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ABSTRACT 

Outcrops provide valuable information for the characterization of fracture networks. Sampling 
methods such as scanline sampling, window sampling, and circular scanline and window 
methods are available to measure fracture network characteristics in outcrops and from well 
cores. These methods vary in their application, the parameters they provide and, therefore, have 
advantages and limitations. We provide a critical review on the application of these sampling 
methods and apply them to evaluate two typical natural examples: (1) a large-scale satellite 
image from the Oman Mountains, Oman (120,000 m2 [1,291,669 ft2]), and (2) a small-scale 
outcrop at Craghouse Park, United Kingdom (19 m2 [205 ft2]). The differences in the results 
emphasize the importance to (1) systematically investigate the required minimum number of 
measurements for each sampling method and (2) quantify the influence of censored fractures on 
the estimation of fracture network parameters. Hence, a program was developed to analyze 1300 
sampling areas from 9 artificial fracture networks with power-law length distributions. For the 
given settings, the lowest minimum number of measurements to adequately capture the 
statistical properties of fracture networks was found to be approximately 110 for the window 
sampling method, followed by the scanline sampling method with approximately 225. These 
numbers may serve as a guideline for the analyses of fracture populations with similar 
distributions. Furthermore, the window sampling method proved to be the method that is least 
sensitive to censoring bias. Reevaluating our natural examples with the window sampling method 
showed that the existing percentage of censored fractures significantly influences the accuracy 
of inferred fracture network parameters. 

 

mailto:conny.zeeb@ifgt.tu-freiberg.de
mailto:enrique.gomez-rivas@uni-tuebingen.de
mailto:paul.bons@uni-tuebingen.de
mailto:philipp.blum@kit.edu
https://archives.datapages.com/data/bulletns/2013/09sep/BLTN12042/BLTN12042.HTM


2 
 

INTRODUCTION 

Fractures and other mechanical discontinuities act as preferential fluid pathways in the 
subsurface, thus strongly controlling fluid flow in hydrocarbon reservoirs. An essential 
step for reservoir characterization is the acquisition of fracture network data and the 
subsequent upscaling of their statistical properties (Long et al., 1982; Jackson et al., 
2000; Blum et al., 2009). Because terminology for mechanical defects in rocks is diverse 
and commonly has genetic connotations, we also include joints and veins when using 
the term “fractures.” A common method to evaluate the degree of fracturing in the 
subsurface is the characterization of fracture networks from outcropping subsurface 
analogs, well cores, or image logs (Dershowitz and Einstein, 1988; Priest, 1993; National 
Research Council, 1996; Mauldon et al., 2001; Bour et al., 2002; Laubach, 2003; Blum 
et al., 2007; Jing and Stephansson, 2007; Guerriero et al., 2011). This process includes 
the acquisition of geometric data from fractures and its subsequent analysis to find 
statistical distributions and relationships between parameters (Einstein and Baecher, 
1983; Priest 1993; Blum et al., 2005; Barthelemy et al., 2009; Toth, 2010; Toth and Vass, 
2011). The most widely used acquisition methods for fracture network statistical 
parameters are (1) scanline sampling (Priest and Hudson, 1981; LaPointe and Hudson, 
1985; Priest 1993), (2) window sampling (Pahl, 1981; Priest, 1993), and (3) circular 
scanline and window (or “circular estimator”) methods (Mauldon et al., 2001; 
Rohrbaugh et al., 2002) (Figure 1). 

 

Figure 1. (A) Sketch illustrating orientation bias and the definition of the variables required to calculate the 
factor for the Terzaghi correction (equation 1). SA is the apparent spacing measured along a scanline, S2-

D is the true spacing between two fracture traces, and S3-D is the true spacing between two fracture 
planes. 2-D and 3-D are the angles between the normal to a fracture trace or a fracture plane, 
respectively, and a scanline. (B) Illustration of the chord method (Perez-Claros et al., 2002; Roy et al., 
2007). In a log-log plot of fracture length against cumulative frequency, the line through the data point 
with the shortest length and the data point with the longest length is calculated. The fracture length from 
the data point with the highest distance d to this line is used as the lower cutoff for the truncation bias. 
(C) Censoring bias caused by the boundaries of a sampling area (type I) and covered parts in an outcrop 
(type II). 
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In the subsurface, fracture sampling is constrained to boreholes, which basically 
corresponds to scanline sampling. Well cores and image logs provide valuable in-situ 
information on, for example, fracture spacing, orientation, aperture, and cementation 
(e.g., Olson et al., 2009). However, fracture sampling strongly depends on borehole 
inclination. Fracture intersection frequency is highest for a borehole perpendicular to 
the fractures of a set, whereas if the borehole is parallel to the fracture set, sampling is 
very limited, and no or only few data can be acquired. Some parameters, such as 
average fracture spacing (Narr, 1996), can be estimated irrespective of borehole 
inclination. Ortega and Marrett (2000) showed that an extrapolation of fracture 
frequencies from the microscopic scale to the macroscopic scale is possible up to the 
scale of mechanical layering. However, it is impossible to directly measure fracture 
lengths in the subsurface, which is crucial for fluid-flow modeling and the evaluation of 
an equivalent permeability in subsurface reservoirs (e.g., Philip et al., 2005). Although 
scaling relationships between the apertures and lengths for opening-mode fractures 
have been reported (e.g., Olson, 2003; Scholz, 2010), the exact nature of these 
relationships is still under debate (e.g., Olson and Schultz, 2011). Furthermore, to our 
knowledge, scaling relationships for fractures in layered rocks have not been 
systematically investigated yet. Thus, the analysis of outcropping subsurface analogs 
can provide valuable additional information, especially on fracture length distributions 
for the simulation of fluid flow in subsurface reservoirs (e.g., Belayneh et al., 2009). 

Each of the three sampling methods mentioned above has advantages and limitations 
when applied to an outcrop. Previous studies by Rohrbaugh et al. (2002), Weiss (2008), 
Belayneh et al. (2009), and Manda and Mabee (2010) provide information concerning 
the application of the scanline sampling, window sampling, and circular estimator 
methods for specific case studies. However, a comprehensive analysis including (1) the 
application of all three sampling methods to the same case; (2) their verification using 
artificial fracture networks (AFNs) with known input parameters; and (3) the use of a 
power law to describe the distribution of fracture lengths, which is commonly reported 
for natural fracture networks (e.g., Pickering et al., 1995; Odling 1997; Bonnet et al., 
2001; Blum et al., 2005; Toth, 2010; LeGarzic et al., 2011), is still lacking. A main issue 
here is the lack of a general consensus regarding the minimum number of length 
measurements required to adequately determine the length distribution of a fracture 
network. According to Priest (1993) the sampling area should contain between 150 and 
300 fractures, of which approximately 50% should have at least an end visible. 
Furthermore, Bonnet et al. (2001) suggested the sampling of a minimum of 200 
fractures to adequately define exponents of power-law length distributions. However, 
these numbers only apply to specific case studies. Accordingly, the minimum number 
of fractures a sampling area should contain to apply the scanline sampling, window 
sampling, or circular estimator methods are not unequivocally defined yet. A 
systematic study evaluating this issue is therefore needed. 
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A topic concerning the measurement of fracture networks in outcrops is the actual 
influence of censored fractures on network parameter estimates. Correcting censoring 
bias is a challenging task and relies on certain assumptions of fracture shape (e.g., disc, 
ellipsoid, or rectangle) and fracture size distributions (Priest, 2004), as well as their 
spatial distribution (Riley, 2005). However, the use of such assumptions may also 
influence the results. Thus, it is important to systematically quantify the influence of 
censored fractures to assess the uncertainty of the measured fracture network 
parameters. 

The required number of length measurements and the influence of censored fractures 
are evaluated in this article by applying the three sampling methods to artificially 
generated fracture networks with known input parameters. Fracture lengths of natural 
fracture networks have been reported to follow power-law (e.g., Bonnet et al., 2001), 
log-normal (Priest and Hudson, 1981), gamma (Davy, 1993), and exponential 
distributions (Cruden, 1977). However, power-law relationships are the most commonly 
used to describe the distribution of fracture lengths (e.g., Pickering et al., 1995; Odling, 
1997; Blum et al., 2005; Toth, 2010; LeGarzic et al., 2011). The arguments in favor of 
power laws are comprehensively discussed by Bonnet et al. (2001). A point in favor of 
using power-law distributions is the absence of a characteristic length scale in the 
fracture growth process. However, all power-law distributions in nature are bound by a 
lower and upper cutoff. The size of a fracture can be restricted, for example, by 
lithologic layering. The presence of such a characteristic length scale can give rise to 
log-normal distributions (Odling et al., 1999; Bonnet et al., 2001), although the 
underlying fracturing is a power-law process. Considering the above, we chose to use a 
power law to describe the distribution of fracture lengths in this study. 

The objective of this study is to further investigate the use and applicability of different 
sampling methods for the characterization of fracture networks at outcrops. We 
specifically provide a critical review of the application and limitations for the scanline 
sampling, window sampling, and circular estimator methods and describe their typical 
application using two natural fracture networks: (1) lineaments from a satellite image of 
the Oman Mountains, Oman (Holland et al., 2009a), and (2) fractures from an outcrop at 
the Craghouse Park, United Kingdom (Nirex, 1997a). In the second part of this study, 
AFNs are used to evaluate (1) the required minimum number of measurements and (2) 
the uncertainty of the results for increasing percentages of censored fractures. The 
results of these analyses are then used to reevaluate the natural examples, to 
determine which sampling method is best suited, and to provide the uncertainty caused 
by censoring bias. For the evaluation of the fracture networks, a novel software, called 
Fracture Network Evaluation Program (FraNEP), was developed. 
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FRACTURE SAMPLING AT OUTCROPS 

This section provides an overview of (1) typical fracture (Table 1) and fracture network 
parameters (Table 2), (2) biases related to fracture sampling, and (3) the application of 
the three typical sampling methods used for outcrop analysis. The methods presented 
are the scanline sampling, window sampling, and circular estimator methods (Figure 1). 
In addition, we summarize typical techniques to correct the sampling biases associated 
with these methods. Finally, previous comparisons of sampling methods are presented. 
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Fracture and Fracture Network Parameters 

Based on geometric data, statistical distributions, and relationships between fracture 
network parameters, AFNs can be generated stochastically to predict the fluid-flow 
behavior in fractured reservoirs under different scenarios (Berkowitz, 2002; Castaing et 
al., 2002; Neuman, 2005; Toublanc et al., 2005; Blum et al., 2009). Typical parameters 
for AFN characterization are fracture density, intensity, spacing, mean length or length 
distribution, and orientation of fractures (Priest, 1993; Narr, 1996; Mauldon et al., 2001; 
Castaing et al., 2002; Ortega et al., 2006; Blum et al., 2007; Neuman, 2008). 

Fracture length and length distribution are important parameters for flow simulations. 
However, the definition of fracture lengths at outcrops is a challenging task. For 
example, fractures identified as single strands at one scale of observation (e.g., satellite 
image) may be seen as linked segments when changing the scale of observation (e.g., at 
ground level). Moreover, the intersection of different fractures (e.g., Ortega and Marrett, 
2000) and fracture cementation (e.g., Olson et al., 2009; Bons et al., 2012) add 
significant complexity to the identification of individual fractures. Simulating fluid 
transport in an AFN generated from well-characterized but irrelevant fractures will 
provide irrelevant results. Hence, it is important to link the observations in the 
subsurface with those obtained at outcrops. This can be accomplished by a 
comparison of scanline measurements (e.g., fracture apertures) from well cores or 
image logs with those from outcropping subsurface analogs. 

Mean fracture length is another commonly used parameter. Here, we want to briefly 
address the issue of evaluating a mean length for a power-law distribution of fracture 
lengths. Considering the absence of a characteristic scale of power laws and the 
limited information on lower and upper cutoff lengths for natural systems, a mean value 
is only valid for the sampled fracture length population. Using such a parameter, for 
example, for fluid-flow upscaling is therefore meaningless. 

Additional information is necessary to quantify fluid flow through fracture networks, 
including fracture filling, displacement, wall rock rheology, and mechanic or hydraulic 
fracture aperture (e.g., Lee and Farmer, 1993; Barton and de Quadros, 1997; Odling et 
al., 1999; Renshaw et al., 2000; Laubach, 2003; Laubach and Ward, 2006; Llewellin, 
2010). For a better prediction of fractures in diagenetically and structurally complex 
settings, evidence of the loading and mechanical property history of the host rock, as 
well as current mechanical states, are also required (Laubach et al., 2009). A summary 
of fracture (Table 1) and fracture network parameters (Table 2) is provided below. 
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Sampling Biases and Correction Techniques 

Orientation, truncation, censoring, and size bias, among others, can cause significant 
under- or overestimation of statistical parameters and can thus potentially prejudice 
the characterization of fracture networks (Zhang and Einstein, 1998). 

Orientation bias is caused by fractures that intersect the outcrop surface or scanline at 
oblique angles. Thus, an apparent distance, or spacing, is measured between two 
adjacent fractures, which cause an underestimation of fracture frequency (Figure 1A). A 
typical correction method for orientation bias is the Terzaghi correction (Terzaghi, 1965; 
Priest, 1993), where the apparent distance (SA) is corrected by the cosine of the acute 
angle  of the fracture normal and the scanline or scan surface to obtain the true 
spacing (S): 

 

Linear fracture intensity, which is also commonly referred to as fracture frequency, is 
equal to 1/S. In three dimensions, cos   is given by (Hudson and Priest, 1983): 

 
where   and  are the dip direction and dip of the scanline, and i and i are the dip 
direction and dip of the ith fracture set normal. The problem with this correction method 
is that fractures have to be grouped into fracture sets. An alternative technique is 
presented by Lacazette (1991), which corrects the orientation bias for each individual 
fracture: 

 
where occurrence may be thought of as the frequency of an individual fracture, L is the 
length of a scanline, and   is the angle between the pole to the fracture and the 
scanline. The fracture frequency of a set is the sum of the occurrence parameters 
calculated for the individual fractures in this set. A method presented by Narr (1996) 
allows estimating the average fracture spacing in the subsurface. The method uses the 
spacing and height of fractures and the borehole diameter to predict fracture 
intersection frequencies for all possible well deviations. 

Truncation bias is caused by unavoidable resolution limitations, which depend on the 
used detection device (e.g., satellite image, human eye, or microscope) and the 
contrast between the host rock and fractures. Parameters such as fracture size (length 
or width) are not detectable below a certain scale. Moreover, as fracture size 
approaches the detection limit, the actual number of recognized fractures significantly 
decreases. Thus, defining a lower cutoff of fracture size based on data resolution is 
needed to correct truncation bias (Nirex, 1997b). The truncation bias of sampled 
fracture lengths can be corrected by applying the chord method (Figure 1B) (Perez-
Claros et al., 2002; Roy et al., 2007). Bonnet et al. (2001) plotted lower cutoff lengths 
against sampling areas reported in literature and could show that the cutoff lengths are 
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typically in the range of 0.5% to 25% of the square root of the sampling area, with an 
average of approximately 5%. 

Censoring bias is typically related to a limited outcrop size (Type I: fractures with one or 
both ends outside the sampling area), uneven outcrops (e.g., erosion features), and 
coverage by overlaying rock layers or vegetation (Type II: fractures with both ends inside 
the sampling area but partly hidden from observation) (Figure 1C) (Priest, 1993; 
Pickering et al., 1995; Zhang and Einstein, 2000; Bonnet et al., 2001; Rohrbaugh et al., 
2002; Fouche and Diebolt, 2004). The focus of this study is on Type I. A typical effect of 
this censoring bias is an overestimation of fracture density (Kulatilake and Wu, 1984; 
Mauldon et al., 2001). For this type of censored fractures, it is impossible to know the 
relative lengths of the visible and censored parts. Therefore, it is also impossible to tell 
whether the fracture center is inside the sampling area or not. However, it can be 
assumed that half of these fracture centers should be inside, and the other half, outside 
the sampled area. Thus, half of the censored fractures can be neglected for the 
calculation of fracture density (Mauldon, 1998; Mauldon et al., 2001; Rohrbaugh et al., 
2002). For Type II censored fractures, we know that the center is inside the sampling 
area. Unfortunately, if a fracture transects a covered part of the outcrop, it is impossible 
to tell whether we look at one transecting fracture or two fractures with obscured ends. 
To make a prediction whether we look at a transecting fracture or not, the true fracture 
length distribution needs to be known. However, correcting censoring bias for fracture 
length distributions is complex, and a complete review is beyond the scope of this 
study. Detailed descriptions on this topic are provided by, for example, Priest (2004) and 
Riley (2005). 

Size bias is associated with the scanline sampling method (Bonnet et al., 2001; 
Manzocchi et al., 2009). Because the probability of a fracture to intersect a scanline is 
proportional to its length, shorter fractures are underrepresented in the measurements 
gathered along scanlines (Figure 2A) (Priest, 1993; LaPointe, 2002). Possible correction 
techniques are provided below, along with the description of the scanline sampling 
method. 
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Figure 2. Window sampling (A), scanline sampling (B), and circular estimator method (C). Solid black 
lines indicate sampled fractures; light gray lines, nonsampled fractures; and dashed lines, the 
nonobservable (censored) parts of fractures (modified from Rohrbaugh et al., 2002). 

Scanline Sampling 

The scanline sampling method (Figure 2A, Table 2) is based on data collection from all 
fractures that intersect a scanline (Priest and Hudson, 1981; Priest, 1993; Bons et al., 
2004). The method allows a quick measurement of fracture characteristics in the field 
and is the main method used for the analysis of borehole image logs and cores. Its 
application provides one-dimensional (1-D) information on fracture networks (Table 2). 
The method is affected by (1) orientation bias, (2) truncation bias, (3) censoring bias, 
and (4) size bias. Orientation bias can be reduced or even avoided by placing a scanline 
perpendicular to a fracture set. If necessary, several scanlines can be used in outcrops 
to capture different fracture sets. However, well logs and drill cores constitute only one 
single scanline. 

Several additional equations and assumptions are necessary to (1) correct size bias, (2) 
compare linear with areal fracture intensity (Table 2), and (3) evaluate fracture density. 
The assumptions and equations provided here are only valid for power-law distributions 
of fracture lengths and need to be modified for other distributions. If we assume 
uniformly distributed, disc-shaped fractures with a power-law distribution of disc 
diameters in three dimensions, the fracture lengths measured in a plane also follow a 
power law. The relationship between three-dimensional (3-D), two-dimensional (2-D), 
and 1-D exponents of a power-law length distribution follows (Darcel et al., 2003): 

 
where E3-D is the exponent for a 3-D rock mass volume, E2-D is the exponent for a 2-D 
sampling area, and E1-D is the exponent for a 1-D scanline. However, fractures in 
stratified rocks are probably not disc shape. Moreover, equation 4 is only valid for well-
sampled representative populations of uniformly distributed fractures. For fractures 
with strong spatial correlation, clustering, or directional anisotropy, Hatton et al. (1993) 
provide a more appropriate relationship between 3-D and 2-D exponents: 
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where A = 1.28  0.30 and B = –0.23  0.36. Because it is impossible to evaluate 2-D 
exponents from scanline measurements using equation 5, we use equation 4. 

Size bias causes an overestimation of mean fracture length. For a given minimum 
fracture length l0, a mean length lm can be calculated as follows (LaPointe, 2002): 

 

The scanline sampling method estimates linear fracture intensity P10 (Table 2), which is 
commonly also referred to as frequency. A relationship between linear (P10) and 
volumetric (P32) fracture intensities (Table 2) is provided by Barthelemy et al. (2009): 

 
where e[cos( )] is the expected mean of the cosines of angles  for the fractures of one 
set. For a scanline parallel to the normal of a fracture set, e[cos( )] equals 1, thus the 
relationship between linear (P10), areal (P21), and volumetric (P32) fracture intensities 
(Table 2) is given by 

 

Fracture intensity I is defined as the product of density p and mean length lm: 

 

The combination and rearrangement of equations 4, 8, and 9 allow estimating areal 
fracture density based on measurements obtained by the scanline sampling method: 

 

Window Sampling 

The window sampling method (Figure 2B; Table 2) estimates the statistical properties of 
fracture networks by measuring parameters from all fractures present within the 
selected sampling area (Pahl, 1981; Wu and Pollard, 1995). Typical applications of this 
method are the analysis of outcropping subsurface analogs (Belayneh et al., 2009) or 
the characterization of fracture networks using remote sensing data from satellite 
images or aerial photographs (Koike et al., 1995; Becker, 2006; Holland et al., 2009a; 
Zeeb et al., 2010). In general, three types of sampling bias affect the window sampling 
method: (1) orientation, (2) truncation, and (3) censoring biases. 

Circular Estimator 

The circular estimator method uses a combination of circular scanlines and windows 
(Mauldon et al., 2001; Figure 2C). It is in fact a maximum likelihood estimator (Lyman, 
2003). This means that, instead of directly sampling individual fractures and measuring 
their characteristics, for example, orientation or length, parameters are estimated using 
statistical models that are described in detail by Mauldon et al. (2001). Based on the 
number of intersections (n) between a circular scanline and fractures and the number 
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of fracture endpoints (m) in a circular window formed by this scanline, fracture density, 
intensity, and mean length are calculated (Table 2). To assure an accuracy of the results 
of 15% or higher, ten circular scanlines with a diameter exceeding the mean fracture 
block size, or fracture spacing, but significantly smaller than the minimum dimension of 
the sample region, are randomly placed in the sampling area (Rohrbaugh et al., 2002). 
In addition, m counts should be higher than 30 (Rohrbaugh et al., 2002). The circular 
estimator is a time-efficient method to evaluate fracture network characteristics. Being 
a maximum likelihood estimator, the method is not subject to sampling bias. However, 
this method does not provide information on important parameters such as fracture 
orientation, length distribution, or width. Hence, it should, in principle, be combined 
with other sampling methods. 

Comparison of Different Sampling Methods in the Literature 

Several studies compared the effectiveness of the different sampling methods for 
specific case studies. For example, Belayneh et al. (2009) conducted water-flooding 
numerical simulations on deterministic and stochastic discrete fracture networks and 
matrix models. To generate these networks, outcropping subsurface analogs of Jurassic 
carbonate platforms on the southern margin of the Bristol Channel Basin were studied 
using the window sampling and scanline sampling methods. The measured parameters 
included fracture orientation, length, spacing, and aperture. Numerical simulations on 
deterministic models (window sampling) showed that flow is fracture-dominated. 
Simulating flow through fracture network models (scanline sampling) varied from 
fracture to matrix dominated. They concluded that this uncertainty may be caused by 
the undersampling of fractures along scanlines. Manda and Mabee (2010) studied the 
effectiveness of the single scanline, the multiple scanline, and the window sampling 
methods, using them to acquire the properties of fractures from layered dolomites in a 
quarry in Wisconsin. They used overall volumetric intensity and permeability of fracture 
network models to assess the accuracy of these methods and recommended the use of 
the window sampling method. Weiss (2008) used the scanline sampling, window 
sampling, and circular estimator methods to characterize fracture networks from chalk 
in the northern Negev in Israel. He concluded that the circular estimator method is a 
useful tool to assess mean fracture size without the need of accounting for sampling 
bias. However, the sampling areas were very limited in size. Hence, large fractures 
controlling the fluid transport in the aquifer were not adequately defined by the 
relatively small circular and rectangular sampling windows. Weiss (2008) suggested a 
combination of the scanline and window sampling methods to calculate the 
distribution of fracture length. Rohrbaugh et al. (2002) used AFNs with scale-dependent 
length distributions to investigate the accuracy of the results from the scanline 
sampling, window sampling, and circular estimator methods in estimating fracture 
density, intensity, and mean length. Based on their results, Rohrbaugh et al. (2002) 
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presented a guideline for the application of the circular estimator method and followed 
this guideline to characterize eight natural fracture networks. 

STUDY OF NATURAL FRACTURE NETWORKS 

In this section, we show a typical application of the scanline sampling, window 
sampling, and circular estimator methods. The fracture network parameters of two 
natural examples are evaluated: (1) lineaments measured from a satellite image of the 
Oman Mountains, Oman (Figure 3; from Holland et al., 2009a) and (2) fractures from an 
outcrop located at Craghouse Park, United Kingdom (Figure 4; Nirex 1997a, b). The three 
sampling methods are used to estimate fracture density, intensity, mean length, and 
length distribution. 

The first natural fracture network (Figure 3) is an analysis of lineament data (fractures, 
faults, joints, veins, etc.) extracted from a Quickbird satellite image from the southern 
flank of the Jabal Akhdar dome in the Oman Mountains, Oman (Hilgers et al., 2006; 
Holland et al., 2009a, b). The sampling area has an extent of 120,000 m2 (1,291,669 ft2), 
in which 650 lineaments with lengths ranging between 3 and 179 m (10 and 587 ft) could 
be identified by optical picking. Applying the chord method (Perez-Claros et al., 2002; 
Roy et al., 2007), the cutoff length for truncation bias is 23.3 m (76.4 ft). For 
interpretation, the panchromatic band, which offers a spatial resolution of 0.7 m (2.3 ft), 
was used. Based on the number of fractures extending beyond the boundaries of the 
sampling area, approximately 5% of the sampled fractures appear to be censored. 

The second natural fracture network is an outcrop located at Craghouse Park, United 
Kingdom (Figure 4; Nirex, 1997a). This sampling area has a size of 19 m2 (205 ft2), 
containing a total of 288 visible fractures with lengths ranging between 0.05 and 4.0 m 
(0.16 and 13.1 ft). The application of the chord method (Perez-Claros et al., 2002; Roy et 
al., 2007) provided a cutoff length for truncation bias of 0.8 m (2.6 ft). The limited 
outcrop size, which is typical for a humid climate, causes 30% of the fractures to be 
censored. 

Table 3 summarizes the fracture network parameters obtained from the two natural 
examples. The deviation between the results for length distribution exponents 
evaluated by scanline and window sampling for the Oman example might be caused by 
difficulties when interpreting fracture lengths in the satellite image. Erosion features 
(Figure 3A) cause a type II censoring bias (Figure 1C). Thus, the interpretation of two 
short fractures is actually one long fracture. Moreover, what looks like one long fracture 
in the satellite image might be a series of fracture segments when studied at the ground 
level. 
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Figure 3. (A) Satellite image from the southern flank of the Jabal Akhdar dome in the Oman Mountains, 
Oman (enhanced satellite image from Google, GeoEye [Digital Globe]). (B) Interpretation of the fractures 
in the white rectangle in panel A after the correction of truncation bias (modified from Holland et al., 
2009a). The UMT coordinates on the lower left and upper right corners are 40N 525496 2562373 and 40N 
525799 2562760, respectively. Please note that the satellite image and the trace line map are not to scale 
because of the slope of the flank. Panels C and D show a plot of fracture lengths (gray dots) against the 
cumulative distribution measured by two scanlines (C) and one window sampling (D) of the whole study 
area (A). The solid, dashed, and dotted black lines indicate power-law, exponential, and log-normal fits. 
The fitting accuracy is given by root-mean-square errors (RMSE). 
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Figure 4. (A) Photograph of the investigated outcrop at Craghouse Park, United Kingdom (geologic 
hammer for scale). (B) Trace line map of the cleaned outcrop. Panels C and D show a plot of fracture 
lengths (gray dots) against the cumulative distribution measured by two scanlines (C) and one window 
sampling (D) of the whole study area (A). The fitting accuracy is given by the root-mean-square error 
(RMSE). 
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When analyzing the second example from the United Kingdom, a power-law length 
distribution was assumed. Such an assumption is valid (and necessary), if an upscaling 
of the results is intended. If the length distribution at the scale of observation is 
evaluated, then a log-normal distribution is probably a better choice. However, the 
length measurements should not be corrected for truncation bias because the 
procedure removes the short fracture lengths, which are essential for a log-normal 
distribution. 

For the analysis of both natural examples, it was impossible to sample 30 fracture 
endpoints with a radius of the circular scanlines equal to one-tenth of the sampling area 
extent. Therefore, the radii were increased (Table 3) to satisfy the 30-endpoint criteria 
defined by Rohrbaugh et al. (2002). 

ARTIFICIAL FRACTURE NETWORKS 

In this section, we apply the scanline sampling, window sampling, and circular 
estimator methods to AFN with known input values and compare them with the 
calculated fracture network parameters. With this systematic approach we evaluate, for 
each sampling method, (1) the minimum number of required measurements and (2) the 
influence of censored fractures on estimates of fracture network parameters. 

Fracture Network Generation 

The fracture network generator FracFrac (Blum et al., 2005), a program based on Visual 
Basic for Applications in Microsoft Excel, was used to generate nine 2-D AFNs (Figure 5). 
The networks are defined by fracture density and length distribution. For the density, 
three values with p = 0.5 m–2 (0.046 ft 2), p = 1.0 m–2 (0.093 ft 2), and p = 1.5 m–2 (0.139 ft

2) were assumed. Power-law exponents reported for natural fracture systems typically 
range between 0.8 and 3.5, with most in the range between 1.7 and 2.8 and most of 
which are actually approximately 2 (Bonnet et al., 2001). For the generation of the AFN, 
we used exponents of E = 1.5, E = 2.0, and E = 2.5. In this study, a truncated power law is 
used to describe the cumulative distribution of fracture lengths (Blum et al., 2005; Riley, 
2005): 
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Figure 5. (A) Examples for a 20  20 m (66  66 ft) sampling area from each of the nine two-dimensional 
artificial fracture networks, with input values for fracture density in number per square meter (p) and 
exponent (E) of the power-law length distribution. The numbering of the artificial fracture network 
corresponds to those in Table 4. (B) Sketch illustrating the generation area and the definition of sampling 
areas. (C) Definition of the censored fractures in a sampling area. (D) The relationship between the size of 
the sampling area and the average percentage of censored fractures for the three power-law length 
distributions. The black arrows on the x axis indicate the size of the sampling areas analyzed in this study. 

We define a lower cutoff length l0 of 1 m (3 ft). Although Odling et al. (1999) observed a 
similar cutoff for joints in sandstones of western Norway, this value is probably only 
valid for this specific case study. The lower cutoff is necessary to constrain the range of 
fracture lengths in the AFNs and is an arbitrary value. 

Table 4 provides a summary of true fracture density, intensity, mean length, and power-
law exponent for each of the nine AFNs (Figure 5A). Orientation bias is avoided using 
two sets of perfectly parallel fractures with orientations of 90  and 180 . Furthermore, 
the input fracture density is equally distributed between the two fracture sets. 

 

The generation area of each AFN is 300  300 m (984  984 ft). In this whole area, a total 
of 146 squared sampling areas are defined (one area with an edge length of 200 m [656 
ft]; four with 100 m [328 ft]; 16 with 50 m [164 ft]; and 25 sampling areas with edge 
lengths of 40 m [131 ft], 30 m [98 ft], 20 m [66 ft], 10 m [33 ft], and 5 m [16 ft]), providing 
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a total of 1314 sampling areas for all nine AFNs (Figure 5B). Fractures are treated as 
censored, if one or both ends intersect with a boundary of the sampling area (Figure 
5C). The percentage of censored fractures is calculated from the total number of 
fractures in a sampling area and the number of fractures that are censored. Figure 
5D presents the percentages of censored fractures averaged for the different sized 
sampling areas. The highest percentages are found for small sampling areas and high 
power-law exponents (Figure 5A; E = 1.5). 

Each sampling area is analyzed using FraNEP. FraNEP is a novel software that 
characterizes fracture networks applying either the scanline sampling, window 
sampling, or circular estimator methods. For the scanline sampling method, one 
scanline is placed perpendicular to each of the two fracture sets. The window sampling 
method is applied on the entire sampling area. For the application of the circular 
estimator method, we follow the guideline of Rohrbaugh et al. (2002). Ten circular 
scanlines are randomly placed inside the sampling area, with the radius equal to one-
tenth of the edge length. Values for fracture density, intensity, mean length, and length 
distribution are calculated and compared with the true values. For the calculation of the 
fracture density, half of the censored fractures are neglected. For the other three 
parameters, all sampled fractures are used. The distribution of fracture lengths is 
evaluated by fitting power-law, log-normal, and exponential cumulative distribution 
functions to the sampled fracture lengths. The root-mean-square error approach is 
used to compare the quality of a best fit, which is calculated from the sum of squared 
errors, the number of measurements, and the mean value of the measured parameter 
(Loague and Green, 1991). 

Table 5 provides an example for three sizes of sampling areas from AFN 5. Shown are 
the range of values (lowest to highest) of calculated fracture network parameters for all 
sampling areas of the same size. Table 5 illustrates well how the spread of values, and 
thus the uncertainty, increases for smaller sampling areas. For fractures sampled by 
scanline sampling in the 10  10 m (33  33 ft) sampling area, fracture lengths follow a 
log-normal distribution. We conclude that scanline sampling does not suffice to 
characterize these sampling areas. Figure 6 shows fracture lengths and fitted 
distributions for one exemplary sampling area from each size presented in Table 5. The 
fitting accuracy of the power-law distribution decreases for smaller sampling areas. 
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Figure 6. Plot of measured fracture lengths (gray dots) against their cumulative distribution. The root-
mean-square error (RMSE) in the brackets indicates the accuracy of the fits. 

Required Minimum Number of Measurements 

No well-established criteria exist to define the required minimum number of 
measurements to sufficiently capture the statistical properties of fracture networks 
using specific sampling methods. For each sampling method, a criterion is defined in 
such a way that it sufficiently captures the statistical properties. For the scanline and 
window sampling methods, we defined the criterion as the number of measurements, 
above which a power law always provides the best fit to the fracture length 
measurements (Figure 6). The criterion of the circular estimator method is defined as 
the number of fractures in a sampling area above a circular window always contains 30 
or more fracture endpoints (Rohrbaugh et al., 2002). These criteria are applied to the 
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data obtained by the three sampling methods for each of the 146 sampling areas 
defined within each of the 9 AFNs. Furthermore, two numbers are evaluated for each 
sampling method: (1) the highest number of measurements that does not satisfy the 
criterion in any of the 146 sampling areas (Table 6: not satisfied), and (2) the lowest 
number of measurements above which the criterion is always satisfied in any of the 146 
sampling areas (Table 6: satisfied). This is repeated for all nine AFNs. However, these 
numbers are fracture network specific and depend on the properties of the network. 
Thus, for the determination of the minimum number, which is universally applicable to 
all nine studied AFNs, we need to compare these results. The lowest number of 2, which 
is also higher than all numbers of 1, is the required minimum number of measurements 
of the sampling method (Table 6). 

 

At least 112 fractures should be measured for the window sampling method; 225 for the 
scanline sampling method; and 860 for the circular estimator method. Because only the 
fractures intersecting with a line are considered for the scanline sampling method, 
significantly more fractures have to be present in a sampling area to measure 225 
fractures. For sampling areas with a simple geometry and fracture network pattern, for 
example, similar to the AFNs, approximately 4000 fractures should be present. A more 
complex sampling area or fracture network may imply that even more fractures have to 
be present. Note that the required minimum corresponds to the number of 
measurements after accounting for truncation bias. Despite the efforts to universally 
find a minimum number of measurements to properly capture the properties of fracture 
networks, each case study may require a different minimum number of measurements 
depending on the network itself. 
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Uncertainty Analysis 

The effects responsible for censoring bias are well known. However, to our knowledge, 
the actual influence of censored fractures on estimates of fracture network parameters 
has not been comprehensively investigated. The influence is assessed here for four 
typical fracture network parameters: (1) fracture density, (2) intensity, (3) mean length, 
and (4) length distribution. For each sampling area, which contains the necessary 
minimum number of fractures to apply the respective sampling method, the difference 
between estimated and input value is calculated. The percentage of censored fractures 
in this sampling area is plotted against the difference in percentage for each parameter 
and sampling method. The plots illustrate the maximum difference observed for 
increasing percentages of censored fractures (Figure 7). In this study the range of 
potential differences between those maximum differences is referred to as the 
uncertainty. Figure 7 shows an example for the uncertainty in estimating fracture 
density using the window sampling method. 
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Figure 7. Plot of censored fractures (in percent) against the difference (in percent) between estimated and 
input fracture density for window sampling. Each point represents a sampling area from the nine artificial 
fracture networks. The maximum difference is highlighted by the two solid black lines. The range of 
potential differences between those two lines represents the uncertainty of a result for a specific 
sampling area with the percentage of censored fractures. 

Figure 8 summarizes the uncertainty of the four parameters estimated by the three 
sampling methods. For all sampling methods and parameters, the uncertainty of the 
measured values clearly increases with the percentage of censored fractures. In 
general, the results based on the window sampling method indicate the lowest 
uncertainty, especially for the evaluation of fracture density, mean length, and length 
distribution. An interesting result is the high uncertainty of all three sampling methods 
in estimating fracture intensity. Although the circular estimator highly overestimates 
fracture intensity, the method exhibits the lowest uncertainty. All results obtained by the 
scanline sampling method are within an 80% confidence interval. However, estimates 
of fracture density and mean length depend on the correct estimate of a power-law 
length distribution, and thus, only data sets equal to or above the required minimum 
number of 225 measurements can be used for the calculations and thus can be 
conducted for the cases of 0% to 5% censored fractures only. 
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Figure 8. Summary of potential differences evaluated for the scanline sampling (dashed), window 
sampling (solid), and circular estimator (dotted) methods, illustrated as lines of maximum difference 
(Figure 7). The areas highlighted in dark gray, gray, and light gray represent the 95%, 90%, and 80% 
confidence intervals of the true value. The vertical dotted lines indicate the percentage of censored 
fractures for the studied natural fracture networks: the Oman Mountains (1) and the Craghouse Park (2). 

 

DISCUSSION 

Characterizing fracture networks in the subsurface is a challenging task because of the 
limitations of borehole, borehole log, or core analysis. Studying outcrops analogous to 
the subsurface provides valuable data, especially on fracture lengths (mean length and 
length distribution). Additional information on fracture density and intensity can 
improve our understanding of the subsurface even more. However, the characterization 
of fracture networks using outcrops is also challenging. The interpretation of a single 
fracture can change with the scale of observation. For example, a fracture interpreted 
as a single entity in an aerial photograph can prove to be a segmented fracture at ground 
level. Moreover, fractures are altered by weathering when exposed; they normally 
crosscut each other and can be filled, partly or completely, by mineral precipitates or 
debris. Defining the length, or the endpoints, of a fracture can be difficult under such 
circumstances. In addition, fracture networks are 3-D, whereas the analysis of 
boreholes and outcrops are commonly constrained to one or two dimensions, 
respectively. Therefore, models of subsurface fracture networks can be significantly 
improved if cross-correlated data from borehole and outcrop analysis are considered. 
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The main advantage of the scanline sampling and window sampling methods is the 
comprehensive information on the fracture parameters they provide, especially 
measurements of fracture length, aperture, and orientation. However, the two methods 
are subjected to sampling bias, and in such cases, it is essential to perform corrections 
for orientation, truncation, censoring, and size biases. As a maximum likelihood 
estimator, the circular estimator method eliminates these sampling biases but only 
provides information on fracture density, intensity, and mean length, and not on other 
parameters (e.g., orientation, aperture, or length of individual fractures). The analysis of 
the two natural fracture networks using these three sampling methods resulted in 
different fracture characteristics (Table 3), which emphasizes the necessity of a review 
concerning (1) the minimum required number of measurements and (2) the influence of 
censored fractures on the estimates of fracture network parameters. 

Bonnet et al. (2001) provided a minimum number of measurements required to evaluate 
the exponent of a power-law fracture length distribution. Similarly, Priest (1993) 
suggested a minimum number of fractures a sampling area should contain to properly 
characterize fracture network parameters. Despite these studies providing some basic 
guidelines, a universally applicable minimum number is probably impossible to obtain 
because the required number of samples depends on the studied fracture network 
itself. In this study, we provide a required minimum number for simple fracture networks 
with power-law length distributions. The power-law exponents used to generate the 
AFNs represent those commonly reported. For other length distributions, complex 
fracture networks, or complex sampling area geometries, more fracture lengths should 
be measured. Although the numbers presented below are not universally applicable, 
they allow a better estimate on the number of measurements necessary to adequately 
capture fracture statistics. Our results indicate that the required minimum number of 
length measurements to define a power-law distribution is approximately 225 for 
scanline sampling and approximately 110 for window sampling. Note that the size of a 
sampling area and, therefore, the fracture density, does not directly influence the 
definition of a length distribution. However, a small sampling area may cause more 
fractures to be censored, which would lead to a more complex fracture network. For the 
application of the circular estimator method, we found that approximately 860 fractures 
should be present in a sampling area to always sample a minimum of 30 fracture 
endpoints. This minimum number depends on the radius of the circular scanline and 
decreases for larger radii. 

For all three sampling methods, the uncertainty increases with the percentage of 
censored fractures. The AFNs used in this study are simple. Natural examples, like the 
ones analyzed here, are commonly much more complex. Hence, it is likely that more 
fractures are censored. However, because we use percentages of censored fractures, 
the approach to evaluate the uncertainty is also applicable to natural fracture networks. 
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The window sampling method provides results with the lowest uncertainty for all 
network parameters, except for fracture intensity. The reason for this high uncertainty 
can be explained by the definition of fracture intensity (Table 2) and the approach we 
used to elaborate the uncertainty caused by censoring bias (Figure 7). Note that fracture 
intensity can be described as the product of fracture density and mean length (equation 
9). If, in a sampling area, both fracture density and mean length are overestimated, then 
fracture intensity is even more so. 

Both the required minimum number of measurements and the uncertainty caused by 
censoring bias indicate that the window sampling method is the most suitable for the 
evaluation of the studied natural fracture networks. Table 6 summarizes the measured 
fracture network parameters and their uncertainty, based on the evaluation in Figure 8. 

The uncertainty caused by censoring bias is rather low for the analysis of the lineaments 
from the satellite image of the Jabal Akhdar dome (Figure 3; Holland et al., 2009a). 
However, it is also important to consider the resolution limitations of satellite images, 
which causes a significant truncation bias. For example, LeGarzic et al. (2011) 
investigated the extensional fracture systems in the Proterozoic basement of Yemen at 
different scales from multikilometric satellite imagery to 10-m (33-ft) field observations, 
with length data covering more than three orders of magnitude. The combined 
multiscale analysis of several thousands of fracture lengths follows a power-law 
distribution with an exponent of E = 1.8. However, fracture lengths investigated at 
individual scales were found to follow varying distributions. Truncation bias might be an 
explanation for the deviation of the length distributions from a power law at individual 
resolution scales. Hence, correcting the fracture length data for this sampling bias 
could result in the attainment of distributions closer to the real one. 

The results evaluated for the second natural fracture network (Craghouse Park, United 
Kingdom; Figure 4; Nirex, 1997a) illustrate the high uncertainty of fracture 
characteristics calculated for such a small outcrop (Table 6). For the power-law 
exponent, we obtained a value of E = 2.17. However, because 30% of the fractures are 
censored, the potential true value ranges between 1.69 and 2.65, which covers 
approximately 70% of the values reported by Bonnet et al. (2001). Limitations in the 
number of measured fractures, the extent of the sampling area, and a high percentage 
of censored fractures are typical for such small outcrops. However, such outcrops are 
commonly the only option for the characterization of subsurface fracture networks. For 
example, Manda and Mabee (2010) sampled between 5 and 76 fractures for two 
different sets, with 69% or more censored fractures for one of the sets. Although Weiss 
(2008) considered every outcrop in his study area, he also encountered the problem of 
having a low number of measurements with a high percentage of censored fractures. A 
cross-correlation with borehole data could improve the characterization of the 
subsurface fracture network. 
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CONCLUSIONS 

The characterization of fracture networks at outcrops can provide essential information 
for subsurface reservoir models. We present a review on the application of the scanline 
sampling, window sampling, and circular estimator methods; their governing equations; 
and a summary of several techniques to correct for sampling bias. In addition, a set of 
equations and assumptions allows one to compare the results of these sampling 
methods and to extrapolate these parameters for 3-D fracture networks. 

Furthermore, the required minimum number of measurements was evaluated. For the 
scanline sampling method, approximately 225 measurements are required to define the 
power-law length distribution, whereas the window sampling requires approximately 
110 measurements. These numbers apply to fracture networks that are similar to the 
AFNs used here. Additional measurements should be considered for the 
characterization of more complicated fracture network settings. For the application of 
the circular estimator method, with a radius equal to one-tenth of sampling area extent 
and assuring a minimum of 30 sampled endpoints, at least 860 fractures should be 
present in the sampling area. The required minimum number for this method can be 
reduced by applying a larger radius. If (or how) different radii affect the accuracy of the 
results should be a topic of future studies. 

Uncertainty caused by censored fractures can have large implications for simulations 
designed to understand the flow behavior of fractured reservoirs. By evaluating the 
influence of censored fractures on estimates of fracture network parameters, we found 
that an increasing percentage of censored fractures obviously causes an increase in the 
difference between measured and true values. Here, the window sampling method 
provides results with the lowest uncertainty, except for estimates of fracture intensity. 
To determine intensity, the circular estimator method appears the least sensitive 
method. 

By analyzing the results from a window sampling applied to an outcrop at Craghouse 
Park (United Kingdom), we found that already 30% of the censored fractures cause a 
significant uncertainty. However, such small outcrops are commonly all we have to 
factor into subsurface fracture networks. Therefore, a cross-correlation of data from the 
analysis of boreholes and outcrops may significantly improve our understanding of the 
subsurface. Finally, if possible, more than one outcrop or borehole should be analyzed. 
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