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Abstract: In recent years, the wine industry has been researching how to improve wine
quality along the production value chain. In this scenario, we present here a new tool,
MicroVi, a cost-effective chip-sized microscopy solution to detect and count yeast cells in
wine samples. We demonstrate that this novel microscopy setup is able to measure the
same type of samples as an optical microscopy system, but with smaller size equipment and
with automated cell count configuration. The technology relies on the top of state-of-the-art
computer vision pipelines to post-process the images and count the cells. A typical pipeline
consists of normalization, feature extraction (i.e., SIFT), image composition (to increase
both resolution and scanning area), holographic reconstruction and particle count (i.e.,
Hough transform). MicroVi achieved a 2.19 µm resolution by properly resolving the G7.6
features from the USAF Resolving Power Test Target 1951. Additionally, we aimed for a
successful calibration of cell counts for Saccharomyces cerevisiae. We compared our direct
results with our current optical setup, achieving a linear calibration for measurements
ranging from 0.5 to 50 million cells per milliliter. Furthermore, other yeast cells were
qualitatively resolved with our MicroVi microscope, such as, Brettanomyces bruxellensis, or
bacteria, like, Lactobacillus plantarum, thus confirming the system’s reliability for consistent
microbial assessment.

Keywords: ab-on-a-chip; yeast cell count; holography; wine quality; chip-sized microscopy

1. Introduction
The wine industry is one of the most impactful industries in Europe, according to the

annual report State of the World Vine and Wine Sector for 2023 [1]. Five European countries
(Spain, France, Italy, Romania and Portugal) are present in the top ten countries regarding
the vineyard surface area of the globe, netting a total up to the 40% of the vineyard surface
area of the Earth agro-food field. In fact, Italy and Spain are the leading countries on
research regarding the wine industry [2].

Focusing on quality in the value chain, wine quality has been an open research field in
later years, and many authors have contributed to this field. For example, Petropoulos et al.
proposed a solution to use fuzzy logic for wine quality estimation [3]. Other authors, like
Morata et al., have studied the impact of yeast selection in the Iberian Peninsula during
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the last few decades, starting with isolation of the well-known Saccharomyces cerevisiae and
other newly discovered yeast strains [4]. Recently, Swe et al. presented a work on how
to use hyperspectral cameras to assess the quality of wine grapes using destructive and
non-destructive methods [5]. Also, recently, Puig-Pujol et al. presented an application
of ultra-high-pressure homogenization at different stages of wine production to enhance
the quality of wine production by reducing the use of sulfites or other antimicrobial and
antioxidant treatments [6].

In this work, we introduce a novel computer-assisted approach to address one of the
critical open challenges in the wine industry by enhancing wine quality through the precise
monitoring of the fermentation process. Specifically, this process hinges on accurately
quantifying yeast cell concentrations during particular stages of wine production. This
challenge is especially significant for sparkling wines, where stringent yeast counts are
essential at specific production stages to ensure quality. While prior efforts have explored
using smartphone cameras to assess certain wine quality parameters, our approach diverges
by leveraging a microscope-on-a-chip solution composed entirely of cost-effective, off-
the-shelf components. This setup, designed to function as a miniaturized laboratory,
incorporates advanced computer vision techniques to offer a robust, automated alternative
to traditional methods.

Our earlier research focused on the fundamental design and optimization of micro-
scopes on a chip, as exemplified in our previous work. There, we demonstrated a lensless
raster microscope based on a microdisplay, employing micro-LED arrays as illumination
sources. This setup explored key optical parameters such as LED source characteristics,
sample-to-display distances, and holographic correction techniques to enhance resolu-
tion [7,8]. However, the application scope of the earlier work was primarily confined to
generalized biomedical assays without domain-specific adaptations. Here, we present a
significant advancement by adapting this lensless microscopy concept to the unique re-
quirements of the wine industry. Unlike the general-purpose configurations in prior studies,
the proposed setup integrates microfluidic components tailored for handling wine samples,
alongside a new software framework, MicroVi, which stands for microscopy-in-a-chip
solution for wine samples, built in Python [9] with a QT-based graphical interface [10].

Moreover, with MicroVi application, we went with a setup built with full commercial
hardware, focusing on reproducibility and stock options to ease distribution problems
of these kinds of novel technological approaches, combining state-of-the-art advances
with out-of-the-self devices, plus a solid software application. With this base design, we
achieved a system capable of achieving a resolution of 2.19 µm, successfully resolving the
G7.6 features from the USAF Resolving Power Test Target 1951, comparable to state-of-the-
art optical microscopes. Thus, the results showed that MicroVi could accurately detect and
count cells of Saccharomyces cerevisiae [6] and other contaminant yeast species, such as
Brettanomyces bruxellensis, at concentrations relevant to the wine production process. The
combination of cost-effective, off-the-shelf components and advanced image processing
techniques positions MicroVi as a valuable tool for winemakers seeking an accessible yet
highly precise solution for quality control in fermentation monitoring.

In summary, our contribution represents a domain-specific adaptation of the
microscope-on-a-chip paradigm, integrating innovations in hardware and software to
address a vital industrial need. This distinguishes MicroVi as a practical, accessible, and
highly precise tool for winemakers, offering an unprecedented combination of cost effi-
ciency and functionality in fermentation process monitoring.
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2. Materials and Methods
2.1. Microscope on a Chip

Our device consisted of several components: a lensless camera board, a 3072 × 2048-pixel
TIS-DMM-37UX287 (from The Imaging Source, Bremen, Germany; distributed by IberOp-
tics, Madrid, Spain); a blue LED micro-display, the 640 × 480-pixel JBD013 Series (from
Jade Bird Display, Shanghai, China); 62.5 µL microfluidic channels as laboratory disposable
samples, µ-Slide I Luer Glass Bottom (from ibidi, Gräfelfing, Germany; distributed by
Inycom, Zaragoza, Spain); and custom 3D-printed parts, printed in our facility using an
Ultimaker 5 machine using PLA Black plastic (from Ultimaker, Utrecht, The Netherlands).
The segmentation was performed with Ultimaker Cura, and the nozzle specifications were
0.4 mm, with the printing layer thickness set to 0.1 mm.

Figure 1 depicts the mounted setup alongside a schematic representation of the parts of
the setup. The microscope-on-a-chip setup has a z-axis mount. This is the propagation axis
of the optical field, as is normal for such microscopes [7], and light is emitted from below
the sample, from one or several LEDs from the microdisplay. Later, the light is scattered
following in-line holography propagation and captured by the camera [11]. Table 1 shows
a summary of the physical properties for the chosen components used to construct our
microscopy-on-a-chip device; all of these properties are taken from the specifications that
the different manufacturers provide for each of their respective components as the hardware
is made from out-of-the-shelf components. Moreover, we added some relevant distances
used in the setup (z-axis) relevant to the reconstruction of the holography images taken by
the camera.
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Figure 1. Our setup for the MicroVi solution to measure yeast cells in wine samples. (a) A photograph
of the MicroVi while being used to prepare a sample of wine to be captured. (b) A schematic
representation of MicroVi setup (not to scale), the setup is composed of a plastic case made with a
commercial 3D-printed, a microfluidic channel which is a disposable element, a display that acts as
the light source for this microscope, and finally, a digital CMOS camera.

Note that MicroVi is device build from out-of-the-shelf components. This means that
often certain parts of the microscope can be easily interchanged with other parts that are
provided by the same manufacturer; for example, the microdisplay can be easily changed
from one color to another (the manufacturer provides them with wavelengths centered
in red, green and blue colors [12]), or the microchannel can be arrange to be interchanged
with any of the provider’s channels that fit into the chamber (ibidi µ-Slide series), which is
the same for the cameras (all DMx superior mounts).
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Table 1. A summary table of the physical properties of the optical mount for the microscope-on-a-
chip device used in the MicroVi framework. (*) MicroVi can work with other µdisplays from the
same manufacturer, which can change these values [12]. (**) Distance display—sample depends on
each capture.

Camera Value Units

Max. resolution 3072 × 2048 pixels × pixels
Pitch 2.4 µm/pixel

µDisplay Value Units

Resolution 640 × 480 pixels × pixels
Pitch 4.0 µm/pixel

Wavelength (peak) 468 * µm
Wavelength (width) 25 * µm

Mount Value Units

Distance display—sample 500–1000 ** µm
Distance display—camera 10 mm

2.2. Software and Graphic Interface

We introduce a novel application to control the device, primarily developed in Python.
Python was chosen, due to its versatile approach to different solutions, as a general-purpose
language [9]. Python has access to modern computer vision libraries, and it can bind to
popular graphic interface libraries, often written in C or other similar low-level languages,
such as PySide2, open-source bindings to the QT framework [10]. The application views
are designed using Qt Designer, and Figure 2 shows the application displaying the camera
of the microscope open in a live stream. A summary of stock libraries that we used to
implement our acquisition and computer vision pipeline is provided as follows:

(a) The PyData suite: NumPy, SciPy and matplotlib are the basic libraries for data science
in Python, which are based in the abstraction of data arrays [13]. Also, the well-
known pandas library was chosen to post-process the data created with the MicroVi
application [14].

(b) Computer vision and machine learning frameworks: MicroVi implemented algorithms
using OpenCV [15] and scikit-learn [16].

(c) Low-level image streaming: to interact with the lensless cameras, we built our appli-
cation on top of the GStreamer [17] driver provided by the manufacturer.Biosensors 2025, 15, x FOR PEER REVIEW5 of 18 
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2.3. In-Line Holography

Lensless microscopy often involves some form of holography. We used the work
previously introduced by Latychevskaia and Fink regarding in-line holography [11]. We
modeled the light propagation in our microscope as spherical wave propagation in a
paraxial approximation. First, we chose to use a spherical method as our wavefront
originated from a single point, an LED from the microdisplay, and then, we checked
that our mounted geometry fulfilled the paraxial approximation. In line with a previous
experiment that took place, to simulate if this propagation, we followed the instructions
below [11]:

(a) We created a simulated optical field t(x, y) for the image of two cells in the sample
plane. These cells were simulated with a simple circle with zero-transmission function
(t = 0) and a “body” of a certain transmission (t = 0.15), which can be seen as the
“Simulated field” in Figure 3.

(b) We computed t(u, v), the Fourier transform of t(x, y).
(c) We simulated the propagator using the expression for spherical wave propagators

S(u, v) = exp
(
−iπλz

(
u2 + v2)).

(d) We multiplied t(u, v) and S(u, v), and calculated the inverse Fourier transform of
the result.

(e) We took the absolute value of the result to obtain H0(X, Y), which can be seen as the
“Field detector” image in Figure 3.
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Figure 3. A simulation of an optical field (simulated field) with a sample of two particles with a
non-transparent border (t = 0) and semi-transparent body (t = 0.15). The field is propagated up to
the camera (field detector). The bar scale changes according to the projected in-line holography
image size. The field is then reconstructed using a spherical wave propagator, assuming paraxial
approximation (reconstructed field). Finally, an iterative (N = 5) phase recovery algorithm is applied
to reduce the impact of the twin image (twin-image removal).

After these steps, we proceeded to recover the image of the simulated field using the
inverse process [11]:

(a) We computed H0(u, v), the inverse Fourier transform of H0(X, Y).
(b) We simulated the backwards propagator as S*(u, v) = exp

(
iπλz

(
u2 + v2)).

(c) We multiplied H0(u, v) and S∗(u, v) and calculated the Fourier transform of the result,

which provides
∼
t (x, y). The reconstructed field was derived from the holographic

reconstruction method, which can be seen as the “Reconstructed field” in Figure 3.

In Figure 3, it can be seen that the reconstructed field displays several secondary waves
in the recovered field. This is a common effect known as twin-image appearance. Optically,
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this twin image is originated by the fact that a “mirrored” version object is created when the
algorithm is computed from twice the distance of the propagation (from the −z distance if
z is the distance between the display and the camera). Mathematically, this is a problem of
removing the phase of the complex field when computing H0(X, Y) in the simulation, as it
takes the absolute value of the field to resemble the real scenario where our camera is not
able to capture the phase of the holographic image.

(a) We followed an iterative approximation which consisted of retrieving the phase of
the original field from a reconstructed image, which can be found elsewhere [18]. The
method consists of propagating back and forth the field imposing physical constraints
to the reconstruction. For our samples, we carried out the following:

(b) We recovered
∼
t (x, y) using the back-propagation method, as fore-mentioned for

recovering the field. And we split the complex field into amplitude and phase.
(c) We created a mask m(x, y) where the amplitude was higher than 1.
(d) We modified the amplitude to set to 1. The maxim allowed a physical value, the pixels

in the mask. Plus, we set these pixels to 0 in the phase.
(e) We packed again the complex field and forward-propagated it to the capture plane, as

fore-mentioned for simulating the propagation of the field to the camera.
(f) We split the new simulated field into amplitude and phase and took the phase and

packed with the original amplitude H0(X, Y), creating a complex field, H1
0(X, Y),

which is the first iteration of the twin-image removal algorithm.
(g) We repeated the steps N times from (a). The results for N = 5 can be seen in the

“Twin-image removal” image in Figure 3.

2.4. Image Acquisition and Normalization

To address variability in LED intensity and minimize external light interference, a
normalization technique was integrated into our image acquisition process. As opposite to
the simulated holograms, for real-world holograms, the approach often taken for in-line
holography involves capturing a background image with the same LED but without the
sample [11,18]. This background image serves to normalize the sample image during
reconstruction, ensuring independence from incident light variations. Mathematically, this
process is expressed as follows:

H0(X, Y) =
H(X, Y)
B(X, Y)

− 1,

where H0(X, Y) is the normalized hologram, independent of the incident light, H(X, Y) is
the hologram without normalization, and B(X, Y) is the background incident light.

2.5. Multi-Holographic Mode and Mosaic Composition

Often, microscope-on-a-chip devices that incorporate a microdisplay can easily work in
a “multi-holographic mode”. This is a feature that involves several pixels of the addressable
array of LEDs. In this mode, several LEDs are used to capture the sample one by one. This
produces one image per LED used this way. Often, the user can adjust the steps between
LED usage, e.g., how many LEDs are skipped during capture [8].

Our computer vision pipeline included the implementation of the well-known SIFT
method to extract features from the batch of images corresponding to the same sample;
later, the features were matched with the BFMatcher algorithm [19]. Once the features are
extracted and matched, the usual workflow in such scenarios is to fit a geometrical defor-
mation model in order to better “stitch” the images to a certain “surface”, i.e., this is useful
to avoid contributions of mismatched features. We preferred to fit an affine deformation by
applying a least-squares bi-linear model—X and Y axes—instead of using a full perspective
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transformation as our stitching solution. Formulations for both approximations can be
found in common pieces of literature [20].

Figure 4 shows an example of this process. The mosaic is composed from up to 64 in-
dividual images. The image was generated from an actual sample of a contaminant yeast
strain of Brettanomyces bruxellensis (CECT 1010)—not a simulation—and was normalized
without a background—as we normally do follow the back-propagation method [18]—to
show a clearer composition in the stitched image. It is interesting to notice that stitched
images often introduce some border effects—e.g., areas of the mosaic that are defaulted
to 0 in the border—and we mitigated this by implementing an apodization filter, a com-
mon technique used in combination with Fourier transforms introduced in the above
subsection [21].
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Figure 4. The stitching process of a sample image of Brettanomyces bruxellensis (CECT 1010) in
our pipeline: (a) 64 images created changing the addressable LEDs from the microdisplay, and
each image is normalized without a background image to enhance the different changes in the
illumination; (b) the stitched image using SIFT, BFMatcher algorithms and a bi-linear model to solve
the reconstruction of the sample image.

2.6. Cell Count

In the literature, the problem of counting cells has been tackled from a morphological
point of view. As cells are approximately circular shapes, the gold-standard method to
retrieve such shapes in the computer vision field is the circular Hough transform (CHT).
We can find examples of this usage in agriculture or biomedical applications, for example:
Alves et al. presented a method to use the CHT to detect honey comb cells from images [22];
Mahmood and Mansor presented a method to locate blood cells in optical microscopy [23];
and similar to our application, Pala and Yildiz presented a method to use the CHT using
lensless imaging [24]. To adapt this methodology to our problem, we performed a grid
search fine-tuning of the parameters of the CHT algorithm over the control samples that
were also measured manually. This can be seen as a way to “train” the CHT algorithm for
our images [25].

2.7. Sample Preparation

In order to present qualitative and quantitative evidence that our microscope-on-a-
chip solution worked as intended, we targeted Saccharomyces cerevisiae species, which is
specifically intended for oenological use [4]. For S. cerevisiae, we studied the strain P29
(CETC 11700, from Spanish Type Culture Collection, València, Spain) which is a yeast
strain widely used in sparkling wine elaboration. It was isolated from the Appellation
of Origin Penedès (Barcelona, Spain). Plus, we also targeted some spoilage species, i.e.,
Brettanomyces bruxellensis strains: one from stock (CECT 1010, from Spanish Type Culture
Collection, València, Spain) and B. bruxellensis wild yeast, which was part of the INCAVI
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yeast collection that was isolated from a red wine from the Penedès region. Moreover,
we also tested our microscopical setup with a commercial lactic acid bacteria species for
oenological use: Lactobacillus plantarum (strain ML Prime™ from Lallemand Inc., Montreal,
QC, Canada).

For S. cerevisiae samples, yeast starter culture samples were inoculated in pasteurized
must and incubated for 48 h at 28 ◦C until reaching a concentration ranging between 100
and 150 million cells per milliliter. This was carried out twice, first, in order to calibrate
the measures from the MicroVi prototype against an optical microscope; and second, to
study the free evolution of yeast concentration on a sample during the fermentation process.
Subsequently, for the first scenario, serial dilutions of the yeast culture were conducted to
ascertain the optimal yeast count range for the MicroVi prototype. Once the optimal range
for yeast counting with the prototype was determined, the evolution of yeast concentration
during the fermentation process was studied. For this, serial dilutions were performed as
in the first case.

Moreover, yeast concentration during the tirage stage of sparkling wine production
was assessed. To accomplish this, the initial inoculation of sparkling wine samples was
conducted, with yeast concentrations ranging between 1 and 2 million cells/mL, followed
by an evaluation. Regarding commercial bottled wines, two of them were subjected to an
evaluation to ascertain the absence of yeast.

Finally, all samples were introduced in the chip-sized microscope using a 62.5 µL
microfluidic channel (µ-Slide I Luer Glass Bottom). After depositing the samples into the
microfluidic channel, we waited 5 min for the samples to settle into a layer of cells at the
bottom of the channel.

3. Results
3.1. Holography Reconstruction and Optical Resolution

The resolution of the MicroVi device was determined by resolving the well-known
USAF Resolving Power Test Target 1951 (see Figure 5). This target is a known reference
pattern used by many others in research also related to imaging devices for agricultural
applications [26,27]. The target comprises a series of repeating squared patterns called
“groups”. Within each group, a descending amplitude pattern is depicted. With our
MicroVi software, we captured an array of 64 images and stitched the image into a mosaic
image (similar to Figure 4). Then, we applied a holographic back-propagation to the target
plane and implemented the iterative phase-removal algorithm to clean the twin-image
noise (similar to Figure 3). The results can be observed in Figure 5. MicroVi was able to
qualitatively resolve the sixth pattern of the seventh group from the USAF 1951 (G7.6),
which was the smallest feature in our target. Quantitatively, we measured a half-period of
the pattern of 2.2 ± 0.1 µm, which was consistent with the tabulated measure of the G7.6
pattern, 2.19 µm.

Figure 5 also shows the importance of the twin-image removal algorithm, which
increases the contrast between the background of the image (higher values in the color
profile graph) and the important features (lower values). Plus, Figure 6 shows evidence
on the key role the twin-image removal algorithm in order to properly resolve cells of a S.
cerevisiae species sample. The color profiles across the ROI of the given cells show how the
cell can be resolved as an entity only using a one-step holographic reconstruction, but its
morphology becomes more explicit after the image is cleared with the method.
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Figure 5. The USAF Resolving Power Test Target 1951 is captured, first, with an optical microscope
(left image). Then, the ROI region corresponding the smaller targets from the 7th group are zoomed
in (dashed lines, top image). Also, the same region is captured using the MicroVi device: the image is
recovered using the holographic method (middle image) and later zoomed in (black lines); the image
is cleaned using the twin-image removal method (bottom image) and later zoomed in (red lines).
Finally, a mean profile of the USAF target for the smallest distance in group seven is shown in the
plot. Once measured, the cleaned version increases the signal of the pattern by two. The measures
show the recovered period values (2.2 µm and 4.4 µm) corresponding to the G7.6 pattern from the
USAF Resolving Power Test Target 1951.
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Figure 6. A sample of Saccharomyces cerevisiae species. The first row shows a stitched image from
64 captures using the MicroVi microscope; a central ROI of the image is then focused and a profile is
extracted; the profile is evidently meaningless. The second row shows the holographic reconstruction
of the stitched image; the same ROI is extracted, and the same profile is shown; and then, the yeast
cells start to emerge. Finally, the third row shows the twin-image removal method, which qualitatively
increases the resolution of the image; the cells start to be resolved.

3.2. Qualitative Results on Different Species and Wines

On the one hand, we tested our microscope under a variety of yeast strains and
lactic acid bacteria (LAB). Figure 7 illustrates the performance of the MicroVi system in
detecting different species of yeast cells and LAB, comparing results from traditional optical
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microscopy, diffraction pattern images captured with MicroVi, and the final holographically
reconstructed images. Both S. cerevisiae (P29 strain) and B. bruxellensis (CECT 1010 strain)
were successfully resolved, showing clear structural details of the cells.
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Figure 7. A comparison for different species of yeast cells and lactic acid bacteria. The columns show
the same three steps for each species: optical, an image of a sample captured with the optical micro-
scope; captured, the same sample—but not the same spot—captured with the MicroVi microscope,
and images are shown as diffraction patterns; reconstructed, holographic reconstructions plus the
twin-image removal algorithm. The rows show four different species, three yeast species, the last
two contaminant species, and Lactobacillus species, namely, Saccharomyces cerevisiae P29 (CECT 11770
strain), Brettanomyces bruxellensis (CECT 1010 strain), Brettanomyces bruxellensis (wild strain), and
Lactobacillus plantarum (ML Prime™ strain).

These details are important for yeast morphology analysis and demonstrate MicroVi’s
ability to recover shape and form. However, the wild strain of B. bruxellensis presents
challenges due to its smaller size, resulting in a less distinct reconstruction, where the cell
shapes are not as clearly defined as with the stock strains. Despite this, the morphology is
different enough to assess the differences qualitatively and detect them as a contaminant
species. Additionally, Lactobacillus plantarum (ML Prime™ strain) cannot be resolved at
the individual cell level. Instead, clusters of Lactobacillus appear as merged entities in the
reconstructed images, suggesting that the current resolution of MicroVi is insufficient to
differentiate these closely packed bacterial cells.

On the other hand, Figure 8 presents a comparison of MicroVi microscopy applied to
two different commercial samples: vermouth and red wine. These tests were conducted
to simulate real-world scenarios where wine samples, rather than laboratory-prepared
cultures, are analyzed. In the vermouth sample, a variety of debris from different materials
in the liquor, such as spices, was observed. These particles were clearly distinguishable
from the yeast cells present in the sample. The microbiological count for this sample was
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revealed to be 390 cells per milliliter after filtering 300 mL of the sample and concentrating
the retained material in 1 mL of sterile water. This high yeast count, along with the presence
of other debris, was corroborated by the microscopy results.
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Figure 8. A comparison of the use of MicroVi microscopy for two different commercial samples. The
columns show the same three steps for each species: optical, an image of a sample captured with the
optical microscope; captured, the same sample—but not the same spot—captured with the MicroVi
microscope (the images are shown as diffraction patterns); reconstructed, holographic reconstructions
plus the twin-image removal algorithm. The rows show two different commercial samples from
vermouth and red wine.

On the other hand, the red wine sample exhibited smaller yeast cells that could not be
resolved clearly by MicroVi, indicating the limitations of the system for detecting smaller
microorganisms in complex samples. The microbiological analysis of this red wine sample
showed 20 cells/mL after filtering 200 mL of wine and concentrating it in 1 mL of water.
Despite the low yeast count, the results demonstrate that MicroVi can still capture the
presence of small amounts of yeast, although with limited resolution. Additionally, the red
wine coloration posed no problem for the MicroVi device, further supporting its potential
applicability in real-world conditions.

3.3. Cell Counts and Device Calibration

To ensure our setup was able to count yeast cells in the same fashion that a human
can count cells from our lab optical microscope (Nikon Eclipse Ci), we performed a simple
experiment to assess the regression calibration between the two methods. In order to
count the cells, we used the MicroVi framework to capture different labeled concentrations
of S. cerevisiae cells (strain P29, CECT 11700), as described before. We diluted the S.
cerevisiae culture samples and performed a count in both setups. Comparing the results, we
established that the optimal yeast count range of the MicroVi prototype for our application
should be between 0.5 and 50 million cells per milliliter. Figure 9 depicts a result of the
MicroVi software counting cells using the Circle Hough Transform method, displaying an
example of around 8 million cells per milliliter.
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Figure 9. A view of the MicroVi program, which displays a reconstructed image ROI from S. cerevisae
(P29 strain) yeast cells in artificial wine. The image depicts the captured image with a color scheme
where yellowish colors are the background of the sample, and the blue patterns are the recovered
cells. The image also displays a recount legend, with bounded boxes of the found cells.

In terms of calibration, Figure 10 displays the comparative performance between the
optical microscope and the MicroVi software for each dilution level. The left-side plots show
the performance of each counting method against the dilution, showing good agreement
between the two methods, with both sets of data exhibiting a clear linear relationship across
multiple dilutions. The right-side plot highlights the linear regression analysis, indicating
a near-perfect correlation between the MicroVi counts and the manually obtained counts
from the optical microscope. The slope of the linear regression line is close to 1, with a
negligible intercept (m = 1.00, n = −0.05), confirming that MicroVi can replicate the results
from the optical microscope with high accuracy. This minimal but consistent intercept
shows that MicroVi technology is under-counting the cells; however, this is not important
as decades of cells are clearly separable from each other. In other terms, the false negatives
in recount do not exceed the proper margins established from the application for wine
yeast cell counts. And this can also be qualitatively appreciated in Figure 9. Mainly, the
not-counted cells are corner cases of the reconstruction algorithm (i.e., out of focus, etc.).
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Figure 10. A comparison between the optical microscope and MicroVi (lab-on-a-chip) cell count
measurements across dilutions for S. cerevisae (P29 strain) samples. The left column shows the cell
count as a function of dilution for both the optical microscope (top) and MicroVi (bottom). The right
column shows the linear regression between the two measurement techniques, with MicroVi closely
aligning with the optical measurements.
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These results suggest that the MicroVi system can serve as a reliable tool for automated
cell counting in a lab environment for the target range (0.5–50 million cells per milliliter),
with its performance closely matching that of manual methods using optical microscopy.
The confidence intervals, as shown in the regression plot, further support this conclusion,
demonstrating the system’s robustness and potential to standardize cell counting across
different operators and experimental conditions.

4. Discussion
The pipeline used for cell counting in the MicroVi system leverages advanced com-

puter vision techniques to ensure accurate and reliable results for quality microscopy for
the agriculture vineyard industry. First, the system captures multiple holographic images,
which are then stitched together to form a composite image using feature matching algo-
rithms like SIFT [19]. Following this, a Circular Hough Transform (CHT) is employed to
detect the circular yeast cells, as described in similar work for cell detection in biomedical
applications [23]. This approach ensures that the system can identify yeast cells with high
precision, making it suitable for applications in the sparkling wine industry as yeast growth
is crucial in its fermentation process [28].

One potential improvement to the current pipeline lies in the way the individual
images from the multi-holographic reconstruction are stitched. At present, the SIFT algo-
rithm is used to obtain vectors that describe the displacements between images, and an
affine model is applied to fit these displacements. This method assumes that all images are
displaced in a uniform manner. However, there are several alternatives that could enhance
the accuracy of the stitching process. For example, employing a projective homography
deformation fitting [29], as implemented in the OpenCV framework, could account for
more complex image displacements—e.g., optical aberrations. Furthermore, thin-plate
spline (TPS) approximation offers another solution as this technique has been successfully
applied in various fields [30]. By using TPS, the system could better handle local distortions
in the images, resulting in a more accurate reconstruction of challenging fittings.

Another area for improvement lies in the order of the stitching and holographic recon-
struction steps. Currently, the images are stitched before the holographic reconstruction is
performed. However, an alternative approach would be to reconstruct holograms of the in-
dividual images first and then stitch them afterward. This would allow for depth-resolved
reconstructions through multilayer deconvolution [31], which could help mitigate false
negatives in the cell counting process. By reconstructing multiple layers, the system could
capture cells that might otherwise be missed due to overlapping structures in a single plane.
Additionally, taking advantage of the distribution of displacement vectors obtained from
the SIFT detector could enable layer-specific stitching. Each layer could be aligned and
stitched separately, ensuring that cells at different depths are accurately reconstructed and
counted. This multilayer approach could significantly enhance the robustness of the cell
count in samples with complex structures, such as those found in wine samples with multi-
ple yeast or bacterial species. Or more simply, this could enable registering cells without
having to wait until they deposit in the inferior layer, performing a dynamic measurement
of the sample.

Regarding cell count, an alternative to the CHT method is the well-established YOLO
deep learning architecture, which has demonstrated promising results in the detection
and counting of other types of cells—e.g., blood cells [32]. Its implementation within the
MicroVi pipeline would require its application to the reconstructed holographic images,
where it could potentially detect yeast cells with greater speed and accuracy than CHT. By
using YOLO, the system could not only enhance its real-time performance but also reduce
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the complexity of manually tuning the detection parameters. Despite this, the main issue
with YOLO-based architectures is that they need expensive training and dataset labeling.

On the other hand, recent research has shown the potential of using deep learning
encoders to label-free recover features from raw diffraction patterns, eliminating the need
for a separate holographic reconstruction step [33]. These approaches employ deep fully
convolutional neural networks (FCNNs) to detect and count cells directly from diffrac-
tion patterns, significantly simplifying the image processing pipeline. Similarly, other
authors have demonstrated that deep learning models can infer cell positions in lens-free
microscopy images without traditional reconstruction methods [34]. These findings suggest
that integrating a deep learning-based approach into the MicroVi framework could stream-
line the process, making it more efficient while maintaining or even improving accuracy in
cell detection [35].

By utilizing these deep learning techniques, the MicroVi system could evolve into a
more robust and scalable solution for yeast cell detection, offering improved automation
and adaptability. The ability to bypass traditional image reconstruction processes opens up
new possibilities for enhancing the system’s overall performance, particularly in complex
samples where overlapping or indistinct cell structures might otherwise pose challenges
for conventional methods.

Finally, beyond our current setup, which implies a static measurement of the sparkling
wine samples, e.g., a snapshot of the current concentration of yeast cells, enabling a
dynamic measurement of the cell concentration by the use of micro-pumps [36] that could
help circulate the wine through the MicroVi setup could enable an increase in the dynamic
range of the device in terms of cell count. This is possibly because such fluidic circuits can
dilute the samples into the current dynamic range of the device, or this is due the fact that
we can circulate cell particles over time and compute an average measurement, increasing
the apparent search area. Both techniques with such circuits would benefit both the inferior
and superior detection limits.

5. Conclusions
The development of MicroVi marks an advancement in the application of chip-sized

microscope technology for the wine industry. By utilizing commercially available, cost-
effective components and an advanced computer vision pipeline, the system achieves
a 2.19 µm resolution, effectively resolving the G7.6 features from the USAF Resolving
Power Test Target 1951. These results are comparable to those achieved by traditional
optical microscopes under human cell counting, with the added benefits of portability
and automation. Without forgetting the capabilities of the customization of the FOV
(field of view) for our chip-sized microscope, thanks to the microdisplay and the vertical
arrangement of our microscope, and due to its “multi-holographic” feature, we can “open”
the FOV by losing the stitching area—which increases the noise in the sample but ensures
a lower limit detection—or we can “close” the FOV increasing the stitching area—which
ensures less noise and better reconstruction. This is a strong feature that enables the
microscope’s adaptability to different measurement scenarios.

MicroVi was able to accurately detect and count yeast cells of Saccharomyces cerevisiae.
Moreover, it was able to morphologically differentiate them from contaminant Brettanomyces
bruxellensis, as well as bacteria like Lactobacillus plantarum, crucial for monitoring the
fermentation process and quality control in wine production. Additionally, the system’s
ability to perform holographic reconstructions and multi-holographic stitching expanded
its applicability to more complex samples, such as red wine, vermouth and other wines.
The exploration of alternative image processing techniques, such as projective homography
and thin-plate splines for image stitching, as well as deep learning-based cell detection,
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offers promising directions for future development. These potential improvements, along
with the high correlation between MicroVi’s automated cell counts and manual microscopy
methods, underscore the system’s reliability and potential to standardize microbial analysis
across different stages of winemaking.

By advancing both the hardware and software of microscope-on-a-chip solutions, this
research opens new possibilities for their application in the wine industry and beyond,
paving the way for more efficient and accurate microbial monitoring tools in a variety of
industrial and biomedical fields.
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