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Abstract: We investigate neutrinoless double-beta decay (0νββ) in minimal extensions
of the Standard Model of particle physics where gauge-singlet right-handed neutrinos give
rise to Dirac and Majorana neutrino mass terms. We argue that the standard treatment
of these scenarios, based on mass-dependent nuclear matrix elements, is missing important
contributions to the 0νββ amplitude. First, new effects arise from the exchange of neutrinos
with very small (ultrasoft) momenta, for which we compute the associated nuclear matrix
elements for the decays of 76Ge and 136Xe. These contributions can dominate the 0νββ

rate in cases with light sterile neutrinos. The ultrasoft terms are also relevant in the more
standard scenario of just three light Majorana neutrinos where they lead to a 10% reduction
of the total 0νββ amplitude. Secondly, we highlight the importance of short-range terms
associated with medium-heavy sterile neutrinos and provide explicit formulae that can be
used in phenomenological analyses. As examples we discuss impact of these new effects in
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several explicit scenarios, including a realistic 3+2 model with two right-handed gauge-singlet
neutrinos.

Keywords: New Light Particles, Sterile or Heavy Neutrinos, Baryon/Lepton Number
Violation, Specific BSM Phenomenology
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1 Introduction

Understanding the origin and nature of neutrino masses is one of the most important problems
in particle physics, which could have ramifications for other pressing open questions, ranging
from the generation of the baryon matter-antimatter asymmetry in the Universe [1, 2] to
the nature of dark matter [2, 3]. The Standard Model of particle physics (SM) in its original
form [4–6] contains a left-handed neutrino field (νL), as part of the lepton SU(2) doublet. As
such, the SM cannot generate a Dirac mass term for the neutrino, lacking a right handed
neutrino field (νR), while a renormalizable Majorana mass term is forbidden by the SU(2)
charge of the νL field. The prediction of massless neutrinos is however convincingly ruled
out by neutrino oscillation experiments [7–10].

Without extending the SM field content, a νL Majorana mass term can be included in
the SM as a non-renormalizable dimension-5 operator [11]. This operator is suppressed by
one power of a high-energy scale Λ ≫ v, where v ∼ 246GeV denotes the electroweak scale,
thus pointing to a high-energy origin of neutrino masses. Alternatively, a minimal extension
of the SM, sometimes called the νSM [2], involves the addition of two or more νR fields,
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which are singlets under the SM gauge group and have only renormalizable interactions.
For mνR ≫ eV, the νR fall in the category of heavy neutral leptons (HNLs) [12], but we
will use the term sterile neutrino in this work. At the renormalizable level, apart from a
kinetic term, the sterile neutrinos have a Majorana mass term which for νR is not forbidden
by any symmetry, and a Dirac term connecting sterile neutrinos to the SM left-handed
lepton doublet and the Higgs field.

This model has several intriguing features: 1) neutrinos generally become Majorana
particles, leading to the violation of lepton number, 2) it is possible to account for the
baryon asymmetry of the universe (BAU) [2, 13–19], 3) a very light sterile neutrino can
be a dark matter candidate [2, 14, 20]. Unfortunately, only the connection to dark matter
specifies a mass range, while neutrino masses and the BAU can be accounted for with sterile
neutrinos in essentially any mass range. Although cosmological and big-bang-nucleosynthesis
considerations typically require sterile neutrinos to have masses heavier than 10-100 MeV,
these limits depend on the thermal history of the universe. We will therefore consider a
broader range of masses, which we generically denote by M (although clearly not all sterile
neutrinos have to fall in the same range).

Depending on their masses, sterile neutrinos can be probed by different experiments (see
ref. [21] for a comprehensive review). For M between ∼ 10GeV and the electroweak scale,
sterile neutrinos are constrained by direct collider searches at the LHC, LEP and, indirectly,
by electroweak or low-energy precision observables. For M between the B meson mass and
the kaon and pion masses, νR can be produced in meson decays and receive strong constraints
from experiments such as Belle, NA62 and PIENU [22–25]. Searches for kinks in the spectra
of β decays of various nuclei probe the region from the M ∼MeV, via isotopes such as 20F
with relatively high Q-value, all the way down to M ∼ eV, thanks to isotopes with keV-scale
Q-value such as 3H [26]. At this scale, neutrino oscillation experiments provide additional
constraints. However, for all mass ranges the search for lepton number violation (LNV)
through neutrinoless double beta decay (0νββ) plays an important role. Limits on 0νββ half
lives provide the most sensitive probe of LNV. Current limits exceed 1026 years [27] and can be
improved by one or two orders of magnitude in future experiments [28–31]. For M ≫ O(GeV),
0νββ is dominated by the exchange of light active neutrinos. For lighter sterile neutrinos
there appear additional contributions that can both speed up or slow down the decay rate.

While the effect of sterile neutrinos on 0νββ rates have been studied before [2, 32–41],
these works only consider a subset of the leading contributions. In fact, they effectively replace
the usual massless neutrino propagator, 1/k 2, valid for three active neutrinos, by a massive
neutrino propagator, 1/(k 2 + M2), to describe the νR contributions. The resulting LNV
potential is then inserted into nuclear many-body computations. While these contributions
are relevant, because of the interplay between M , the mass scale of quantum chromodynamics
(QCD), Λχ, and the typical scales of nuclear physics, they only capture one part of the full
M dependence of the 0νββ amplitude. The full M -dependence involves several new effects
which, in turn, require new nonperturbative input from lattice QCD (LQCD) or from models
of the strong interaction, and the calculation of new sets of nuclear matrix elements. In
what follows, we dissect these contributions using effective field theory (EFT) techniques
and determine their scaling with M . This allows us to understand the M dependence of
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numerical NME computations and describe 0νββ rates for a wide range of neutrino masses,
from M ≪ m2

π/Λχ to M ≫ Λχ.
Considering the great appeal of the νSM, due to its minimality and the potential

resolution of major SM problems, it is important to obtain state-of-the-art predictions for
key observables such as 0νββ rates. The main purpose of this work is a complete calculation
of the 0νββ amplitude as function of (sterile) neutrino masses and mixing angles. A shorter
version of this work was recently published in ref. [42] which only presented the main result
in the form of a parametrization of the 0νββ amplitude as a function of the sterile neutrino
mass. In this work, we present the theoretical foundations of this result. In particular, we
discuss in depth the EFT power counting in the various regimes of sterile neutrino masses and
show how the respective neutrino modes (hard, potential, ultrasoft, soft, and perturbative)
contribute at which order in the power counting. In addition, we perform nuclear shell model
calculations of the required NMEs for 136Xe and 76Ge to incorporate the ultrasoft modes
and, for the first time, compute their effects on 0νββ decay rate for the standard mechanism
through the exchange of three light Majorana neutrinos. The ultrasoft modes become much
more important for models with light sterile neutrinos and we discuss the phenomenological
for various models, including the minimal 3 + 2 model. This paper is organized as follows.
After discussing the general setup in section 2 we derive the 0νββ amplitude as a function of
M in section 3. Our expressions involve several (new) hadronic and nuclear matrix elements
and we discuss their sizes and uncertainties in section 4. We then apply our results to several
models of phenomenological interest in section 5 and conclude in section 6.

2 The νSM

We consider the SM Lagrangian supplemented by n gauge-singlet neutrino fields

L = LSM −
[1
2 ν̄c

R MRνR + L̄H̃YννR + h.c.
]

. (2.1)

in terms of the lepton doublet L = (νL, eL)T , while H̃ = iτ2H∗ with H the Higgs doublet.
In the unitary gauge

H = v√
2

(
0

1 + h(x)
v

)
, (2.2)

where v = 246GeV is the Higgs vacuum expectation value (vev) and h(x) is the Higgs field.
νR is a column vector of n right-handed sterile neutrinos. Yν is a 3× n matrix of Yukawa
couplings and MR is a symmetric n × n matrix. We define charged-conjugated fields as
Ψc = CΨ̄T , in terms of the charge conjugation matrix C = −C−1 = −CT = −C† and
Ψc

L,R = (ΨL,R)c = CΨL,R
T = PR,LΨc, with PR,L = (1 ± γ5)/2. Without loss of generality

we will work in the basis where the charged leptons ei
L,R and quarks ui

L,R and di
R are mass

eigenstates (i = 1, 2, 3). The relation between the mass and weak eigenstates for the neutrinos
will be discussed below.

After electroweak symmetry breaking the mass terms can be written as

Lm = −1
2N̄ cMνN + h.c. , Mν =

(
0 M∗

D

M †
D M †

R

)
, (2.3)
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where N = (νL, νc
R)T , MD = v√

2Y †
ν . Mν is a symmetric matrix that can be diagonalized

by a unitary matrix U

UT MνU = mν = diag(m1, . . . , m3+n) , N = UNm , (2.4)

where U is the neutrino mixing matrix and mi are real and positive. The kinetic and mass
terms of the neutrinos can be written as

Lν = 1
2 ν̄i/∂ν − 1

2 ν̄mνν , (2.5)

in terms of the Majorana mass eigenstates ν = Nm+N c
m = νc. A consequence of this scenario

is that the following combination vanishes [32, 43]

n+3∑
i=1

U2
eimi = (Mν)∗ee = 0 , (2.6)

which is important for the computation of 0νββ rates.
Eq. (2.3) is minimal in the sense that the mass spectrum of light and heavy neutrinos is

purely determined by renormalizable interactions, at the price of the introduction of new,
non-SM fields. For comparison we will consider two other scenarios. In the first, we consider
a theory with the same field content as the SM, and we will thus refer to this scenario as
“SM”. In this case, neutrino masses only arise at dimension 5, via the Weinberg operator [11].
After electroweak symmetry breaking, the neutrino mass Lagrangian reads

Lm = −1
2 ν̄c

LMLνL + h.c. . (2.7)

ML leads to three neutrino masses, and can be fitted to reproduce the observed mass splitting
and the neutrino mixing PMNS matrix. In this case the price to pay is the introduction
of non-renormalizable interactions, which parameterize beyond-the-SM physics at energy
scales much larger than the electroweak one.

The final scenario is a natural combination of eq. (2.3) and (2.7), and yields a mass
matrix of the form

Mν =
(

ML M∗
D

M †
D M †

R

)
. (2.8)

Such a mass matrix arises, for example, when one or more sterile neutrinos have masses
much larger than electroweak scale. Mν then takes the form of eq. (2.8), after the heavy
fields are integrated out. The main difference with eq. (2.3) is that the cancellation condition
no longer holds

n+3∑
i=1

U2
eimi = (Mν)∗ee ̸= 0 . (2.9)

We will thus refer to this as a “no cancellation” scenario.
While eqs. (2.3) and (2.8) are general, in what follows we will consider a few concrete mass

models. The baseline to which we will compare our result is the “standard mechanism” in which
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0νββ is mediated by the exchange of three light Majorana neutrinos (3+0), corresponding to
eq. (2.7). The simplest scenario with sterile neutrinos is the one in which the SM is extended
by one gauge-singlet neutrino, the so called 3+1 model. In the case of eq. (2.3), this model
leads to two massless neutrinos, m1 = m2 = 0, and thus is not realistic. It will however be
useful to illustrate the impact of the new contributions identified in this paper. The observed
neutrino spectrum can be reproduced in 3+1 models if ML ̸= 0. In this case 0νββ predictions
can be significantly affected even by very light sterile neutrinos with masses in the eV range.
As a more realistic scenario, we will examine a minimal 3+2 model with two sterile neutrinos
which can reproduce all oscillation data, if the mass of the lightest active neutrino vanishes.
Finally, we will consider pseudo-Dirac scenarios in which lepton number is an approximate
symmetry. These correspond to a subset of eq. (2.3), with a specific structure for MD and
MR. We will focus on a 1+2 case, with one light neutrino with sub-eV mass, and two nearly
degenerate sterile neutrinos with mass between 1 MeV and 10 GeV.

3 Contributions to 0νββ

The amplitude for 0νββ arises from the exchange of the light and heavy neutrinos and
is second order in the Fermi constant, GF = 1√

2v2 . The general expression below the
electroweak scale can be written as

⟨e1e2hf |S∆L=2
eff |hi⟩ =

8G2
F V 2

ud

∑n
i=1 U2

eimi

2!

∫
d4xd4r⟨e1e2|T

(
ēL(x + r/2) γµγνec

L(x − r/2)
)
|0⟩

×
∫

d4k

(2π)4
eik·r

k2 − m2
i + iϵ

⟨0+
f |T

(
Jµ(x + r/2)Jν(x − r/2)

)
|0+

i ⟩ , (3.1)

where Vud ≃ 0.97 is the u-d element of the quark mixing CKM matrix, Jµ = ūLγµdL, e1,2
stand for the final state electrons, and hi,f are the initial and final nuclear states, which we
describe by their total angular momentum and parity quantum numbers, 0+

i,f . The evaluation
of eq. (3.1) involves several steps, the first being the matching of the quark-level Lagrangian
onto Chiral EFT (χEFT), which requires knowledge of hadronic matrix elements. After
evaluating the LNV amplitude at the nucleon level, many-body computations are needed
to describe the physical processes inside nuclei.

The application of the EFT framework can essentially be seen as dividing up the neutrino-
momentum integral in eq. (3.1) into various regions. The integral receives contributions from
several momentum regions, which are set by the relevant scales in the problem. For each
momentum region, we make use of the hierarchy between the different scales and the method
of regions [44] to expand the integrand in small ratios of k/Λ ≪ 1 or m/k ≪ 1, where Λ (m)
is a large (small) scale. The EFT approach thereby allows one to consider one scale at a time.
In our case eq. (3.1) receives contributions from the following momentum regions:

• Hard neutrinos with momenta k0 ∼ |k| ∼ Λχ. As we will see below, this region leads to
short-distance interactions in the χEFT Lagrangian.

• Soft neutrinos whose momenta scale as k0 ∼ |k| ∼ mπ. These neutrinos contribute to
loop diagrams involving nucleons and pions within χEFT.
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• Potential neutrinos with momenta, k0 ∼ |k|2/mN ∼ k2
F /mN , where kF ∼ mπ is the

Fermi momentum of the nucleons and mN the nucleon mass. This region can be
described by the LNV potentials between nucleons that are usually considered in
calculations of 0νββ.

• Ultrasoft neutrinos with momenta that scale as k0 ∼ |k| ∼ k2
F /mN . These neutrinos

can be described as coupling to the nucleus as a whole, instead of individual nucleons.

We start by briefly recalling the contributions due to the exchange of the light SM
neutrinos that appear in this EFT framework, before discussing the effects from sterile
neutrinos as a function of their mass.

3.1 Contributions from active Majorana neutrinos

We first discuss the effects due to the usual active neutrinos. After matching of the quark-level
interactions onto χEFT, there are two types of leading-order (LO) contributions due to the
SM neutrinos. We first have the exchange of neutrinos between nucleons, which results from
hadronizing the quark-level weak currents. At LO this contribution is captured by replacing

Jµ → Jµ = 1
2N̄τ+ (gV vµ − 2gASµ)N , (3.2)

in eq. (3.1), where N = (p n)T is the nucleon doublet, τ+ = τ1+iτ2
2 is an isospin ladder operator

with τi the Pauli matrices, and vµ = (1, 0⃗) and Sµ = (0, σ/2) are the nucleon velocity and
spin, while gV (gA) is the (axial-)vector charge of the nucleon. We will use gV ≃ 1 up to
tiny corrections and gA = 1.2754 ± 0.0013 [10]. After including the effects of pions and
neglecting the difference between the lepton momenta, this leads to the well-known long-range
potential [30, 45] arising from the exchange of three neutrinos with masses mi ≪ kF

V (pot)
ν (k) = τ (a)+τ (b)+ × (4G2

F V 2
ud)

3∑
i=1

U2
eimi

k2

×
[
1− g2

A

(
σ(a) · σ(b) − 2m2

π + k2

(k2 + m2
π)2 σ(a) · k σ(b) · k

)]
ū(p1)PRuc(p2) , (3.3)

where (a, b) label the nucleons and u(p1,2) are the electron spinors.
Apart from the exchange of ‘potential’ neutrinos, with three-momenta similar to the

Fermi momentum, k0 ≪ |k| ∼ kF ∼ mπ, substantial contributions arise from the exchange
of ‘hard’ neutrinos with momenta k0 ∼ |k| ∼ Λχ [46, 47]. The latter induces a contact
interaction between nucleons and electrons in the chiral Lagrangian which generates the
following potential

V (hard)
ν (k) = τ (a)+τ (b)+ ×

(
4G2

F V 2
ud

)
×

3∑
i=1

[
−2gNN

ν U2
eimi

]
× ū(p1)PRuc(p2) . (3.4)

Here gNN
ν is a low-energy constant (LEC) that is in principle amenable to LQCD deter-

minations [48–51], however, so far only phenomenological estimates are available [52–54],
giving gNN

ν = O(1/k2
F ).
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The inverse 0νββ half life arising from light neutrino exchange can then be expressed as

(
T 0ν

1/2

)−1
= g4

AG01
∣∣∣ 3∑

i=1
V 2

ud

U2
eimi

me
Aν

∣∣∣2 , (3.5)

where G01 is a phase-space factor arising from the integral over the electron momenta. We
use G01 = 1.5 · 10−14 yr−1 for 136Xe and G01 = 2.2 · 10−15 yr−1 for 76Ge [55, 56]. We define1

Aν = A
(pot)
ν + A

(hard)
ν = MF

g2
A

−MGT −MT − 2gNN
ν m2

π
MF,sd

g2
A

= Mlong +Mshort , (3.6)

where Mi are the total Fermi (F), Gamow-Teller (GT) and tensor (T) nuclear matrix elements
(NMEs). These combine into the usual long-range NME, Mlong, whereas MF,sd, which is
normalized such that it is O(1) [57], drives the short-range NME, Mshort. See e.g. ref. [30]
for an overview.2 In these expressions we have neglected the dependence of the NMEs on
the mass of the exchanged active neutrino which is a minuscule effect.

At next-to-next-to-leading order (N2LO) one encounters ππ, πNN and momentum-
dependent NN counterterms [47, 58], corrections to the axial and vector currents Jµ, and
loops involving ‘soft’ neutrinos with momenta k0 ∼ k ∼ kF [58], which lead to a correction to
the potential amplitude, A

(pot,2)
ν . At the same order, there are contributions which depend

on the intermediate nuclear states due to the exchange of ‘ultrasoft’ neutrinos, with momenta
k0 ∼ |k| ∼ k2

F /mN . This additional contribution to Aν can be obtained from the chiral
version of eq. (3.1) by replacing the quark currents with their hadronic counterparts and
expanding in |k|/kF ≪ 1,

A(usoft)
ν (mi) = 8πRA

g2
A

∑
n

⟨0+
f |Jµ|1+

n ⟩⟨1+
n |J µ|0+

i ⟩
∫

dd−1k

(2π)d−1
1

Eν [Eν +∆E1 − iϵ]
+(∆E1 → ∆E2) , (3.7)

where |1+
n ⟩ indicates a complete set of intermediate states denoted by their total angular

momentum and parity as 1+
n . Eν =

√
k2 + m2

i ≃ |k|, ∆E1,2 = E1,2+En−Ei, with Ei and En

denoting the energies of the initial and intermediate states (Ef indicates the energy of the final
state), while E1,2 stand for the electron energies. The nuclear radius RA ≃ 1.2A1/3 fm appears
due to the conventional normalization of G01 and the NMEs in eq. (3.5). Because these
terms explicitly depend on the intermediate states, they represent the first corrections to the
so-called “closure” approximation in χEFT [58]. The integral in eq. (3.7) is UV divergent, but
the dependence on the ultrasoft cut-off scale is cancelled by a term in the N2LO potential [58].

Scenarios involving sterile neutrinos generate the same types of contributions as those
discussed above. Several of these have not been considered in the literature before. First, it

1Here Aν is related to the potential by[
g2

AV 2
udG2

F

πRA
miU

2
eiū(p1)PRuc(p2)

] [
A(pot)

ν + A(hard)
ν ]

]
= ⟨0+

f |
∑
a,b

∫
d3k

(2π)3 eik·r [V (pot)
ν + V (hard)

ν

]
|0+

i ⟩ .

2MF,sd corresponds to MF,h in the notation of ref. [30], as short-distance NMEs are sometimes identified
with heavy particle exchange. Likewise, the same correspondence between the notation for subindices “sd” in
this work and “h” in ref. [30] holds across the manuscript.
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has been convincingly demonstrated that the usual long-range 0νββ potential (eq. (3.3)) has
to be supplemented by the additional short-range interaction in eq. (3.4) that arises from
the exchange of light neutrinos with large virtual momenta. In the standard mechanism (the
exchange of three light Majorana neutrinos) these contributions have been found to enhance
0νββ rates by a factor two-to-three for light (e.g. 12Be), medium (48Ca), to heavy isotopes
(e.g. 76Ge and 136Xe) [59–62]. Although the uncertainties are still sizable, mainly due to
poor knowledge of the associated QCD matrix element gNN

ν , LQCD efforts can pave the way
towards more reliable predictions [48–51]. In case of sterile neutrinos with M ≲ Λχ ∼GeV,
similar contributions proportional to this matrix element appear, but now with an additional
M dependence, gNN

ν (M) [63]. These effects appear at leading order. Second, several of
the effects that appear at N2LO in the χEFT expansion in ϵχ = mπ/Λχ in the standard
mechanism, can become important in specific scenarios. Here we highlight the case when all
sterile neutrinos have masses below the pion mass in the minimal extension of the SM. The
leading contributions are then strongly suppressed [32] due to the cancellation in eq. (2.6)
and the formally subleading terms become dominant. In particular, as we discuss below,
contributions from the ultrasoft region become significant.

3.2 Contributions from sterile neutrinos

In this section we discuss the contributions from sterile neutrinos for different mass ranges.
Before describing our approach, we briefly discuss what is presently done in most of the
literature. The standard procedure is to modify the neutrino potential in eq. (3.3) to include
heavier states by effectively replacing

3∑
i=1

U2
eimi

k2 →
3∑

i=1

U2
eimi

k2 +
n+3∑
i=4

U2
eimi

k2 + m2
i

, (3.8)

for essentially any value of mi and where n denotes the number of sterile neutrinos. The
contribution from hard neutrinos, which appears at LO, is not considered but would lead
to a mass dependent LEC gNN

ν (mi). The modified potential is then evaluated between
the initial and final nuclear states leading to mass-dependent NMEs. Figure 1 shows an
example of this mi dependence for 136Xe and 76Ge, where the blue circles correspond to
shell-model results for the amplitude

M(mi) ≡ −
(
MF (mi

g2
A

−MGT (mi)−MT (mi)
)

(3.9)

for a range of mi. The main features of this line are easy to understand. For light mi the
NMEs are almost mass independent, whereas for heavy mi the NMEs scale as m−2

i due
to the massive neutrino propagator. These arguments have led to interpolation formulae
that are used in effectively all analyses in the literature, see e.g. refs. [21, 36, 41, 64, 65].
These formulae take the form

M(mi) = M(0) ⟨p2⟩
⟨p2⟩+ m2

i

, (3.10)

ensuring the appropriate scalings at m2
i ≪ ⟨p2⟩ and m2

i ≫ ⟨p2⟩. A fit to the nuclear shell
model results discussed in section 4, and shown in figure 1, gives ⟨p2⟩ ≃ (175MeV)2 for 136Xe
and ⟨p2⟩ ≃ (160.5MeV)2 for 76Ge. Thus ∼ m2

π ∼ k2
F is of the expected size.
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Figure 1. NMEs in eq. (3.9) for 136Xe (left panel) and 76Ge (right panel) as a function of the neutrino
mass (in blue), as well as the difference M(0) − M(mi) (in red). The circles show the numerical
results of the nuclear shell model calculation described in section 4, while the solid lines depict the
interpolation formula of eq. (4.1).

With this description it is possible to compute the contribution of a sterile neutrino with
mass mi and mixing angle Uei. If we assume no cancellation with other contributions, as we
expect for example in the scenario decribed by eq. (2.8), the above description allows us to
constrain the mixing angle Uei as a function of mi. The resulting constraints are depicted in
the left panel of figure 2 using the current KamLAND-Zen [27] limit for 136Xe, T1/2 > 2.3×1026

yr, and the reach of next-generation experiments assuming a lower bound T1/2 > 1028 yr. The
blue line depicts the naive seesaw expectation for the size of the mixing angle, Ue4 =

√
m3/m4,

where we set m3 = 0.05 eV. These limits are in good agreement with ref. [64].
While this approach seems reasonable, the above description of 0νββ rates from massive

sterile neutrinos comes with several shortcomings:

• The meaning of the NMEs becomes unclear for mi > mN ≃ 1GeV (mN is the nucleon
mass) as the χEFT expansion, used to obtain eq. (3.3), no longer converges when
mi/Λχ ≳ 1. A more appropriate description for sterile neutrinos in this mass range is to
integrate them out at the quark level, before hadronization. This leads to a local LNV
dimension-nine operator containing four quarks and two charged leptons which, after
renormalization-group evolution from mi to mN , can be matched to LNV hadronic
operators. This procedure has been worked out in ref. [63].

• For sterile neutrino masses mi ≲ Λχ there are leading-order contributions from hard
neutrino exchange. These are captured by the mass-dependent gNN

ν (mi) LEC. We will
argue that these terms can have sizeable impact on 0νββ rates in the νSM.

• In minimal models in which eq. (2.6) holds and all sterile neutrinos have masses mi ≪ kF

the total 0νββ rate is strongly suppressed. The commonly used parametrization in the
light-mi regime gives

M(mi) ≃ M(0)
(
1− m2

i

⟨p2⟩
+ . . .

)
. (3.11)
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Figure 2. Left: limits on U2
e4 as function of m4 assuming the 0νββ rate is dominated by a single sterile

neutrino, for current (solid black line) and future (dashed red line) experimental limits, compared to
the naive seesaw expectation (blue line). Right: 136Xe half-life considering contributions only from m4
(black) and all neutrinos (blue) using eq. (3.10) in the 3+1 model. The red line denotes the half-life
by using eq. (4.7) including the new ultrasoft contributions.

Considering the simple 3+ 1 model then leads to (ignoring again the gNN
ν contributions

which are affected by the same cancellation)

(
T 0ν

1/2

)−1
∣∣∣∣∣
m4≪kF

= g4
AG01

∣∣∣ 4∑
i=1

V 2
ud

U2
eimi

me
M(0)

(
1− m2

i

⟨p2⟩

) ∣∣∣2

= g4
AG01

∣∣∣ 4∑
i=1

V 2
ud

U2
eim

3
i

me⟨p2⟩
M(0)

∣∣∣2 , (3.12)

where in the second equality we applied the identity in eq. (2.6). In the right panel of
figure 2 we demonstrate this cancellation by computing the 136Xe half-life by considering
only the contribution from m4 (this contribution becomes mass independent at small
energies because m4U2

e4 ∼ m3) and by the sum of all contributions. For m4 < kF

the cancellation is severe, leading to extremely suppressed decay rates. Within this
approach the first corrections to the amplitude scale as U2

eim
3
i , but, as we will show

in more detail below, a more careful analysis of the various contributions leads to
new terms related to ultrasoft neutrino exchange that scale more favourably, as U2

eim
2
i

or U2
eim

3
i logmi. We anticipate these findings by depicting the solid red line in the

right panel of figure 2, that includes these corrections. Clearly, the commonly used
parametrization in eq. (3.10) is unable to capture the correct mi dependence in these
scenarios.

In what follows we discuss how one can improve upon the method described in this section.

3.2.1 Region 1: mi > Λχ

An EFT approach to this region has been extensively discussed in the literature, starting
from refs. [66, 67]. Here the heavy neutrino can be integrated out at the quark-gluon level,
which gives rise to a LNV dimension-nine operator containing four quarks and two electrons.
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At the scale µ0 ≃ 2GeV we have

L(9) = CL(µ0)ūLγµdLūLγµdLēLec
L , (3.13)

with CL(µ0) = η(µ0, mi)CL(µ = mi) = −η(µ0, mi)
4V 2

udG2
F

mi
U2

ei. Here η(µ0, mi) takes into
account the QCD renormalization-group evolution from the scale mi to the QCD scale [57,
68, 69],

η(µ0, mi) =



(
αs(mi)
αs(µ0)

)6/25
mi ≤ mbottom(

αs(mbottom)
αs(µ0)

)6/25 ( αs(mi)
αs(mbottom)

)6/23
mbottom ≤ mi ≤ mtop(

αs(mbottom)
αs(µ0)

)6/25 ( αs(mtop)
αs(mbottom)

)6/23 ( αs(mi)
αs(mtop)

)2/7
mi ≥ mtop

,(3.14)

in terms of the bottom and top quark masses mbottom and mtop, and where, at one loop,
the strong coupling can be written as αs(µ) = 2π

β0 log(µ/Λ(nf ))
, with β0 = 11− 2

3nf . Together

with αs(mZ) = 0.1179 [10], this gives Λ(4,5,6) ≃ {119, 87, 43}MeV.
Matching the interaction in eq. (3.13) onto χEFT leads to LNV ππēec, π(p̄n)ēec, and

(p̄n)2ēec vertices [57, 66, 70]. The resulting neutrino potential is

V9(k) = −8τ (a)+τ (b)+η(µ0, mi)g2
AG2

F

V 2
udU2

ei

mi
ū(p1)PRuc(p2)

×
[
σ(a) · k σ(b) · k

(
5
6gππ

1
k2

(k2 + m2
π)2 − gπN

1
k2 + m2

π

)
− 2

g2
A

gNN
1

]
, (3.15)

where gππ
1 , gNπ

1 , and gNN
1 denote the LECs, evaluated at the scale µ = 2GeV, corresponding

to the ππ, πN , and NN interactions, which are expected to be O(1). So far only the pionic
coupling has been determined using LQCD calculations [71–73], which give gππ

1 = 0.36 ±
0.019 [71] and gππ

1 = 0.17±0.016 [73]. Taking the results at face value there is a disagreement
between the two determinations, however, they both confirm the O(1) expectation from
naive dimensional analysis (NDA). They also show that QCD corrections cause significant
deviations from the naive factorization results, gππ

1 = 0.6. We expect similar O(1) deviations
for gπN

1 and gNN
1 . The potential in eq. (3.15) leads to the amplitude

A(9)
ν =−2η(µ0,mi)

m2
π

m2
i

[
5
6gππ

1

(
MP P

GT,sd+MP P
T,sd

)
+ gπN

1
2
(
MAP

GT,sd+MAP
T,sd

)
− 2

g2
A

gNN
1 MF,sd

]
,

(3.16)
where the NMEs, ref. [57] and ref. [30], are also normalized such that they are expected to
be O(1). We discuss their values in section 4.

3.2.2 Region 2: kF < mi < Λχ

In this mass region the sterile neutrino cannot be integrated out at the quark level, so that
its contributions can no longer be described by A

(9)
ν . The sterile neutrino now has to be kept

as an explicit degree of freedom in χEFT. Its effects are more similar to that of the light SM
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neutrinos and can partially be captured by including the mi dependence of V
(pot)

ν and V
(hard)

ν

V (pot)
ν + V (hard)

ν = τ (a)+τ (b)+ × (4G2
F V 2

ud)
n∑

i=1
U2

eimiū(p1)PRuc(p2) (3.17)

×
{

1
k2 + m2

i

[
1− g2

A

(
σ(a) · σ(b) − 2m2

π + k2

(k2 + m2
π)2 σ(a) · k σ(b) · k

)]
− 2gNN

ν (mi)
}

.

Similar to eq. (3.6) this gives,

A(pot)
ν (mi) +A(hard)

ν (mi) =
MF (mi)

g2
A

−MGT (mi)−MT (mi)− 2gNN
ν (mi)m2

π

MF,sd

g2
A

, (3.18)

where the mi dependence of these amplitudes now becomes significant and is expected to scale
as k2

F

m2
i
. With the exception of the contributions proportional to gNN

ν , these terms are similar
those captured by the literature approach in eq. (3.10). Evaluating these contributions requires
knowledge of the NMEs and the LEC gNN

ν as a function of mi, motivating nuclear-structure
and LQCD determinations.

In addition, there are contributions from loops involving soft sterile neutrinos, leading
to a correction to the potential, A

(pot,2)
ν . Although such contributions appear at N2LO

for light neutrinos, they can give rise to terms scaling as m2
i /Λ2

χ for the sterile neutrinos.
These effects lead to a breakdown of the χEFT expansion when mi approaches the QCD
scale, so that our estimates become unreliable for mi ∼ Λχ. Finally, similar to the region
mi > Λχ, there are no contributions from ultrasoft sterile neutrinos since mi ≫ k, so that
the integrals vanish in dimensional regularization once we expand the integrand of eq. (3.7)
in terms of k/mi and k/kF .

3.2.3 Region 3: mi < kF

Sterile neutrinos in this regime look even more similar to the usual SM neutrinos and
contribute to A

(pot)
ν , A

(hard)
ν , A

(usoft)
ν , A

(pot,2)
ν , although with different relative importance

than the SM neutrinos. We organize the discussion by these different momentum regions.

Hard and potential neutrinos.

As before, the evaluation of the mi dependence for the A
(pot)
ν and A

(hard)
ν terms requires

non-perturbative many-body and LQCD methods. Naively, the neutrino potential is again
given by eq. (3.17). However, to be able to treat the different momentum regions separately
and avoid double counting, we employ the method of regions [44] and expand the k integrand
whenever small ratios of scales appear. This implies that eq. (3.17) should be expanded in
m2

i /k2 whenever mi is in the ultrasoft domain, mi ∼ k2
F /mN . This procedure of expanding

can be seen as a matching calculation between theories with and without potential neutrinos.
This matching can be computed by subtracting the terms from the low-energy theory, which
only involves ultrasoft neutrinos, from the contributions from the full theory (including
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potential and ultrasoft neutrinos). The contributions from potential neutrinos then lead to

V (pot)
ν (k) = τ (a)+τ (b)+ × (4G2

F V 2
ud)

n∑
i=1

U2
eimiū(p1)PRuc(p2)

×
(

1
k2 − m2

i

(k2)2

)[
1− g2

A

(
σ(a) · σ(b) − 2m2

π + k2

(k2 + m2
π)2 σ(a) · k σ(b) · k

)]
. (3.19)

The corrections from the potential thus scale as m2
i /k2

F , for mi ≪ kF . Traditionally, the
potential is not expanded in mi in many-body calculations, leading to a mismatch between
the definition of the potential contributions used here — employing eq. (3.19) — and the
NME results in the literature — using eq. (3.17). The difference is that NMEs obtained from
the unexpanded potential have an m1

i term, which is absent when using eq. (3.19). This is
most easily seen from the Fourier transforms of eqs. (3.17) and (3.19), where O(m3

i ), the
difference of the unexpanded and expanded potentials in coordinate space behaves like

V − Vexp. ∼
(
1− g2

Aσ(a) · σ(b)
)(e−mir

r
−
[1

r
+ 1

2m2
i r

])
≃ −mi

(
1− g2

Aσ(a) · σ(b)
)

. (3.20)

To connect our definition of the potential contributions to the usually determined NMEs,
we thus have to correct for the additional linear term. We have

A(pot,<)
ν (mi) = −

[
M(mi)− mi

[
d

dmi
M(mi)

]
mi=0

]
, (3.21)

where the < label of the amplitude denotes that it applies in the mi < kF region and M(mi),
defined in eq. (3.9), correspond to the NMEs computed from the unexpanded potential in
eq. (3.17). The derivative term in eq. (3.21) removes the m1

i term, which does not appear
when starting from eq. (3.19).

After expanding the hard-neutrino contributions we have3

V (hard)
ν = −2τ (a)+τ (b)+ × (4G2

F V 2
ud)

n∑
i=1

U2
eimiū(p1)PRuc(p2)×

(
gNN

ν (0) + m2
i

d

dm2
i

gNN
ν

)
,

(3.22)
which leads to

A(hard)
ν = −2

(
gNN

ν (0) + m2
i

d

dm2
i

gNN
ν

)
m2

π

MF,sd

g2
A

, (3.23)

where only the hadronic matrix element, and not the NME, is mi dependent. The resulting
m2

i term is hard to compute from first principles, but we will argue below that it scales as
m2

i /Λ2
χ and thus only provides a small next-to-next-to-leading-order correction.

3In principle, the LEC gNN
ν could have a linear dependence on mi. However, gNN

ν arises from contributions
to eq. (3.1) in the k0 ∼ k ∼ Λχ region, where 1

k2−m2
i

≃ 1
k2

[
1 + m2

i
k2

]
is a good approximation and no linear

mi dependence should appear.
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Ultrasoft neutrinos.

A new effect appears due to ultrasoft sterile neutrinos. When kF > mi, we can evaluate
the usoft terms by performing the integrals of eq. (3.7) in the MS scheme, which leads to
the following expression

A(usoft)
ν = 2 RA

πg2
A

∑
n

⟨0+
f |J

µ|1+
n ⟩⟨1+

n |Jµ|0+
i ⟩
(
f(mi,∆E1) + f(mi,∆E2)

)
, (3.24)

with

f(m, E) =

−2
[
E
(
1 + log µus

m

)
+
√

m2 − E2
(

π
2 − tan−1 E√

m2−E2

)]
, if m > E ,

−2
[
E
(
1 + log µus

m

)
−
√

E2 − m2 log E+
√

E2−m2

m

]
, if m ≤ E .

(3.25)

Eqs. (3.24) and (3.25) depend on the ultrasoft renormalization scale µus and require knowledge
of the intermediate state energies, En, as well as the nuclear matrix elements, ⟨0+

f |Jµ|1+
n ⟩,

which appear in first-order single-β decays and only involve one-body operators. The mi-
dependent contributions scale as

A(usoft)
ν ∼ m2

i

4π∆E1,2kF
log mi

∆E1,2
, for mi < ∆E1,2 ≪ kF . (3.26)

A power-counting estimate ∆E1,2 ∼ kF /4π gives A
(usoft)
ν ∼ m2

i /k2
F log mi

∆E1,2
, similar to the

scaling of the potential-neutrino contributions. However, this underestimates the contributions
from the lowest-lying states with ∆E1,2 ≲ 1MeV ≪ kF /4π, see table 4, and in practice the
ultrasoft contributions dominate. For kF > mi > ∆E1,2, there is a region where ultrasoft
neutrinos induce contributions that are linear in mi and scale as Aν ∼ mi/kF . Comparing
the mi-dependent terms to those resulting from the potential and hard contributions, one
finds that, in this region, the ultrasoft contributions can give LO contributions in minimal
scenarios where eq. (2.6) holds.

As mentioned above, the unexpanded and expanded potentials in eqs. (3.17) and (3.19)
differ by a term ∼ m1

i . This linear term is related to ultrasoft neutrinos as it appears when
we do not subtract the contributions of the ultrasoft neutrinos in the matching calculation.
As a result, the ultrasoft contributions in eq. (3.25) involve an m1

i dependence, which can
be shown to be related to the linear term that would result from eq. (3.17). It may seem
surprising that the potential NMEs are related to the ultrasoft contributions, as only the
latter involve excited state information. However, in the mi > ∆E regime the m1

i term
in eq. (3.25) is independent of En and we can perform the sum over the complete set of
intermediate states, ∑n⟨0+

f |J µ|1+
n ⟩⟨1+

n |Jµ|0+
i ⟩ ∼ ⟨0+

f |τ+τ+(1− g2
Aσ · σ|0+

i ⟩, leaving just the
dependence on the initial and final states. Likewise, in coordinate space, the m1

i term arising
from eq. (3.17) multiplies an r-independent potential, which leads to the same NME. The
correspondence between the sum of the product of the two first-order matrix elements and the
linear term in the NMEs (computed with the unexpanded potential) allows for a consistency
check, which we discuss in more detail in section 4.

Soft neutrinos.

Finally, there are again effects due to loops involving soft sterile neutrinos. In fact, it can be
shown that the dependence on µus above cancels in the total amplitude when taking into
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mi ≪ k2
F /mN k2

F /mN < mi < kF kF < mi <Λχ Λχ < mi

hard k0 ∼ |k| ∼Λχ 1 1 k2
F

m2
i

-

potential k0 ∼ k2

mN
∼ k2

F

mN
1 1 k2

F

m2
i

-

ultrasoft k0 ∼ |k| ∼ k2
F

mN

∆E
4πkF

∼ 1
(4π)2

mi

kF
- -

soft k0 ∼ |k| ∼ kF
1

(4π)2
1

(4π)2
1

(4π)2
m2

i

k2
F

-

perturbative k0 ∼ |k|≫Λχ - - - k2
F

m2
i∑n

i=1 miU
2
ei =0 mi ≪ k2

F /mN k2
F /mN < mi < kF kF < mi <Λχ Λχ < mi

hard 1+ m2
i

Λ2
χ

1+ m2
i

Λ2
χ

k2
F

m2
i

-

potential 1+ m2
i

k2
F

1+ m2
i

k2
F

k2
F

m2
i

-

ultrasoft 1
(4π)2 + m2

i log mi
∆E

4π∆EkF

mi

kF
- -

soft 1
(4π)2 + 1

(4π)2
m2

i

k2
F

1
(4π)2 + 1

(4π)2
m2

i

k2
F

1
(4π)2

m2
i

k2
F

-

perturbative - - - k2
F

m2
i

Table 1. The expected scaling of the contributions of a neutrino with mass mi to Aν(mi). The
contributions are shown separately for different ranges of mi (the columns) and are organized by
the neutrino momentum regions that induced them (the rows). The lower panel shows the same
information as the top panel, but assumes a minimal scenario in which eq. (2.6) holds. For each mi

region, the parts of the amplitude that are expected to be leading are shown in red. The order-of-
magnitude estimates for terms that cancel in the total amplitude, due to

∑
i miU

2
ei =0, are shown in

gray.

account loop contributions to the potential [58]. Including these effects would require the
computation of NMEs due to Vν,2 of ref. [58], modified to include the mi dependence. As the
relevant NMEs have only been estimated in light nuclei [59], here we will estimate part of the
terms due to Vν,2 by setting µus = mπ in eq. (3.24) and neglecting the remaining contributions.

3.2.4 Summary

Table 1 summarizes the scaling of the contributions of a neutrino with mass mi, induced by
the different momentum regions. The top panel shows the scenario assuming no cancella-
tions, while the bottom panel focuses on the terms that survive when taking into account∑n

i=1 miU
2
ei = 0. Here the columns show the different ranges of mi, while the rows show the

contributions due to a particular neutrino-momentum region. We first focus on the top panel
for which the usual expressions dominate, namely, A

(pot,hard)
ν , while the ultrasoft contributions

provide comparable corrections if mi lies somewhat below kF . This picture changes drastically
once we assume the minimal ultraviolet completion of the νSM for which eq. (2.6) holds. Now
the usually dominant terms are only nonzero after taking into account the mi dependence
of the NMEs and the LEC gNN

ν (mi). Other contributions to the amplitude, which would
otherwise appear at sub-leading orders, now give leading contributions. In particular, the
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mi [MeV] 5 6 7 8 9 10 20 30 40
M(mi) 2.62 2.60 2.59 2.57 2.55 2.54 2.4 2.3 2.1

mi [MeV] 50 60 70 80 90 100 200 300 400
M(mi) 2.0 1.9 1.8 1.7 1.6 1.5 0.94 0.61 0.42

mi [MeV] 500 600 700 800 900 1000 2000
M(mi) 0.31 0.23 0.18 0.14 0.11 0.094 0.025

Table 2. Shell-model 0νββ NMEs for 136Xe as a function of the neutrino mass.

mi [MeV] 5 6 7 8 9 10 20 30 40
M(mi) 3.26 3.24 3.21 3.19 3.16 3.14 2.9 2.7 2.5

mi [MeV] 50 60 70 80 90 100 200 300 400
M(mi) 2.4 2.2 2.1 2.0 1.9 1.8 1.1 0.69 0.47

mi [MeV] 500 600 700 800 900 1000 2000
M(mi) 0.34 0.25 0.20 0.15 0.13 0.10 0.027

Table 3. Shell-model 0νββ NMEs for 76Ge as a function of the neutrino mass.

contributions due to ultrasoft neutrinos become significant or even dominant in the range
mi < kF , while loop diagrams involving soft neutrinos can be relevant for mi < Λχ. Although
the latter have not been computed so far, and would be hard to control for mi ∼ Λχ, the
ultrasoft contributions can be estimated reliably.

4 Nuclear and hadronic matrix elements

Computing all the contributions identified above requires knowledge of various hadronic
and nuclear matrix elements. For relatively light sterile neutrinos, M ≲ Λχ, these matrix
elements are non-trivial functions of the sterile neutrino mass. In this work, we use a
single nuclear framework in which we can compute all NMEs consistently, the nuclear shell
model [74]. Note that only many-body methods which can calculate ββ-decay NMEs beyond
the closure approximation, such as the nuclear shell model or the quasiparticle random-phase
approximation [75, 76], can provide ultrasoft NMEs. We further focus on 0νββ in 136Xe and
76Ge, which presently give some of the most stringent limits on neutrino Majorana masses,
and are also expected to do so for next-generation experiments [30]. It is worthwhile to
consider other nuclear many-body methods and isotopes, but our main goal here is to assess
the newly identified contributions with respect to traditional contributions for representative
experimentally relevant isotopes.

Nuclear shell model NME calculations.

We perform a nuclear shell-model study of the decays of the ground-state to ground-state
transition of 136Xe into 136Ba and 76Ge into 76Se. For the ultrasoft NMEs, in addition to
these initial and final states, we also need to calculate a set of states of the intermediate nuclei
136Cs and 76As. The initial and final states are well converged by the diagonalization of the
Hamiltonian in the configuration spaces given below. However, for the set of intermediate
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En−Ei
MeV ⟨1+

n |στ+|0+
i ⟩ ⟨0+

f |στ+|1+
n ⟩

0.17 1. 0.13

0.63 -0.19 -0.0063

0.89 -0.25 -0.016

1.02 0.3 0.036

1.05 0.23 0.025

1.1 -0.13 -0.00076

1.2 0.12 -0.0052

1.3 0.16 -0.0028

1.4 -0.23 -0.0098

1.5 0.2 -0.012

1.6 -0.36 0.0084

1.7 -0.24 0.00058

1.9 0.22 0.011

2.0 0.34 0.007

2.2 0.35 0.006

2.3 -0.49 -0.0086

2.6 0.62 0.021

2.7 -0.91 -0.024

2.9 0.37 0.0064

3.1 0.3 0.0013

En−Ei
MeV ⟨1+

n |στ+|0+
i ⟩ ⟨0+

f |στ+|1+
n ⟩

3.3 0.39 -0.0013

3.6 0.39 0.0021

3.8 0.45 -0.013

4.0 -0.44 -0.0032

4.3 -0.35 -0.0038

4.6 -0.36 -0.0067

4.8 0.44 0.0083

5.1 0.44 0.0066

5.4 -0.55 -0.0093

5.7 0.63 0.012

6.1 0.85 0.013

6.3 -1.2 -0.016

6.7 -1.3 -0.014

7.0 -1.9 -0.016

7.3 3.1 0.023

7.5 -4. -0.028

7.7 2.6 0.017

8.1 1.4 0.0091

8.4 -1. -0.0057

8.8 -0.93 -0.0064

En−Ei
MeV ⟨1+

n |στ+|0+
i ⟩ ⟨0+

f |στ+|1+
n ⟩

9.1 0.8 0.0038

9.4 0.59 0.0014

9.8 -0.5 0.0027

10.1 0.35 -0.0027

10.5 0.26 -0.00053

10.9 -0.22 -0.00021

11.3 0.17 -0.00037

11.7 -0.16 -0.00054

12.0 -0.16 -0.001

12.4 0.14 0.00092

12.8 0.12 -0.00014

13.1 0.092 -0.0004

13.5 -0.079 -0.00019

13.9 0.071 -0.00026

14.2 -0.07 0.000031

14.6 -0.035 0.00021

15.1 -0.051 -0.00015

16.2 -0.039 0.00011

17.3 -0.043 -0.000091

17.7 0.11 -0.000029

Table 4. Values of the first-order nuclear matrix elements in eq. (4.5), that enter the 0νββ of 136Xe.

states, we use the Lanczos strength function method [74], which gives a set of approximate
eigenstates. Nonetheless, we have checked that with the ∼ sixty approximate eigenstates
kept, for which we give results in tables 4 and 5, the ultrasoft NMEs for both isotopes
are well converged.

For the germanium decay, we use a configuration space consisting of the 1p3/2, 0f5/2,
1p1/2 and 0g9/2 single-particle orbitals for protons and neutrons, with a 56Ni inert core. As
in previous shell-model studies [77], we use the GCN2850 effective Hamiltonian [78]. For
the decay of xenon, the configuration space of our calculations comprises the 1d5/2, 0g7/2,
2s1/2, 1d3/2 and 0h11/2 single-particle orbitals for protons and neutrons, on top of a 100Sn
core. Here we use the GCN5082 shell-model interaction [78], also in line with previous
works [77]. We use the shell-model codes ANTOINE [74, 79] and NATHAN [74] to obtain
the nuclear states and to evaluate the NMEs.

LECs and NMEs from potential and hard neutrinos.

Let us begin by discussing the required matrix elements induced by potential neutrinos,
which appear in the linear combination M(mi) defined in eq. (3.9). For very light masses,
mi ≪ kF , these NMEs have been calculated for many isotopes with a broad range of nuclear
many-body methods [30], but the explicit mass dependence has only been considered in a
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En−Ei
MeV ⟨1+

n |στ+|0+
i ⟩ ⟨0+

f |στ+|1+
n ⟩

0.5 -0.33 -0.11
0.7 0.67 0.29
0.8 -0.024 -0.052
0.8 -0.5 -0.14
1.2 0.075 0.017
1.3 -0.14 -0.22
1.5 0.55 0.18
1.8 0.18 0.016
2.1 -0.28 -0.088
2.3 0.35 0.019
2.8 0.65 0.11
3.0 1.12 0.091
3.3 0.9 0.098
3.7 1.059 0.078
4.0 1.005 0.075
4.4 1.19 0.078
4.9 1.29 0.055
5.4 1.4 0.05
5.9 1.45 0.023
6.3 1.25 0.0065
6.9 1.09 -0.0026

En−Ei
MeV ⟨1+

n |στ+|0+
i ⟩ ⟨0+

f |στ+|1+
n ⟩

7.4 0.92 -0.0089
8.0 0.81 -0.011
8.6 0.71 -0.0075
9.3 0.6 -0.0075
9.9 0.52 -0.0046
10.6 0.46 -0.0059
11.3 0.41 -0.0032
12.1 0.34 -0.0033
12.9 0.32 -0.000093
13.6 0.28 -0.0017
14.4 0.24 -0.0002
15.2 0.2 -0.0004
16.0 0.17 0.00021
16.9 0.15 -0.00016
17.7 0.14 0.00022
18.6 0.12 -0.00019
19.5 0.1 0.00018
20.4 0.086 -0.00024
21.3 0.07 0.00017
22.2 0.058 -0.0002
23.1 0.049 0.00017
24.1 0.037 -0.00018

En−Ei
MeV ⟨1+

n |στ+|0+
i ⟩ ⟨0+

f |στ+|1+
n ⟩

25.1 0.031 0.00016
26.0 0.025 -0.00017
27.0 0.022 0.00014
28.0 0.017 -0.00015
29.0 0.014 0.00014
29.9 0.0099 -0.00015
31.0 0.0073 0.00014
32.0 0.0057 -0.00013
33.0 0.0044 0.000125
34.0 0.0032 -0.00013
35.1 -0.0024 -0.00012
36.1 -0.0018 0.00011
37.1 -0.0013 -0.00011
38.2 -0.00096 0.00011
39.2 0.00071 0.000105
40.3 0.00052 -0.0001
41.3 0.00038 0.0001
42.4 -0.00028 0.000097
43.4 0.00021 0.000094
44.5 -0.00017 0.00009
45.5 0.00014 0.000088

Table 5. Values of the first-order nuclear matrix elements in eq. (4.5), that enter the 0νββ of 76Ge.

handful of works [32, 37]. Here we use the shell-model results depicted in figure 1, with the
numerical values given in tables 2 and 3. Note that for lighter neutrino masses mi ≲ 5MeV
the difference between the NMEs shown in figure 1 requires very precise calculation of the
corresponding neutrino potentials.

Not surprisingly, figure 1 shows that for light mi ≪ kF the NMEs become roughly
constant, while they scale as m−2

i for heavy mi ∼ Λχ. The description in terms of NMEs no
longer applies for masses mi ≥ µ0 = 2GeV, as we integrate out the heavy neutrinos at the
quark level in this case, see section 3.2.1. In practice, it is useful to have an interpolation
formula that describes the shell-model results for mi ≤ 2GeV. As they include a linear
mi dependence in the light mass regime, see the discussions below eqs. (3.19) and (3.25),
we use the functional form

Mint(mi) = M(0) 1
1 + mi/ma + (mi/mb)2 , (4.1)

where M(0) = 2.7 for 136Xe and 3.4 for 76Ge. For these decays, we set ma = 157MeV
(117 MeV) for 136Xe (76Ge) which is the prediction of the linear slope from ultrasoft corrections
as explained in more detail below, and perform a χ2-fit to the NMEs in the mass range
of 2 MeV ≤ mi ≤ 2000 MeV to obtain mb = 221MeV (218 MeV) for 136Xe (76Ge). The
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MF,sd MAP
GT,sd MP P

GT,sd MAP
T,sd MP P

T,sd

76Ge -2.21 -2.26 0.82 -0.05 0.02
136Xe -1.94 -1.99 0.74 0.05 -0.02

Table 6. Shell-model determinations from refs. [77, 80] of the relevant short-distance NMEs for 76Ge
and 136Xe.

resulting curve fits the data points in this range to about 5% accuracy, well within the
expected theoretical uncertainty.4

The potential contributions always appear in combination with hard contributions

Mtot(mi) ≡ Mint(mi) +
2m2

πgNN
ν (mi)
g2

A

MF,sd . (4.2)

The hard contributions depend on a hadronic and a nuclear matrix element MF,sd × gNN
ν (mi)

and, in fact, it is only the combination with Mint(mi) in eq. (4.2) that is independent of
regulators used in nuclear computations [46]. As gNN

ν has not been determined using LQCD
methods yet, only model-dependent estimates are available. It was pointed out in ref. [47]
that gNN

ν (0) is connected to charge-indepedence-breaking (CIB) nucleon-nucleon interactions
that are known up to Nc-suppressed corrections [54], where Nc = 3 denotes the number of
colors in QCD. The value provided by the CIB strategy is in reasonable agreement with a
model estimate of gNN

ν (0) [52, 53]. As we are using the nuclear shell model results for the
NMEs, here we take advantage of the connection to CIB and follow ref. [80] which gives
a range of values for gNN

ν (0) based on various nucleon-nucleon potentials. For this work,
we pick the intermediate value

gNN
ν (0) = −1.01 fm2 , (4.3)

with the corresponding NMEs shown in table 6.
The hadronic matrix element gNN

ν (mi) has a non-trivial mass dependence of which little
is known. Around mi ∼ Λχ the sum of the potential and hard contributions in eq. (4.2) should
match to the description provided by eq. (3.16) which scales as m−2

i . Because M(mi) has
the same scaling, this requires gNN

ν (mi ∼ Λχ) ∼ m−2
i as well. In the opposite limit, mi ≪ kF ,

we would expect the form gNN
ν (mi) ≃ gNN

ν (0) + gNN
ν,2 m2

i , see section 3.2.3. Although the
renormalization-group invariance of the nn → pp + ee amplitude requires gNN

ν (0) = O(F−2
π ),

where Fπ is the pion decay constant, to appear at leading order [46], no such argument exists
for the enhancement of m2

i -dependent LECs, leading to an estimate of gNN
ν,2 = O(F−2

π Λ−2
χ )

(see appendix B). We therefore assume the functional form

gNN
ν (mi) = gNN

ν (0) 1 + (mi/mc)2 sign(m2
d)

1 + (mi/mc)2(mi/|md|)2 , (4.4)

where sign(m2
d) = m2

d/|m2
d|, while |md| appears in the denominator in order to avoid possible

poles. This generalizes the interpolation constructed in ref. [63], which overestimates the
4If we perform a χ2-fit to the NMEs keeping both ma,b as fit parameters we obtain ma = 192(157) MeV

and mb = 208(202) MeV for 136Xe (76Ge). Assuming a conservative flat 10% theoretical uncertainty on the
NMEs, the total χ2 of the two fits are very similar.
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mi dependence in the small mi regime. We set mc = 1GeV as expected from the NDA
estimate of gNN

ν,2 . We subsequently tune md such that eq. (4.2) matches eq. (3.16) at a scale
mi = µ0 = 2GeV. This last step requires values of gππ

1 , gπN
1 , and gNN

1 , the latter two of which
are currently poorly known. To get a reasonable estimate we only consider the contributions
from gNN

1 and gππ
1 , for which we use gNN

1 = (1+3g2
A)/4, inspired by the factorization estimate,

and gππ
1 = 0.36 [71]. The corresponding short-distance NMEs we use are collected in table 6.

We then obtain md ≃ 146(139)MeV for 136Xe (76Ge). It is encouraging that the value of md

obtained in this way is mostly independent of the applied nucleus as gNN
ν (mi) is related to a

two-nucleon matrix element. Clearly, our estimates of these LECs and their mi dependence
come with sizable uncertainties. Future LQCD determinations of gπN,NN

1 and gNN
ν (mi) will

allow one to verify the functional form of eq. (4.4) and reduce the current uncertainties.

NMEs from ultrasoft neutrinos.

For the ultrasoft contributions in eqs. (3.7) and (3.24) we require the intermediate-state
energies, En, and first-order NMEs of the form

A(usoft)
ν ∝ 1

4
[
g2

V ⟨0+
f |τ

+|1+
n ⟩⟨1+

n |τ+|0+
i ⟩ − g2

A⟨0+
f |τ

+σ|1+
n ⟩ · ⟨1+

n |τ+σ|0+
i ⟩
]

≃ −g2
A

4 ⟨0+
f |τ

+σ|1+
n ⟩ · ⟨1+

n |τ+σ|0+
i ⟩ , (4.5)

where we neglected Fermi transitions because they vanish up to tiny isospin-breaking cor-
rections. We include excited states up to En − Ei = 18MeV as higher-states provide
negligible contributions to the first-order matrix elements in our shell-model calculations.
We approximate the electron energies by E1 ≃ E2 ≃ Qββ/2 + me, where the Q-value is
Qββ = Ei − Ef − 2me ≃ 2.5MeV for 136Xe and likewise Qββ ≃ 2.0MeV for 76Ge.5 We
tabulate the corresponding first-order matrix elements for the decay of 136Xe and 76Ge in,
respectively, tables 4 and 5. The results for 136Xe were presented earlier in ref. [42].

As mentioned in section 3.2.3, the linear mi dependence appearing in the NMEs, M(mi),
should correspond to the linear term in A

(usoft)
ν , allowing for a consistency check. In the

regime ∆E < mi < kF , the linear term in the ultrasoft expression in eq. (3.25) is given by

A(usoft)
ν

∣∣∣
m1

i

= RAmi

∑
n

⟨0+
f |τ

+σ|1+
n ⟩ · ⟨1+

n |τ+σ|0+
i ⟩+O(∆E/mi) ≃


mi

58 MeV , 136Xe
mi

35 MeV , 76Ge
(4.6)

where the last result sums over the shell-model contributions for 136Xe and 76Ge presented in
tables 4 and 5, which are the values used for ma in eq. (4.1). These values are in pretty good
agreement with fits of ma to the NMEs in figure 1 in the same regime, ma/M(0) ≃ 71MeV
and ma/M(0) ≃ 46MeV for 136Xe and 76Ge, respectively (see footnote 4). This confirms
that the usual definition of the NMEs includes part of the ultrasoft contributions.

5Since A
(usoft)
ν is even in ∆E1 ↔ ∆E2, corrections to the approximation E1 = E2 scale like ∼ δ2

∆E2
1,2

, where

δ = E2−E1
2 and |δ| ≤ Qββ/2. For typical intermediate states with En − Ei = (5 − 10) MeV, such corrections

are at the percent level at most.
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4.1 A practical formula

Having discussed all contributions, we finally need to construct an effective formula that
connects the various regions. A very useful parametrization for the contribution from a
neutrino of mass mi to the 0νββ amplitude is given by

Aν(mi) =


A

(pot,<)
ν (mi) + A

(hard)
ν (mi) + A

(usoft)
ν (mi) , mi < 100 MeV ,

A
(pot)
ν (mi) + A

(hard)
ν (mi) , 100 MeV ≤ mi < 2 GeV ,

A
(9)
ν (mi) , 2 GeV ≤ mi .

(4.7)

The needed input to these amplitudes is given by

• The potential contributions require the interpolation of the NMEs eq. (4.1). For mi > kF

the relation of the NMEs to A
(pot)
ν is given by eq. (3.18), while in the mi < kF region

the expression for A
(pot,<)
ν is given by eq. (3.21). The latter subtracts the derivative

with respect to mi to avoid double counting the linear terms that appear both in the
usual definition of the mass dependent NMEs and the ultrasoft expression.

• The hard contributions require the interpolation formula for gNN
ν in eq. (4.4) and the

NME MF,sd in table 6.

• The ultrasoft contributions involve the first-order NMEs and intermediate-state energies
listed in tables 4 and 5.

• Finally, A
(9)
ν requires knowledge of the LECs gππ

1 , gπN
1 , gNN

1 , and several short-distance
NMEs. Since several of the LECs are currently unknown, we approximate this region
by using gNN

1 = (1 + 3g2
A)/4, gππ

1 = 0.36, combined with the short-distance NMEs from
table (6). The QCD evolution factors are given by eq. (3.14).

A Mathematica notebook implementing eq. (4.7) is provided as supplementary material
attached to the paper, and is available from the authors upon request.

To get a sense of the behavior of the amplitude in various mi regions, figure 3 shows |Aν |
for 136Xe, as induced by a single sterile neutrino. The top-left panel shows our result for the
amplitude over a wide range of neutrino masses in solid black, compared to the commonly
used parametrization of eq. (3.10) in red (dashed). Overall the shape is similar, but, as we
will discuss below, the differences are important in specific scenarios. The top-right panel
illustrates Aν in the heavy mi-region (mi ≥ µ0 = 2GeV) with (solid black) and without
(dotted red) QCD renormalization-group evolution which is a minor effect. For instance, the
ratio of Aν(100GeV)/Ano RGE

ν (100GeV) = 0.81 implying a 20% reduction of the amplitude.
For mi = 1TeV, the reduction grows to 25%.

The bottom-left panel depicts the 100MeV < mi < µ0 regime. The solid black line
again denotes the total amplitude whereas the red and blue line denote, respectively, the
potential and hard contribution. We also show the red dashed line for the commonly used
parametrization. In this window of neutrino masses, the hard regime provides O(100%) con-
tributions, with the same sign, with respect to the usually considered potential contributions
leading to faster 0νββ rates.
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Figure 3. Contributions to the 0νββ amplitude from a neutrino with mass m4. Top-left: total
contribution derived here (black) compared to the literature result (dashed red). Top-right: amplitude
in the heavy mass regime with (black) and without (dashed red) QCD renormalization group evolution.
Bottom-left: total (black) amplitude in the intermediate-mass regime arising from potential (red) and
hard (blue) neutrino exchange. The literature result for the total amplitude is shown by the dashed
red curve. Bottom-right: total (black) amplitude in the light-mass regime consisting of potential (red),
hard (blue), and ultrasoft (dashed orange) contributions.

In the bottom-right panel we zoom in on the small mi-regime, mi ≤ 100MeV. Here
we show in black the total amplitude, in red the potential contribution, in blue the hard
contributions (which are essentially mass independent in this regime), and in orange (dashed)
the ultrasoft contributions. We see that the latter are relatively small for small m4, as
predicted by power counting, and add destructively to the hard and potential regime. Despite
being subleading, when considering contributions from a single νR, they will play an important
role when we consider the minimal νSM in which eq. (2.6) holds.

4.2 Current uncertainties and future improvements

While it correctly describes the leading contributions to 0νββ rates, eq. (4.7) involves several
sources of uncertainty. In all mass regions, the amplitude depends on both hadronic and
nuclear matrix elements (LECs and NMEs). Starting with the former, so far the only LEC
that has been determined on the lattice is gππ

1 [71–73], which appears in the mi > 2GeV
region. In the same mass range there appear two other LECs, gπN

1 and gNN
1 . Instead,

below mi < 2GeV, the amplitude depends on a single LEC, gNN
ν , which has a nontrivial mi

dependence unlike gππ
1 , gπN

1 , and gNN
1 . Although there are model- and NDA-estimates of
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Figure 4. Uncertainties in |Aν | and its constituents obtained by varying gNN
1 . The lines are the same

as in the left panel of figure 3, and the bands represent their variation when gNN
1 is varied between

50% and 150% of (1 + 3g2
A)/4.

gNN
ν (0), gπN

1 , and gNN
1 , these LECs currently come with an O(1) uncertainty. As a subset of

the LECs appears for any mi, these hadronic uncertainties in principle affect all mass regions.
However, in cases where eq. (2.6) holds, we see from table 1 that these poorly known matrix
elements have a smaller impact for mi < kF , as the hard-neutrino contributions are expected
to be subleading in this mass range. Future LQCD determinations could significantly reduce
the hadronic uncertainties, especially for mi > 2GeV, where all contributions come with
LECs, and kF < mi < 2GeV where the hard-neutrino contributions are a leading effect.
Although the mi-independent LECs gπN

1 , gNN
1 , and gNN

ν (0) are not yet within reach of LQCD
computations, their determination is part of a large ongoing effort, see e.g. refs. [81, 82] for
an overview. Recent lattice studies have started to consider the mi dependence of LECs
as well, although, so far, only in the meson sector [83].

Consider, as a demonstration, the effect of uncertainties on the amplitude Aν by varying
gNN

1 . Using eq. (4.4), we vary gNN
1 between 0.5(1 + 3g2

A)/4 and 1.5(1 + 3g2
A)/4 while keeping

all other parameters unchanged. The results shown in figure 4 may now be compared with the
left panel of figure 3. The variation affects only the dim-9 and hard (via md) contributions.
The lines show the values considered previously, and the bands show the “uncertainty” in
the amplitudes when gNN

1 is varied within the range mentioned above.
Likewise, NMEs are necessary in all mass regions. It is well known that many-body

determinations of, for example the NMEs in the ‘standard scenario’ of light-neutrino exchange,
M(mi = 0), can vary by a factor of O(1) between different methods, see e.g. refs. [30, 75],
and estimated uncertainties within particular many-body methods are at least about 50% [84].
The nuclear uncertainties are similar for mi-dependent NMEs [30] and therefore affect our
results at the same level. Recently, several ab-inito determinations have been able to reach
the heavy isotopes that are used in experiments [60, 62, 85–88]. Further developments in
this direction could provide calculations of NMEs with controlled error estimates [30, 82].
Given the current uncertainties, such results would significantly improve the accuracy of
our estimates in all mass regions.

As another example, we consider the impact of varying several hadronic and nuclear
matrix elements in the case of a 3 + 1 scenario, discussed in section 5.3 below. This scenario
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implements the cancellation in eq. (2.6), which allows us to study the impact of uncertainties
in a minimal extension of the SM. We again vary the LEC gNN

1 , related to the dim-9 and
hard regions, the parameter mb, related to the potential contributions in eq. (4.1), and the
first-order nuclear matrix elements, needed for the ultrasoft contributions in eq. (3.24). To
illustrate the impact of uncertainties from the different neutrino-momentum regions we show
the relative change in the amplitude for 136Xe after varying a parameter as a function of
the sterile neutrinos mass, m4, in figure 5. The y-axis shows the total modified amplitude,
∝ |Γ̃0ν |1/2, obtained after varying the input parameters, relative to the original amplitude,
∝ |Γ0ν |1/2, which can be written as R ≡ |Γ̃0ν/Γ0ν |1/2. The impact of varying gNN

1 , m2
b , and

the first-order NMEs by 20% is shown in green, blue, and red, respectively. For illustration,
all parameters were varied by the same amount. While the uncertainty on gNN

1 is most likely
larger than 20%, an estimate of the uncertainties in the potential and ultrasoft regions can
be obtained from the consistency check discussed around eq. (4.6), which is consistent with
an O(20%) uncertainty. As one might expect, these variations lead to a ∼ 20% effect at the
level of the amplitude and peak in the region between kF < m4 < Λχ for the uncertainties
related to mb and gNN

1 , while the uncertainties in the first-order NMEs are most noticeable
for small m4 ≲ kF . The main purpose of figure 5 is to illustrate which hadronic or nuclear
matrix elements are important in which mass region. We therefore stress that it does not
capture the significant theoretical uncertainties related to the NMEs and LECs required for
the case of three active Majorana neutrinos, namely M(0) and gNN

ν (0).
Finally, there are in principle errors due to missing higher orders in the χEFT expansion.

In particular, the current work does not include the contributions from A
(pot,2)
ν , which

involves additional NMEs and LECs. The induced corrections to the potential are known for
mi = 0 [58] and have so far been estimated only in light nuclei [59]. From table 1 we expect
these contributions to be most relevant when Λχ ≳ mi ≳ kF and eq. (2.6) holds.

The main purpose of this work has been the systematic derivation of eq. (4.7) which
describes the largest 0νββ contributions in the νSM in terms of well-defined QCD and nuclear
matrix elements. It will be straightforward to update the expressions once more refined
calculations of these matrix elements exist.

5 Phenomenology

5.1 3+0

We begin with the standard mechanism through the exchange of three light Majorana
neutrinos (see eq. (2.7)). Unlike the νSM, this scenario assumes that the masses of the
neutrinos are generated by heavy beyond-the-SM fields that have been integrated out. This
leads to Majorana masses for the active neutrinos without a cancellation mechanism as in
eq. (2.6). The total amplitude is then given by the sum of eqs. (3.6) and (3.7)

Aν = A(pot)
ν (0) + A(hard)

ν (0) + A(usoft)
ν (0) , (5.1)

and we can safely neglect the mass dependence of Aν . The three terms can be read from the
bottom-right panel of figure 3. The potential contribution, usually the only term considered in
the literature, indeed provides the largest piece, A

(pot)
ν (0) = −2.7 and −3.4 for 136Xe and 76Ge,
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Figure 5. The relative change in the amplitude, R, obtained by varying several hadronic and
nuclear inputs in the 3 + 1 scenario discussed in section 5.3. Here R ≡ |Γ̃0ν/Γ0ν |1/2 where Γ0ν is the
original decay rate, while Γ̃0ν is obtained by varying the indicated hadronic or nuclear parameter.
The green, blue, and red bands are related to uncertainties in the hard, potential, and ultrasoft
contributions. They are obtained by varying the LEC gNN

1 in eq. (3.16), m2
b in eq. (4.1), and the

NMEs ⟨0+
f |J µ|1+

n ⟩⟨1+
n |Jµ|0+

i ⟩ in eq. (3.24), by ∼ 20% respectively.

respectively. The hard-neutrino exchange mechanism [46, 47] provides a constructive 45(41)%
correction in 136Xe (76Ge), given by A

(hard)
ν (0) = −1.2(−1.4), and has been considered in

various modern 0νββ computations [60, 61, 80, 84].
The last term is new and provides a smaller, destructive, 10% correction A

(usoft)
ν (0) =

0.23(0.28) for 136Xe (76Ge). While small, the contribution is somewhat larger than expected
from power counting (see table 1) due to the large logarithms in eq. (3.25), log(mπ/(2∆E1,2)),
which are responsible for ∼ 70% of the ultrasoft amplitude. Nonetheless, this contribution
has the same sign and is of similar size as usual contributions to 0νββ beyond the closure
approximation [89–91], which are related to the ultrasoft term as discussed in section 3. As far
as we are aware, this is the first calculation and analysis of the ultrasoft contributions to 0νββ.

Using the usual parametrization of the PMNS matrix,

UPMNS =

1 0 0
0 c23 s23
0 −s23 c23

 ·

 c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

 ·

 c12 s12 0
−s12 c12 0
0 0 1

 ·

1 0 0
0 eiα1 0
0 0 eiα2

 , (5.2)

where sij = sin θij and cij = cos θij , and the PDG determinations of the mixing angles θij and
CP-violating phase δ [10], we obtain predictions for the half-life of 136Xe and 76Ge. Figure 6
shows the results for the normal (NH) and inverted (IH) neutrino-mass hierarchy in blue and
red, respectively. The width of the bands mostly arises from the variation of the Majorana
phases, α1,2. Searches involving 136Xe are currently more sensitive; the figure shows that,
assuming our calculated shell-model NMEs and neglecting theory uncertainties, the most
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Figure 6. Predicted 136Xe (left panel) and 76Ge (right panel) 0νββ half-life in the normal (blue)
and inverted (red) neutrino-mass hierarchy as function of the lightest neutrino mass, marginalized
with respect to the Majorana phases. The half-life includes contributions from potential, hard, and
ultrasoft neutrino exchange calculated with the nuclear shell model. The current lower bounds on the
half-life is shown in gray [27, 92], along with future prospects [28, 29, 93].

recent KamLAND-Zen measurement is approaching the lower edge of the IH band. Future
bounds promise to probe the entirety of the IH band for both isotopes.

5.2 Limits on U2
e4

Before moving on to the νSM, we consider a 4th sterile neutrino and assume its contribution
saturates the 0νββ amplitude, i.e. we assume there are no cancellations with the active
neutrinos. Such scenarios, without the cancellation mechanism in eq. (2.6), are possible when
going beyond minimal extensions of the SM, and are represented by eq. (2.8). The resulting
limit (from 136Xe) on U2

e4 as a function of m4 is depicted by the solid line in figure 7, while
the approach followed in the literature using eq. (3.10) is shown by the dashed line. Our
approach leads to tighter limits (up to a factor 2 around m4 = 300MeV), especially in the
MeV-GeV regime of m4, because of hard-neutrino-exchange contributions. The limits reach
the naive seesaw expectations (indicated by the blue line) for m4 ≤ 10MeV.

This assumption of the sterile contribution saturating the 0νββ amplitude breaks down
for light sterile neutrino masses, where the sterile contribution can be of same size as that of
active neutrinos. In this region, there can be cancellations between the contributions, leading
to the possibility of new “funnels” in the 0νββ rate, depending on the values of the phases,
neutrino masses, as well as possibly the nucleus in question [94–97]. Consider a scenario with
one light sterile neutrino, and where the neutrinos acquire a mass through an unspecified UV
mechanism. The relevant elements of the mixing matrix can be parametrized as

Ue1 = c12 c13 c14, Ue2 = c14 c13 s12 eα1 , Ue3 = c14 s13 eα2 , Ue4 = s14 eα3 , (5.3)

where cij and sij are cos(θij) and sin(θij) respectively. As shown in figure 8 for NH, the
decay rate can go to zero at certain values of the sterile mass which is determined by the
strength of the coupling Ue4 and the mass of the lightest neutrino. The region beyond
which the sterile neutrino starts to dominate the amplitude can also be clearly seen, as the
bands (the width of which is given by the phases in the mixing matrix) shrink to a line.
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neutrino. The black line corresponds to our result, while the dashed line corresponds to the usual
procedure in the literature following eq. (3.10). The blue line denotes the naive seesaw relation
U2

e4 = (0.05 eV)/m4.
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Figure 8. Predicted 136Xe and 76Ge 0νββ half-life in NH as a function of the light sterile neutrino
mass m4 for lightest active neutrino mass m1 = 0 (blue) and 0.15 eV (red), for two different values of
the coupling strength |Ue4|. New funnels appear as the sterile contribution can contribute destructively
to the decay rate. The current and future limits on 0νββ lifetime are shown in gray (dashed and
dotted for 136Xe and 76Ge respectively) [27–29, 92].

Smaller values of |Ue4| cause the effect of the sterile contribution to kick in only at larger
m4. We also see that the m1 = 0.15 eV case is ruled out (as expected from figure 6) for
either value of |Ue4| unless there is a significant destructive contribution from the sterile
neutrino, that is, until a funnel appears.

With this in mind, we show in figure 9 the bounds on |Ue4|2 as a function of ∆m2
41 =

m2
4 − m2

1, assuming NH, for m1 = 0 (dashed line) as well as m1 = 0.15 eV (solid lines). The
bounds are obtained by assuming that the active neutrino contributions to the decay rate
add up with the same phase, while the sterile neutrino contributes with an opposite sign,
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Figure 9. Bounds in the ∆m2
41 − |U2

e4| plane for m1 = 0 (dashed line) and m1 = 0.15 eV (solid lines)
for light sterile neutrinos, assuming NH. The region to the right of the dashed line is excluded by
current 0νββ limits for a massless lightest neutrino, while a scenario with m1 = 0.15 eV is allowed by
0νββ limits only within the shaded region. In green and red are results from Ga anomaly (2σ allowed
region from a combined analysis) and DANSS (excluded region at 90% CL) [98, 99].

thus making the upper bounds conservative. In case of m1 = 0.15 eV we also obtain a lower
bound on top of an upper limit (thus restricting the allowed region to the shaded area in
figure 9) since the 0νββ rate gets oversaturated unless there is a partial cancellation from
the sterile neutrino contribution, while only an upper bound can be drawn for m1 = 0. This
plane is often studied in the context of neutrino oscillation anomalies [100–102]. It is seen
that with the assumption that neutrinos are Majorana particles, current 0νββ limits can
rule out chunks of the preferred parameter region outlined in refs. [100, 101]. For reference,
we also show the 2σ contours from a combined analysis of Ga anomaly [98] in green, and
the exclusion region from the DANSS experiment (90% CL) [99] in red. We see that if the
lightest neutrino is massless, current 0νββ limits alone exclude the region allowed by Ga
anomaly almost entirely, and DANSS rules out the remaining sliver. For m1 = 0.15 eV, there
exists an allowed region that explains the Ga anomaly and is not excluded by DANSS, just
below ∆m2

41 = 10 eV2 and |Ue4|2 ≲ 0.1.

5.3 3+1

In this section we discuss the 3+1 scenario with 3 light left-handed neutrinos and one sterile
neutrino. This model is not realistic as it predicts two massless neutrinos, m1 = m2 = 0, but
serves as a useful toy model to illustrate the importance of the newly identified contributions
in scenarios where eq. (2.6) holds. We consider a mass matrix

Mν =


0 0 0 M∗

D,1
0 0 0 M∗

D,2
0 0 0 M∗

D,3
M∗

D,1 M∗
D,2 M∗

D,3 MR

 , (5.4)
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and set for simplicity M∗
D,1 = M∗

D,2 = M∗
D,3 ≡ M∗

D. We diagonalize the mass matrix to
obtain the PMNS matrix, which we parametrize as [102]

U = DLR34R24R23R14R13W 12DR ,

DL = ei(αD+αR/2)diag(1, 1, 1, e−i(αR+αD)) DR = diag(1, 1, i, 1) , (5.5)

where
[
W ab(θab, δab)

]
ij
= δij + (δiaδjbe

iδab − δibδjae−iδab)sab + (δiaδja + δibδjb)(cab − 1) and
Rab(θab) = W ab(θab, 0) and αD,R = ArgMD,R. We can now read off the relevant mixing
angles for 0νββ

U2
e3 = −m4

m3
U2

e4 = −1
3

m4
m3 + m4

ei(2αD+αR) . (5.6)

The phases αD and αR drop out in the decay rate and can be effectively set to zero. In
this model we have

mββ = m3U2
e3 + m4U2

e4 = 0 , (5.7)

and we need to consider the mass dependence of the hadronic and nuclear matrix elements
in order to get a non-zero 0νββ rate. For small m4 ≪ kF the non-vanishing combination
of mixing angles and masses can be written as

m3U2
e3Aν(0) + m4U2

e4Aν(m4) = m3U2
e3 [Aν(0)− Aν(m4)] ≃ −m3m4U2

e3A′
ν(0) , (5.8)

and depends on the derivative of the amplitude as function of the neutrino mass.
We set m3 ≃ 0.05 eV, treating it as a light active neutrino, and vary m4. The resulting

lifetime is shown in figure 10 where the right panel focuses on m4 > 100MeV. The red dashed
lines correspond to the approach in the literature using the parametrization of the NMEs
in eq. (3.10). For light m4 this leads to a decay rate that scales as |m3

4U2
e4|2 ∼ m4

4 such
that the half-life grows as m−4

4 . The black solid line instead corresponds to the expressions
obtained in this work leading to significantly shorter half-lives in the light m4 regime because
of the larger derivative arising from the ultrasoft term. The differences for m4 > 100MeV are
less profound. In this case, Aν(m4) ≪ Aν(0) and only Aν(0) matters. The main difference
then is our inclusion of hard neutrino exchange contributions leading to decay rate that is
faster by about a factor of 2, as illustrated in the right panel. The coloured bands in both
panels indicate the estimated uncertainties; see figure 5. The parameters here are allowed
to vary by 50% from the central values used in this work. Only uncertainties from new
pieces are shown to aid comparison with the standard approach in red, which also suffers
from uncertainties in NMEs similar to our approach.

5.4 A pseudo-Dirac scenario

Another interesting way to generate neutrino masses is through the inverse seesaw mecha-
nism [103–105]. This model and its generalizations [64, 106, 107] add two types of singlets
to the SM, leading to a neutrino mass matrix of the form,

Mν =

 0 mD 0
mT

D µX mS

0 mT
S µS

 , (5.9)
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Figure 10. 0νββ half-life of 136Xe as a function of m4 in the 3+1 model. In the left panel, the
half-life is obtained by using the NMEs in eqs. (3.10) (dashed red) and (4.7) (black). The right panel
zooms in the heavy m4 region. The coloured bands show uncertainty estimates similar to figure 5, but
with parameters being allowed to vary up to 50% from their central values.

which is a special case of eq. (2.3), with the upper right part
(
mD 0

)
= M∗

D and the lower
right block with µX , µS , mS , and mT

S forming M †
R. Assuming we add the same number,

nS , of each type of singlet, the block matrices in Mν become a 3 × nS matrix in the case
of mD, while µX , mS , and µS are nS × nS matrices. The minimal inverse seesaw scenario
additionally assumes µX = 0, which, together with the hierarchy mS ≫ mD, µS , leads to
the following mass matrix for the active neutrinos

mν,light ≃ −mD(mT
S )−1µSm−1

S mT
D . (5.10)

Unlike the usual seesaw scenario, where the active neutrinos masses are inversely proportional
to the Majorana mass of the sterile neutrinos, here the light neutrino masses are proportional
to a small LNV parameter, µS . The new singlets lead to states that can be organized in
pairs; each pair consists of two Majorana neutrinos with O(mS) masses and an O(µS) mass
splitting. The assumption mS ≫ mD, µX,S implies that lepton number is an approximate
symmetry. This case is often referred to as pseudo-Dirac, as it reduces to a scenario with
purely Dirac neutrinos in the limit of µX,S → 0. Variants of these models appear in scenarios
of low-scale leptogenesis, see e.g. refs. [15, 19, 108] and references therein.

Given the small mass splitting between the added neutrinos in these scenarios, it is useful
to note that the contributions to 0νββ simplify whenever the sterile neutrinos are nearly
degenerate. To see this, we can rewrite the effective amplitude relevant for 0νββ by using∑n+3

i=1 U2
eimi = 0 and Taylor-expanding the sterile contributions around their common mass

scale. In cases with n nearly-degenerate sterile neutrinos, this leads to

Aeff =
3∑

i=1
U2

eimiAν(0) +
n+3∑
i=4

U2
eimiAν(mi)

=
3∑

i=1
U2

eimi [Aν(0)− Aν(M1)] + M1

n+3∑
i=4

U2
ei∆iA

′
ν(M1) +O(∆2

i ) , (5.11)

where we introduced Mi = mi+3 for the masses of the sterile neutrinos, ∆i+3 = Mi−M1 ≪ M1,
and A′

ν(M1) denotes (dAν(m)/dm)|m=M1 . As the first term scales with the light neutrino
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Figure 11. Limits on the mixing angles, |Ue1|2 + |Ue2|2, as a function of M2 in the pseudo-Dirac
scenario discussed in section 5.4. The left (right) panel shows the case in which the mass splitting
between the sterile neutrinos is M2−M1
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= 10−2 (10−4). The thick (thin) lines correspond to the

current (future, T 0ν
1/2 ≥ 1028yr) constraints, obtained using eq. (3.10) (dashed red) or eq. (4.7) (black).

masses, the second term can dominate if the mixing angles are not too small. Thus, whenever
the sterile neutrinos are nearly degenerate and dominate over the active contributions, the
decay rate is determined by the derivative of Aν , instead of the 0νββ amplitude itself, and
scales with the mass differences ∆i.

In order to assess the impact of our determination of Aν on these scenarios, we specify to a
toy model with a single active neutrino and nX = nS = 1 [64] which captures the main features
of a pseudo-Dirac sterile neutrino pair. The resulting mass matrix can be parametrized as

Mν = U∗diag(mν , M1, M2)U † , (5.12)

with mν and M1,2 the masses of the light and sterile neutrinos, respectively, and

U =

1 0 0
0 c12 s12
0 −s12 c12

 ·

 ce2 0 se2e−iδ

0 1 0
−se2eiδ 0 ce2

 ·

 ce1 se1 0
−se1 ce1 0
0 0 1

 ·

1 0 0
0 eiα1 0
0 0 ei(α2+δ)

 , (5.13)

in terms of three mixing angles, θ12, θe1, and θe2 and three phases, δ, α1,2. Mν is then made
up of nine parameters (three masses with six angles and phases), which are subject to four
constraints (Mν)11 = (Mν)13,31 = (Mν)22 = 0 in the pseudo-Dirac case. Here we focus on
a scenario with the benchmark values

mν = 2.6× 10−3 eV , α1 = 0 , α2 = π/2 , (5.14)

where the choice of α2 induces a relative sign between the contributions of the two sterile
neutrinos, allowing them to act as a pseudo-Dirac pair. The constraint (Mν)11 = 0 can be used
to eliminate the combination s2

e1 − s2
e2 in favor of |Ue1|2 + |Ue2|2 ≃ s2

e1 + s2
e2 ≡ s2

+ and M1,2,
which gives s2

e1 ≃ s2
e2 up to O(mν/M1) and O(∆/M1) corrections. As we assume the sterile

neutrinos to be nearly degenerate we can use eq. (5.11) with ∆ ≡ ∆5 = M2 − M1, ∆4 = 0,
and U2

e3 ≃ −s2
e2 ≃ −s2

+/2, which allows us to set constraints on s2
+ as a function of M1 and ∆.

Together with the current lower limit on the half life of 136Xe [27], the above gives rise
to figure 11 which shows the constraints on s2

e1 + s2
e2 as a function of the sterile neutrino
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mass, M2. Here the left and right panels depict scenarios with different mass splittings,
M2−M1

M2
= 10−2 and M2−M1

M2
= 10−4, respectively. The black lines show the current and

projected limits obtained using the approach discussed in this work, while the red lines
again depict the results using eq. (3.10). The blue regions are excluded by other laboratory
constraints [64]. Below the kaon mass, the strongest limits come from missing energy
experiments which probe |Uα|2 through invisible decays of the pion or kaon [24, 109], and
inverse beta decays [110, 111]. At higher masses, the limits come from displaced vertex searches
which probe long-lived sterile neutrinos via their decay to SM particles [112, 113]. The gray
region shows the part of parameter space that does not satisfy the inverse seesaw expectation,
(Mν)22 ∼ (Mν)33 = O(M2 −M1), and corresponds to | (Mν)22 | = |µX | > 3(M2 −M1). These
results can be obtained by using the constraint (Mν)13 = 0 to determine s12 and δ, after
which (Mν)22 and (Mν)33 are fixed for a given point in figure 11. We find that the expectation
(Mν)22 ∼ (Mν)33 = O(M2 − M1), can roughly be satisfied whenever s2

+ ≳ mν
M2−M1

.
The parametric dependence of the limits in figure 11 can be understood from eq. (5.11).

Assuming the mν terms can be neglected, we have

Aeff = −
s2

+
2 M1∆A′

ν(M1) +O(∆2, mν) . (5.15)

The limit on the 0νββ rate then sets a bound on s2
+ as function of M1 and ∆ through

s2
+ <

2me

g2
AV 2

ud

√
1

G01T 0ν
1/2

× 1
M1 ∆ |A′

ν(M1)|
, (5.16)

which agrees well with the bounds we find numerically. This form explains the ∆−1 scaling
seen in figure 11. Second, the limits depend on the derivative of the neutrino amplitude with
respect to the sterile neutrino mass. We already saw in the 3 + 1 analysis that the ultrasoft
corrections identified in this work lead to a larger slope compared to the usual approach,
explaining the significantly tighter limits, about an order of magnitude for M1 = 1MeV.
For larger masses M1 > 200MeV we again obtain stronger limits (roughly a factor 2.5 for
M1 = 400MeV), mainly because of the hard-neutrino-exchange contributions. As mentioned
above, this analysis is not specific for the 1 + 1 + 1 toy model discussed here and the
dependence on A′

ν , rather than Aν , holds for more general scenarios involving pseudo-Dirac
sterile neutrino pairs. The main conclusion here is that ultrasoft and hard contributions
can have a significant impact on 0νββ rates in the νSM including well-motivated variants
involving low-scale leptogenesis.

5.5 3+2 model

A more realistic model from a phenomenological point of view is a scenario with two right-
handed neutrinos, such that it can explain neutrino oscillations (and thus their light masses),
as well as address the matter-antimatter asymmetry of the universe via leptogenesis. However,
the presence of two sterile neutrinos allows only two light neutrino masses, so that the
lightest neutrino is necessarily massless in this case. One option that can reproduce the light
neutrino masses is the hierarchical limit, in which the heavy neutrino masses are required
to be ≳ 109 GeV [114]. Here we will instead consider scenarios where the sterile neutrinos
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are pseudo-degenerate in mass, which allows for much lower mass scales compatible with
leptogenesis.

The neutrino oscillation data are most easily implemented in this scenario with the
Casas-Ibarra (CI) parametrisation [115], in which the Yukawa coupling matrix between the
left-handed lepton doublet and the right-handed neutrino is given by

Y †
ν ∝ UPMNS

√
md

ν R
√

Md , (5.17)

where md
ν is a diagonal matrix of light neutrino masses and Md is a diagonal matrix of the

(two) heavy neutrino masses. R is a complex orthogonal matrix given by

RNH =

 0 0
cos(ω) sin(ω)
− sin(ω) cos(ω)

 , RIH =

 cos(ω) sin(ω)
− sin(ω) cos(ω)

0 0

 , (5.18)

with ω ∈ C for normal and inverted hierarchies respectively. The PMNS matrix is parametrised
as before, but with only one effective Majorana phase given by η = 1

2(α21 − α31) for NH
and η = 1

2α21 for IH. With this, the active-sterile mixing angles can be approximated to
be, assuming NH,

|Uei|2 ≈ 6.2× 10−10

Mi/MeV e2Im(ω) , (5.19)

where the NuFIT central values for light neutrino masses and mixing angles have been
used [116, 117], and we have picked Re(ω) = η = 0, δ = 3π

2 . These parameters enter the
effective amplitude as arguments of oscillating functions and thus can only play a limited
role in enhancing the rate; see eq. (5.20) below.

In the pseudo-degenerate regime, we can trade M1 and M2 for the average mass MN =
(M1 + M2)/2 and the mass difference ∆M = (M2 − M1)/2. Since the active-sterile mixing
angles depend exponentially on Im(ω), it is clear that this parameter plays a major part
in the possibility of 0νββ rate enhancement. However, at O(∆M0), Im(ω) does not enter
the effective amplitude and sterile neutrino exchange only suppresses the rate. For example,
the effective amplitude in NH is given by

Aeff ≈ m3 sin2(θ13)e−2i(δ+η) [Aν(m3)−Aν(MN )]+m2 sin2(θ12)cos2(θ13) [Aν(m2)−Aν(MN )]
+∆MA′

ν(MN )e−2i(δ+η)·[
cosh(−2iω)

(
m2 cos2(θ13)sin2(θ12)e2i(δ+η)−m3 sin2(θ13)

)
−2iei(δ+η)√m2m3 sin2(θ12)sin2(θ13)cos2(θ13)sinh(−2iω)

]
, (5.20)

where we explicitly show the dependence of the amplitude in eq. (5.11) on CI parameters.
Clearly, Im(ω) comes into play at first order in ∆M , and thus there is an interplay of these
parameters that dictate the 0νββ lifetime.

Given that there are quite stringent bounds on the mixing angles across a wide range of
heavy neutrino masses, we must be careful when choosing a value for Im(ω). The strongest
bounds are set for masses around MN ≈ 300MeV, where values of Im(ω) ≈ 3 can be
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Figure 12. 0νββ lifetime using eq. (4.7) as a function of the averaged heavy sterile mass (MN ) and
the mass splitting (∆M) for the pseudo-degenerate 3+2 NH scenario discussed in section 5.5. The
parameters chosen are δ = 3π/2, η = Re(ω) = 0, Im(ω) = 4.5. The yellow lines correspond to the
current and projected (solid and dashed respectively) limits on the lifetime calculated using eq. (4.7),
and in white are the results obtained when eq. (3.10) is used. The shaded regions are the bands in
figure 6.

excluded [64]. Nevertheless, we can safely have larger values for Im(ω) for other values
of heavy neutrino masses, as the bounds sharply weaken away from MN ≃ 300MeV. To
illustrate our results we therefore set Im(ω) ≈ 4.5. Note that this essentially fixes the strength
of Uei for a sterile neutrino of a given mass.

By fixing the parameters appearing in the R matrix and the unknown phases (a more
comprehensive scan and the interplay with low-scale leptogenesis is studied in ref. [118]),
we can study the 0νββ lifetime as a function of MN and ∆M . Such an example for NH is
shown in figure 12, where we have picked δ = 3π/2, η = Re(ω) = 0, Im(ω) = 4.5. The solid
(dashed) yellow lines are the current (predicted) limits on the 0νββ lifetime of 136Xe (from
KamLAND-Zen and nEXO, respectively), calculated using eq. (4.7). The points are color
coded and show the lifetimes calculated using the same expression. For comparison, we show
in white the limits one would obtain using eq. (3.10) instead.

The regions above the solid (dashed) lines are (will be) excluded by current (future)
0νββ constraints. It is seen that the new effects included in eq. (4.7) give rather interesting
differences, especially away from MN ∼ 300MeV. Although the new formula enhances the
decay rates at large masses, allowing us to probe smaller mass splittings, the slope is very
similar to the white lines. Similar to section 5.4, we find that our approach differs by about
a factor of 2 from that of the literature in the large MN limit for this particular set of
parameters. For smaller MN the slopes differ significantly due to the ultrasoft contributions.

The gray-shaded regions correspond to lifetimes predicted by the 3 light Majorana-
neutrino case shown in figure 6. In this region, the effects of the pseudo-degenerate neutrino

– 34 –



J
H
E
P
0
9
(
2
0
2
4
)
2
0
1

species on the 0νββ will thus be difficult to disentangle from the active neutrino contribution.
In the bottom right region, for higher MN and small mass splittings, the sterile neutrinos
start to decouple and the lifetime begins to fall into the aforementioned band. For the
NH, the gray bands will not be probed in the near future, and any signal would thus point
towards the existence of sterile neutrinos.

Instead of either dominating (e.g., in the case of large mass splittings and Im(ω)) or
having a sub-leading effect (much smaller compared to the active neutrino contribution) on
0νββ, sterile neutrinos can also contribute destructively to the 0νββ rate; i.e., the contribution
of sterile neutrinos to Aeff can be of similar size to the contribution of active neutrinos, but
opposite in sign. This is emphasized by the thin curve of yellow-to-white points below the
gray band, which indicate a very large half-life. This curve represent a new “funnel” where
0νββ is strongly suppressed even when the lightest active neutrino is massless. The amount
of cancellation is highly dependent on the parameters that have been fixed in figure 12, and
again we point out that this is not a comprehensive study of this scenario, but rather an
illustration of the importance of newly-identified contributions to 0νββ.

6 Conclusions

The Standard Model extended with several gauge-singlet right-handed neutrinos (the νSM)
is a very promising framework that can solve several of the shortcomings of the vanilla SM.
Right-handed neutrinos can account for neutrino masses through the seesaw mechanism while,
at the same time, accommodating the universal matter/anti-matter asymmetry through
leptogenesis. The possibility of low-scale leptogenesis has led to an increased interest in the
search for relatively light sterile neutrinos at the GeV scale. One of the generic features of the
νSM is the violation of lepton number which can be detected in 0νββ experiments. Essentially
all analyses of 0νββ are based on the same computational framework, in which the effect of
sterile neutrino masses is incorporated by modifying the propagator of the neutrino that is
exchanged between two neutrons in a nucleus. As these modifications are only made in the
LNV potentials used in nuclear many-body calculations, they capture the contributions from
neutrinos with momenta of potential scaling, k0 ≪ |k| ∼ kF . The resulting NMEs depend on
the sterile neutrino mass, which are assumed to take a simple functional form, see eq. (3.10).

Considering the interest in detecting sterile neutrinos, in this work, we have taken a fresh
look at these computations using a recently developed EFT framework for 0νββ. We find
several important new contributions that can significantly alter the 0νββ rates in seesaw
models involving light sterile neutrinos. The most important findings and applications of
our work are:

• Our main result is a practical, and relatively easy-to-use, formula for the 0νββ contri-
bution from a sterile neutrino of any mass mi given in eq. (4.7). This formula includes
the effects of potential, hard, and ultrasoft modes for mi ≲ 2GeV, and the correct
QCD renormalization-group-evolution and matching to hadronic scales for mi ≳ 2 GeV.
We advocate the use of this formula for all 0νββ analyses of sterile neutrino models.
Although we have focused on the isotopes 136Xe and 76Ge using shell-model NMEs, the
same expressions can be straightforwardly extended to other isotopes and many-body
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approaches. We stress that the addition of potential, hard, and ultrasoft contributions
only makes sense within a single nuclear many-body framework as regulators have to
be applied consistently.

• As a byproduct of this expression, we presented up-to-date nuclear Shell Model predic-
tions for the 136Xe 0νββ and 76Ge half-lives in the standard light-neutrino exchange
mechanism for both the normal and inverted neutrino-mass hierarchy in section 5.1.
Our results indicate that the current KamLAND-Zen limit reaches the bottom edge of
the IH band. These predictions include potential, hard, and ultrasoft contributions. As
far as we are aware, this is the first time the latter have been estimated, which we find
to give 10% destructive corrections.

• The same expression applies to contributions from sterile neutrinos allowing us to apply
our 0νββ formula to several simplified scenarios, such as the 3 + 1 model and a case
with one active and a single pseudo-Dirac νR pair, as well as the realistic 3 + 2 model
in sections 5.3, 5.4, and 5.5. In all cases we find significant differences in the 0νββ

predictions compared to the traditional approach, which can lead to enhancements of
up to two orders of magnitude depending on the neutrino mass. The formula in eq. (4.7)
can serve as the basis for the analysis of 0νββ in models of low-scale leptogenesis to
update predictions in, for example, refs. [17, 108, 119].

The main difference of our approach to the traditional literature is the systematic
application of χEFT and the associated power counting to identify the dominant contributions
to the 0νββ amplitude for different regimes of sterile neutrino masses. We list the most
important newly identified effects as well as the required input from LQCD and nuclear
many-body calculations to obtain more accurate predictions:

• 0νββ contributions from sterile neutrinos with masses mi ≳ 2 GeV cannot be obtained
from naively extrapolating NME results to heavy neutrino masses through eq. (3.10).
Instead, as discussed in section 3.2.1, heavy sterile neutrinos must be integrated out at
the quark level leading to lepton-number-violating dimension-9 operators. After evolving
the effective LNV operators to low energies where QCD becomes nonperturbative, they
can be matched to LNV hadronic operators without neutrinos.

• For a sterile neutrino with a mass mi ≲ 2 GeV there are, in addition to the usually con-
sidered potential contributions, leading-order contributions associated to the exchange
of hard neutrinos, with momenta k0 ∼ |k| ∼ Λχ, see sections 3.2.2 and 3.2.3. Hard
contributions are nowadays considered in modern 0νββ calculations for the exchange of
very light Majorana neutrinos, but they can play an even bigger role for massive sterile
neutrinos, see the analyses in section 5.

• In the final region, for light sterile neutrino masses, mi ≲ kF ∼ 100MeV, we have
identified important new contributions associated with the exchange of neutrinos with
ultrasoft momenta, k0 ∼ |k| ≪ kF , in section 3.2.3. While they formally appear at
next-to-next-to-leading order in the χEFT power counting, they can become dominant
in minimal seesaw models, due to the cancellation of eq. (2.6) affecting the leading-order
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terms. The inclusion of the ultrasoft contributions requires new NMEs, involving a set
of excited states of the intermediate nucleus of the decay. These ultrasoft modes can
lead to an enhancement of 0νββ rates up to two orders of magnitude compared to the
usually included potential modes, in parts of parameter space.

• As always, 0νββ computations involve uncertainties which are traditionally estimated by
differences between NMEs obtained with different nuclear many-body methods [30, 75].
The sterile neutrino contributions involve additional hadronic and nuclear matrix
elements that are not always (accurately) known. The most important targets for
improvements, for example through LQCD calculations, consist of the sterile neutrino
mass dependence of gNN

ν (mi), and the mass-independent low-energy constants gπN
1

and gNN
1 . Future determinations of these matrix elements can be directly inserted into

eq. (4.7) and would allow one to improve the accuracy of the estimates presented here.
Likewise, significant reductions in the uncertainty of the NMEs could be achieved by
future nuclear ab-initio calculations or by measuring processes related to 0νββ [120–
122], which would allow one to update eq. (4.7) as well. Finally, it would be good to
confirm the values of the matrix elements in tables 4 and 5, associated to the ultrasoft
contributions, with other nuclear many-body approaches, and to evaluate these NMEs
for additional isotopes.
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A Neutrino potential in coordinate space

Starting from the neutrino potential as given in eq. (3.17), which is typically used in the
literature for the evaluation of sterile neutrino corrections to 0νββ, it is possible to show
that the term linear in the sterile neutrino mass can be expressed as the NME of a potential
independent of rab

d

dmi
M(mi)

∣∣∣∣
mi=0

= RA

2g2
A

⟨0+
f |
∑
a,b

(
1− g2

Aσ(a) · σ(b)
)

τ (a)+τ (b)+|0+
i ⟩ . (A.1)
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For the experimentally relevant transitions where the initial and final nuclei are in different
isospin multiplets with ∆T = 2, the Fermi component of this NME vanishes, up to isospin-
breaking corrections. The Gamow-Teller piece, proportional to the double Gamow-Teller
NME [120], is in general non-zero, even though it is suppressed in calculations with approxi-
mate SU(4) spin-isospin symmetry. It can be determined by computing the normalization of
the Gamow-Teller density, typically a byproduct of standard NME calculations, and therefore
eq. (A.1) offers an alternative way of subtracting the linear mi dependence from A

(pot)
ν .

To avoid the spurious linear dependence, it might be convenient to evaluate eq. (3.19)
directly in coordinate space.

A(pot)
ν (mi) = A(pot)

ν (0)− m2
i

m2
π

(
− 1

g2
A

M(2)
F +M(2)

GT +M(2)
T

)
, (A.2)

with

M(2)
F = RA⟨0+

f |
∑
a,b

V
(2)

F (rab)τ (a)+τ (b)+|0+
i ⟩ , (A.3)

M(2)
GT = RA⟨0+

f |
∑
a,b

V
(2)

GT (rab)σ(a) · σ(b)τ (a)+τ (b)+|0+
i ⟩ , (A.4)

M(2)
T = RA⟨0+

f |
∑
a,b

V
(2)

T (rab)Sabτ (a)+τ (b)+|0+
i ⟩ , (A.5)

with Sab = 3σ(a) · raσ(a) · rb − σ(a) · σ(b). The radial functions are given by

V
(2)

F (r) = −mπ
z

2 , (A.6)

V
(2)

GT (r) = −mπ

(
z

2 − 1
6z

(
e−z(4 + z)− 4

))
, (A.7)

V
(2)

T (r) = mπ (3 + z) e−z
(
6 + 4z + z2)+ 2z − 6

6z3 , (A.8)

where z = mπr.

B Neutrino mass dependence of gNN
ν

We comment here on the neutrino mass dependence of gNN
ν . Short distance contributions

to 0νββ are captured, at lowest order, by the Lagrangian

LNN
|∆L|=2 = −

(
2
√
2GF Vud

)2
mββ ēLCēT

L gNN
ν

[(
NT P +

1S0
N
) (

NT P−
1S0

N
)]

+H.c.+ . . . , (B.1)

where . . . denote terms with two or more pion fields, which are required by chiral symmetry,
and P±

1S0
= (P 1

1S0
± iP 2

1S0
)/2 are projectors in the 1S0 wave,

P a
1S0

= 1√
8

τ2τa σ2. (B.2)

Multiple insertions of neutrino masses do not change the chiral properties of the operator,
and thus can be captured by allowing gNN

ν to depend on mi. For mi ≪ Λχ, we can write

gNN
ν (mi) = gNN

ν,0 + m2
i gNN

ν,2 + . . . (B.3)
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According to the rules of naive dimensional analysis [123], the scaling of the short-distance
operators is given by

gNN
ν,0

∣∣∣
NDA

= O
(

1
Λ2

χ

)
, gNN

ν,2

∣∣∣
NDA

= O
(

1
Λ4

χ

)
, (B.4)

with each additional power of mi compensated by Λχ. A gNN
ν,0 of this size is needed to absorb

divergences in loop corrections to the neutrino potential [58]. Refs. [46] and [47] pointed
out that the renormalization of LO LNV scattering amplitudes require the promotion of
gNN

ν,0 to leading order, that is

gNN
ν,0 = O

( 1
F 2

π

)
. (B.5)

The arguments in refs. [46, 47] were derived keeping only linear terms in mi (leading to the
factor of mββ in eq. (B.1)), but can be generalized to a massive neutrino propagator. It is
easy to see that the LO logarithmic divergence does not have mi dependence beyond an
overall m1

i factor. At NLO, there appear additional linearly divergent integrals [47], but again
additional factors of mi only change the finite pieces and do not affect the structure of the
divergence. From these results, we can argue that gNN

ν,2 < (F 3
πΛχ)−1. A full N2LO analysis

of LNV scattering amplitudes in chiral or pionless EFT has so far not been performed, and
is beyond the scope of this paper. To estimate the scaling of gNN

ν,2 here we focus on the
corrections to the neutrino potential mediated by the weak magnetic moment gM

V mag
ν = τ (a)+τ (b)+ × (4G2

F V 2
ud)

∑
i

Ueimi

k2 + m2
i

(
−g2

M

k2

6m2
N

(
σ(a) · σ(b) + 1

2Sab(k̂)
))

, (B.6)

with gM = 4.7, and Sab(k̂) is the momentum-space version of the tensor operator defined
in section A. Eq. (B.6) is the only N2LO contribution proportional to gM , and can thus be
considered in isolation, without carrying out a full N2LO calculation. The tensor component
does not contribute in the 1S0 channel. The GT contribution shifts the value of gNN

ν,0

gNN
ν,0 → gNN

ν,0 − g2
M

4m2
N

, (B.7)

and gives rise to a Yukawa-like potential of the form

V mag
ν = τ (a)+τ (b)+ × (4G2

F V 2
ud)

∑
i

Ueimi

k2 + m2
i

× g2
M

m2
i

6m2
N

(
σ(a) · σ(b)

)
. (B.8)

When evaluated on 1S0 wavefunctions, this potential leads to logarithmic divergences propor-
tional to m3

i . These need to be absorbed by gNN
ν,2 , which thus scales as

gNN
ν,2 ∼ g2

M

(
C1S0

4π

)2
= O

(
1

F 2
πΛ2

χ

)
, (B.9)

where C1S0 = O(F−2
π ) is the leading order strong interaction short-range coupling in the 1S0

channel. Eq. (B.9) justifies the scaling assumed in the main text.
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