
1 
 

WhatEELS. A python-based interactive software solution for 
ELNES analysis combining clustering and NLLS. 
Authors 

Blanco-Portals, J.1,2,*, Torruella, P.1,2 ,Baiutti, F.3, Anelli, S. 3 ,Torrel,M. 3,Tarancón, A.3,4, 
Peiró, F. 1,2, Estradé, S. 1,2 
1 LENS-MIND, Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 
Barcelona, Spain 

2 Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, 
Spain 

3 Catalonia Institute for Energy Research (IREC), Jardins de Les Dones de Negre 1, 08930 Sant Adrià del 
Besòs, Barcelona, Spain 

4 ICREA, 23 Passeig Lluís Companys, Barcelona 08010, Spain. 

Corresponding author*: jblancoportals@gmail.com , jblanco@ub.edu  

Abstract 
The analysis of energy loss near edge structures in EELS is a powerful method for a 
precise characterization of elemental oxidation states and local atomic coordination 
with an outstanding lateral resolution, down to the atomic scale. Given the complexity 
and sizes of the EELS spectrum images datasets acquired by the state-of-the-art 
instrumentation, methods with low convergence times are usually preferred for spectral 
unmixing in quantitative analysis, such as multiple linear least squares fittings. 
Nevertheless, non-linear least squares fitting may be a superior choice for analysis in 
some cases, as it eliminates the need of calibrated reference spectra and provides 
information for each of the individual components included in the fitted model.  

To avoid some of the problems that the non-linear least squares algorithms may suffer 
dealing with mixed-composition samples and, thus, a model comprised by a large 
number of individual curves we proposed the combination of clustering analysis for 
segmentation and non-linear least squares fitting for spectral analysis. Clustering 
analysis is capable of a fast classification of pixels in smaller subsets divided by their 
spectral characteristics, and thus increases the control over the model parameters in 
separated regions of the samples, classified by their specific compositions. 
Furthermore, along with this manuscript we provide access to a self-contained and 
expandable modular software solution called WhatEELS. It was specifically designed 
to facilitate the combined use of clustering and NLLS, and includes a set of tools for 
white-lines analysis and elemental quantification. We successfully demonstrated its 
capabilities with a control sample of mesoporous cerium oxide doped with 
praseodymium and gadolinium, which posed challenging case-study given its spectral 
characteristics.   

Keywords: Electron Energy Loss Spectroscopy (EELS), Energy Loss Near Edge 
Spectroscopy (ELNES), Non-linear Least Squares fitting (NLLS), Clustering Analysis, 
Oxidation State Analysis, Elemental Quantification. 
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1.Introduction 
Transmission electron microscopy (TEM) and the core associated analytical tools (i.e., 
electron energy loss spectroscopy, EELS, and energy dispersive X-ray spectroscopy, 
X-EDS) have become a staple among all the characterization techniques in materials 
science, given their high spatial resolution and powerful analytical capabilities[1]. In 
particular, EELS stands out by its sensitivity to low atomic number elements and its 
superior lateral resolution[2–5]. Furthermore, the study of energy loss near edge 
structures (ELNES) in EELS spectra allows the identification of different oxidation 
states and atomic coordination numbers, reaching even the atomic scale resolution, in 
both a qualitative and a quantitative way[6–8]. 

When it comes to sample analysis via EELS spectroscopy, a direct quantification 
measurement based on the Egerton method will often suffice to characterize the 
material to the desired extent[9–12]. Some other well-known methodologies make use 
of the principal component analysis (PCA)[13] or independent component analysis 
(ICA)[14], dimensionality reduction algorithms used to isolate and identify specific 
regions with distinctive spectral features induced by local differences in composition or 
chemical state (e.g., high dopant concentration areas or changes in the oxidation 
states). PCA can even be used in combination with the aforementioned Egerton 
method[9], as a noise-reduction pre-step[15]. Nevertheless, PCA does not come 
without problems, namely user bias on the spectral base selection and interpretation 
and problems of non-compliant data samples[16–19]. Hence, further efforts are 
constantly being made to integrate new techniques into the standard EELS data-
treatment arsenal. 

In recent times, unsupervised clustering classifying algorithms (mainly K-means and 
hierarchical clustering) have been presented as fast methods to achieve a qualitative 
segmentation of the ever-increasing in size EELS datasets[20]. One major drawback to 
be noticed is the lack of a robust way to easily evaluate the accuracy of the clusters 
resolved, other than a later inspection by the user (i.e., always prone to some sort of 
bias). Also, if the sample presents areas with significant differences in thickness, the 
algorithms may lose effectivity (i.e., the total number of raw electron counts, dominated 
by thickness effects, will outweigh any minor spectral variation associated to the 
presence of trace elements or low dopant concentration areas). Nonetheless, it is a fast 
way to inspect large datasets and get an initial assessment of the presence of different 
areas in the sample segmented by spectral features.  

Multiple linear least squares (MLLS) fitting creates a series of weighted maps for user-
selected reference signals, that may be externally provided or extracted from the same 
dataset under analysis. It is a trusted method in the EELS community to get 
quantitative measurements[21–24], but its accuracy may suffer when facing dataset 
with marginal regions with small differences in compositions, given its dependency on 
the manually set references. The combined use of clustering and MLLS has been 
recently proposed as a way to overcome the bias when selecting these references, by 
using the centroids as the signals to be fitted[25]. 

Finally, the non-linear least squares (NLLS) method applied to EELS[26–28] consists of 
fitting a variety of individual curves (components) to get the best approximation of the 
given raw data. Usually, a combination of simple peak-like curves for the specific near 
edge features (e.g., Gaussians, Lorentzian and Pseudo-Voigt), and arctangent, power-
law decays or cross-section curves (calculated by Hartree-Slater approximations or 
from hydrogenic models) for the continuum excitations, are carefully selected for each 
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edge on the spectra. The posterior analysis of the parameters of these curves is what 
makes NLLS a great choice to study particular ELNES characteristics[29], such as 
local variations in the atomic oxidation states, given that the most common reported 
methods of characterization in the literature are the white-line (WL) ratio variation 
measurements[30–32], the relative position of WLs and their distance to the onset of 
the oxygen edge[33] (computed by integrating the peak-like curves or measuring their 
centres after the fitting). Also, NLLS can be a valuable tool for elemental quantification 
in cases of heavily overlapping edges (e.g., samples of mixed cerium-praseodymium 
oxides[34]), as the fitting process is able to separate the electron counts belonging to 
different elements. One major drawback is that the NLLS data fitting process is usually 
slow, given the large number of parameters involved with each added component. 
Furthermore, the increment in convergence times is not linear with the number of 
components (i.e., adding a single extra curve to the fitting may dramatically increase 
the time it takes to finalize the fitting process, or even cause divergent results).  

Several software tools are already available for EELS data analysis, that incorporate 
solutions for the aforementioned analysis and fitting techniques. The two more popular 
are Digital Micrograph (DM, currently on its third version, it is a proprietary tool from 
GATAN) and HyperSpy[35] (a free-software, python-based multidisciplinary 
spectroscopic tool). The main problem of DM is that most of the EELS and ELNES 
analysis tools, although powerful and reliable, are not distributed freely. HyperSpy is, 
arguably, the most popular free-software tool, continuously supported and updated by 
a sizable community of users. Nevertheless, when it comes to the specific task of 
EELS spectral fitting it may lack the speed for an efficient workflow. It also requires a 
minimum knowledge of Python language to be successfully used and for posterior 
analysis of the results, which often drives away potential users.    

In this work, we present a new tool, specifically focused on ELNES analysis, 
WhatEELS (which is available at http://hdl.handle.net/2445/178745). Although its 
backend is coded in Python, it is presented in an interactive and modular graphical 
interface (see figure S1).  The software combines the segmentation capabilities of 
clustering algorithms and the detailed structure description accessed by NLLS fitting 
routines. The combined use of clustering analysis and NLLS is expected to improve 
convergence times in problems with several regions of different elemental 
compositions (e.g., multi-layered structures with different compounds per layer), and 
might also help the algorithm to converge in pixels classified as spectral outliers (i.e., 
pixels presenting strong and unique variations in their spectral characteristics in 
problems with complex multi-component spectra), as they might be previously 
classified by the clustering algorithms in their own group. The main advantage of 
combining clustering and NLLS is the fine control it grants to the user over the models 
fitted, as any given region in the dataset may be tweaked and analysed independently 
at any time.  

In order to validate the software accuracy and capabilities, we will present as a case-
example the study of a sample of granular cerium oxide mesoporous material, doped 
with praseodymium and gadolinium, an ideal showcase of WhatEELS capabilities, as 
every tool is utilized for a complete characterization of the cation (elemental) 
distribution and of the Ce oxidation state in the material. 
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1.1 WhatEELS. Software architecture 

The interactive shell of WhatEELS is based on Panel[36], and Holoviews[37]. The 
current graphical backend is Bokeh[38], as it gives access to the plasticity of the 
JavaScript graphical interfaces and widgets for interactive customization through 
Python code. It is also interchangeable with Plotly[39] and Matplotlib[40], provided 
some minor changes in the source code. Below the surface, the NLLS fitting is based 
on a library called lmfit[41], that expands the SciPy[42] fitting capabilities. Finally, the 
current file loading system relies on HyperSpy[35], as it is the most complete tool 
available to get the information in the standardized dm3 and dm4 formats extracted 
from the TEM.  

A workflow chart for a standard EELS analysis procedure using WhatEELS is shown in 
fig.1. The software tool is comprised of two main blocks. (1) The ‘core fitting 
components’ block (i.e., the specific tools that carry out the fitting of the spectral 
datasets and provide an integrated solution for data analysis and results visualization) 
contains the model constructor and the results analysis tool, as well as the pre-analysis 

Figure 1. Flow-chart for WhatEELS. Each coloured box represents a separated tool. The arrows indicate 
the chronological progression in a standard EELS data analysis process.  
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and model expansion tools. (2) The ‘peripheral modules’ block (i.e., all those tools that 
can be utilized independently and are not necessarily required for the NLLS fitting 
routines) currently includes the clustering analysis tool, the Bethe-surfaces analyser 
tool and the spectral dataset loader. The later, although included as part of the 
peripheral modules, is always the departing point for any EELS dataset analysis 
utilizing WhatEELS. Notice that the Bethe-surfaces analyser (top-right corner) is 
isolated from the rest of the tools, as it can be used separately at any time and does 
not demand a loaded dataset. Notice also that the chart is colour-coded. The tools 
framed in orange add optional functionalities that are not required for the completion of 
a NLLS fitting and analysis. The tools framed in green are the strictly necessary ones 
to complete the NLLS fitting and the results analysis using WhatEELS, with the 
exception of the spectral dataset loader that is coloured in black. The clustering 
analysis tool is coloured in blue as, although it belongs to the ‘peripheral modules’ 
section, it plays a central role in the new methodology combining clustering and NLLS 
introduced alongside this software tool. Finally, the arrows indicate the standard 
chronological tasks-flow to complete the type of analysis described in this work. More 
information about the specifics of each tool may be found in the quick guide provided 
with the supplementary materials (figs. S1-12).  

As represented in the flow chart from fig.1, the tool presents a completely modular 
approach, as each of the differentiated sections are self-contained. Hence, it provides a 
solid ground for future expansions of its capabilities (e.g., adding extra software 
solutions to the peripheral tools such as a support vector machine classifier described 
in[43]).  

The software is aimed for its use in multiple-spectrum datasets, namely spectrum 
images (SI) and spectrum lines (SL). Thus, the workflow described below applies to 
those cases. Nevertheless, a simplified version is automatically launched for single 
spectrum datasets, which limits some of its functionalities as they are then not required. 
From here on, whenever we talk about pixels we are refereeing indistinctly to an 
individual pixel in a SI or in a SL. 

The first step of the core fitting components block (NLLS) is the model constructor tool 
(see fig. S3). It relies on the user to indicate the elemental edges on the sample under 
analysis. If the selected subshell onset falls outside the energy loss axes, it would not 
be added to the model. The software will automatically place a set of gaussian curves 
to represent the fine structure when dealing with M, L or N shells (typically, WLs are the 
default expected features of the M54 and L32 subshells in most transition metals and 
lanthanide oxides). Lorentzian, PseudoVoigt and SplitLorentzian curves are also 
supported. Furthermore, it will automatically approximate the continuum excitation with 
curves calculated by integrating the cross-section of the generalized oscillator strength 
(GOS) surfaces of the database provided according to the bounds imposed by the 
experimental parameters. If no database is available, some sample curves are included 
that are automatically selected to fit the continuum depending on the subshell selected. 
The parameters for these components (e.g., centre, sigma and amplitude of a gaussian 
curve) are readily available for inspection and modification, as well as their fitting 
constraints (see fig. S4). An additional tool to create any number of extra components 
for the elements of the model is also included. 

Once the model is created, the user may load a saved clustering segmentation file to 
divide the dataset accordingly. Each area will be represented by its segmentation map 
and reference spectra (i.e., the collection of pixels of that area and their channel-
average spectra). The default case (i.e., no clustering segmentation areas added) 
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selects the reference spectra as the average of the whole dataset. Using segmented 
areas will allow the user to modify the fine structure components independently (i.e., 
setting initial different parameter values and bounds, and even deleting or blocking 
them,  for each area). 

After the values of the parameters and their boundaries are configured for every 
component in each area, an assessment of the proposed model is carried out by fitting 
each reference spectrum (all together or individually). This step serves a dual purpose. 
First, it evaluates the convenience of the elements, parameters and bounds set, as the 
user gets an initial fitted model result for the reference spectra. Second, when using 
multiple reference areas, the convergence values for the parameters of each one of 
their fitted references will be set as the initial state values for the multiple-pixel fitting 
(MultiFit) process. Hence, the overall fitting convergence times, accuracies and 
resilience to divergence problems are likely to be improved, given that those pixels 
groups (resolved via clustering segmentation) are linked by the nature of their spectral 
features. As this process can be repeated for each area any given number of times, the 
parameters values and bonds can be configured on the fly and the fitting results for the 
reference spectra are ready for visual inspection. Thus, iterations with small corrections 
in place are easily completed, and the workflow is efficient. 

The final part of the model constructor tool is the dataset NLLS fitting routine, or 
MultiFit. To run it, the only requirement is to have previous reference fitting results and 
selecting the areas to be included (e.g., we may want to leave out areas dominated by 
background noise, i.e., areas without sample of interest and separated by the 
clustering algorithm of choice).  

The results analysis tool becomes available whenever a MultiFit process is completed. 
It is presented with an initial assessment of the fitting accuracy by means of an 
interactive mapping image of the reduced chi square (r.χ2) values and an overlay of 
graphs of the initial data, best-fit model and residuals per pixel (see fig. S5). From here, 
3 analysis tools may be launched: (1) centre-analysis, (2) WL-analysis and (3) element 
quantification. The first two are an instrumental part of the software for the study of 
oxidation states and elemental coordination in TM-ox and RE-ox. The quantification 
tool is an inclusion that follows the Egerton method[9] for quantification. It allows the 
user to tweak the integrated cross sections by selecting a sharp cut of the surface by a 
finite beta (β) collection angle (i.e., the finite experimental angle for the collection of 
electrons in the spectrometer, determined by the physical aperture). It also allows the 
further correction of the cross section by a geometric factor resulting from the effect of 
having finite values for the β collection angle and the alpha (α) convergence angle (i.e., 
the finite experimental angle defined by the convergent electron beam over the sample 
illuminated with respect to the column axis)[44]. In all of the 3 available tools, an 
absolute control for the data analysis and results visualization is given to the user (e.g., 
the integration windows width and position when selecting the WL for the ratios 
calculations, or for the areas of the spectra selected for integration when quantifying 
elements).The software also provides a default option which assigns sensible key 
values (usually computed from the NLLS fitted model and based in our experience) to 
each of the possible variables of the analysis tools. Moreover, the user is given the 
choice of changing between raw data and fitted data from the models for integration 
calculations in the WL-ratio analyser and quantification tool, or even a mixed approach 
in which part of the fitted data for a specific area may be subtracted from the raw data 
for the calculations (e.g., subtracting the counts of specific model components from the 
raw data to carry out quantification when overlapping occurs). 
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The pre-analysis tool provides information on the r.χ2, the best-fit model and residual 
curves for each pixel and relative error mappings of the parameters. The Model-
expansion tool provides an interface to create a second model on top of the first one, 
with extra components for further refinement. Any of the initially loaded cluster-areas (if 
any) that were left unfitted can now be completed. It also allows to lock some (or all) of 
the component’s parameters for the second fitting, to speed up convergence even 
when we are adding extra curves to the mix, and thus increasing the model complexity. 
They are automatically unlocked whenever a first successful multiple-fitting is 
completed in the model constructor (optional tools, i.e., non-mandatory to visualize the 
results).  

It is strongly recommended to feed spectra to the model creator tool without 
background preceding the lowest energy loss edge, as the addition of a power-law 
component (allowed in the model constructor) usually hampers the performance of the 
fitting routines. Deconvoluted spectra are always preferred for an accurate fitting of the 
continuum components (specially in samples with thicker areas, and thus, with a strong 
multiple scattering contribution to the electron counts after the edge onset).  

Moving onto the peripheral modules, the clustering tool is an interactive shell 
programmed on top of the popular scikit-learn[45,46], that currently gives access to 2 
different algorithms (K-means and hierarchical-agglomerative clustering) in an easy 
and visual stylized way. It also allows to decide which pre-normalization step, if any, 
should be selected. The tool is launched in a single dashboard presenting the 
clustering algorithm customization options, the results visualization panels and saving 
options in a single window (see figure S2). This allows a dynamic and iterative data-
treatment approach, in which the user can compare the results of several runs with 
slight modifications of the available parameters and select the one with the best results. 
The singularities of using different clustering classification algorithms with EELS 
datasets can be found elsewhere.[20]  

The Bethe-surface analyser tool can be used to visualize the so-called Bethe surfaces 
or GOS surfaces of different elements (elemental shells and subshells of those 
elements are available) and the effects that the experimental parameters have on 
them: Electron energy (E0), collection and convergence angles. To do so, it requires a 
suitable database, since it does not carry out any calculations internally. Initially, it will 
always try to run on the files associated provided by the DM suite (looking for them in 
the directories that they are typically installed in the old versions of DM, and 
alternatively in a directory provided by the user). It can always be fed by other 
databases, as long as they respect the format of the old DM ones. The Bethe-surface 
analyser is a convenient tool to prepare in advance the experiments since it shows the 
possible effects that a specific combination of finite collection and convergence angles 
will have on the acquired spectra beforehand. 
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The use of any of these tools is not required to attain a successful fit by NLLS, thus 
they are classified as peripheral modules. Nevertheless, it is precisely the use of 
clustering and NLLS as a unit what makes WhatEELS so appealing for complex fitting 
problems, as we will demonstrate later. 

2. Materials and Methods 
A sample of granular mesoporous CeO2 doped with Pr and Gd is used as the test 
sample. It has the following expected stoichiometry: Ce0.8O2Pr0.1Gd0.1 (CGPO). It was 
synthesized from a Kit-6 silica template, with a dual set of channels describing each a 
gyroidal surface. Further details about the synthesis and characterisation of the 
material and its applications may be found elsewhere[34], and a detailed scheme of the 
actual mesoporous morphology is also described in the supplementary materials (fig. 
S13 and S14). The mesoporous granular material is expected to show a Ce4+ to Ce3+ 
reduction and a Pr/Gd dopant segregation towards grain boundaries (GB) and grain 
surfaces (GS), as has been already reported in the literature for similar 
materials[47,48], and demonstrated elsewhere in this particular case[34]. 

Although the mesoporous structures in this sample were expected to have a double-
gyroidal interpenetrated morphology, the dataset we present here corresponds to a 
region in a mesoporous structure with an apparent collapse of the channels (see fig. 2a 
and fig. S15 in the supplementary materials). The cation reduction and dopant 
segregation are however unaffected by this collapse of the long-range structure[34], 

Figure 2. (a) HAADF low resolution image of the collapsed 
granular mesoporous structure of CeO2. (b) High resolution 
HAADF image of the zoomed area marked in (a) with a red 
square. The arrows indicate the direction of the possible 
grain boundaries. (c) Co-acquired EELS signal intensity 
mapping, with a schematic of the proposed grain structure 
overlayed on top. 
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and thus, it is the multiple grains and grain boundaries in a relatively homogeneous thin 
area over an empty TEM grid hole what makes this dataset so appealing to 
demonstrate WhatEELS. The positions of the grain boundaries are included as part of 
fig. 2b, and the schematics of the possible grain structure and the co-acquired mapping 
for the EELS dataset signal (with the pixel granularity for the SI) are shown in fig. 2c 
(c.f., supplementary material, fig. S15). 

The high angle annular dark field (HAADF) images and the EELS SI were acquired in a 
JEOL-ARM at 200keV. The spectrometer collection angle was 41.67 mrad and a 25 
mrad convergence angle was selected for the spectral acquisition. 

The dataset was subjected to a denoising treatment via PCA and the Ce edge onset 
background was removed using HyperSpy, previous to its introduction in WhatEELS.  

3. Results 
To illustrate the usefulness of WhatEELS software, in this section the different tools will 
be applied to unveil the chemical configuration of this granular CGPO mesoporous 
material, with special attention to Ce oxidation state and Pr and Gd dopant distribution 
within the mesoporous structure. The overall format of the graphs and mappings shown 
in this section is almost identical to the ones in the WhatEELS graphical interface 
software (c.f., supplementary figures S1 to S12), so we have a faithful representation of 
what we might encounter using the software with any other dataset.  

The results of the segmentation via clustering analysis are shown in fig. 3. In this case, 
we selected 4 clusters as the target number for the K-means algorithm. Even though 
the spectral background was subtracted beforehand, the segmentation appears to be 
dominated by thickness effects, as the clusters appear to be mainly separated by this 
factor. In any case, comparing the relative intensities of the elemental WL (CeM54 883-
901 eV, PrM54 931-951 eV and GdM54 1185-1217 eV) we already have a qualitative 
observation that hints towards a possible relative increment of the dopants towards 
grain surfaces (GS) and boundaries (GB) (cluster 3 signal, in red, in fig. 3b).  

Figure 3. (a) Overlay of the SI and the clustering label map 
resolved by the K-means clustering algorithm applied on the 
raw dataset. b) Reference signals for each of the clusters. 
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The model was automatically created for the whole sample after selecting the elements 
and their specific edges. We only introduced small variations in the gaussian centres 
for the Ce ELNES components in each of the segmented areas (as we already observe 
that in some of them a chemical shift may be occurring). In fig. 4 we show the results of 
the initial fit for the reference spectrum of the area labelled as cluster-3 (red in fig. 4a), 
separated previously by the K-Means algorithm (fig. 3). This segmented area is 
populated by several GB and GS (fig. 2b,c). The curves with shadowed areas in the 
spectra of fig. 4b correspond to the individual components that give shape to the 
included edges (ELNES gaussian curves and integrated cross sections for the 
continuum of the CeM54, PrM54 and GdM54 edges). The green line is the sum of all the 
components and is called the best-fit curve of the fitted model.  

Once a satisfactory (qualitative evaluation) initial fit was in place for each area 

Figure 5 Best-fit model, residual curve and raw data for two 
different pixels in two different clusters, after the MultiFit 
was carried out. On the inset, an image of the r.χ2 values 
mappings. 

Figure 4. (a) Overlay of the SI area and the cluster 3 area 
resolved by K-means. (b) Overlay of components for the 
initial fit of the model for the reference spectrum of the 
cluster 3.  
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reference signal, the MultiFit routine was called for the whole dataset selecting the 4 
clusters separately. This way, the model fitting for each cluster is initialized close to its 
reference spectrum, and the subsequent fitting process in each pixel is more likely to 
converge faster (c.f. fig. S16).  

In fig. 5 we show the resulting r.χ2 mapping (inset), which is often used as the main 
indicator to evaluate the goodness for a given NLLS fitting result. We also include a 
graphical interface that shows an overlay of the original raw-data, the best-fit curve and 
the residual curve (i.e., difference between the raw-data and the best-fit), dynamically 
linked with the r.χ2 mappings for each pixel (i.e., selecting a specific pixel in the map 
changes the set of graphics shown). This feature is not only complementary to having 
the values for the r.χ2, but in some cases fundamental to understand the real accuracy 
of the fitting. One example is shown in fig. 5, as we include the curves-overlays for two 
different pixels. The pixel (19,36) in fig. 5a presents a value of reduced χ2 is 163.905, 
and for (31,0) in fig. 5b the reduced χ2 is 330,963. Nevertheless, if playing close 
attention to the best-fit model curves (green) and the original raw data (area shaded in 
grey) a higher deviation between curves for the (19,36) pixel in the spectrum area 
ranging from 910 to 925 eV (between Ce and Pr WLs) is apparent. This contradiction 
can be explained by analysing the behaviour of the fitted model between both CeM54 
WLs (from 883 to 901 eV). The NLLS algorithm is unable to reconcile the proposed 
combination of integrated cross section (continuum) and gaussian (WLs) curves with 
the actual experimental electron counts in this portion of the spectra throughout the 
whole area of the spectrum image. This limitation finally results in a positive biased r.χ2 
value in every single pixel. However, the bias weight is not the same for every single 
spectrum from the SI fitted. The thicker areas in the sample (thus, with higher values of 
electron counts) present a larger separation between the fitted model and the 
experimental counts. As the r.χ2 is computed from the non-normalized differences 
between the raw data and the fitted model, those thicker regions will present the higher 
degree of positive bias for the r.χ2. Precisely for this dataset, this positive bias 
outweighs any other contribution to the r.χ2. This exposes the dangers of blindly 
trusting in the r.χ2 as the single indicator of fitting goodness in NLLS, and we always 
recommend a further analysis of the residual curves (and if possible, the relative error 
mappings in the pre-analysis tool) to validate the NLLS fitting results. 

Once the NLLS fitting results have been evaluated one may move onto the analysis of 
the data structures that will provide information about the oxidation states and 
elemental distribution. A reduction of cerium from Ce4+ to Ce3+ can be observed as a 
chemical shift of the M5,4 energy loss onset from 884 to 881,4 eV in EELS[7,49]. Hence, 
it may be resolved by an analysis of the central position of the gaussian curves fitted to 
the WL in the energy onset by NLLS, using the centre and distances analysis tool. This 
tool extracts from the fitting results the centre values for the peak-like curves for the 
ELNES, if any is available, and the onset values for the continuum curves. It has been 
sometimes favoured in the literature the comparison of the feature of interest with a 
fixed feature on the spectrum (e.g., CrL3 WL and OK onset[33]), over the evaluation of 
a single energy loss value. This dampens the effects of artifacts introduced by beam 
instabilities when acquiring the spectra, as any random and local energy shift may 
easily be mistaken for an actual chemical shift with physical meaning. Fig. 6a,b and c 
show the heatmaps for the Ce and Gd M5 WL centres and the absolute distance 
difference between them. A clear texture on the CeM5 mapping is visible, whereas the 
GdM5 is almost flat. The CeM5 modulation is, thus, translated into the distances-map. 
When dealing with SI, the tool allows to draw lines in specific locations to generate 
scatter graphs for the parameters selected for further local analysis. Fig. 6d contains a 
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panel constructed with these graphs (c.f., fig. S7) for the line traversing a GB (see fig. 
2b,c) indicated in the heatmaps with lines. A clear chemical shift of the CeM5 towards 
lower energy loss values is observable at the GB. In the literature, this type of 
displacement in the energy axis is associated with a change in the cerium oxidation 
state from 4+ to 3+. Meanwhile, an almost flat distribution around 1185.5 eV for the 
GdM5 WL centre is observable, which is our fixed feature in this example. These results 
are the first solid prove for the hypothesis of Ce reduction when traversing GB and in 
GS in our sample. 

As a crosschecking measure, we launched the WL ratio analyser tool. Usually, 
integration of the WL intensity values for a given energy range is preferred over single 
energy loss channel evaluations to mitigate noise effects. In fact, in the literature the 
differences in the WL ratios and their relationship with changes in the oxidation states 
are often given for a specific integration range[7,50].  

A powerful tool is included in the WhatEELS WL ratio analyser to face the possibility of 
not knowing a priori the correct parameters for the integration ranges, or even to check 
the validity of the values in the literature. The tool carries out a systematic calculation of 

Figure 6 Heatmaps of the gaussian centre values for the 
CeM5 (a), GdM5 (b) and the absolute difference between 
them(c). (d) Broken graph (energy loss axis) to show the 
centre values for the pixels along the lines shown in the 
heatmaps, traversing a GB. 
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WL ratios of the selected components for several integration ranges, which are 
calculated multiplying the sigma value of the corresponding WL, at each pixel, by a list 
of factors (see fig. S8 and S9). The utility of this routine is clearly illustrated in fig. 7. 
When selecting a narrow range (fig. 7a), the resulting WL-ratio heatmap is noisy, and 
no clear structure can be discerned. Using this result to get the ratio across the same 
GB as before, one might conclude that no clear signs of spatially resolved elemental 
reduction were found (yellow triangles graph). Nevertheless, when selecting an 
appropriate integration width (6.5 eV, fig. 7b), the heatmap recovers the same structure 
observed in the centre analysis tool for the CeM5. Furthermore, the M5/M4 ratio shows a 
clear increment traversing the GB, confirming the Ce reduction towards GB and GS, 
and in good agreement with the literature values given for the Ce WL ratios for the 
expected oxidation states[10,51]. In this particular case, we decided to integrate the 
fitted gaussian curves (red curves in fig. 7c) for the WL ratios, excluding the values of 
the continuum excitation as we saw in the residual and r.χ2 analysis (fig. 5) that they 
were a clear contributor to the overestimation of the best-fit model in energy range 
between the CeM54 WLs. 

Figure 7. (a) Heatmap and scatter plot for the pixels along the 
white line for the Ce M5/M4 WL ratio with an integration 
window of 1eV. (b) Heatmap and scatter plot for the pixels 
along the white line for the Ce M5/M4 WL ratio with an 
integration window of 6.5eV. (c) Overlay of the raw data, the 
WL data integrated (fitted model) and window ranges (1 and 
6.5eV) for the pixel (30,2) marked in (a) and (b). 
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Finally,  the quantification tool was used to get a result for the elemental distribution, 
and the results are shown in fig. 8. An integration range width of 45eV was selected 
manually, beginning at the energy loss value of the elemental onsets, for every pixel in 
the SI (information extracted from the components of the best-fit model). The same 
integration window width was selected for all 3 elements. The integrated intensity was 
calculated using the raw data, given the persistent overestimation of the electron 
counts in the best-fit model between the Ce WLs pointed out previously (fig. 5). 
Nevertheless, to get each of the elemental integrated intensities the electron counts 
corresponding to the rest of the elements (calculated by NLLS fitting) were subtracted. 
This strategy improves  the consistency for the Pr integrated intensities, avoiding the 
background subtraction computation in the PrM54 onset which is heavily influenced by 
the proximity of the CeM5,4 edge. The option of extra corrections was also activated 
and applied to the GdM5,4 edge, as the commonly ignored CeM32 minor edge (onset at 
1185 eV, same as the GdM54) appeared to be responsible for an overestimation of the 
Gd integrated intensity (see fig. S11 and S12). These extra corrections consist of a 
simple calculation of the ratio between the integrated cross section of the major edge 
selected (CeM54) and the minor edge under consideration (CeM32), for the given values 
of collection and convergence angles and incident electrons energy. Then, the intensity 
for the minor edge (CeM32) is calculated by multiplying the ratio and the measured 
integrated intensity of the corresponding major edge (CeM54). Finally, the newly 
calculated integrated intensity (CeM32) is subtracted from the measured integrated 
intensity of the affected edge (GdM54). All these options are customizable directly on 
the application panel (see fig. S10). An increment of the dopant ratio towards GB and 
GS is observable in fig. 8a,b, coinciding with the areas of Ce reduction observed in figs. 
6,7. It is also noticeable in the scatter plot graph (fig. 8c) that the ratios calculated with 
the corrections in place get closer to the expected stoichiometric values towards the 

Figure 8 Heatmaps of the relative ratio compositions of Gd 
(a), in green,  and Pr (b), in red,  with respect to Ce. (c) 
Scatter plot of the relative ratios of Gd / Ce and Pr / Ce 
along the line of pixels marked over the heatmaps. The 
stoichiometric expected value for both elements’ ratios, 
0.125, is marked as the dashed blue line. 
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bulk regions of the CeO2 grains. The slight overestimation can be attributed to the 
intricated structure of the mesoporous material, as the effects of multiple overlapping 
grains in the real 3D structure are probably affecting the conventional planar EELS SI 
acquired, a 2D projection image (see fig. 2b,c).  

4. Discussion  

The doped granular CGPO mesoporous material provided a challenging EELS dataset 
for analysis due to the proximity between the CeM54 WL and PrM54, and the edge 
overlapping problems between CeM32 and GdM54. Hence, the good results obtained for 
spatially resolved distribution of Ce oxidation states and the Pr/Gd dopant elemental 
quantification demonstrate the large potential of WhatEELS as a software solution for 
advance nanomaterials characterization through TEM EELS experiments.  

Notably, any nanomaterial or device composed by transition metal oxides (TM-ox) and 
rare earth oxides (RE-ox) constitutes a good candidate for analysis using WhatEELS, 
as they usually present characteristic ELNES features directly related to fundamental 
nanoscale physics (e.g., cation/anion oxidation states) and, thus, linked to the 
macroscopic properties and specific performances measured (e.g., conductivity and 
reaction rates). TM-ox and RE-ox can be found in applications in a wide variety of 
fields, aside from mixed ionic-electronic conductors (MIEC) for solid oxide fuel cells 
(SOFC) and solid oxide electrolyser cells (SOEC)[34,52,53]. For example, in improved 
photocatalytic devices and processes for hydrogen production via water splitting[54,55] 
and electrocatalytic  devices for improved hydrogen evolution reactions[56] in the field 
of new energy production and storage solutions. Also, in the fields of materials 
research for environmental applications, such as catalytic mediums for volatile organic 
compounds capture[57] and methane total combustion[58], and even in multifunctional 
materials that exhibit photocatalytic properties for benzene degradation process and 
photochromatic properties for photoelectronic applications[59]. More notably yet, in the 
field of nanomagnetic materials the characterization through EELS analysis presents a 
great opening for the WhatEELS software solution, given the general elemental 
composition of these materials (i.e., iron and nickel oxides, mixed with other TM-ox) 
and the importance of resolving properties such as the local oxidation state or cationic 
inversion ratio accurately.[60,61]  

5. Conclusions 
In this work we present a new software tool, WhatEELS, designed specifically with the 
purpose of analysing multiple pixel EELS datasets (SI) by combining the power of 
clustering algorithms for image segmentation and NLLS fitting routines to make the 
most of the spectral features near the edge onset. The tool was born from the 
necessity we often encountered of an improved workflow efficiency when dealing with 
these types of problems.  

The interactive solution is based on Panel, a library with an ongoing support from the 
creators that launches reactive dashboards using as backend any of the major web 
browsers (e.g., Google Chrome, Mozilla Firefox), which in principle would enable any 
operative system with a Python interpreter to use WhatEELS. Furthermore, its modular 
construction leaves room for further software expansions down the line. 

We presented and described the full characterization process using WhatEELS for a 
test sample of CGPO, where we sought to investigate possible changes in the Ce 
oxidation state and inhomogeneous dopant distributions. The results revealed localized 
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reduction of Ce4+ to Ce3+ in different areas of the sample (showing coherent results via 
2 different characterization methods, WL ratios and WL centre positions) and 
segregation of dopants towards GB and GS (via the included Egerton quantification 
method). This test demonstrated the potential of this tool when dealing with problems 
of similar nature via ELNES analysis of EELS SI. Furthermore, this initial assessment 
of the inner workings of the proposed clustering – NLLS combination hinted to a 
possible improvement in the convergence times over the default option of a non-
segmented SI (i.e., the classic approach of fitting the whole image area in bulk), 
although more work and tests will be required to identify the optimum number of 
clusters configuration and the type of samples that can potentially be benefited by 
higher fitting times when following this methodology. 

Finally, the open-source nature of WhatEELS and the little programming  knowledge 
required may be of benefit to a large number of entry-level researchers and students 
beginning their path on EELS data analysis for materials science.  
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