain algorithm, are consistently affiliated to the same community or to a different community in 

a consistent way. These nodes are called provincial nodes. On the contrary, a high value of versatility must be 

associated to pairs that are assigned to different communities in different runs of the Louvain algorithm (Shinn 

et al., 2017). Versatility, V of node j is formally defined as:  

 

𝑉(𝑗) =
∑ 𝑠𝑖𝑛 -𝜋𝔼0𝑎(𝑖, 𝑗)34$

∑ 𝔼0𝑎(𝑖, 𝑗)3$
	 

 (1) 

where 𝔼 is expected value, and 𝑎(𝑖, 𝑗) is equal to 1 if 𝑖 and 𝑗 belong to the same community and 0 otherwise.  

 

2.5 Statistical inference 

Between-group differences in topological metrics were tested using a non-parametric permutation test where 

each subject was randomly assigned to one of the two groups. Metric differences between the resulting two 

random groups were used to create a reference distribution for each metric (1000 permutations) to reject or 

retain the null hypothesis of no difference between groups (P-value < 0.05). Due to the large number of 

comparisons entailed by hypothesis testing nodal statistics (like degree, versatility and participation coefficient) 

at each of 308 regional nodes in each network, P-values were corrected using the false discovery rate (FDR) 

with α<0.025. 

 

3. RESULTS 

Gifted children showed a cognitive profile that differed from the control group. Gifted children scored in the 

very superior range in the WISC's indices and had a better performance in the aptitude’s assessment (Table 1). 

 

(Table 1 goes about here) 

 

In relation to the brain structure, the structural covariance matrix for each group is shown in Figure 1A. Both 

groups had strongly positive pair-wise inter-regional correlations of cortical thickness that formed topological 
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clusters or modules. This is emphasised by the block diagonal representation of the matrices and is consistent 

with a modular community structure of the networks. 

 

Structural correlation strength decreased with increased anatomical distance between regions in both groups 

(Figure 1B). In other words, the strongest positive correlations of cortical thickness tended to be between 

regions that were anatomically located in close proximity to each other. The strength of structural correlation 

was generally weaker between regions that were separated by longer anatomical distances. This dependence of 

structural correlation on connection distance was significantly stronger in the gifted group network than in the 

control group network. The strength of correlation was significantly dependent on the interaction between group 

and anatomical distance (P<10-4, ANCOVA, F1,308=66.05).  

 

There was some hemispheric asymmetry in structural covariance. In the control group, the mean correlation 

between regions in the left hemisphere was significantly greater than the mean inter-regional correlation in the 

right hemisphere (r=0.534 for the CG, r=0.467 for the GG; P=0.023, non-parametric permutation test, FDR 

corrected; Figure 1C). However, in the gifted group, this pattern was reversed: right hemisphere regions had 

stronger intra-hemispheric correlation in the gifted group (r=0.457 for the CG; r=0.543 for the GG; P=0.023, 

non-parametric permutation test, FDR corrected; Figure 1C). 

 

3.1 Global network topology 

Standard measures of network segregation, i.e., normalized clustering coefficient and modularity, were 

significantly higher for the control group compared with the gifted group when both networks were thresholded 

at sparse connection densities, 5% to 8% (P<0.05 two-tailed, non-parametric permutation test, FDR corrected; 

see appendix, Figure S2). 

 

3.2 Nodal topology 

Figure 1D shows the cumulative degree distribution of each group network thresholded at 10% connection 

density. There was a higher probability of very high degree nodes in the gifted group. Degree and connection 

distance were significantly positively correlated in the control group network (r=0.21, P=0.0002, t-test) (Figure 

1E); but not in the gifted group (r=0.0008, P=0.99, t-test). In other words, high degree hubs in the control group 

network entailed more long-distance connectivity than high degree hubs in the gifted group network. The 
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difference between groups in the strength of the relationship between distance and degree was significantly 

different (P=0.0085, ANOVA, F1,612=6.98). 

 

(Figure 1 goes about here) 

 

3.3 Intra- and inter-modular degree 

Degree was calculated for both networks as the sum of connections within the module of the index node (intra-

modular degree) and the connections between the index node and nodes in other modules (inter-modular 

degree). The control group had higher intra-modular degree (mean=12.42) compared to the gifted group 

(mean=11.59), while inter-modular degree was higher for the gifted group (mean=19.11) compared with the 

control group (mean=18.28) (Figure 1F). The ratio of inter-modular:intra-modular degree was significantly 

different between groups (P=0.0179, Mann-Whitney U test, df = 307), with the gifted group having the higher 

ratio (see appendix, Figure S3). 

 

Topological maps of the modular organization are presented in Figure S4. Brain networks have a hierarchical 

modular community structure which can be resolved at many levels; here we focus on the community structure 

defined when the resolution parameter g=2. In both groups, the inner circle contains all the nodes with at least 

one connection to nodes in other modules. The outer ring contains nodes that have connections only to other 

nodes in the same module (same colour). We can see that the control group network has more intra-modular 

connections and fewer inter-modular connections than the gifted group.  

 

3.4 Participation coefficient and versatility 

The role of the nodes in the community structure was analysed using two different measures: participation 

coefficient and versatility, a recently proposed measure to assess the consistency of which each node is affiliated 

to a specific module (Shinn et al., 2017). Interestingly, both participation coefficient and versatility were 

significantly higher for the gifted group than for the control group (P=0.0061 for participation coefficient and 

P<10-10 for versatility, Mann-Whitney U test, df =307; Figure 1G). Similar results were obtained at 5% and 15% 

connection densities (Figure S5). Moreover, mean versatility and mean participation coefficient were always 

higher for the gifted group compared to the control group over a range of modular resolution parameters 

(1<g<3) and over a range of connection densities (5%-15%) (Figure 2). Specifically, the between-group 

difference of mean versatility at connection density 10% was statistically significant when integrated over a 



Structural covariance networks and high IQ in children 
Solé-Casals et al (2019) Brain Structure & Function 

 11 

range of modular resolution parameters, 1.5<g<3 (P=0.045, two-tailed, non-parametric permutation test, FDR 

corrected). Cortical maps of the nodal versatility are depicted in Figure 3. High versatility nodes were mainly 

located in association cortical areas for the gifted group but not for the control group (Figure 3A). 

 

(Figure 2 goes about here) 

  

3.5 Cytoarchitectonic analysis 

To further investigate the neurobiological substrate of versatility, we defined a subset of highly versatile nodes 

as those nodes with versatility at least one standard deviation greater than the network mean (at 10% connection 

density and g=2). We tested the hypothesis that highly versatile nodes were concentrated in areas of association 

cortex, as defined a priori by the cytoarchitectonic atlas of von Economo.  

 

In the gifted group network, we found that 76% of highly versatile nodes were located in association cortex (von 

Economo classes 2 and 3); whereas, in the control group, only 55% of highly versatile nodes were located in 

association cortex. This difference was statistically significant (P=0.0147, χ2 test) (Figure 3B). The highly 

versatile nodes in the gifted group network also had significantly thicker cortex than the less versatile nodes 

(P<10-5, unpaired two-sample t-test); whereas in the control group the more versatile nodes had thinner cortex 

(P=0.027, unpaired two-sample t-test). This difference was statistically significant (P<10-5, ANOVA; 

F1,54=27.18) (Figure 3C). 

 

Similarly, when we defined a set of high degree hubs in each network as the nodes with degree at least one 

standard deviation greater than the network mean, we found that 75% of the hubs in the gifted group network 

were located in association cortex (von Economo classes 2 and 3) whereas only 55% of hubs in the control 

group network were located in association cortex. This difference was statistically significant (P=0.028, χ2 test) 

(Figure S6).  

 

(Figure 3 goes about here) 
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4. DISCUSSION  

Evidence supports the hypothesis that integrative topology of structural brain network organization may be an 

important biological basis for intelligence (Bullmore and Sporns, 2012; Colom et al., 2010). The aim of our 

study was to identify the brain connectivity features characteristic of gifted children using structural covariance 

network analysis. We found that the structural covariance network of gifted children was more globally 

integrated and had more high degree hubs, with high participation coefficients and high versatility of modular 

affiliation, than the comparable network of the control group.   

 

The reduced segregation of the gifted group structural covariance network indicates a more random topology of 

the human connectome in association with higher IQ. Similar results have recently been described by 

Khundrakpam et al., 2016, consistent with the idea that intelligence depends on more integrated, less segregated 

network topology. Likewise, Li et al., 2009, showed that higher IQ scores corresponded to a shorter 

characteristic path length and a higher global efficiency of DTI-based structural networks. And cognitive effort 

in performing a working memory task at variable levels of difficulty has been related to greater efficiency and 

reduced clustering of functional networks derived from MEG data (Kitzbichler et al., 2011). Similar results have 

been found recently, relating a higher performance on working memory and cognitive control to a higher level 

of global brain integration (Shine et al., 2016). 

 

We found that the ratio of inter-modular degree to intra-modular degree was higher for the gifted group 

compared to the control group. The gifted group network nodes also had significantly higher participation 

coefficient, indicating a greater number of inter-modular edges, and higher versatility, indicating a less 

consistent affiliation to any single module. The association of high IQ with these integrative features of nodal 

topology, which will facilitate information transfer between anatomically distributed and otherwise segregated 

modules, is consistent with the global workspace theory (Dehaene and Changeux, 2011) which predicts that 

consciously effortful processes will depend on network architectures that “break modularity”. Likewise, results 

from Wang et al., 2011 indicate that intelligence involves multiple brain regions throughout the brain, which 

requires efficient integration capabilities. And Naghavi and Nyberg, 2005, showed that even less demanding 

cognitive tasks can reflect a high level of multimodal integration across distributed representations that may be 

mediated by sensory and association areas  associated with working memory, episodic retrieval and conscious 

perception. Our results are also aligned with the parieto-frontal theory (P-FIT) of intelligence (Jung and Haier, 
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2007). The majority of structural neuroimaging studies show a relationship between intelligence and/or 

reasoning and specific Brodmann areas, which are (mostly) in associative areas of the von Economo atlas. The 

fact that the high versatility nodes and the hubs in the gifted group are located in these associative areas can be 

interpreted as a structural requirement for having a gifted brain. As detailed in Jung and Haier, 2007, many of 

the areas implicated by the P-FIT have been related to fundamental cognitive processes including working 

memory and attention (Cabeza and Nyberg, 2000; Chabris, 2007; Naghavi and Nyberg, 2005). 

 

Our results could contribute to better understand the modular organization of the brain. As it has been described, 

modular organization allows to execute discrete cognitive functions in each module, being each module 

relatively autonomously from the other modules (Meunier, Lambiotte, & Bullmore, 2010). Results of functional 

analysis of brain modularity have showed the existence of connector nodes integrating across or coordinating 

connectivity between task-relevant modules to maintain modular function of the brain. Connector nodes have 

been found in brain areas where activity is associated with many different cognitive components, and its role is 

related to the cognitive performance (Bertolero, Yeo, & D’Esposito, 2015). In agreement with that, our results 

showing that brain regional nodes in the gifted group network had higher versatility and participation coefficient 

indicate greater inter-modular communication mediated by connector hubs with links to many modules. 

 

In short, the results we have reported –indicating that gifted children have brain networks associated with less 

segregation, less modularization, and more global integration– are thus compatible with the general hypothesis 

that integrative network topology is important for higher cognitive performance.  

 

This is the first study using versatility to compare nodal properties between groups. Versatility can be useful in 

identifying nodes that do not fit very well with any specific module. In our context, these nodes can be relevant 

because they could be playing different roles depending on the brain’s processing demands, which could 

perhaps explain the greater problem-solving adaptivity of the more topologically versatile and cognitively gifted 

group. Our results suggest that high versatility nodes in the gifted group network are predominantly located in 

association areas because they play important roles, probably collaborating with several different communities 

at different times depending on the cognitive demands, and hence helping the network to be more 

reconfigurable.  
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Versatility was highly correlated with participation coefficient (Figure 7S). However, the two metrics are 

measuring different aspects of nodal topology because participation coefficient assumes that there exists a fixed 

community structure, while versatility measures how reliably each node is affiliated to a specific module of the 

community structure. Our results using participation coefficient were similar to those with versatility, with 

higher mean participation of nodes in the gifted group network. This result is also in agreement with prior 

reports (Wu et al., 2011) that nodes with overlapping affiliation to more than one module usually showed higher 

nodal efficiency, degree and participation coefficient, suggesting that high versatility nodes play a key role in 

the flow of information through the structural brain network. 

 

Previous studies have reported that cortical thickness is thicker in associative areas compared with primary areas 

(Vuoksimaa et al., 2016; Whitaker et al., 2016). We also found that cortex is thicker for the highly versatile 

nodes concentrated in the associative areas (von Economo regions 2 and 3) of the gifted group network. 

Accordingly, it has previously been reported (Karama et al., 2011; Menary et al., 2013) that CT was positively 

associated with general intelligence in a wide range of associative areas. Interestingly, CT of low versatility 

nodes was notably thinner in the gifted group compared with control group, resulting in a lower global mean 

cortical thickness in the gifted group. Recent findings have revealed that math-gifted adolescents have a thinner 

cortex and a bigger surface area in key regions of the fronto-parietal and default mode networks, pointing to an 

above-age neural maturation of these networks in math-gifted individuals (Navas-Sánchez et al., 2016; Schnack 

et al., 2014; Yang et al., 2013). 

 

Our study has some limitations. In this sense, we prioritized the homogeneity of the sample (including only 

right-handed males) at the expense of reduced sample size (N=29). This sample size limits the power and 

generalizability of our results. The limited number of MRI scans is particularly problematic for a network 

approach based on structural covariance of cortical thickness across subjects. Moreover, the nature of 

morphometric covariance is not fully understood. It is generally regarded as a proxy for anatomical connectivity 

between cortical areas. Thus we have interpreted topological differences in structural covariance networks as 

indicative of between-group differences in the pattern of anatomical connectivity to association cortical areas, 

which are more often “wired” as connector hubs in gifted children. This interpretation underpins our use of 

graph theoretical parameters, like participation coefficient, as descriptors of large-scale brain network 

connectivity in these data. Interpreting structural MRI covariance as a marker of anatomical connectivity is 
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supported by prior data (Alexander-Bloch et al., 2013). For example, structural covariation between brain 

regions was associated with high levels of co-expression of genes that are specific to supragranular layers of 

human cortex and known to be important for large-scale, long-distance, cortico-cortical connectivity (Romero-

Garcia et al., 2018). Structural covariance networks have also been corroborated by comparison to other MRI-

based techniques, such as diffusion-weighted tractography or morphometric similarity (Seidlitz et al., 2018). 

However, not all recent studies are consistent with the interpretation of structural covariance as a marker of 

anatomical connectivity (Gong et al., 2009; Irimia & Van Horn, 2013). Further work is needed to secure the 

biological interpretation of structural covariance and other candidate MRI markers of human brain anatomical 

connectivity. Between-group differences in between-subject variability of cortical thickness could bias within-

group estimates of covariation of cortical thickness, which would have implications for all subsequent graph 

theoretical parameters. However, we did not find evidence of significant differences in standard deviation of 

cortical thickness between the groups (see Supplemental Information, Figure S1). Additionally, we used the 

correlation coefficient as an estimator of structural covariation, which scales the between-subject covariance by 

the between-subject variance. A fundamental limitation of tractography-based approaches to structural network 

modelling is the underestimation of long-distance white matter tracts between spatially distributed cortical areas. 

Long-distance connections are typically important for topologically integrative aspects of brain network 

organization (Bullmore & Sporns, 2012; Mukherjee, Chung, Berman, Hess, & Henry, 2008). And we 

hypothesised a priori that the higher cognitive capacity of gifted children might be related to more integrative 

brain network topology (Seidlitz et al., 2018). Therefore, we preferred to use structural covariance analysis as an 

alternative to DTI-based tractography on the grounds that it might be more sensitive to measurement of long-

distance, topologically integrative connections that were of hypothetical interest. Both gifted and control groups 

had a mean IQ significantly above the normal range. Thus, the relationship between intelligence and structural 

brain organization across the full range of IQ is not encompassed by our results and the future study of brain 

network versatility and centrality in relation to a broader IQ range will be important. Finally, our sample had an 

average age of 12.3 years and it is possible that the relationship between IQ and structural network topology 

may be conditioned by age, meaning that our results should not be automatically generalised to a wider age 

range.  
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In summary, the present study shows that gifted children have a less segregated and less modular structural 

brain network with more high versatility nodes mainly located in associative areas. We propose that this 

difference in the connectome is related to the more adaptive cognitive performance of gifted children. 
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TABLE 1 Cognitive profile of the sample. Statistical analyses of the cognitive profile were performed with the 

Statistical Package for the Social Sciences (SPSS v250, SPSS Inc, Chicago, USA). Non-parametric 

methods (Mann–Whitney U-test) were used to compare gifted and control groups 

 

 Gifted group 

(mean±SD) 

Control group 

(mean±SD) 

Z p Effect size 

(d) 

Full-scale IQ 148.80±2.93 122.71±4.41 -4.605 <0.001 6.97 

Verbal comprehension index 146.33±4.50 122.86±10.24 -4.358 <0.001 2.97 

Working memory index 137.60±9.70 115.07±8.88 -4.072 <0.001 2.42 

Perceptual organization index 142.40±6.56 121.29±8.74 -4.072 <0.001 2.73 

Processing speed index 120.60±12.57 106.57±15.45 -2.298 0.020 0.99 

Aptitudes      

Spatial 130.00±5.43 109.79±9.99 -4.070 <0.001 2.51 

Numerical 134.07±3.615 109.36±13.34 -4.258 <0.001 2.52 

Abstract reasoning 124.33±10.69 112.14±6.72 -2.924 0.003 1.36 

Verbal reasoning 133.53±5.68 114.86±10.90 -4.047 <0.001 2.15 

Memory 122.80±7.07 99.07±11.98 -4.341 <0.001 2.41 

SD: standard deviation; (d): Cohen’s d 
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FIGURES  

 

FIGURE 1 (A) Cortical thickness correlation matrix with rows and columns ordered according to modular 

affiliation, left panel for control group (CG) and right panel for gifted group (GG). (B) Inter-regional correlation 

strength as a function of Euclidean distance. (C) Barchart of intra-hemispheric correlation in left hemisphere 

(LH), right hemisphere (RH), and the ratio between them (LH/RH) in gifted (red bars) and control groups (blue 

bars). (D) Cumulative degree distributions. (E) Scatterplot of nodal degree versus connection distance (mm) for 

GGCG
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gifted (red line) and control children (blue line) (F) Boxplots of intra-modular and inter-modular degree for CG 

and GG. .(G) Boxplots of versatility and participation coefficient for CG and GG; * denotes P<0.05. 

 

 

FIGURE 2 Evolution of global mean versatility (left) and global mean participation coefficient (right) for 

1≤g≤3 and connection densities 5%, 10% and 15% for the gifted group (GG) and the control group (CG). 
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FIGURE 3 (A) Cortical map of the high versatility nodes (V > mean(V) + 1 SD(V)) at g=2, for the control 

group (CG; upper row) and gifted group (GG; lower row). (B) Barchart of the number of high versatility nodes 

in each von Economo region in gifted and control groups. (C) Boxplots of the mean cortical thickness for the 

high versatility nodes (denoted connector hubs) and the rest of the nodes at g=2. 
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