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Abstract 
 

In polar and temperate regions, strong seasonality in environmental conditions often drives 

animal phenology, resulting in population-wide synchrony in the timing of critical biological 

events such as breeding and migration. The association between phenology and seasonality 

is less pronounced in tropical systems, where environmental conditions remain relatively 

constant throughout the year. As a result, many species exhibit asynchronous or year-round 

breeding patterns. This leads to the question of whether these species respond to seasonal 

changes, which may remain present albeit to a lesser extent, and what shapes their phenology. 

To assess the effects of seasonality on tropical species, we investigated the foraging and 

migratory ecology of the Red-billed Tropicbird (Phaethon aethereus), a poorly studied 

pantropical species that breed year-round in Cabo Verde, between 2017 and 2024. Along 

four chapters, this thesis presents novel insights into how tropicbirds cope with seasonal 

changes in resource availability and environmental conditions using a combination of 

biologging (GPS, GLS-immersion loggers, time-depth recorders (TDR), and accelerometry), 

nest monitoring, and diet analyses. In the first chapter, we used auxiliary biologging data 

from immersion loggers, TDR and accelerometry to evaluate and semi-supervise Hidden 

Markov Model to classify tropicbirds' behaviors at sea based on tropicbird GPS tracks. We 

found that although overall classification accuracy greatly improved with semi-supervision, 

these models failed to capture tropicbird the foraging state, and give a word of caution on 

using these models to classify behaviors in other opportunistic foragers. Building on the 

methodological insights of this first chapter, the second chapter of this thesis focuses on the 

effects of seasonality on the foraging behavior of tropicbirds during the breeding season. In 

this chapter, we found seasonal patterns in foraging behavior, occupancy, and diet, which 
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affected fitness metrics. We relate these patterns to the increased availability of squid and 

nest site suitability at the end of the dry season and an increase in weather-related foraging 

costs in the wet season. In the third chapter, we investigated whether seasonal patterns persist 

during the non-breeding period and found individual and seasonal consistency in the areas 

used. We also found that seasonal shifts seem to be related to population-wide habitat 

preferences. In the fourth chapter, to decipher whether the observed seasonal patterns in 

foraging and migratory behavior reflect individual plasticity, or seasonal specialization we 

investigated the repeatability and heritability of tropicbird phenology. We found that 

individuals maintained remarkably consistent year-round phenology across subsequent years 

and that phenology appears heritable, with recruits returning to breed around the same time 

they fledged. Our results provide some of the first in-depth knowledge on the seasonal 

variation in the foraging behavior of a tropical seabird species, suggesting seasonality in 

tropical systems may be a stronger driver of the movements of top predators than previously 

thought. Moreover, we found strong individual repeatability and heritability of phenology, 

suggesting that these seasonal patterns remain consistent within generations. Therefore, we 

anticipate that, in changing environmental conditions, tropicbirds may have a restricted 

ability to modify their individual foraging and migratory strategies, rendering them more 

vulnerable to environmental change than previously anticipated. 
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Resum 

En regions polars i temperades, la fenologia animal sol estar determinada per una forta 

estacionalitat de les condicions ambientals, cosa que dóna lloc a una sincronia en el calendari 

d'importants esdeveniments biològics, com la reproducció i la migració. En sistemes 

tropicals, on les condicions relativament constants al llarg de l'any, la relació entre fenologia 

i estacionalitat és menys pronunciada i, com a resultat, moltes espècies presenten patrons de 

reproducció asíncrons o es reprodueixen durant tot l'any. Això porta a la pregunta d’ com 

s'adapten aquestes espècies als canvis estacionals, que segueixen presents, encara que en 

menor mesura. Per avaluar els efectes de l'estacionalitat en espècies tropicals, investiguem 

l'ecologia migratòria i d'alimentació del Cua de Jonc Bec-roig (Phaethon aethereus), una 

espècie pantropical poc estudiada que cria durant tot l'any a Cap Verd, amb dades preses entre 

el 2017 i el 2024. A al llarg de 4 capítols, aquesta tesi presenta nous coneixements sobre com 

els Cua de Joncs fan front als canvis estacionals en la disponibilitat de recursos i les 

condicions ambientals utilitzant una combinació de mètodes per estudiar la conducta, 

incloent GPS, registradors d'immersió GLS, registradors de profunditat temporal (TDR), 

accelerometria, seguiment de nius i anàlisi de dietes. Al primer capítol, utilitzem dades 

auxiliars de seguiment remot procedents de registradors d'immersió, TDR i accelerometria 

per avaluar i semisupervisar el Model d'Hidden Markov de comportament als Cua de Joncs 

al mar. Trobem que, encara que la precisió general de la classificació va millorar enormement 

amb la semisupervisió, aquests models van a fallar a l'hora de capturar el comportament de 

cerca d'aliment dels Cua de Joncs, i suggereixen precaució sobre l'ús d'aquests models a la 

classificació de comportaments en espècies que s'alimenten de manera oportunista. Partint 

dels coneixements metodològics d'aquest primer capítol, el segon capítol d'aquesta tesi se 
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centra en els efectes de l'estacionalitat en el comportament de la recerca d'aliments dels Cua 

de Joncs durant l'època de cria. En aquest capítol trobem patrons estacionals en el 

comportament de cerca d'aliment, l'ocupació i la dieta, que van tenir conseqüències en alguns 

components de l'eficàcia biològica. Relacionem aquests patrons amb la disponibilitat de 

calamars i la idoneïtat dels llocs de nidificació al final de l'estació seca, i amb un augment 

dels costos de cerca d'aliment relacionats amb les condicions meteorològiques a l'estació 

humida. Al tercer capítol, investiguem si els patrons estacionals persisteixen també durant el 

període no reproductor i trobem coherència tant individual com estacional a les àrees 

utilitzades i que els canvis estacionals semblen estar relacionats amb el seguiment de nínxols. 

Al quart capítol, per desxifrar si els patrons estacionals observats en la recerca d'aliment i el 

comportament migratori reflecteixen plasticitat individual o especialització estacional, 

investiguem la repetibilitat i l'heretabilitat de la fenologia dels Cua de Joncs. Descobrim que 

els individus mantenen una fenologia notablement consistent al llarg de tot l'any els anys 

següents i que la fenologia sembla hereditària, amb reclutes que tornen per reproduir-se més 

o menys en la mateixa època en què van sortir del niu. Els nostres resultats proporcionen els 

primers coneixements en profunditat sobre la variació estacional en el comportament de cerca 

d'aliment d'un ocell marí tropical. Aquests resultats suggereixen que l'estacionalitat als 

sistemes tropicals pot ser un factor més determinant dels moviments dels depredadors 

superiors del que es pensava. A més, trobem una forta repetibilitat individual i heretabilitat 

de la fenologia, cosa que suggereix que aquests patrons estacionals romandran consistents 

dins de les generacions. Per tant, predim que les poblacions d'aus tropicals poden ser més 

vulnerables al canvi ambiental del que es pensava.  



  

9 

 

Index 

 

Acknowledgements ................................................................................................................ 2 

Abstract ................................................................................................................................... 5 

Resum ..................................................................................................................................... 7 

Index ....................................................................................................................................... 9 

General Introduction ............................................................................................................. 14 

Animal movement and biologging ................................................................................... 14 

Seasonality ........................................................................................................................ 16 

Tropical seabirds............................................................................................................... 19 

Study species .................................................................................................................... 22 

Study area ......................................................................................................................... 24 

Aims ..................................................................................................................................... 26 

General aim....................................................................................................................... 26 

Specific objectives ............................................................................................................ 26 

Overview of methods ........................................................................................................... 28 

Bird monitoring and sampling .......................................................................................... 28 

Tracking devices ............................................................................................................... 30 

Laboratory procedures ...................................................................................................... 32 

Ethics statement ................................................................................................................ 33 

Chapter 1. Animal behavior on the move: the use of auxiliary information and semi-

supervision to improve behavioral inferences from Hidden Markov Models applied to GPS 

tracking datasets ................................................................................................................... 34 

ABSTRACT ..................................................................................................................... 35 

INTRODUCTION ............................................................................................................ 37 

METHODS ....................................................................................................................... 41 

Fieldwork ...................................................................................................................... 41 

Data processing ............................................................................................................ 41 

Creation of informed dataset ........................................................................................ 42 

HMMs ........................................................................................................................... 43 

Model validation ........................................................................................................... 44 

RESULTS ......................................................................................................................... 48 



  

10 

 

DISCUSSION ................................................................................................................... 57 

Overall model accuracy ................................................................................................ 57 

Behavioral classification and inference ........................................................................ 58 

Improving behavioral classification for opportunistic foragers ................................... 60 

Guidance for the implementation of semi-supervised behavioral classification .......... 62 

Future research ............................................................................................................. 63 

CONCLUSIONS .............................................................................................................. 65 

ETHICS APPROVAL ...................................................................................................... 66 

DATA AVAILABILITY .................................................................................................. 66 

FUNDING ........................................................................................................................ 67 

AUTHOR’S CONTRIBUTIONS ..................................................................................... 67 

ACKNOWLEDGEMENTS ............................................................................................. 67 

REFERENCES ................................................................................................................. 68 

SUPPLEMENTARY MATERIAL .................................................................................. 76 

S1. Review table of behavioral validation .................................................................... 76 

S2. Data Processing ...................................................................................................... 80 

S3. Additional validation metrics ................................................................................. 86 

S4. Random Forest Results ........................................................................................... 88 

S5. Random forest segment summary .......................................................................... 90 

S6. Transition probability matrix ................................................................................. 92 

S7. Sample loss with removal of positions with low HMM probability ...................... 93 

S8: Confusion matrices of complete GPS HMMs ........................................................ 94 

Chapter 2. The effect of seasonality on the foraging behavior and breeding success of a 

tropical marine top predator. ................................................................................................ 95 

ABSTRACT ..................................................................................................................... 96 

INTRODUCTION ............................................................................................................ 98 

METHODS ..................................................................................................................... 101 

Study species and field site ......................................................................................... 101 

Nest monitoring .......................................................................................................... 103 

Logger deployments and processing .......................................................................... 103 

Analysis ...................................................................................................................... 105 

RESULTS ....................................................................................................................... 115 

Seasonal patterns in nest occupancy, foraging patterns and diet. ............................... 115 

Seasonal patterns in efficiency and fitness ................................................................. 124 

Seasonal patterns in environmental conditions .......................................................... 128 



  

11 

 

Top-down and bottom-up drivers of tropicbird foraging and fitness ......................... 131 

DISCUSSION ................................................................................................................. 142 

Changes in prey availability as a driver of seasonal changes ..................................... 143 

Weather driven changes in nest site suitability .......................................................... 146 

Competition for nest sites ........................................................................................... 147 

Climate Change .......................................................................................................... 149 

CONCLUSIONS ............................................................................................................ 150 

REFERENCES ............................................................................................................... 152 

ACKNOWLEDGEMENTS ........................................................................................... 158 

FUNDING ...................................................................................................................... 158 

DATA AVAILABILITY ................................................................................................ 158 

ETHICS APPROVAL .................................................................................................... 158 

SUPPLEMENTARY MATERIAL ................................................................................ 159 

S1. Diet analysis ......................................................................................................... 159 

S2. Description of biometric measurements taken from Red-billed Tropicbird chicks 

and adults. ................................................................................................................... 161 

S3. Monthly home range kernels ................................................................................ 162 

S4. ClimWin Analysis ................................................................................................ 165 

S5. Consistency in seasonal patterns .......................................................................... 167 

S6. Model Selection bottom-up and top-down drivers of Metrics ............................. 170 

Chapter 3. Seasonality in a tropical asynchronous migrant................................................ 173 

ABSTRACT ................................................................................................................... 174 

INTRODUCTION .......................................................................................................... 176 

METHODS ..................................................................................................................... 181 

Field site ..................................................................................................................... 181 

Nest monitoring & Geolocator deployment & recovery ............................................ 181 

GLS data processing ................................................................................................... 182 

GPS data processing ................................................................................................... 183 

Seasonal shifts in non-breeding areas ......................................................................... 184 

Seasonality in activity patterns ................................................................................... 186 

Population-level habitat tracking ................................................................................ 187 

Individual-level habitat tracking based on breeding period ....................................... 188 

RESULTS ....................................................................................................................... 189 

Seasonality in tropicbird migratory patterns .............................................................. 189 

Seasonality in activity patterns ................................................................................... 193 



  

12 

 

Population-level habitat tracking ................................................................................ 196 

Niche-tracking at the individual level ........................................................................ 198 

DISCUSSION ................................................................................................................. 201 

CONCLUSIONS ............................................................................................................ 205 

REFERENCES ............................................................................................................... 206 

SUPPLEMENTARY MATERIAL ................................................................................ 213 

S1. Biometric measurements and calculation of the index of tropicbird skeletal body 

size .............................................................................................................................. 213 

S2. Model outputs of seasonal patterns in non-breeding areas, overlap and activity 

with sex and breeding success. ................................................................................... 214 

S3. Effect of year and island on latitude, longitude and distance ............................... 216 

Chapter 4. Repeatable and heritable phenology in a tropical marine top predator ............ 217 

ABSTRACT ................................................................................................................... 218 

INTRODUCTION .......................................................................................................... 220 

METHODS ..................................................................................................................... 225 

Study site .................................................................................................................... 225 

Breeding phenology from nest monitoring ................................................................. 226 

Geolocation deployment and recovery ....................................................................... 227 

GLS data processing ................................................................................................... 228 

Breeding and migratory phenology from GLS data ................................................... 228 

Breeding success from GLS data................................................................................ 231 

Relationship between breeding success and the duration of life cycle events. .......... 232 

Repeatability and the effect of breeding success ........................................................ 234 

Heritability of breeding phenology............................................................................. 235 

RESULTS ....................................................................................................................... 236 

Phenology ................................................................................................................... 236 

Relationship between breeding success and the duration of life cycle events ........... 238 

Repeatability of phenology ......................................................................................... 241 

Recruitment ................................................................................................................ 245 

DISCUSSION ................................................................................................................. 247 

Benefits of GLS-derived phenology ........................................................................... 247 

Phenology and links between life cycle events .......................................................... 248 

Repeatability ............................................................................................................... 249 

Heritability of phenology ........................................................................................... 252 

CONCLUSIONS ............................................................................................................ 253 



  

13 

 

REFERENCES ............................................................................................................... 255 

SUPPLEMENTARY MATERIAL ................................................................................ 262 

S1. Visualization of phenological date extraction based on GLS light and wet-dry 

sensors ........................................................................................................................ 262 

S2. Analysis of whether there are sex-specific differences in phenology .................. 264 

S3. Model selection .................................................................................................... 265 

General Discussion ............................................................................................................. 267 

Effect of seasonality on tropicbird foraging ecology ..................................................... 268 

Effects of seasonality on tropicbird migratory ecology.................................................. 273 

Links between cyclical life-history events ..................................................................... 274 

Spatial consistency of breeding and non-breeding movements and repeatability and 

heritability of phenology ................................................................................................ 276 

Conservation implications .............................................................................................. 280 

Picture by Sarah Saldanha .......................................................................................... 284 

General Conclusions ........................................................................................................... 284 

References for Introduction and Discussion ....................................................................... 287 

 

  



  

14 

 

General Introduction 

Animal movement and biologging 

 

Movement constitutes a fundamental aspect of species ecology, as it serves as the primary 

conduit through which animals engage and adapt to their surroundings. Through movement, 

animals can access resources, find mates, and avoid risks, such as inhospitable environmental 

conditions or interspecies interactions like predation and competition (Dingle et al., 1985). 

Since movement plays a vital role in the interface between individual animals and their 

environment, it impacts individual fitness and can affect how species respond to 

environmental change and, consequently, ecosystem structure (Hooten et al., 2017). 

The where, when, and why of animal movement is governed by a combination of both 

extrinsic (e.g. environmental conditions, resource availability, and inter-species interactions) 

and intrinsic (e.g. individual physiological needs and preferences) drivers that, together, 

result in diverse array of movements across different spatiotemporal scales (Dingle et al., 

1985). Although the spatiotemporal scales of animal movements are along a continuum, 

researchers tend to divide them between local and long-distance movements. Local 

movements, such as those undertaken within a home range or territory, may relate to 

immediate daily resource acquisition, territorial defense, and social interactions. In contrast, 

long-distance movements, such as migration or dispersal, can span thousands of kilometers 

and occur over weeks to months.  

Given their ecological importance, predicting both local and long-distance animal 

movements has long been a focus of investigation. Since movement is an energetically costly 

state, animals can enhance individual fitness by minimizing the time and energetic expenses 
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during displacement while maximizing their energetic gains. This principle forms the basis 

of the theoretical framework known as Optimal Foraging Theory (OFT), which predicts that 

animals will optimize their foraging efficiency by minimizing transit time to, from, and 

between foraging patches and selecting high-quality foods (Stephens & Krebs, 1986). 

Although OFT is focused on resource acquisition, it also encompasses other drivers of 

movements, such as risk avoidance and the evasion of inhospitable environmental conditions 

as costs to resource acquisition. Moreover, in a changing environment, OFT predicts that 

animals will change their behavior and habitat use in order to continue adapt to the 

availability of resources (Stephens & Krebs, 1986). As such, movement is not just a response 

to environmental change, but a testament to the adaptability of animals, with species 

adjusting their movements and foraging strategies in response to variations in the 

distribution, abundance, and quality of food resources as well as the ever-changing costs to 

acquire them.  

Over the past three decades, the field of movement ecology has been revolutionized by 

advancements in biologging technology, particularly the development of small and 

lightweight devices incorporating Global Positioning Systems (GPS) and/or light-level 

geolocators (GLS). The innovation of GPS has not only enabled researchers to track a diverse 

range of terrestrial and aquatic species with high accuracy and at relatively low cost but has 

also provided unprecedented insights into how organisms navigate and interact with their 

environments over fine temporal and spatial scales (Carter et al., 2019; Dean et al., 2012; 

McClintock et al., 2017, 2020; Russell et al., 2015). In parallel, the innovation of the GLS 

devices, which use light records to collect coarse estimates of latitude and longitude on a 

daily basis, has opened up new possibilities for tracking year-round and migratory 
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movements of a variety of species (Burger & Shaffer, 2008; Wilson & Vandenabeele, 2012). 

These technological advances have not only revolutionized the way we study animal 

movement, but have also sparked new avenues of research, both at local and long-distance 

scales.  

In particular, the widespread use of high-accuracy GPS tracking devices has driven the 

development of statistical methods and modeling approaches to infer animal behaviors from 

trajectory data (Jonsen et al., 2013). Analyzing parameters such as speed, angle, and 

tortuosity allows for the automated identification of specific behaviors, aiding conservation 

efforts by allowing researchers to identify and protect key ecological areas like foraging or 

resting sites (Allen & Singh, 2016; Hance et al., 2021; Hays et al., 2019; Lascelles et al., 

2016; Scales et al., 2016; Wakefield et al., 2009). In addition, auxiliary sensors such as wet-

dry sensors (WD), which distinguish when an animal is immersed in salt water or not 

(Carneiro et al., 2022; Dean et al., 2012), Time Depth Recorders (TDR) which detect dives 

below a specific threshold (McClintock et al., 2013) and high-frequency tri-axial 

accelerometers which provide unprecedented information on fine-scale movements 

(Browning et al., 2018; Leos-Barajas et al., 2017; Schwarz et al., 2021; Viviant et al., 2010) 

have revolutionized the study of animal behavior, resulting in inferences that go as far as 

separating individual prey-capture attempts.  

Seasonality 

 

Seasonality, marked by predictable cyclical shifts in environmental conditions over the 

course of the year, plays a pivotal role in driving the timing and destination of animal 

movements (Dufour et al., 2020; Forrest & Miller-Rushing, 2010). This is primarily due to 
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fluctuations in temperature, precipitation, and light levels, which impose energetic and 

thermoregulatory constraints and influence resource availability, including food and nesting 

sites, thereby impacting individual fitness (Ramírez et al., 2017). To navigate these seasonal 

changes, species employ various strategies, such as synchronizing reproduction with 

favorable conditions and avoiding unfavorable ones through migration, hibernation, or 

estivation. Alternatively, they may adapt through ecological plasticity, adjusting ecological 

traits like habitat use, foraging behavior and diet (van Beest & Milner, 2013; Varpe, 2017). 

As such, seasonality can influence animal movement on both local and long-distance scales.  

In polar and temperate regions, population-wide synchrony reflects distinct breeding 

conditions coinciding with peaks in resource availability, such as spring green-up (Nemes et 

al., 2024). Conversely, in tropical regions where climatic conditions are generally more 

homogeneous, the association between phenology and seasonality weakens, leading to 

asynchronous or year-round breeding (Longhurst, 1995; Lundberg, 1988). However, 

although weakened, many tropical environments do exhibit at least some climatic seasonality, 

such as changes in precipitation (Vázquez & Stevens, 2004), which can result in fluctuations 

in breeding activity, foraging behavior, and diet, suggesting some population-level 

preferences for seasonal conditions even in tropical environments (Esparza et al., 2022; 

Keogan, Phillips, et al., 2018; Passuni et al., 2016; Schreiber & Ashmole, 1970; Villegas-

Amtmann et al., 2011). These fluctuations can, in turn, impact the foraging efficiency, body 

condition, and survival of adults and offspring throughout the year (Esparza et al., 2022). 

Thus, understanding the drivers of seasonal changes in tropical systems is crucial for 

elucidating the evolutionary pressures acting on species throughout their annual cycle. 
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In marine environments, seabirds are one of the best-studied groups of higher trophic-level 

organisms and have often been proposed as ecosystem sentinels (e.g., Frederiksen et al., 

2007; Furness & Camphuysen, 1997; Scopel et al., 2018). As highly mobile marine top 

predators, seabirds are sensitive to changes in lower trophic levels and are known to react to 

environmental variability and anthropogenic impacts on their ecosystems (e.g., Hazen et al., 

2019; Sydeman et al., 2015). In addition, although they spend most of their time at sea, 

seabirds breed colonially on land, making them accessible for sampling and monitoring 

(Durant et al., 2009). As such, studying the movement ecology of seabirds can shed light on 

not only their ecology but also the general dynamics of marine ecosystems.  

As ocean sentinels, changes in seabird spatial ecology and fitness are often considered to 

reflect ecosystem shifts. Given the ongoing threat of climate change, the urgency of 

investigating species' adaptability to environmental shifts and their repercussions on 

ecological dynamics cannot be overstated. However, with almost half of seabird species listed 

as globally threatened with extinction or near Threatened by the International Union for 

Conservation of Nature (IUCN), seabirds are one of the most threatened groups of vertebrates 

(Dias et al., 2019). A meta-analysis of worldwide seabird populations spanning from 1952 to 

2015 revealed a lack of adjustments in breeding seasons over time or in response to sea 

surface temperature, highlighting the vulnerability of both seabirds and marine ecosystems 

to climate change (Keogan et al., 2018). This review also underscores the significant 

knowledge gaps regarding the adaptability of tropical species to environmental change, 

further emphasizing the need for immediate research in these systems.  
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Tropical seabirds  

 

Tropical seabirds are a diverse group of birds that inhabit the tropical regions of the world's 

oceans. They comprise many species including various albatroses, shearwaters, petrels and 

storm-petrels (procelarifomes), terns (Laridae) and all noodies (Laridae), tropicbirds 

(Phaethontidae), frigatebirds (Fregatidae) and boobies (Sulidae; Ballance & Pitman, 1999). 

On a global scale, the tropical marine systems they inhabit are characterized by lower 

productivity compared to non-tropical systems, with the exception of the major central 

oceanic gyres and coastal upwelling systems. As such, phytoplankton production in tropical 

marine systems is limited, consequently affecting the total biomass at higher trophic levels, 

resulting in low prey abundance and patchy prey distribution (Ainley & Boekelheide, 1983; 

Ashmole, 1971). Consequently, tropical seabirds face selective pressure to maintain foraging 

success despite the reduced feeding opportunities compared to their non-tropical 

counterparts. 

To find prey in these homogeneous environments, tropical seabirds tend to exhibit greater 

flexibility in their foraging behavior than their polar and temperate counterparts, often 

departing the colony in all directions on their foraging trips and showing low repeatability in 

their foraging movements (Lerma et al., 2020; Oppel et al., 2015; Soanes et al., 2021; 

Weimerskirch et al., 2005). Moreover, certain tropical seabird species, particularly tropical 

shearwaters, terns, and noddies, are frequently observed foraging in multispecies flocks 

alongside sub-surface predators like tuna or dolphins, which create feeding opportunities by 

driving prey closer to the surface (e.g., Ballance et al., 1997; Hebshi et al., 2008; Jaquemet 

et al., 2004; Miller et al., 2018; Spear et al., 2007; Weimerskirch et al., 2005). This strategy 
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is particularly prevalent among fish-eating species that follow surface-dwelling tunas and 

dolphins in regions with pronounced vertical thermal gradients (Spear et al., 2001). 

Conversely, other tropical species, such as tropicbirds, are generally observed foraging alone 

(Jaquemet et al., 2004; Spear & Ainley, 2005), suggesting variability in the importance of 

heterospecific attraction and foraging strategies in these unpredictable environments.  

Similarly, due to the lower seasonal fluctuations in marine productivity, tropical seabirds are 

not necessarily bound to breed exclusively during specific, highly productive periods of the 

year and exhibit various breeding and migratory behaviors. The breeding phenology of many 

tropical species is quite variable, with numerous species breeding synchronously (e.g., 

Surman et al., 2012), asynchronously (e.g., Medrano et al., 2022), or even year-round (e.g., 

Franklin et al., 2022a). In extreme cases, phenology and seasonality can be entirely 

decoupled, with individuals breeding sub-annually once a specific quorum is reached (e.g., 

Reynolds et al., 2014; Stonehouse, 1962). Moreover, this diversity of breeding strategies not 

only exists between different tropical seabird species but also between populations of the 

same species. For instance, White-tailed Tropicbirds generally breed sub-annually across 

their entire range, except in Bermuda, where they follow an annual breeding cycle (Prys‐

Jones & Peet, 1980). Moreover, tropical seabirds also exhibit a large diversity of migration 

strategies, with some species remaining resident year-round while others are partial or long-

distance migrants. In some cases, species of largely asynchronous or year-round breeders are 

migrants (e.g., White-tailed Tropicbirds (Mejías, 2017) and gadfly petrels (Franklin et al., 

2022a). In these cases, the specific drivers of migration are more ambiguous since the 

environmental conditions surrounding the breeding areas are presumably adequate for the 

species year-round (Lambert & Fort, 2022). This extensive variability in breeding and 
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migration behaviors highlights the adaptability of tropical seabirds to the unpredictability of 

tropical oceans. 

While the number of tracking studies on tropical seabird species has increased in recent years, 

it still falls behind that of temperate and polar regions (Mott & Clarke, 2018). Recent reviews 

on the repeatability of migrating phenology in tropical seabirds (Franklin et al., 2022b), the 

effects of climate change on seabirds (Keogan et al., 2018), and seabird foraging site fidelity 

and movements (Bernard et al., 2021; Weimerskirch, 2007) have all highlighted a significant 

knowledge gap regarding tropical seabird movements and phenology. Despite this 

knowledge gap, it is generally assumed that the broad flexibility observed in foraging, 

migratory ecology, and breeding phenology in tropical seabirds indicates their adaptability 

to environmental change (Chapman et al., 2011; Franklin et al., 2022b; Soanes et al., 2021). 

However, this assumption remains largely unsubstantiated, as it is unclear whether this 

population-wide flexibility results from individual plasticity, nor whether this plasticity is 

used to buffer carry-over effects or environmental change. Therefore, studies are needed to 

accurately predict how tropical species may respond to climate change-induced shifts in 

environmental conditions.        

In this thesis, we examine the effects of seasonality on the foraging and migratory ecology 

of the Red-billed Tropicbird (Phaethon aethereus), a relatively understudied pantropical 

species that breed year-round in Cabo Verde. Over four chapters, this thesis provides new 

insights into how tropicbirds adapt to seasonal variations in resource availability and 

environmental conditions, utilizing a combination of biologging tools (GPS, GLS-immersion 

loggers, time-depth recorders (TDR), and accelerometry), nest monitoring, and diet analyses. 
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Study species 

In this thesis, I focused on the Red-billed Tropicbird (Phaeton aethereus; Figure 1). The Red-

billed Tropicbird is one of only three species in the poorly known family Phaethontidae, 

which also includes the White-tailed (Phaethon lepturus) and Red-tailed Tropicbirds 

(Phaethon rubricauda). Based on at-sea surveys, both Red-billed and Red-tailed Tropicbirds 

are generally solitary foragers that associate infrequently with sub-surface predators, in 

comparison with White-tailed Tropicbirds and other tropical seabird species (Jaquemet et al., 

2004; Maxwell & Morgan, 2013; Spear & Ainley, 2005b; Vilchis et al., 2006). They generally 

have a flapping flight, although some thermal soaring has been recorded in Red-tailed 

Tropicbirds (Garde et al., 2023). Red-billed Tropicbird inhabit tropical and sub-tropical areas 

in the East Pacific, Atlantic and Indian Oceans (Orta et al., 2020). They breed asynchronously 

in scattered colonies and feed mainly on small epipelagic fish, such as needlefish, flying fish, 

and squid, forage by plunge diving (Castillo-Guerrero et al., 2011; Diop et al., 2018; Madden 

et al., 2022; Spear & Ainley, 2005). During the breeding season, they are central place 

foragers that may travel over 500 km from the colony in search of prey (Diop et al., 2018) 

and use a dual foraging strategy during chick-rearing in which they alternate between short 

trips to feed their young and long trips to feed themselves (Piña-Ortiz et al., 2024). This 

species is classified as Least Concern (BirdLife International, 2024). However, the Cabo 

Verde population is declining. The main threats described include introduced terrestrial 

predators, especially cats, and rats, although poaching is also an issue in Cabo Verde. The 

effects of other threats, such as the impact of fisheries or climate change, are unknown.  
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Figure 1. Nest of the species studied in this thesis, the Red-billed Tropicbird. Photography 

of Jacob González-Solís.  
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Study area 

Cabo Verde is a volcanic archipelago ≈600 kilometers off Western Africa. It has ten islands 

and five islets (Figure 2). It is located within the southern limit of the Canary Current Large 

Marine Ecosystem (Valdés & Déniz-González, 2015), at the eastern boundary of the North 

Atlantic subtropical gyre (Fernandes et al., 2005). It is considered a hotspot of endemism for 

seabirds, with several species of petrels and shearwaters breeding only there (Howell & 

Zufelt, 2019). Breeding seabird species include Red-billed Tropicbird (Phaethon aethereus), 

Brown Boobies (Sula leucogaster), Cape Verde Shearwater (Calonectris edwarsii), Cape 

Verde Petrel (Pterodroma feae), Little Cape Verde Shearwater (Puffinus boydi), Bulwer’s 

Petrel (Bulweria bulwerii), White-faced Storm Petrel (Pelagodroma marina), Cape Verde 

Storm Petrel (Hydrobates jabejabe) and, one locally extinct species, the Magnificent 

Frigatebird (Fregata magnificens; Semedo et al., 2020). Fieldwork took place at two colonies 

on Boavista Island, three on Sal Island, and one on Cima and Raso Islet in Cabo Verde 

between 2017 and 2024 (Figure 2, 3). 
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Figure 2. Location of the Cape Verde Archipelago, off western Africa and of Red-billed 

colonies on Sal and Boavista Islands and on Raso and Cima Islets.  

 

 

Figure 3. Cima Islet, in Cabo Verde off Western Africa. Photography of Mónica de la 

Fuente. 
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Aims 

General aim 
 

The main aim of this thesis is to uncover the effects of seasonality on the foraging and 

migratory ecology of Red-billed Tropicbirds (Phaethon aethereus), a pantropical marine top 

predator that breeds year-round in Cabo Verde. Within this general aim, we pursued four 

specific objectives: 

Specific objectives 

1) Assess how tropicbirds respond to seasonal changes in oceanographic 

conditions and resource availability during the breeding season by studying 

tropicbird movement ecology, activity patterns, diet, and fitness metrics.  

2) Assess how seasonal changes in oceanographic conditions affect the 

distribution and migratory ecology of tropicbirds during the non-breeding 

season.  

3) Assess links between cyclical life history events and whether there are carry-

over effects on phenology, spatial ecology, and breeding success. 

4) Evaluate the potential evolutionary impact of seasonal patterns by determining 

whether the underlying mechanism driving phenological variability is 

individual adaptability or specialization in distribution and phenology and 

whether phenology is heritable. 

In Chapter 1, we assessed whether semi-supervised Hidden Markov Models reliably 

classified tropicbird GPS tracks into behavioral states using auxiliary biologging data from 
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immersion loggers, TDR, and accelerometry to both validate and semi-supervise the models. 

The methodological insights of this chapter helped fulfill the objective 1.  

In Chapter 2, we assessed the effects of seasonality on the foraging behavior of tropicbirds 

during the breeding season. Here, we measured seasonal patterns in foraging areas, daily 

activity patterns, and diet and relate these to changes in oceanographic conditions and nest 

occupancy throughout the year. We also investigated the consequences of these seasonal 

patterns on fitness metrics and measured individual consistency in foraging areas used. This 

chapter fulfills the objectives 1 & 4.  

In Chapter 3, we investigated whether seasonal patterns in tropicbird spatial ecology and 

daily activity patterns also persist during the non-breeding period and whether these patterns 

can be linked to individual or population-level niche tracking. Moreover, we assess the 

relationship between previous breeding success on the non-breeding distribution and 

individual consistency in non-breeding areas. This chapter fulfills objectives 2, 3 & 4. 

In Chapter 4, we investigate the underlying mechanism of phenological variability in 

tropicbirds to understand how they may cope with future environmental change. Specifically, 

we investigated whether breeding and migratory phenology are 1) correlated between 

cyclical life-history events, 2) repeatable at the individual level, and 3) heritable. This 

Chapter fulfills objectives 3 and 4. 
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Overview of methods 
 

Bird monitoring and sampling 
 

Nest monitoring: To monitor adult body condition, breeding success, chick growth, and diet, 

nests were generally visited every 1-3 days, but some isolated nests (<5%) were only visited 

monthly, and Raso islet was only monitored in the winters of 2017 and 2018 (Figure 4, 5). 

At each nest visit, the contents of the nest were recorded (empty, chick/egg, and whether 

there was an adult or not), and if an adult or chick was present, we measured its 

morphometrics (weight, wing length, tarsus length, bill depth, culmen, and head-bill length).. 

All the birds captured were marked with stainless rings with a unique identifier code (Figure 

6). 

 

Figure 4. Histogram of the number of fieldwork days per month per colony as a metric of 

monitoring effort throughout the study period, coloured by Island. 
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Figure 5. Nest monitored in Cima Islet of a Red-billed Tropicbird. Photography of Projeto 

Vitó. 

 

 

Figure 6. Red-billed Tropicbird banded with stainless rings. Photography of Projeto Vitó. 
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Biological samples: We collected regurgitates and whole blood samples for diet analysis 

(regurgitates and blood) and sexing (blood). Regurgitates from tropicbird adults were 

collected opportunistically during nest monitoring. Each sample was initially stored in plastic 

bags with ethanol and later frozen. In the lab, we first defrosted and cleaned the samples with 

distilled water over a 3mm sieve. Then, the identifiable prey items and otoliths in each sample 

were counted, measured, and classified to the lowest possible taxonomic level using 

morphological identification (Goyena & Fallis, 1988; Schneider, 1990). Additionally, prey-

muscle samples were processed for stable isotope analyses (see laboratory analyses). Blood 

was also collected during nest monitoring upon retrieval of tracking devices. We collected 

∼1.5 ml of blood from the tarsal vein of breeding adults, which was stored in absolute ethanol 

and at -20°C after fieldwork for stable isotope analysis and molecular sexing. 

Tracking devices 
 

We used tracking devices to record the location and timing of tropicbird movements and to 

infer behavior and activity patterns while at sea. All tags deployed in this thesis represented 

less than 3% of the bird’s body weight, as recommended in the literature (Phillips et al., 

2003).  

Geographic Positioning System (GPS): To obtain the accurate spatial during the breeding 

season, we deployed CatLog Gen2 GPS. The GPS loggers weighed 18g (2.9% of mean 

tropicbird weight; 630g±55, n=1,297 individuals) and were programmed to record GPS 

positions every 5 minutes. GPS were attached to the base of the six central tail feathers with 

Tesa® tape and Loctite® (see Figure 7). 



  

31 

 

  

 

Figure 7. Axy-Trek attached to the central tail feathers of Red-billed Tropicbird. 

Photography of Sarah Saldanha 

Light-level geolocators: To collect spatial and activity data, especially during the non-

breeding season, we deployed Migrate Technology C330 geolocators and Biotrack 

BAS_MK19 (GLS) with a wet-dry sensor (saltwater immersion logger). These geolocators, 

weighing 3.3g (0.5% of tropicbird weight), were attached to the bird’s metal ring using a zip 

tie (see Figure 12). Migrate Technology GLS recorded light intensities every minute, 

maximum light intensity every five minutes and conductivity (salt-water immersion data; 

wet-dry) every six seconds, while Biotrack GLS recorded both light intensity and wetness 

every 10 minutes. We used the light intensity data from GLS to estimate the location of 

animals based on the timing of sunrise and sunset respecting the Greenwich Meridian and 

the duration of the day. The timing of the sunrise and sunset provides information on the 

longitude, due to the rotation of the earth, while the duration of day provide information for 

calculating the latitude (with longer days in higher latitudes in summer and shorter days in 
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lower latitudes in winter). Although these devices provide information for a large time span 

and are relatively lightweight and inexpensive, the spatial resolution has a large error (≈500 

km for tropicbirds in Cabo Verde; Halpin et al., 2021). Moreover, the estimation of latitude 

is particularly low during the equinoxes, since day lengths are nearly equal across all 

latitudes. We also used the wet-dry data from GLS to infer activity patterns. Since 

geolocators were deployed on the tarsus, we inferred that if the tag is submerged, it means 

that the bird is resting on the water, while if the geolocator is “dry”, it would mean that the 

bird is flying/inland. 

Axy-Trek: We also deployed Axy-trek devices on tropicbirds. Axy-Trek loggers weighed 

17g (2.6 % of tropicbird weight) and recorded GPS, acceleration, and pressure data at 5-

minute, 25 Hz, and 1s intervals, respectively.  The tri-axial accelerometer in the device 

recorded acceleration in the surge (X, forward/backward), heave (Z, dorso/ventral) and 

sway (Y, side to side).  TDR sensor, which recorded pressure at a frequency of 1Hz. Axy-

Trek was attached to the base of the six central tail feathers with Tesa® tape and Loctite®. 

With these devices, we extracted precise information on tropicbird behavior at sea. 

Laboratory procedures 
 

Molecular sexing: We sexed the birds by extracting 0.01 ml of blood from the tarsal vein and 

detecting the female-specific CHD1-W locus, using protocols from Fritlolfsson and Ellegren 

(1999). Hispalis Biolab from Sevilla, Spain conducted the analyses. 

Stable isotopes: We analyzed the carbon (δ13C) and nitrogen (δ15N) isotopic values from 

tropicbird whole blood and prey-muscle samples from spontaneous regurgitates collected 

during the breeding period (Ramos & González-Solís, 2012). 
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The blood and muscle samples were analyzed through Elemental Analysis with the Isotopic 

Ratio Mass Spectrometer Flash EA1112, conducted at the Serveis Cientifics i Tècnics of the 

Universitat de Barcelona. We expressed the isotope ratios as δ values in part per mil (‰), 

according to the following equation:  

δX=[(Rsample/Rstandard) – 1], 

Where X is 13C or 15N and R is the 13C/12C or 15N/14N ratio for the sample and the 

standard respectively. International standards are Vienna Pee Dee Belemnite (VPDB) for 

carbon and atmospheric air (AIR) for nitrogen (Weiser and Powell, 2011). International 

laboratory (IAEA N1, IAEA N2, IAEA CH7, IAEA 600, USGS 40) and internal laboratory 

standards (Acetanilide, Fructose, UCGEMA P and Urea) were analyzed every 12 blood 

sampled to compensate for any drift over time and obtain the correct values of δX with an 

overall precision of 0.2‰. 

Ethics statement 

 

All procedures included in this thesis, involving animal manipulations were in accordance 

with required European legislation, and the local legislations of Cabo Verde (permissions 

from Direção Nacional do Ambiente from Cabo Verde “Autorização N.º91/2018; 

Autorização N.º107/2019; Autorização N.º016/DNA/2020”). Deployment and recovery of 

GPSs and geolocators, and associated sampling procedures, were accomplished in <10 

minutes per bird in the nests and did not have any visible detrimental effects on individuals 

(e.g., external signs of panting or weakness).   
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ABSTRACT  

State-space models, such as Hidden Markov Models (HMMs), are increasingly used to 

classify animal tracks into behavioral states. Typically, step length and turning angles of 

successive locations are used to infer where and when an animal is resting, foraging, or 

travelling. However, the accuracy of behavioral classifications is seldom validated, which 

may badly contaminate posterior analyses. In general, models appear to efficiently infer 

behavior in species with discrete foraging and travelling areas, but classification is 

challenging for species foraging opportunistically across homogenous environments, such as 

tropical seas. Here, we use a subset of GPS loggers deployed simultaneously with wet-dry 

data from geolocators, activity measurements from accelerometers, and dive events from 

Time Depth Recorders (TDR), to improve the classification of HMMs of a large GPS 

tracking dataset (478 deployments) of Red-billed Tropicbirds (Phaethon aethereus), a poorly 

studied pantropical seabird.We classified a subset of fixes as either resting, foraging or 

travelling based on the three auxiliary sensors and evaluated the increase in overall accuracy, 

sensitivity (true positive rate), specificity (true negative rate) and precision (positive 

predictive value) of the models in relation to the increasing inclusion of fixes with known 

behaviors. We demonstrate that even with a small informed sub-dataset (representing only 

9% of the full dataset), we can significantly improve the overall behavioral classification of 

these models, increasing model accuracy from 0.77 ± 0.01 to 0.85 ± 0.01 (mean ± sd). Despite 

overall improvements, the sensitivity and precision of foraging behavior remained low 

(reaching 0.37 ± 0.06, and 0.06 ± 0.01, respectively). This study demonstrates that the use of 

a small subset of auxiliary data with known behaviors can both validate and notably improve 

behavioral classifications of state space models of opportunistic foragers. However, the 
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improvement is state-dependant and caution should be taken when interpreting inferences of 

foraging behavior from GPS data in species foraging on the go across homogenous 

environments. 
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INTRODUCTION 

Inferring behavior from animal movements is crucial to understand relationships between 

species and their environments [1,2] or potential human-wildlife conflicts [3–5]. Over the 

last three decades, advances in biologging technology through the creation of smaller, 

cheaper and more sophisticated and accurate sensors, have facilitated rapid developments in 

the field of movement ecology, allowing for the study of movement in a wide array of species 

and environments (e.g. [6]). In tandem, several statistical methods and modelling approaches 

have been developed which mathematically analyse step length (the distance between 

consecutive positions), angle, tortuosity, and other traits of a trajectory to infer what segments 

of an animal’s track are spent in specific behaviors based on knowledge of their locomotion 

and ecology [7]. This can be particularly useful for conservation and management [8], 

enabling the identification and protection of areas important for animal ecology, such as those 

associated with foraging [9,10], and/or resting [11,12]. However, whilst the study of animal 

movement is progressing rapidly, transforming tracking data into meaningful behavioral 

states still remains a challenge for many species. 

Typically, attempts to segment tracks into behavior use the step length and tortuosity of 

animal movements, acquired by transforming data from GPS/Argos loggers into a bivariate 

series of step lengths and turning angles [13]. Based on these values, tracks are then 

segmented into two or three behavioral states: foraging and travelling, and if anticipated, 

resting. To differentiate foraging from travelling, inference often relies on the concepts of 

Area Restricted Search (ARS) and Optimal Foraging Theory (OFT). ARS predicts that when 

resources are patchily distributed, foraging is concentrated in high density areas, within 

which there is a decrease in step length and an increase in turning angle rate [14]. Outside of 
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these foraging patches, OFT predicts that animals will minimise time in transit to, from, and 

between foraging areas by taking the most direct route over unsuitable environments, 

resulting in fast, directed movements [15]. The identification of rest is often associated with 

a long period without movement in terrestrial environments or with movement associated 

with drift in aquatic environments [11,12]. However, while several methods are commonly 

used to infer behavior from GPS tracks, their results are rarely cross-validated, and when 

they are, show a disparate ability to correctly predict behavioral states (S1).  

While some differences in model performance among studies can be attributed to the type of 

model and/or validation method [16–20], performance is highly dependant on how distinct 

behavior-specific movement patterns are [16,18,20–22]. For example, in heterogeneous 

systems, where resources are patchily distributed in space and time in a predictable manner, 

animals typically follow the concepts of ARS and OFT, using commuting trips to actively 

seek out rich foraging patches while quickly bypassing nutrient poor areas, resulting in a 

clear separation between the movement patterns of travelling and foraging [17,23]. However, 

in homogeneous systems, where resources are more evenly and often unpredictably 

distributed in space and time, species may adopt a more opportunistic approach and 

undertake looping trips, where foraging is sporadic and short-lived, termed foraging on the 

go [24–26]. In this case, models may struggle to separate foraging movements from 

travelling, resulting in high levels of misclassification. Difficulties in inference may be 

further exasperated when both resting and foraging take place at short step length or when 

the turning angle of resting is artificially high because of GPS error [27–29].  Limitations 

have been noted across a variety of modelling methods including Hidden Markov Models 

(HMMs) [28], Expectation-maximization binary clustering (EmbC) [26,28], Residence in 
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Space and Time (RST) [30], and First Passage Time (FPT) [29]. As a result, post-hoc 

adjustments are applied to improve model performance, either by pooling locations classified 

as resting and intensive search together [28], re-classifying foraging locations with step 

lengths representing speeds below those of local currents (1m/s) as resting [30] or eliminating 

locations with short step lengths altogether before running the analysis [29]. However, the 

predictions of these models, both pre- and post-adjustments, are usually evaluated visually, 

and without cross-validation with other datasets making it difficult to measure the benefits 

of these changes (S1).  

Model performance can be improved by incorporating additional information on what an 

animal is doing from auxiliary sensors. For example, wet-dry sensors (WD) can distinguish 

when an animal is immersed in salt water [3,23], Time Depth Recorders (TDR) can be used 

to detect dives below a specific threshold [31] and high frequency tri-axial accelerometers 

can provide unprecedented information on fine-scale movements resulting in inferences that 

go as far as separating individual prey-capture attempts [17,32–34]. Data acquired from these 

sensors can be incorporated into behavioral models, allowing for more accurate 

classification. Although several modelling techniques can be used to incorporate these data, 

HMMs have drawn particular attention due to their relatively high accuracy [22,34], their 

robustness at lower GPS resolution [16,20,22], and the development of the flexible user-

friendly R packages that can incorporate information from additional data streams, even 

when collected at different time resolutions (e.g. ‘moveHMM’ and ‘momentuHMM’; 

[33,35,36]). Nonetheless, the use of auxiliary sensors is often limited by their cost, size, and 

weight, and so they often only comprise a small fraction of a full GPS tracking dataset, and 

cannot easily be incorporated as additional datastreams [33]. For this reason, many studies 
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limit their use to validate behaviors identified from GPS positions, instead of directly using 

these data to improve the model classifications themselves (e.g. [23,37]). 

When a small auxiliary sensor dataset is present, one potential solution is manually setting 

associated positions to a given inferred behavior, and then use these positions to semi-

supervise the model behavioral classification of the rest of the dataset, with an aim to improve 

the models’ overall accuracy. In this study, we aim to assess whether the addition of 

information from auxiliary sensors can improve behavioral inference in animals mainly 

performing looping trips through relatively homogeneous environments, such as seabirds 

foraging in tropical waters. We use a large GPS tracking dataset of a tropical seabird species, 

the Red-billed Tropicbird (Phaethon aethereus), of which a subset was double tagged with a 

combination of accelerometers, wet-dry sensors, and/or TDR sensors. From these auxiliary 

sensors, we determine informed positions of resting, foraging, and travelling and use these 

to semi-supervise the fitting of an HMM predominantly based on movement metrics between 

GPS fixes. Specifically, by incorporating additional auxiliary sensors to GPS tracking, we 

assess whether (1) model accuracy in identifying behavioral states improves with an 

increasing percentage of supervision; (2) the improvement in the inference is homogeneous 

across the three basic behavioral states, i.e. resting, foraging and travelling, and (3) this 

improvement saturates or could theoretically achieve behavioral inference levels comparable 

to those obtained for species using commuting trips. It is hoped that outputs from this study 

can direct researchers in the deployment of specific tracking regimes to yield the most 

accurate identification of behavior from animal movement and to will limit errors that can 

contaminate future analyses, such as the identification of areas of ecological importance for 

species.   
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METHODS 

Fieldwork 

Fieldwork took place at 7 colonies dispersed across 2 islands (Boavista and Sal) and 2 islets 

(Cima and Raso) in Cabo Verde between 2017 and 2021. While fieldwork on Sal and 

Boavista islands was almost continuous during this time, work on the islets was restricted to 

campaigns of a few months each until 2020, after which work on Cima Islet was nearly 

continuous, and discontinued on Raso.  

Red-billed Tropicbirds were captured on their nests during incubation or early chick-rearing, 

and equipped with a combination of CatLog Gen2 GPS, Axy-Trek  loggers (which records 

GPS, tri-axial accelerometer, and time-depth information), and/or Migrate Technology 

geolocators (GLS) with a wet-dry sensor (salt water immersion logger). The GPS loggers 

used weighed 18g (2.9% of mean tropicbird weight (630g±55, n=1297 individuals) and were 

programmed to record GPS positions every 5 minutes. Axy-Treck loggers weighed 17g (2.6 

% of tropicbird weight) and recorded GPS, acceleration and pressure data at 5-minute, 25 Hz 

and 1s intervals, respectively. The Migrate Technology C330 geolocators (GLS) with a wet-

dry sensor weighed 3.3g (0.5% of tropicbird weight) and register if the bird was wet or dry 

every 6 seconds. GPS and Axy-Trek’s were attached to the 6 central tail feathers with Tesa 

tape while GLS were attached to the tarsus, on the bird’s metal ring with the help of a zip tie. 

Data processing 

To test whether adding data from auxiliary sensors improved the accuracy of HMM 

behavioral inferences, we first processed the wet-dry, accelerometry and TDR data separately 

before summarizing and matching the information to each GPS position (interpolated to 5-
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minute intervals). We matched the data forwards (e.g. the value of the wet-dry, 

accelerometry, and TDR metrics at a GPS position at time t summarized the values of the 

period between t and t+1) to be consistent with the calculation of the step and turning angle 

by the prepData function of the ‘momentuHMM’ package [36]. From wet-dry loggers, we 

extracted the proportion of time wet between each GPS position. From the accelerometry 

data, we extracted the proportion of time resting on water, diving, and flapping between each 

GPS position. From the TDR data, we extracted the number of dives between each GPS 

position. Further details on device processing methods are in supplementary material S2.  

Creation of informed dataset 

To create an informed dataset of inferred bird behavior to both semi-supervise and validate 

the HMM, we combined the information from the wet-dry, accelerometer, and TDR data 

based on the following conditions to assign positions as foraging, resting, or travelling. These 

positions are referred to as having a known state.  

1. Foraging: diving was identified one or more times in the accelerometer or TDR data 

stream.  

2. Resting: the wet-dry sensor recorded a period as 100% wet, or the accelerometers 

recorded a period as over 50% on water. No dives were detected in either the accelerometer 

or TDR data stream. 

3. Travelling: the wet-dry sensor recorded a period as 0% wet or the accelerometers 

recorded a period as 100% flapping.  No dives were detected in either the accelerometer or 

TDR data stream. 
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HMMs 

We ran two series of HMMs to determine if an increasing percentage of supervision can 

improve the accuracy of behavioral classifications. The first used only GPS tracks with 

auxiliary data (151 foraging trips) to determine whether accuracy at high porportions of 

supervision saturates, while the second used the complete GPS dataset (1084 foraging trips) 

within which only a small percentage (13.9%) of trips contained auxiliary data to test whether 

even small auxiliary datasets can improve model accuracy.  

All HMMs were implemented in the R package ‘momentuHMM’[36]. Although GPS loggers 

were programmed to record positions every 5 minutes, poor satellite reception resulted in 

gaps in the data (of 6-20 minutes between 1.5% of positions, and over 20 minutes between 

0.4% of positions). Therefore, to satisfy model assumptions, GPS data were linearly 

interpolated to a regularised five-minute sampling frequency to have an equal time period 

between each position when the gaps were less than 20 minutes long.  When gaps were over 

20 minutes long, the periods before and after the gaps were handled discretely by the HMMs. 

HMMs function by identifying underlying latent processes based on the variation in the 

observed data while also calculating the probabilities of switching from one state to another. 

When inferring behavior from animal movement, these models use observed step length and 

turning angle to infer the underlying (or hidden) behavioral states that drive them [38]. The 

models separate the modes in a purely data-driven way, by defining the states that best 

capture the variability in the data. This leaves it to the observer to define a posteriori which 

state can be used as a proxy for each behavior based on the estimated movement 
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characteristics (e.g., mean step length and turning angle) of each state. We chose a three-state 

HMM as a trade-off between model accuracy, interpretability of states, and biological 

knowledge of the species [39]. States were delineated by the HMM using step lengths and 

turning angles between positions, and then classified  as resting (short step lengths and low 

turning angles), foraging (mid step lengths and high turning angles), and travelling (longs 

step lengths and low turning angles). To select appropriate starting values for the models, a 

k-means clustering algorithm (with k=3 for the number of states) was used for the state-

dependent probability distribution parameters of each data stream [23]. We used a gamma 

distribution to describe step lengths, and a von Mises distribution with a mean of zero for 

turning angles. To reduce the risk of models converging at a local rather than global maxima 

for the maximum likelihood, we reran each model 10 times using a randomization starting 

values , before selecting the model with the highest maximum likelihood and lowest Akaike 

Information Criterion (AIC) [36]. 

Model validation 

To measure how the use of informed data increases model accuracy, we used an iterative 

approach similar to a k-folds analysis, in which we left out 10 random samples of 10% of the 

known states to be used as testing datasets, while the remaining 90% of known states were 

used as training datasets. For the first series of HMMs using only the GPS tracks with 

auxiliary data, we created models with randomly selected subsets of the known states 

representing 0 to 75% of this dataset (75% representing the maximum number of known 

states available for our dataset after setting aside 10% as the testing dataset). For each 

increase of 5% percent of known states from 0 to 75%, we ran 10 models, using the 10 

different random samples of test and training datasets to validate the models. For the second 
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series of HMMs using the complete GPS dataset, we only tested the increase in accuracy 

between 0 and a maximum percentage of known states (9%) due to computational restrictions 

and therefore ran 10 models at each of these percentages using the 10 different random 

samples of test and training datasets.We then decoded the states of each model using the 

Viterbi algorithm.  

For each model, we then generated the assigned state confusion matrix to assessoverall 

assignment accuracy using the confusionMatrix function in the ‘caret’ R package [40]. In 

addition to the overall accuracy we also extracted the class-wise sensitivity, specificity, and 

precision from the confusion matrices (Fig. 1). These metrics are complimentary and the 

importance of each will depend on the research questions at hand. Using foraging behavior 

as an example, high sensitivity of foraging would indicate that most known foraging positions 

are correctly classified as foraging by the model. However, this does not exclude the 

possibility of many resting and travelling positions being also misclassified as foraging. To 

measure this, one uses specificity, or the proportion of resting and travelling positions 

correctly classified as non-foraging. If there is an uneven number of known resting, foraging 

or travelling positions, even a small proportion of one behavior misclassified as another can 

dilute the proportion of correct classifications. Here is when precision is needed to determine 

the proportion of positions classified as foraging that are actually foraging, and not resulting 

from a misclassification of resting or travelling positions. To compensate for a lack of 

standardized practices in evaluating and reporting the performance of behavior classification 

models [18], we also calculated additional measures of model performance to make it 

possible to compare our results to as many previous studies as possible (S3). 
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Finally, to explore if the exclusion of positions with low state classification probabilities 

improved overall HMM behavioral classification, we used the stateProbs function from the 

‘momentuHMM’ package [36] to extract the state classification probability of each position. 

We then removed all positions with a probability of classification of less than 90%, and 

evaluated whether this resulted in an increase in the model’s global accuracy and class-wise 

sensitivity, specificity, and precision.” 
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Figure 1. Example calucaltion of global accuracy, state-wise sensitivity, specificity, and 

precision using confusion matrices. Example calculation of state-wise sensitivity, 

specificity and precision for behavior 2 (in our case foraging) alongside global accuracy using 

confusion matrices. The confusion matrix colour fills indicate the idealized distribution of 

the data, with dark squares in the diagonal representing high concentrations of data correctly 

predicted and clear squares at the edge indicating low concentrations of incorrectly predicted 

data. TP (true positive – light green outline): number of predictions where the classifier 

correctly predicts the positive class as positive, TN (true negative – yellow outline):  number 

of predictions where the classifier correctly predicts the negative class as negative, FP (false 

positive – red outline): number of predictions where the classifier incorrectly predicts the 

negative class as positive, FN (false negative – dark green outline): number of predictions 

where the classifier incorrectly predicts the positive class as negative. 
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RESULTS 

 

We recovered a total of 151 Red-billed Tropicbird foraging trips with both GPS and auxiliary 

data, and another 933 trips with GPS data only (Table 1). Within the dataset informed by 

auxiliary sensors, we were able to classify 83.7% of the GPS positions to either resting, 

foraging or travelling, representing 10.4% of the complete dataset (including birds equipped 

only with GPS loggers). After leaving out 10% of positions with known behaviors for model 

validation, the maximum percentage of supervision within the informed and complete GPS 

datasets were 75% and 9%, respectively. 

Table 1. Sensor sample sizes and inferred behavioral states.  From left to right, auxillary 

sensor set-up, total number of tracked birds with specified auxillary sensor set-up alongside 

total sensor set-up deployments, total number of foraging trips, total number of registered 

GPS positions registered, and the number and percentage of GPS positions with known 

resting, foraging, and travelling states based on the combination of sensors used. ACC 

indicates accelerometer, TDR indicates Time Depth Recorder, and WD indicates wet-dry 

data. 

 

Since tropicbirds were simultaneously tagged with up to 3 auxiliary sensors (across 2 

devices), the behaviors of some positions were informed by multiple sensors (Table 2). Using 

our conservative classification criterion resulted in only 15 positions (out of 8539 positions 

defined simultaneously by multiple sensors) with incoherent information coming from 

different sensors (e.g. the accelerometer identified that the bird was resting while the wet-dry 

sensors identified the bird as flying), therefore the behavior of this position was left as 

Auxiliary Sensor(s) Birds Deployments Trips GPS positions Known resting Known foraging Known travel 

None 345 420 933 447346 0 0 0 

ACC + TDR 20 20 44 23555 15642 (66%) 826 (4%) 3743 (16%) 

WD 26 31 91 31389 18767 (60%) 0 (0%) 5973 (19%) 

ACC + TDR + WD 6 7 16 8539 5850 (69%) 390 (5%) 1962 (23%) 

Total 397 478 1084 510829  40259(8%) 1216 (<1%) 11678 (2%) 
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unknown for the models. We extracted the highest percentage of GPS positions with known 

states when animals were tagged with all 3 sensors (wet-dry, accelerometry, and TDR). 

Accelerometers detected more foraging positions than TDR, recording dives that were 

shallow (0.78±0.36 m) and short (1.41±0.55 s) (Table 1,2). Wet-dry loggers detected the 

most resting and travelling positions (Table 1,2). Given the conditions for known states used, 

we did not predict foraging based on wet-dry data alone nor did we predict resting or 

travelling based on the TDR data alone (Table 2).   

Table 2. Total number, percentage, and number of unique positions with behaviors 

inferred by each auxiliary sensor. The total number, percentage, and the number of 

positions uniquely identified as known resting, foraging, and travelling based on 

accelerometry (ACC), wet-dry state (WD) and time depth recorders (TDR). Percentages were 

calculated based on the total number of GPS positions with each sensor type. The unique 

number of positions indicates the number of positions that were uniquely identified as a given 

behavior by each sensor type given that some positions were informed by more than one 

sensor simultaneously. 

Auxiliary Data Known resting Known foraging Known travel 

ACC 21490 (67%), unique 16264 1132 (4%), unique 107 5268 (16%), unique 3761 

WD 23995 (60%), unique 18769 - 7917 (20%), unique 6410 

TDR - 1109 (3%), unique 0 - 

Total 40259 1216 11678 

 

As in the auxiliary datasets, the HMM results of all models consistently suggest that 

tropicbirds spend most of their time resting on water, followed by travelling and foraging 

(Fig. 2, S6). The transition probabilities between behavioral states also  indicate that the 

probability of remaining in resting from one position to another (0.82±0.05) is much higher 

than remaining as travelling (0.76±0.05) and foraging (0.59±0.09), and this relationship 

becomes even stronger with the inclusion of known states (leading to 0.90±0.02, 0.79±0.05, 

0.47±0.16  for resting, travelling and foraging respectively with the inclusion of 75% known 

states, S6). While the turning angle distribution remains similar for the three states with 
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increasing semi-supervision, the distribution of step lengths for the foraging state changed, 

becoming more overlapped with that of travelling (Fig. 3). This suggests that step length may 

not be an appropriate metric for separating the behavior of travelling and foraging.  
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Figure 2. Confusion matrices of auxiliary data only models. Confusion matrices showing 

the mean and standard deviation in the number of reference behaviors against model predictions for 

iterations of the auxiliary data only models with no supervision (left) and with the highest amount of 

supervision (75%, right). Top row shows all positions while the bottom row shows positions with a 

classification probability over 0.9.  
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Figure 3. State-wise distributions of step and turning angle from HMMs without 

supervision and with maximum supervision (75%). State-wise distribution of the step length 

(top) and turning andgle (bottom) of resting (yellow), foraging (red) and travelling (cyan). Dashed 

lines indicate the model with no supervision while solid lines represent each of the 10 itterations of 

the model with maximum supervision (75%). 

In the first series of models using only the data with auxiliary sensors, overall accuracy 

increased from 0.74±0.07 to 0.93±0.01 when the proportion of included known states 

increased from 0 to 0.75 (Figs 2, 4-5). This increase in model accuracy was mainly driven by 

the increase of sensitivity of resting (the proportion of resting correctly identified as such; 

from 0.73±0.03 to 0.96±0.01) and specificity of foraging (the proportion of non-foraging 

positions identified as such; from 0.77±0.08 to 0.97±0.01) with a small increase in the 
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sensitivity of travel (from 0.82±0.09 to 0.91±0.01). The specificity of rest and travel of 

foraging remained relatively stable (going from 0.96± 0.01 to 0.97±0.01, and remaining at 

0.96± 0.01), while the sensitivity of foraging decreased (from 0.26±0.14 to 0.21 ±0.08). 

However, these values of sensitivity and specificity were influenced by an uneven number 

of known resting, foraging and travelling positions, with far more resting and travelling 

positions than foraging. Therefore, despite the overall improvements to the model, the 

precision of foraging (the proportion of correctly identified foraging positions) remained low 

(increasing from 0.03±0.01 to 0.13±0.05), with a high number of resting or travelling 

positions misclassified as foraging (86±16 and 10±3 respectively) in comparison to the 

percentage of positions correctly classified (26±9%).  

Restricting the dataset with HMM classification probability resulted in an increase in model 

accuracy (Fig. 6), although at the cost of reduced GPS positions for specific behavioral 

classifications (S7). Foraging positions had the lowest state-wise HMM probability values 

followed by travelling, and finally resting, resulting in an uneven loss of positions (S7). 

Moreover, even when reducing the probability of classification to only positions above 0.9, 

the overall precision of foraging still remained low (0 known states:  0.02±0.02, 0.75 known 

states: 0.12±0.07) (Fig. 3), suggesting that the number of correctly identified foraging 

positions was low in comparison to the misclassified resting and travelling positions.  

In the second series of HMMs built using the complete GPS dataset, overall model accuracy 

increased from 0.77±0.01 to 0.85±0.01 when the inclusion of known states increased from 

0% to 9% (Fig. 7, S8). This increase in accuracy was mainly driven by the increase of 

sensitivity of resting and foraging (from 0.76±0.01 to 0.86±0.01, and from 0.26±0.03 to 

0.37±0.06, respectively) and specificity of foraging and travel (from 0.80±0.00 to 0.87±0.01, 
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and from 0.82±0.01 to 0.87±0.01). The specificity of travel and of resting remained relatively 

stable (from 0.96±0.00 to 0.98 ±0.00, and from 0.96±0.01 to 0.98±0.00). As in the auxiliary 

data only model, the precision of foraging, increased with the inclusion of known states but 

remained low (from 0.03±0.01 to 0.06±0.01), and in comparison to the number of positions 

correctly classified (44±8), many resting or travelling positions were left misclassified as 

foraging (5±1 and 71±15, respectively; S8).  

 

Figure 4. Accuracy, specificity, sensitivity and precision with incearing known states in 

the auxiliary data only models. Increase in global accuracy (blue, first column on left), as well 

as state-wise specificity, sensitivity and precision of resting (yellow; second column), foraging (dark 

red; third column) and travelling (cyan; forth column, on right) with an increasing proportion of 

known states included in the auxiliary data only model.  
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Figure 5. Example of a foraging trip from the dataset informed with auxiliary data. 
Large circles indicate positions used as test states to measure accuracy, while small circles represent 

those included in the model as known states. A) Positions colored by known states (yellow=resting, 

red=foraging, cyan=travelling). B) Positions coloured by correct (green) or incorrect (red) 

classification by a HMM with no known states (0%) informed by auxiliary data. C) Positions coloured 

by correct (green) or incorrect (red) classification by a HMM in which we included 75% known states 

informed by auxiliary data. D)  Positions coloured by the HMM probability of classification, red 

points have a probability <0.9 while grey points have a probability > 0.9. 
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Figure 6. Increase in model accuracy with the removal of positions with low HMM 

probability. Increase in model accuracy upon the removal of positions with increasing minimum 

HMM probability values for behavioral classification. Blue: models with the highest percentage of 

supervision (75%), red: models without supervision (0%). 

 

 

Figure 7. Increase in global accuracy and state-wise sensitivity, specificity and precision 

in complete dataset. From left to right, increase in global accuracy (A), and state-wise sensitivity 

(B), specificity (C), and precision (D), of resting (yellow), foraging (dark red) and travelling (cyan) 

states without and with the maximum proportion of known states in the complete GPS dataset. 
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DISCUSSION 

We show that semi-supervising HMMs with data from auxiliary sensors, such as 

accelerometer, TDR, and wet-dry sensors can dramatically improve a state-space model’s 

global accuracy and state-wise sensitivity and specificity in the classification of GPS tracking 

data into behavioral states, signifying that the proportion of both true positive and true 

negative behavioral classification increased. We found that even at small proportions, semi-

supervision improved behavioral annotation, although high accuracy (> 0.90) was only 

reliably achieved with over 32% of known states. Despite this overall increase in accuracy, 

the foraging behaviors were poorly identified, with state classifications having low sensitivity 

(0.24±0.17) and precision (0.13±0.05), even with the highest percentage of supervision 

(75%), indicating a high misclassification rate such that many positions classified as foraging 

were actually resting or travelling. This suggests that tropicbirds may not use ARS while 

foraging, but rather forage opportunistically throughout their trips. The exclusion of positions 

with low HMM probability (<0.90) alone was not sufficient to improve the classification of 

the foraging behaviors, further underlining the difficulties in the classification of this 

behavior without auxiliary data in species where decision-making is on the go. 

Overall model accuracy 

 

With semi-supervision, the models reached overall accuracy levels similar to previous studies 

on species with commuting trips (e.g. [17,41], S1, S3). The overall accuracy was especially 

high with both semi-supervision and the exclusion of positions with HMM state classification 

probabilities of <0.90 (reaching 0.98±0.01), suggesting that combined use of semi-

supervision with auxiliary data and thresholds on HMM state classification probability can 
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significantly improve behavioral classification. However, high global accuracy was biased 

by the correct classification of resting behavior, which was overly-represented in both the 

supervised and validation datasets, underlining the importance of state-wise performance 

measures. 

Behavioral classification and inference 

 

Although semi-supervision improved the overall accuracy of the models, the improvement 

in the inference was not equal between the three basic behavioral states. While there were 

strong increases in the sensitivity of resting and the specificity of foraging, the inference of 

travelling only improved slightly. There was a much steeper decrease of resting positions 

misclassified as foraging (from 1030±362 to 105±41 with 75% supervision) compared to 

travelling positions misclassified as foraging (from 168±101 to 74±15 with 75% 

supervision). This suggests that model semi-supervision mainly helped distinguish between 

resting and foraging, while confusion between foraging and travelling remained. This is also 

apparent in the changes of the state-wise distributions of step length with the increase of 

semi-supervision, with a separation in the distributions of resting and foraging while the 

distribution of foraging and travelling continued to highly overlap. Without the use of other 

movement metrics, these overlapping or ‘noisy’ labels essentially cannot be distinguished 

with HMMs [42]. This suggests that step length is not a good movement metric for separating 

foraging and travelling behavior in this species, and highlights the challenges associated with 

delineating opportunistic feeding events in seabirds foraging on the wing.  

Despite improvements to overall accuracy, we found much lower sensitivity and precision of 

foraging than what was previously reported from studies using HMMs to classify the foraging 
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behavior of other seabirds [17,23,41]. The sensitivity of foraging for the semi-supervised 

models was low and was not improved by semi-supervision, declining from from 0.26±0.14 

to 0.21 ±0.08 with the highest percentage of supervision (75%), suggesting that many 

foraging positions were undetected and that this number is not reduced by semi-supervision. 

Moreover, the precision of foraging behavior increased from 0.03±0.01 to 0.13±0.05 with 

the highest percentage of supervision (75%), but did not saturate, indicating that this level of 

semi-supervision was insufficient to prevent erroneous inference of foraging states.  

Difficulty in correctly classifying foraging positions may can be discussed at both model and 

ecological levels. At the model level, this was caused by a large overlap between the state-

wise distribution of foraging and that of the other behaviors, signifying that, based on  step 

length and turning angle alone, HMMs were unsuccessful at distinguishing the signal of 

foraging from the other behaviors[42]. At the ecological level, this overlap between 

behavioral signals may stem from the distribution of tropicbird’s prey and foraging strategy 

compared to other non-tropical seabirds, such as large shearwaters, auks or gannets 

[17,23,41]. Tropicbirds are offshore specialists that mainly forage on flying fish [28], in 

waters of low-productivity [43,44], making their distribution highly unpredictable both in 

time and space. Such patterns are possibly driven by the low predictability of prey 

distributions in tropical oceans, resulting in low foraging site fidelity and a prominence of 

looping trips, as observed in many other tropical species [24,25,45–47]. This contrasts with 

the commuting trips of non-tropical seabirds who concentrate foraging in predictable areas 

associated with high productivity [48].  Some tropical species often forage opportunistically, 

with prey-capture attempts occurring within directional transit [24,49], making it difficult for 

behavioral models to differentiate foraging from travelling locations. Although opportunistic 
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foraging appears to cause a higher classification error for foraging compared to other 

behaviors in tropical sulids [16,26,37], the error rate in tropicbirds is particularly high, 

suggesting that this species may use opportunistic foraging more frequently than other 

tropical species.  

If not addressed, the low sensitivity and precision of foraging in these models can have 

important implications in conservation and management decisions. Foraging areas are often 

the target of spatial management plans because of their ecological importance for species, 

and therefore their correct identification is critical [1,9,10]. In models with low foraging 

sensitivity, many foraging positions are going undetected, suggesting that in theory these 

models may underestimate total foraging ranges. However, previous studies with high 

misclasssification rates have demonstrated strong spatial overlap between true foraging 

positions extracted from TDRs and modelled foraging areas [37,41], suggesting this may not 

be an issue in practical terms. This may be because opportunistic foraging positions are well 

dispersed throughout trips, resulting in a higher than usual overlap between foraging and 

home range areas [25]. More importantly, in this study the precision of foraging also 

remained low, leaving a high percentage of resting and travelling positions erroneously 

identified as foraging. This may have important implications for habitat modelling studies, 

since resting and travelling positions misclassified as foraging may be obscuring important 

behavior-specific habitat relationships [50] and potentially time-activity budgets [51]. 

Improving behavioral classification for opportunistic foragers  

 

Whilst semi-supervised learning can improve association between observed movement 

metrics and desired behavioral states, limitations exist. In such instances, the inclusion of 
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additional auxiliary sensors, such as TDR, accelerometers, and/or cameras, may be necessary 

across the full dataset to identify less frequent behaviors such as prey-capture attempts, and 

achieve satifcatory model performance. If the sampling resolution of the GPS positions is 

greater than the duration of certain behaviors, the signal of these behaviors may be obscured 

by others associated to the same GPS fix, and thus the application of auxiliary sensors may 

need to be coupled to increases in the temporal resolution of GPS locations. Although HMMs 

have been shown to be relatively robust against reductions in resolution in comparison to 

other methods, such as deep learning [16,17], the infrequency of diving behavior may make 

it especially difficult for the models to correctly identify [52]. In our study, dives only lasted 

1.4±0.6 s seconds and were infrequent and dispersed (just 1.2±1.3 dives per GPS position, 

and only 22% of dives were recorded within the same or in adjacent GPS positions), 

suggesting that foraging may be obscured by resting and travelling if dive-specific auxiliary 

data is not available. Similar observations have been made in the attempt to distinguish 

mating behavior in GPS-tracked deer [53] or in the differentiation of natural and non-natural 

foraging in seabirds [3]. In these cases, the addition of more complexe auxiliary sensors (such 

as cameras, TDRs, and accelerometers etc) may be needed to truly identify these particular 

behaviors. Auxiliary devices have been used in combination with GPS data to identify 

foraging behaviors in many seabirds and seals, which may otherwise be impossible 

[3,32,54,55].  

In the case of opportunistic foragers, such as Red-billed Tropicbirds, the identification of 

foraging habitat based solely on dives may underestimate the foraging area used by these 

species. If prey-capture attempts occur opportunistically within directional transit, it may be 

ineffective to separate directional movements from foraging. This is reflected by the 
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proportionally small improvement of model classification when it came to separating 

foraging from travelling with semi-supervision. The relative homogeneity of tropical oceans 

may render the identification of foraging behavior meaningless, since birds actually seem to 

search for prey over the entire looping trips. In this regard, teasing apart resting from non-

resting behavior may be enough for subsequent analyses of foraging habitat use and 

preferences in opportunistic foragers. 

Guidance for the implementation of semi-supervised behavioral classification  

 

Foremost, semi-supervised learning can improve associations of observed movement metrics 

with desired behavioral states, but, only if the chosen metrics are distinct for each of the 

states. If the metrics highly overlap (as the step lengths of foraging and travelling did in our 

study), overall improvements will be limited. Therefore, it is important to choose the right 

sensors, recording frequency, and movement metrics to answer specific research questions a 

priori to undertaking the research in question. This, of course, is easier said than done, since 

the choice of such metrics will also depend on the ecology and behavior of the species in 

question, which may be unknown to the researcher before the commencement of the study. 

Therefore, we suggest combining both semi-supervision and model validation when possible, 

to make sure that the assumptions of the ecology of the species made at the beginning of the 

study are correct, and that movement metrics are accurately identifying the chosen behaviors. 

Although all auxiliary sensors helped improve model accuracy, each sensor came with its 

own advantages and disadvantages, which vary with the specific study question and ecology 

of study species. Here, wet-dry loggers generated the largest number of positions with known 

behaviors alone, primarily because tropicbirds spend the majority of time resting on water 
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[28]. In seabird species that spend more time on the wing, wet-dry sensors may detect fewer 

resting positions, but can still be used to identify potential prey capture attempts within 

foraging [3,23]. TDR loggers, on the other hand, gave accurate measures of foraging attempts 

but could not detect when the bird was resting or travelling, and recorded fewer overall dives 

than accelerometers, possibly because of missed shallow dives [56] or the capture of flying 

fish in air [30]. In species with deeper and more complex dives, TDR devices can greatly 

improve behavioral classifications [57].  

Accelerometers where the only auxiliary sensor that allowed for the detection of all three 

behavioral states. However, the complexity of processing accelerometer data is much higher 

than wet-dry loggers and TDRs. Transforming accelerometer data into behavioral states 

required the additional step of extracting periods of flapping, diving, and resting from the 

accelerometer signals, a process which in our case, was semi-supervised by both WD and 

TDR data. This added an additional layer of complexity and potential error to modelling the 

raw accelerometry data while also highlighting the importance of WD and TDR devices in 

identifying behavior. Therefore, the selection of auxiliary sensors to use for a given study 

should consider both the complexity of the study question, and the ecology of the study 

species. 

Future research 

 

In the present study, we highlight the benefits of semi-supervision in HMMs while creating 

awareness of possible misclassifications and the importance of cross validation. Whilst using 

real world tracking data allowed us to demonstrate the applied ramifications of this in a 

biological context, we were unable to measure the absolute increase in accuracy related to 
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semi-supervision and suggest that a follow-up simulation study could greatly improve our 

overall understanding of limitations of HMMs. Such a study would comprise of creating 

datasets with increasing levels of overlap between state distributions, and measuring how 

HMMs of these datasets react to increasing semi-supervision. This would allow researchers 

to create guidelines based on the initial distribution of data to understand if, and/or how much 

semi-supervision is needed to improve the overall classification.  Since data would be 

simulated, issues relating to uneven datasets and possible introduced errors from inferring 

the known behaviors from auxiliary datasets would be eliminated. Such an analysis could 

also be used to make inferences on the limitations of HMMs in situations beyond movement 

ecology, and we recommend this as a more generalised future study. 
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CONCLUSIONS 

Semi-supervision increased model accuracy, even when positions with inferred behaviors 

represented a small proportion of the dataset. This increase was uneven among the three basic 

behavioralstates, with stronger increases in the sensitivity of resting and the specificity and 

precision of foraging, while travelling remained relatively stable. Despite these 

improvements, the behavioral inference levels of foraging remained low compared to those 

of species using commuting foraging trips and may not be enough for the analysis of foraging 

habitat use and preferences. Precaution should be taken in the identification and use of 

foraging behavior states in opportunistic foragers, such as species searching for prey across 

a homogeneous environment. The nature of the foraging behavior of species foraging on the 

go may lead to an over-fitted identification of foraging behavior. Indeed, we suggest that in 

this type of species, distinguishing resting from non-resting behaviors should be enough for 

subsequent analyses of foraging habitat use and preferences. However, even in these cases, 

the use of semi-supervision can greatly improve behavioral inferences and the choice of 

auxiliary sensor(s) will depend on the specific ecology of species, deployment logistics, 

processing time, and costs. 

LIST OF ABBREVIATIONS 

HMM : Hidden Markov Models  

TDR : Time Depth Recorders  

GPS: Global Positioning System 

ARS: Area Restricted Search  
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OFT: Optimal Foraging Theory  

EmbC: Expectation-maximization Binary Clustering 

RST: Residence in Space and Time 

FPT: First Passage Time 

TP: True Positive 

TN : True Negative 

FP: False Positive 

FN: False Negative 

ACC: Accelerometry  

WD: Wet-dry 
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SUPPLEMENTARY MATERIAL  

 

S1. Review table of behavioral validation 

 

Article Loc Behaviors Resolution 
Cross-

validation 
Species Model Overall 

Foraging/Active 

AUC (%) 
Sensitivity 

(%) 
Specificity (%) 

Precision 

% 

Negative 

Predictive 

Value % 

False 

Positive 

Rate 

False 

Negative 

Rate 

FI Kappa 

Mean 

Levenshtein 

distance 

Balanced 

Accuracy 

Dean et al. 

2012 

Britain and 

Ireland 

Resting, 

foraging, 

travelling 

5-10 min 

interpolated to 

1 min 

TDR 

Manx 

Shearwater 

(Puffinus 

puffinus) 

HMM   96          

Browning 

et al. 2018 

UK and 

Ireland 

Diving or non-

diving 
100 s TDR 

Common 

Guillemot (Uria 

aalge) 

Supervised 

deep learning 

(best model) 

 

0.92 

(training), 

0.90 

(validation) 

68 92 67 93       

HMM   67 (2 states), 

84 (3 states) 

53 (2 states), 42 

(3 states) 

87 (2 

states) , 87 

(3 states) 

28 (2 states), 

32 (3 states) 
      

Speed and 

tortuosity 

thresholds 

  0-2 77-81 0-47 17-19       

European Shag 

(Phalacocorax  

aristotelis) 

Supervised 

deep learning 

(best model) 

 

0.95 

(training), 

0.91 

(validation) 

67 94 64 95       

HMM   57 (2 states), 

81 (3 states) 

78 (2 states), 60 

(3 states) 

95( 2 

states), 93 

(3 states) 

32 (2 states), 

34 (3 states) 
      

Speed and 

tortuosity 

thresholds 

  0-29 78- 86 13-19 14-Oct       

Razorbill (Alca 

torda) 

Supervised 

deep learning 

(best model) 

 

0.89 

(training), 

0.86 

(validation) 

55 91 51 92       

HMM   57 (2 states), 

75 (3 states) 

62 (2 states), 46 

(3 states) 

87 (2 

states), 88 

(3-states) 

87 (2 states), 

88 (3 states) 
      

Speed and 

tortuosity 

thresholds 

  0-5 72-86 0-45 14-Oct       

Bennison et 

al. 2018 
Ireland 

Resting, 

foraging, 

travelling 

2 min TDR 

Northern Gannet 

(Morus 

bassanus) 

First passage 

time 
  31    57 69     

K- Means 

Clustering 
  38    74 62     
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Article Loc Behaviors Resolution 
Cross-

validation 
Species Model Overall 

Foraging/Active 

AUC (%) 
Sensitivity 

(%) 
Specificity (%) 

Precision 

% 

Negative 

Predictive 

Value % 

False 

Positive 

Rate 

False 

Negative 

Rate 

FI Kappa 

Mean 

Levenshtein 

distance 

Balanced 

Accuracy 

Speed and 

tortuosity 

thresholds 

  77    68 23     

HMM   81    63 19     

EMbC   51    74 49     

KUD             

Machine 

learning 
  22 95 46 87       

Adams et 

al. 2020 
Hawaii 

Resting, 

foraging, 

travelling 

2 min 

TDR 

Brown Booby 

(Sula 

Leucogaster) 

Residence in 

space and time 
  ~ 60     ~ 40     

2 min 

Red-footed 

Booby (Sula 

sula) 

Residence in 

space and time 
  ~ 80     ~ 20     

3 min 

Non-validated 

Red-tailed 

Tropicbird 

(Phaethon 

aethereus) 

             

15 min 

Laysan 

Albatross 

(Phoebastria 

immutabilis) 

             

3 min 

Wedge-tailed 

Shearwater 

(Ardenna 

pacifica) 

             

Austin et al. 

2021 

Cayman 

Islands 

Resting, 

foraging, 

travelling 

30 s or 2 min 

(interpolated 

to 2 min) 

TDR and WD 

Red-footed 

Booby (Sula 

sula) 

HMM   77     23     

Brown Booby 

(Sula 

Leucogaster) 

HMM   80     20     

Torres et al. 

2013 

New 

Zealand 

Resting, 

foraging, 

travelling 

2 min 
immersion 

(resting only) 

Buller’s 

Albatross 

(Thalassarche 

bulleri) 

Speed and 

tortuosity 

thresholds 

            

Ironside et 

al. 2017 
US 

Food caching or 

not (directed 

movements and 

search) 

 Video footage 
Cougar (Puma 

concolor) 

Path 

Identification 

Index 

81    75 97       

Roy et al., 

2022 

Peru and 

Brazil 

Resting, 

foraging, 

travelling 

1, 15, 30s TDR 
Peruvian Booby 

(Sula variegata) 

FPT  62(1s), 

73(30s) 
          

HMM  86(1s), 

84(30s) 
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Article Loc Behaviors Resolution 
Cross-

validation 
Species Model Overall 

Foraging/Active 

AUC (%) 
Sensitivity 

(%) 
Specificity (%) 

Precision 

% 

Negative 

Predictive 

Value % 

False 

Positive 

Rate 

False 

Negative 

Rate 

FI Kappa 

Mean 

Levenshtein 

distance 

Balanced 

Accuracy 

FCNet  89(1s), 

82(30s) 
          

CNNet  94(1s), 

85(30s) 
          

UNet  96(1s), 

91(30s) 
          

Guanay 

Cormorant 

(Leucocarbo 

bougainvilli) 

FPT  61(1s), 

56(30s) 
          

HMM  78(1s), 

75(30s) 
          

FCNet  87(1s), 

65(30s) 
          

CNNet  92(1s), 

74(30s) 
          

UNet  
93 (1s) 

          

88 (30s) 

Dragon et 

al. 2012 

Kerguelen  

Island 

Foraging and not 

foraging 

6 h argos 

TDR 

Southern 

Elephant Seal 

(Mirounga 

leonina) 

FPT           40  

HMM           56  

20 min 

FPT           ~ 65  

HMM           71  

Hurme et 

al. 2019 

Gulf of 

California, 

Mexico 

Foraging and 

travelling 
15s Biosonar calls 

Mexican Fish-

Eating Bats 

(Myotis vivesi) 

K- Means 

clustering 
           63 

First-passage 

time 
           62 

EMbC            63 

HMM            67 

Change point 

analysis 
           64 

Carter et al. 

2016 
UK Ireland 

Active and 

inactive 
1 min TDR 

Northern Gannet 

(Morus 

bassanus) 

Speed and 

tortuosity 

thresholds 

    49   51     

Lerma et al. 

2020 
Rapa Nui 

Resting, 

intensive 

foraging, 

extensive 

foraging, 

travelling 

4 min TDR 
Masked Booby 

(Sula dactylatra) 
EMbC   53  53        
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Article Loc Behaviors Resolution 
Cross-

validation 
Species Model Overall 

Foraging/Active 

AUC (%) 
Sensitivity 

(%) 
Specificity (%) 

Precision 

% 

Negative 

Predictive 

Value % 

False 

Positive 

Rate 

False 

Negative 

Rate 

FI Kappa 

Mean 

Levenshtein 

distance 

Balanced 

Accuracy 

Dragon et 

al., 2012 

Kerguelen  

Island 

Intensive 

foraging and 

extensive 

foraging 

20 min TDR 

Southern 

Elephant Seal 

(Mirounga 

leonina) 

State-space 

model 
            

Torres et al. 

2017 

NewZealan

d 

Resting, 

foraging, transit 
5 min 

Observation-

based 

classification 

from 3 

researchers. 

Grey-headed 

Albatross 

(Thalassarche 

chrysostoma) 

Residence in 

space and time 
            

de Weerd et 

al. 2015 

Netherland

s 

Foraging, lying, 

standing, 

walking 

1 min, 12 s 

and 2 s 

intervals 

Direct 

observation 

Cow (Bos 

taurus) 

Classification 

and regression 

trees 

            

Hance et al. 

2021 
US Active inactive 15 min 

VHF Tracking 

and direct 

observation of 

resting 

Fisher (Pekania 

pennanti) 
HMM     83        

Beyer et al. 

2013 
Canada 

Encamped or 

exploratory 
2 h 

Simulation 

analysis 

Moose (Alces 

alces) 

Bayesian state-

space models 
         

0.49 to 

0.72 

(mean 

0.61) 

  

Jonsen et al. 

2016 
- 

Foraging and 

travelling 
3 h 

Simulation 

analysis 

Weddell seals 

(Leptonychotes 

weddellii) 

Hierarchical 

and non 

hierarchical 

state space 

models 

            

Gurarie et 

al. 2009 

Kuril 

Islands 
- 

variable 

interval 

(Argos) 

Non-validated 

(for the 

norther seals), 

simulation 

analysis 

Northern fur 

seal 

(Callorhinus 

ursinus) 

Change point 

analysis 
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S2. Data Processing  

GPS 

We processed and standardised GPS tracks from 397 breeding Red-billed Tropicbirds. The 

GPS tracks were cleaned of erroneous positions using a speed filter (30m/s) and split into 

discrete foraging trips with periods in the nest between trips omitted. Incomplete trips were 

also included in the analysis if they were over 30 minutes long. Although GPS tracks were 

set to record positions every 5 minutes, poor satellite reception resulted in gaps in the data. 

Therefore, we used linear interpolation to regularise the data to a common time interval of 5 

minutes for every segment of data with gaps less than 20 minutes before fitting the behavioral 

models.  

Accelerometers 

We recovered 27 axy-trek devices from 26 individuals and split these into 60 foraging trips 

based on the GPS positions (Table 1). These devices contained both a tri-axial accelerometer 

which recorded acceleration in the surge (X, forwards/backwards), heave (Z, dorso/ventral) 

and sway (Y, side to side) axis at a frequency of 25 Hz and a TDR sensor which recorded 

pressure at a frequency of 1Hz.  

We classified the accelerometery signals into behavioral states with a random forest model 

(RF) using the ‘randomForest’ package in R (Liaw & Wiener, 2002). To build the RF model, 

we used a training dataset with supervised behavioral classifications to predict the behaviors 

of the complete accelerometer dataset. To create the training dataset, we used a subset of 16 

trips from 6 individuals which had wet-dry data in addition to accelerometery and TDR data 

(Table 1). Using the wet-dry and TDR data to validate our classifications, we manually 
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classified each signal into 3 behaviors in the software Framework4 (Walker et al., 2015): 

flying (dry, high acceleration in X and Z), on water (wet, low acceleration in X and Z) and 

diving (wet, high acceleration in X and Z and high pressure) based on the patterns in static 

acceleration for X, Y and Z as well as their derived variables pitch and roll, and, finally, the 

wet-dry and TDR pressure data. 

Since the device was deployed on the tail of the bird and not in the back, the pitch and roll, 

which usually indicate whether the bird was standing vertically or horizontally and whether 

the bird was positioned with its dorsal side up or down, respectively, more likely indicated 

strong halting or turning. Pitch and Roll were calculated based on the following equations: 

 

 

𝑃𝑖𝑡𝑐ℎ = 𝐴𝑟𝑐𝑡𝑎𝑛√
𝑋

𝑌2 + 𝑍2
∗

180

𝜋
 

𝑅𝑜𝑙𝑙 = 𝐴𝑟𝑐𝑡𝑎𝑛√
𝑌

𝑋2 + 𝑍2
∗

180

𝜋
 

 

To reduce the number of false positives in the random forest model, we only manually 

annotated dives when there was a visual change in pressure recorded by the TDRs and a 

change from dry to wet. However, shallow dives are underestimated by TDR (Cianchetti-

Benedetti et al., 2017) and wet-dry data was recorded at relatively coarse intervals (6s), 

therefore we expected more dives to be predicted by the model than those identified 

manually. 
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Next, we segmented both the training dataset and the complete dataset into variable segment 

lengths using a change point model using the R package ‘cpm’ (Ross & Gordon, 2020) 

following the methods described in Born et al. 2014. We chose to use variable-time and not 

fixed-time segments to assign boundaries between behavioral classes since variable-time 

segments have been shown to improve the classification of some behaviors (Born et al. 2014). 

For each of these segments, we then calculated various metrics to be fed into a RF model. 

We calculated the mean, standard deviation, maximum, minimum, cumulative positive, 

cumulative negative and cumulative absolute values of the X, Y, Z, pitch, roll and depth 

signals of the accelerometer data. In addition, we calculated two measures of dynamic body 

acceleration (DBA) for each of the sections: the overall dynamic body acceleration (ODBA) 

and vectorial dynamic body acceleration (VeDBA). These were calculated by taking a 

running mean of the raw data from each accelerometer axis across a 2-sec period to calculate 

the static acceleration, and then subtracting the static acceleration values from the raw 

acceleration values for that time period. ODBA and VeDBA were then calculated as follows: 

𝑉𝑒𝐷𝐵𝐴 = √(𝑎𝑋
2  +𝑎𝑌

2 + 𝑎𝑍
2 

 

𝑂𝐷𝐵𝐴 = 𝑎𝑋 + 𝑎𝑌 +  𝑎𝑍 

We then matched the behavioral classifications of the training dataset to each of the segments 

and ran a RF model to predict the behaviors of the unclassified accelerometer data. We used 

1000 trees and optimized the number of predictor variables that were randomly selected at 

each node using the function ‘mtry’ from the ‘randomForest’ package in R (Liaw & Wiener, 

2002). This function ran separate models with 0 to 15 predictor variables/node, allowing us 
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to select the number of predictor variables which resulted in the lowest out of the bag (OOB) 

error. The OOB error is a built-in test of accuracy, in which bootstrapping is used to calculate 

classification errors within the RF models and estimates the overall accuracy of the model 

by holding back and comparing the classification of random subsets of the training dataset, 

selected with replacement. We also estimated the importance of the predictor variables using 

the function ‘varImpPlot’ from the ‘randomForest’ package in R (Liaw & Wiener, 2002) 

which measures the mean decrease in accuracy based on the change in the prediction error 

when the OOB data for that variable are re-arranged and all other variables are left unaffected. 

We classified the behaviors of the complete accelerometery dataset using the ‘predict’ 

function. To reduce the amount of misclassification, we only assigned the behaviors to a 

segment when the probability of said behavior was over 0.65. This threshold was selected as 

a trade-off between accuracy and the proportion of unclassified segments.  

We then matched the accelerometery data to each GPS position by summarizing the 

proportion of time flying, on water and the total number of dives for each time period between 

interpolated GPS positions.  

TDR 

The time-depth recorder (TDR) data of the 27 Axy-treck tags were also used to identify 

diving identify dives based on the pressure sensor alone. Since the tags were deployed over 

a long period, the atmospheric pressure at sea-surface (Pm in mBar) was expected to vary 

greatly between trips. Therefore, we estimated Pm for each trip as the mode [pressure] and 

calculated depth (D in m) using the relationship: D=0.01 × (Pm − Pa), where 1 mBar pressure 

difference corresponds to 0.01 m depth difference. We corrected for surface drift using the 



  

84 

 

zero-offset correction of the diveMove package in R (Luque & Fried, 2011). The pressure 

sensors were very sensitive and small differences in depth may result from preening, fast 

turns, and takeoff instead of dives. Therefore, only dives ≥0.2 m were considered.  

We then matched the TDR data to each GPS position by counting the total number of dives 

for each time period between the interpolated GPS positions. 

Wet-dry 

Twenty-five individuals with GPS tracks were outfitted with Migrate GLS, resulting in 107 

foraging trips with at least both types of data. Using conductivity, these devices detect 

whether they are in water or not every 6 seconds and record the timing of transitions from 

wet to dry or from dry to wet. We matched the wet-dry data to each GPS position by 

summarizing the proportion of time wet (PropWet) for the periods of time between each 

interpolated GPS position. We then eliminated PropWet data when the time gap from one 

point to the next was over 5 minutes (caused by gaps in the GPS data) (0.5% of the positions).  
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S3. Additional validation metrics 

 

Model Accuracy Sensitivity_Rest Specificity_Rest PosPredValue_Rest NegPredValue_Rest Precision_Rest Recall_Rest F1_Rest Prevalence_Rest DetectionRate_Rest 

Full unsupervised 
   0.77± 
0.01    0.76± 0.01    0.96± 0.01    0.98± 0.00    0.57± 0.01    0.98± 0.00 

   0.76± 
0.01 

   0.86± 
0.00    0.76± 0.00    0.58± 0.00 

Full max. supervision (9%) 
   0.85± 
0.01    0.86± 0.01    0.98± 0.00    0.99± 0.00    0.70± 0.01    0.99± 0.00 

   0.86± 
0.01 

   0.92± 
0.00    0.76± 0.00    0.65± 0.00 

Informed unsupervised 
   0.74± 
0.07    0.73± 0.09    0.96± 0.01    0.98± 0.00    0.54± 0.09    0.98± 0.00 

   0.73± 
0.09 

   0.83± 
0.06    0.76± 0.00    0.55± 0.07 

Informed max. supervision 
(75%) 

   0.93± 
0.01    0.96± 0.01    0.97± 0.01    0.99± 0.00    0.88± 0.02    0.99± 0.00 

   0.96± 
0.01 

   0.97± 
0.00    0.76± 0.00    0.72± 0.01 

 

Model DetectionPrevalence_Rest BalancedAccuracy_Rest Sensitivity_Forage Specificity_Forage PosPredValue_Forage NegPredValue_Forage Precision_Forage Recall_Forage 

Full unsupervised    0.59± 0.01    0.86± 0.00    0.26± 0.03    0.80± 0.00    0.03± 0.01    0.98± 0.00    0.03± 0.01    0.26± 0.03 

Full max. supervision (9%)    0.66± 0.00    0.92± 0.00    0.37± 0.06    0.87± 0.01    0.06± 0.01    0.98± 0.00    0.06± 0.01    0.37± 0.06 

Informed unsupervised    0.56± 0.07    0.85± 0.04    0.26± 0.14    0.77± 0.08    0.03± 0.01    0.98± 0.00    0.03± 0.01    0.26± 0.14 
Informed max. supervision 
(75%)    0.73± 0.01    0.96± 0.00    0.21± 0.08    0.97± 0.01    0.13± 0.05    0.98± 0.00    0.13± 0.05    0.21± 0.08 

 

Model F1_Forage Prevalence_Forage DetectionRate_Forage DetectionPrevalence_Forage BalancedAccuracy_Forage Sensitivity_Travel Specificity_Travel PosPredValue_Travel 

Full unsupervised 
   0.05± 
0.01    0.02± 0.00    0.01± 0.00    0.20± 0.00    0.53± 0.01    0.82± 0.01    0.96± 0.00    0.86± 0.01 

Full max. supervision (9%) 
   0.11± 
0.02    0.02± 0.00    0.01± 0.00    0.13± 0.01    0.62± 0.03    0.87± 0.01    0.98± 0.00    0.91± 0.02 

Informed unsupervised 
   0.05± 
0.02    0.02± 0.00    0.01± 0.00    0.23± 0.08    0.51± 0.06    0.82± 0.09    0.96± 0.01    0.87± 0.02 

Informed max. supervision 
(75%) 

   0.16± 
0.06    0.02± 0.00    0.00± 0.00    0.04± 0.01    0.59± 0.04    0.91± 0.01    0.96± 0.01    0.87± 0.02 
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Model NegPredValue_Travel Precision_Travel Recall_Travel F1_Travel Prevalence_Travel DetectionRate_Travel DetectionPrevalence_Travel BalancedAccuracy_Travel 

Full unsupervised    0.95± 0.00    0.86± 0.01    0.82± 0.01 
   0.84± 
0.01    0.22± 0.00    0.18± 0.00    0.21± 0.00    0.89± 0.01 

Full max. supervision (9%)    0.96± 0.00    0.91± 0.02    0.87± 0.01 
   0.89± 
0.01    0.22± 0.00    0.19± 0.00    0.21± 0.00    0.92± 0.01 

Informed unsupervised    0.95± 0.02    0.87± 0.02    0.82± 0.09 
   0.84± 
0.04    0.22± 0.00    0.18± 0.02    0.21± 0.03    0.89± 0.04 

Informed max. supervision 
(75%)    0.97± 0.00    0.87± 0.02    0.91± 0.01 

   0.89± 
0.01    0.22± 0.00    0.20± 0.00    0.23± 0.01    0.94± 0.01 

 

Model VUS weighed_F1 averaged_F1 multiclass_AUC pairwise_AUC_RestForage pairwise_AUC_RestTravel pairwise_AUC_ForageTravel AUC_Rest_all AUC_Forage_all 

Full unsupervised 
   0.16± 
0.02    0.84± 0.00    0.86± 0.00    0.78± 0.01    0.77± 0.01    0.93± 0.00    0.63± 0.03    0.86± 0.00    0.53± 0.01 

Full max. supervision (9%) 
   0.27± 
0.05    0.90± 0.01    0.92± 0.00    0.86± 0.01    0.88± 0.01    0.97± 0.00    0.74± 0.03    0.92± 0.00    0.62± 0.03 

Informed unsupervised 
   0.15± 
0.07    0.82± 0.05    0.83± 0.06    0.76± 0.04    0.73± 0.09    0.93± 0.02    0.64± 0.03    0.85± 0.04    0.51± 0.06 

Informed max. supervision 
(75%) 

   0.19± 
0.07    0.94± 0.01    0.97± 0.00    0.89± 0.02    0.95± 0.02    0.99± 0.00    0.75± 0.04    0.96± 0.00    0.59± 0.04 

 

Model AUC_Travel_all 

Full unsupervised    0.89± 0.01 

Full max. supervision (9%)    0.92± 0.01 

Informed unsupervised    0.89± 0.04 
Informed max. supervision 
(75%)    0.94± 0.01 
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S4. Random Forest Results 

 

Within the training dataset, we classified 1663, 6076 and 19332 segments as dives, 

flapping and on water, respectively based on the wet-dry and TDR data. A preliminary 

inspection of the mean and standard deviation of all 46 of the random forest coefficients 

suggested differences in the metrics of segments classified with different behaviors (S5).    

The OOB error for the random forest created from the training dataset was lowest 

with 7 variables tried at each split and therefore this model was used to predict the behaviors 

of the full dataset. The OOB error was 18% with the highest class error associated with diving 

behavior (42%) followed by flapping (0.5%) and finally on water (0.06%). The most 

important predictors of behavior in this model were the maximum heave, minimum depth, 

and mean depth of the segments (Figure 1). 

After predicting the behaviors of the full dataset and removing classifications with a 

probability of less than 0.65, 58% of the accelerometery dataset was classified as either dive, 

flapping or on water (Table 1).  

Table 1. The total and per trip mean and standard deviation of the number of segments and 

proportion of time spent in each of the behaviors classified by the Random Forest model.  

 

 

 

 

 

 

Behaviour Total Segments Total Proportion Segments per trip Proportion per trip 

Dive 160782 0.01 2915 ± 9438 0.03 ± 0.08

Flapping 707043 0.20 13988 ± 19292 0.30 ± 0.25

Water 4769718 0.37 94465 ± 137771 0.35 ± 0.24

Unclassified 4052001 0.42 80632 ± 146194 0.33 ± 0.27
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Figure 1. Results of the varImpPlot showing the importance of each variable in the random 

forest model  
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S5. Random forest segment summary 

Behavior mean_seg_length sd_seg_length mean_ODBA sd_ODBA mean_VeDBA sd_VeDBA mean_sd_ODBA mean_sd_VeDBA 

Dive 0.914972917 2.057358426 7.471565903 58.98429559 5.211490202 41.03694491 58.98429559 41.03694491 

Flapping 2.06816623 4.323165355 28.55558907 117.3309097 20.08226899 82.3278591 117.3309097 82.3278591 

Water 0.600526043 0.821167112 1.858442283 16.60633224 1.332505924 11.37814708 16.60633224 11.37814708 

 

Behavior mean_meanX_surge sd_meanX_surge mean_stdevX_surge sd_stdevX_surge mean_minX_surge sd_minX_surge mean_maxX_surge sd_maxX_surge 

Dive 0.185735229 0.679436355 0.246186981 0.503757741 -0.260813043 1.458838869 0.576634203 0.656742599 

Flapping 0.454394595 0.323062801 0.120497157 0.191729202 0.240872848 0.305768818 0.712797775 0.635770069 

Water 0.262248725 0.152002799 0.034125189 0.06943132 0.20156961 0.158418447 0.326028224 0.243030636 

 

Behavior mean_sum_positive_X_surge sd_sum_positive_X_surge mean_sum_negative_X_surge sd_sum_negative_X_surge mean_meanY_sway sd_meanY_sway 

Dive 10.23417584 40.45752872 -2.202266693 6.448451996 -0.008280901 0.355537541 

Flapping 27.15749485 63.43315424 -0.061156927 0.319006492 0.008280542 0.150353622 

Water 4.186772762 11.01105496 -0.061887112 0.48559032 -0.118615199 0.188975334 

 

Behavior mean_stdevY_sway sd_stdevY_sway mean_minY_sway sd_minY_sway mean_sum_positive_Y_sway sd_sum_positive_Y_sway mean_maxY_sway sd_maxY_sway 

Dive 0.274248897 0.434966349 -0.505286723 0.976042885 2.958369886 6.884727691 0.476714817 0.835268987 

Flapping 0.094494824 0.18411441 -0.196463331 0.473277594 2.300476611 5.300333055 0.224641512 0.47891287 

Water 0.055543166 0.12708909 -0.212934674 0.311123499 0.605453604 2.411684312 -0.022751412 0.335572118 

 

Behavior 
mean_sum_negative_Y_swa

y 
sd_sum_negative_Y_swa

y 
mean_meanZ_heav

e 
sd_meanZ_heav

e 
mean_stdevZ_heav

e 
sd_stdevZ_heav

e 
mean_minZ_heav

e 
sd_minZ_heav

e 

Dive -3.043505063 5.387564792 0.773078338 0.469270599 0.322551535 0.494041607 0.173115683 1.257783942 

Flapping -3.752402204 8.769633475 0.884676234 0.296757759 0.230386355 0.253761232 0.51933248 0.518401901 

Water -2.234553609 3.693833287 0.904815415 0.134816337 0.074807981 0.080493652 0.783081815 0.230605511 

 

Behavior mean_maxZ_heave sd_maxZ_heave mean_sum_positive_Z_heave sd_sum_positive_Z_heave mean_sum_negative_Z_heave sd_sum_negative_Z_heave 

Dive 1.281587456 0.787143417 19.03563039 40.75857647 -1.247594738 4.009618954 

Flapping 1.32263628 0.658669266 44.78037579 90.91950969 -0.228931637 1.669260075 

Water 1.017595399 0.17931868 13.45529676 17.3666105 -0.022185319 0.455196068 
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Behavior mean_pitch_mean sd_pitch_mean mean_pitch_stdev sd_pitch_stdev mean_min_pitch sd_min_pitch mean_max_pitch sd_max_pitch mean_sum_positive_pitch 

Dive 15.13120942 19.57302606 8.193638218 9.347275947 0.450981902 30.05804926 30.19754486 20.75651432 553.5936702 

Flapping 24.87286639 10.47244302 5.122586766 5.530224985 11.59094047 19.6093466 34.81101144 19.34799694 1555.603137 

Water 15.47438642 7.819926614 2.160407894 3.204821651 11.85596551 9.057036361 19.38210571 10.94445834 248.5880453 

 

Behavior sd_sum_positive_pitch mean_sum_negative_pitch sd_sum_negative_pitch mean_roll_mean sd_roll_mean mean_roll_stdev sd_roll_stdev mean_min_roll 

Dive 2186.28688 -62.54019854 150.1843273 0.441467597 14.6907035 10.73145598 12.64896875 -18.29098658 

Flapping 3820.764642 -10.36736503 49.09231986 0.754499487 8.805273506 5.696024408 6.876225662 -12.77354574 

Water 682.5925009 -3.69358878 29.14355042 -7.04313628 11.19990107 2.962588849 5.005423499 -12.00037175 

 

Behavior sd_min_roll mean_max_roll sd_max_roll mean_sum_positive_roll sd_sum_positive_roll mean_sum_negative_roll sd_sum_negative_roll 

Dive 27.75553021 19.45998164 25.53140161 148.7984738 317.5679513 -148.4229335 273.8061099 

Flapping 22.86545769 15.22669209 21.32378431 167.6335639 391.0585512 -227.9307151 534.1978608 

Water 14.32006368 -2.024843196 15.33787732 34.53319377 134.6580517 -132.049501 220.1495131 

 

Behavior mean_depth_mean sd_depth_mean mean_depth_stdev sd_depth_stdev mean_min_depth sd_min_depth mean_max_depth sd_max_depth 

Dive -0.146788269 0.285085851 0.037863831 0.06396195 -0.20996819 0.36005729 -0.09169453 0.222891787 

Flapping 0.026592897 0.065185762 0.001474607 0.001864611 0.02407326 0.064970458 0.029213352 0.06558152 

Water -0.00390129 0.074415024 0.000961538 0.002137202 -0.005384367 0.07483524 -0.002425867 0.07414535 

 

Behavior mean_sum_positive_depth sd_sum_positive_depth mean_sum_negative_depth sd_sum_negative_depth mean_sum_abs_depth sd_sum_abs_depth 

Dive 0.594812248 4.217005618 -2.583271115 4.983316817 3.178083363 6.292680046 

Flapping 2.591071583 14.66043915 -0.230665668 1.083692262 2.82173725 14.66017833 

Water 0.333790631 1.730512784 -0.336621334 0.580331014 0.670411965 1.762645696 

 

Behavior 
mean_sum_abs_X_surg

e 
sd_sum_abs_X_surg

e 
mean_sum_abs_Y_swa

y 
sd_sum_abs_Y_swa

y 
mean_sum_abs_pitc

h 
sd_sum_abs_pitc

h 
mean_sum_abs_ro

ll 
sd_sum_abs_ro

ll 

Dive 12.43644253 40.63474465 6.001874949 9.802989545 616.1338688 2190.111643 297.2214073 483.4804531 

Flapping 27.21865178 63.48374756 6.052878815 11.89808969 1565.970502 3830.275742 395.564279 824.6593821 

Water 4.248659874 11.01371797 2.840007213 4.482651846 252.281634 682.7357513 166.5826948 256.4730865 
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S6. Transition probability matrix 

 

Table 1. Mean and standard deviation of HMM transition probabilities between resting, 

foraging and travelling from the 10 iterations of models with 0 known states 
 

rest forage travel 

rest 0.82±0.05 0.12±0.03 0.05±0.02 

forage 0.23±0.05 0.59±0.09 0.15±0.05 

travel 0.099±0.05 0.14±0.06 0.76±0.05 

   

Table 2. Mean and standard deviation of HMM transition probabilities between resting, 

foraging and travelling from the 10 iterations of models with a maximum proportion of 

known states (0.75)  
 

rest forage travel 

rest 0.90±0.02 0.05±0.01 0.05±0.01 

forage 0.22±0.17 0.47±0.16 0.23±0.14 

travel 0.12±0.03 0.10±0.04 0.79±0.05 
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S7. Sample loss with removal of positions with low HMM probability 

 

Proportion of GPS positions remaining in the dataset upon removal of positions with 

increasing minimum HMM probability values for behavioral classification.  
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S8: Confusion matrices of complete GPS HMMs 

 

Confusion matrices showing the mean and standard deviation of the number of reference 

behaviors against model predictions for iterations of the complete GPS HMMs with no 

supervision (left) and with the highest amount of supervision (9%, right). 
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ABSTRACT 

In polar and temperate regions, seasonality in environmental conditions is an important driver 

of animal phenology. In tropical systems, where the environment is relatively homogeneous 

year-round, the link between phenology and seasonality is weakened, and many species breed 

asynchronously or even year-round. This leads to the question of how these species adapt to 

seasonal changes, which remain present, albeit to a lesser extent. To assess relationships 

between foraging plasticity and seasonal changes in oceanographic conditions and resource 

availability, we investigated the foraging ecology of the Red-billed Tropicbird (Phaethon 

aethereus), a poorly studied pantropical species that breeds year-round in Cabo Verde. From 

2017 to 2022, we monitored tropicbird nests at three islands (Boavista, Sal, and the Cima 

Islet) and GPS tracked 907 foraging trips from 329 adults to evaluate seasonality in nest 

occupancy, foraging patterns and efficiency, chick growth, chick and adult body condition, 

and breeding success, alongside links to seasonal changes in resource availability and 

environmental conditions. We found seasonal patterns in foraging behavior, with individuals 

taking more distant and less sinuous foraging trips, using a larger core foraging area, 

spending more time foraging during twilight, and consuming more squid in the dry season 

(December-June) than in the wet season (July-November). Moreover, nest occupancy, chick 

body condition, and breeding success were higher in the dry season. We suggest that the 

observed seasonal patterns are related to an increase in the availability of squid at the end of 

the dry season, a decrease in the nest-site suitability, and an increase in weather-related 

foraging costs in the wet season. Our results provide some of the first in-depth knowledge on 

the seasonal variation in foraging behavior of a tropical seabird species, suggesting 
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seasonality in tropical systems may be a stronger driver of the movements of top predators 

than previously thought. 

  



  

98 

 

INTRODUCTION 

Seasonality, characterized by periodic changes in environmental conditions throughout the 

year, serves as a significant driver of animal phenology (Dufour et al., 2020; Forrest & 

Miller-Rushing, 2010). This is because of variation in environmental conditions such as 

temperature, precipitation, and light level (e.g. through energetic and thermoregulatory 

restraints), as well as resource availability, including food and suitable nesting sites (Ramírez 

et al., 2017), on individual fitness. To cope with seasonal changes, species may synchronize 

reproduction with periods of favorable conditions and avoid unfavorable ones through 

migration, hibernation, or estivation. Conversely, they can adapt to these seasonal changes 

through ecological plasticity, by modifying and balancing ecological traits, such as foraging 

behavior and diet (van Beest & Milner, 2013; Varpe, 2017). 

In polar and temperate regions, population-wide synchrony reflects distinct seasonality in 

suitable breeding conditions alongside peaks in favorable resource availability (e.g. timing 

of spring bloom; Frederiksen et al., 2006). Conversely, in tropical regions where the marine 

environment is relatively nutrient-poor and homogeneous, the link between phenology and 

seasonality is weakened, and many species breed asynchronously or even year-round 

(Longhurst, 1995; Lundberg, 1988). According to standard bet-hedging theory, we can then 

expect more phenological variability at individual and population levels (Smetzer et al., 

2021). Moreover, asynchronous breeding in these oligotrophic waters may result in higher 

individual fitness because of lower intra-specific competition (Ashmole, 1971). When this is 

the case, it may benefit different individuals within populations to specialize in a narrow 

foraging strategy to avoid competition (Cleasby et al., 2015; Votier et al., 2010; Wakefield 

et al., 2015). Despite weakened seasonality in tropical systems, the persistence of this 
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phenomenon is evidenced by seasonal fluctuations in the numbers of active breeders and/or 

foraging behavior, reflecting population-level preferences for specific environmental 

conditions, resource availability, and/or interspecies interactions (Keogan et al., 2018; 

Passuni et al., 2016; Schreiber & Ashmole, 1970; Villegas-Amtmann et al., 2011). These 

fluctuations may, in turn, influence the foraging efficiency of the adults and impact the body 

condition and survival of adults and chicks throughout the year (Esparza et al., 2022).  

Understanding the drivers of seasonal changes in tropical oceans can shed light on the 

evolutionary constraints acting upon species in these poorly studied systems. In the face of 

climate change, investigating species' adaptability to environmental change and its cascading 

effects on ecological interactions is essential for evaluating threats and developing 

management strategies. In a meta-analysis of the phenology of worldwide seabird 

populations between 1952 and 2015, seabirds had not adjusted their breeding seasons over 

time or in response to sea surface temperature, suggesting a particular vulnerability to climate 

change impacts (Keogan et al., 2018). This same meta-analysis underlines significant 

knowledge gaps about the adaptability of tropical species to environmental change. 

We aim to identify how an asynchronous tropical species adapts to seasonality and to 

determine whether these changes are driven by seasonal variability in environmental 

conditions and/or resource availability. To achieve this, we focused on Red-billed 

Tropicbirds (Phaethon aethereus), a poorly studied pantropical species that breeds year-

round. Our study was conducted on five breeding colonies on two islands and one islet in 

Cabo Verde, where we monitored tropicbird nests and tracked 907 foraging trips using GPS 

loggers on 329 adults from 2017 to 2022. Like many other medium-size seabirds, Red-billed 

Tropicbirds have few natural predators, making them an excellent model species for 
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investigating how environmental conditions and resource availability influence foraging 

efficiency, diet and fitness, and ultimately reproductive phenology. Specifically, we focused 

on (i) identifying seasonal patterns in nest occupancy, foraging patterns, and diet; (ii) 

assessing seasonality in a suite of efficiency and fitness components, including foraging 

efficiency, adult and chick body condition, and breeding success; and (iii) assessing how 

these seasonal patterns relate to seasonality in environment conditions (bottom-up processes) 

and density dependence at colonies (top-down processes), and the relative importance of 

these two contrasting processes. 
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METHODS 

Study species and field site 

The Red-billed Tropicbird is a widespread marine predator, present in small numbers 

throughout the tropical Atlantic Ocean, in the east tropical Pacific and west tropical Indian 

Ocean. This species breeds asynchronously in scattered colonies and feeds mainly on small 

epipelagic fish such as flying fish, needlefish, and some squid (Castillo-Guerrero et al., 2011; 

Diop et al., 2018; Madden et al., 2022). During the breeding season, they are central place 

foragers that may travel over 500 km from the colony in search of prey (Diop et al., 2018). 

During chick-rearing, they use a dual foraging strategy in which they alternate between short 

trips to feed their young and long trips to feed themselves (Piña-Ortiz et al., 2024).  

Fieldwork took place at two colonies on Boavista and three on Sal islands, and one colony 

on Cima Islet in Cabo Verde between 2017 and 2022. Cabo Verde lies 600 to 850 km west 

of Senegal, Africa. It is located within the southern limit of the Canary Current Large Marine 

Ecosystem (Valdés & Déniz-González, 2015), at the eastern boundary of the North Atlantic 

subtropical gyre (Fernandes et al., 2005). The ocean surrounding Cabo Verde is characterized 

by consistent North Easterly winds, which are stronger in the winter months. Although within 

the upwelling system, waters surrounding Cabo Verde are relatively oligotrophic, but there 

is a peak in productivity in February-March, reaching on average less than 20 mgꞏC per m3 

(Medrano et al., 2022). Climatically, Cabo Verde is arid from December to June, with a wet 

season from July to November (Neto et al., 2020) with a peak in precipitation from August 

to October (Neves et al., 2017). While fieldwork on Boavista and Sal islands was mostly 
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continuous during the study period, work on Cima islet was continuous only after mid-2019 

(Figure 1).  

 

Figure 1. Red-billed Tropicbird foraging trips and monitoring effort in Cabo Verde. A) Map 

of tropicbird foraging trips coloured by their breeding islands with colony locations indicated 

by points.  B) Number of fieldwork days per month per island. Bars in grey indicate months 

considered to have discontinuous effort (<5 fieldwork days) and were excluded from the 

analysis of seasonality in nest occupancy. 
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Nest monitoring 

To monitor adult body condition, breeding success, chick growth, and diet, nests were 

generally visited every 1-3 days, but some isolated nests (<5%) were only visited monthly.  

At each nest visit, the contents of the nest were recorded (empty, chick/egg, and whether 

there was an adult or not) and, if an adult or chick was present, we measured its 

morphometrics (weight, wing length, tarsus length, bill depth, culmen and head-bill length). 

Since monitoring was inconsistent at certain times of the year and at more isolated nests, data 

on breeding phenology (laying, hatching and fledging date) and success (hatching success 

and fledging success) were only used in analysis when the window of uncertainty for these 

data was less than 15 days. When only one or two of the three breeding phenology dates were 

known, the unknown date(s) was(were) estimated based on adding/ subtracting the 

population means of incubation (41±5 days, n=27) or chick-rearing period (84±5 days, n=25) 

of nests with no uncertainty to/from the known phenological date with the smallest window 

of uncertainty.  

Logger deployments and processing 

Red-billed Tropicbirds were captured on their nests during incubation or early chick-rearing 

and equipped with CatLog Gen2 GPS. The GPS loggers weighed 18g (2.9% of mean 

tropicbird weight; 630g±55, n=1,297 individuals) and were programmed to record GPS 

positions every 5 minutes. The GPS tracks were cleaned of erroneous positions using a speed 

filter (30m/s) and split into discrete foraging trips with periods in the nest between trips 

omitted. As in Saldanha et al., 2023, a sub-sample of tropicbirds were also equipped with 

Axy-Trek  loggers (which record GPS, tri-axial accelerometer, and time-depth information; 
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33 foraging trips from 14 individuals), Migrate Technology C330 geolocators (GLS) with a 

wet-dry sensor (salt water immersion logger; 74 foraging trips from 19 individuals) or both 

(16 trips from 6 individuals) to semi-supervise Hidden Markov Models for the classification 

of GPS positions into behavior states. Axy-Trek loggers weighed 17g (2.7 % of tropicbird 

weight) and recorded GPS, acceleration, and pressure data at 5-minute, 25 Hz and 1s 

intervals, respectively. The Migrate Technology geolocators (GLS) with a wet-dry sensor 

weighed 3.3g (0.5% of tropicbird weight) and registered if the bird was wet or dry every 6 

seconds. GPS and Axy-Trek were attached to the 6 central tail feathers with Tesa tape while 

GLS were attached to the tarsus, on the bird’s metal ring with the help of a zip tie. All tracking 

data was processed as in (Saldanha et al., 2023), however, we followed the authors’ 

suggestion to classify GPS positions into two instead of three discrete behavioral states. 

Small step lengths and low turning angles were inferred as inactive (i.e. resting on water), 

and large steps with a large variety of turning angles were inferred as active (foraging/flight) 

states. Since tropicbirds mainly forage on the go (Saldanha et al., 2023), we hereafter refer 

to the active state as foraging.  

We tested for potential impacts of GPS deployments by assessing difference in breeding 

success and adult body condition between tagged and non-tagged individuals (see analysis 

section). 
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Analysis 

 Assessing seasonal patterns in nest occupancy, foraging patterns, and diet 

Nest occupancy 

To estimate seasonal changes in nest occupancy and determine whether density dependence 

was driving seasonal patterns of tropicbird foraging ecology, we used the hatch date or 

estimated hatch date of each nest (see nest monitoring). In the case when nests failed during 

incubation, to have comparable phenological dates, we estimated the hatch by adding the 

population mean of incubation to the laying date. Since not all tropicbird colonies were 

simultaneously monitored in Cabo Verde and colonies varied in size, we represented changes 

in nest occupancy as the proportion of recorded nests that hatched per month for each year 

and island. Moreover, to control for monitoring bias, we only included months with over 5 

days of fieldwork per island and year (Figure 1). To determine whether nest occupancy varied 

seasonally, we modelled it in a Generalized Additive Mixed Models (GAMM) against a 

cyclic cubic regression spline of Julian date while controlling for differences between years 

and islands as random intercepts (Table 2). 

Foraging patterns 

 

Using only complete trips (without battery failure), we calculated the following metrics: trip 

duration, maximum distance from the colony, distance travelled, sinuosity (McLean & 

Skowron Volponi, 2018), and whether the trip was a day (short trip during daylight hours) or 

overnight trip (with at least one night period). Then, using GAMMs, we assessed whether 

there were seasonal trends in these metrics by modelling them against a cyclic cubic 
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regression spline of Julian date with random intercepts for individual ID, breeding phase, 

island, and year (Table 3).  

Home range of each animal was estimated as the area of 95% of the Kernel Density Estimate 

(KDE; Calenge C., 2006) of the positions classified as foraging within each trip, using 

Lambert equal-area projection. To identify seasonal changes in individual home ranges, 

using a GAMM, we modelled home range against a cyclic cubic regression spline of Julian 

date of the start of the trip, along with random intercepts for individual ID, breeding phase, 

island, and year (Table 3). 

To identify seasonal shifts in main foraging areas, we calculated the spatial overlap 

(Bhattacharyya’s Affinity, BA) between all kernels from trips of the same island and 

breeding phase. Then, using the calculated overlap, we assessed: 1) seasonal patterns in 

overlap, and 2) relationships between overlap and the difference in days between the 

beginning of trips. In the first model, we assessed seasonal changes in overlap by comparing 

the overlap between pairs of trips that occurred in the same month using a GAMM with 

separate cyclic cubic regression splines of Julian date for trips of the same vs different 

individuals. In addition, this model included parametric coefficients for whether the home 

ranges were from the same individual or not, from the same year or not, and the absolute 

difference in days between the two trips, along with random intercepts for individual ID, 

breeding phase, and island (Table 3). In the second model, we assessed whether the home 

ranges of individuals foraging during the same time of year overlapped more than those 

breeding at different times. To do this, we modelled the overlap between home ranges against 

a non-linear relationship with the absolute difference in days between the beginning of each 

overlapped trip, along with parametric coefficients for whether the home ranges were from 
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the same individual or not, from the same year or not, along with random effects for both 

individual IDs, breeding phase, and island (Table 3). 

To determine whether there are seasonal patterns in the proportion of time foraging, we 

calculated the proportion of time birds spent foraging during day, night, and twilight, 

separately. We limited our analysis to days and nights with at least 4 hours of GPS data, and 

twilight periods with at least 1 hour of data. We then used a GAMM to model the relationship 

between the proportion of time foraging against a cyclic cubic regression spline of Julian 

date. This model also included categorical variables for day, night, and twilight along with 

random intercepts for individual ID, breeding phase, island, and year (Table 3). 

Diet 

 

To determine whether there were seasonal patterns in tropicbird diet, 73 spontaneous 

regurgitates from 69 incubating adults breeding in Sal and Boavista were collected 

opportunistically during nest monitoring. From these samples, we classified every prey item 

to the lowest possible taxonomic level using morphological identification. Due to the small 

number of prey that we were able to identify at a species or family level, we gathered prey 

items by ecological prey group (carnivorous fish, zooplanktivorous fish, and cephalopods) to 

test for the frequency of these groups within samples. Stable isotope analyses were 

undertaken on muscle tissue samples from 110 prey items and 64 blood samples from adult 

tropicbirds to identify seasonal patterns in nitrogen (δ15N) and carbon (δ13C) stable isotope 

values. Additional information on these analyses is described in A1.  
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To assess whether there were seasonal trends in ecological prey group frequency in tropicbird 

regurgitates, we initially modelled all prey items collected and included individual ID as 

random intercepts. However, this resulted in an overly complex model for the size of our 

dataset (more coefficients than data). Therefore, we randomly selected only one prey item 

per regurgitate and bird to be included in the model (leaving 66 prey samples to be modelled 

as regurgitates from 3 adults did not have any identifiable prey). We modelled whether each 

of these prey items was carnivorous fish, zooplanktivorous fish, and cephalopods in a series 

of three binomial GAMMs against a non-linear relationship with a cyclic cubic regression 

spline of Julian date. These models also included random effects for breeding phase, island, 

and year (Table 3).  

To assess whether there were seasonal trends in tropicbird blood stable isotopes, we modelled 

the nitrogen and carbon stable isotope values against a cyclic cubic regression spline of Julian 

date using GAMMs. Since we only had one blood sample per individual, these models only 

included random intercepts for breeding phase, island, and year (Table 3). 

Assessing seasonality in efficiency and fitness  

Foraging efficiency 

 

As a measure of foraging efficiency, we calculated relative weight gain after a foraging trip 

by incubating tropicbirds, as well as per km, and hour at sea. Since tropicbirds sometimes 

remained in their nest for several days before departure or returned to the colony undetected, 

we subtracted/added the mean weight loss per day at the colony (19.2 g/day, n=142) and 

limited the analysis to weights that corresponded to complete incubation trips with birds 

weighted fewer than 3 days before and 3 days after spent at the nest and for which the sex of 
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the individual was known (resulting in 62 trips from different incubating individuals). We 

modelled the seasonality of these three measures of efficiency while also considering 

differences between sexes, years, and islands as random intercepts in GAMMs (Table 4). 

Adult body condition 

 

To calculate an index of body condition (BCI) for breeding tropicbirds to assess how it 

changed among seasons, we collected weight and biometric measurements (wing length, 

tarsus length, bill depth, culmen and head-bill length; A2) opportunistically during nest 

monitoring, (measurements of 328 individuals by 39 samplers). We then normalized the 

biometric measurements and conducted a principal component analysis (PCA) to generate a 

composite measure of skeletal size (e.g., Benson, Suryan, & Piatt, 2003). The first principal 

component explained 40.0 % of the variance and was negatively related to all individual 

loadings of biometric measurements (wing: -0.28, culmen: -0.61, bill height; -0.29, head-bill: 

-0.61 and tarsus -0.31). To facilitate interpretation, we inverted the factor of body size by 

multiplying it by -1, so that higher values represent larger birds. Then we fit a non-linear 

relationship between the first principal component and adult weight to predict the median 

weight per body size and used the residuals of this model to calculate the BCI, with positive 

values representing birds with larger weights for their body size, and negative values 

representing the contrary. Finally, to measure the seasonal trends in adult BCI, we ran a 

GAMM with BCI as the response variable and as explanatory variables: a non-linear 

relationship with Julian date, and the random effects of sex, year, island, and breeding phase. 

Furthermore, to test whether there was a negative consequence of GPS deployment on BC1, 
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we also included a categorical variable indicating whether the weight measurement was taken 

directly after a foraging trip with a GPS or not (Table 4). 

Chick growth and body condition 

 

To determine whether chick growth changed seasonally, we used 87 measurements of 

relative weight gain over a 5-day period collected from 51 15-30 days old chicks with known 

hatching dates (certainty of <7 days) and for which the weight was measured by the same 

sampler on both occasions (a total of 15 different samplers collected the data). This analysis 

was restricted to chicks between 15-30 days old, since growth is linear during this period 

(Beard et al., 2023). To model seasonal changes in relative weight gain, we modelled it in a 

GAMM against a cyclic cubic regression spline of Julian date, while considering differences 

between individuals, island, year, and sampler as random intercepts (Table 4). 

We also modelled the seasonality of the chick BCI based on biometric measurements and 

weight recorded during monitoring. To calculate chick body condition, we used a similar 

approach as in measuring adult body condition. However, in this case, the first principal 

component (representing body size) explained 78.4% of the variance, and all individual 

loadings of the body size variables were positively correlated with the first principal 

component (wing: 0.47, culmen: 0.49, bill height; 0.46, head-bill: 0.48 and tarsus: 0.31). 

Then, using a subset of the data of chicks that were known to have successfully fledged (475 

samples from 68 individuals), we used a GAM with the response variable weight and a tensor 

interaction between the first principal component from the PCA (representing body size) and 

age, to predict the median weight per body size and age for the complete dataset (936 

measures of body morphology from 172 chicks collected by 34 samplers). Finally, we used 



  

111 

 

the residuals of this model as the body condition index (BCI), with positive values 

representing birds with larger weights for their age and body size, and negative values 

representing the contrary. To measure whether there are seasonal trends in chick body 

condition, we then ran a GAMM of the BCI in relation to a cyclic cubic regression spline of 

Julian date with random intercepts for individual ID, sampler ID, island, and year (Table 4). 

Age was not included in this model since its effects were considered while calculating the 

BCI. 

Assessing the relative ecological importance of density dependence and environment 

conditions as drivers of seasonal patterns in tropicbird foraging ecology 

To determine whether resource availability and environmental conditions are related to 

seasonal patterns in foraging behavior, we first tested for seasonal trends in top-down 

(tropicbird nest occupancy) and bottom-up (environmental conditions) variables that may 

affect tropicbird phenology and foraging behavior. Then, using only those variables which 

showed seasonality, we tested their relative importance to predict seasonal trends in foraging 

behavior and fitness metrics.  

Seasonality of environmental variables 

 

To determine whether environmental conditions are driving seasonal patterns of tropicbird 

foraging ecology and nest occupancy, we extracted a series of environmental variables that 

were expected to affect resource availability, foraging efficiency (through visual impairment 

and/or increased flight costs) and breeding success (Table 1). To be comparable between 

months, variables hypothesized to affect resource availability and foraging efficiency were 

extracted within the smallest monthly foraging home range kernel based on at least 10 
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foraging trips per island and breeding phase, as this was assumed to represent the minimum 

foraging area (figures representing the selection of the minimum foraging areas for each 

colony and breeding phase can be found in A3). Variables hypothesized to affect breeding 

success were extracted at colony locations. To determine how environmental conditions 

varied seasonally, we used GAMMs to model each of the variables extracted within the 

minimum foraging range and at colony locations against a cyclic cubic regression spline of 

Julian date while controlling for differences between breeding phases, years, and islands as 

random intercept effects (Table 5). 

Assessing the relative ecological importance of top-down and bottom-up drivers 

 

To relate environmental conditions to tropicbird foraging behavior and fitness, we considered 

the timeframe in which different variables were expected to affect each biological outcome 

separately. For environmental variables that were considered to affect foraging patterns in-

situ by causing reduced visibility and increased flight costs, we related the trip metric to the 

mean of the environmental variables within the minimum foraging area (described above) 

for the duration of each trip. Since we identified strong positive collinearity (>0.7) between 

trip metrics (cumulative distance travelled, duration of the trip, maximum distance from the 

colony and home range area), we used cumulative distance travelled to represent the suite of 

collinear trip metrics. Therefore, models were limited to response variables cumulative 

distance travelled, sinuosity and the proportion of time foraging during the day, twilight and 

night.  
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For environmental variables that were either considered to affect foraging patterns by indirect 

trophic links (primary productivity) or to have cumulative effects on tropicbird breeding 

success and body condition, we used the R package ClimWin (Bailey & De Pol, 2016) to 

search for critical windows, i.e. the time period of the environmental variable that best 

predicts biological outcomes, such as foraging metrics (primary productivity only), blood 

stable isotopes, adult body condition, chick body condition, hatching success,  and fledging 

success (A4).  

We then investigated whether seasonal patterns in trip metrics, proportion of time foraging, 

adult and chick body condition, and breeding success could directly (without Julian date) be 

explained by variables measuring intra-specific competition (nest occupancy), and/or 

environmental variables that may affect tropicbird foraging through flight costs (wind speed 

and air density), visibility ( cloud cover, wave and swell height), and prey availability 

(primary productivity), and/or offspring survival (temperature and precipitation at the colony 

site). Here we limited our analysis to variables that were found to have a significant seasonal 

pattern (significant effect of Julian date) and for which we had sufficient sample sizes (diet 

from regurgitates were not analyzed here for this reason). Given the limited time range of the 

dataset, Secchi-disk depth was not included in this analysis. Since strong collinearity (>0.7) 

occurred between some environmental variables both in situ and during the significant 

windows, we performed a PCA to objectively transform the multicollinear environmental 

variables into a reduced set of new uncorrelated features. For each biological outcome, we 

ran the PCA over the specific set of environmental conditions in situ or within the significant 

windows (Table 7). We retained a subset of the PCs, by selecting the PCs where variance 

(expressed by the unscaled eigenvalue) was greater than 1 (latent root criterion) and 
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interpreted each PC based on their eigenvector loadings using a cut-off value of ±0.4 

(Budaev, 2010). Then, we modelled the trip metrics, the proportion of time foraging trip 

during the day, night or twilight period, blood stable isotopes, adult and chick body condition, 

and breeding success against the environmental components, along with nest occupancy, 

random intercepts for individual IDs, breeding phase, island, and year when applicable.  

Then, we used the ‘dredge’ function from the package MuMIn (Burnham & Anderson, 2002), 

to generate models containing all combinations (subsets) of the fixed effects, and selected 

the best model based on the lowest Akaike Information Criterion (AIC, A6). 

Table 1. Source, resolution (spatial & temporal), aggregating metric and time window of 

environmental variables. 

Type Variable Units Metric Temporal 

Res. 

Spatial 

Res. 

Years 

available 

Source 

Foraging 

costs: 

visibility 

Secchi disk 

depth 
m 

mean 
monthly 0.25 

2017-2018 
Pitarch et al., 2021 

Cloud 

Cover 

Prop 

0-1 

mean 
hourly 0.25 

2017-2022 Copernicus-ERA5 

Reanalysis  

Wave & 

swell 
m 

mean 
hourly 0.50 

2017-2022 Copernicus-ERA5 

Reanalysis  

Foraging 

costs: 

flight 

Wind Speed m s-1 
mean 

hourly 0.25 
2017-2022 Copernicus-ERA5 

Reanalysis  

Air density 
kg m-

3 

mean 
hourly 0.50 

2017-2022 Copernicus-ERA5 

Reanalysis  

Resource 

availability 

Primary 

productivity 

mg m-

2 day-

1 

mean 

daily 0.08 

2017-2020 Copernicus-Global Ocean 

low and mid trophic levels 

biomass content hindcast 

Breeding 

success 

Temperature Kelvin 
mean 

hourly  0.25 
2017-2022 Copernicus-ERA5 

Reanalysis  

Precipitation 
m 

day-1 

sum 
daily 0.25 

2017-2022 Copernicus-ERA5 

Reanalysis  

 

All GAMMs were run with the function “gam” of the “mgcv” package of R, and gamma, 

gaussian and binomial link functions were assigned based on each model’s residual 

distribution. All PCA’s were run with the functions “prcomp” function from the “stats” 

package of the R Core Team (2020).  
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RESULTS 

Seasonal patterns in nest occupancy, foraging patterns and diet. 

Nest occupancy 

We found seasonal differences in the number of nests occupied at the colony, with a peak in 

laying in November, hatching in December and fledging in April (Figure 2, Table 2, 6) 

Table 2: Models of seasonal patterns in tropicbird nest occupancy based on the proportion 

of eggs laid, hatched and chicks fledged per month, island, and year. P-values of non-linear 

relationships (effective degree of freedom, edf) and of parametric coefficients in parentheses. 

Significant values are in bold.  

 

 

Figure 2. The proportion of Red-billed Tropicbird nests with eggs laid, hatched, and chicks 

fledged per month, with each point representing these proportions per island and year. For 

each island and year, months were only included when at least 5 days of fieldwork took place 

per month.  

 

 

 

 

 

 

Response Intercept 
Non-Linear Random effects Deviance 

Explained (%) month year island 

Proportion Lay 0.12 (<0.01) 4.64 (<0.01) 4.52 (<0.01) 0.00 (0.80) 45.6 

Proportion Hatch -0.13 (<0.01) 4.23 (<0.01) 4.63 (<0.01) 0.00 (0.75) 45.9 

Proportion Fledge 0.26 (0.06) 2.90 (0.20) 4.94 (<0.01) 0.06 (0.58) 57.7 

• Hatch 
• Fledge 
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Foraging patterns 

 

From the 907 foraging trips recovered, 673 were complete (185 from incubating and 488 

from chick rearing periods). Trip durations varied from less than one hour to over 9 days 

(mean 30.12±sd 41.93 hours), with tropicbirds travelling up to 803 km from their colonies 

(mean 66.67±sd 88.85 km). Both incubating and chick-rearing tropicbirds undertook a mix 

of day (<12h, with nights spent at the colony), and overnight foraging trips (>12h), although 

the latter was more common in incubating birds (overnight chick-rearing: 55%, incubation 

77%).  

There were significant seasonal trends in foraging patterns, with individuals taking more 

distant, longer, and less sinuous foraging trips and using larger core foraging areas during the 

dry season (December-June) and closer, shorter, and more sinuous trips in the wet season 

(July-November, Figure 3, Table 3, 6). This pattern is reiterated in the consistent seasonal 

expansion and contraction of population home ranges (Figure 4, split by breeding stage and 

colony in Appendix S3).  

We found seasonal differences in the spatial overlap between foraging areas, but only 

between subsequent trips from the same individual, while the overlap between individuals 

did not vary significantly (Figure 3, Table 3, 6). In subsequent trips from the same 

individuals, there were higher levels of individual overlap in the dry season, particularly from 

Jan-March, and lower overlap in the wet season, with lowest overlap from June-September, 

although there were fewer trips at this time. The amount of overlap was also higher when 

trips were undertaken during the same time of year (with a smaller absolute difference 

between Julian dates). This was true for both subsequent trips from the same individual and 
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for trips from different individuals (although the overlap was higher for the prior). Finally, 

this effect was also stronger when both trips took place within the same year.  

Tropicbirds spent the highest proportion of time foraging during twilight, followed by day 

and finally night. The proportion of time foraging during each of these periods changed 

seasonally. The highest proportion of time foraging during the night and at twilight occurred 

in May in contrast to lower values in September and August, respectively (Figure 5, Table 

3,6). This decrease in the proportion of time spent foraging in the wet season is particularly 

steep during twilight, going from ~0.73 to 0.57 between the month of May and September. 

During the day, tropicbirds spent the lowest proportion of time foraging in wet season, when 

the duration of both daylight and twilight are longest. 

Diet 

 

From the 73 spontaneous regurgitate samples, we obtained 134 individual prey items. We 

found only one prey item belonging to the crustacean taxon and thus it was excluded from 

analysis. In 70 of these samples, we were able to identify at least one prey item to at least the 

family or ecological prey group level, with a total of 132 prey items identified. The 

identifiable prey within regurgitates were mainly planktivorous fish of the family 

exocoetidae (61%), followed by various families of small carnivorous fish (9% carangidae, 

5% tetraodontidae, 5% belonidae, <1% sparidae) and squid (3% ommastrephidae, and 16% 

unidentified squid). Of the 132 prey items identified, we were able to extract muscle for 

isotope analysis from 110 items (74 from planktivorous fish, 25 from carnivorous fish and 

11 from cephalopods). We found significant differences in the δ15N and δ13C stable isotopes 

of the 3 ecological groups (F=25.81, p<0.01 and F=4.93, p<0.01, respectively). A Tukey’s 
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HSD Test for multiple comparisons found that δ15N values were significantly higher for 

cephalopods (vs planktivorous fish 2.40, p<0.01, vs carnivorous fish 1.79, p<0.01), followed 

by carnivorous fish (vs planktivorous fish 0.60, p=0.03). On the other hand, δ13C values only 

differed significantly for carnivorous fish, which had lower values compared to cephalopods 

(-0.54, p=0.03) and planktivorous fish (-0.38, p=0.01) while values were similar between 

cephalopods and planktivorous fish (p=0.69).  

When modelling seasonal trends in ecological group frequency in the regurgitates, we found 

that planktivorous fish were caught with a significantly higher frequency in the wet season, 

while cephalopods showed a peak at the end of the dry season (although only near-

significantly; Figure 6, Table 3, 6).  

Moreover, we found that tropicbirds had similar seasonal trends in their blood isotope values: 

with higher δ15N and lower δ13C values in their blood during the months of May-July 

(Figure 7, Table 3).
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Table 3. Description of the structure of the models of seasonal patterns in tropicbird foraging behavior and their main results. Effective 

degree of freedom (edf) of non-linear relationships and parametric coefficients of linear parameters. P-values in parentheses. Significant 

values are in bold. Abbreviations: DA=day, TW=twilight, NI=night, SY=Same Year, SI=Same individual, Δ days=absolute difference 

in days  
Seasonal 

effects 

Link 

function 

Response Non-Linear Parametric Coefficients Random effects Deviance 

Explained 

(%) 

Julian date Δ days intercept SI SY Δ days 
time of 

day (DA) 
ring 

Breeding 

Phase 
island year  

Trip 

Metrics 

gamma(log) maximum 

distance 
2.64 (<0.01) - 4.22 (<0.01) - - - - 65.07 (<0.01) 0.98 (<0.01) 1.81 (<0.01) 0.10 (0.42) 32.4 

gamma(log) distance 
travelled 

2.63 (<0.01) - 5.58 (<0.01) - - - - 22.33 (0.37) 0.98 (<0.01) 1.76 (0.00) 1.21 (0.13) 19.7 

gamma(log) trip 
duration 

2.12 (0.01) - 3.55 (<0.01) - - - - 0.01 (0.89) 0.98 (<0.01) 1.67 (<0.01) 2.07 (0.02) 12.9 

gamma(log) 95% KDE 
area  

3.00 (<0.01) - 8.57 (<0.01) - - - - 116.85 (<0.01) 0.98 (<0.01) 1.84 (<0.01) 0.11 (0.41) 50.3 

gaussian 

(identity) 

sinuosity 
2.71 (<0.01) - 7.48 (<0.01) - - - - 54.75 (<0.01) 0.89 (<0.01) 0.00 (0.61) 2.45 (<0.01) 24.4 

binomial 

(logit) 

Day trip 

(0/1) 
0.00 (0.44) - 0.77 (0.15) - - - - 26.32 (0.05) 0.97 (<0.01) 0.00 (0.90) 1.17 (0.15) 9.24 

Area used  gamma(log) kernel 
overlap 

diff ind 0.00 (0.12), 

same ind 2.39 (<0.01) 
- -1.89 (<0.01) 

same 

0.57 

(<0.01) 

same 0.20 

(<0.01) 

-0.00 

(0.02) 
- 

Ring 1 210.31 

(<0.01), Ring 2 

159.41 (<0.01) 

0.94 (<0.0.1) 1.98 (<0.01) - 23.3 

gamma(log) kernel 
overlap - 

5.26 

(<0.01

) 

-1.86 (<0.01) 
0.52 

(<0.01) 

same 0.04 

(<0.01) 
- - 

Ring 1 300.48 

(<0.01), Ring 2 

292.01 (<0.01) 

0.99 (0.23) 1.99 (<0.01) - 14.4 

Prop. 

Foraging 

binomial 

(logit) 

foraging / 

rest (1/0) 
DA 4.85 (<0.01), NI 

2.41 (0.01), TW 6.98 

(<0.01) 

- 0.50 (<0.01) - - - 

TW 0.19 

(<0.01), NI 

-0.22 

(<0.01) 

292.74 (<0.01) 0.00 (0.44) 1.48 (0.01) 3.94 (<0.01) 57.2 

Diet binomial 

(logit)  

Frequency 

carnivorou
s 

0.00 (0.80) - -1.24 (<0.01) - - - - - 0.97 (0.19) 0.12 (0.29) 0.00 (0.41) 3.8 

binomial 

(logit)  

Frequency 

planktivor
ous 

2.55 (<0.01) - 0.41 (0.71) - - - - - 0.26 (0.30) 0.00 (0.43) 0.82 (0.01) 15.8 

binomial 

(logit)  

Frequency 

cephalopo

ds 

2.09 (0.13) - -2.43 (0.02) - - - - - 0.00 (0.74) 0.77 (0.04) 0.00 (0.67) 28.5 

gaussian 

(identity)  

 δ15N 
3.75 (<0.01) - 12.34 (<0.01) - - - - - 0.04 (0.29) 0.61 (0.11) 1.93 (<0.01) 68.0 

gaussian 

(identity)  

 δ13C 
3.27 (<0.01) - -17.81 (<0.01) - - - - - 0.33 (0.21) 0.00 (0.80) 1.89 (<0.01) 56.9 
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Figure 3. Significant seasonal patterns in tropicbird foraging trip metrics and their spatial overlap.  Mean estimated smoothing function 

(solid line) with upper and lower confidence intervals at two standard errors above and below the mean (shaded area) from generalized 

additive mixed models of the metrics and spatial overlap in relation to Julian date while taking into the account the effects of individual 

year, island, and breeding phase as random effects (See table 3). We also present the raw data points in the case of sinuosity and the 

residuals in other metrics.  
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Figure 4. Monthly home range kernels (95% KDE) of breeding Red-billed Tropicbirds from Boavista, Cima islet and Sal. Sample sizes 

represent the number of trips used to produce each kernel. 
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Figure 5. Seasonality of the duration of the day, twilight, and night in Cabo Verde (top) and 

the proportion of time foraging (bottom) extracted from a generalized additive mixed model of 

the proportion of time foraging during day, twilight, and night in relation to Julian date while 

taking into the account the effects of individual, year, island, and breeding phase as random 

effects (See table 3). The mean estimated smoothing function is shown in solid line with upper 

and lower confidence intervals at two standard errors above and below the mean (shaded area). 

We also present the raw data points of the proportion of time foraging per day coloured by day, 

twilight, and night.  



123 

 

123 

 

 

Figure 6. Seasonality in the occurrence (1-presence, 0-absence) of cephalopods, planktivorous 

fish and carnivorous fish in Red-billed Tropicbird regurgitates. The mean estimated smoothing 

functions are shown in solid line with upper and lower confidence intervals at two standard 

errors above and below the mean (shaded area) extracted from generalized additive mixed 

models in Table 3. Points represent the presence or absence of each ecogroup in the regurgitate 

samples.  Stars indicate significant relationships.  

 

 

Figure 7. Seasonal variation in the nitrogen and carbon stable isotope values of Red-billed 

Tropicbird whole blood and mean and standard deviation of stable isotope values extracted 

from prey muscle tissue separated by ecological prey group (carnivorous fish n=25, 

cephalopods n=11, and planktivorous fish n=74). Dates represent when blood sampled were 

collected and therefore stable isotope values represent the values accumulated over the 

previous month. The mean estimated smoothing functions are shown in solid line with upper 

and lower confidence intervals at two standard errors above and below the mean (shaded area) 

extracted from generalized additive mixed models (Table 3). We also present the raw isotope 

values of tropicbird whole blood as points.  
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Seasonal patterns in efficiency and fitness  

 

Foraging efficiency  

We found no significant seasonal pattern in the relative proportion of weight gained per 

foraging trip, per km travelled or per hour at sea (Table 4, 6).  

Adult condition 

We found significant seasonal trends in adult body condition, with a peak in body condition in 

July (Figure 8, Table 4, 6). 

Chick growth and body condition 

We found no seasonal trends in tropicbird chick relative weight gain over a 5-day period for 

chicks between 15 and 30 days old (Table 4). However, we found seasonal trends in the chick 

body condition index (BCI), suggesting chicks had poorer body condition during the wet 

season, with the lowest BCI in October and highest in April (Figure 8, Table 4, 6).  

Breeding Success 

Seasonality in breeding success was only considered for Cima islet because predation of chicks 

by invasive predators Boavista and Sal caused particularly low fledgling survival (Sal 61%, 

n=284; Boavista 60%, n=202,4; compared to ICima 74%, n=184) and breeding success (Sal 

38%, n=460; Boavista 42%, n=291; ICima 52%, n=261), obscuring any possible seasonal 

trends. In Cima islet, we found seasonal trends in fledging and overall breeding success of 

tropicbirds, with a drop in both for nests that hatched in September and October and a peak for 

nests that hatched or were projected to hatch in April-May (Figure 9, Table 4, 6). 
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Table 4. Models of seasonal patterns in measures of tropicbird fitness and performance Effective degree of freedom (edf) of non-linear 

relationships and parametric coefficients of linear parameters. P-values in parentheses. Significant values are in bold.  

Seasonal 

effects 

Link 

function 
Response 

Linear 
Non-

Linear 
Random effects 

Deviance 

Explained 

(%) 

Intercept 
after GPS 

trip (1/0) 

GPS/no 

GPS 

age Julian 

date 
individual partners island year 

breeding 

phase 
sex sampler 

 

Foraging 

efficiency 

gaussian 

(identity)  

relative 

weight gain  

0.10 

(<0.01) 
 -  - 

- 0.00 

(0.60) 
 -  - 

1.60 

(0.03) 

0.00 

(0.70) 
 - 

0.00 

(0.47) 
 - 

10.8 

gaussian 

(identity)  

relative gain 

per hour at sea 

0.00 

(<0.01) 
 -  - 

- 0.00 

(0.99) 
- - 

0.47 

(0.25) 

0.00 

(0.83) 
 - 

0.38 

(0.24) 
- 

3.22 

gaussian 

(identity)  

relative gain 

per km 

0.00 

(<0.01) 
 -  - 

- 0.00 

(0.96) 
 - -  

1.46 

(0.12) 

1.27 

(0.20) 
 - 

0.45 

(0.17) 
- 

12.3 

Adult 

condition 

gaussian 

(identity)  
BCI 

 -8.18 

(0.50) 

after          

-11.31 

(0.10) 

 - 

- 
1.18 

(0.03) 
- - 

0.90 

(<0.01) 

1.79 

(0.23) 
0.00 (0.58) 

0.62 

(0.11) 

0.01 

(0.46) 

7.49 

Chick 

condition 

gaussian 

(identity)  

relative 

weight gain  

0.50 

(<0.01) 
 - - 

-0.01 

(<0.01) 

0.00 

(0.73) 
0.00 (0.68) - 

1.78 

(0.27) 

0.00 

(0.66) 
 - -  

0.00 

(0.56) 

11.5 

gaussian 

(identity)  
BCI 

0.07 

(0.99) 
 -  - 

- 6.66 

(<0.01) 

86.62 

(<0.01) 
 - 

0.28 

(0.22) 

0.01 

(0.47) 
-   - 

2.63 

(0.17)  

44.6 

Breeding 

success  

binomial 

(logit)  

hatching 

success 

1.27 

(<0.01) 
- 

0.39 

(0.19) 

- 1.62 

(0.10) 
- 

37.97 

(0.02) 
- 

0.00 

(0.89) 
- -  - 

22.0 

binomial 

(logit)  

fledging 

success  

1.18 

(<0.01) 
- 

0.45 

(0.19) 

- 1.71 

(0.05)  
- 

6.99 

(0.30) 
- 

0.00 

(0.72) 
-  - - 

9.4 

binomial 

(logit)  

breeding 

success  

0.28 

(0.23) 
- 

0.57 

(0.04) 

- 2.19 

(<0.01) 
- 

31.69 

(0.04) 
- 

0.51 

(0.30) 
-  - - 

21.0 
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Figure 8. Seasonal trends in tropicbird adult and chick body condition. Mean estimated 

smoothing function is shown in solid line with upper and lower confidence intervals at two 

standard errors above and below the mean (shaded area) extracted from a general additive 

mixed models described in Table 4. We also present the raw data points of the adult and chick 

body condition index by Julian date. The relationships were significant (p<0.05).
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Figure 9. Seasonal differences in hatching, fledging, and breeding success of Red-billed Tropicbirds breeding on Cima islet. For consistency, 

Julian dates represent the hatching or expected hatching date of the nests in all plots. Mean estimated smoothing function is shown in solid line 

with upper and lower confidence intervals at two standard errors above and below the mean (shaded) extracted from a general additive mixed 

models described in Table 4. Points represent the raw data used in these models. Stars indicate significant trends (p<0.05). 
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Seasonal patterns in environmental conditions  

Within the minimum foraging ranges of tropicbirds, wind speed, air density and wave height 

are highest during the dry season and reach their lowest values between August and October, 

while secchi disk depth is greater in the wet season, peaking in September-October (Figure 10, 

Table 5, 6). Cloud cover is more variable throughout the year, with a peak in both the dry and 

wet season, in January and August, respectively (Figure 10, Table 5, 6). At the colony sites, 

both precipitation and temperature peak during the wet season, between September and 

October (Figure 10, Table 5, 6). 

Although tropicbirds from other localities are affected by inter-annual El Niño events (Castillo-

Guerrero et al., 2011), within the time frame of our study, only one of such events occurred (in 

2018) and it was considerably weak. As such, an initial analysis found that although there was 

some variability in environmental conditions between years and colonies, there were similar 

trends in the seasonal variability of environmental conditions, with peaks and dips at the similar 

times of year (A5). 
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Figure 10. Seasonal variability in environmental variables in the minimum tropicbird foraging range (green) and at the breeding colonies (pink) 

during the study period. Lines and intervals represent the smoothed relationship and standard error extracted from Generalized additive mixed 

models (GAMMs) with a Gaussian distribution between the environmental variable and Julian date. Models include random effects for year, island 

and, in the case of the environmental variables, whether they were extracted from within the chick-rearing or incubation foraging range (Table 5).  
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Table 5. Models of seasonal patterns of environmental conditions. P-values of non-linear 

relationships (smoothed terms) and of parametric coefficients in parentheses.  All models have 

a Gaussian distribution.  

Driver Type Response 

Parametric 

coefficients 
Non-linear Random Effects 

Deviance 

Explained 

(%) 

Intercept Julian date 
breeding 

phase 
island year 

Environmental 

conditions 

visibility 

Secchi disk 

depth  
18.96 (<0.01) 4.62 (<0.01) 0.00 (0.84) 1.96 (<0.01) 0.99 (<0.01) 

71.5 

Cloud cover  0.46 (<0.01) 4.00 (<0.01)  0.91 (<0.01) 1.99 (<0.01) 4.96 (<0.01) 4.3 

Wave height  1.80 (<0.01) 8.00 (<0.01) 1.00 (<0.01) 2.00 (<0.01) 5.00 (<0.01) 36.0 

flight costs 
Wind seed  6.89 (<0.01) 7.99 (<0.01) 1.00 (<0.01) 2.00 (<0.01) 4.99 (<0.01) 32.9 

Air density  1.18 (<0.01) 8.00 (<0.01) 1.00 (<0.01) 2.00 (<0.01) 5.00 (<0.01) 85.4 

resource 

availability 

Primary 

productivity  
14.03 (<0.01) 7.98 (<0.01) 1.00 (<0.01) 2.00 (<0.01) 18.98 (<0.01) 

50.1 

brood 

survival  

Mean 

temperature 
296.53 (<0.01) 9.00 (<0.01) - 2.00 (<0.01) 5.00 (<0.01) 

89.4 

Mean 

precipitation  
0.25 (<0.01) 7.99 (<0.01) - 1.97 (<0.01) 4.97 (<0.01) 

4.9 

 

Table 6. Summary of seasonal patterns in tropicbird nest occupancy, foraging efficiency, diet, 

fitness, and environmental conditions.  

Variables  
Dry Season 

(Dec-Jun) 

Wet Season 

(Jul-Nov)  
Nest occupancy  

Occupancy Nest occupancy high low  

Foraging patterns  

Trip characteristics  

Maximum distance high low  

Distance travelled high low  

Trip duration high low  

Home range area (95%KDE) high low  

Sinuosity low high  

Day/overnight trip - -  

Foraging area 
Overlap same individual high low  

Overlap different individual - -  

Activity patterns 

Prop foraging day mid mid  

Prop foraging twilight high low  

Prop foraging night high low  

Diet        

Regurgitates 

Frequency carnivorous fish - -  

Frequency planktivorous fish low high  

Frequency cephalopods high low  

Whole blood 
 δ15N high low  

 δ13C low high  

Fitness         

Adult body condition Adult BCI low high  

Foraging efficiency 

relative weight gain - -  

relative weight gain per hour at sea - -  

relative weight gain per km - -  

Chick body condition 
relative weight gain - -  

 chick BCI high low  
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Top-down and bottom-up drivers of tropicbird foraging and fitness 

 

Foraging patterns: 

We found no critical window of primary productivity within half a year of the foraging trips 

that predicted any metric better than a randomized model (p>0.05). Therefore, we concluded 

that primary productivity did not influence tropicbird foraging metrics and it was not included 

in this series of models.  

Principal Component Analysis (PCA) of environmental variables that may affect trip metrics, 

revealed the importance of the first two PCs (eigenvalue PC1: 1.71, PC2: 1.12), which jointly 

explained 70% of dataset variability (49 and 21%, respectively). PC1 positively related with 

air density (0.53), wind speed (0.47), and wave height (0.45), and negatively with temperature 

(-0.53), indicating harsh conditions. PC2 was positively associated with cloud cover (0.71) and 

rain (0.69), representing cloudy and rainy conditions. 

The best GAMM for predicting distance travelled explained 30.4% of the deviance and 

included a significant non-linear relationship with PC2 (rainfall; effective degrees of freedom 

(edf): 5.97, p<0.01) and with the proportion of nests occupied (edf: 4.66, p=0.01). Distance 

traveled generally increased with cloudy and rainy conditions and initially with nest occupancy, 

stabilizing once 7.5% of total nests per year and island were occupied during a specific month. 

(Fig. 11, model selection A6). 

The best GAMM for predicting trip sinuosity explained 21.7% of the deviance and only 

included a non-significant effect with PC2 (rainfall; edf: 1.00, p=0.11), suggesting that the 

seasonal patterns observed in sinuosity cannot be explained by the environmental and 

biological factors measured (A6).  

Breeding success 

hatching success - -  

fledging success  high low  

breeding success  high low  

Environment        

Visibility 

Visibility (Secchi disk depth) low high  

Cloud cover  mid mid  

Wave height  high low  

Flight costs 

Wind speed  high low  

Air density  high low  

Resource availability Primary productivity  high low  

Brood Survival 

Mean temperature at colony low high  

Sum precipitation at colony low high  
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Figure 11.  Significant non-linear relationships from the best supported Generalized Additive 

Mixed models with Gamma distributions of the top-down (nest occupancy) and bottom-up 

(environmental conditions grouped using Principal Components Analyses) drivers of the 

distance travelled by a tropicbird during a foraging trip.  The distance travelled was related 

with PC2, representing cloudy and rainy conditions, and the proportion of nests occupied. 

Shown are the mean estimated smoothing functions (solid line) with upper and lower 

confidence intervals at two standard errors above and below the mean (shaded). Points 

represent model residuals. Models include random effects for individual ID, breeding stage, 

year, and island. 

 

When determining the top-down and bottom-up drivers of the proportion of time spent 

foraging, we found that critical windows of primary productivity significantly predicted the 

proportion of time spent foraging during twilight better than randomized models (window: 1-

11 weeks, p<0.01, n=1626), near-significantly during the day (window: 11-4 weeks prior, 

p=0.08, n=1294), and non-significantly during the night (window: 22-4 weeks, p=0.14, 

n=1144). In all cases, the maximum statistic and linear function best explained the 

relationships. Therefore, for twilight and day, we extracted the values of maximum primary 

productivity during the critical windows to be analysed alongside the other top-down and 

bottom-up drivers expected to affect the proportion of time foraging in-situ. 

The PCA of the environmental variables related to the proportion of time foraging during 

twilight and day, revealed the importance of the first three PC’s (eigenvalue PC1: 1.70, PC2: 

1.11, PC3: 1.01), collectively explaining 73% of the dataset variability (41, 18 and 15%, 

respectively). PC1 related positively with air density (0.54), wind speed (0.47), and wave 

height (0.45), and negatively with temperature (-0.53), representing harsh conditions. PC2 
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related positively with the critical window of productivity (0.63) and negatively with cloud 

cover (-0.69), representing high productivity and sunny conditions. PC3 related positively with 

precipitation (0.88) and cloud cover (0.43), representing rainfall.  

The best GAMM for predicting the proportion of time spent foraging during twilight explained 

17.6% of the deviance and included a significant relationship with PC1 (harsh conditions; edf: 

2.64, p=0.05), PC2 (productive and sunny; edf: 1.00, p=0.04), and a non-significant 

relationship with PC3 (rainy; 1.00, p=0.12). The proportion of time spent foraging during 

twilight was lowest in mild and extremely harsh conditions, generally increased when 

productive and sunny during the critical window of 1-11 weeks prior and decreased with 

rainfall (Figure 12). The best GAMM for predicting the proportion of time spent foraging 

during day explained 14.4% of the deviance and included a significant relationship with PC2 

(productive and sunny; edf: 2.65, p=0.05), with individuals spending more time foraging during 

in either low or very high productivity and sunniness during the critical window of 4-22 weeks 

prior (Figure 12, A6).  
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Figure 12. Significant non-linear relationships from the best supported Generalized Additive 

Mixed models with Gamma distributions of the top-down (nest occupancy) and bottom-up 

(environmental conditions grouped using Principal Components Analyses) drivers of the 

proportion of time foraging during twilight (cyan) and day (yellow).  The proportion of time 

spent foraging during twilight was related with PC1, representing harsh conditions, and PC2 

representing productive and sunny conditions, while proportion of time spent foraging during 

the day was only related with PC2.  Shown are the mean estimated smoothing functions (solid 

line) with upper and lower confidence intervals at two standard errors above and below the 

mean (shaded). Points represent residuals. Models include random effects for individual ID, 

breeding stage, year, and island. 
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Diet 

When determining the top-down and bottom-up drivers of stable isotope levels in tropicbird 

blood, our analysis was restricted to 80 blood samples from distinct individuals, for which 

environmental data was available within one month prior to the blood sampling (isotopes 

integration rate; Hobson & Clark 1993). The PCA of the environmental variables during these 

months, revealed the importance of the first two PC’s (eigenvalue PC1: 2.12, PC2:1.21), 

collectively explaining 85% of the variability in the dataset (64 and 21%, respectively). PC1 

related positively with wind speed (0.45), wave height (0.45), and air density (0.43), and 

negatively with temperature (-0.42), representing harsh conditions. PC2 related positively with 

primary productivity (0.63), and negatively with cloud cover (-0.59), representing productive 

and sunny conditions.  

The best GAMM for predicting δ15N explained 71.8 % of the deviance and included a 

significant relationship with PC1 (edf=1.00, p<0.01), and PC2 (edf=3.19, p<0.01), but not with 

the proportion of nests occupied. We found that δ15N levels generally decreased in harsh 

conditions and increased in more productive and sunny conditions (Figure 13) 

The best GAMM for predicting δ13C explained 31.6 % of the deviance and included a 

significant relationship with PC1 (edf=1.00, p<0.01) and PC2 (edf=1.00, p<0.01), but not with 

the proportion of nests occupied. We found that δ13C levels increased in harsh conditions and 

decreased in more productive and sunny conditions (Figure 13).  



 

136 

 

136 

 

 

Figure 13. Significant non-linear relationships in the best General Additive Mixed models of 

the top-down (nest occupancy) and bottom-up (environmental conditions grouped using a 

Principal Components Analysis) predictors of incubating tropicbird blood isotope ratios of 

Nitrogen (top) and Carbon (bottom). In both cases, these relationships were with PC1, 

representing harsh conditions, and PC2 representing productive and sunny conditions. Shown 

are the mean estimated smoothing functions (solid line) with upper and lower confidence 

intervals at two standard errors above and below the mean (shaded). We also present the raw 

data points. Models include random effects for year and island. 

 

Adult body condition 

When determining the top-down and bottom-up drivers of adult body condition, we found that 

all environmental variables had critical windows that predicted body condition significantly 

better than randomized models (Table 8).  These windows were 18-8 weeks (cloud cover), 23-

14 week (wave and swell height), 26-13 weeks (wind speed), 19-9 weeks (air density) 18-13 

weeks (primary productivity), 20-14 weeks (temperature), and 22-0 weeks (precipitation) prior 

to the measurement of adult biometry (Table 7). 
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The PCA of the environmental variables related to adult body condition, revealed the 

importance of the first and second PCs (eigenvalues PC1: 1.83, PC2:1.25), collectively 

explaining explained 70% of the variability in the dataset (48 and 22%, respectively). PC1 

related positively with to air density (0.48), wind speed (0.45), wave height (0.45), and primary 

productivity (0.41) and negatively related to temperature (-0.40), representing harsh conditions. 

PC2 related positively with cloud cover (0.68) and negatively with temperature (-0.41), 

representing cloudy & cool weather. 

The best GAMM for predicting adult body condition included a significant relationship with 

PC1 (harsh conditions; edf 1.00, p<0.01), PC2 (cool and cloudy; edf 3.61, p<0.01), and with 

the proportion of nests occupied (edf 4.48, p=0.03; Table 9). We found that adult body 

condition generally increased in harsh conditions, and decreased in cool and cloudy weather 

and nest occupancy (Figure 14) 

Chick body condition  

When determining the top-down and bottom-up drivers of chick body condition, we found that 

all environmental variables had critical windows that predicted chick body condition 

significantly better than randomized models (Table 8). These windows were 73-23 days (cloud 

cover), 58-38 days (wave and swell height), 85-2 days (wind speed), 20-6 days (air density), 

23-2 weeks (primary productivity), 34-4 days (temperature), and 21-0 days (precipitation) prior 

to the measurement of chick biometry (Table 7). 

The PCA of the environmental variables related to chick body condition, revealed the 

importance of the first and second PCs (eigenvalues PC1: 2.03, PC2:1.02), collectively 

explaining 74% of the variability in the dataset (59 and 15%, respectively). PC1 related 

positively with wind speed (0.47), and air density (0.45), and negatively with temperature (-

0.46), and primary productivity (0.45), representing harsh conditions with low productivity.  

PC2 was positively related to rain (0.96) during its critical window, representing rainfall.  

The best GAMM for predicting chick body condition explained 44.4% of the deviance and 

included a significant relationship with PC1 (harsh conditions with low productivity; edf=2.46, 

p<0.01) and PC2 (rain; edf=4.41, p<0.01), but not with the proportion of nests occupied A6). 

We found that chick body condition generally increased in harsh conditions and decreased with 

rainfall (Figure 14). 
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Figure 14. Significant non-linear relationships from the best General Additive Mixed models 

of the top-down (density dependence) and bottom-up (environmental conditions grouped as 

Principal Components) drivers of adult (top) and chick (bottom) body conditions. For adult 

body condition, these relationships were with PC1, representing harsh conditions, PC2 

representing cool and cloudy conditions and the proportion of nests occupied. For chick body 

condition, these relationships were with PC1, representing harsh conditions, and PC2, 

representing rainfall. Shown are the mean estimated smoothing functions (solid line) with 

upper and lower confidence intervals at two standard errors above and below the mean 

(shaded). Points represent residuals. Models include random effects for individual ID, sampler, 

year, island, and breeding stage (adult only), and a categorical variable for whether the bird 

carried a GPS or not (adult only).  
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Table 7. ClimWin analysis of the effects of environmental conditions, showing the best temporal windows, statistics, and functions, for four 

biological outcomes: tropicbird adult body condition, chick body condition, hatching success, and fledging success. Sample sizes varied based on 

the temporal availability of the environmental datasets. Significant values marked in bold and highlighted in grey. 

Env. Variable  

Biological Outcome  

Adult body condition Chick body condition Hatching success Fledging success 

wind

ow 

p-

value stat func n 

wind

ow 

p-

value stat func n 

wind

ow 

p-

value stat func n 

windo

w 

p-

value stat func n 

Cloud cover  18-8 

weeks <0.01 mean cub 1317 

73-23 

days <0.01 min cub 936 

40-10 

days 0.11 min quad 243 

17-0 

days 0.02 mean quad 181 

Wave height  23-14 

weeks <0.01 min cub 1317 

58-38 

days <0.01 min cub 936 

18-4 

days 0.15 min cub 247 

68-5 

days 0.77 min cub 181 

Wind speed  26-13 

weeks 0.03 mean cub 1317 

85-2 

days <0.01 mean cub 936 

36-5 

days 0.32 min cub 247 

76-62 

days  0.08 max cub 181 

Air density  
19-9 

weeks <0.01 min quad 1317 

20-6 

days 0.05 max quad 936 

41-27 

days 0.04 max cub 243 

84-70 

days 0.05 max quad 181 

Primary 

productivity  
18-3 

weeks  <0.01 min lin 973 

23-2 

weeks <0.01 max lin 917 

22-9 

weeks <0.01 min quad 79 

24- 5 

weeks 0.21 max cub 50 

Temperature 20-14 

weeks <0.01 min quad 1315 

31-0 

days <0.01 max cub 936 

39-18 

days 0.01 min cub 247 

84-70 

days <0.01 min quad 181 

Precipitation  22-0 

weeks <0.01 mean cub 1119 

21-0 

days <0.01 mean cub 926 

34-4 

days <0.01 max lin 143 

65-51 

days  <0.01 mean cub 91 
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Breeding success 

 

When determining the top-down and bottom-up drivers of hatching and fledging success, we 

found that air density, precipitation, temperature, primary productivity (hatch only) and cloud 

cover (fledging only), had critical windows that predicted success better than randomized 

models (Table 7).  For hatching success, these windows were 41-27 days (air density), 22-9 

weeks (primary productivity), 39-18 days (temperature) and 34-4 days (precipitation) prior 

to either hatching or egg failure. For fledging success, these windows were 84-70 days (air 

density), 17-0 days (cloud cover), 84-70 days (temperature) and 65-51 days (precipitation) 

prior to either fledging or chick failure. 

Unfortunately, since primary productivity data was only available until 2020, while 

consistent monitoring data in Cima Islet only started in late 2019, we were unable to model 

nest occupancy and the environmental PC simultaneously as drivers for hatching and 

fledging success. Therefore, we modelled each variable separately. Moreover, due to a small 

sample size, modelling the partner ID as a random effect resulted in singularity in the model, 

therefore, we randomly selected one breeding event per tropicbird pair, resulting in a sample 

size of 69 nests for hatching success vs environmental variables, 122 for hatching success vs 

nest occupancy, 59 for fledging success vs environmental variables, and 119 for fledging vs 

occupancy. We modelled these along with a random effect for year. 

The PCA of the environmental variables related to hatching success revealed that only the 

first PC was of importance (eigenvalue: 1.76). This PC explained 78% of the variance and 

was positively related to temperature (0.55), precipitation (0.49), and negatively related with 

air density (-0.54), and primary productivity (-0.41), therefore we considered PC to represent 

rainy warm conditions with low productivity. 

We found that while there was no significant relationship with nest occupancy (edf=2.83, 

p=0.14), there was a significant relationship between hatching success and the PC 

representing rainy warm conditions with low productivity (edf: 1.00, p<0.01, Figure 15). 

Moreover, this model had a higher deviance explained (32.6%) than the nest occupancy 

model (6.5%). 
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For fledging success, only the first PC had an eigenvalue over 1 (1.70). This PC explained 

72% in the variance and was negatively related with rain (loading -0.42), temperature (-0.56), 

and cloud cover (-0.43) and positively related with air density (0.57), therefore we considered 

to PC to represent cold aridity (dry, cold, sunny days with high air density). 

We found that the probability of fledging success was lowest when the proportion of nests 

occupied was at in the mid-range (between 0.10 and 0.15; edf=4.06, p<0.01, n=119, Figure 

15). However, there was no significant relationship between the probability of fledging and 

the PC representing dry, cold sunny days with high air density (edf=3.50, p=0.16). The nest 

occupancy model with had a higher deviance explained (19.9%), then the environmental PC 

model (18.5%).  

 

Figure 15. Likelihood of tropicbird chicks successfully hatching (blue) and fledging (orange) 

in relation to PC1 (rainy, warm, low air density and low primary productivity) and the 

proportion of nests occupied with a hatching chick during the same month, respectively. 

Shown is the significant mean estimated smoothing function (solid line) with upper and lower 

confidence intervals at two standard errors above and below the mean (shaded) extracted 

from a generalized additive mixed models with the binomial response variables hatching and 

fledging success (0=failed, 1=success) and a smoothed relationship with the PC1 and the 

proportion of nests occupied, respectively. Both models include random effects for year and 

points represent model residuals. 
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DISCUSSION 

Although tropicbirds in Cabo Verde breed year-round, we found consistent seasonal patterns 

in nest occupancy, foraging patterns, diet, fitness components and local environmental 

conditions, which together represent changes in both intrinsic and extrinsic pressures that 

individuals face throughout the year. Peaks in nest occupancy coincided with trends in 

environmental conditions that resulted in two distinct periods: a dry season (December to 

June) characterised by low rainfall, and high windspeeds, air density, cloud cover and wave 

heights, and a wet season (July to November) characterised by high rainfall and good 

visibility (i.e. increased secchi depth).  As in other studies on tropicbirds, tropicbirds breed 

mainly in the colder dry season (Diop et al., 2018; Hernández-Vázquez et al., 2018). 

Moreover, as in other studies, there was an association between tropicbird breeding 

phenology and high primary productivity (Hernández-Vázquez et al., 2018), although, in this 

case, with a lag of 1-5 months which may represent the turnover period from primary 

productivity to tropicbird prey. Seasonal patterns in foraging, diet, adult and chick body 

condition, and breeding success also varied according to these two seasons and primary 

productivity. During the dry season, individuals foraged across a larger area, spent a larger 

proportion of time foraging during twilight and night and after a lagged peak in productivity, 

consumed more squid compared to patterns observed during the wet season. Breeding 

success was high during the dry season. During the wet season, fewer individuals breed, and 

those that did took more sinuous trips and foraged closer to the colonies, consuming more 

planktivorous fish. Although adult body condition was slightly better during the wet season, 

chick body condition was much higher during the dry season.  High nest occupancy coupled 

with increased breeding success suggests that general conditions in the dry season are 
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preferential, although seasonal differences do not appear to be enough to eliminate breeding 

in the wet season, during which some disadvantages (e.g. reduced breeding success and lower 

chick body condition) may be offset by advantages such as a reduction in intra and 

interspecific nest and foraging competition. We suggest that a combination of seasonal 

variability in environmental conditions and resource availability are the drivers of the 

observed patterns in tropicbird foraging behavior, diet, body condition, and breeding success. 

Specifically, we suggest that our observations are likely related to a combination of three 

processes relating to changes in prey availability, nest site suitability and weather conditions, 

and competition for nest sites. Tropicbird’s ability to adjust their behavior in response to 

these changes has implications for how these animals might respond to climate change. 

Changes in prey availability as a driver of seasonal changes 

 

In our study, both stable isotope analysis and tropicbird regurgitates indicated an increase in 

the consumption of cephalopods near the end of the dry season (April-May). This dietary 

shift to cephalopods also aligns with alterations in foraging behavior, with tropicbirds 

travelling further and increasing their foraging activity during twilight and night, implying 

that there are foraging on deeper water prey with diel vertical migrations such as squid 

(Arkhipkin et al., 2015). This shift can either be attributed to plasticity in tropicbird foraging 

behavior, enabling them to take advantage of a seasonally abundant of a food resources, or 

to the decline in availability of a preferred food types near the colony. 

Tropicbirds may forage on more cephalopods during this period because of a peak in the 

abundance of squid. Squid spawning is highly seasonal and related to peaks in primary 

productivity and increasing sea surface temperatures (Roberts, 2005), resulting seasonal 
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population spikes (Arkhipkin et al., 2015). Although there is little research available on 

seasonal variation in the abundance of squid in Cabo Verde, one common species, Todarodes 

sagittatus, spawns in early April in the Canary Current (Piatkowski et al., 1998) and is 

commonly consumed by seabirds in Cabo Verde, especially those foraging further from the 

coast, in more pelagic waters (N. Almeida et al., 2021). If spawning is spatiotemporally 

consistent between years, tropicbirds may travel further to exploit this predictable resource, 

in an otherwise unpredictable environment. This is also supported by our finding that 

tropicbirds have a higher foraging site fidelity during this period, which is often associated 

with foraging success and predictability of food resources (Carroll et al., 2018; Pettex et al., 

2010). Moreover, as deep-water species, squid generally store large energy reserves so they 

can fast for extended periods and maintain near neutral buoyancy over a wide range of depths 

and pressures (Visser & Jónasdóttir, 1999), which may make them a high-quality food source 

for seabirds, potentially outweighing the costs of the longer foraging trips needed to take 

advantage of this seasonally available prey. This increase in the abundance of a high-quality 

resource is also consistent with the peak in both breeding success and chick body condition 

at the end of the dry season.  

Alternatively, tropicbirds may have modified their foraging behavior and diet during this 

period because of local resource depletion caused by fluctuations in natural prey cycles 

(Thiaw et al., 2017) or competition (Ashmole, 1971). The larger travel distances and 

broadening of the tropicbird diet to include other prey like squid may indicate a local 

depletion of planktivorous fish around the colony sites. This aligns with the theory predicting 

that diets of generalist predators become more diverse in response to a decrease in the 

availability of preferred food types  (Perry & Pianka, 1997). For instance, during the 2007 El 
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Niño event, tropicbirds breeding on the Pacific coast of Mexico responded to the decreased 

productivity by increasing their consumption of secondary prey (Castillo-Guerrero et al., 

2011). However, in this study, the consumption of both squid and flying fish consumption 

decreased during the El Niño event, indicating that both may be preferred. Moreover, the 

effect of El Niño events on squid populations is variable (Alabia et al., 2016; Chen et al., 

2007; Pecl & Jackson, 2008), and this change in diet may be related to a decrease in the 

relative abundance of squid and flying fish during this event. Moreover, whether tropicbirds 

prefer planktivorous fish over squid, remains unknown. In the South Atlantic, Red-billed 

Tropicbirds mainly feed on squid, whereas in the North, their diet is mainly composed of 

planktivorous fish (Diop et al., 2018; Madden et al., 2022). Unfortunately, the restricted time 

frame of previous studies makes it impossible to determine whether these are seasonal 

changes in diet at these locations as well.  

Fluctuations in food availability may also stem from intensified intra and interspecific 

foraging competition near the colonies, forcing individuals to travel further for resources 

(Ashmole, 1971). Although this period doesn't coincide with peak nest occupancy, tropicbird 

chicks take nearly three months to fledge, so a high number of nests may still be occupied by 

energy-demanding chicks in the spring (Beard et al., 2023), potentially leading to heightened 

competition for foraging resources. However, in comparison to other colonies in which 

density-dependent resource depletion was observed (i.e. Oppel et al., 2015; Weber et al., 

2021), the population of Red-billed Tropicbirds in Cabo Verde is relatively small (between 

2,198 and 5,504 individuals; BirdLife International 2023 Species factsheet). This makes it 

unlikely that intraspecific competition alone can be the cause of a local depletion of prey 

(Gaston et al., 2007). Moreover, although the distance travelled initially increased with the 
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proportion of nests occupied, it stabilized rapidly, suggesting that intra-specific competition 

release would only occur at very low density, which is unlikely. Prey may also be reduced 

by inter-specific competition. Recent metabarcoding diet analyses of Cabo Verde seabirds, 

found that the local populations of Brown Booby Sula leucogaster and Cape Verde 

Shearwater Calonectris edwardsii are also based on flying fish, suggesting that they may 

compete for prey with tropicbirds (Carreiro et al., 2023). However, these three species differ 

greatly in their main foraging areas; Brown Boobies are restricted to day trips relatively close 

to their colonies (N. M. Almeida et al., 2021), while incubating Cape Verde Shearwaters 

forage near the continental shelf (Navarro‐Herrero et al., 2024; Paiva et al., 2015) and 

therefore direct competition for resources is unlikely (Gaston et al., 2007). Therefore, we 

suggest that the dietary shift to squid is more likely driven by a peak in squid abundance than 

the local depletion of planktivorous fish.  

Weather driven changes in nest site suitability 

 

Patterns in foraging behavior, body condition and breeding success may also be driven by 

weather driven changes in nest site suitability. A decrease in chick body condition, and in 

fledging and overall breeding success in the wet season, suggests that there is a reproductive 

cost in breeding during this time of the year. This period is also when both temperatures and 

precipitation reach their highest in Cabo Verde, which may be impacting nest survival 

directly through the thermoregulatory needs of the offspring or the collapse/flood of nesting 

cavities. Red-billed Tropicbirds breeding in the Caribbean were found to have higher 

breeding success when minimum nest temperatures were lowest (Danielson-Owczynsky, 

2022). Moreover, in other tropical species, such as Brown Pelicans (Pelecanus occidentalis), 



 

147 

 

147 

 

an increase in the maximum daily temperature of 1℃ resulted in a 40-fold decrease in daily 

survival rate (Streker et al., 2021). Moreover, during our study period, heavy rain events in 

September 2018 and 2020 in Cima Islet caused the collapse of at least 2 tropicbird burrows. 

Therefore, tropicbirds may be taking shorter foraging trips during this period to brood chicks, 

as the probability of survival increased with nest attendance in other localities (Danielson-

Owczynsky, 2022). Interestingly, this relationship is inversed in the adult body condition, 

which showed better overall condition from June to September. This may indicate that the 

reasons for the poor body condition of the chicks is not related solely to the foraging 

efficiency of the adults, but rather the environmental conditions at the nest site, which reduce 

growth and survival. Otherwise, there may be an extra cost for adults to forage at a greater 

distance for squid at the end of the dry season.  Moreover, environmental conditions in the 

spring may facilitate foraging close to the colony in the wet season. During this period there 

was greater visibility related to clearer waters (reduced turbulence, wave, and swell height), 

and low wind speeds and air density may increase flight costs at this time. 

Competition for nest sites 

 

Although our study measured seasonal ecological pressures by using nest-occupancy as a 

measure of intra-specific competition, we were unable to quantify breeding failure caused 

directly by competition nor the impact of other ecological pressures, such as predation and 

inter-species competition, that may be influencing tropicbird phenology and foraging 

behavior.  
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In the breeding colonies, however, both intra-and inter-specific competition for nesting 

cavities has been recorded. Tropicbirds are highly philopatric to their nest site and, intra-

specific competition for nest sites can result in nest failure, through the expulsion of the chick 

from the nesting cavity (directly observed on 4 occasions during our study), and/or adult 

injury (observed on 2 occasions). Therefore, both intraspecific competition for nests sites 

may influence seasonal patterns of nests occupancy, favouring reproduction during the wet 

season, despite the apparent costs to breeding success and chick body condition. 

 Moreover, in colonies where both Cape Verde Shearwaters and Red-billed Tropicbirds 

breed, fierce competition for nests sites at the onset of shearwater arrival was recorded, with 

41 of 80 pairs breeding on the islet of Raso being expelled from their nest cavities within the 

first two weeks of Cape Verde Shearwaters arrival (Semedo, 2020). Populations of Cape 

Verde Shearwaters have been greatly reduced by invasive predators, poaching and bycatch, 

and although they were previously widespread throughout the archipelago, their breeding 

range has now mainly been limited to uninhabited islets. Within the current study, Cape 

Verde Shearwaters were present in one small colony in Sal with 10 Red-billed Tropicbird 

nests. Even with this small overlap, however, two cases of tropicbird chicks being expelled 

from their nest upon arrival of the shearwaters in October were recorded. Therefore, although 

inter-specific nest competition with shearwaters is an unlikely driver of the observed seasonal 

pattens in tropicbird breeding success in our study area, this does not eliminate the possibility 

of it being a historical driver of tropicbird breeding phenology within the archipelago.  
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Climate Change 

 

 While our dataset's timeframe wasn't sufficient to explore climate change-induced shifts in 

tropicbird foraging behavior, phenology, and fitness (Orgeret et al., 2022), understanding 

how this species adapts to seasonal variations in bottom-up and top-down pressures offers 

insights into its potential response to climate change. Despite significant plasticity in their 

foraging behavior and diet, changes in environmental conditions and prey availability across 

seasons influenced tropicbird body condition and breeding success. This suggests that 

environmental and ecological changes resulting from climate change may have notable 

effects on their populations. 

Climate change-induced alterations in environmental conditions and prey availability may 

be expected to impact tropicbirds. In the eastern tropical Atlantic, Climate change is leading 

to warmer sea surface temperatures, an increase in wind speed and more frequent hurricanes 

and extreme rainfall events (Cropper et al., 2014; Mann & Emanuel, 2006; Servain et al., 

2014). Given the lower reproductive success and chick body conditions during the wet 

season, these increases in temperatures and rain may eventually restrict the breeding 

phenology of tropicbirds to the dry season. Climate change-induced phenological shifts 

caused by microevolution and/or plasticity have already been observed in White-tailed 

Tropicbirds (Phaethon lepturus; Campioni et al., 2023) as well as other tropical species (e.g. 

Oro et al. 200). Moreover, increases in the frequency of extreme rainfall events may also 

strongly affect tropicbird reproduction. Previous extreme rainfall events temporarily halved 

the yearly reproductive output in other tropicbird species (Hennicke & Flachsbarth, 2009).  
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Furthermore, alterations in environmental conditions lead to species-specific changes in 

survival, phenology, and distribution. These changes can result in predator-prey mismatches, 

eventually altering ecosystems (Stenseth & Mysterud, 2002). In the Eastern Atlantic, climate 

change is expected to have variable impacts on small epipelagic fish and squid populations. 

For epipelagic fish, climate change in the Canary Current is expected to result in species, 

specific changes in distribution and abundance (Sambe et al., 2016). In the case of squid, 

rising water temperatures associated with climate change are expected to benefit squid 

populations by increasing growth rates and accelerating population turnover (Pecl & Jackson, 

2008). However, these elevated temperatures may also result in smaller size and shorter 

lifespans potentially impacting population structure (Pecl & Jackson, 2008), and habitat 

squid suitability for commercial squids on the western coast of Africa is expected to decrease 

with climate change (Guerreiro et al., 2023). Overall, tropicbird prey are expected to exhibit 

life-history plasticity and rapid responses to environmental shifts driven by climate change, 

and therefore, the ability for tropicbirds to forage opportunistically and track these changes, 

may be key to their survival in the face of climate change.  

CONCLUSIONS 

 

Our results provide some of the first in-depth knowledge on seasonal variation in foraging 

behavior of a tropical seabird species, suggesting seasonality in tropical systems may be a 

stronger driver of the movements of top predators than previously thought. We found that 

even small changes in environmental conditions and resource availability can have important 

repercussions on tropicbird foraging ecology, and although this species displayed some 

plasticity in foraging behavior, these effects translated into differences in fitness metrics 



 

151 

 

151 

 

throughout the year. This flexibility may give us insight into the adaptability to climate 

change and the importance of understanding the seasonal variability in behavior.  
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SUPPLEMENTARY MATERIAL 

S1. Diet analysis 

Conventional analysis (prey identification): 

To determine whether there were seasonal patterns in tropicbird diet, 73 regurgitates from 69 

individuals breeding in Sal and Boavista were collected opportunistically from adults 

breeding in these islands during nest monitoring. Each sample was originally stored in plastic 

bags with ethanol, and later frozen. In the lab, we first defrosted and cleaned the samples 

with distilled water over a 3mm sieve. Then the identifiable prey items and otoliths in each 

sample were counted, measured, and classified to the lowest possible taxonomic level using 

morphological identification (Goyena & Fallis, 1988; Schneider, 1990). Due to the level of 

the digestion of the prey, the identification at species, family, or order level was not always 

possible. Therefore, we classified the prey into three ecological group levels cephalopods, 

zooplanktivorous fish, and carnivorous fish for the analysis. We found only one prey item 

belonging to the crustacean taxon and thus it was excluded from analysis. 

Stable isotope analysis 

Processing of prey muscle 

In addition, stable isotope analyses were undertaken on muscle tissue samples from 110 prey 

items. For this, we extracted 0.5-2gr of muscle tissue from undigested prey. The muscle tissue 

was sampled from the epaxial muscle (fish), mantle (cephalopods), or abdomen/thorax 

(crustaceans). The tissue samples were first oven-dried at 60ºC during 48h, then ground down 

and twice agitated in a 1:2 chloroform:methanol solution for 24 h (Hobson & Welch 1992). 

Tissue samples were then oven-dried again at 60°C for 48 h to remove remaining solvent and 
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divided into approximately 1 μg subsamples for stable isotope analysis. To understand the 

isotopic variation of tropicbirds in relation to the isotopic values of their prey, we segregated 

the prey by ecologic group, as in the conventional analysis (carnivorous fish, 

zooplanktivorous fish, and cephalopods).  

Processing of blood 

We collected 64 blood samples from adult tropicbirds to identify seasonal patterns in nitrogen 

and carbon stable isotope values. These samples were stored in 100% ethanol while in the 

field and, and later frozen at -20ºC. One in the lab, we lyophilized blood samples for 24 hours 

at -50ºC and 0.3 millibars and weighed subsamples (0.19–0.29 mg) in tin capsules.  

Stable isotope analysis (SIA) of prey muscle and tropicbird blood samples 

The blood and muscle samples were analysed through Elemental Analysis with the Isotopic 

Ratio Mass Spectrometer Flash EA1112, conducted at the Centres Científics i Tecnològics 

of the Universitat de Barcelona. We expressed the isotope ratios as δ values in part per mil 

(‰), according to the following equation:  

δX=[(Rsample/Rstandard) – 1], 

Where X is 13C or 15N and R is the 13C/12C or 15N/14N ratio for the sample and the 

standard respectively. International standards are Vienna Pee Dee Belemnite (VPDB) for 

carbon and atmospheric air (AIR) for nitrogen (Weiser & Powell, 2011). International 

laboratory (IAEA N1, IAEA N2, IAEA CH7, IAEA 600, USGS 40) and internal laboratory 

standards (Acetanilide, Fructose, UCGEMA P and Urea) were analysed every 12 blood 

samples to compensate for any drift over time and obtain the correct values of δX with an 

overall precision of 0.2‰. 
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S2. Description of biometric measurements taken from Red-billed Tropicbird chicks 

and adults.  

 

  

Metric Description 

Weight Mass measured using a Pesola spring balance to the nearest gram. 

Wing length flattened wing length from the carpal joint to the tip of the longest 

primary. Measured using a ruler to the nearest 1 mm  

Tarsus 

length 

tarsus length from the distal point of the inter-tarsal joint to the foot.  
Measured using a calliper to the nearest 1 mm. 

Bill depth Perpendicular length from the top to the bottom of the bill starting at 

the junction with the skull.  Measured using a calliper to the nearest 

1 mm. 

Culmen length from the base of the skull to the tip the bill. Measured using a 

calliper to the nearest 1 mm 

Head-bill 

length 

bill trip to the posterior ridge formed by the parietal-supraoccipital 

junction. Measured using a calliper to the nearest 1 mm. 
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S3. Monthly home range kernels 

 

 
Figure 1. Monthly home range kernels (95, 75, 50, 20, 5 KDE) of incubating (blue) and 

chick-rearing (Orange) Red-billed tropicbirds breeding in Boavista. Months indicated in red 

represent the smallest monthly kernel built on over 10 trips, which were used to extract 

environmental data for this island and breeding stage. 
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Figure 2. Monthly home range kernels (95, 75, 50, 20, 5 KDE) of incubating (blue) and 

chick-rearing (Orange) Red-billed tropicbirds in breeding in Sal. Months indicated in red 

represent the smallest monthly kernel built on over 10 trips, which were used to extract 

environmental data for this island and breeding stage. 
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Figure 3. Monthly home range kernels (95, 75, 50, 20, 5 KDE) of incubating (blue) and 

chick-rearing (Orange) Red-billed tropicbirds in breeding in Cima islet. Months indicated in 

red represent the smallest monthly kernel built on over 10 trips, which were used to extract 

environmental data for this island and breeding stage.  
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S4. ClimWin Analysis 

Using the “slidingwin” function, we created a series of models using four descriptive metrics 

of environmental variables (mean, max, min, and sum) extracted from time periods of all 

window sizes within half a year before each biological outcome (e.g. end of foraging trip, 

predicted hatch/fledging etc) for primary productivity and within the mean duration of 

incubation (41 days) and chick-rearing (84 days) for all other environmental variables related 

to eggs (hatching success) and chicks (fledging success and chick body condition), 

respectively. For primary productivity, we chose to look for windows up to half a year prior 

to the biological outcomes since the timeframe for the conversion of primary productivity to 

tropicbird prey is unknown. For the environmental variables related to hatching and fledging 

success, we searched for windows within the incubation and chick-rearing period 

respectively, as we assumed these could have cumulative effects on 1) the progenitor’s 

foraging ability and nest attendance during these periods, or 2) the thermoregulation and 

survival of the egg sand chicks. Since we did not have prior knowledge of the aspect of the 

relationships, we modelled each relationship with three functions (linear, quadratic, and 

cubic). When appropriate, we also included random intercepts for breeding stage, island, 

individual, and progenitors to control for their effects. Then, for each biological outcome, we 

selected the best window, descriptive metric (mean, max, min or sum) of the environmental 

variable and the best function (linear, quadratic, or cubic) for the relationship based on the 

model with the lowest AICc. Next, to avoid over-fitting the models, we determined whether 

the relationship between the environmental variables of the selected window and the 

biological outcomes was greater than expected by chance. To do this, we used the “randwin” 

function of the same package to compare the distribution of AICc values of the best-
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supported models with 100 randomized data sets of the environmental variables and 

considered the relationship to be reliable only when the probability of obtaining the AICc of 

the best-supported models through randomization was less than 0.05 (van de Pol et al. 2016).   
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S5. Consistency in seasonal patterns 

 

Figure A5.1: Consistency of seasonal patterns of environmental variables in Red-billed 

Tropicbird minimum foraging range between years and islands. Each line represents the 

smoothed relationship extracted from a GAM model with a Gaussian distribution between 

the environmental variable and Julian date extracted within the minimum foraging range for 

birds breeding on each island and year. Abbreviations: SA=Sal, IC=Cima Islet, 

BV=Boavista. 
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Figure A5.2. Consistency of seasonal patterns of environmental variables recorded at Red-

billed Tropicbird colony sites between years and islands. Each line represents the smoothed 

relationship extracted from a GAM model with a Gaussian distribution between the 

environmental variable and Julian date extracted at the colony site for birds breeding on each 

island and year. Abbreviations: SA=Sal, IC=Cima Islet, BV=Boavista. 
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Figure A5.3. Consistency of seasonal patterns nest occupancy between years and islands. 

Each line represents the smoothed relationship extracted from a GAM model with a Gaussian 

distribution between the proportion of nests occupied in each island and year and Julian date. 

Shown are only the year-island combinations for which there were at least 8 months with 

over 5 days of fieldwork. Abbreviations: SA=Sal, IC=Cima Islet, BV=Boavista. 
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S6. Model Selection bottom-up and top-down drivers of Metrics  

Table S6.1 Model selection of bottom-up and top-down drivers of metrics. Shown are the 

minimum number of models to sum a weight of 0.95.  Models marked with *included random 

intercepts for individual ID, breeding stage (incubation or chick-rearing), year, island, ** 

included random intercepts for breeding stage, year, and island, *** included random 

intercepts for individual ID, breeding stage, year, island, and sampler,  **** included random 

intercepts for individual ID, year, island, and sampler, and  ***** included random intercepts 

for year, only. 

Model  df LogLik AIC Δ AIC weight 

Distance travelled * 

PC2 (rain & cloud) + Prop. nests occupied 45 -3064.73 6221.4 0.00 0.84 

PC1 (cold, windy, wavy, low visibility & high air 

density) + PC2 (rain & cloud) + Prop. nests occupied 45 -3062.79 6224.8 3.35 0.16 

Sinuosity * 

PC2 (rain & cloud) 50 -940.03 1981.2 0.00 0.36 

NULL 50 -940.76 1981.7 0.57 0.27 

PC1 (cold, windy, wavy, low visibility & high air 

density) + Prop. nests occupied 51 -940.25 1984.0 2.86 0.09 

PC1 (cold, windy, wavy, low visibility & high air 

density) + PC2 (rain & cloud) + Prop. nests occupied 52 -939.46 1984.1 2.93 0.08 

PC1 (cold, windy, wavy, low visibility & high air 

density) 54 -938.04 1984.8 3.62 0.06 

PC1 (cold, windy, wavy, low visibility & high air 

density) + PC2 (rain & cloud) 54 -937.71 1985.1 3.90 0.05 

Prop. nests occupied 50 -941.91 1985.4 4.19 0.05 

Proportion of time foraging during the day * 

PC2 (productive & sunny)   47 431.92 -769.4 0.00 0.28 

PC1 (cold, windy, wavy, & high air density) + PC2 

(productive & sunny)   47 432.04 -768.1 1.61 0.12 

PC2 (productive & sunny) + PC3 (rain & cloud) 48 432.24 -767.9 1.79 0.11 

PC2 (productive & sunny) + Prop. nests occupied 48 432.35 -766.7 2.04 0.10 

PC1 (cold, windy, wavy, & high air density) + PC2 

(productive & sunny) + Prop. nests occupied 49 432.91 -766.6 2.96 0.06 

Null 42 425.48 -766.3 3.13 0.06 

PC1 (cold, windy, wavy, & high air density) + PC2 

(productive & sunny) + PC3 (rain & cloud) 49 432.36 -766.3 3.40 0.05 

PC2 (productive & sunny) + PC3 (rain & cloud) + Prop. 

nests occupied 49 432.65 -765.8 3.40 0.05 

PC3 (rain & cloud) + Prop. nests occupied + Prop. nests 

occupied 42 425.68 -765.1 3.86 0.04 

PC1 (cold, windy, wavy, & high air density) + PC2 

(productive & sunny) + PC3 (rain & cloud) + Prop. nests 

occupied 50 433.19 -764.9 4.60 0.03 
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PC1 (cold, windy, wavy, & high air density) + Prop. 

nests occupied 43 425.50 -764.8 4.79 0.03 

 PC3 (rain & cloud) 43 425.58 -764.9 4.87 0.02 

Proportion of time foraging during twilight * 

PC1 (cold, windy, wavy, & high air density) + PC2 

(productive & sunny) + PC3 (rain & cloud)  75 361.99 -572.5 0.00 0.47 

PC1 (cold, windy, wavy, & high air density) + PC3 (rain 

& cloud) 73 358.17 -569.7 2.79 0.12 

PC2 (productive & sunny) + PC3 (rain & cloud) + Prop. 

nests occupied 78 363.43 -568.9 3.55 0.08 

PC1 (cold, windy, wavy, & high air density) + PC2 

(productive & sunny) + Prop. nests occupied  79 368.87 -568.5 3.99 0.07 

PC3 (rain & cloud) + Prop. nests occupied  76 362.63 -568.4 4.06 0.06 

PC2 (productive & sunny) + PC3 (rain & cloud) 78 356.90 -568.1 4.36 0.05 

PC1 (cold, windy, wavy, & high air density) 73 364.12 -567.4 5.02 0.04 

PC2 (productive & sunny) 80 364.12 -566.9 5.58 0.03 

PC3 (rain & cloud) + Prop. nests occupied 76 359.46 -566.8 5.70 0.03 

δ15N in whole blood ** 

PC1 (cold, windy, wavy, & high air density) + PC2 

(productive & sunny)  

8 2.77 11.00 0.00 0.52 

PC1 (cold, windy, wavy, & high air density) + PC2 

(productive & sunny) + Prop nests occupied 

7 1.47 12.2 1.22 0.28 

PC1 (cold, windy, wavy, & high air density) + Prop nests 

occupied 

14 7.77 13.6 2.59 0.14 

PC1 (cold, windy, wavy, & high air density)  11 4.16 15.4 4.46 0.06 

δ13C in whole blood ** 

PC1 (cold, windy, wavy, & high air density) + PC2 

(productive & sunny)  

4 22.30 -41.5 0.00 0.55 

PC1 (cold, windy, wavy, & high air density) + PC2 

(productive & sunny) + Prop nests occupied 

5 26.18 -40.6 0.92 0.35 

PC1 (cold, windy, wavy, & high air density) 4 22.21 -37.1 4.44 0.06 

Adult body condition*** 

PC1 (cold, windy, wavy, high air density & high 

productivity) + PC2 (cool & cloudy) + Prop nests 

occupied + after GPS (yes/no) 

158 -4308.12 8933.1 0.00 0.64 

PC1 (cold, windy, wavy, high air density & high 

productivity) + PC2 (cool & cloudy) + after GPS 

(yes/no) 

158 -4308.53 8934.7 1.63 0.29 

PC1 (cold, windy, wavy, high air density & high 

productivity) + PC2 (cool & cloudy) + Prop nests 

occupied 

159 -4309.82 8938.6 2.57 0.04 

Chick body condition **** 

PC1 (cold, windy, high air density, & low productivity) + 

PC2 (rain) 

104 -4817.69 9843.5 0.00 0.61 
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PC1 (cold, windy, high air density, & low productivity) + 

PC2 (rain)+ Prop nests occupied 

104 -4817.42 9844.8 1.31 0.32 

 PC2 (rain) 102 -4821.55 9848.6 5.14 0.05 

Hatching Success vs environment ***** 

PC1 (rainy, warm, low productivity, low air density) 3 -24.34 56.5 0.00 1.00 

Hatching Success vs nest occupancy ***** 

Null 1 -70.30 142.6 0.00 0.69 

Prop. Nests occupied 3 -68.45 144.4 1.63 0.31 

Fledging Success vs environment ***** 

PC1 (cold aridity)  4 -35.70 79.9 0.00 0.69 

Null 1 -39.75 81.5 1.63 0.31 

Fledging Success vs occupancy ***** 

Prop. Nests occupied 8 -56.26 128.7 0.00 1.00 
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ABSTRACT 

 

In polar and temperate regions, strong seasonality in environmental conditions drives animal 

phenology, resulting in synchronous breeding and migration timings. The association between 

phenology and seasonality is less pronounced in tropical systems, where environmental 

conditions remain relatively constant throughout the year. As a result, many species exhibit 

asynchronous or year-round breeding patterns. In these cases, the drivers of migration and 

migratory strategies are more ambiguous since the environmental conditions surrounding the 

breeding areas are presumably adequate for the species year-round. Here, we investigated 

whether seasonal changes in migratory patterns and non-breeding areas relate to changes in 

oceanographic conditions in the Red-billed Tropicbird (Phaethon aethereus), a poorly studied 

pantropical species that breeds year-round in Cabo Verde. Specifically, we first investigate 

whether there are seasonal patterns in tropicbird non-breeding areas and evaluate whether these 

patterns are consistent at the individual level. We then investigated whether there are seasonal 

differences in activity patterns and whether these differences differ between migratory stages. 

Finally, we determine whether seasonal patterns are related to season-specific environmental 

niche tracking between the breeding and non-breeding period or through population-wide 

habitat preferences. From 2017 to 2022, we monitored tropicbird nests at three islands 

(Boavista, Sal and the Cima Islet) and GLS tracked 111 individuals, extracting 149 migratory 

trips. Almost all birds were migratory, but dry season breeders migrated to the central Atlantic 

north of Cabo Verde, while wet season breeders migrated west of Cabo Verde. We found a 

higher overlap between repeated migrations from the same individual and those breeding 

around the same time of year, indicating individual and seasonal repeatability of non-breeding 

areas. Although we did not find evidence of season-specific niche-tracking, tropicbirds shifted 

their non-breeding areas to avoid seasonal extremes in Sea Surface Temperatures (SST) and 

air density, effectively remaining within a similar range to what they experience year-round in 
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Cabo Verde waters. We suggest that this range of SST and air density represent population-

wide habitat preferences. Our results provide some of the first in-depth knowledge on the 

seasonal variation in the non-breeding areas of a tropical seabird and suggest that even a weak 

seasonality in tropical systems may be a strong driver of the migratory movements of top 

predators than previously thought.  

Keywords: Seasonality; tropical ocean; seabird; phenology; non-breeding area; 

migration 

  



 

176 

 

176 

 

INTRODUCTION 

 

Seasonality and the predictable intra-annual changes in climate and resources that it entails are 

major drivers of animal phenology (Dufour et al., 2020; Forrest & Miller-Rushing, 2010). To 

cope with seasonal changes, many species synchronize reproduction with favorable conditions 

and avoid unfavorable ones or negative ecological interactions such as predation or competition 

through migration, a seasonal round-trip movement between breeding and non-breeding 

regions (Alerstam et al., 2003; Dufour et al., 2020; Winger et al., 2019). As an evolutionary 

adaptive trait, migration can improve fitness by increasing both reproductive success and 

survival (Shaw & Couzin, 2013; Winger et al., 2019) and is observed in a wide array of taxa in 

both marine and terrestrial environments (Chapman et al., 2014; Hobson & Norris, 2008). 

Through migration, species can either track preferred climatic conditions year-round (niche 

tracking, e.g. Gómez et al., 2016; Péron & Grémillet, 2013; Ramos et al., 2015; Shaffer et al., 

2006) or occupy different climatic niches at different periods of their annual cycle (niche 

switching, e.g. Lambert & Fort, 2022; Martínez-Meyer et al., 2004; Nakazawa et al., 2004; 

Quillfeldt et al., 2020).  

In the last decades, the study of migration and migratory strategies has rapidly progressed due 

to breakthroughs in remote tracking technologies. Particularly, light-level geolocators have 

facilitated the study of migratory ecology at the individual level and through multiple annual 

cycles, shedding light on the within and between individual variability in migratory strategies. 

Within populations, individual migrations can differ in direction, routes, distance, and location 

of non-breeding areas and can include various stopovers and stages along the way (e.g., Alves 

et al., 2012; Finch et al., 2017; Vardanis et al., 2016). In the most extreme cases of variability, 

some species are partial migrants, with some individuals undertaking migratory journeys to 

distant locations, while others remain close to the breeding grounds year-round (Newton, 
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2012). Within a species, these strategies can differ between populations (Ramos et al., 2016), 

ages, classes (Péron & Grémillet, 2013), sexes (Deakin et al., 2019; C. Pérez et al., 2014), or 

individuals (Pérez, 2019). 

This population-wide variability in migratory strategies results in individuals from the same 

breeding population experiencing disparate ecological environments and pressures throughout 

their life cycles (Boyle, 2008; Chapman et al., 2011; Grayson & McLeod, 2009), which can 

result in among-individual variation in key fitness components (i.e. survival and/or 

reproductive performance (Alves et al., 2013; Grist et al., 2017; Gunnarsson et al., 2005; Lago 

et al., 2019; Méndez et al., 2018). Moreover, differences in migratory strategies and 

phenologies can result in assortative mating based on the timing of arrival at the breeding sites 

(Morrison et al., 2019), which can influence not only breeding success but also the population’s 

genetic structure (Gilsenan et al., 2017; Grist et al., 2017). Individual variation in migratory 

behavior can therefore have population-scale implications. 

By studying individual migration over multiple annual cycles, it is possible to determine 

whether individuals consistently use the same migratory strategy (individual repeatability) or 

whether they can switch strategies between years (adaptability). Both have their specific 

advantages. By repeatably migrating to the same areas, individuals benefit from prior 

knowledge of the availability of key resources and predator or competitive avoidance, 

facilitating individuals to optimize their migratory phenology and non-breeding habitat use 

(Gill et al., 2014; Gunnarsson et al., 2004; Winger et al., 2019). However, in a changing 

environment, the ability to modify individual migratory phenology and non-breeding areas to 

track ideal conditions may be more advantageous (Gilroy et al., 2016). 

In polar and temperate regions, strong seasonal changes in environmental conditions often 

result in population-wide phenological synchrony since the costs of a temporal mismatch 
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between key phenological stages and environmental conditions are high or even fatal. In these 

environments, organisms generally synchronize their phenology and movements to coincide 

with periods with high resource availability (e.g., insect emergence (Youngflesh et al., 2023) 

or spring green up (Nemes et al., 2024) and/or to avoid the fitness or survival cost of local 

competition or seasonal resource-depletion (Alerstam et al., 2003; Cresswell et al., 2013). 

Conversely, in tropical regions where climatic conditions are generally more homogeneous 

(Longhurst, 1995), the association between phenology and seasonality weakens, leading to 

asynchronous or year-round breeding (Lundberg, 1988). In these cases, the drivers of migration 

are more ambiguous since the environmental conditions surrounding the breeding areas are 

presumably adequate for the species year-round (Lambert & Fort, 2022). However, although 

weakened, many tropical environments do exhibit at least some climatic seasonality (such as 

changes in precipitation; Vázquez & Stevens, 2004, this thesis chapter 2), which can result in 

seasonal differences in foraging ecology and fitness (Esparza et al., 2022, this thesis chapter 

2). However, very few studies have tracked individual foraging movements in tropical species, 

leaving many questions about how variable their migratory strategies are and what drives them 

(Franklin et al., 2022a; Franklin et al., 2022b; Jaeger et al., 2017; Pinet et al., 2011). 

Seabirds, as highly mobile marine top predators, exhibit various migratory strategies. While all 

seabirds are central place foragers during the breeding season, during the non-breeding season, 

some species may range widely throughout marine habitats (Weimerskirch & Wilson, 2000) 

while others remain resident year-round. As such, and due to the low availability of breeding 

sites (Coulson, 2002), many seabird species breed colonially (Causey & Kharnitonov, 1990) 

and may experience resource depletion near colony sites (Ashmole, 1971). However, during 

the non-breeding period, individuals may travel unhindered by constraints of central place 

foraging and occupy a wide array of marine environments.  
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In the face of climate change, investigating species' adaptability to environmental change and 

its cascading effects on ecological interactions is important for evaluating threats and 

developing management strategies. In a meta-analysis of the phenology of worldwide seabird 

populations between 1952 and 2015, seabirds had not adjusted their breeding seasons over time 

or in response to sea surface temperature, suggesting a particular vulnerability to climate 

change impacts (Keogan et al., 2018). This same meta-analysis underlines significant 

knowledge gaps about the adaptability of tropical species to environmental change. 

Understanding the drivers of seasonal changes in tropical oceans can shed light on the 

evolutionary constraints acting upon species in these poorly studied systems. 

We aim to identify how asynchronously breeding topical species adapt their migratory 

strategies to seasonality year-round. To achieve this, we focused on Red-billed Tropicbirds 

(Phaethon aethereus), a poorly studied pantropical species that breed year-round in Cabo 

Verde. Recent studies have found seasonal differences in this species’ foraging ecology during 

the breeding season (this thesis chapter 2) and that breeding and migratory phenology for this 

species are highly repeatable at the individual level and heritable (this thesis chapter 4). This 

begs the question of whether this species adapts to seasonal changes via its migratory strategies 

and whether these differences are also repeatable at the individual level. Specifically, we GLS 

tracked 111 individuals for one to 3 years to determine whether 1) there are seasonal patterns 

in tropicbird non-breeding areas and whether these patterns are consistent at the individual 

level, 2) there are seasonal differences in activity patterns and whether these differences differ 

between migratory stages, and 3) seasonal patterns are related to season-specific environmental 

niche tracking between the breeding and non-breeding period or through population-wide 

habitat preferences. By enhancing our understanding of how Red-billed Tropicbirds adapt their 
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migratory strategies to seasonal changes, we shed light on broader patterns of sensibility of 

tropicbirds to environmental change. 
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METHODS 

 

Field site  

 

Field work took place in Cabo Verde, located approximately 600 to 850 km west of Senegal, 

Africa, on the southern boundary of the Canary Current Large Marine Ecosystem (Valdés & 

Déniz-González, 2015), at the eastern edge of the North Atlantic subtropical gyre (Fernandes 

et al., 2005). In particular, data collection took place across three colonies situated on Boavista 

and Sal islands, and a single colony on the islets of Raso and Cima in Cabo Verde in 2008-

2009 and from 2017 to 2022.  

Nest monitoring & Geolocator deployment & recovery 

 

To monitor breeding success and to deploy and recover GLS, nests were generally visited every 

1-3 days, but some isolated nests (<5%) were only visited monthly. At each nest visit, the 

contents of the nest were recorded (empty, chick/egg, and whether there was an adult or not) 

to determine breeding success and to deploy and recover light-level geolocators (GLS). We 

deployed 133 Migrate Technology Ltd C330 and Biotrack BAS_MK19 GLS on 111 different 

individuals on Red-billed Tropicbirds breeding on Raso in 2008-2009 and at the remaining 

study sites in 2009 and between 2017-2021. Breeding individuals were captured whilst on the 

nest using noose-poles and GLS were attached with cable-ties to their metal identification ring. 

Devices were opportunistically recovered in subsequent breeding seasons. Since monitoring 

was inconsistent at certain times of the year and at more isolated nests, data breeding success 

(hatching success and fledging success) were only used in analysis when the window of 

uncertainty for these data was less than 30 days. Whenever possible, 1ml of blood was also 

drawn from the tarsus of individuals, for molecular sexing (Griffiths et al., 1998) and 
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morphometrics (wing length, culmen, head and bill length, tarsus and bill height) were 

measured to calculate and index of skeletal size using a principal component analysis (S1). 

The total tag weight of the GLS used was approximately 3.3g (0.5% of tropicbird mean 

tropicbird weight 630g±55, n=1297 individuals). During both deployment and recovery of 

GLS, birds were handled for the shortest time possible and immediately released back on to 

their nest after handling. Migrate Technology GLS recorded light intensities every minute, 

maximum light intensities every five minutes and conductivity (salt-water immersion data) 

every six seconds, while Biotrack GLS recorded both light intensity and wetness every 10 

minutes. All GLS underwent at least one pre-deployment calibration near colony sites at an 

unshaded known location for a minimum of 3 days (Lisovski et al., 2020). Upon recovery, a 

single post-deployment calibration at a known site was performed on GLS. Data from all 

available pre- and post-deployment calibrations were used to estimate the corresponding 

average zenith angle for each deployment, using the designated software IntiProc© from 

Migrate Technology Ltd. In cases for which post-recovery calibration was not possible, due to 

battery failure or technical issues with GLS, pre-deployment calibrations alone were used to 

calculate zenith angles (n=15). For devices which were deployed on birds for multiple years, 

each seasonal migration was analysed separately.  

GLS data processing 

 

We used the raw light-level data downloaded from recovered GLS to estimate the latitude and 

longitude of individuals each day, throughout the duration of the GLS deployment. This was 

done based on sunrise and sunset transitions identified with the function “preprocesslight”, 

using a light intensity threshold of 2, in the R package GeoLight (Lisovski et al., 2020; Lisovski 

& Hahn, 2012). This package was also used to visualise and manually repair sunrise and sunset 

transitions with evident interferences. Maps of resulting tracks for each seasonal migration 
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were created and inspected in R Studio, using the package Shiny (Chang et al., 2015). A speed 

filter was applied to estimate at-sea positions to remove points assumed to be erroneous due to 

speeds larger than the 95% percentile (Austin et al., 2003). For seasonal migrations, this 

corresponded to a speed of 17.19 km/h. 

GPS data processing 

 

To determine whether differences in the non-breeding areas is related to individual habitat 

tracking of conditions experienced during the breeding period, we compared the habitat use of 

breeding and non-breeding tropicbirds. Since the GLS were recovered from birds upon first 

discovery at the colony, we were unable to use these tags to study habitat selection during the 

breeding period. Instead, we used a GPS tracking dataset to determine foraging areas during 

this period.  

For this, Red-billed Tropicbirds were captured on their nests during incubation or early chick-

rearing and equipped with CatLog Gen2 GPS. The GPS loggers weighed 18g (2.9% of mean 

tropicbird weight; 630g±55, n=1,297 individuals) and were programmed to record GPS 

positions every 5 minutes. The GPS tracks were cleaned of erroneous positions using a speed 

filter (30m/s) and split into discrete foraging trips with periods in the nest between trips 

omitted. As in Saldanha et al., 2023, a sub-sample of tropicbirds were also equipped with Axy-

Trek loggers (which record GPS, tri-axial accelerometer, and time-depth information; 33 

foraging trips from 14 individuals), Migrate Technology C330 geolocators (GLS) with a wet-

dry sensor (salt water immersion logger; 74 foraging trips from 19 individuals) or both (16 trips 

from 6 individuals) to semi-supervise Hidden Markov Models for the classification of GPS 

positions into behavior states. Axy-Trek loggers weighed 17g (2.7 % of tropicbird weight) and 

recorded GPS, acceleration, and pressure data at 5-minute, 25 Hz and 1s intervals, respectively. 

As in the non-breeding GLS, the Migrate Technology GLS with a wet-dry sensor weighed 3.3g 
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(0.5% of tropicbird weight) and registered if the bird was wet or dry every 6 seconds. GPS and 

Axy-Trek were attached to the 6 central tail feathers with Tesa tape while GLS were attached 

to the tarsus, on the bird’s metal ring with the help of a zip tie. All tracking data was processed 

as in Saldanha et al., 2023, however, we followed the authors’ suggestion to classify GPS 

positions into two instead of three discrete behavioral states. Small step lengths and low turning 

angles were inferred as inactive (i.e. resting on water), and large steps with a large variety of 

turning angles were inferred as active (foraging/flight) states. Since tropicbirds mainly forage 

on the go (Saldanha et al., 2023), we hereafter refer to the GPS-derived active state as foraging. 

To estimate tropicbird habitat use during the breeding season, for each GLS track, we randomly 

selected 30 GPS foraging trips (10 incubation and 20 chick-rearing trips) and trips that took 

place during the estimated breeding periods of GLS-tracked birds (125 days prior to the 

initiation of migration or 125 days after returning to the colony from birds breeding on the 

same island. Using this selection of GPS trips, the core foraging areas was estimated as the 

50% of the Kernel Density Estimate (KDE; Calenge C., 2006) of all GPS positions classified 

as foraging using WGS84 projection.  

Seasonal shifts in non-breeding areas 

 

To identify seasonal shifts in main non-breeding areas, the core area of each non-breeding 

distribution was estimated as the 50% of the KDE (Calenge C., 2006) of all GLS positions after 

the outgoing and before the ingoing migrations, using WGS84 projection. We then extracted 

the centroid of each of these kernels and modelled the latitude, longitude and distance of the 

centroids in relation to the day of the year (DOY) using a GAMM, with a random intercept for 

individual ID and an identity link function using the R package ‘mgcv’(Wood, 2001). Since 

DOY is circular, it was modelled as non-linear variable using a cubic regression spline. In these 

models, we also included year and island as categorical parametric coefficients. Since sex, body 
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size and previous breeding success (failed/successful) have been found to influence the 

migratory strategies and non-breeding areas used in other species, we originally also included 

these variables in the GAMMs as parametric coefficients. However, as for the models of 

activity patterns this greatly reduced the sample size (from 149 to 33) Therefore, for all three 

response variables (latitude, longitude and distance), we first ran preliminary models using only 

the 33 trips with all potential coefficients (non-linear effect of DOY, year, island, sex, body 

size and previous breeding success) and then only included the coefficients for sex, body size 

and previous breeding success in the main GAMMs if they had a significant effect in the 

preliminary model (S2). 

To determine whether there are seasonal patterns in the overlap of the non-breeding areas, we 

calculated the spatial overlap (Bhattacharyya’s Affinity, BA) between all core areas kernels. 

Then, using the calculated overlap, we assessed: 1) seasonal patterns in overlap, and 2) 

relationships between overlap and the difference in days between the beginning of the non-

breeding periods. In the first model, we assessed seasonal changes in overlap by comparing the 

overlap between pairs of non-breeding periods that started in the same month using a GAM 

with separate cyclic cubic regression splines of Julian date for trips of the same vs different 

individuals. This model was used to determine whether at certain times of year, the non-

breeding areas used by different individuals are more diverse than at other times. In the second 

overlap model, we assessed whether the core non-breeding areas of individuals which migrated 

during the same time of year, overlapped more than those breeding at different times. To do 

this, we modelled the overlap of the core non-breeding areas against a non-linear relationship 

with the absolute difference in days between the beginning of each overlapped non-breeding 

area again using a GAM with a cyclic cubic regression spline for DOY. In addition, both 

models included parametric coefficients for whether the core non-breeding areas were from the 
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same individual, year, island and sex or not, whether the individuals were partners or not, and 

the absolute difference in days between the start of the two non-breeding periods compared. 

Seasonality in activity patterns 

 

To determine whether there were seasonal patterns in tropicbird activity patterns during 

migration and non-breeding periods, we calculated the proportion of time dry (active) per day, 

night and twilight based on the salt-water immersion data from the GLS. We then modelled the 

seasonality of the proportion of time active using a binomial GAMM with a cyclic cubic 

regression spline for DOY and a random intercept for individual ID. Since activity patterns at 

night (and not day or twilight) are often associated to moon illumination in seabirds (e.g. 

Ravache et al., 2020; Regular et al., 2011), we create a separate model for the proportion of 

time active during each of these periods. Moreover, since stage (inward migration, outward 

migration, and non-breeding) may have a strong effect on activity patterns we also created 

separate models for each, resulting in a total of nine models (three phenological stages by three 

time periods). To account for the progression of time in each of the stages, we also included a 

non-linear relationship with the proportion of the inward migration, non-breeding period and 

outward migration completed for each given date. Moreover, since sex and previous breeding 

success, year, and island could affect activity patterns, we also originally included these 

variables in the GAMs as parametric coefficients. However, as in the models of the seasonal 

shifts in non-breeding areas, sex and prior breeding success greatly reduced the sample size 

(from 149 to 33). Therefore, for each activity pattern model, we first ran preliminary models 

using only the trips when sex and previous breeding success were available to determine if they 

had a significant effect. If no effect was detected in the preliminary model, these variables were 

excluded from the model, so that the final model could be run on the full dataset (S2). 
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Population-level habitat tracking  

 

To determine whether tropicbirds changed their non-breeding areas seasonally to align with 

specific environmental conditions, we extracted the mean primary productivity, sea surface 

temperature, air density, and Secchi disk depth from each individual core non-breeding area 

(Table 1). Then, to compare these values to what was available during each individual’s non-

breeding period, we extracted the mean environmental values form all other individual core 

non-breeding areas during the same period. In doing so, for each track, we had the mean 

environmental variables from 148 “simulated” tracks during the same period. We then 

compared all real and simulated environmental means using GAMs with the mean 

environmental variable as the response and a unique cyclic cubic regression spline for Julian 

date for real and simulated data. We then determine whether the smoothed relationship for the 

seasonal changes in environmental conditions in real and simulated core areas differed 

(indicating population-wide habitat tracking) or was the same (indicating that differences in 

the environmental conditions experienced during the non-breeding season, were the result of 

seasonal changes only) based on the overlap of the 95% confidence intervals around the curves.  

Table 1. Source, resolution (spatial & temporal), aggregating metric and time window of 

environmental variables. 

Variable Units 

 

Metric 

Temporal 

Res. 

Spatial 

Res. 

Years 

available Source 

Primary 

productivity 

mg m-2 

day-1 

mean 
daily 0.08 

2017-2020 Copernicus-Global Ocean low and mid 

trophic levels biomass content hindcast 

Sea Surface 

Temperature 
Kelvin 

mean 
hourly 0.25 

2017-2022 
Copernicus-ERA5 Reanalysis 

Air density kg m-3 mean hourly 0.50 2017-2022 Copernicus-ERA5 Reanalysis 

Secchi disk 

depth 
m 

mean 
monthly 0.25 

2017-2018 
Pitarch et al., 2021 
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Individual-level habitat tracking based on breeding period 

 

To determine whether differences in the non-breeding areas is related to individual habitat 

tracking of conditions experienced during the breeding period, we compared the habitat use of 

tropicbirds during breeding and non-breeding periods. To do this, we extracted the mean 

primary productivity, sea surface temperature, air density, and Secchi disk depth from each 

individual core breeding area and non-breeding areas and compared paired values using GAMs 

with an identity link function. In these GAMs the mean oceanographic conditions during the 

non-breeding period as the response and the mean oceanographic conditions during the 

breeding as an explanatory viable with a non-linear relationship.  
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RESULTS 

From the 133 GLS deployed, we identified 149 complete non-breeding periods from 111 

individual. Of these 149 non-breeding periods, 146 tracks showed clear migration while three 

tracks from two individuals remained resident year-round.  

Seasonality in tropicbird migratory patterns 

 

We found seasonal patterns in the non-breeding areas used by GLS tracked Red-billed 

Tropicbirds, with individuals which started migration in the spring travelling to the central 

north Atlantic, while those that started migration in the dry season using the area to the west of 

Cabo Verde (Figure 1). These seasonal patterns were reflected in the models predicting the 

latitude and longitude of the bird’s core non-breeding areas, but not the distance of the 

centroids. In preliminary analysis, we found no significant effect of sex, breeding success and 

body size on the centroid latitude, longitude, or distance (S2). Therefore, these were not 

included in the models. The models for predicting the latitude and longitude of non-breeding 

centroids included a significant non-linear relationship with DOY (Figure 1, Table 2). 

Tropicbirds which started migration after the dry season (peak May-July) used higher latitudes 

and longitudes then those which migrate after the wet season (low from October-January; 

Figure 1, Table 2). In the longitude and distance models, we also found a significant effect of 

year (Table 2). However, this mainly appears to be driven by higher longitudes and lower 

distances in the two centroids from 2008 (S3).  
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Figure 1. Seasonal patterns in tropicbird non-breeding areas. Showing individual tropicbird 

50% Kernel Density Estimates coloured by the month of initiation of migration (A), as well as 

seasonal patterns in centroid latitude (B) and longitude (C) extracted from GAMMs (Table 2). 

The mean estimated smoothing functions are shown in solid lines with upper and lower 

confidence intervals at two standard errors above and below the mean (shaded area). We also 

present the raw data points of centroid latitude and longitude in relation to day of the year, 

coloured by the month of initiation of migration. 

 

The best model for predicting the overlap between core non-breeding areas, included a 

significant r smoothed relationship with the absolute difference in days of the year and whether 

the kernels were from the same individual or not. We found that the amount of overlap 

generally was higher when from consecutive migrations from the same individual and when 

the migrations started at the same time of year (Table2). 
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While determining the effect of seasonality on kernel overlap in non-breeding areas, we found 

no significant effect of sex and breeding success in preliminary analyses (S2), therefore, these 

variables were not included in the models. We found higher overlap between core non-breeding 

areas of from the same individual. Moreover, we also found higher overlap between migrations 

that took place during the same time of year (with a smaller absolute difference between the 

DOY of the start of migration; Figure 2, Table 3). We also found seasonal differences in the 

amount of overlap between trips which took place during the same month. We found that the 

overlap between core non-breeding areas were higher from September-December, and lower 

from March-May. Again, in this model we also found that the overlap was greater when both 

kernels were from the same individual.   
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Table 2: Model outputs of seasonal patterns in non-breeding areas. Model output of GAMMs 

P-values in parenthesis. DOY=day of year 

 

 

Figure 3. Difference in the kernel overlap of non-breeding core areas based on the differences 

in days between the start of migration (A) and, seasonally, for migrations which took place 

during the same month, seasons (B). Relationships extracted from GAMs (Table 2). The mean 

estimated smoothing functions are shown in solid lines with upper and lower confidence 

intervals at two standard errors above and below the mean (shaded area). We also present the 

raw data points of the kernel overlap. 

  

Response Parametric coefficients Non-

linear 

Random 

Intercept 

Devian

ce 

explain

ed 

N 

Intercept Year 

(2008) 

Island 

(Boavista) 

DOY ring 

Latitude 23.36 

(<0.001) 

2017: -0.69 (0.89) 

2018: -6.67 (0.43) 

2019: -3.63 (0.44) 

2020: -2.78 (0.56) 

2021: -3.25 (0.51) 

ICima: 2.00 (0.22) 

Raso: -4.50 (0.15) 

Sal:0.85 (0.53) 

 

3.89 

(<0.001) 

64.33 

(<0.001) 

88.7 149 

Longitude -21.13 

(0.003) 

2017: -11.63 (0.08) 

2018: -13.49 (0.05) 

2019: -13.92 (0.04) 

2020: -12.72 (0.07) 

2021: -12.83 (0.09) 

ICima: 0.82 (0.73) 

Raso: -7.24 (0.11) 

Sal: -1.51 (0.44) 

 

2.11 

(0.004) 

68.02 

(<0.001) 

83.4 149 

Distance 540.43 

(0.28) 

2017: 960.44 (0.05) 

2018: 1061.86 (0.03) 

2019: 1144.82 (0.02) 

2020: 1043.41 (0.04) 

2021: 913.17 (0.09) 

ICima: 55.48 (0.74) 

Raso: 322.53 (0.29) 

Sal: 138.15 (0.27) 

 

0.00 

(0.54) 

64.49 

(<0.001) 

79.2 149 
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Table 3: Model outputs of seasonal patterns in non-breeding area overlaps. Model output of 

negative binomial GAMs. P-values in parenthesis. DOY=day of year 

 

Seasonality in activity patterns 

 

Tropicbirds spent the highest proportion of time active during twilight, followed by day and 

finally night (Figure 3, Table 4). Moreover, they generally spent more time active during 

migration than during the non-breeding area. Tropicbirds spend a higher proportion of time 

active during twilight from December to February, than from June to October during both 

migration and the non-breeding period. Moreover, the proportion of time active during the day 

drops in June in the non-breeding period but is generally stable during outward and inward 

migrations. The proportion of time active during the night was also highest from December to 

Ferbruary during the outward migration and the non-breeding period. During the outward 

migration and non-breeding period, the proportion of time active in day, night and twilight 

decreased as the proportion of the phenological stage advanced. On the contrary, during the 

inward migration, the proportion of time active increased in day, night and, twilight increased. 

In all phenological stages, the proportion of time active during the night increase with the moon 

fraction.  

Response Parametric coefficients Non-linear Deviance 

explained 

N 

Intercept Same 

year 

Same 

island 

Same 

individual 

partners Diff 

DOY 

Month 

Overlap 0.54 

(<0.001) 

-0.07 

(0.23) 

0.05 

(0.47) 

1.41 

(0.004) 

-0.04 

(0.89) 

2.66 

(<0.001) 

- 2.99 22052 

Overlap 1.06 

(<0.001) 

-0.05 

(0.76) 

-0.03 

(0.85) 

1.65 (0.04) -0.45 

(0.43) 

- 4.43 

(<0.001) 

2.80 2034 
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Figure 3. Proportion of time active (dry) during outward migration, the non-breeding period 

and inward migration per day, night, and twilight period by (row 1) day of year, (row 2) 

proportion of phenological period complete, and (row 3) moon fraction. Relationships 

extracted from binomial GAMMs with random intercepts for individual ID and the linear co-

variates year, island and in the case of the non-breeding period, breeding stage (Table 4). The 

mean estimated smoothing functions are shown in solid lines with upper and lower confidence 

intervals at two standard errors above and below the mean (shaded area). We also present the 

raw data points of the proportion of time active in each period. The gaps in the data in the top 

row are caused by unreliable GLS positions during the equinox. 
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Table 4. Output of models of seasonality in tropicbird activity patterns during the outward migration, the non-breeding period and the inward 

migration during day, twilight, and night. P-values of non-linear relationships (effective degree of freedom, edf) and of parametric coefficients in 

parentheses. Significant values are in bold. 

Model Timing Parametric coefficients Non-linear Random Deviance 

explained 

N 

Intercept Breeding success (s) Year (2017/2018*) Island (Boavista) DOY Prop complete Moon frac ring 

Prop. 

Active 

Outward 

Migration 

Day 0.59 (<0.001)  2018: -0.21 (0.005) 

2019: -0.21 (0.003) 

2020: -0.30 (<0.001) 

2021: -0.41 (0.02) 

ICima: 0.15 (0.20) 

Raso: 0.14 (0.22) 

Sal: 0.04 (0.22) 

 

0.00 (0.47) 2.67 

(<0.001) 

 47.52 

(<0.001) 

47.1 574 

Twilight 0.70 (<0.001)  2018: 0.09 (0.14) 

2019: 0.11 (0.06) 

2020: 0.10 (0.10) 

2021: 0.31 (0.82) 

ICima: -0.04 (0.66) 

Raso: 0.00 (0.95) 

Sal: -0.00 (0.91) 

1.58 (0.03) 1.08 (<0.001)  45.47 

(<0.001) 

50.4 574 

Night 0.11 (0.07)  2018: 0.01 (0.86) 

2019: 0.04 (0.51) 

2020: 0.00 (0.94) 

2021: -0.07 (0.61) 

ICima: -0.02 (0.88) 

Raso: -0.03 (0.74): 

Sal: -0.00 (0.91) 

3.97 (0.06) 1.00 (<0.001) 1.94 

(0.002) 

44.46 

(<0.001) 

48.7 574 

Prop. 

Active 

Non-

Breeding 

Day 0.25 (<0.001) 0.08 (<0.001) 2019: -0.01 (0.19) 

2020: -0.06 (<0.001) 

2021: -0.09 (<0.001) 

ICima: 0.01 (0.99) 

Raso: 0.01 (0.96) 

Sal: 0.01 (0.77) 

6.67 

(<0.001) 

2.90 

(<0.001) 

 35.50 

(<0.001) 

36.2 5684 

Twilight 0.64 (<0.001) 0.04 (<0.001) 2019: -0.01 (0.35) 

2020: -0.04 (<0.001) 

2021: -0.12 (<0.001) 

ICima: -0.02 (0.76) 

Raso: -0.07 (0.48) 

Sal: -0.01 (0.67) 

6.68 

(<0.001) 

6.62 (<0.001)  35.34 

(<0.001) 

41.0 5684 

Night 0.02 (0.06) 0.02 (<0.001) 2019: 0.01 (0.006) 

2020: 0.00 (0.98) 

2021: -0.01 (0.20) 

ICima: -0.01 (0.77) 

Raso: 0.01 (0.66) 

Sal: 0.00 (0.87) 

7.20 

(<0.001) 

6.66 (0.001) 1.01 

(<0.001) 

34.72 

(<0.001) 

26.8 5684 

Prop. 

Active 

Inward 

Migration 

Day 0.35 (<0.001)  2019: 0.00 (0.97) 

2020: -0.04 (0.18) 

2021: 0.07 (0.35) 

ICima: -0.09 (0.11) 

Raso: 0.05 (0.65) 

Sal: -0.02 (0.51) 

0.00 (0.99) 3.36 (<0.001)  37.67 

(<0.001) 

40.8 540 

Twilight 0.76 (<0.001)  2019: -0.03 (0.32) 

2020: -0.05 (0.10) 

2021: -0.12 (0.21) 

ICima: -0.02 (0.80) 

Raso: 0.13 (0.41) 

Sal: 0.02 (0.63) 

3.61 

(<0.001) 

2.58 (<0.001)  40.69 

(<0.001) 

57.0 540 

Night 0.13 (<0.001)  2019: -0.03 (0.18) 

2020: -0.10 (<0.001) 

2021: -0.04 (0.60) 

ICima: 0.01 (0.86) 

Raso: -0.02 (0.84) 

Sal: 0.01 (0.82) 

0.00 (0.46) 1.00 (<0.001) 3.42 

(<0.001) 

43.32 

(<0.001) 

58.1 540 
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Population-level habitat tracking  

 

We found that the primary productivity, sea surface temperate, air density and Secchi disk 

depth of tropicbird non-breeding areas changed seasonally (Figure 4, Table 5). Moreover, 

tropicbirds which initiated migration in the spring selected non-breeding areas with particularly 

cooler temperatures and higher air density, while those that initiated migration in the spring 

selected areas with higher sea surface temperatures and lower air density, effectively 

attenuating the impacts of seasonality in these variables. Moreover, the three resident 

individuals occupied an area with higher primary productivity than the simulations (Figure 4, 

Table 5).  

Table 5. Output of Generalized Additive Models of the effects comparing oceanographic 

conditions within the real and simulated non-breeding areas. P-values of non-linear 

relationships (effective degree of freedom, edf) and of parametric coefficients in parentheses. 

Significant values are in bold. 

 

 

 

 

Response Parametric coefficients Non-linear Deviance 

explained 

n 

Intercept real/simulation 

(simulation) 

DOY start migration 

Primary productivity 257.37 (<0.001) 23.02 (0.10) Real: 2.10 (0.003) 

Simulation: 6.28 (<0.001) 

7.54 12348 

SST 298 .23 (<0.001) -0.17 (0.38) Real: 2.51 (0.002) 

Simulation: 7.01 (<0.001) 

28.90 10245 

Air density 1.18 (<0.001) 0.00 (0.70) Real: 2.40(<0.001) 

Simulation: 6.84 (<0.001) 

21.00 12348 

Secchi disk depth 34.77 (<0.001) -0.47 (0.65) Real: 1.30 (0.03) 

Simulation:2.65 (<0.001) 

6.71 625 
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Figure 4.Seasonality of the mean oceanographic conditions (primary productivity, SST, Secchi disk dept and air density) in the core non-breeding 

areas of Red-billed Tropicbirds during the true non-breeding period (red) and simulated non-breeding periods (blue) and the difference between 

the two (bottom row in orange with a 95% confidence interval) The relationship of the top row is extracted from a generalized additive model of 

the mean oceanographic condition in relation to the day of the year (DOY) of the initiation of migration. The mean estimated smoothing functions 

are shown in solid lines with upper and lower confidence intervals at two standard errors above and below the mean (shaded area). We also present 

the raw data points of the mean oceanographic conditions in the true (red) and simulated (blue) kernels. Simulated points coloured by the absolute 

difference in days between the start of the true non-breeding period and the simulated non-breeding period. The difference between the curves 

(orange) is considered significant for dates when the 95% confidence does not cross zero. 
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Niche-tracking at the individual level  

 

We found that tropicbirds experienced distinct oceanographic conditions during the breeding 

and non-breeding periods (Table 6). Although the differences were considered significant, the 

effect size of for sea surface temperature and air density were nearly negligeable, while those 

of primary productivity and Secchi disk depth were more important. We found that the primary 

productivity experienced during the breeding season was much higher than that of the non-

breeding season, except in the case of resident individuals. Moreover, we found that the Secchi 

disk depth was greater in the non-breeding period, indicating clearer waters.  

Table 6. Comparison of the mean environmental conditions tropicbirds experienced during the 

breeding and non-breeding period, showing the results of a t-test comparing the two. 

Oceanographic Variable Breeding 

(mean ±SD) 

Non-breeding 

(mean ±SD) 

t-value df p-value 

Primary productivity 719.07±110.49 246.68±77.25 45.28 294 <0.001 

SST 297.24±1.39 297.74±1.74 -2.92 319.97 <0.001 

Air density 1.18±0.01 1.19±0.01 -3.99 312 <0.001 

Secchi disk depth  17.91±1.20 35.09±4.63 -37.83 125 <0.001 

 

When comparing the oceanographic conditions experienced during the breeding and non-

breeding periods, we found that, in general, the relationship follows what would be expected 

in a seasonal environment (Table 7, Figure 5,6). For example, birds that nested in the Cabo 

Vede wet season and, thus, experienced high sea surface temperatures and low air density in 

the breeding season, migrated during the dry season and experience lower sea surfaces 

temperatures and higher air density in the non-breeding seasons. The same pattern continued 

with primary productivity, although the variability in primary productivity experienced during 

the non-breeding period was much lower to that of the breeding period. The relationship with 

Secchi disk depth was somewhat complex, with individuals which experience both low or high 
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secchi disk depth during the breeding period, experiencing higher secchi disk depth during the 

non-breeding period.  

Table 7. Output of Generalized Additive Models of the relation of oceanographic conditions 

experienced during the breeding season and non-breeding season in Red-billed Tropicbirds. P-

values of non-linear relationships (effective degree of freedom, edf) and of parametric 

coefficients in parentheses (estimates). Significant values are in bold. Sample sizes are also 

given since these varied based on the variable. 

 

 

Figure 5. Relationships extracted from General Additive Models between the mean 

oceanographic conditions from 50%KDE of breeding and non-breeding areas of Red-billed 

Tropicbirds. The mean estimated smoothing functions are shown in solid lines with upper and 

lower confidence intervals at two standard errors above and below the mean (shaded area). We 

also present the raw data points of the oceanographic condition experience by individuals 

during their breeding and non-breeding periods. 

Response Parametric coefficients 

(est) 

Non-linear (edf) Deviance 

explaine

d 

n 

Intercept Oceanographic variable breeding  

Primary productivity 

non-breeding 

472.48 (<0.001) Primary productivity breeding 

2.87 (<0.001) 

42.20 166 

SST non-breeding 297.74 (<0.001) SST breeding:  

4.40 (<0.001) 

52.70 169 

Air density non-

breeding 

3.75 (<0.001) Air density breeding:  

3.75 (<0.001) 

36.70 169 

Secchi disk depth 

non-breeding 

35.15(<0.001) Secchi disk depth breeding 

4.92 (<0.001) 

70.80 110 



 

200 

 

200 

 

 

Figure 6. Mean oceanographic conditions from 50% KDE of breeding (red) and non-breeding 

(dark cyan) areas of Red-billed Tropicbirds in relation to the day of the year of initiation of 

migration. Values from the same individual during the breeding and non-breeding periods are 

linked. We also present the mean values of simulated non-breeding areas (cyan). 
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DISCUSSION 

 

We found that almost all Red-billed Tropicbirds were migratory, with only two individuals 

remaining resident in Cabo Verde waters year-round. This finding starkly contrasts the 

previous belief that the species was generally resident (Orta et al., 2020). Of those that 

migrated, we found seasonal patterns in the non-breeding areas used, with dry season breeders 

using the central Atlantic to the north of Cabo Verde, while wet season breeders migrated to 

the west of Cabo Verde. Despite these seasonal differences, the distance to non-breeding areas 

remained similar year-round, and other potential sources of variability such as sex, island, year, 

previous breeding success, or bird size did not explain the spatial patterns. Moreover, we found 

that tropicbirds that initiated migration in the fall spent a higher proportion of time in flight 

during twilight than those that initiated migration in the spring, potentially alluding to seasonal 

differences in foraging behavior during the non-breeding season. Given the variability of 

environmental conditions during the non-breeding and breeding seasons, we suggest that these 

shifts in the non-breeding area allow tropicbirds to avoid seasonal extremes in SST and air 

density, indicating consistent population-level habitat preferences year-round. 

By modifying their non-breeding areas seasonally, tropicbirds appear to remain within a 

preferred range of SST (from ~ 21-28 °Celsius) and air density (~1.16- 1.20 kg/m3) year-round. 

Both SST and air density are known to influence the distribution and foraging behavior in 

seabirds (e.g. Shepard et al., 2023; Tremblay et al., 2009), however, they are strongly 

negatively correlated, making inferences about their unique relationships complicated. Since a 

larger volume of seabird research has focused on the effects of SST, we will also focus on the 

range of SST for this discussion, although it is important to keep in mind the relationship 

between the two variables. For SST, this range is similar to what has been found in the foraging 

areas of Red-billed Tropicbirds during the breeding season in St-Eustatius (Madden et al., 
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2022), Senegal (Diop et al. 2018) and St-Helena (Diop et al., 2018) and, in Mexico, breeding 

stops during summer months, when SST reaches over 30°C (Hernández-Vázquez et al., 2018), 

suggesting that this may be the thermal range for this species. If this is the case, tropicbirds 

may modify their non-breeding distributions to remain within this preferred range, suggesting 

population or even species-level habitat preferences.  

However, since this range of SST and air density is available within the breeding area year-

round, niche tracking cannot be the primary driver of migration in Red-billed Tropicbirds. This 

is consistent with the findings of (Lambert & Fort, 2022), who, in a review of seabirds, found 

that migratory status was not related to the unavailability of favorable conditions at the 

breeding or non-breeding grounds, concluding that niche availability cannot be the main driver 

of migration in seabirds.  

An alternative driver of migration is competition. In other partial migrants, nest occupancy, 

sex, and body condition were shown to predict migratory status (e.g., Fayet et al., 2017; C. 

Pérez et al., 2014; Pettex et al., 2017), suggesting that individuals are driven to migrate through 

competitive exclusion. Although we found no effect of typical delineators of intraspecies 

competition (sex, body size, breeding success) on migratory distance, future studies 

incorporating more resident Red-billed Tropicbirds may help shed light on whether some of 

the within-season variability of non-breeding areas is driven by competitive exclusion. As 

solitary foragers and specialists in finding prey in nutrient-poor and unpredictable 

environments, tropicbirds may be highly sensitive to intra and inter-specific competition 

(Ashmole, 1971; Spear & Ainley, 2005; Stonehouse, 1962). 

Moreover, we found that breeding and non-breeding areas had drastically different values of 

primary productivity and visibility, suggesting that a certain level of niche switching occurs 

between phenological periods, as in several other species (e.g., Lambert & Fort, 2022; 
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Martínez-Meyer et al., 2004; Nakazawa et al., 2004; Quillfeldt et al., 2020). This may also 

suggest that these are not important indicators of suitable habitat for tropicbirds. In previous 

studies on this species, chlorophyll a, as a measure of resource availability related to primary 

productivity, had variable effects on tropicbird foraging behavior. Foraging was related to high 

chlorophyll a concentration in St-Eustatius (Madden et al., 2022), while it was related to 

intermediate chlorophyll a concentration in Senegal (Diop et al., 2018). This suggests that 

productivity may not be an important predictor of tropicbird movements at a species level. 

With repeat tracking, we also found that the non-breeding area used by individuals was often 

similar from year to year, and birds that migrated around the same time of year also used similar 

areas. These findings are similar to those of a recent study of asynchronously breeding tropical 

gadfly petrels (Franklin et al., 2022a) and suggest that familiarity with non-breeding areas may 

be more beneficial than tracking specific conditions in a tropical system where resources are 

patchy and unpredictable (Ashmole, 1971; McNamara & Dall, 2010; Weimerskirch, 2007). 

However, since individuals who departed closer together in time used more similar non-

breeding distributions, it is possible that oceanographic conditions at departure, such as SST 

and air density, also influenced individual non-breeding distributions, resulting in more overlap 

when individuals migrated simultaneously.  

The seasonal patterns in the proportion of time active during the day, night, and twilight follow 

a similar pattern to what was observed during the breeding period (this thesis chapter 2). In 

both cases, there is a peak in activity during twilight around April. This suggests that the driver 

of this seasonal change, potentially a peak in squid availability (this thesis chapter 2), acts on 

individuals in both the breeding and non-breeding seasons.  
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In addition to seasonal patterns, we also found that the proportion of time active during day, 

night, and twilight varied between phenological stages and, in the case of night, with moon 

fraction. The proportion of time spent active generally decreased during the outward migration 

and non-breeding period and increased again during the inward migration. This pattern is 

similar to that found in a recent review of the activity patterns of seabirds during migration and 

the non-breeding period (Bonnet-Lebrun et al., 2021). Seabirds spend more time in flight 

during migration, prioritizing displacement to non-breeding areas over other activities. 

Moreover, in the non-breeding period, tropicbirds may spend less time active while molting. 

Although little is known about tropicbird molt, (Stonehouse, 1962) suggested that Red-billed 

Tropicbirds undergo prebasic molt in 19 to 29 weeks, finishing before courtship, and that 

individuals who returned to the colony after a shorter than usual non-breeding period often 

returned with flight feathers in various stages of growth, suggesting that molt is mainly 

concentrated in the non-breeding period. Since molt impedes flight efficiency, it is generally 

avoided during migration (Ramos et al., 2009). Moreover, we also found that in all 

phenological stages, the proportion of time active during the night increases with the moon 

fraction, suggesting that tropicbirds may travel or even forage at night if light conditions are 

sufficient. These findings are consistent with those of (Bonnet-Lebrun et al., 2021), who found 

that several seabird species also increase the proportion of time in flight during the full moon, 

suggesting that this may be a common feature across many seabird species.  

In a changing environment, the ability of tropicbirds to shift their non-breeding areas to track 

ideal conditions suggests adaptability in the face of change. However, as central place foragers 

during the breeding season, a strict SST and air density range may eventually restrict the 

breeding season of tropicbirds in Cabo Verde as it does in Mexico (Hernández-Vázquez et al., 

2018). Moreover, a recent review (Orgeret et al., 2022) found that tropicbirds have a relatively 

narrow thermal tolerance, making them more sensitive to climate change-induced 
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environmental shifts. A closely related species, the White-tailed Tropicbird (Phaethon 

lepturus), is already experiencing climate-induced phenology shifts (Campioni et al., 2023), 

suggesting that tropicbirds may be more sensitive to environmental change than previously 

thought.  

CONCLUSIONS 

 

Our results provide some of the first in-depth knowledge on the seasonal variation in the non-

breeding areas of a tropical seabird species, suggesting seasonality in tropical systems may be 

a more potent driver of the non-breeding movements of top predators than previously thought. 

The individual consistency in the migratory areas suggests that either familiarity with the non-

breeding areas or niche tracking drives these seasonal patterns. These seasonal differences 

suggest that tropicbirds with different phenologies may be exposed to various environmental 

conditions and human-associated impacts, with potentially important consequences for 

breeding success and survival (Fayet et al., 2017).  
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SUPPLEMENTARY MATERIAL 

 

S1. Biometric measurements and calculation of the index of tropicbird skeletal body size 

 

To calculate an index of tropicbird skeletal body size, we collected the biometric measurements 

of GLS tracked birds (wing length, tarsus length, bill depth, culmen and head-bill length; Table 

1) opportunistically during nest monitoring. We then normalized the biometric measurements 

and conducted a principal component analysis (PCA) to generate a composite measure of 

skeletal size (e.g., Benson, Suryan, & Piatt, 2003). The first principal component explained 

38.52 % of the variance and was negatively related to all individual loadings of biometric 

measurements (wing: -0.25, culmen: -0.61, bill height; -0.28, head-bill: -0.62 and tarsus -0.30). 

To facilitate interpretation, we inverted the factor of body size by multiplying it by -1, so that 

higher values represent larger birds.  

Table.1 Description of biometric measurements taken from Red-billed Tropicbird chicks and 

adults. 

Metric Description 

wing length flattened wing length from the carpal joint to the tip of the longest 

primary. Measured using a ruler to the nearest 1 mm. 

tarsus length tarsus length from the distal point of the inter-tarsal joint to the 

foot.  Measured using a calliper to the nearest 1 mm. 

bill depth Perpendicular length from the top to the bottom of the bill starting at 

the junction with the skull.  Measured using a calliper to the nearest 

1 mm. 

culmen length from the base of the skull to the tip the bill. Measured using a 

calliper to the nearest 1 mm. 

head-bill 

length 

bill trip to the posterior ridge formed by the 

parietal-supraoccipital junction. Measured using a calliper to the 

nearest 1 mm. 
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S2. Model outputs of seasonal patterns in non-breeding areas, overlap and activity with 

sex and breeding success.  

 

Table 1.  Model outputs of seasonal patterns in non-breeding areas including categorical 

variables for sex and previous breeding success. Model output of GAMMs P-values in 

parenthesis. DOY=day of year 

 

Table 2. Model outputs of seasonal patterns in non-breeding area overlaps including 

categorical variables for sex and previous breeding success. Model output of GAMMs P-values 

in parenthesis. DOY=day of year 

Response Parametric coefficients Non-

linear 

Random 

Intercept 

Devianc

e 

explaine

d 

N 

Intercept Sex 

(Male) 

Breeding 

success 

(success) 

Body 

Size 

Year 

(2018) 

Island 

(Boavista) 

DOY ring 

Latitude 17.08 (0.04) 0.76 (0.81) -1.59 

(0.29) 

-0.06 

(0.95) 

2019: 1.53 (0.37) 

2020: 3.54 (0.19) 

2021: -3.98 (0.24) 

Sal: 1.84 

(0.61) 

 

1.69 

(0.64) 

21.36 (0.03) 99.8 33 

Longitude -44.98 

(<0.001) 

4.67 (0.28) 1.99 (0.35) 0.85 

(0.52) 

2019: 1.74 (0.50) 

2020: 0.53 (0.86) 

2021: -10.60 (0.08) 

Sal: 5.41 

(0.23) 

0.00 

(0.90) 

21.29 

(0.005) 

99.3 33 

Distance 2268.83 

(<0.001) 

-531.11 

(0.11) 

-95.65 

(0.63) 

-105.69 

(0.30) 

2019: 11.56 (0.96) 

2020: 138.95 (0.65) 

2021: 882.72 (0.10) 

Sal: -248.29 

(0.45) 

0.00 

(0.90) 

19.45 

(0.005) 

97.9 33 

Respo

nse 

Parametric coefficients Non-linear Devi

ance 

expla

ined 

N 

Intercept Sex 

(Female) 

Success 

(Failure) 

Same year Same 

island 

Same 

individual 

partners Diff 

DOY 

Mont

h 

Overl

ap 

0.42 

(0.10) 

Male: -0.24 

(0.24) 

Mix: -0.19 

(0.35) 

Success: 0.18 

(0.40) 

Mix:0.29 (0.16) 

0.10(0.49) 0.02 

(0.87 

0.99 (0.30) 0.14 

(0.85) 

1.08 

(<0.001) 

- 2.75 51

12 

Overl

ap 

-1.26 

(0.09) 

Male: 1.37 

(0.10) 

Mix: 1.29 

(0.07) 

Success: 0.47 

(0.42) 

Mix: 0.47 

(0.40) 

0.90 (0.02) -0.08 

(0.83) 

2.35 (0.08) -63.25 

(1.00) 

- 1.70 

(0.04) 

8.49 40

2 
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Table 3: Models of the proportion of time activity during day, night and twilight in the different stages of migration with Sex and Breeding success 

showing no significant effects of these variables. 

Model Timing Parametric coefficients Non-linear Random Deviance 

explained 

N 

Intercept Sex 

(Male) 

Breeding 

success 

(success) 

Year 

(2018) 

Island 

(Boavista) 

DOY Prop 

complete 

Moon 

fraction 

ring 

Prop. 

Active 

Outward 

Migration 

Day 0.37 

(<0.001) 

-0.05 

(0.16) 

-0.00 (0.95) 2019: 0.01 (0.75) 

2020: -0.01 (0.83) 

2021: -0.04 (0.65) 

ICima: 0.00 (NA) 

Sal: -0.01 (0.79) 

 

0.00 

(0.49) 

2.89 

(<0.001) 

 16.60 

(<0.001) 

41.9 233 

Twilight 0.79 

(<0.001) 

0.01 

(0.78) 

0.02 (0.52) 2019: 0.03 (0.46) 

2020: 0.08 (0.10) 

2021: -0.16 (0.18) 

ICima: -0.00 (NA) 

Sal: -0.09 (0.09) 

5.08 

(0.05) 

1.00 

(<0.001) 

 16.92 

(<0.001) 

69.1 233 

Night 0.05 (0.21) -0.01 

(0.70) 

0.05 (0.08) 2019: 0.05 (0.10) 

2020:0.06 (0.16) 

2021:0.00 (NA) 

ICima: -0.02 (0.81) 

Sal: -0.00 (0.90) 

0.00 

(0.54) 

1.25 

(<0.001) 

1.67 

(0.02) 

18.34 

(<0.001) 

58.2 233 

Prop. 

Active 

Non-

Breeding 

Day 0.24 

(<0.001) 

0.04 

(0.28) 

0.05 (<0.001) 2019: -0.01 (0.08) 

2020: -0.05 (<0.001) 

2021: -0.09 (0.01) 

ICima: 0.01 (0.92) 

Sal: -0.02 (0.62) 

4.88 

(<0.001) 

3.21 

(<0.001) 

 30.42 

(<0.001) 

354.6 4844 

Twilight 0.65 

(<0.001) 

0.01 

(0.85) 

0.02 (0.17) 2019: -0.01 (0.30) 

2020: -0.04 (0.003) 

2021: -0.16 (<0.001) 

ICima: 0.03 (0.71) 

Sal: -0.00 (0.95) 

6.70 

(<0.001) 

5.22 

(<0.001) 

 30.25 

(<0.001) 

39.5 4844 

Night 0.01 (0.56) 0.00 

(1.00) 

0.02 (<0.001) 2019: 0.01 (<0.001) 

2020:0.00 (0.53) 

2021: -0.01 (0.35) 

ICima: 0.03 (0.25) 

Sal: -0.01 (0.38) 

7.34 

(<0.001) 

5.98 

(<0.001) 

1.22 

(<0.001) 

29.93 

(<0.001) 

27.5 4844 

Prop. 

Active 

Inward 

Migration 

Day 0.29 

(0.002) 

0.00 

(0.97) 

-0.02 (0.65) 2019: 0.04 (0.55) 

2020:0.01 (0.89) 

2021: 0.21 (0.17) 

ICima: -0.20 (0.17) 

Sal: 0.01 (0.66) 

1.39 

(0.12) 

2.33 (0.005)  12.66 

(<0.001) 

39.4 223 

Twilight 0.79 

(<0.001) 

-0.11 

(0.06) 

-0.05 (0.46) 2019: 0.05 (0.65) 

2020: -0.04 (0.67) 

2021: 0.20 (0.34) 

ICima: -31 (0.12) 

Sal: 0.02 (0.80) 

4.21 

(0.02) 

2.49 

(<0.001) 

 12.64 

(<0.001) 

52.0 223 

Night 0.11 (0.36) -0.04 

(0.49) 

-0.01 (0.91) 2019: -0.01 (0.92) 

2020: -0.13 (0.11) 

2021: 0.06 (0.76) 

ICima: -0.09 (0.61) 

Sal: 0.08 (0.27) 

3.31 

(0.27) 

1.00 

(<0.001) 

1.83 

(0.01) 

14.77 

(<0.001) 

61.1 223 
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S3. Effect of year and island on latitude, longitude and distance 

 

 

S3. Effects of year and island on the latitude, longitude and distance of the centroid of 

tropicbird core non-breeding areas. Numbers indicate sample sizes. 
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ABSTRACT 

 

Carry-over effects, whereby events in one season affect individual success in subsequent 

seasons, often result in changes in phenology. In regions with pronounced seasonality, these 

adjustments can lead to mismatches between breeding timing and optimal environmental 

conditions, consequently reducing individual fitness. In tropical regions with less marked 

seasonal resource fluctuations, species may exhibit higher phenological flexibility, 

potentially buffering carry-over effects and enhancing their resilience to environmental 

changes. However, this hypothesis lacks substantiation, as it remains unclear whether the 

observed phenological variations in the tropics stem from individual-level plasticity or 

population-wide responses of non-plastic individuals. Using a combination of nest 

monitoring and GLS tracking, we examined the year-round breeding and migration 

phenology, breeding success, and recruitment of Red-billed Tropicbirds (Phaethon 

aethereus) in Cabo Verde from 2017 to 2024. Our aim was to investigate the underlying 

mechanism of phenological variability in tropicbirds to understand how they may cope with 

carry-over effects and future environmental change. Specifically, we investigated whether 

their phenology is 1) correlated between cyclical life-history events, 2) repeatable at the 

individual level, and 3) heritable. Our study involved the observation of repeated breeding, 

migratory, and recruitment events from 501, 45, and 27 adults, respectively, for two to six 

consecutive years. We found high population-level variability in breeding and migration 

timings, while individuals maintained remarkably consistent year-round phenology across 

subsequent years. Interestingly, the repeatability of migration was higher than that observed 

in species breeding in temperate climates. Despite some variability in the onset of migration, 

the timing of return to the colony was largely independent of the previous breeding success, 
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although it was delayed if a successful re-nesting event occurred (by 55.06±12.72 days). 

Moreover, the duration of the breeding interval did not affect subsequent success, but a delay 

in incubation date in respect to that of the previous year resulted in lower breeding success. 

Moreover, we found evidence of heritable phenology, with recruits returning to breed around 

the same time as when they fledged. Our findings suggest that long-lived tropical species 

may be more vulnerable to environmental change than previously thought, as population-

wide responses cannot rely solely on individual-level plasticity. 
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INTRODUCTION 

 

Understanding the drivers of phenology, the timing of life history events, and how 

phenological flexibility relates to individuals’ fitness is crucial for predicting how 

populations will adapt to changing environmental conditions (Acácio et al., 2022; Gilroy et 

al., 2016; Lameris et al., 2018; Van Bemmelen et al., 2017). In animals this often requires an 

insight into how differences in behavior relate to individual fitness throughout the annual 

cycle (Acácio et al., 2022; O’Connor & Cooke, 2015). Events and processes experienced 

previously can have causal effects on individuals’ fitness in subsequent seasons (Harrison et 

al., 2011; Norris, 2005; Norris & Marra, 2007). As such, unfavorable conditions during one 

part of the cycle may hamper an individuals’ fitness in later parts of their cycle, despite the 

presence of seemingly favorable conditions (O’Connor & Cooke, 2015). These residual non-

lethal effects, also known as ecological carry-over effects, have been shown to have 

surprisingly long-lasting repercussions, which may even persist after periods of apparent 

recovery (O’Connor & Cooke, 2015). Therefore, understanding the influence of carry-over 

effects on individual fitness and population dynamics is a key aspect of species ecology 

(Norris & Marra, 2007). 

Carry-over effects have primarily been studied in migratory species, in which individuals 

experience and depend on a series of vastly different environmental conditions throughout 

their life cycle (Norris & Marra, 2007; O’Connor & Cooke, 2015). In these species, 

reproductive success may influence the timing and destination of subsequent migrations 

(Catry et al., 2013; Méndez et al., 2022; Mitchell et al., 2012), and conditions encountered 

during non-breeding periods may influence individuals’ subsequent reproductive success 



 

221 

 

221 

 

(Harrison et al., 2011; Norris & Marra, 2007). However, studies investigating these 

differences have almost exclusively focused on migratory birds breeding in temperate 

climates, leaving little known about the mechanisms of carry-over effects in species with 

primarily tropical distributions. 

In species with non-tropical distributions, the seasonality of resources predominantly 

mediates the phenology of migration (Emmenegger et al., 2014; Monteith et al., 2011) and 

breeding of individuals (Lany et al., 2016; Meltofte et al., 2007). Conversely, tropical species 

rely on resources with less marked seasonal fluctuations compared to those found at higher 

latitudes (de Araujo et al., 2017; Nurul-Ain et al., 2017). For species that rely on less 

spatiotemporally predictable resources, individuals are expected to show higher levels of 

phenological flexibility (Franklin, et al., 2022a). Indeed, the breeding phenology of many 

tropical species is quite variable, with many species breeding asynchronously (e.g., Medrano 

et al., 2022; Oosthuizen et al., 2023) or even year-round (e.g., Franklin et al., 2022a; 

Stonehouse, 1962). In some extreme cases, phenology and seasonality are completely 

decoupled, with individuals breeding sub-annually once a particular quorum is reached (e.g., 

Reynolds et al., 2014; Stonehouse, 1962). If tropical species have higher flexibility in their 

phenology, they may be able to buffer, within physiological limitations, carry-over effects 

by adjusting their reproductive cycles according to experiences in the previous breeding 

seasons. In turn, this phenological flexibility may help them handle environmental changes, 

particularly those related to climate change. However, this hypothesis remains largely 

unconfirmed as it relies on whether the observed population-wide flexibility in phenology 

stems from individual adaptability. To gain insight into whether observed phenological 

variability in tropical systems is driven by individual plasticity or population level responses, 
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individual repeatability, or the proportion of observed variance attributable to among‐

individual differences can be quantified (Stoffel et al., 2017). However, to date, there are 

very few studies on phenological repeatability in tropical species. A recent meta-analysis on 

the repeatability of avian migration phenology identified a single study site in the tropics out 

of 54 studies with suitable information on migratory timings (Franklin et al., 2022b). 

Moreover, two recent studies on tropical species have found very low individual phenological 

flexibility despite population-wide asynchrony in breeding (Franklin et al., 2022a; 

Oosthuizen et al., 2023), suggesting that individual repeatability of phenology might be more 

common in tropical systems than previously thought.  

Understanding the underlying driver of phenological variability within a population may be 

particularly important considering climate change. In polar and temperate environments, 

prolonged periods of warming have advanced important life cycle events or shifted the 

geographical ranges of a wide array of animal species (Ambrosini et al., 2019; Gordo, 2007; 

Gunnarsson & Tómasson, 2011; Orgeret et al., 2022; Sydeman et al., 2015). Population-level 

phenological shifts arise from individual responses to changing conditions (individual 

plasticity, e.g. Przybylo et al., 2000; Sauve et al., 2019) and/or from or via changes in 

population structure that may then shape trait distributions (selection causing micro-

evolutionary changes, e.g. Acker et al., 2023; Moiron et al., 2024). Whether these shifts are 

driven by individual plasticity or selection, they can impact the effectiveness of change. On 

the one hand, individual plasticity allows populations to adapt rapidly to change and may be 

beneficial in stochastic environments if the climatic cues for the event or conditions are loyal 

predictors of its occurrence (i.e., phenological sensitivity). On the other hand, individual 

plasticity cannot lead to the same level of efficiency as selection-induced specialization 
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(DeWitt et al., 1998). These mechanisms, however, are non-exclusive (Grenier & Litrico, 

2016), and, in the face of climate change, individual plasticity is expected to buffer some of 

the effects of the fast-changing environment, while selection (a slower mechanism) 

eventually takes hold if the trait under selection is heritable. Moreover, individual plasticity 

can ensure that more genetic diversity is maintained after selection takes place, allowing 

species to continue to adjust rapidly to future changes (Gienapp et al., 2014). Identifying the 

mechanisms through which phenological shifts occur may be vital in predicting the effects 

of rapid environmental change on declining species (Knudsen et al., 2011). Therefore, 

examining phenology's repeatability and heritability give insights into how a species may 

respond to rapid change. 

Here, we investigate the underlying mechanism of phenological variability in a tropical 

marine top predator, the Red-billed Tropicbird (Phaethon aethereus), to shed light on how 

this species may adapt to carry-over effects and changes in environmental conditions. By 

studying the year-round phenology, breeding success, and recruitment of Red-billed 

Tropicbirds using a combination of nest monitoring and GLS tracking, we determine whether 

phenology is 1) affected by connections between cyclical life-history events, 2) repeatable at 

the individual level, 3) a heritable trait.  

Overall, the variability in breeding timing can enhance the resilience and adaptability of a 

population. However, if tropicbirds have low individual repeatability in their phenology, we 

expect that they will (at least initially) buffer carry-over effects and respond to environmental 

change with individual plasticity in behavior, which would, in theory, allow them to track 

climate change-induced shifts. Phenotypic plasticity may be especially important in long-

lived species with low fecundity, such as Red-billed Tropicbirds since micro-evolutionary 
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change is especially slow in species with longer generation times (Charmantier & Gienapp, 

2014; Forcada et al., 2008; Gienapp et al., 2014). If tropicbirds exhibit high individual 

repeatability in phenology and this trait is heritable, they may lack the plasticity to buffer 

carry-over effects and environmental changes, implying that micro-evolutionary adjustments 

at the population level may occur.  
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METHODS 

 

Study site 

 

Data was collected in seven colonies, spread across two islands (Sal and Boavista) and two 

islets (Raso and Cima) in Cabo Verde, West Africa (Figure 1). At all sites, Red-billed 

Tropicbirds (Phaethon aethereus) were nesting in cavities in cliffs or under rock piles in areas 

with little or no vegetation cover. The climate at the study-sites is arid from December to 

June, with a wet season from July to November (Neto et al., 2020) with a peak in precipitation 

from August to October (Neves et al., 2017).  

 

 

Figure 1. Study sites in Cabo Verde. Circles represent Red-billed Tropicbird colonies on Sal 

and Boavista islands and the uninhabited islets of Raso and Cima. Also shown are histograms 

of the number of fieldwork days per month per colony, as an indicator of nest monitoring 

effort. Note that the histograms do not include the fieldwork days related to the deployment 

and recovery of two geolocators in Raso in 2008 (both recovered in 2009). 
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Breeding phenology from nest monitoring  

To monitor tropicbird breeding phenology, success, and recruitment, the contents of 

tropicbird nests were recorded between 2017-2024.Although many nests were visited every 

1-3 days throughout the study period, some colonies were only visited monthly, and 

fieldwork on Raso was limited to the winters of 2008, 2009, 2017 and 2018. At each nest 

visit, the contents of the nest were recorded (empty, chick/egg, and whether there was an 

adult or not) and, upon first capture, we attached an individually numbered metal ring 

(identification ring) to the tarsus of adult and chick, for its later identification. Recruitment 

to the colony was identified by the recapture of an individual that was originally ringed as a 

chick post fledging. Whenever possible, 1ml of blood was also drawn from the tarsus of 

individuals, for molecular sexing (Griffiths et al., 1998). Since monitoring was inconsistent 

at certain times of the year and at more isolated nests, data on breeding phenology (laying, 

hatching and fledging date) and success (hatching success and fledging success) were only 

used in analysis when the window of uncertainty for these data was less than 30 days. When 

only one or two of the three breeding phenology dates were known, the unknown date(s) 

was(were) estimated based on adding/ subtracting the population means of incubation (41±5 

days, n=27) or chick-rearing period (84±5 days, n=25) of nests with no uncertainty to/from 

the known phenological date with the smallest window of uncertainty. 
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Geolocation deployment and recovery 

We deployed 133 Migrate Technology Ltd C330 and 2 Biotrack BAS_MK19 light-level 

geolocators (GLS) on 113 different individuals on Red-billed Tropicbirds breeding on Raso 

in 2008-2009 and at the remaining study sites between 2017-2021. Breeding individuals were 

captured whilst on the nest using noose-poles and GLS were attached with cable-ties to their 

metal identification ring. Devices were opportunistically recovered in subsequent years. The 

total tag weight of the GLS used was approximately 3.3g (0.5% of tropicbird mean tropicbird 

weight 630g±55, n=1297 individuals). During both deployment and recovery of GLS, birds 

were handled for the shortest time possible and immediately released back on to their nest 

after handling. Migrate Technology GLS recorded light intensities every minute, maximum 

light intensities every five minutes and conductivity (salt-water immersion data) every six 

seconds, while Biotrack GLS recorded both light intensity and wetness every 10 minutes. All 

GLS underwent at least one pre-deployment calibration near colony sites at an unshaded 

known location for a minimum of 3 days (Lisovski & Hahn, 2012). Upon recovery, a single 

post-deployment calibration at a known site was performed. Data from all available pre- and 

post-deployment calibrations were used to estimate the corresponding average zenith angle 

for each deployment, using the designated software IntiProc© from Migrate Technology Ltd. 

In cases for which post-recovery calibration was not possible, due to battery failure or 

technical issues with GLS, pre-deployment calibrations alone were used to calculate zenith 

angles (n=15). For devices which were deployed on birds for multiple years, each seasonal 

migration was analysed separately.  
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GLS data processing 

We used the raw light-level data downloaded from recovered GLS to estimate the latitude 

and longitude of individuals each day, throughout the duration of the GLS deployment. This 

was done based on sunrise and sunset transitions identified with the function 

“preprocesslight”, using a light intensity threshold of 2, in the R package GeoLight (Lisovski 

et al., 2020; Lisovski & Hahn, 2012). This package was also used to visualise and manually 

repair sunrise and sunset transitions with evident interferences. A speed filter was applied to 

at-sea positions to remove points assumed to be erroneous due to speeds larger than the 95% 

percentile (Austin et al., 2003). For seasonal migrations, this corresponded to a speed of 17.19 

km/h. 

 

Breeding and migratory phenology from GLS data 

For GLS, phenological dates and breeding success were extracted based on the birds' position 

according to the GLS tracks, in conjunction with raw light and wet-dry data. To do this, we 

first created and inspected interactive maps of track for each seasonal migration, using the 

package Shiny (Chang et al., 2015). The dates of initiation of outward migrations and arrival 

to Cabo Verde waters were defined based on directional movements outside of a 500 km 

radius around colony of origin. This 500km cut off was selected to exclude the foraging range 

of tropicbirds during the breeding seasons (although tropicbirds in Cabo Verde have been 

recorded to travel up to 803 km from their colonies, the mean foraging trip 66.67±sd 88.85 

km is much smaller, this thesis Chapter 2) and based on the positional error associated with 

GLS tracks analysed with propGLS (~ 500 km for tropicbirds outside of equinox:(Halpin et 
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al., 2021). If individuals did not undertake any directional movements, they were considered 

residents, and the non-breeding period was defined based on the last and first daytime burrow 

visit (n=2, Table 1). For individuals returning to or leaving the colony within 20 days of the 

spring and autumn equinoxes, longitudinal positions alone were used to determine directional 

movement and proximity to colony (Lisovski & Hahn, 2012).  

The first and last day and night-time visits to the burrows, incubation bouts and the chick-

rearing period were extracted based on the raw light and wet-dry data. Since tropicbirds in 

Cabo Verde breed in burrows, burrow visits were distinguishable dry and dark periods during 

the day, and long dry periods overnight (S1). The first/last daytime burrow visit was 

considered as the first/last dry and dark period over 1h after/before the individual’s migration. 

The first/last night-time burrow visits were considered as the first/last night spent completely 

dry after-before migration. In cases for which no burrow visit was visible on the light-curve 

after the return migration, the day of GLS recovery was assumed to be the individuals’ first 

day at the colony (n=6). Incubation bouts were classified as periods corresponding to a 

minimum of 48h of darkness in dry conditions (incubation shifts in tropicbirds last on average 

6.04 ± 2.76 days; Beard et al. 2023). In cases in which additional incubation bouts were 

clearly visible in the wet-dry data but did not meet this set of criteria because of light 

infiltration into the burrow, the start and end of each incubation bout was added manually by 

inspecting each light-curve individually (S1). Individuals were assumed to be chick-rearing 

during the period between the last incubation bout and the last daytime visit at the colony.  

Pre-breeding periods were calculated based on the number of days between the return to 

Cabo Verde waters and the first burrow visit. Similarly, post-breeding periods were 

calculated based on the number of days between an individuals’ last daytime visit to the nest 
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in each breeding season and the onset of the subsequent migration. The duration of the non-

breeding period was calculated as the number of days between initiation of the outward 

migration and the first day in Cabo Verde waters. For further information on the extraction 

of phenological dates from GLS light curves see Table 1.  

Table 1. Extraction criteria used for obtention of phenological dates from GLS light curves 

and corresponding sample sizes. 

Phenological 

event 

Extraction criteria & sample size (n) Observations 

Outward 

migration 

Date individual starts directional movement away 

from colony, which is sustained for >3 consecutive 

days and followed by an absence from within a 500 

km radius of the colony for >60 days (n=156).  

For birds which did 

not migrate, the last 

day of nest activity 

was used to mark 

start of non-

breeding 

distributions (n=2). 

Arrival at non-

breeding 

ground 

Date individual ceases directional movement away 

from colony and sustains limited longitudinal and 

latitudinal shifts for >3 consecutive days, outside of 

a 500km radius around colony (n=156).  

 

Inward 

migration 

Date individual starts directional movement 

towards the colony, which is sustained for >3 

consecutive days and followed by a return to within 

a 500 km radius of the colony (n=156).  

For birds which did 

not migrate, the 

first day at colony 

was used to mark 

the end of non-

breeding 

distribution (n=2). 

 

Arrival at 

breeding 

ground 

Date individual returns to within 500km radius of 

colony (n=151). This date was also used to 

establish the season associated with the onset of the 

breeding period for individuals in any given year.  

Battery failure 

meant that this date 

was missing for five 

migrations  

First day at 

colony 

Date of first daytime visit to burrow visible on light 

curve and wet-dry data, after return to within 

500km radius of colony (n=82). This date marks 

the start of the pre-incubation period.  

When missing, 

GLS recovery date 

used instead (n=7).  

Onset of 

incubation  

Date of first period of >48h of darkness in dry 

conditions associated with a given breeding attempt 

(n=173). This date also marks the end of 

individuals’ pre-incubation periods and the start of 

their incubation period.   

Some individuals 

re-nested after 

initial breeding 

attempts fails 

(n=37).  
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End of 

incubation 

Date of last day of period of >48h of darkness in 

dry conditions associated with a given breeding 

attempt (n=74).  

For attempts which 

fail at egg-stage, 

this equals the last 

day of nest activity 

(n=4)  

Onset of chick-

rearing 

Date of first daytime visit to burrow visible on light 

curve, between the end of incubation and before the 

last day of nest activity for a given breeding attempt 

(n=90). 

The existence of 

this date indicates 

hatching success.  

Last night of 

nest activity 

Date of last overnight stay in the burrow visible on 

light curve after the onset of chick-rearing for a 

given breeding attempt (n=193). 

 

Last day of nest 

activity 

Date of last daytime visit to burrow visible on light 

curve after the onset of chick-rearing for a given 

breeding attempt (n=193). For attempts which 

failed at egg stage, this date equals the end of 

incubation. 

Individuals may re-

nest after initial 

breeding attempts 

fails (n=37). 

 

Breeding success from GLS data 

In the absence of nest monitoring data, we used GLS data to extract hatching success. Nests 

with GLS inferred incubation periods > 25 days followed by daytime nest activity, indicating 

chick-rearing, were deemed to have hatched successfully (n=7). The 25-day cut-off was 

derived from the Mean-2SD of GLS-derived successful incubation periods from nest with 

both monitoring and GLS data (40.93± 7.28, n=46). This is significantly shorter than the 

incubation period derived from the monitoring data for the same nests (44.75 ±6.64; paiRed-

t=2.83, df=45, p-value=<0.0.1. mean difference=3.80 days), since the GLS only recorded 

incubation periods from one adult, and thus did not capture additional incubation bouts from 

the partner. Moreover, we also classified one GLS-derived incubation period which lasted 

for 60 days as unsuccessful, as we assumed the egg was infertile.  

Similarly, we also used GLS data to extract hatching success in the absence of nest 

monitoring data. Nests with GLS inferred chick-rearing periods > 74 days were deemed to 
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have fledged successfully (n=22). The 74-day cut-off was derived from the Mean-2SD of 

GLS-derived successful chick-rearing periods from nest with both monitoring and GLS data 

(84.50± 5.24, n=14). Again, this is significantly shorter than the chick-rearing derived from 

the monitoring data for these same nests (88.07±3.97; paiRed-t=2.35, df=13, p-value=0.04. 

mean difference=3.57 days) since chicks often fledged after the initiation of their 

progenitor’s migration. Nests with chick-rearing periods >74 days were also deemed to be 

unsuccessful (n=33). 

In all cases with both nest monitoring and GLS data, the breeding outcomes estimated based 

on calculated incubation and/or chick-rearing periods matched those recorded in the 

monitoring data. 

Relationship between breeding success and the duration of life cycle events.  

To evaluate the effects of breeding success on the duration of subsequent life cycle events, 

we created a series of General Linear Models (GLMs) relating the categorical variables 

breeding success (failed or successful) and re-nest (re-nest or no re-nest) to time within Cabo 

Vede waters, and the duration of the post-breeding, non-breeding, and pre-breeding periods. 

Since including individual ID in the model as a random intercept resulted in a singular fit, 

we randomly selected one life cycle event per individual to avoid pseudoreplication. 

Moreover, in a preliminary analysis, we found no sex-specific differences between the 

duration of life cycle events (S2), and therefore, sex was not included in the models as it 

greatly reduced sample size. To account for potential differences between islands, and year 

(year of initiation of migration), these variables were also included in the models as 

categorical co-variates.  
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Similarly, to evaluate the effect of breeding success on the subsequent breeding interval 

(period between two consecutive incubation periods, not including re-nesting attempts), we 

also created a series of GLMs relating the categorical variables breeding success (failed or 

successful) and re-nest (re-nest or no re-nest) of the first breeding attempt to the breeding 

interval. We analysed breeding intervals using two models: one based solely on GLS data 

and the other on nest monitoring data. We made this division because GLS data guarantees 

no missed nesting events, unlike monitoring data which lacks certainty in event capture. In 

both cases, including individual ID in the models as a random intercept resulted in a singular 

fit. Therefore, we randomly selected one breeding interval per individual To account for 

potential differences between islands, and year (year of initiation of migration), these 

variables were also included in the models as categorical co-variates. 

Finally, to evaluate the effect of breeding interval on subsequent breeding success we also 

created a binomial GLM relating subsequent breeding success (success or failed) to the 

breeding interval. We analysed breeding intervals using two models: one based solely on 

GLS data and the other on nest monitoring data. We made this division because GLS data 

guarantees no missed nesting events, unlike monitoring data which lacks certainty in event 

capture. In both cases, including individual ID in the models as a random intercept resulted 

in a singular fit. Therefore, we randomly selected one breeding interval per individual. To 

account for potential differences between islands, and year (year of initiation of migration), 

these variables were also included in the models as categorical co-variates. 

For all models, we started with the most complex model tested all possible combinations of 

the explanatory variables using the “dredge” function from the MuMIn package (Barton 
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2022) in R and compared their Akaike’s Information criteria (AIC) values for model 

selection. The model with the lowest score was considered the best supported.  

Repeatability and the effect of breeding success 

Repeatability (R) was calculated for the Day of Year (DOY) of phenological dates 

(incubation, hatching, fledging, last day of nest activity, initiation of migration, arrival at first 

non-breeding area, initiation of the last migration, return to Cabo Verde waters, the first 

daytime burrow visit, and the first overnight burrow visit of the season) with the R package 

rptR (Stoffel et al., 2017). For this, we used mixed-effects models with Poisson distributions 

and individual ring number as a random effect. We also included 1,000 bootstrap iterations 

to estimate confidence intervals (CIs)  

To overcome the circular nature of dates, we modified the phenological dates of individuals 

who’s consecutive phenological events spanned the first of January, by adding 365 to the 

second value. For example, for an individual with the onset of a first migration on the 31st 

of December (DOY=365), and of the second migration on the 1st of January (DOY=1), the 

latter was transformed to DOY=366. This modification had no significant impact on the 

estimated repeatability values.  

To determine the effect of breeding success on the repeatability of breeding phenology (lay, 

and hatch date), we used Generalized Linear Mixed Models (GLMM) with a Gaussian 

distribution, with individuals’ ring numbers defined as a random intercept and categorical 

variables for breeding success. Although we only considered the repeatability of phenology 

of the first breeding attempt per season, when there was a successful re-nesting event, we 

considered the breeding success between phenological events to be successful. To account 
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for potential differences between sexes, years, and islands, these variables were also included 

in the models as fixed effects. For all models, we started with the most complex model tested 

all possible combinations of the explanatory variables using the “dredge” function from the 

MuMIn package (Barton & Barton, 2023) in R and compared their Akaike’s Information 

criteria (AIC) values for model selection. The model with the lowest score was considered 

the best supported. 

Heritability of breeding phenology 

Within the duration of our study, 67 individuals that were ringed as chicks were recaptured 

at the colonies at least once, and of these, we recorded 31 breeding events from 28 individuals 

for which there was less than one month of uncertainty in the breeding phenology of both the 

parents and offspring. Since we only had repeated breeding events from two individuals, only 

the first breeding attempt per chick was included in the models. This subsample was used to 

examine narrow-sense heritability in hatching or predicted hatching dates, since the data were 

not detailed enough to build pedigrees that would allow the genetic basis of phenological 

variation to be determined with ‘animal models’ (Kruuk, 2004). We therefore used parent-

offspring regression to estimate narrow-sense heritability (h2) in hatch date, or, in case of 

failure at the egg stage, predicted hatch date. To correct for circularity, the day of the year of 

hatch and/or recruitment were modified by adding 365 days when the DOY of recruitment 

lapsed January 1st. 

All analyses carried out as part of this study were performed in R. Values presented alongside 

averages represent the standard deviation (±SD) of the sample, unless specifically stated 

otherwise. 
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RESULTS 

Phenology 

From nest monitoring data, the mean incubation and chick-rearing periods for successful 

nests were 43.94±10.78 days (n=353), and 81.16±14.00 days, respectively (Figure 1).  

Similarly, from GLS data, the mean incubation and chick-rearing periods for successful nests 

were 41.88±5.12 days (n=50), and 85.50±5.26 days (n=18), respectively (Figure 1). From 

the GLS data, we were also able to extract the mean post-breeding period (19.52±30.21 days 

(n=140), non-breeding period (166.64±25.39 days, n=151), the mean pre-incubation period 

(34.53±24.04, n=125) and, finally, the mean time spent in Cabo Verde waters, including the 

periods of pre-incubation, breeding and post-breeding (174.16±38.73 days, n=43). 

During the pre-laying period, a departure from Cabo Verde waters was detected for 59 birds 

(19 females, 26 males and 14 of unknown sex) and interpreted as a pre-laying exodus as it 

often occurred after a first nest visit.  

In successful breeders, individuals undertook 4.8±0.97 incubation bouts before hatching a 

chick (n=50). The mean number of bouts was greater in males (5.15±0.99) than in females 

(4.54±1.03; t=-2.16, df=42, p-value=0.04) but the time spent incubating (sum of all GLS-

derived incubation bouts) did not differ significantly by sex (t=-1.15, df=42, p-value=0.25).  

In 22 cases in the GLS derived phenology, individuals re-nested after failure to hatch (n=11), 

fledge (n=8) or at an unknown stage (n=3). The success of the re-nesting attempts was 

37.5%success (n=16). For individuals which engaged in re-nesting attempts, the average 

number of days between the onset of the two subsequent incubations was 57.4 days (±17.9 
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days, n=22). Based on nest monitoring data, 75 cases of re-nesting were also identified 

(35.4% success, n=51).  

 

Figure 1. Mean duration and standard deviation of the durations in days of the different 

stages in the annual cycle of Red-billed Tropicbirds extracted from nest monitoring data 

(inner circle) and GLS data (outer circle) from successful breeders with only one breeding 

attempt per season. More while year-round information was extracted from the GLS data, 

only breeding phenology could be extracted from nest monitoring. Moreover, for the 

incubation period extracted from the GLS data, the mean duration of the incubation (dark-

blue) and foraging bouts (light blue) are shown (5 bouts are shown since we recorded an 

average of 4.8±1.0 incubation bouts per individual). Failed breeders may engage in a re-

nesting attempt, involving a second pre-laying, incubation, and chick-rearing period within 

a breeding season. 
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Relationship between breeding success and the duration of life cycle events 

The best model to predict mean time spent in Cabo Verde waters, included a categorical 

variable for re-nesting (S3), with individuals that re-nested spending 39.08±16.39 

(Estimate±SE) days longer in Cabo Verde waters than those that did not re-nest (p-

value=0.02, Table 2) 

The best model to predict the duration of the post-breeding period included categorical 

variables for re-nesting and island (S3). Individuals that re-nested spent 75.63±7.97 

(Estimate±SE) days longer in the post-breeding than those that did not re-nest (p-value 

<0.001, Table 2) 

The best model to predict the duration of the non-breeding period included a categorical 

variable for re-nesting (S3), with individuals that re-nested spending 17.64±7.94 

(Estimate±SE) days less in the non-breeding period than those that did not re-nest (p-

value=0.02, Table 2) 

The best model to predict the duration of the pre-laying period included categorical variables 

for re-nesting, island, and year (S3). However, no relationships were significant (Table 2). 

The mean breeding interval was 334.51±40.98 (n=49) based on GLS data and 343.32±49 

(n=789) based on monitoring data. The best model to predict the breeding interval based on 

both the GLS and the nest monitoring data, included a categorical variable for breeding 

success, re-nesting, island, and year. In the model based on GLS data, the breeding interval 

of successful birds was 33.18±11.97 days longer than unsuccessful birds (p<0.01) and that 

of re-nesting birds was 55.06±12.72 days longer than those that did not re-nest (p<0.01). 

Similarly, in the model based on nest monitoring data, the breeding interval of successful 
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birds was 32.77±5.90 days longer than unsuccessful birds (p<0.01) and that of re-nesting 

birds was 33.99±18.96 days longer than those that did not re-nest (p<0.01).  

Finally, the best fit model to predict the effect of breeding interval on subsequent breeding 

success, only included the variable island, suggesting breeding interval does not have an 

important influence on subsequent breeding success (S2, table 2). The best model to predict 

subsequent success based on the difference in DOY of incubation, included a categorical 

variable for island, and year. Birds were more likely to be successful when their incubation 

started early in comparison to the previous year (p=0.05, S2, table 2).  

Table 2. Model output of best AIC-selected General Linear Models relating the duration of 

different cyclical life stages to previous breeding success and re-nesting and Generalized 

Linear Models with binomial distribution relating cyclical life stage duration on subsequent 

breeding success. 

Fixed effects Estimate±SE t-value Lower CI Upper CI P-value 

Duration in Cabo Verde waters ~ breeding success (n=29, R2=0.14) 

Intercept 209.75±13.94 15.04 181.14 238.36 <0.001 

Re-nest re-nest) 39.08±16.39 2.39 5.46 72.70 0.02 

Duration of post-breeding ~ breeding success (n=106, R2=0.48) 

Intercept 94.81±7.92 11.97 79.09 110.51 <0.001 

Re-nest (re-nest) 75.63±7.97 9.49 59.8 1.44 <0.001 

Island Boavista-Cima -9.89±6.85 -1.44 -23.48 3.39 0.15 

Island Boavista-Raso -2.75±10.09 -0.27 -22.76 17.26 0.79 

Island Boavista-Sal -8.79±5.68 -1.55 -20.06 2.47 0.13 

Duration of non-breeding ~ breeding success (n=112, R2=0.03) 

Intercept 149.73±7.54 19.85 134.78 164.68 <0.001 

Re-nest (re-nest) -17.64±7.94 -2.22 -33.38 -1.90 0.03 

Duration of pre-incubation ~ breeding success (n=74, R2=0.02) 

Intercept 38.33±23.65 1.62 -8.91 85.57 0.11 

Re-nest (re-nest) 11.24±7.66 1.47 -4.07 26.55 0.15 

Island Boavista-Cima 1.03±8.54 0.12 -16.02 18.09 0.90 

Island Boavista-Raso 18.41±16.99 1.08 -15.54 52.35 0.28 

Island Boavista-Sal -1.96±5.72 -3.34 -13.39 9.46 0.73 

Year 2008-2017 -14.50±20.54 -7.06 -55.53 26.53 0.48 

Year 2008-2018 9.50±20.54 0.46 -31.53 50.53 0.65 

Year 2008-2019 19.44±22.22 0.88 -24.95 63.83 0.39 
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Year 2008-2020 21.46±22.46 0.96 -23.41 66.33 0.34 

Year 2008-2021 13.24±24.100 0.55 -34.91 61.39 0.59 

Interval of breeding (GLS data only) ~ breeding success (n=35, R2=0.56) 

Intercept 331.08±23.20 14.27 283.48 378.68 <0.001 

Success between 33.18±11.97 2.77 8.62 57.75 0.009 

Re-nest between 55.06±12.72 4.33 28.97 81.15 <0.001 

Island Boavista-Cima -49.65±23.75 -2.09 -98.38 -0.92 0.05 

Island Boavista-Sal 12.84±11.67 1.10 -11.10 36.78 0.28 

Year 2018-2019 15.28±18.58 0.82 -22.85 53.40 0.42 

Year 2018-2020 29.06±16.29 1.78 -4.37 62.49 0.09 

Year 2018-2021 51.19±20.20 2.54 9.75 92.63 0.02 

Interval of breeding (nest monitoring) ~ breeding success (n=418, R2=0.14) 

Intercept 305.49±11.34 26.93 283.17 327.80 <0.001 

Success between 32.77±5.90 5.55 21.16 44.38 <0.001 

Re-nest between 33.99±8.96 3.80 16.40 51.60 <0.001 

Island Boavista-Cima -4.35±9.98 -2.44 -43.99 -4.71 0.02 

Island Boavista-Raso 25.08±27.53 0.91 -29.07 79.23 0.36 

Island Boavista-Sal 8.18±8.26 0.99 -8.05 24.42 0.32 

Year 2018-2019 24.23±10.58 2.29 3.42 45.04 0.02 

Year 2018-2020 17.45±10.40 1.68 -3.00 37.90 0.09 

Year 2018-2021 20.16±9.90 2.04 0.69 39.63 0.04 

Year 2018-2022 37.81±11.53 3.28 15.13 60.49 0.001 

Year 2018-2023 39.32±14.10 2.79 11.60 67.05 0.006 

Year 2018-2024 43.10±45.88 0.94 -47.16 133.35 0.34 

Subsequent breeding success (0/1) ~ breeding interval (based on monitoring data, n=501) 

Intercept 0.56±0.36 1.55 -0.13 1.30 0.12 

Island Boavista-ICima 0.84±0.42 1.99 -0.01 1.65 0.05 

Island Boavista-Raso 0.13±1.27 0.11 -2.31 3.26 0.92 

Island Boavista-Sal -0.34±0.40 -0.85 -1.15 0.43 0.39 

Subsequent breeding success (0/1) ~ difference DOY incubation (based on monitoring data, n=501) 

Intercept -0.56±0.40 -1.40 -1.37 0.21 0.16 

Diff DOY incubation -0.00±0.00 -1.92 -0.01 -0.00 0.05 

Island Boavista-ICima 0.86±0.41 2.12 0.08 1.69 0.03 

Island Boavista-Raso -14.23±0.809.16 -0.02 NA 91.11 0.98 

Island Boavista-Sal 0.22±0.36 0.60 -0.48 0.96 0.55 

Year 2018-2019 -1.30±0.52 -2.52 -2.33 -0.29 0.01 

Year 2018-2020 -0.19±0.46 -0.41 -1.10 0.73 0.68 

Year 2018-2021 -0.74±0.47 -1.58 -1.67 0.19 0.11 

Year 2018-2022 -0.48±0.50 -0.96 -1.47 0.51 0.34 

Year 2018-2023 -0.01±0.62 -0.03 -1.22 1.20 0.98 

Year 2018-2024 -16.01±839.58 -0.02 NA 93.04 0.98 
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Repeatability of phenology  

We recorded the laying phenology of 501 individuals in two or more subsequent years (two 

years: 313, three years: 107, four years: 64, five years: 15, and six years: 2). The 1,290 laying 

dates of this datasset were extracted from monitoring data (83.9%, n=1,082), GLS data (1.6 

%, n=21), or from both GLS and nest monitoring (14.5%, n=187).  

We recorded the hatching phenology of 325 individuals in two or more subsequent years 

(two years: 229, three years: 52, four years: 41, five years: 3). The 793 hatching dates of this 

datasset were extracted from monitoring data (81.0 %, n=642), GLS data (0.5%, n=4), or 

from both GLS and nest monitoring (18.5 %, n=147). 

We recorded the fledging phenology of 175 individuals in two or more subsequent years (two 

years=89, three years=31, four years=8). The 303 fledging dates of this datasset were 

extracted from monitoring data (83.5 %, n=253), GLS data (0.3 %, n=1), or from both GLS 

and nest monitoring (16.2 %, n=49). 

In total, 156 seasonal migrations were recorded by the recovered GLS, corresponding to 136 

separate deployments on 113 different individuals. Of these, 103 GLS were recovered from 

birds after 1 year of deployment, 28 after 2 years and 8 after 3 years. From the GLS tracks, 

we recorded repeated phenological events in two or more subsequent years from 45 different 

individuals. The number of repeated events for each of the non-breeding phenological dates 

are summarized in Table 3. 

We found that high repeatability in phenology in all breeding and migratory dates observed 

(Table 3, Figure 3). The timing of the return to Cabo Verde waters had the highest overall 

repeatability (0.94) while the lowest repeatability was associated with the laying date (0.63).  
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Both the repeatability of laying and hatching date were affected by breeding success. The 

best models to predict the repeatability of laying date included categorical variables for re-

nesting and breeding success (S3). Individuals that were that breed successfuly and that re-

nested had higher repeatability values then those that were unsuccessful (p<0.001) of that 

did not re-nest (p=0.002, Table 4, Figure 3, 4) 

Similarly, the best model to predic the repeatability of hatching date included a categorical 

varibale for breeding success (S3). Individuals that breed successfully had a higher 

repeatability in their values than those that were unsuccessful (p<0.01, Table 4, Figure 3, 4).  

Table 3. Repeatability estimates (R) from Red-billed Tropicbirds with repeated breeding and 

migratory phenologies (2-6 years). N.ind=Number of individuals, N.rep=Number of repeated 

measures. Darker green cells highlight higher levels of repeatability. 

Event N.ind N.rep R  SE Lower CI Upper CI p-value 

Laying date 501 1578 0.63 0.02 0.59 0.67 <0.001 

Hatching date 325 936 0.73 0.02 0.68 0.77 <0.001 

Fledging 128 350 0.80 0.03 0.73 0.85 <0.001 

Last night at the burrow 30 74 0.86 0.05 0.75 0.93 <0.001 

Last day at the burrow 45 106 0.71 0.07 0.54 0.82 <0.001 

Initiation of outward migration 35 86 0.88 0.04 0.78 0.93 <0.001 

Arrival at non-breeding ground 34 82 0.88 0.04 0.77 0.93 <0.001 

Initiation of return migration 34 74 0.92 0.30 0.85 0.96 <0.001 

Return to Cabo Verde waters 34 80 0.94 0.02 0.88 0.97 <0.001 

First day at the burrow 33 76 0.91 0.03 0.82 0.95 <0.001 

First night at the borrow 28 62 0.93 0.03 0.86 0.97 <0.001 
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Figure 3. Regression of phenological dates in two subsequent years. For laying and hatching 

dates the relationship is seperated for failed (red) and successful breeders (blue). In green are 

GLS extracted phenological dates related to the non-breeding period. 
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Table 4. Model output of best AIC-selected Generalized Linear Mixed Models relating the 

repeatability of laying and hatching dates to prior breeding success and re-nesting (blue) and 

to the subsequent breeding success. Upper and Lower CI=Upper and lower 95% Confidence 

Interval, SE=Standard error. The sample size and the variance and standard deviation of the 

random effect individual ID is included in the title of each model. 

Fixed effects Estimate±SE t-value Lower CI Upper CI P-value 

Repeatability of laying date ~ breeding success between (n=402, Variance of ID: 0.00, 

SD: 0.03) 

Intercept 0.89±0.01 112.50 0.88 0.90 <0.001 

Breeding success 0.05±0.01 5.51 0.03 0.07 <0.001 

Re-nest 0.05±0.01 3.07 0.02 0.07 0.002 

Repeatability of hatching date ~ breeding success between (n=258, Variance of ID: 0.00, 

SD: 0.03) 

Intercept 0.91±0.01 119.50 0.90 0.93 <0.001 

Breeding success 0.04±0.01 4.25 0.02 0.05 <0.001 

 

 

Figure 4. Violin plots of breeding interval (time between subsequent incubations) of Red-

billed Tropicbirds after the first breeding attempt failed (red) or was successful (blue) and 

whether a re-nesting attempt occurred or not based on GLS (left) and nest monitoring (right) 

data. Note that for re-nesting birds, success refers to the success of the re-nesting attempt 

after initial failure. Numbers indicate sample size. 
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Recruitment 

Within the duration of our study, 67 individuals that were ringed as chicks were recaptured 

at the colonies at least once. Of these individuals, 41 (61%) were breeding when first 

observed (28 incubating and 13 chick-rearing), 18 (27%) were vagrants and the breeding 

stage of 8 individuals (12%) was not recorded. While some individuals were recorded to be 

breeding as soon as one year after hatching, most individuals were first recorded between 2-

3 years after hatching (Figure 5). The recruits showed strong philopatry and most returned to 

the same colony in which they hatched (97%). However, there were 3 events in which 

individuals were recaptured at different colonies or even islands. One chick that hatched in 

the colony of Ponto do Sol (Boavista) was recovered in Ponto do Roque (Boavista), 

Moreover, one chick hatched in Cima islet was recovered in the neighbouring Rei islet, and 

in the biggest inter-island movement, one chick hatched in Ponto do Sol (Boavista) was 

recaptured in Cima islet.  

Parent–offspring regression analysis indicated breeding phenology of recruits were 

significantly correlated to that of their progenitors (intercept: 89.47 days, slope=0.84, 

se=0.09, p<0.001, figure 4). Moreover, the amount of variation explained by the parent-

offspring regression was high (R2: 0.77). The intercept of this model also suggests that 

individuals recruited to the colony slightly later then when they were hatched, around the 

time that they fledged (Figure 5).  
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Figure 5. A) Age of Red-billed Tropicbirds in years when first recaptured at the colony as 

non-breeders (red) and breeders (cyan). B) Parent-offspring regression of breeding 

tropicbirds ringed as chicks (intercept: 89.46 days, slope=0.84, se=0.09, p<0.001, R2: 0.77). 
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DISCUSSION 

Although Red-billed Tropicbirds breed year-round in Cabo Verde, individuals maintained 

consistent breeding and migratory phenologies. The repeatability of phenology near the end 

of the non-breeding period (e.g., initiation of return migration, return to Cabo Verde waters, 

first day at the burrow, first night at the borrow) was greater than that for the phenological 

events during the breeding and post-breeding periods (e.g., laying, hatching, and fledging, 

last day at the colony), suggesting that individual adjust their migratory phenology by 

extending or shortening their non-breeding period in the case of nest failure or subsequent 

re-nesting events, respectively. Furthermore, we found that when incubation was delayed 

relative to the timing of incubation in the previous year, individuals had lower breeding 

success, suggesting that individuals who failed to adjust their phenology suffered fitness 

consequences. Moreover, tropicbird phenology appears heritable, with chicks recruiting to 

the colony around the same time of year as when they fledged. These results challenge the 

idea that tropical species can freely adjust their phenology throughout the year. 

Benefits of GLS-derived phenology 

 

This study combined GLS and traditional nest monitoring methods to gather information on 

individual breeding and migratory phenology. While both methods offer advantages, GLS 

provided precise data on non-breeding period events, such as the start of return migration and 

arrival in Cabo Verde waters. Additionally, GLS ensured no missed breeding attempts, unlike 

potential gaps in nest monitoring. However, GLS tracking is not foolproof and some re-

nesting attempts may have been misidentified as initial attempts if GLS deployment or 

recovery occurred between incubation periods or due to inconsistent nest monitoring. 
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Nonetheless, this study supports previous findings that GLS devices are valuable for 

identifying individual migratory phenology (Franklin et al., 2022b). 

Phenology and links between life cycle events 

 

On average, tropicbirds were absent from the breeding colony for six months and were either 

breeding or in Cabo Verde waters for the remaining months of the year. This is similar to 

what has been recorded for this species breeding in Ascension (Stonehouse, 1962, mean non-

breeding period of 166 days). As in previous studies, individuals who failed to fledge a chick 

in their first breeding attempt occasionally engaged in re-nesting attempts (Madden, 2019; 

Stonehouse, 1962). These events resulted in the individuals spending longer within Cabo 

Verde waters and later compensating for this by reducing their non-breeding period. By the 

time individuals reached their subsequent pre-laying period, the effect of the re-nesting was 

generally no longer significant.  

However, GLS and nest monitoring results suggest that despite shortening the non-breeding 

period, the breeding interval was longer in re-nesting birds. We also found that the interval 

was more extended in successful and unsuccessful birds. This suggests that birds that failed 

to breed returned to the colony earlier unless they attempted to re-nest. This is consistent with 

the findings of other seabird studies, which recorded that failed breeders and non-breeders 

depart earlier from their colony in comparison to successful breeders (Phillips et al., 2005; 

Yamamoto et al., 2014). Interestingly, individuals who re-nested but were unsuccessful 

maintained a similar migratory and subsequent breeding phenology to those who were 

successful on their first try, potentially masking the relationship between breeding success 

and phenology. Moreover, we also found that birds that initiated incubation late in relation 

to the previous year had a lower breeding success than those that initiated incubation early, 
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but that subsequent breeding success was not affected by the breeding interval. Therefore, 

the lack of phenological consistency and not the duration of time between breeding events 

resulted in lower breeding success. Altogether, these findings suggest that breeding failure 

has carry-over effects on subsequent migratory phenology, which individuals buffer to a 

certain extent by reducing the non-breeding period. However, if the lag persists into the 

breeding season, individuals suffer fitness consequences.  

Repeatability 

 

We found high individual repeatability in tropicbird phenology, ranging from 0.63 (laying 

date) to 0.94 (return to Cabo Verde waters). These indices of repeatability are higher than 

what was found in a recent review of avian migratory timings, which reported an average 

repeatability of 0.41 (CI: 0.3-0.5) across landbirds, waterbirds and seabirds (Franklin et al., 

2022b). However, it is important to note that since tropicbirds breed year-round, the 

repeatability of phenology may be naturally inflated by the large population-wide variability 

(Franklin et al., 2022a). Indeed, a recent study on the repeatability of phenology in a group 

of tropical gadfly petrels, which breed year-round, also reported exceptionally high 

individual repeatability ranging from repeatability of 0.79 (CI: 0.70-0.85) for outward 

migrations and (0.81; CI: 0.72-0.88) for inward migrations (Franklin et al., 2022a). Other 

studies investigating individual variation in phenology in tropical species also noted 

important individual consistency (Leal & Bugoni, 2021; Medrano et al., 2022; Oosthuizen et 

al., 2023). For example, a study on Cape Verde Storm Petrels (Hydrobates jabejabe) found 

two peaks of breeding, with individuals rarely switching between the two, indicating that 

although repeatability was not explicitly measured, the species showed some levels of 

individual consistency (Medrano et al., 2022). Moreover, a recent study on asynchronously 
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breeding southern elephant seals (Mirounga leonina) also found high individual repeatability 

in phenology (Oosthuizen et al., 2023), suggesting that consistent individual differences in 

migratory timings may be a more common feature in the migratory systems of tropical marine 

top predators than previously thought. 

We also found that individual repeatability values were lowest for breeding phenology (i.e., 

incubation, hatching, and fledging dates) and highest for inward migration to Cabo Verde 

waters and that these values were higher for successful breeders. Although some of the lowest 

repeatability values in the breeding season may have resulted from the inherent uncertainty 

of the monitoring data, this pattern also occurred in the GLS-derived phenologies, indicating 

that this is not the only case. Instead, this suggests that individuals adjust non-breeding 

periods to compensate for breeding failure, re-nesting, or successful breeding; however, 

despite these adjustments, unsuccessful breeders still had lower laying and hatching 

repeatability values than successful birds. Similar patterns have been documented in previous 

studies investigating carry-over effects on migration phenology, where individuals with 

lower parental investment depart breeding colonies earlier, resulting in more extended non-

breeding periods compared to successful counterparts (Bogdanova et al., 2011; Phillips et al., 

2005; Yamamoto et al., 2014). Additionally, as seen in Black-legged Kittiwakes (Rissa 

tridactyla) and Cory’s Shearwaters (Calonectris borealis), individual repeatability to the 

arrival to the breeding areas exceeds that of migration onset, indicating buffered carry-over 

effects from previous breeding attempts across subsequent post-breeding, non-breeding, and 

pre-breeding periods (Bogdanova et al., 2017; Ramos et al., 2018). This result suggests that 

repeatability in the arrival date to the breeding areas brings some advantages. 
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Repeatability in phenology may increase fitness through familiarity with the environment 

and/or by facilitating synchronous mate arrival (Fayet et al., 2017; Gunnarsson et al., 2006; 

E. D. Wakefield et al., 2009). Although tropicbirds breed year-round, there are seasonal 

differences in tropicbird behavior and environments encountered in both the breeding (this 

thesis, chapter 2) and non-breeding season (this thesis, chapter 3). By maintaining 

individually consistent phenologies, tropicbirds may benefit from familiarity with the 

resources and risks of a given season. Consistency in the migratory distribution and/or 

phenology in marine vertebrates is common, suggesting that both space use and phenology 

may offer more stable energetic rewards than plastic behavior in marine environments (e.g., 

Abrahms et al., 2018; Brown et al., 2021; Franklin et al., 2022b; Léandri-Breton et al., 2021; 

Pérez, 2019; Shimada et al., 2020; Studds & Marra, 2005; E. Wakefield et al., 2015). 

Different migration timing may result from individual foraging behavior and habitat quality, 

leading to varying optimal migration times (Studds & Marra, 2005). Moreover, consistency 

may also benefit tropicbirds through knowledge of the availability of nest sites and 

synchronous mate arrival, which may be particularly important in species with high nest-site 

competition, such as tropicbirds. Although the causes of nest failure were often challenging 

to determine in this study, intense inter and intra-species competition for sites has been 

recorded for tropicbirds (Semedo, 2020; Stonehouse, 1962). Moreover, it is even the primary 

cause of nest failure in certain colonies. For example, in Ascension, it has been suggested 

that the seasonal peaks in phenology in both White-tailed (Phaethon lepturus) and Red-billed 

Tropicbirds were regulated by both intra and interspecific competition, as indicated by higher 

failure when the highest number of individuals from both species were breeding (Stonehouse, 

1962). Red-billed Tropicbirds are known to have high mate and nest fidelity (Madden, 2019), 
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and since tropicbirds breed year-round, having highly repeatable phenology may enable them 

to synchronize with previous partners. Thus, maintaining consistent migratory phenology 

and behavior can significantly enhance tropicbird fitness by optimizing resource use, 

reducing risks, and facilitating mate synchronization, which is crucial in environments with 

high nest-site competition. 

Heritability of phenology 

 

We found high heritability of tropicbird phenology, with recruits returning to the colony 

around the same time of year as when they fledged. This finding is similar to previous results 

on Scopoli's Shearwater Calonectris diomedea (Pérez, 2019), which also found high 

repeatability and heritability of phenology between late and early breeders. Offspring 

regression is a simple model that does not account for other factors influencing phenotypes, 

such as non-genetic maternal effects and the environment, which may result in inflated 

heritability estimates (Charmantier & Gienapp, 2014). Nevertheless, in our study, tropicbirds 

were recruited to the colony between one to four years after fledging and at various times of 

year, likely minimizing the influence of environmental covariance. Moreover, this same 

variability in first recruitment time also makes it unlikely that the similarity in breeding 

phenology between progenitors and offspring results from a physiological constraint on 

reproductive timing dictated by an annual cycle and starting upon hatching.  
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CONCLUSIONS 

In conclusion, our results indicate that tropical seabirds with year-round reproduction, despite 

having access to enough resources to breed at any time of the year, show high levels of 

individual repeatability in phenology. They exhibit limited flexibility in response to 

reproductive success, with birds buffering the carry-over effects of the previous breeding 

attempt during the non-breeding period in a way that ensures the arrival date to the breeding 

grounds is not affected. In failure to make these adjustments their phenology, late breeders 

suffered from lower subsequent breeding success. Understanding phenological constraints 

and how these relate to individuals’ fitness is crucial for predicting how species will respond 

to changes in environmental conditions (Yamamoto et al., 2014). Since phenological 

flexibility has the potential to govern population dynamics and may be masked by re-nesting 

attempts in Red-billed Tropicbirds, further long-term research is needed to establish the 

degree to which shifts in phenology accumulate over time. Moreover, future studies on how 

these shifts relate to mate and nest site fidelity and subsequent breeding success may also 

shed light on the evolutionary drivers of phenological consistency (Bogdanova et al., 2011; 

Dubois & Cézilly, 2002; González-Solís et al., 1999).  

The low individual phenological flexibility of tropicbirds and the apparent heritability of this 

trait suggests that tropicbirds are more susceptible to environmental change than previously 

thought (Franklin, et al., 2022a; Keogan et al., 2018). Since phenology is both repeatable and 

heritable, tropicbirds may only be able to respond to shifts in environmental conditions 

caused by global climate change by micro-evolutionary changes. As a long-lived species, 

these changes may not be fast enough to keep pace with the rapidly changing environment 

(Charmantier & Gienapp, 2014; Forcada et al., 2008; Gienapp et al., 2014). Moreover, if 
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environmental conditions eventually drive selection for individuals to only breed during 

certain parts of the year, tropicbirds may eventually suffer from a loss of genetic diversity in 

the population (Visser & Gienapp, 2019). Due to the isolation and high philopatry of 

tropicbirds, they may already be genetically vulnerable (Varela et al., 2024). Therefore, 

future studies should try to measure whether seasonal patterns are consistent and how this is 

reflected in the genetic diversity of tropicbirds in Cabo Verde.  

Our results indicate that tropical species with year-round reproduction may be at more risk 

than previously thought, as they may have a limited phenological flexibility despite not being 

constrained by seasonal fluctuations in resource availability. Since this may have a series of 

implications for ecology, evolution, and conservation, it is pivotal that such individual 

phenological constraints are explicitly considered and incorporated into management plans 

accordingly. 
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SUPPLEMENTARY MATERIAL 

S1. Visualization of phenological date extraction based on GLS light and wet-dry sensors 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Visualization of phenological date extraction based on GLS light and wet-dry sensors deployed on a Red-billed torpicbird. 

Colours indicate whether the bird was mainly dry and light (interpreted as flying), dry and dark (interpreted as flying night or in burrow), 

wet and dark (interpreted as resting on the water at night) or wet and light (interpreted as resting on the water during the day), every 15 

minutes throughout the tracking period. In this case, the individual failed to breed at the end of 2018 (whether it failed during incubation 

or chick-rearing is unclear), then re-nested successfully at the end of January 2019. It then migrated in June 2019, returning to Cabo 

Verde in October 2019. Once within Cabo Verde waters, it visited a burrow for several hours during the day on two occasions, and 

finally started incubation in December 2019. 
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Figure 2. Visualization of phenological date extraction based on GLS light and wet-dry sensors deployed on a Red-billed Tropicbird. 

Colours indicate whether the bird was mainly dry and light (interpreted as flying), dry and dark (interpreted as flying night or in burrow), 

wet and dark (interpreted as resting on the water at night) or wet and light (interpreted as resting on the water during the day), every 15 

minutes throughout the tracking period. In this case, there was light infiltration into the burrow during the day, and therefore, incubation 

bouts were measured as periods of >48h of dry only. This individual breed successfully in January 2018, migrated, and returned to Cabo 

Verde waters in August 2018. In September 2018, the individual started incubation, however this appears to be an unsuccessful attempt, 

failing in October 2018. 
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S2. Analysis of whether there are sex-specific differences in phenology 

 

Table.1 Preliminary analysis of whether there are sex-specific differences in the duration of 

cyclical life history events. 

 

  

Test Mean Male Mean Female t-value df p-

value 

Breeding by Sex 46.37 44.67 0.38 72.53 0.70 

Post-breeding by Sex 18.78 21.94 -0.54 109.82 0.59 

Non-breeding by Sex 166.08 167.03 -0.21 126.27 0.83 

Breeding interval by 

Sex 

172.92 184.39 -0.69 22.48 0.50 
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S3. Model selection 

 

Table 1. General(ized) Linear Model (GLM) selection for measuring the effect of breeding 

success and re-nesting on the duration of cyclical life stages (blue), the breeding interval 

based on GLS and nest-monitoring data (yellow) and of breeding interval and diff in the day 

of year of incubation on subsequent breeding success (green). Shown are all models with a 

cumulative weight > 0.95. The best model is in bold. Link functions for each model are shown 

in parentheses. df=degrees of freedom, LogLik=Loglikelihood, AIC=Akaike Information 

Criterion, ΔAIC=delta AIC. 

Model Intercept df LogLik AIC ΔAIC weight 

Effect of renesting and success on the duration in Cabo Verde waters (Gaussian) 

renest (0./1)  228.0 3 -114.86 235.7 0.00 0.38 

renest (0./1) + island 216.0 5 -113.43 236.9 1.14 0.22 

renest (0./1) + success (0/1) 228..0 4 -114.85 237.7 1.98 0.14 

renest (0./1) + success (0/1) + island 215.5 6 -113.38 238.8 3.03 0.08 

renest (0./1) + year 219.3 5 -114.66 240.8 3.60 0.06 

renest (0./1) + year +island 213.8 7 -113.41 241.1 5.10 0.02 

renest (0./1) + success (0/1) + year 216.7 6 -114.55 241.10 5.38 0.03 

Effect of renesting and success on the duration of post-breeding (Gaussian) 

renest (0/1) + island 75.96 6 -304.04 620.1 0.00 0.45 

renest (0./1)  67.37 3 -307.86 621.7 1.65 0.20 

renest (0/1) + previous success (0/1) + island 76.08 7 -304.03 622.1 1.99 0.17 

renest (0./1)+ previous success (0/1) 67.31 4 -307.86 623.7 3.65 0.07 

renest (0./1) + year 72.31 6 -306.31 624.6 4.56 0.05 

Effect of renesting and success on the duration of the non-breeding period (Gaussian) 

renest (0/1)  143.0 3 -327.78 661.6 0.00 0.27 

renest (0/1) + year 138.8 6 -325.06 662.1 0.56 0.20 

renest (0/1) + previous success (0/1) 144.8 4 -327.08 662.2 0.60 0.20 

renest (0/1) + previous success (0/1) + year 142.1 7 -324.48 663.0 1.40 0.13 

renest (0/1) + year + island 134.1 9 -323.36 664.7 3.16 0.06 

null 162.6 2 -330.58 665.2 3.60 0.04 

renest (0/1) + previous success (0/1) + year+ island 136.2 10 -323.22 666.4 4.88 0.02 

year 163.2 5 -328.43 666.9 5.29 0.02 

Effect of renesting and success on the duration of pre-breeding (Gaussian) 

renest (0/1) + island + year 59.61 9 -185.06 388.1 0.00 0.19 

renest (0/1) + island 66.03 6 -188.14 388.3 0.18 0.17 

renest (0/1) + year 58.25 6 -188.31 388.6 0.50 0.14 

renest (0/1)  64.25 3 -191.56 389.1 1.00 0.12 

renest (0/1) + previous success (0/1) + year 55.55 7 -187.57 389.1 1.02 0.11 

renest (0/1) + previous success (0/1) + island + year 57.98 10 -184.88 389.8 1.65 0.08 

renest (0/1) + previous success (0/1) + islandd 65.09 7 -188.03 390.1 1.94 0.07 

renest (0/1) + previous success (0/1) 63.02 4 -191.29 390.6 2.47 0.05 
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Table 2. General Linear Mixed Model (GLMM) selection for prediting the repetability of 

breeding phenology. All models included a random effect for individual ID.Shown are all 

models with a cummulative weight > 0.95. The best model is in bold, Link functions for each 

model are shown in parentheses. df=degrees of freedom, LogLik=Loglikelihood, 

AIC=Akaike Information Criterion, ΔAIC=delta AIC. 

 

Model Int df LogLik AICc Δ AICc weight 

Repeatability of laying date (Gaussian) 

Breeding success +re-

nesting 

0.89 5 392.99 -776 0.00 0.58 

Breeding success  0.90 4 391.62 -775.2 0.74 0.40 

Repeatability of hatching date (Gaussian) 

Breeding success 0.91 4 356.14 -704.1 0.00 0.75 

Breeding success +re-nesting 0.92 5 355.82 -701.4 2.72 0.19 

 

 

  

Breeding interval based on GLS data (Gaussian) 

renest (0/1) + success between (0/1) + island + 

year 

331.1 9 -163.85 345.7 0.00 0.51 

renest (0/1) + success between (0/1) + island 377.3 6 -167.90 347.8 2.11 0.18 

renest (0/1) + success between (0/1) 376.6 4 -169.96 347.9 2.23 0.17 

renest (0/1) + island 387.4 5 -169.70 349.4 3.70 0.08 

renest (0/1) + success between (0/1) + year 349.4 7 -168.04 350.1 4.38 0.06 

Breeding interval based on nest monitoring data (Gaussian) 

renest (0/1) + success between (0/1) + island + 

year 

305.5 13 -1819.89 3665.8 0.00 0.74 

Effect of breeding interval on subsequent breeding success (0/1) based on monitoring data (binomial) 

island 0.56 4 -191.64 391.3 0.00 0.54 

Island + breeding interval  1.58 5 -191.10 392.2 0.93 0.34 

Island + year 0.42 9 -188.91 395.8 4.55 0.06 

Effect of DOY difference in incubation on subsequent breeding success (0/1) based on monitoring data 

(binomial) 

Diff DOY + island + year -0.56 11 -302.14 626.3 0.00 0.60 

Island + year -0.47 10 -304.05 628.1 1.81 0.24 

Diff DOY + year -0.53 8 -307.09 630.2 3.89 0.09 



 

267 

 

 

 

 

Picture by Marcos Hernández-Montero 

 

 

 

 

General Discussion 

  



 

268 

 

 

General Discussion 

This thesis aimed to understand the effects of seasonality on marine tropical ecosystems, 

through the study of the foraging and migratory ecology of Red-billed Tropicbirds, a poorly 

studied pantropical species that breeds year-round in Cabo Verde. We adopted a 

multidisciplinary approach, combining multiple years of biologging (with GPS, GLS, wet-

dry data, TDR, and accelerometry) and nest monitoring data with diet analyses to assess 

seasonal differences in habitat use, foraging behavior, activity patterns and diet throughout 

the annual cycle. In the process, we evaluated and fine-tuned the use of Hidden Markov 

Models for the classification of behavioral states in opportunistic foragers such as Red-billed 

Tropicbirds and used spatial modelling to track seasonal changes in habitat use. We also 

uncovered the underlying mechanisms behind the population-wide variability observed in 

tropicbird phenology, finding that phenology is not only repeatable at the individual level but 

also heritable. By uncovering consistent seasonal patterns and relating these pattens to fitness 

metrics (both immediately and as carry over effects) and environmental conditions, we shed 

light on the seasonal selective pressures acting on this tropical species throughout its annual 

cycle. Specifically, across the four chapters of this thesis, we investigated the effects of 

seasonality on Red-billed Tropicbird foraging and migratory ecology, links between cyclical 

life-history events and finally, the potential evolutionary consequences of seasonality on this 

species.  

Effect of seasonality on tropicbird foraging ecology  

 

To assess how tropicbirds respond to seasonal changes in oceanographic conditions and 

resource availability at the breeding grounds, we first evaluated and fine tuning the use of 
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Hidden Markov Models for inference of behavioral states from GPS-tracks in Chapter 1. 

Then, in Chapter 2, we used the developed methodology in the spatial analysis of foraging 

movements during the breeding season.  

In Chapter 1, we found that, even a at small proportions, semi-supervising HMMs with 

auxiliary sensors, such as accelerometer, TDR, and wet-dry sensors can dramatically improve 

a state-space model’s global accuracy in the classification of GPS tracking data into 

behavioral states. Despite this overall increase in accuracy, the foraging state was poorly 

identified in our dataset. This suggests that tropicbirds may not use area restricted search 

while foraging, but rather forage opportunistically throughout their trips, and underlines the 

difficulties in the classification of this behavior in homogeneous and unpredictable 

environments. Although some previous studies have reported difficulties in inferring 

foraging behavior from GPS tracks in other tropical species (e.g. Adams et al., 2020; Diop et 

al., 2018; Patrick & Weimerskirch, 2014), this is the first study to directly evaluate whether 

semi-supervision in these models can improve behavioral classification. By doing so, our 

results provide valuable insight into how to approach the study of foraging behavior in 

tropical species. 

If not addressed, the low sensitivity and precision of foraging in these models can have 

important implications in conservation and management decisions. Foraging areas are often 

the target of spatial management plans because of their ecological importance for species, 

and therefore their correct identification is critical (Allen & Singh, 2016; Lascelles et al., 

2016; Wakefield et al., 2009). In our models, we found both low sensitivity and low 

precision, indicating that many foraging positions were undetected, and that positions 

classified as foraging should have been assigned to other behavioral states (resting or 
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travelling). As a result, these models may both, underestimate and incorrectly define the total 

foraging range. To improve the behavioral classification of these models in future studies, it 

may be necessary to collect movement data at higher resolution or include additional 

auxiliary sensors to the full dataset. Higher resolution GPS data may give more insights into 

individual behavior (Roy et al., 2022). Moreover, auxiliary devices have been used in 

combination with GPS data to identify foraging behaviors in many seabirds and seals, which 

may otherwise be impossible (e.g. Bentley et al., 2021; Berlincourt et al., 2015; Carneiro et 

al., 2022; Viviant et al., 2010). If the use of higher resolution GPS-fixes and/or additional 

auxiliary data is not possible, we suggest taking a more conservative approach and 

considering all non-resting GPS positions as potential foraging areas.  

In Chapter 2, we identified how tropicbirds adapt to seasonal changes in environmental 

conditions and resource availability during the breeding season. Using a large GPS dataset 

of 907 foraging trips, year-round nest monitoring and a combination of both traditional and 

stable isotope diet analysis, we found consistent seasonal patterns in nest occupancy, foraging 

patterns, diet, fitness components and local environmental conditions, which together 

represent changes in both intrinsic and extrinsic pressures that individuals face throughout 

the year.  

We found that the annual cycle in Cabo Verde can be divided into a dry season (December to 

June) marked by cooler water temperatures, low rainfall, high windspeeds, and wave heights, 

and a wet season (July to November) with increased rainfall, warmer water temperatures and 

visibility. Breeding primarily occurs during the dry season, one to five months after a peak 

in primary productivity, which is similar to patterns in nest occupancy at other breeding 

colonies in Senegal (Diop et al., 2018) and Mexico (Hernández-Vázquez et al., 2018). 
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Foraging behavior, diet, body condition, and breeding success vary seasonally, with 

tropicbirds foraging over larger areas and consuming more squid during the dry season, 

leading to higher breeding success. In contrast, the wet season sees fewer breeders, with more 

sinuous foraging trips closer to colonies, and more consumption of planktivorous fish. 

Despite slightly better adult body condition during the wet season, chick condition is notably 

higher during the dry season. While the dry season appears preferable for breeding, 

advantages of the wet season, such as reduced competition, may partially offset these 

disadvantages for some individuals. In fact, the slightly better adult body condition during 

the wet season, may indicate a trade-off between adult survival and reproduction during this 

period. However, further long-term mark-recapture studies would be needed to evaluate the 

effect of seasonality on adult survival. These seasonal variations in behavior, diet, and 

breeding success result from seasonal changes in prey availability, nest site suitability, 

weather conditions, and competition, highlighting tropicbirds' ability to adapt to 

environmental fluctuations (Hernández-Vázquez et al., 2018). 

Our findings in Chapter 2 provide novel insights, not only in the foraging ecology of 

tropicbirds, but resource fluctuations in this tropical system in general. We suggest that the 

peak in consumption of squid during the end of the dry season, mirrored by increased 

foraging activity during twilight and the repeated use of more distant foraging areas, stems 

from the seasonal abundance of squid species, such as the European Flying Squid Todarodes 

sagittatus, known to spawn in April in the Canary Current and to be a significant prey for 

seabirds in Cabo Verde (Almeida et al., 2021; Piatkowski et al., 1998). If this is the case, then 

we may expect seasonal fluctuations in the diets of other local seabird species, such as Brown 

Boobies and Cape Verde Shearwaters, although this has yet to be measured. Alternatively, 
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the shift to cephalopod consumption might be prompted by local depletion of planktivorous 

fish near colonies due to natural prey cycles or competition (Ashmole, 1971; Thiaw et al., 

2017). Although competition-induced resource depletion is generally reserved for much 

larger seabird colonies, tropicbirds, as solitary foragers specialized on finding prey in nutrient 

poor and unpredictable environments, may be highly sensitive to both intra and inter specific 

competition (Ashmole, 1971; Spear & Ainley, 2005; Stonehouse, 1962; Thiaw et al., 2017). 

The patterns in tropicbird breeding reproductive success, chick body condition, and foraging 

behavior described in Chapter 2 also suggest weather-induced seasonal changes in nest site 

suitability. Increased temperatures and precipitation during the wet season, may increase 

thermoregulation and foraging costs in Cabo Verde, potentially leading to lower reproductive 

success (Danielson-Owczynsky, 2022; Streker et al., 2021). Moreover, extreme rainfall 

events could directly impact nest survival. Rain-induced nest failures have been recorded at 

other tropicbird breeding colonies (Danielson-Owczynsky, 2022), and in other seabirds, such 

as Cape Verde Storm Petrels (Hydrobates jabejabe) breeding on Cima Islet in Cabo Verde 

(Medrano et al., 2022). Together, these patterns in fitness metrics suggest seasonal resource 

fluctuations in Cabo Verde waters and may impact other seabirdts and marine life which 

inhabit the region. 

In Chapter 2, we underline the importance of understanding seasonal variation in foraging 

behavior of tropical seabirds, highlighting the impact of small shifts in environmental 

conditions and nest occupancy on tropicbird fitness. Tropicbirds exhibited flexibility in 

foraging behavior, but environmental shifts translate into differences in fitness metrics, 

indicating season-specific in selective pressures. Our results also shed light on how this 
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species may be expected to modify its behavior in relation to climate change (Campioni et 

al., 2023; Orgeret et al., 2022). 

Effects of seasonality on tropicbird migratory ecology 

 

In Chapter 3, we investigated how seasonality affects the non-breeding distribution and 

migratory ecology of tropicbirds. For this, we tracked 149 non-breeding periods from 111 

individuals using GLS loggers and identified individual and seasonal patterns in tropicbird 

migration, non-breeding areas and daily activity. We related these seasonal shifts in non-

breeding areas to differences in environmental conditions to identify whether shifts are driven 

by season-specific environmental niche tracking between the breeding and non-breeding 

period or population-wide tracking of preferred conditions. 

We identified seasonal patterns in the non-breeding areas used, with dry season breeders 

favoring the central Atlantic to the north of Cabo Verde, while wet season breeders occupied 

a more westerly area in relation to Cabo Verde. These patterns were independent of sex, 

island, year, breeding success and bird size. Additionally, tropicbirds spend a higher 

proportion of time active during twilight in the dry season, than in the wet season during both 

migration and non-breeding, suggesting potential seasonal differences in foraging behavior 

or that individuals compensate for the shorter day length in the dry season by foraging more 

during twilight. The distance to non-breeding areas did not differ between seasons but was 

on average 1693±567 km over the entire year. We propose that these shifts in non-breeding 

areas allow tropicbirds to mitigate seasonal extremes in sea surface temperature and air 

density, indicating population-level habitat preferences throughout the year. By modifying 

their non-breeding areas seasonally, tropicbirds appear to remain within a preferred range of 
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SST (from ~ 21-28 °Celsius) and air density (~1.16- 1.20 kg/m3) during both the breeding 

and non-breeding period. Both, sea surface temperature (SST) and air density are known to 

influence the thermal and foraging costs of seabirds (e.g., Orgeret et al., 2022; Shepard et al., 

2023). However, these factors are strongly negatively correlated, complicating the analysis 

of their individual effects. As such, we focused on the effects of SST for discussion. Our 

finding that SST may be driving the shifts is consistent with previous studies which highlight 

the importance of this variable in the ecology and movement patterns in other marine 

vertebrates (e.g. Favilla& Costa 2020; McMahon & Hays, 2006). In a changing environment, 

the ability of tropicbirds to shift their non-breeding areas to track ideal conditions may 

enhance their adaptability. However, as central place foragers during the breeding season, a 

strict SST thermal range may eventually limit the breeding season in Cabo Verde (Orgeret et 

al., 2022). Although the SST surrounding other breeding colonies where tropicbirds breed 

year-round generally falls within the range of our study (Diop et al., 2018; Madden et al., 

2022), in Mexico, breeding stops during summer months, when SST reaches over 30°C 

(Hernández-Vázquez et al., 2018). 

Links between cyclical life-history events 

 

In both Chapter 3 and Chapter 4 we investigated carry over effects between breeding 

success and tropicbird migratory ecology, and vice versa. 

In Chapter 3, we focused on how previous breeding success affects the non-breeding 

distribution and activity patterns. We found that breeding success could not predict the non-

breeding distribution, but it did influence tropicbird activity patterns during the non-breeding 

period, with successful breeders spending more time active than unsuccessful breeders. 
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However, this result may stem from the seasonal differences in breeding success, with higher 

failure during the wet season.  

In Chapter 4, we found that previous breeding success affected tropicbird migratory 

phenology, but that these changes only influenced subsequent breeding success when they 

resulted in a delay in incubation. Consistent with earlier research (Madden, 2019; 

Stonehouse, 1962), individuals failing to fledge a chick in their initial breeding attempt 

sometimes initiated re-nesting efforts. These endeavors prolonged their stay within Cabo 

Verde waters, subsequently leading to a compensatory reduction in their non-breeding period. 

This is consistent with previous seabird studies which found that individuals adjust the 

duration of their non-breeding periods to compensate for breeding failure (Bogdanova et al., 

2011; Phillips et al., 2005). Despite this shortened non-breeding period, previous breeding 

success affected the breeding interval. Birds that failed to breed had shorter breeding 

intervals, unless they attempt re-nesting, in which case they return to the colony later than 

individuals which breed successfully the first time. This finding aligns with research on 

seabirds, which shows that failed breeders and non-breeders depart colonies earlier than 

successful breeders (Yamamoto et al., 2014). Furthermore, we found that when incubation 

was delayed relative to the timing of incubation in the previous year, individuals had lower 

breeding success, suggesting that individuals who failed to adjust their phenology suffered 

fitness consequences. Thus, our study highlights how breeding failure and re-nesting can 

influence subsequent migratory phenology, although these effects ony impact subsequent 

breeding success if they result in a delay in incubation.  

Together the results of Chapter 3 and Chapter 4 suggest that carry-over effects related to 

previous breeding success affect phenology, but no non-breeding distribution, as reported for 
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other seabird species (Catry et al., 2013; Fayet et al., 2016; Schultner et al., 2014; Shoji et 

al., 2015). 

Spatial consistency of breeding and non-breeding movements and repeatability 

and heritability of phenology 

 

Chapter 2 and Chapter 3, we investigated the spatial consistency of the movement of 

tropicbirds both during both the breeding and non-breeding period, and, in Chapter 4, we 

investigated the repeatability and heritability of phenology.  

In Chapter 2, we found higher overlap in subsequent trips from the same individuals than 

different individuals, suggesting some individual consistency in the areas used, despite 

population-wide variability in foraging distribution. Although this pattern was greater within 

a given season than among seasons, it also persisted between seasons and was highest during 

the dry season. This suggests that, although resources are generally patchily distributed in the 

waters surrounding Cabo Verde, familiarity may increase tropicbird foraging success, 

especially during the dry season when individuals travel further to forage on squid (Carroll 

et al., 2018; Pettex et al., 2010). 

In Chapter 3, we revealed that Red-billed Tropicbirds exhibit consistency in their choice of 

non-breeding areas over consecutive years, and individuals migrating at similar times tend to 

utilize similar regions. This observation parallels findings in a recent study on 

asynchronously breeding tropical Gadfly petrels, indicating individual repeatability in non-

breeding area selection (Franklin et al., 2022a). This suggests that in tropical environments 

characterized by patchy and unpredictable resources, familiarity with non-breeding areas 

may confer important fitness benefits (Carroll et al., 2018; Weimerskirch, 2007).  
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In Chapter 4, we investigated the individual repeatability and heritability of phenology using 

a combination of GLS tracking and nest monitoring. We found that individuals maintained 

remarkably consistent year-round phenology across subsequent years and that phenology 

appears to be heritable, with recruits returning to breed around the same time as when they 

fledged. 

This high individual repeatability in phenology aligns with findings in other tropical seabirds, 

such as gadfly petrels and Cape Verde Storm Petrels, indicating more consistent individual 

differences in phenology in tropical systems than previously thought (Franklin et al., 2022a; 

Medrano et al., 2022). With the absence of large seasonal fluctuations in environmental 

conditions, we suggest that repeatability is selected as is favours synchronous mate arrival, 

which is particularly crucial in migratory species like tropicbirds, in which mates do not 

spend the non-breeding season together and face a high nest-site competition at their arrival 

to the breeding grounds (Fayet et al., 2017; Gunnarsson & Tómasson, 2011). Future research 

on the impact of phenological variability, divorce rates and subsequent breeding success 

would be needed to verify this claim. Moreover, since this high repeatability in phenology is 

also matched with individual spatial consistency in their movements, both during the 

breeding and non-breeding periods. We suggest that it may also be favoured by familiarity 

with the environment during this period of the year (Carroll et al., 2018; Pettex et al., 2010). 

Further investigation is needed to understand whether the differences in diet, activity patterns 

and areas used by breeding individuals indicate individual specialization (Medrano et al., 

2022) did not find niche specialization in Cape Vede Storm Petrels that breed at different 

times of year.  
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Moreover, our study revealed high heritability of tropicbird phenology, with recruits 

returning to the colony around the same time of year as when they fledged. This finding is 

similar to results on other seabird species, indicating a genetic component to phenological 

patterns (Pérez, 2019), and are in line with the high repetabilities we found. However, the 

potential overestimation of trait heritability through offspring regression should be 

considered (Charmantier & Gienapp, 2014). Despite this, the variability in recruitment age 

and high philopatry among tropicbirds, highlight the complex interplay of genetic and 

environmental factors shaping phenological traits (Antaky et al., 2020; Varela et al., 2024; 

Zhang et al., 2015). Therefore, further long term ecological and genetic studies may be 

needed to understand the heritability of phenology and the gene flow between seasonal 

populations. 

The high individual repeatability and heritability of phenology suggest that tropicbirds are 

more susceptible to environmental change than previously thought (Franklin, et al., 2022a; 

Keogan et al., 2018). Climate change and habitat loss pose significant threats to seabird 

populations, and understanding the genetic basis of phenological traits can help predict their 

responses to environmental shifts (Visser & Gienapp, 2019). Typically, species can adapt to 

climate change through individual plasticity by shifting the timing of breeding or through a 

micro-evolutionary response. However, since climate change is occurring rapidly, within just 

a few generations of tropicbirds, natural selection may not have sufficient time to act. The 

lack of plasticity in individual phenologies may prevent these birds from rapidly adapting to 

new circumstances by adjusting their breeding timing. Additionally, the observed 

repeatability of phenology may be mediated by ecological interactions such as competition 
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and mate fidelity, and potentially uncoupled from the annual cycle, as seen in other tropical 

seabirds (Reynolds et al., 2014; Stonehouse, 1962). 
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Conservation implications 

 

The findings of this thesis not only significantly advance our understanding of Red-billed 

Tropicbird foraging and migratory ecology but can also contribute to the understanding and 

conservation of tropical marine systems as a whole. The spatial data provided, which offers 

insights into seabird ecology from both behavioral and spatial perspectives, may be used to 

help inform management strategies for this species throughout its annual life cycle. 

Moreover, as marine top predators, tropicbirds can be used as sentinels for monitoring marine 

ecosystems (Hazen et al., 2019).  

By studying the effects of seasonality during both the breeding and non-breeding periods, 

this thesis sheds light on the selective pressures acting on tropicbirds throughout their annual 

life cycle. Understanding the drivers of spatial, behavioral and phenological variability is 

crucial, especially in the context of climate change. Phenological shifts in polar and temperate 

environments have been well-documented, driven by individual responses to changing 

conditions and/or changes in population structure (Gordo, 2007; Gunnarsson & Tómasson, 

2011; Orgeret et al., 2022; Sydeman et al., 2015). However, information in tropical oceans 

is far less complete (Sydeman et al., 2012). Although it has been hypothesized that the 

behavioral and phenological population-wide variability of tropical seabirds may buffer 

shifts in environmental conditions, recent studies on tropical species, including this thesis 

have found significant individual consistency in spatial habitat use and phenology (Franklin 

et al., 2022a, b). Furthermore, we showed that at least part of this consistency, breeding 

phenology, is actually heritable. The low individual flexibility of tropicbirds and the apparent 

heritability of this trait (Chapter 4) suggests that tropicbirds are more susceptible to 
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environmental change than previously thought. Although tropicbirds breed year-round, there 

are seasonal differences in tropicbird behavior in both the breeding (Chapter 2) and non-

breeding season (Chapter 3), which, in turn, result in seasonal differences in breeding success 

and fitness metrics (Chapter 2). Since individual tropicbird phenology is repeatable, 

individuals which breed during the wet season (which had the lowest breeding success), may 

continue to do so, potentially resulting in negative selection if no significant year to year 

variability in conditions occurs. Moreover, since phenology is heritable, this selection should 

lead to an evolutionary response (Visser & Gienapp, 2019).  

Moreover, our study also provides valuable insights into how individual behavior changes 

with seasonality. Since changes in animal behavior, and spatial ecology have emerged as 

valuable indicators of ecosystem changes, often surpassing traditional metrics like abundance 

or distribution (Berger-Tal et al., 2016), they may be early indicators of the effects of climate 

change on species survival. Behavior fluctuations can serve as early warnings, offering 

insights into environmental shifts, especially when there's a robust understanding of the 

model species. Through continuous monitoring facilitated by tracking devices and advanced 

analytic algorithms, behavior assessment becomes both feasible and cost-effective (Berger-

Tal & Saltz, 2016). Leveraging biologging or remote telemetry to track seabirds, along with 

behavioral inference, amplifies their role as effective ocean sentinels. The large diversity in 

spatial habitat use and phenology may make tropical species more adaptable to varying 

environmental conditions. The findings reveal diverse spatial habitat use and this diversity 

likely helps them adapt to varying environmental conditions to find food effectively (Soanes 

et al., 2021; Weimerskirch et al., 2005; Zango et al., 2020). However, at the same time, this 
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diversity makes traditional methods of spatial conservation management inefficient for the 

protection of tropical species at sea. 

Despite being Least Concern, populations in Cabo Verde are declining, raising concerns 

about genetic risks due to isolation and limited dispersal as in other tropicbird colonies 

(Varela et al., 2024). The Cabo Verde population is relatively isolated compared to other 

Atlantic populations. In fact, after seven years of intensive monitoring and ringing over 3,500 

tropicbirds in Cabo Verde, along with some parallel efforts in the nearest colony in Senegal, 

no rings from other populations were ever found. Understanding these dynamics is crucial 

for predicting species responses to climate change and informing conservation efforts 

(Orgeret et al., 2022). Due to their movements across national boundaries during breeding, 

wintering, and migration, international cooperation is crucial for the conservation of pelagic 

seabird species (Jodice & Suryan, 2010; Louzao et al., 2012). The transboundary nature of 

these birds poses significant challenges for conservation, emphasizing the need for 

ecosystem-based management (Jodice & Suryan, 2010). 

While our dataset's timeframe wasn't sufficient to explore climate change-induced shifts in 

tropicbird foraging behavior, phenology, and fitness (Orgeret et al., 2022), understanding 

how this species adapts to seasonal variations in bottom-up and top-down pressures offers 

insights into its potential response to climate change. Despite significant plasticity in their 

foraging behavior and diet, changes in environmental conditions and prey availability across 

seasons influenced tropicbird body condition and breeding success. This suggests that 

environmental and ecological changes resulting from climate change may have notable 

effects on their populations. 
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Our results provide some of the first in-depth knowledge on seasonal variation in foraging 

behavior of a tropical seabird species, suggesting seasonality in tropical systems may be a 

stronger driver of the movements of top predators than previously thought. We found that 

even small changes in environmental conditions and resource availability can have important 

repercussions on tropicbird foraging ecology, and although this species displayed some 

plasticity in foraging behavior, these effects translated into differences in fitness metrics 

throughout the year. This flexibility may give us insight into the adaptability to climate 

change and the importance of understanding the seasonal variability in behavior. 
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General Conclusions 

About the response of tropicbirds to seasonal changes in oceanographic conditions and 

resource availability during the breeding season   

• In this thesis, we identified seasonal patterns in tropicbird foraging ecology, leading 

to variations in nest occupancy, space use, diet, activity patterns, and fitness metrics 

throughout the year. We conclude that these seasonal patterns are driven by changes 

in resource availability, particularly fluctuations in squid abundance, and nest site 

suitability, which decreases due to rainfall and high temperatures during the wet 

season, impacting the breeding success. 

About how seasonal changes in oceanographic conditions affect the distribution and 

migratory ecology of tropicbirds during the non-breeding season.  

• We identified seasonal patterns in the non-breeding distribution, activity patterns and 

migratory ecology of tropicbirds and suggest that these changes are driven by 

population wide habitat requirements of SST and air density during the non-breeding 

season. 

About the links between cyclical life-history events, and whether there are carry over effects 

on phenology, spatial ecology and breeding success. 

• We identified links between breeding success and subsequent migratory phenology, 

with individuals that re-nested shortening their non-breeding period in order to 

maintain a similar breeding phenology. If incubation was delayed despite these 

adjustments, tropicbirds suffered from lower breeding success. We did not find any 
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evidence of carry over effects between migratory ecology and subsequent breeding 

success.  

About the underlying mechanism driving spatial and phenological variability, and whether 

phenology is heritable. 

• We identified that despite population-wide variability in foraging and migratory 

distribution and phenology, tropicbirds displayed consistency in the areas used and 

repeatable and heritable phenology, suggesting their plasticity in these traits is more 

limited than previously thought. 

Our findings suggest that tropicbirds may be more susceptible to environmental change than 

previously thought. Even small seasonal changes in environmental conditions significantly 

affected their foraging and migratory ecology, resulting in seasonal patterns in fitness 

metrics. Combined with the high repeatability and heritability of their phenology, these 

results lead us to conclude that tropicbirds may lack sufficient individual plasticity to buffer 

against rapid environmental changes. 
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