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Abstract
The growth of quantum technologies is attracting the interest of many students
eager to learn concepts such as quantum entanglement or quantum superposition.
However, the non-intuitive nature of these concepts poses a challenge to
understanding them. Here, we present an entangled photon system which can
perform a Bell test, i.e. the CHSH inequality, and can obtain the complete tomography
of the two-photon state. The proposed setup is versatile, cost-effective and allows for
multiple classroom operating modes. We present two variants, both facilitating the
measurement of Bell inequalities and quantum state tomography. Experimental
results showcase successful manipulation of the quantum state of the photons,
achieving high-fidelity entangled states and significant violations of Bell’s inequalities.
Our setup’s simplicity and affordability enhances accessibility for less specialized
laboratories, allowing students to familiarize themselves with quantum physics
concepts.

Keywords: Entanglement; Undergraduate setups; Quantum optics; Bell inequalities;
Quantum state tomography

1 Introduction
Quantum superposition and entanglement are key elements in the current developments
in quantum technologies [1]. However, they are elusive concepts with no classical counter-
part, making them difficult to understand for undergraduate students and non-quantum
experts. An important step to close this gap is through hands-on experimentation. By
acquiring and analyzing data from a quantum entanglement setup, students can get ac-
quainted with quantum mechanical concepts and grasp the non-intuitive nature of quan-
tum physics. Still, a comprehensive description of such a system, which is easily accessible
for undergraduate students and suitable to generate quality data within the time frame of
laboratory sessions (a couple of hours), remains difficult to find.

Quantum entanglement, the phenomenon by which two particles become linked so
that the state of one affects the state of another, regardless of the distance, is central in
today’s quantum technologies. Examples include quantum computation, e.g. see Shor’s
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algorithm [2], quantum sensing, e.g. enhancing the LIGO detecting capability [3], and
quantum communications, see the Ekert91 protocol [4]. Despite its importance, quan-
tum entanglement has been controversial since the well-known EPR paper [5]. There,
Einstein, Podolsky and Rosen argued that the quantum mechanical description of a seem-
ingly simple system composed of two particles was most likely incomplete. They intro-
duced the notion of hidden variables, which at the time seemed more of a philosophical
idea than an empirically testable one, that would make the description of nature com-
plete.

The situation changed drastically thanks to Bell’s article in 1964 [6]. There, he found a
way of experimentally setting bounds to the existence of hidden variables. He proposed
specific experiments to prove quantum mechanical predictions could not be explained
with hidden variables. Since then, numerous experiments have been conducted to verify
his predictions. From the pioneering experiment by John F. Clauser and Stuart Freed-
man [7] onward, all have supported the Copenhagen interpretation, emphasizing the in-
trinsic randomness of nature and ruling out the possibility of including hidden variables in
the theory [8–10]. The importance of these results was clearly stated by the Nobel Prize
in Physics in 2022, awarded to Alain Aspect, John F. Clauser and Anton Zeilinger “for
experiments with entangled photons, establishing the violation of Bell inequalities and
pioneering quantum information science” [11].

In the last two decades, numerous efforts have been made to introduce this type of ex-
periments into the laboratory curriculum with the aim of renewing courses with more
“up-to-date” experiments and to render this type of experiment accessible to undergrad-
uate students. In the universities where hand-made setups, e.g. [12–23] and commercial
setups [24], e.g. [25, 26] have been implemented there has been a notable improvement in
understanding concepts pertaining to quantum physics, along with a considerably higher
enthusiasm among students for such technologies [20, 27]. In our university, the proposed
setup serves as an advanced quantum system in our experimental labs, as part of the Ad-
vanced Quantum Laboratory of the Master’s in Quantum Science and Technologies in
Barcelona.

Compared to some other implementations of this type of experiment in laboratory syl-
labi that use commercial systems e.g. [25, 26], having students assembling and aligning
the setup presented in this article will provide them with fundamental knowledge about
optics. Knowledge that is crucial for any other work with quantum optics and can’t be
acquired using pre-assembled commercial setups [24].

The main goal of this paper is to present two experimental setups for undergraduate
students that allow a thorough study of the Bell inequalities. For this purpose, we describe
the implementation, operation, and alignment of two such setups, enabling students to
build them from scratch. Thus, our detailed guidelines offer students a pathway to their
first hands-on experience with quantum concepts.

To provide a concise yet self-contained document, we describe the essential theoreti-
cal formalism needed to understand the experiment, followed by a detailed description
of the practical setup implementation. The article is organized as follows. First, in Sect. 2
we present the main theoretical concepts involved, including the suitable basis states to
describe the two-photon states and how to perform operations on them. This section also
provides a theoretical description of the quantum state tomography (QST), necessary to
fully reconstruct the state (Sect. 2.2). We then introduce the Bell inequalities, particularly
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the CHSH inequality [28] (Sect. 2.4). The experimental setups are described in Sect. 3, pro-
viding comprehensive descriptions of the proposed implementation. Sections 3.1 and 3.2
explain the production and measurement of photons in the two respective schemes. The
way to align and run the experiment is shown in Sect. 4 while the experimental results are
collected in Sect. 5. Finally, in Sect. 6, we outline the qualities of our setups and the results
of our experiments. We also discuss how this work can help to bring these concepts and
technologies closer to a broader and less specialized audience.

2 Theory
In this section, we provide the basic theoretical tools needed to understand the proposed
experiments.

2.1 Definition of states and operators
As the photon is the quantum system of our experiments, we start by defining its quantum
state. It can be described in several useful bases. The most common, the canonical basis
{|H〉, |V 〉} is formed by the vectors,

|H〉 =

(
1
0

)
and |V 〉 =

(
0
1

)
. (1)

A set of different bases, relevant for the experiment described herein, are the Diagonal
and Antidiagonal basis, the Right-handed and Left-handed basis, and the α rotated basis.
Note that, in this description, photons consist of a two-level quantum mechanical sys-
tem, known as a “qubit” in the quantum information community. Expressed in terms of
{|H〉, |V 〉}, these bases can be written as

{|D〉, |A〉} =

{
1√
2

(
1
1

)
,

1√
2

(
1

–1

)}
, (2)

{|R〉, |L〉} =

{
1√
2

(
1
–i

)
,

1√
2

(
1
i

)}
, (3)

{|Hα〉, |Vα〉} =

{(
cosα

sinα

)
,

(
– sinα

cosα

)}
. (4)

Where we define the counterclockwise direction α as positive when we observe the light
moving away from us. Thus, in Fig. 1 b), the light propagates towards the interior of the
paper.

The way to perform unitary operations on quantum states without measuring them
is using retarder plates, particularly half-wave plates (HWP) and quarter-wave plates
(QWP). Waveplates delay one polarization component with respect to the other due to
a difference in refractive index depending on the orientation of the material, featuring a
direction where the light travels faster (fast axis). As these operations are important in our
setup, we provide a formal definition of their actions in the {|H〉, |V 〉} basis. The action of
a HWP and a QWP with their fast axis set at an angle θ w.r.t the horizontal, i.e. the fast



Lahoz Sanz et al. EPJ Quantum Technology           (2024) 11:86 Page 4 of 28

Figure 1 a) Visual representation of the Bloch sphere. All possible states of a single qubit are contained in the
surface of the sphere. b) Representation of the {|H〉, |V〉} and {|Hα〉, |Vα〉} bases. The equator of the Bloch
sphere is the circle generated by the {|Hα〉, |Vα〉} states

axis pointing at the direction |Hθ 〉, is described by

HWPθ = e–i π
2

(
cos 2θ sin 2θ

sin 2θ – cos 2θ

)
,

QWPθ = e–i π
4

(
cos2 θ + i sin2 θ (1 – i) sin θ cos θ

(1 – i) sin θ cos θ sin2 θ + i cos2 θ

)
.

Importantly, all these operations can be represented in the Bloch sphere, as shown in
Fig. 1 a) [22]. A HWP (QWP) with its fast axis set at an angle defined by the vector |Hθ 〉,
performs rotations of 180◦ (90◦) of any single photon state with respect to the axis defined
by the direction of the fast axis.

2.2 Reconstruction of a general two-photon state. Quantum state tomography
The next step is to introduce two-photon states, which represent the minimal photonic
system which can exhibit quantum entanglement. As customary in quantum optics and
quantum information, we call Alice and Bob the two individuals that measure the first and
the second photon, respectively.

The general case of non-pure two-photon states can be fully described by the density
matrix. In other words, by experimentally measuring the density matrix, one can gather
all the necessary information to assess two-photon states, a process known as quantum
state tomography. The density matrix can be written as,

ρ̂ =

⎛
⎜⎜⎜⎝

A1 B1eiφ1 B2eiφ2 B3eiφ3

B1e–iφ1 A2 B4eiφ4 B5eiφ5

B2e–iφ2 B4e–iφ4 A3 B6eiφ6

B3e–iφ3 B5e–iφ5 B6e–iφ6 A4

⎞
⎟⎟⎟⎠ , (5)

where the basis used is {|HH〉, |HV 〉, |VH〉, |VV 〉}. Note that this matrix is hermitian ρ = ρ†

and thus semi-definite positive. Also, the trace has to be equal to 1, i.e. A1 + A2 + A3 +
A4 = 1. Thus, we need 16 – 1 = 15 parameters to fully characterize the matrix. For our
experiments, it is useful to expand the density matrix as a sum of tensor products of two
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Pauli matrices, see for instance [22],

ρ̂ =
1
4

3∑
i,j=0

Sij · σ̂i ⊗ σ̂j , (6)

where σ̂i are the identity and the usual Pauli matrices defined as

σ̂0 = |V 〉〈V | + |H〉〈H| =

(
1 0
0 1

)
,

σ̂1 = |D〉〈D| – |A〉〈A| =

(
0 1
1 0

)
,

σ̂2 = |L〉〈L| – |R〉〈R| =

(
0 –i
i 0

)
,

σ̂3 = |H〉〈H| – |V 〉〈V | =

(
1 0
0 –1

)
.

Importantly, the coefficients defining the state, Sij in Eq. (6), named Stokes coefficients,
can be obtained from combined experimental measurements of the two photons in the
state. For instance,

S00 = P|HH〉 + P|HV 〉 + P|VH〉 + P|VV 〉, (7)

where P|σσ ′〉 is the joint probability that Alice and Bob have of obtaining their respective
photons in the states |σ 〉 and |σ ′〉 when Alice is measuring in the basis {|σ 〉, |σ⊥〉} and Bob
is using the {|σ ′〉, |σ ′⊥〉} basis. The explicit expressions for all Stokes coefficients can be
found in Appendix B. This forms the essentials of quantum state tomography.

In our experiment we produce two-photon states which are pure states. They are a par-
ticular case of the general one in Eq. (5), and can be written as

|�〉 = a0|HH〉 + a1|HV 〉 + a2|VH〉 + a3|VV 〉, (8)

with ai (i = 0, 1, 2, 3) complex coefficients such that
∑3

i=0 |ai|2 = 1.
To compare how similar the two distinct two-photon states are, ρ̂1 and ρ̂2, we define the

fidelity, F(ρ̂1, ρ̂2), [29],

F(ρ̂1, ρ̂2) =
(

Tr
[√√

ρ̂1ρ̂2
√

ρ̂1

])2

. (9)

Furthermore, if one of the two states under comparison is pure (ρ̂2 = |�2〉〈�2|), the ex-
pression defined in Eq. (9) becomes

F(ρ̂1, ρ̂2) = Tr(ρ̂1|�2〉〈�2|) = 〈�2|ρ̂1|�2〉. (10)

The values of the fidelity fall between 0 and 1. Fidelity 1 is only achieved if both states
are equal, while fidelity 0 is obtained for orthogonal states.
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2.3 Entangled states
A key concept for this work is that of quantum entanglement. Working with pure states
of the form of Eq. (8), a two-photon state is said to be entangled if it cannot be written as
a separable state,

|�〉Separable = |ψ〉 ⊗ |ϕ〉. (11)

with |ψ〉 and |ϕ〉 single photon states. Note that, in a separable state, the outcomes of the
measurements of Alice and Bob are completely independent, while in entangled states,
quantum correlations arise between the two outcomes.

A set of well-known and useful entangled states are the so-called Bell states,

|�+〉 =
1√
2

(|HH〉 + |VV 〉),

|�–〉 =
1√
2

(|HH〉 – |VV 〉),

|�+〉 =
1√
2

(|HV 〉 + |VH〉),

|�–〉 =
1√
2

(|HV 〉 – |VH〉). (12)

These states, in turn, form a basis of the two-photon Hilbert space.

2.4 Bell test — CHSH inequality
The correlations stemming from the non-separability of states rose important criticism.
Notably, in the so-called EPR paradox stated in Ref. [5], it was argued that the description
of nature is probably incomplete, calling for the existence of so-called hidden variables.
John Bell [6] introduced the first empirical approach to distinguish predictions from hid-
den variable theories. Since then, a series of Bell-type inequalities (i.e. Bell tests) have been
developed to check if the quantum state associated to two particles follows a non-local
behavior. In particular, quantum mechanics produces predictions which violate Bell in-
equalities (they are incompatible with hidden variable theories). In our case, we consider
the CHSH inequality [28], which was the one used in the pioneering article by Aspect and
collaborators [8], and also in the pedagogical setup of Ref.-[18].

To carry out the Bell test, we consider the scenario described in Fig. 2. There, a source
generates pairs of photons, named signal and idler, that are always produced in the same
manner, and thus in the same quantum state, and that are sent in different directions.

Figure 2 Sketch of the CHSH protocol: A source generates photon pairs always in the same state, sending
one to Alice and the other to Bob. They can determine if the received pairs are entangled, performing
measurements in different bases and sharing their results
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The receivers of these photons, again Alice and Bob, can determine whether the pairs of
photons they share are entangled or not by performing measurements of the individual
photons separately and communicating the results.

We define the functions a(α) (b(β)) as a(α) = 1 (b(β) = 1) if Alice (Bob) measures the
signal (idler) photon in the state |Vα〉 and a(α) = – 1 (b(β) = – 1) if Alice (Bob) measures
the signal (idler) photon in the state |Hα〉. Then, we define the correlation function E(α,β),
i.e. the average of the product of both measurements, as

E(α,β) = 〈a(α) · b(β)〉 =

= P|VαVβ 〉 – P|VαHβ 〉 – P|HαVβ 〉 + P|HαHβ 〉.
(13)

In the CHSH inequality, Alice (Bob) measures the state of the photons in two different
states, α = 0◦ (β = 22.5◦) and α′ = 45◦ (β ′ = –22.5◦). Thus, Alice and Bob obtain four dif-
ferent values of Eq. (13); one for each combination of angles. E(α,β), E(α′,β), E(α,β ′) and
E(α,β ′). Using these four values, we define the functions S and S′ as:

S = E(α,β) + E(α,β ′) + E(α′,β) – E(α′,β ′), (14)

S′ = E(α,β) + E(α,β ′) – E(α′,β) + E(α′,β ′). (15)

These functions are constructed to always yield a value between –2 and +2 when work-
ing with classical correlations, including the case of hidden-variable theories. In contrast,
their value falls between –2

√
2 and +2

√
2 when we compute the averages with quantum

mechanics. Specifically, for each Bell state, one of them yields a result of zero, while the
other provides a value equal to –2

√
2 or +2

√
2:

• If the two photons are in the state |�+(–)〉, we obtain 〈S〉 = 2
√

2(0) and 〈S′〉 = 0(2
√

2).
• If the two photons are in the state |�+(–)〉, we obtain 〈S〉 = 0(–2

√
2) and

〈S′〉 = –2
√

2(0).
The fact that different Bell states require different Bell test functions S and S′ is often not

emphasized. In our case, we can precisely control the relative phase between components
in the wave function of photon pairs along with the use of a HWP in one of the photons’
paths. Thus, with our setups, we have the ability to generate the four maximally entangled
Bell states, as is described later in Sect. 3.1. These two features set our work apart from
other pedagogical setups.

3 Experimental setups
The two setups presented herein consist of a photon pair production part followed by a
photon detection part. The photon pair production was based on spontaneous parametric
down conversion in two type I BBO crystals, firstly proposed and accomplished experi-
mentally in Ref. [30] and adapted to the undergraduate laboratory in Refs. [18, 19]. The
details of similar experiments have been described in later Refs. [20, 21].

Both setups enable performing a full two-photon state tomography and a Bell test, and
incorporate improvements at both the technical and conceptual level with respect to pre-
vious works. Among them, our setups allow us to prepare different Bell states, which em-
phasizes the fact that Bell tests are tailored for specific states. Also, both options feature a
significantly simpler optical alignment of the elements of the setup and are fairly robust.
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Figure 3 Scheme setup 1. LD. laser diode, FL. focusing lens, BF. blue filter, LP. linear polarizer, MI. mirror, CR.
BBO crystals, HWP. half-wave plate, QWP. quarter-wave plate, IR. infrared filter, FC. fiber-coupler lenses, 4CD.
4-channel detector, CC. Coincidence Circuit

Figure 4 Scheme setup 2. PBS. polarizing beam splitter. The rest of the elements are labeled in the same way
as in Fig. 3

Importantly, the measurement time is very reasonable: a Bell test can be performed in less
than one hour, providing ample options for lab experimentation at both the undergraduate
and master’s level.

A detailed list of the necessary equipment for each setup is compiled in Appendix A.
The main difference between the two setups lies in the photon detection process. The
first setup, illustrated in Fig. 3, employs only two inputs of the 4-channel detector (SPCM-
AQ4C, Excelitas Technologies) and measures the polarization of the light using a QWP and
a polarizer. While simpler in terms of optical elements, this option is slower for measure-
ments. It can only provide the number of coincident photon counts passing through both
polarizers in a single measurement. That is, pairs of photons that pass through both polar-
izers without being stopped and are detected simultaneously. The second setup, depicted
in Fig. 4, needs all 4 inputs of the detector and directs photons to different detectors based
on their polarization using polarizing beam splitters (PBS). Although this option requires
more optical elements, it is faster for measurements as it allows for the measurement of
photon counts in any of the states of a given basis in a single measurement.

In both of our setups, as in some other pedagogical experiments [13, 14, 17, 20], col-
limating lenses (F810FC-780, ThorLabs) or microscope objectives and optical fibers are
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used to capture photons. This offers a significant advantage in alignment, as is discussed
in Sect. 4.1. In some previous works [12, 18, 19] the alignment of the system and the cap-
ture of photons was performed without the use of optical fibers. To count coincidences
between two channels, we have replicated the circuit described in Ref. [19] modifying the
capacitors to reduce the coincidence window to 90 ns and adding USB connectivity.

3.1 Photon production
As shown in Fig. 3 and Fig. 4, the two-photon production part is similar in both setups.
It also shares many elements with previous works, in particular with that of Dehlinger
and Mitchell [18, 19]. In more detail, we use a 405 nm laser beam (L404P400M, ThorLabs)
working at 400 mW that emits horizontally-polarized light.

|�〉 = |H〉Pump.

To switch from horizontal to diagonal light with almost no energy loss, we employ a HWP
with its optical axis set at an angle θ = 22.5◦

HWP(1)
θ=22.5◦ |H〉 = ei· π

2 |D〉 = |D〉.

Additionally, we place a polarizer set at a 45◦ angle to further ensure the desired polariza-
tion sate. Thus, the quantum state after the polarizer reads,

|�〉 = |D〉Pump.

Afterwards, the light gets reflected by the two 3D-precision mirrors and passes through a
HWP with its fast axis parallel to the optical table. This HWP is mounted on a goniometer
(RP01/M, ThorLabs) that allows us to tilt it around the axis perpendicular to the optical
table. With this tilt angle, ϕ we can vary the relative phase (φ(ϕ)) between the |H〉 and |V 〉
component.

|�〉 =
1√
2

(|H〉Pump + ei·φ(ϕ)|V 〉Pump
)

. (16)

Note that, at this stage, we have produced a photon in a superposition of both horizontal
and vertical polarization. To generate entangled photons, we exploit a phenomenon called
spontaneous parametric down-conversion (SPDC) Ref. [30]. To this end, we place a pair
of barium borate (BBO) crystals (both Type I, cut at a phase-matching angle θ = 29.2◦,
with dimensions 6 × 6 × 0.1 mm, optically contacted on, and each one rotated 90◦ with
respect to the other) in the light path. Upon interaction with the BBO crystals, an initial
single photon, called pump, can generate two down-converted (and thus, less energetic)
photons. Although the probability of this process is low (one in a million, at best), the high
photon flux that reaches the BBO crystal ensures repeatable generation of Bell states.

The plane formed by the optical axis of the BBO crystal and the direction of propagation
of the incident pump photon is known as the SPDC plane. Only a pump photon with po-
larization contained in the SPDC plane can experience SPDC and generate two photons.
In this case, both photons feature a perpendicular polarization with respect to that of the
incident pump photon. Instead, if the polarization of the pump photon is perpendicular to
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Figure 5 Scheme of the production of entangled photons using two Type-I BBO crystals. The optical axes of
the crystals represented as red line are forming 90◦

the BBO plane, the BBO crystal does not produce pairs of photons [30]. Thus, by illumi-
nating the first (second) BBO crystal with horizontal (vertical) light, pairs of photons can
be produced, both with vertical (horizontal) polarization, as shown in Fig. 5. The green
and red cones are the V -polarized and H-polarized light cones, respectively.

As the photons produced in the first BBO crystal have extraordinary polarization in
the second BBO crystal, then, a relative phase φBBO appears between the pair of photons
produced in the first and the second crystal.

|H〉Pump
BBO′s−−−→ |V 〉s ⊗ |V 〉i, (17)

|V 〉Pump
BBO′s−−−→ ei·φBBO · |H〉s ⊗ |H〉i. (18)

In our experiments, we excite the BBO crystals with diagonally-polarized pumped light,
that is, light in an equal superposition between the |H〉 and |V 〉 states. These photons can
be down-converted in both crystals. Thus, in the region of space where both light cones
overlap (yellow region in Fig. 5) the photons that we receive are indistinguishable, i.e. we
cannot tell in which BBO crystal they were generated. What we do know is that, if we
measure the polarization of one of them, the polarization of the other one is the same.
It is precisely this indistinguishability between two-photon paths what gives rise to the
entanglement.

Let us consider the pair of BBO crystals with their optical axes pointing in the vertical
and horizontal direction. When one pump photon in the state Eq. (16) goes through them
and suffers SPDC, following Eqs. (17) and (18) produces

|�EPR〉 =
1√
2

(|VV 〉 + ei·(φ(ϕ)+φBBO)|HH〉) . (19)

Changing the tilt angle ϕ of the HWP(2), we can control the relative phase between the
|VV 〉 and the |HH〉 components. Let us call ϕ+ and ϕ– the angles for which we obtain

⎧⎨
⎩ϕ = ϕ+ −→ ei·(φ(ϕ)+φBBO) = 1

ϕ = ϕ– −→ ei·(φ(ϕ)+φBBO) = –1.
(20)

Finally, the four Bell states can be produced with this setup by adding a HWP. In par-
ticular, a HWP (HWP(s)) placed in the optical path corresponding to the signal photons,
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Table 1 Value of the variables ϕ and θs for the production of all four Bell States

Bell state Angle θs Angle ϕ

|�+〉 = 1√
2
(|HH〉 + |VV〉) 0◦ ϕ = ϕ+

|�–〉 = 1√
2
(|HH〉 – |VV〉) 0◦ ϕ = ϕ–

|�+〉 = 1√
2
(|HV〉 + |VH〉) 45◦ ϕ = ϕ+

|�–〉 = 1√
2
(|HV〉 – |VH〉) 45◦ ϕ = ϕ–

enables obtaining all four Bell states. As shown in Table 1, these states depend on the an-
gles ϕ and θs, where θs is the angle that forms the fast axis of the HWP(s) with respect to
the horizontal direction.

3.2 Photon detection
The key distinction between both setups lies in the photon detection part. In particular,
in the following three aspects: 1) the number of detector channels employed, 2) the way
we perform unitary transformations on the photon individually and, 3) the way the polar-
ization is measured.

The state of one photon can be expressed in any of the bases introduced previously,

|�〉 = CV |V 〉 + CH |H〉
= CVα |Vα〉 + CHα |Hα〉
= CR|R〉 + CL|L〉,

(21)

where Ci are complex numbers. The squared modulus of these coefficients represents
the probability of finding the photon in that state. Our main objective is to measure the
number of photons that reach our detectors in each state of a given basis. However, we are
limited in the information that we can gather. For example, by varying the polarizer angle
α with respect to the vertical direction in the setup shown in Fig. 3, we are restricted to
measure the states located on the equator of the Bloch sphere {|Vα〉, |Hα〉} (Fig. 1 a). The
setup depicted in Fig. 4 is even more restrictive, allowing access to only the basis {|V 〉, |H〉}.
To measure photons in the various bases of interest in each setup, which is needed for the
Bell test and quantum state tomography experiments, retarder plates are required. A brief
guideline on how to use them is presented in the following subsections.

3.2.1 Measurements in setup 1
In the first setup, to measure the photons polarization we need a QWP and a linear polar-
izer, as depicted in Fig. 6. By placing the QWP at θ = α,

QWP(a)
θ=α(|Hα〉) = |Hα〉,

QWP(a)
θ=α(|Vα〉) = |Vα〉,

the QWP acts as an identity operator for the states |Vα〉 and |Hα〉. In other words, the QWP
does not alter the photon state. Thus, the number of photons in the |Vα〉 and |Hα〉 states
can be measured by simply placing the polarizer at an angle αLP = α and αLP = α + 90◦

respectively. Instead, by placing the QWP at θ = 45◦,

QWP(a)
θ=45◦ (|L〉) = |H〉,
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Figure 6 Measurement scheme in the signal photons’ arm in Setup 1. Photons travel from left to right, first
passing through the QWP with its fast axis (red line) set at an angle θ with respect to the horizontal. They then
go through the linear polarizer, oriented at an angle αLP relative to the vertical. In the idler photons’ arm, the
scheme is the same

Table 2 Value of the angles of the QWP and the linear polarizer for obtaining all different
photon-state statistics using the setup depicted in Fig. 3

Angle QWP Angle LP Counts detected

α α N|Vα 〉
α α + 90◦ N|Hα 〉
45◦ 0◦ N|R〉
45◦ 90◦ N|L〉

Figure 7 Measurement scheme in the signal photons’ arm in Setup 2. Photons travel from left to right, first
passing through the QWP and HWP before going through the polarizing beam splitter (PBS). In the PBS,
photons with vertical polarization get reflected and photons with horizontal polarization gets transmitted

QWP(a)
θ=45◦ (|R〉) = |V〉,

the entire |R〉(|L〉) component of our state described in the Eq. (21) becomes |V 〉(|H〉).
Therefore, by placing the polarizer at an angle αLP = 0◦ (αLP = 90◦), the statistics corre-
sponding to the photon state |R〉 (|L〉) can be directly accessed. A summary of the proce-
dure to measure the statistics for the different photon states in setup 1 is shown in Table 2.

3.2.2 Measurements in setup 2
In the second setup, we measure the photon polarization using a QWP, followed by a HWP
and a polarizing beam splitter (PBS), as depicted in Fig. 7. Thus, photons with vertical
(horizontal) polarization are collected by the fiber-coupling lens placed in the reflected
(transmitted) path of the PBS. By placing the QWP at θ = α and the HWP at θ = α

2 , the
following relationships hold

HWP(a)
θ= α

2
(QWP(a)

θ=α(|Hα〉)) =HWP(a)
θ= α

2
(|Hα〉) = |H〉,

HWP(a)
θ= α

2
(QWP(a)

θ=α(|Vα〉)) =HWP(a)
θ= α

2
(|Vα〉) = |V〉,
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Table 3 Value of the angles of the QWP and the HWP for obtaining all different photon state
statistics in the reflected and transmitted path of the PBS, using the setup depicted in Fig. 4

Angle QWP Angle HWP Counts detected in the refelected
(transmitted) path

α α/2 N|Vα 〉 (N|Hα 〉)
45◦ 0◦ N|R〉 (N|L〉)

where the |Vα〉 and |Hα〉 components of any arbitrary state described in Eq. (21) are trans-
formed into |V 〉 and |H〉 components, respectively. When these photons pass through the
PBS, in the reflected (transmitted) path, the vertically (horizontally) polarized photons
follow the statistics of photons in the state |Vα〉 (|Hα〉). On the other hand, if we place the
QWP at θ = 45◦ and the HWP at θ = 0◦, we obtain

HWP(a)
θ=0◦ (QWP(a)

θ=45◦ (|L〉)) =HWP(a)
θ=0◦ (|H〉) = |H〉,

HWP(a)
θ=0◦ (QWP(a)

θ=45◦ (|R〉)) =HWP(a)
θ=0◦ (|V〉) = |V〉,

the entire |R〉(|L〉) component of our state becomes |V 〉(|H〉). Therefore, in the reflected
(transmitted) path of the PBS, the counting statistics of photons in the states |R〉 and |L〉
can be measured, respectively. A summary of the procedure to obtain all different photon
state statistic using setup 2 is shown in Table 3.

4 Alignment of the setup
As with any system based on single photon detection, the alignment of the different optical
elements is key for retrieving sound statistics. In this section, we explain in full detail how
to align our experimental setup.

4.1 Alignment of the pump laser and detectors
Once all optical elements are assembled, it is necessary to check that the pump laser travels
parallel to the optical table and through the center of the elements. This can be controlled
by precisely adjusting the two mirrors (KS1, ThorLabs) where the pump beam is reflected.

To ensure that the fiber-coupling lenses (F810FC-780, ThorLabs) are aligned with respect
to the BBO crystals, we use the following procedure. First, we insert the light from a low-
power visible laser to the end of the fiber - the end where the photodetectors would be
connected. Secondly, we check the location of the two generated laser spots on the BBO
crystal. Thirdly, by using the precision mount (KS1, ThorLabs) where the fiber-coupling
lenses are assembled, we adjust the position of the spots to lie at the BBO crystals. This
three-step process grants that the collected light by the photodetectors provided from the
BBO crystal.

4.2 Optimal position for the rail angles
The angles of the detectors rails (and therefore the fiber-coupler lenses) determine the
number of collected photons, and therefore, the statistical robustness of the experiments.
Thus, it is necessary to determine the angle for which the maximum number of coincident
counts is detected. Note that coincident counts from the BBO crystals can be detected
when their number deviates by at least an order of magnitude compared to accidental
counts (Nacc), that is, counts expected by mere chance. These accidental counts depend
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Figure 8 Coincidence counts and averaged accidental counts for different angular positions of the metallic
rails. Each of the measurements takes 30 seconds

on the number of counts detected individually by each of the detectors (Na and Nb), as
well as the measurement duration (T) and the coincidence window (τ ), according to the
following equation

Nacc =
Na · Nb · τ

T
. (22)

In our case, the value for the coincidence window is fixed and equal to 90 ns. To find the
optimal position of the rails, we conduct a study in which, for a certain angle of the signal
rail (�s), we record the number of detected coincidences for various positions of the idler
rail (�i), as shown in Fig. 8. Interestingly, the maximum number of coincidence counts for
each condition analyzed occurs when one detector is approximately at the same angle as
the other detector. In addition, these local maxima slightly decreases with (�i). Note that,
given the footprint of the metal rails, we cannot position both detectors at less than 2.5◦.
Therefore, fixing the detectors at an angle �s = �i = 2.5◦ with respect to the pump laser
beam provides the largest number of coincidence counts. This is the condition used for all
the remaining measurements. Notably, at these angles, the number of coincidence counts
differs by at least two orders of magnitude compared to the number of accidental counts.
This indicates that the coincidence counts we detect come from photon pairs produced
in the BBO crystals. It is also worth mentioning that the number of dark counts of our
detector was around 350 counts per channel per second.

4.3 Optimal position of the BBO crystals. Finding the direction of the optical axes
By design, the two BBO crystals are orthogonally oriented, as an assembly, and mounted
on a rotation mount. They produce photons when the polarization of the incident light
is contained in the SPDC plane of the crystal [30]. Thus, by exciting the BBO crystals
with horizontally polarized pump light and rotating the BBO crystals, we can determine
the four angles at which only photons in the state |VV 〉 are produced. Note that at these
angles the SPDC plane of one BBO crystal is parallel to the pump light polarization, while
the SPDC plance of the second one is perpendicular to it. In this case, the first crystal
generates photon paris in the state |VV 〉 while the second one does not emit any light

By rotating the BBO crystals in steps of 10◦, and measuring the photons in the states
|VV 〉, |VH〉, |HV 〉 and |HH〉 for each angle, we obtain the dependence shown in Fig. 9. The
maximal signal of photons in the |VV 〉 state is found for angles 45◦, 135◦, 225◦ and 315◦.
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Figure 9 Coincidence probabilities measured for various BBO crystal angles and photon-pair states. Each
measurement lasts 30 seconds

These are the optimal angles for the production of entangled photons when shining the
crystals with diagonally-polarized light. In this case, one of the crystals has the optical axis
pointing in the |H〉 direction and the other in the |V 〉 direction.

4.4 Finding the optimal phase-matching angle
Once the optical axes of the BBO crystals point in the |V 〉 and |H〉 directions, we can
further enhance the number of detected photons under illumination with diagonally po-
larized light. This can be achieved by finding the phase-matching condition for each crys-
tal, that is, by aligning the phase of the light waves within the crystal to maximize their
interaction.

To this end, we tilt the BBO crystals around the vertical and horizontal axis, effectively
changing the angle between the propagation direction of the incidence pump photons and
the plane of the BBO crystals. Note that our BBO crystals are cut at a phase-matching angle
of 29.2◦, which is not optimized for the wavelength that we are working with (405 nm) [31,
32]. For a 405 nm wavelength, an optimal phase matching angle is θ = 29◦. In any case, we
can maximize the number of detected photons by using the precision mount in which the
crystals are placed (KS1RS, ThorLabs), as shown in Fig. 5. We achieve so despite the crystals
being held together. Given that the first (second) crystal has its optical axis contained in
the horizontal (vertical) plane, tilting the set of crystals around the vertical (horizontal)
axis only affects the phase-matching angle of first (second) crystal.

As we vary the angle of the crystal whose optical axis is pointing in the vertical (horizon-
tal) direction, we measure the photons reaching the detectors in the |HH〉 (|VV 〉) states.
The angle at which the highest number of photons is detected corresponds to the optimal
phase-matching angle.

4.5 Finding the relative phase-shift dependence with the tilt angle of the HWP(2)

The HWP(2) has its fast axis pointing in the |H〉 direction, but is placed in a mount that
allows to tilt this retarder plate around an axis perpendicular to the optical table (RP01/M,
ThorLabs). This permits us to adjust the relative phase between the |VV 〉 and the |HH〉
photons produced in the BBO crystals, as is described in Eq. (19).
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Figure 10 The dependence of coincidence counts, represented by blue dots, and relative phase shift,
depicted as a red solid line, on the tilt angle ϕ of the HWP(2)

If we measure the photons produced by the crystals in the state |D〉s ⊗ |D〉i while we
vary the tilt angle ϕ of the HWP(2), we expect to find the number of coincident counts
following the dependence

N|DD〉(ϕ) ∝ |〈DD|�EPR〉|2

∝ 1
4

· (1 + cosφ′),
(23)

where |�EPR〉 is the state defined in Eq. (19) and φ′ = φ(ϕ) + φBBO. When ϕ = ϕ+ + 2πn
(ϕ = ϕ– + 2πn), with n ∈ Z we expect to find a maximum (minimum) in the number of
pairs of photons in the state |DD〉 [30].

This dependence of the number of coincidence counts in the state |DD〉 with the tilt
angle ϕ can be seen in Fig. 10. For angles ϕ = –22◦, –1◦ and 19◦, the relative phase between
components is equal to φ′ = –2π , 0 and 2π while for ϕ = –15◦ and 12◦, the relative phase
between components is equal to φ′ = –π and π .

Here we use a tilted HWP for walk-off compensation between photons downconverted
in the first and the second BBO crystal. Should be noted that in other works and com-
mercial devices it also common the use of compensation crystals, such as YVO, see Ref.
[24, 33].

5 Entanglement characterization, quantum state tomography and Bell test
Once the setup is optimally aligned, we can characterize and perform a Bell test in all four
Bell states. As explained above, the evaluation of the CHSH inequality requires measuring
several correlation functions, Eq. (13), which contain coincidence probabilities among the
detectors. Thus, to start characterizing the correlations arising in our detectors, we com-
pare quantum mechanical predictions to our data for two such correlations. In particular,
we concentrate on C(0◦, θ ) and C(45◦, θ ) defined as, see Appendix C,

C(0◦, θ ) = |〈�|V0Vθ 〉|2,

C(45◦, θ ) = |〈�|V45◦Vθ 〉|2. (24)

These can be experimentally obtained by measuring the coincidence counts of pairs of
photons in the state |V0◦ 〉⊗ |Vθ 〉 or |V45◦ 〉⊗ |Vθ 〉 respectively, while varying the angle θ at
which we measure the state of the second photon.
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Figure 11 Unnormalized C(0◦ ,θ ), C(45◦ ,θ ) functions and tomography for the states |�+〉 (left) and |�–〉
(right). The dashed lines correspond to the quantum mechanics predictions, C(θ1,θ2) ∝ cos2(θ1 – θ2) and
C(θ1,θ2)∝ cos2(θ1 + θ2), for |�+〉 and |�–〉, respectively. The explicit expressions are derived in Appendix C

Figure 12 Unnormalized C(0◦ ,θ ), C(45◦ ,θ ) graphs and tomography for the states |�+〉 (left) and |�–〉 (right).
The dashed lines correspond to the quantum mechanics predictions, C(θ1,θ2) ∝ sin2(θ1 + θ2) and
C(θ1,θ2)∝ sin2(θ1 – θ2), for |�+〉 and |�–〉, respectively. The explicit expressions are derived in Appendix C

Our measurements, compared to the quantum mechanical predictions are presented in
the upper panels of Figs. 11 and 12. In all cases, the agreement between the experimental
measurements, symbols, and the theoretical predictions, dashed lines, is very good. Note
we are reporting results for the four different Bell states presented in Eq. (12). The details
of the quantum mechanical predictions are provided in Appendix C.

5.1 Quantum state tomography
Importantly, our setups allow also to perform a full quantum state tomography of the two-
photon wave functions. In this way, we can quantify to which extent we are able to produce
the desired quantum states. The density matrix of our two photon state is a 4 × 4 complex
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Table 4 Bell test and fidelity results for each of states

State 〈S〉 〈S′〉 Fidelity

|�+〉 2.765± 0.018 0.022± 0.018 0.945± 0.005
|�–〉 0.101± 0.016 2.745± 0.016 0.918± 0.005
|�+〉 –0.055± 0.019 –2.806± 0.019 0.881± 0.005
|�–〉 –2.804± 0.018 –0.053± 0.018 0.954± 0.005

matrix, see Eq. (5). As explained above it can be rewritten as products of Pauli operators,
see Eq. (6). The latter form is easier to handle as its Stoke’s coefficients can be directly
related to our measurements as explicitly provided in Eq. (B.2).

Our experimental results for the tomography of the four Bell states are presented in the
colored charts in Figs. 11 and 12. In all cases we present the real, left square, and imaginary
part, right square, of the corresponding density matrix. The theoretical predictions are
easy to obtain. As an example, for instance in the |�–〉 case we have,

ρ̂ = |�–〉〈�–|

=
1√
2

(|HH〉 – |VV 〉) 1√
2

(〈HH| – 〈VV |)

=
1
2

(|HH〉〈HH| – |HH〉〈VV |

– |VV 〉〈HH| + |VV 〉〈VV |) . (25)

In our two-photon basis, ({|HH〉, |HV 〉, |VH〉, |VV 〉}), this translates into the matrix,

ρ̂ =

⎡
⎢⎢⎢⎣

1
2 0 0 – 1

2
0 0 0 0
0 0 0 0

– 1
2 0 0 1

2

⎤
⎥⎥⎥⎦ . (26)

This matrix should be compared to the entries in the right part of Fig. 11. First, we note
that the imaginary part of the matrix elements, which should be zero according to the
theoretical prediction, is found in most cases below 0.05, with two values reaching 0.11
in absolute value. The real parts show also a very good agreement with the theory pre-
dictions, with the two external diagonal entries being 0.49 and 0.48, and the antidiagonal
ones, –0.43 and –0.43. The distance between the measured two-photon state and the the-
oretically expected one is provided by the fidelity, Eq. (9), reported in Table 4.

The discussion of the other Bell states is in general trends similar. We obtain imaginary
parts which are fairly small, and values close to ±0.5 in the corresponding entries of the
real part. In all cases, the fidelity obtained is above 0.88, see all values compiled in Table 4.

5.2 Bell test
Finally, to prove that we have indeed an entangled state, we perform the Bell test. For each
of the states, we obtain a violation of the Bell inequalities with at least 40 standard devi-
ations from the maximum classical value of |〈S〉| = 2, see Table 4. As each measurement
takes 30 seconds, the time needed for conducting a Bell test using Setup 1 is 20 minutes
and 5 minutes with Setup 2. The resulting value for the state |�+〉 is 〈S〉 = 2.730 ± 0.015.
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For the tomography and the calculation of the fidelity, we use only the number of coin-
cidence counts, while for obtaining the value of the Bell inequality, we use the difference
between coincidence counts and accidental counts, as described in Sect. D. Eliminating
the accidental counts from the total coincidences allows us to suppress the contribution
of background noise and the detectors’ dark counts. Together with a precise preparation
of the entangled state, this leads to CHSH inequality values very close to the theoretical
ones.

6 Conclusions
We have presented a new experimental laboratory aimed at the undergraduate and master
level to study quantum entangled photons. This laboratory is based on the method of
obtaining entangled photons in two type I BBO crystals, first proposed and experimentally
realized in Ref [30] and developed for the undergraduate laboratory in Refs. [18, 19] and
later in Refs. [20, 21].

Two different setups have been described, which differ on the photon detection part.
The photon detection is either performed with two single photon detectors or with four,
allowing in the latter case to reduce the measurement time by a factor four.

The photons are collected by means of optical fibers mounted on custom made rails,
thus ensuring an easy and robust alignment. The procedure to assemble and align the
system from scratch, which has proven key in our experience, has been presented, thus
providing a direct guide to future undergrad students in quantum science and technology
laboratories worldwide.

The experiments which can be conducted are manifold. First, one can produce any of
the well know Bell states, in our case produced with a fidelity higher that 88%. The full
tomography of the states can be performed, thus confirming that the desired two-photon
quantum state has been produced. Besides, one can also perform correlated measure-
ments within the two photons, which can be directly confronted with quantum mechan-
ical predictions.

Bell tests tailored for the different Bell states can also be performed. In our case, we mea-
sured violations of the corresponding inequalities by more than 40 standard deviations.
With this setup, after alignment, a Bell test can be conducted in less than an hour.

All of this, combined with the fact that the total cost of components required to as-
semble both setups is approximately twenty thousand euros (see Sect. A for our total cost
estimation and Refs. [19, 21] for other cost estimations of previous works), makes this
experiment accessible to laboratories with limited resources. It also brings these type of
demonstrations closer to undergraduate students, high school students, or even a broader
audience. This facilitates the dissemination of key concepts in quantum mechanics beyond
universities and specialized research groups.

Appendix A: List of material
For any reader interested in replicating either of the two setups, here, in Table 5, there is
an inventory of useful information for acquiring all the necessary elements. The total cost
of all these elements amounts to around 20.000 euros. Also, more information about the
total cost of similar experiments can be found in Refs. [19, 21].
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Table 5 Detailed equipment used in the setups. The subscripts 1 and 2 denote the quantities of
elements required solely for the construction of setups 1 and 2, respectively

Description of the product Reference and Company Price (eur.) Quantity

Precision kinematic mount KS1, ThorLabs 90.51 4 + 22
Fiber-coupling lenses F810FC-780, ThorLabs 267.73 2 + 22
Goniometer RP01/M, ThorLabs 101.24 1
Rotation Mount RSP1X225/M, ThorLabs 141.46 4
Rotation Mount 30 mm cage system CRM1T/M, ThorLabs 87.20 1
BBO crystals mount KS1RS, ThorLabs 250.90 1
PBS mount KM200PM/M, ThorLabs 127.41 22
4-channel detector SPCM-AQ4C, Excelitas Technologies 13,456.21 1
Current and Temperature Controllers
for Laser Diodes

LTC56A/M, ThorLabs 2847.77 1

Laser diode 404 nm 400 mW L404P400M, ThorLabs 684.60 1
Mirrors BB1-E02, ThorLabs 73.83 2
BBO crystals EKSMA Optics 1540.00 1
Bandpass Filter 405 nm FBH405-10, ThorLabs 149.69 1
Bandpass Filter 800 nm FBH800-40, ThorLabs 149.69 2 + 22
“Infrared” Polarizers LPNIRE100-B, ThorLabs 116.46 21
Quarter-wave Plate 808 nm WPQ05M-808, ThorLabs 461.09 2
Half-wave Plate 808 nm WPH05M-808, ThorLabs 461.09 22
Half-wave Plate 405 nm WPH05M-405, ThorLabs 461.09 2
Polarizing Beamsplitter (PBS) PBS252, ThorLabs 235.40 22
Development board for the
coincidence circuit

NUCLEO-F756ZG, STMicroelectronics 22.82 1

Appendix B: Stokes coefficients
The general equation for each of the Stokes coefficients of Eq. (6) is

Sij = Tr(σ̂i ⊗ σ̂j · ρ̂), (B.1)

where ρ̂ is the state of our pair of photons. Thus, the explicit expression for the Stokes
coefficients is,

S00 = P|HH〉 + P|HV 〉 + P|VH〉 + P|VV 〉,

S01 = P|HD〉 – P|HA〉 + P|VD〉 – P|VA〉,

S02 = P|HL〉 – P|HR〉 + P|VL〉 – P|VR〉,

S03 = P|HH〉 – P|HV 〉 + P|VH〉 – P|VV 〉,

S10 = P|DH〉 + P|DV 〉 – P|AH〉 – P|AV 〉,

S11 = P|DD〉 – P|DA〉 – P|AD〉 + P|AA〉,

S12 = P|DL〉 – P|DR〉 – P|AL〉 + P|AR〉,

S13 = P|DH〉 – P|DV 〉 – P|AH〉 + P|AV 〉,

S20 = P|LH〉 + P|LV 〉 – P|RH〉 – P|RV 〉,

S21 = P|LD〉 – P|LA〉 – P|RD〉 + P|RA〉,

S22 = P|LL〉 – P|LR〉 – P|RL〉 + P|RR〉,

S23 = P|LH〉 – P|LV 〉 – P|RH〉 + P|RV 〉,

S30 = P|HH〉 + P|HV 〉 – P|VH〉 – P|VV 〉,
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S31 = P|HD〉 – P|HA〉 – P|VD〉 + P|VA〉,

S32 = P|HL〉 – P|HR〉 – P|VL〉 + P|VR〉,

S33 = P|HH〉 – P|HV 〉 – P|VH〉 + P|VV 〉.

Using Eq. (6), we can write the reconstructed density matrix and as we can see in
Eq. (B.2). This matrix is hermitian (ρ̂ = ρ̂†) and normalized (Tr(ρ̂) = 1) by definition.

ρ̂ =
1
4

⎛
⎜⎜⎝

S00 + S03 + S30 + S33 S01 + S31 – i(S02 + S32) S10 + S13 – i(S20 + S23) S11 – S22 – i(S12 + S21)
S01 + S31 + i(S02 + S32) S00 – S03 + S30 – S33 S11 – S22 + i(S12 – S21) S10 – S13 – i(S20 – S23)
S10 + S13 + i(S20 + S23) S11 – S22 – i(S12 – S21) S00 + S03 – S30 – S33 S01 – S31 – i(S02 – S32)
S11 – S22 + i(S12 + S21) S10 – S13 + i(S20 – S23) S01 – S31 + i(S02 – S32) S00 – S03 – S30 + S33

⎞
⎟⎟⎠.

(B.2)

The matrix presented in Eq. (B.2) is the one we have used for obtaining the colored charts
in Fig. 11 and 12. In these representations, the weights that accompany the real (imaginary)
part for each one of the entries of this matrix are displayed with different colors depending
on their relative weight with respect to the other coefficients in the “Real part” (“Imaginary
part”) chart.

Appendix C: Computation of P|Vθ1
Vθ2

〉 for all four Bell states
We define P|Vθ1 Vθ2 〉 as the probability of finding the two photons in the state |Vθ1〉 ⊗ |Vθ2〉.
The values of this probabilities for each one of the states are:

• For |�+〉 = 1√
2 (|HH〉 + |VV 〉):

P|Vθ1 Vθ2 〉 = |〈�+|Vθ1 Vθ2〉|2

= | 1√
2

(〈HH| + 〈VV |) · (sin θ1 sin θ2|HH〉 + cos θ1 cos θ2|VV 〉

– sin θ1 cos θ2|HV 〉 – cos θ1 sin θ2|VH〉)|2

= | 1√
2

(sin θ1 sin θ2 + cos θ1 cos θ2)|2

= | 1√
2

cos(θ1 – θ2)|2 =
1
2

cos2(θ1 – θ2) (C.1)

• For |�–〉 = 1√
2 (|HH〉 – |VV 〉):

P|Vθ1 Vθ2 〉 = |〈�–|Vθ1 Vθ2〉|2

= | 1√
2

(〈HH| – 〈VV |) · (sin θ1 sin θ2|HH〉 + cos θ1 cos θ2|VV 〉

– sin θ1 cos θ2|HV 〉 – cos θ1 sin θ2|VH〉)|2

= | 1√
2

(sin θ1 sin θ2 – cos θ1 cos θ2)|2

= | 1√
2

cos(θ1 + θ2)|2 =
1
2

cos2(θ1 + θ2) (C.2)
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Table 6 Values of P|Vθ1Vθ2 〉 for each one of the Bell states

Bell state P|Vθ1 Vθ2 〉

|�+〉 1
2 cos

2(θ1 – θ2)

|�–〉 1
2 cos

2(θ1 + θ2)

|�+〉 1
2 sin

2(θ1 + θ2)

|�–〉 1
2 sin

2(θ1 – θ2)

• For |�+〉 = 1√
2 (|HV 〉 + |VH〉):

P|Vθ1 Vθ2 〉 = |〈�+|Vθ1 Vθ2〉|2

= | 1√
2

(〈HV | + 〈VH|) · (sin θ1 sin θ2|HH〉 + cos θ1 cos θ2|VV 〉

– sin θ1 cos θ2|HV 〉 – cos θ1 sin θ2|VH〉)|2

= | 1√
2

(sin θ1 cos θ2 + cos θ1 sin θ2)|2

= | 1√
2

sin(θ1 + θ2)|2 =
1
2

sin2(θ1 + θ2) (C.3)

• For |�–〉 = 1√
2 (|HV 〉 – |VH〉):

P|Vθ1 Vθ2 〉 = |〈�–|Vθ1 Vθ2〉|2

= | 1√
2

(〈HV | – 〈VH|) · (sin θ1 sin θ2|HH〉 + cos θ1 cos θ2|VV 〉

– sin θ1 cos θ2|HV 〉 – cos θ1 sin θ2|VH〉)|2

= | 1√
2

(sin θ1 cos θ2 – cos θ1 sin θ2)|2

= | 1√
2

sin(θ1 – θ2)|2 =
1
2

sin2(θ1 – θ2) (C.4)

These theory predictions are compiles in Table 6.

Appendix D: Experimental data and error estimates
For completeness we provide the raw data and details on the way the different probabilities
are estimated from the data including their error estimates.

D.1 Experimental data
We provide all the data obtained for each one of the Bell test performed to the different Bell
states using the setup depicted in Fig. 3, these results are collected in Tables 7, 8, 9 and 10.
We also provide the data for the Bell test achieved with the photons in the state |�+〉 in
Table 11, using the setup presented in Fig. 4. In all these graphs, the angles α and β stands
for the angles at which Alice (|Vα〉) and Bob (|Vβ〉) measure their respective photons. Each
of these measurements was taken using a time interval of 30 seconds.
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Table 7 Data obtained for the computation of the Bell inequality using pairs of photons in the |�+〉
α (◦) β (◦) Na Nb Nc Nacc

45 22.5 242,324 126,944 3025 92.28
45 –22.5 241,250 125,920 377 91.13
45 –67.5 244,869 142,160 1242 104.43
45 –112.5 250,568 145,332 3959 109.25
0 22.5 231,257 137,000 3432 95.05
0 –22.5 235,528 132,632 2975 93.72
0 –67.5 226,909 138,908 310 94.56
0 –112.5 226,724 143,352 1028 97.50

–45 22.5 234,822 135,900 763 95.74
–45 –22.5 234,676 132,592 3684 93.35
–45 –67.5 233,508 145,184 3376 101.70
–45 –112.5 229,828 150,008 545 103.43
–90 22.5 224,928 129,820 394 87.60
–90 –22.5 222,538 123,984 927 82.77
–90 –67.5 217,928 135,868 3728 88.83
–90 –112.5 223,545 141,888 3031 95.16

Table 8 Data obtained for the computation of the Bell inequality using pairs of photons in the |�–〉
state

α (◦) β (◦) Na Nb Nc Nacc

45 22.5 220,634 157,440 721 104.21
45 –22.5 226,207 151,083 3995 102.53
45 –67.5 226,708 173,348 4562 117.90
45 –112.5 221,408 182,304 1134 121.09
0 22.5 208,526 157,300 4001 98.40
0 –22.5 214,617 149,412 3915 96.20
0 –67.5 208,804 169,832 565 106.38
0 –112.5 213,806 182,984 1001 117.37

–45 22.5 245,625 157,568 4293 116.11
–45 –22.5 246,193 149,052 683 110.09
–45 –67.5 240,321 168,744 1417 121.66
–45 –112.5 241,023 178,476 4720 129.05
–90 22.5 259,133 157,176 852 122.19
–90 –22.5 259,584 149,428 835 116.37
–90 –67.5 254,570 174,292 4523 133.11
–90 –112.5 259,205 182,424 4554 141.86

Table 9 Data obtained for the computation of the Bell inequality using pairs of photons in the |�+〉
state

α (◦) β (◦) Na Nb Nc Nacc

45 22.5 202,953 140,256 2997 85.40
45 –22.5 209,729 140,292 589 88.27
45 –67.5 199,521 132,980 854 79.60
45 –112.5 199,216 138,172 3409 82.58
0 22.5 195,788 135,044 520 79.32
0 –22.5 191,147 126,572 716 72.58
0 –67.5 196,727 130,908 3435 77.26
0 –112.5 191,245 138,028 3167 79.19

–45 22.5 185,983 135,516 648 75.61
–45 –22.5 187,608 130,676 3189 73.55
–45 –67.5 188,891 133,528 2898 75.67
–45 –112.5 185,914 136,744 470 76.27
–90 22.5 179,726 137,788 2973 74.29
–90 –22.5 178,394 131,576 2709 70.42
–90 –67.5 179,378 131,052 401 70.52
–90 –112.5 175,836 133,828 642 70.60
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Table 10 Data obtained for the computation of the Bell inequality using pairs of photons in the
|�–〉 state
α (◦) β (◦) Na Nb Nc Nacc

45 22.5 205,843 152,544 1026 94.20
45 –22.5 202,783 146,180 3625 88.93
45 –67.5 203,926 136,128 2977 83.28
45 –112.5 203,209 140,200 370 85.47
0 22.5 199,956 155,508 476 93.28
0 –22.5 198,214 149,576 728 88.94
0 –67.5 194,361 139,668 3686 81.44
0 –112.5 195,118 143,816 3027 84.18

–45 22.5 209,593 155,160 3400 97.56
–45 –22.5 209,790 149,908 643 94.35
–45 –67.5 207,594 136,140 740 84.79
–45 –112.5 202,074 142,580 3403 86.44
–90 22.5 197,175 147,948 3358 87.51
–90 –22.5 202,596 146,072 3212 88.78
–90 –67.5 204,167 135,736 438 83.14
–90 –112.5 202,654 143,952 860 87.52

Table 11 Data obtained for the computation of the Bell inequality with the setup depicted in Fig. 4,
using pairs of photons in the |�+〉 state
α (◦) β (◦) Na Nb Nc Nacc

45 22.5 305,415 248,380 5302 227.57
45 –22.5 280,234 237,452 1709 199.62
45 –67.5 190,449 247,220 859 141.24
45 –112.5 210,298 247,104 5626 155.89
0 22.5 305,380 320,864 6682 293.95
0 –22.5 288,215 312,288 6478 270.01
0 –67.5 194,873 321,212 1267 187.78
0 –112.5 201,912 301,124 1538 182.40

–45 22.5 294,989 231,004 2013 204.43
–45 –22.5 280,329 230,040 5343 193.46
–45 –67.5 184,691 232,300 4809 128.71
–45 –112.5 202,687 237,160 604 144.20
–90 22.5 292,146 164,976 729 144.59
–90 –22.5 278,696 170,320 513 142.40
–90 –67.5 174,801 158,404 4295 83.06
–90 –112.5 201,492 164,912 4770 99.68

D.2 Probability estimates and error analysis
Assuming that the counts follow a Poisson distribution, the error corresponding to the
number of counts detected in a certain time interval is equal to the square root of that
value. That is:

σNa =
√

Na , σNb =
√

Nb , σNc =
√

Nc. (D.1)

Therefore, performing error propagation in Eq. (22), we have that the error in Nacc is,

σNacc =
τ

T
·
√

N2
b · σ 2

Na + N2
a · σ 2

Nb
=

τ

T
·
√

N2
b · Na + N2

a · Nb, (D.2)

where we have assumed that the values T and τ have no associated error. For simplicity, we
define NVV = N|VαVβ 〉 = Nc(|VαVβ〉) – Nacc(|VαVβ〉) as the number of detected coincidence
counts minus the number of accidental coincidence counts and σNVV = σN (|VαVβ〉) to their
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associated error,

σNVV =
√

σ 2
Nc (|VαVβ〉) + σ 2

Nacc (|VαVβ〉). (D.3)

Then, the equation for the different probabilities is

P|VαVβ 〉 =
N|VαVβ 〉

N|VαVβ 〉 + N|Vα–90◦ Vβ 〉 + N|VαVβ–90◦ 〉 + N|Vα–90◦ Vβ–90◦ 〉

=
N|VαVβ 〉

N|VαVβ 〉 + N|HαVβ 〉 + N|VαHβ 〉 + N|HαHβ 〉

=
NVV

NVV + NHV + NVH + NHH
,

(D.4)

where, from the Eq. (4), we extract that |Vγ –90◦〉 = |Hγ 〉. The error associated to the prob-
ability P|VαVβ 〉 can be written as

σP|VαVβ 〉 =
1

(NVV + NHH + NVH + NHH)2

·
√

N2
VV · (σ 2

NVH
+ σ 2

NHV
+ σ 2

NHH
) + (NHV + NVH + NHH)2 · σ 2

NVV
. (D.5)

For the correlation functions, defined as in Eq. (13), we have that the error is

σE(α,β) =
√

σ 2
P|VαVβ 〉 + σ 2

P|VαHβ 〉 + σ 2
P|HαVβ 〉 + σ 2

P|HαHβ 〉 . (D.6)

Finally, for both functions S and S′, defined in Eq. (14) and Eq. (15), we have the same
associated error,

σS = σS′ =
√

σ 2
E(α,β) + σ 2

E(α,β ′) + σ 2
E(α′ ,β) + σ 2

E(α′ ,β ′). (D.7)

Also, we define the coverage ratio as the distance in standard deviations between the
absolute value of our value obtained in the CHSH inequality and the maximum value that
can be obtained clasically, i.e. 2. Thus,

Coverage Ratio =
|〈S〉| – 2

σS
for |�+〉 and |�–〉

=
|〈S′〉| – 2

σS′
for |�–〉 and |�+〉.

(D.8)

Appendix E: Coincidence detection
In order to count and compute the coincidences among the four channels, an HDL mod-
ule has been designed to be implemented in an FPGA. More specifically, the counter has
been designed to work in an Ultra69-v1 board with the Zynq Ultrascale+ MPSoC. This
allows for a very convenient setup that is simple to use and can be reproduced easily.
Since its design is parameterizable, it can work with more than 4 input signals and the
coincidence registers for every combination are automatically generated in synthesis (the
process where the HDL code is converted into hardware).
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Figure 13 Block diagram of the coincidence counting system

Figure 14 Logic involved in the counting and computation of the coincidences

This SoC is divided into two main parts: the CPU and the Programmable Logic. This
allows a bare-bones Linux image with Python and some extra dependencies to be installed
on the device (PYNQ), which can control and communicate with the PL through an AXI
(Lite) bus. This way, when connecting the device to a computer either through USB or
Ethernet (or even Wi-Fi), the user is encountered with a very user-friendly and intuitive
Jupyter Notebook interface through which the whole acquisition is done. The block dia-
gram describing the parts of the device is shown in Fig. 13.

Aside from the Ultra96-v1, a mezzanine board is added to convert the single-ended sig-
nals into LVDS signals (for better accuracy, compatibility, and protection), which are then
reconverted into single-ended signals inside the PL.

In order to both count the pulses and compute the coincidences, the following structures
run in parallel (which output their signals into a counter that increments the stored value
by 1 every time its positive edge detector spikes), which can be seen in Fig. 14:

• A positive edge detector for every signal that is inputted
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Figure 15 Logic involved in the delay generator with the non-optional registers to prevent meta-stability
issues

• An AND gate followed by a positive edge detector that spikes when a coincidence has
occurred between the two selected channels (an overlap of the two signals is detected,
but only when the overlap first happens; not the whole period the signals stay up).

Aside from that, a configurable delay generator has been added in order to be able to
correct for different path lengths among the channels in the detection system. This module
consists of a series of registers and multiplexers (as seen in Fig. 15) that allow you to choose
how many delay registers you want to put on every channel. It’s worth noting that behind
every input, two non-optional registers are stacked to correct and prevent meta-stability
issues.
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