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Abstract
Understanding the relation between cortical neuronal network structure and neuronal activity is a fundamental unresolved question in 
neuroscience, with implications to our understanding of the mechanism by which neuronal networks evolve over time, spontaneously or 
under stimulation. It requires a method for inferring the structure and composition of a network from neuronal activities. Tracking the 
evolution of networks and their changing functionality will provide invaluable insight into the occurrence of plasticity and the underlying 
learning process. We devise a probabilistic method for inferring the effective network structure by integrating techniques from Bayesian 
statistics, statistical physics, and principled machine learning. The method and resulting algorithm allow one to infer the effective 
network structure, identify the excitatory and inhibitory type of its constituents, and predict neuronal spiking activity by employing 
the inferred structure. We validate the method and algorithm’s performance using synthetic data, spontaneous activity of an in silico 
emulator, and realistic in vitro neuronal networks of modular and homogeneous connectivity, demonstrating excellent structure 
inference and activity prediction. We also show that our method outperforms commonly used existing methods for inferring neuronal 
network structure. Inferring the evolving effective structure of neuronal networks will provide new insight into the learning process 
due to stimulation in general and will facilitate the development of neuron-based circuits with computing capabilities.

Keywords: biological neuronal networks inference, neuronal-type classification, kinetic Ising model, generalized maximum likelihood, 
expectation–maximization algorithms

Significance Statement

Inferring effective connectivity from firing patterns in neuronal networks is a long-standing problem, crucial for understanding how 
connectivity changes due to stimulation and plasticity occur. We introduce a probabilistic method to infer the excitatory/inhibitory 
type of neurons, links existence, and the effective coupling strengths in cortical neuronal networks from neuronal spiking recordings. 
We validate the efficacy of our method using both in silico and in vitro experiments, demonstrating that the effective structure re
vealed agrees with the true values and the key experimental observable such as modular organization. Additionally, the predicted 
neuronal activity using the inferred structures aligns with the observed data. The method will impact significantly on both fundamen
tal studies in neuroscience and the development of neuron-based computing devices.
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Introduction
Revealing how cortical neuronal networks connectivity evolves in 
time, spontaneously or under stimulation, is a foundational ques

tion in neuroscience, in particular, understanding how cortical neu

rons learn from repeated stimulation through changes in topology 

and synaptic strengths (1–7). While there are many tools for investi

gating macroscopic brain activities and changes, such as functional 

magnetic resonance imaging (fMRI), magnetoencephalography 

(MEG), and electroencephalography (EEG) (8–10), investigating the 

microscopic changes which occur in neuronal tissues noninvasively 
remains a challenge. While in vivo interrogation of neuronal net
works at the microscopic level remains difficult, in vitro techniques 
such as multielectrode array (MEA) (11) and calcium imaging (12, 13) 
facilitate the monitoring and stimulation of neuronal tissues at cel
lular resolution and open the way to greater understanding of the 
learning process. New developments in the application of 
neuron-based circuits with computing capabilities make the need 
to understand the exact relationship between learning and stimula
tion more urgent and relevant (14–17).
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Machine learning (ML) and artificial intelligence (AI) play an in
creasingly crucial role in our daily lives. However, training ML and 
AI systems require unsustainable computing power and energy 
consumption (18) and mostly lack the ability to adapt their struc
ture in response to a changing situation. This has given rise to the 
search for alternative computing paradigms, in particular, the 
emerging field of biological computation, which aims at employ
ing human neuronal networks (hNNs) as processing units in bio
logical computing devices. These developments, such as using 
cortical brain organoids for nonlinear curve prediction (19) and 
employing cortical neuronal networks for decision-making in si
mulated gaming environments (20), have recently drawn the at
tention of both researchers and the general public. These 
breakthroughs point to the immense potential of hNNs in bio
logical machine learning. The common belief is that plasticity 
and learning occur through appropriate stimulation in neuronal- 
based computing devices, such that both network topology and 
synaptic strengths evolve to structures that can carry out specific 
data/stimulation-driven tasks. However, the tools needed to in
vestigate the evolving structure and support the understanding 
of how these hNNs-based devices operate are currently lacking. 
Hence, it is crucial to develop a principled inference tool that 
can reveal the effective cortical network structure, to better com
prehend the mechanism that gives rise to task learning from 
stimulation.

Various methods have been employed to infer the effective 
neuronal network from its firing patterns. Commonly used techni
ques include generalized transfer entropy (GTE) (21), dynamic 
causal modeling, Granger causality (22), maximum entropy model 
(23), and generalized linear model (24). However, these methods 
have significant limitations. They can only measure directional 
causation between neurons and identify the existence of an ef
fective connection by setting an appropriate but somewhat arbi
trary threshold. These methods cannot find the excitatory or 
inhibitory type of neurons without manipulating the network 
through stimulation or channel blocking (21, 25), nor can they de
termine the model’s effective synaptic strengths. As such, they 
are less suitable for studies requiring long-term monitoring and 
careful consideration of stimulation protocols as they may poten
tially affect network development as observed in the training of 
cortical neurons-based learning machines (19, 20).

Moreover, these methods often overlook the activities of near
by neurons and fail to capture interactions between multiple neu
rons, resulting in inaccurate inference. Additionally, methods 
such as GTE do not provide a probabilistic model for neuronal ac
tivity, making it difficult to predict or reproduce network activity 
using the inferred effective connectivity structure for validation 
or further investigations.

To fill these gaps, here we advocate mapping neuronal activ
ities onto the kinetic Ising model of statistical physics as they 
share some common features, such as binary state of activity, uni
directional nonequilibrium and nonlinear dynamics, and multi
neuron interactions. Mapping neuronal activities onto the 
kinetic Ising model facilitates the inference of interneuron inter
actions (26, 27). Yet, inferring the kinetic Ising model structure 
and properties is challenging, and probabilistic methods have 
been developed in the statistical physics community for inferring 
the underlying directional interaction strengths from observation 
sequences (28–30). However, most methods have been derived for 
a simple model, where coupling strengths are Gaussian distrib
uted with mean zero and small variance, which does not hold in 
biological neuronal networks, with the exception of (31) under 
specific conditions.a Thus, a principled probabilistic method that 

can identify connectivity, synaptic strengths, and the excitatory/ 
inhibitory type of each neuron is required.

In this paper, we introduce an algorithm that combines models 
from statistical physics, Bayesian inference, and probabilistic ma
chine learning to infer the effective architecture of biological 
neuronal networks from firing patterns. Our proposed algorithm 
overcomes some of the limitations of existing methods and infers 
not only the effective connectivity from neuronal firing but also 
the neuronal characteristics (inhibitory/excitatory) and the exist
ence of connections. Furthermore, unlike conventional methods, 
our algorithm provides a probabilistic model that facilitates the 
simulation of neuronal activities using the inferred architecture, 
which can be used for structure validation, prediction, and further 
investigations. We evaluate the performance of our algorithm us
ing synthetically generated data, in silico neuronal network emu
lator data, and calcium imaging recordings of real in vitro cortical 
networks with patterned (32) and unpatterned substrates, dem
onstrating excellent agreement between the effective inferred 
model and the corresponding data.

Model
Kinetic Ising model
The kinetic Ising model (33) in statistical physics studies the activ
ity of spins in a system with asymmetric coupling strengths. 
Sharing the common feature that spin (neuron) configuration is 
influenced by directional coupling (synaptic) strengths and the 
state of its neighbors, the kinetic Ising model is suitable for de
scribing neuronal spiking activities. Here, we map the binary 
neuronal spiking activity onto the kinetic Ising model, which is a 
discrete-time nonequilibrium probabilistic structure. Consider a 
system of N neurons within an interacting neuronal network. 
We denote a discrete variable st

i = ±1 when neuron i is spiking or 
silent at time step t, respectively, for i = 1, . . . , N. Previous works 
(21) suggest that considering interactions across multiple time in
tervals has minimal effect on the inference, so we define the tran
sitional probability of neuron i at time t, given the neuronal 
activities at time t − 1, as

P st
i st−1, J, Hi

􏼌
􏼌

( 􏼁
=

exp Hi +
􏽐

j
Jijst−1

j

􏼠 􏼡

st
i

􏼢 􏼣

2 cosh Hi +
􏽐

j Jijst−1
j

􏼐 􏼑 , (1) 

where J = {Jij}ij and Jij denotes the synaptic strength from j to i, and 

Hi denotes the external local field acting on neuron i, which can be 
interpreted as the activeness of i when no signal is received from 
its neighbors. A positive (negative) Jij represents the excitatory (in

hibitory) strength of a signal sent from neuron j to neuron i when j 
spikes, while Jij = 0 indicates that neuron j is not effectively con

nected to i. Since the activities of neurons at time t depend only 
on activities in the previous time step and hence do not exhibit ex
plicit same-bin interdependence, the probability of activities for 

all neurons is given by P(st | st−1, J, H) =
􏽑

i P(st
i | s

t−1, J, Hi). In order 

to infer the neuronal type and effective link existence, we intro
duce two sets of latent variables, zj = ±1 representing the excita

tory and inhibitory type of neuron j, respectively; and ϕij = {1, 0} 

indicating whether j is connected to i or not, respectively. One of 
the limitations of the kinetic Ising model is that it does not con
sider longer synaptic time delays, but as indicated in a number 
of studies (2, 21, 34), their influence is much weaker than that of 
single time step delays.
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Adapting Ising model to living neuronal networks
Based on the mathematical model defined, we introduce prior dis
tributions to align with real-world neuronal network properties. 
For clarity, we use p(·) to denote prior distributions for the corre
sponding variables, while P(·) denotes the probability more gener
ally. We define

p(z j) = γδz j ,+1 + 1 − γ
( 􏼁

δz j ,−1; (2) 

p ϕij a|
􏼐 􏼑

= δϕij ,1θije
−alij + δϕij ,0 1 − θije

−alij
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where γ ∈ [0, 1] represents the proportion of excitatory neurons in 
the network; θij is the prior probability for the existence of a link 

from neuron j to neuron i, which can be adjusted for convergence 
assistance in networks with predefined or dictated connectivity 
(32, 35), or set to 1 otherwise; a ∈ R+ is a controlling parameter 
that accounts for the decay in connection probability; and lij = l ji 

the Euclidean distance between i and j, thus e−alij reflects the expo
nential decay in connection probability with distance; μH and vH ∈ 
R represent the mean and variance of the distribution for H, reflect
ing the distribution of neuron inherent activeness. The distribution 
of Jij comprises a mixture of distributions since it is conditioned on 

whether there exists a link between two neurons and whether the 
type of the interaction is inhibitory or excitatory; the different cases 
may be characterized by different parameters. We define the condi
tional probabilities p(Jij | 0, zj) = δ(Jij) ≈ N (0, ϵ) for small ϵ (discon

nected case) and p(Jij |1, zj) = 1zjJij>0e−( ln zjJij−μ
zj
J )2/(2v

zj
J )
/

������

2πv
zj

J

􏽱

for 

μzj

J , v
zj

J ∈ R+ and zj = ±1, where 1 is an indicator function ensuring 

all connections from j are of the same sign, and zjJij follows a log- 

normal distribution to ensure the probability of coupling strengths 
of inhibitory or excitatory neurons sum to 1. The compact notation 
merely deals with the positive (excitatory) and negative (inhibitory) 
interaction strengths within the same expression by allowing for dif
ferent distribution characteristics. For brevity, we denote ρ = 
{γ, a, μH, vH, μ±

J , v±
J } as the set of all defined hyperparameters (pa

rameters that control the distributions of J and H). By combining 
the distributions we define the evidence function as

ln P s J, H, ρ
􏼌
􏼌

( 􏼁
+ ln p H ρ

􏼌
􏼌

( 􏼁
+ ln p J ρ

􏼌
􏼌

( 􏼁
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In principle, the related probability of Eq. 6 should be integrated over 
J and H to obtain the marginalized probability P(s | ρ) but is approxi
mated at the peak of the posterior (“Maximum A Posteriori,” MAP) 
(36).

Connectivity network inference
We extend the kinetic Ising model by introducing two sets of la
tent variables and prior distributions for all variables to align 
with the nature of realistic biological neuronal networks. The 
Methods section and the Supplementary Material provide details 
on how the (latent) variables and hyperparameters can be eval
uated in a principled way, enabling us to interpret the neuronal 
type from zj, link existence through ϕij, and effective synaptic 

strength from Jij. In general, we are applying the generalized 
maximum-likelihood (GML) approach (whereby parameters and 
hyperparameters are iteratively determined, also termed the evi
dence procedure) and the variational expectation–maximization 
(EM) algorithm (36) to infer J, H, and ρ.

Results
To validate the efficacy of our model and inference algorithm, we 
perform tests using three types of data: synthetic data generated 
by the kinetic Ising model, in silico data from computational models, 
and in vitro data from biological cortical neuronal activity recordings.

In the Supplementary Material, we discuss and examine the 
properties of different algorithms for kinetic Ising model infer
ence, comparing them with our proposed method in detail, and 
show that the proposed method performs significantly better 
than the naïve mean-field and maximum-likelihood approaches. 
In our GML inference for the kinetic Ising model, coupling 
strengths are not zero-mean and of small variance, and more im
portantly, the method allows one to infer the existence of connec
tions between neurons. Here, we focus on the results obtained 
from the in silico model with patterned substrates as well as the 
two realistic in vitro cortical neuronal activities. One of these in vi
tro activities is of a homogeneous network with potassium stimu
lation, while the other focuses on spontaneous activities in a 
neuronal network with patterned substrates.

In silico experimental data
Since validating the accuracy of neuronal-type classification and 
link existence is very costly and extremely difficult for in vitro ex
periments, we first test our algorithm on emulated in silico data 
since ground-truth topology is known. We generate an in silico 
neuronal network in which the culture is lying over a striped topo
graphical patterned substrate (32) as illustrated in Fig. 1A.  The 
patterned substrate facilitates high connection density between 
neurons located on the same stripe but allows for lower connec
tion density across stripes, which is an interesting feature that 
can be expressed and tested using our method. Spontaneous 
neuronal activity is then generated on this network. We note 
that connectivity within a stripe is so strong that each one effectu
ally shapes a “module” of highly interacting neurons. The detailed 
methodology of how the data are generated is described in the 
Methods section.

Figure 1B shows representative fluorescence traces of spontan
eous neuronal activity generated in silico, and Fig. 1C shows the 
raster plot of activity for the entire network, with colors indicating 
the respective module neurons belong to. Using the activity as in
put, we infer the effective structure J using the Maximum- 
Likelihood Estimator (MLE), MAP, and GML. Their methodology is 
described in detail in the Methods section and Supplementary 
Material. For the prior distributions imposed in MAP and the evi
dence approximation, we first fix the hyperparameter a = 0.1, the 
fraction of excitatory neurons, γ = 0.8 and θij = 0.5md , where md is 
the number of stripes that separate neurons i and j. The values em
ployed for the other hyperparameters used both for MAP inference 
and as initial values for the GML inference, are obtained using J and 
H inferred by MLE. The value of a reflects the fact that neurons are 
less likely to be connected if they are far away from each other; γ, 
the ratio between excitatory and inhibitory neurons is already stat
istically known; while for θij, we exploit available information about 
the physical structure and the value of 0.5 is chosen arbitrarily. We 
tested the performance of the inference methods using other 
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values of a, γ, and θij and the results are similar. This is because 
when the number of samples is large enough, the effect of the pri
ors is suppressed. Table S1 specifies all parameters, their type, de
scription, and the values they acquire for clarity.

The inferred connectivity matrix of J using GML is shown in 
Fig. 1D, where the background mask is the mixture of colors cor
responding to the source and target neurons, while inhibitory 
and excitatory transmissions are colored in blue and red, respect
ively. We note that the diagonal entries are mostly inhibitory; this 
does not necessarily correspond to physical connections but may 
reflect the fact that neurons are less likely to spike again after fir
ing due to their refractory period. Another key feature is that ex
cept for the diagonal, signals in the same column share the 
same state, which corresponds to the inferred excitatory/inhibi
tory type of the neurons; this is validated by comparing the infer
ence results to the true in silico model.

The most appropriate measures of success when contrasting 
inferred (“infer”) and ground-truth (“true”) topologies are the posi
tive predictive value (PPV) and negative predictive value (NPV), or 
precision of neuronal type P(ztrue | zinfer), compared with the prior- 
based random guess, where excitatory type is the positive case 
and inhibitory the negative one, as Table 1 shows. While being 
less relevant due to the biased nature of the variables, the true 
positive rate (TPR, sensitivity) and the true negative rate (TNR, 
specificity), P(zinfer = +/ − | ztrue = +/ − ) are also presented along
side the random guess, for completeness. Overall predictive per
formance is summed over both cases with the respective 
probabilities. Notably, no existing method can infer the excitatory 
and inhibitory type of neurons from single spontaneous activity 
recordings without interference, such as channel blocking. With 
a significant improvement over a prior-based random guess, our 
method identifies well the individual neuronal type.

Figure 1D reveals a strong clustering effect for connectivity 
within modules, indicating that two neurons within the same 

module have a higher probability of being connected compared 
with two neurons from different modules. This suggests that the 
GML captures the structure of the topographical substrate. We 
then test the performance of inferring existing links using MAP, 
GML, and GTE (21). Since GTE is based on an assigned transfer en
tropy threshold value for identifying links, we plot the complete 
receiver operating characteristic (ROC) curve for all threshold val
ues, of TPR against FPR of identifying nonzero links as shown in 
Fig. 2A. The TPR and FPR of finding nonzero links using GML are 
54% and 2.6%, respectively, and 57% and 3.3% for MAP, as indi
cated by the red and green circles, respectively. These values ex
ceed the ROC curve generated by GTE, indicating that our 
method offers a higher TPR than GTE at the same FPR level, or a 
lower FPR at the same TPR level. We remark that, although MAP 
has a higher TPR than GML, its FPR is also higher. Additionally, 
we observe that the difference between MAP and GTE at the 
same FPR is lower than that of GML, which emphasizes the im
portance of hyperparameter optimization. It is essential to point 
out that our approaches detect link existence in a principled man
ner, eliminating the need for heuristic threshold decisions, and 
rendering the inference results more reliable.

A key feature that our method offers is the inference of the ef
fective synaptic (coupling) strength between neurons, which is 
crucial for understanding the learning process in both neurosci
ence and cortical neuron-based learning machines. For example, 

A B C

D E F

Fig. 1. A) A three-dimensional sketch illustrating the in silico experimental setup. The neurons (N = 156) are lying on stripes (modules I to IV) of patterned 
substrates, which suppress cross-connections between different stripes. B) Example in silico traces of five neurons. C) The raster plot displays neuronal 
activity inferred from the in silico traces, with each neuron’s color corresponding to the module it belongs to. D) The inferred structure J of the in silico 
model obtained using GML and represented by a connectivity matrix. The background color is a mixture of two colors, with each color corresponding to 
the module of the source and target neurons. Each entry corresponds to the coupling strength Jij. A positive (negative) strength colored in red (blue) refers 
to excitatory (inhibitory) signals sent from source (i) to target (j) neurons. E) The predicted equal time covariance C against the true values evaluated from 
data. F) The predicted delayed time covariance D against the true values evaluated from data.

Table 1. Success measures in identifying neuron type, TPR 
(sensitivity), TNR (specificity), and PPV of the in silico model study.

Measure TPR/TNR PPV/NPV Random

Excitatory 0.88 0.96 0.8
Inhibitory 0.84 0.64 0.2
Overall n/a 0.87 0.68
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observing changes in synaptic strengths over extended periods al
lows one to study neuronal network plasticity due to stimulation 
and facilitates the design of efficient stimulation protocols in cor
tical neurons-based learning devices. We note that the neuronal 
spiking mechanism of the in silico emulator follows the 
Izhikevich model (37), which is distinct from the kinetic Ising mod
el so that there is no direct mapping between the inferred (Jij) and 
true synaptic strength (Wij, actual values used in emulator simula
tions). To compare the capability of our method with existing tech
niques, we plot the GML inferred weights Jij and GTE values of each 
link against the true synaptic strengths Wij in Fig. 2B and C, re
spectively. In the true model, the mean value of the inhibitory syn
aptic strength is −12, considerably higher than the excitatory 
synaptic strength’s mean value of 6. GTE as a specific manifest
ation of transfer entropy only offers nonnegative scores and there
fore cannot directly distinguish inhibitory and excitatory links.

Figure 2C shows the mean value of GTE in the inhibitory group to 
be 2.6 × 10−4, which is lower than the value in the excitatory group, 
3 × 10−4—contradicting the true values. On the other hand, as 

Fig. 2B shows, the mean value of the inferred Jij for the inhibitory 
connections is −0.27, which is of higher magnitude than that of ex
citatory connections, 0.25. These results suggest that the inferred 
Jij using our method agrees with the true model synaptic strengths 
(Wij). The GTE values also exhibit a significant variance compared 
with the magnitudes of the mean values. Notably, the mean value 
of the inferred Jij for the missing links is very close to zero with a 
small variance, indicating that although some of the links are clas
sified as nonzero, incorrectly, the majority are overwhelmingly 
close to zero. This false positive classification may result from 
the Gaussian approximation of the delta function in the prior prob
ability p(Jij). This suggests that the inferred effective coupling 
strength using our GML method agrees with the true model.

Another advantage of our method is that one can adopt the in
ferred structure J and H for generating artificial data through 
Monte Carlo simulations to predict neuronal activity or validate 
how well the inferred structure describes the true model by com
paring quantities of interest, such as the equal time covariance 
C = {〈st

i s
t
j〉t}i,j, and the delayed time covariance D = {〈st

i s
t−1
j 〉t}i,j. 

Thus, we employed the inferred structures using MLE, MAP, and 
GML to generate artificial neuronal activity and evaluate the pre
dicted equal time covariance C and delayed time covariance D to 
its true values, as Fig. 1E and F shows. We can see that the pre
dicted C and D values closely align with the true values for all 
methods, suggesting that the kinetic Ising model effectively ex
plains in silico neuronal activities.

Our GML approach demonstrates strong performance in infer
ring the neuronal types and link existence as well as the ability 
for activity prediction. Notably, by comparing the results between 
MLE and our GML approach, we observe that GML exhibits a gentler 
slope and deviates more from the perfect prediction manifested by 
the y = x line. However, our results still demonstrate a strong over
all agreement. This difference may be due to the fact that MLE does 
not impose any restrictions on the choice of Jij, aiming to provide 
the best possible description of the data. On the other hand, in 
GML, the prior probability p(Jij |0, zj)N (0, ϵ) acts as a regularization 
term and constrain Jij to have the same sign for each fixed j. As a re
sult, the inferred Jij values are lower than those obtained through 
MLE, leading to an underestimation of D. Nonetheless, this ap
proach allows for accurate predictability of neuronal types and ef
fective links, which is more important in neuroscience research.

The above results show that our GML approach performs very 
well on data generated by the in silico model with patterned sub
strates. In the Supplementary Material, we study the performance 
of our GML approach on another in silico homogeneous neuronal 
network with no patterned substrates. We show that even in a 
homogeneous network, which is harder for structure inference, 
as there are fewer constraints for the solution space of J, our 
GML approach still performs very well. The results obtained by 
the GML for in silico data support the view that it is a highly suit
able candidate for analyzing biological neuronal network data.

Sensitivity analysis of in silico experiments
To further investigate the performance of our algorithms in differ
ent scenarios, we performed a sensitivity analysis on in silico 
neuronal networks where synaptic strengths follow different dis
tributions, varying the degree-connectivity from sparse to dense. 
Results for networks with patterned substrates are shown below, 
while results for homogeneous networks are provided in the 
Supplementary Material.

We examine two different cases where the synaptic strengths 
in the in silico networks vary. Specifically, we assume that the 

A

B

C

Fig. 2. A) The ROC curve plotting the TPR against the false positive rate 
(FPR) of identifying effective links for in silico experiments using GTE 
(continuous blue line). The TPR and TFR using our MAP and GML are 
marked as green and red nodes respectively. The dashed diagonal line in 
A refers to a random guess in this case. B and C) The scatter plot of 
inferred coupling strength Jij and GTE against the true synaptic strength of 
the in silico model, respectively. The inhibitory, excitatory, and 
nonexisting links are colored in blue, red, and gray, respectively.
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synaptic strengths Wij follow a Gaussian distribution with mean 
ΩE (ΩI) and variance 0.05, for excitatory (inhibitory) neurons. 
Starting with a network over stripe-patterned substrates, where 
there are no connections between neurons (i.e. all axon lengths 
are initially zero), we gradually increase the degree-connectivity 
by growing the axon lengths, as detailed in the Methods section. 
At different connectivity levels, we take snapshots of the network 
structure to generate neuronal activities. We perform the analysis 
on an in silico neuronal network over stripes patterned substrates, 
consisting of N = 156 neurons, averaged over five samples. We 
study two cases: strong synaptic strengths with (ΩE, ΩI) = (6, 12) 
and weak couplings with (ΩE, ΩI) = (4, 8). Due to the high compu
tational complexity of GML, we performed structural inference 
using MAP only for this sensitivity analysis.

As no existing method can perform neuronal-type classifica
tion, we compare our results with those from biased random 
guessing, as shown in Fig. 3A. The average overall accuracy of 
neuronal-type classification for both weak and strong synaptic 
strengths is significantly higher than random guessing, indicating 
strong performance. For effective connectivity identification, we 
compare our method with GTE. As discussed, GTE provides an 
ROC curve, not specific TPR or FPR values. To facilitate compari
son, we fix the FPR for GTE at the same level as MAP to obtain 
the TPR value, and vice versa. Figure 3B and C shows the resulting 
TPR and FPR values, respectively. For the strong synaptic weights 
case, our method achieves higher TPR and lower FPR than GTE, 
outperforming GTE in both metrics. When synaptic weights are 
weak, our method shows only a slightly higher TPR and slightly 
lower FPR than GTE. This is due to weaker spiking activity and low
er correlations between neurons, making structural inference 
more challenging. While MAP considers interactions among mul
tiple neurons, which requires more data, GTE focuses on pairwise 
interactions only, allowing for quicker inference with less data. 
Nevertheless, our method outperforms GTE in both cases.

To further assess the predictive capability of our method, we 
generated predicted activities using Monte Carlo simulations 
based on the structures inferred by MAP and MLE for each sample, 
and compared them with the true activities by measuring the cor
relation between predicted and true delayed time covariances D 
as shown in Fig. 4. It is worthwhile noting that correlation is a 
more appropriate success measure than other metrics like 
root-mean-squared error, since it measures the alignment be
tween the true and predicted D. As shown in Fig. 4, for strong syn
aptic strengths the average correlation between the predicted and 
true values of D using MAP is higher than that of MLE when the 

average degree-connectivity is low. For weak synaptic strengths, 
MAP performs significantly better than MLE across all degree- 
connectivities. Although MLE aims to find the optimal configur
ation for the couplings without restrictions, when the degree- 
connectivity is low or synaptic strengths are weak, neurons are 
relatively inactive, making it difficult for MLE to find good solu
tions. The restrictions in MAP make it easier to find a solution, 
yielding better activity predictions.

Our sensitivity analysis demonstrates that our algorithms do 
not only work effectively in single instances but also perform 
well across various connectivity and synaptic strength scenarios.

Experimental validation—in vitro network with patterned 
substrates
Having validated the efficacy of our GML approach to both syn
thetic data (see Supplementary Material) and emulator data, we 
now apply it to an in vitro rat cortical neuronal network grown 
on topographically patterned substrates. Data consisted of neur
onal activity recording from calcium fluorescence imaging, proc
essed to consider regions of interest (ROIs) as nodes in the 
neuronal network, as shown in Fig. 5A. Details of data acquisition 
and analysis are provided in the Methods section.

Using this experimental data, with representative traces in 
Fig. 5B and complete raster plot in Fig. 5C, we infer the effective 
structure and recreate the neuronal activity for validation. 
Similar to the in silico case, we group ROIs into modules according 
to the stripes patterning (Fig. 5A); the inferred coupling strengths 
are visualized in the connectivity matrix shown in Fig. 5D. The 
background colors indicate which module the source ROIs belong 
to. Entries colored in red (blue) indicate effective excitatory (in
hibitory) connections from source (i) to target (j) ROIs. We observe 
dense connectivity between ROIs from the same stripe and sparse 
connections across stripes. Furthermore, the likelihood of connec
tion decreases as the distance between ROIs increases. This agrees 
with the biological understanding that long-range connections 
are rare to minimize wiring cost, so that neurons preferentially 
connect to their neighbors, as observed in previous studies using 
similar patterned substrates (32).

While conventional approaches often yield sets of scores, like 
GTE, they lack a direct measure of estimation quality. Our prob
abilistic model-based inference, however, allows for the valid
ation of inferred effective structures by reproducing neuronal 
activity using Monte Carlo simulation. We thus simulate activity 
using the estimated reconstructed effective network parameters 

A B C

Fig. 3. Sensitivity analysis of the performance of MAP and GTE on structural inference in in silico neuronal networks over stripe-patterned substrates 
with different synaptic weight distributions, varying over the average degree-connectivity. A) Average overall performance in neuronal-type 
classification, compared with a biased random guess. B) TPR of identifying effective links. The TPR of GTE is obtained from the ROC curve by fixing the FPR 
at the same value as MAP. C) FPR of identifying effective links. The FPR of GTE is obtained from the ROC curve by fixing the TPR at the same level as MAP. 
Results are averaged over five samples for a network of N = 156 neurons.
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J and H and compare them with the experimental values, evaluat
ing afterward the equal and delayed time covariance matrices C 
and D, as shown in Fig. 5E and F, respectively. Most of the pre
dicted values are aligned with the dashed lines (exact match), 
meaning a good-quality prediction. However, one can see that 
for both C and D, some of the predicted values are very close to 
zero. This can be attributed to false positive errors generated 
due to the restrictions imposed on individual ROIs, such as having 
the same characteristics, e.g. being either excitatory or inhibitory 
and sharing the same synaptic connection sign. More realistically, 
within a single ROI, there might be neurons of different types, 
leading to some connections being erroneously decimated to 
zero. We anticipate this problem to be mitigated when smaller 
ROI sizes are considered and longer calcium recordings are 
used, which will be discussed in the next section.

In general, the GML inference method shows excellent agree
ment between the inferred effective network and the underlying 
biological structure, with predicted activities fitting well with 
the real data.

Altered in vitro homogeneous network structure by modifying 
neuronal activity
To validate the algorithm further in a scenario of changing synap
tic strengths, we implement experiments that neuronal connect
ivity is altered through plasticity, which is modulated via 
chemical stimulation.

Arguably, the simplest way to understand how neuronal net
work plasticity occurs due to stimulation is to compare the effect
ive network structures of a neuronal network before and after 
stimulation. We apply our method to an in vitro primary homoge
neous neuronal network comparing the situation in control and 
following exposure to elevated potassium chloride (KCl) stimula
tion, with the aim of depolarizing neurons and therefore increas
ing network activity. Neuronal activity data was also collected 
through calcium imaging, although here each ROI includes one 
neuron only. The video of the calcium imaging recording is avail
able from (38). The details of data generation are provided in the 
Methods section.

We infer the effective structure using the neuronal activity 
data as input, with representative traces in Fig. 6B and complete 
raster plot in Fig. 6C, and then recreate the activity measures for 
validation. We first identify the neuronal type (of single neuron 
ROIs) as excitatory (red) and inhibitory (blue) as shown in Fig. 6A.

In particular, we simulate activity using the inferred J and H, 
then evaluate the equal and delayed time covariance C and D 
and compare them with the true covariance values, as shown in 
Fig. 6D and E, respectively. Similar to the case of the patterned sub
strate, some predicted values are very close to zero for both C and 
D. However, compared with Fig. 5E and F, we see that the predicted 
values align better with the dashed line, suggesting a more accur
ate prediction capability. We note that data shown in Fig. 5 and 6
are both acquired using calcium imaging approaches, but the reso
lution of the experiment in Fig. 6 enables the identification of single 
neuronal elements. This suggests that by significantly reducing 
the size of each ROI to consist of a single neuron, one can reduce 
errors with respect to multiple neurons ROIs.

In this section, we have studied two in vitro experiments pro
viding different scopes. In the experiment with patterned sub
strates, we have studied a completely extended network; 
whereas in the experiment with a homogeneous network, we 
have studied neuronal activity modulated by chemical stimula
tion. While the samples and the experimental conditions are dif
ferent, it is interesting to see that both covariance matrices 
show a much higher value under stimulation as the KCl stimula
tion affects the activity across the sample. A detailed study com
paring the neuronal structure and synaptic weights before and 
after stimulation is underway and is beyond the scope of this 
work. Our results demonstrate that our methods do not only 
work effectively on synthetic in silico data but also perform well 
on more realistic neuronal networks.

Discussion
Cortical neuronal network inference has long been an open ques
tion in neuroscience and is crucial for understanding the under
lying mechanisms and properties of neuronal systems. Neuronal 
cultures are regarded as a promising living model to investigate a 
broad spectrum of technological challenges, from biologically in
spired AI (14, 20) to efficient design of treatments for neurological 
disorders (39). Since the structural blueprint of neuronal connec
tions is not easily accessible in a culture, nor their excitatory/in
hibitory type, indirect techniques to infer such a blueprint have 
jumped into the front-line of computational neuroscience.

Here we introduced a novel and probabilistic algorithm based 
on statistical physics and Bayesian techniques for the effective 
structural inference of biological neuronal networks from activity 
data. The algorithm can not only infer the effective synaptic 
strengths between neurons but, more importantly, can identify 
the excitatory and inhibitory type of neurons as well as the effect
ive connections between them in a probablistic way, a capability 
that no other existing method can achieve. This is used in a prin
cipled way from single spontaneous recordings without additional 
interference to the culture such as stimulation. This capability 
goes beyond what most existing state-of-the-art methods can of
fer. Through synthetic, in silico and realistic in vitro experiments, 
we demonstrate that our algorithm: (i) outperforms existing 
methods in both synaptic strength inference and effective con
nections identification; (ii) achieves high accuracy in neuronal- 
type classification; (iii) exhibits good reproducibility in the inferred 
structure, justifying the reliability of the algorithm. In the 
Supplementary Material, we also show that our algorithm 

Fig. 4. Sensitivity analysis of the predictability performance on in silico 
neuronal networks with stripe-patterned substrates using MAP and MLE. 
The average correlation between predicted and true delayed time 
covariance D, for strong and weak synaptic strengths, as a function of the 
average degree-connectivity. Results are averaged over five samples for a 
network of N = 156 neurons.
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provides good inference results also in the absence of patterned 
substrates, in both in silico and in vitro studies.

The dynamics and functioning of neuronal networks are in 
large part determined by their connectivity and their evolving syn
aptic strengths. As such, the method is expected to have a direct 
impact on neuroscience, cortical neuron-based computing devi
ces, and many other related biological and medical areas. For in
stance, studying the changes in the effective structure of neuronal 
cultures over time can lead to new theoretical understandings of 
how plasticity takes place in response to stimuli. Additionally, 
gaining insight into information processing and propagation in 
neuronal networks could greatly impact the development of arti
ficial neuronal networks and neuromorphic computing, e.g. by 
understanding the importance of the ratio between excitatory 
and inhibitory neurons on functionality.

Revealing precise information about effective structure and 
neuronal types is essential for developing biological machine 
learning as it helps one to accurately represent the network dy
namics, make predictions, and test hypotheses. Most importantly, 
it is critical for the design of stimulation learning protocols. 
Interdisciplinary research in this direction is underway.

Methods
Preprocessing and optimal time bin 
determination
Since the mathematical model we introduce is based on discrete- 
time steps, one needs to binarize the neuronal activity before 

carrying out the inference process. We note that the determin
ation of the time bin τ is crucial for inference as the binarized firing 
patterns can vary significantly with τ. For instance, the delayed 
time covariance between neurons can vanish if τ is either too large 
or small. To address this, we employed an information theory- 
based method to identify the optimal time bin size τ∗ that opti
mizes the total mutual information of the system (26, 27). The op
timal bin size τ∗ is given by

τ∗ = argmax
τ

T
τ

− 1
􏼒 􏼓

􏽘

i≠j

Iτ si, s j

􏼐 􏼑
⎡

⎣

⎤

⎦, (7) 

where Iτ(si, s j) is the mutual information between st
i and st−1

j . 

The idea of mutual information is straightforward: Iτ(si, s j) 

measures the discrepancy between the joint probability 

P(st
i , st−1

j ) and the factorized probability P(st
i )P(st−1

j ) where activity 

of i and delayed activity of j are assumed to be independent. 
Thus, a higher Iτ(si, s j) suggests stronger correlation between 

neurons i and j. Thus, τ∗ maximizes the total mutual informa
tion, indicating that the neurons are least likely to be independ
ent of each other and more information about their 
co-dependence can be extracted. Intuitively, τ∗ can be under
stood as the average effective reaction time, starting from 
when a neuron spikes, the spike is transmitted through the syn
apse and until the target neuron responds. Using τ∗ evaluated in 
Eq. 7 to discretize the neuron firing times into distinct time steps 
that provide the observed data s, which is then ready for the in
ference process.

A B C

D E F

Fig. 5. A) The studied rat cortical neuronal network over striped a topographical pattern 2 mm in diameter, grouped into 400 regions of interest (ROIs). 
ROIs within different stripes are shown as squares with different colors. The scale bar of 200 μm is displayed in white in the figure. B) Example in vitro 
calcium imaging traces of five ROIs. C) The raster plot displays neuronal activity inferred from the calcium traces, with each ROI’s color corresponding to 
the module it belongs to. D) The connectivity matrix of the effective structure inferred from the in vitro neuronal activity, using the proposed GML 
method. Each entry shows the coupling strength of the connections, a negative (positive) strength represents an inhibitory (excitatory) connection and is 
colored in blue (red). The background shade of the plot is the module that the ROI belongs to, with mixed colors where ROIs from two different stripes are 
connected. A strong clustering effect suggests a dense connectivity of ROIs within stripes and sparse connectivity across stripes. E and F) The predicted 
equal time covariance C and delayed time covariance D matrices, plotted against the true values evaluated from the data, respectively.
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Inference algorithm
Unlike the basic kinetic Ising model of statistical physics, inferring 
the effective structure from neuronal activities faces two major 
challenges: (i) J is not Gaussian with small variance due to the ex
istence of different neuron types; (ii) the connectivity between 
neurons is affected by multiple factors, including neuronal dis
tance and the patterned substrates (e.g. PDMS stamps). These fac
tors make it difficult to successfully adapt established approaches 
(28, 29, 40–45) directly to this problem.

To tackle these challenges based on the defined mathematical 
model, we utilize the generalized maximum-likelihood (GML) 
(36) technique, also known as evidence approximation and MAP 
estimation. This combination enables us to jointly infer optimal 
hyperparameters, latent variables, and the effective network 
structure in a principled manner. While the detailed derivation is 
available in the Supplementary Material, we provide a general 
overview of the method here.

The aim of this algorithm is to infer the effective structure param
eters J and H; this is supported by the optimal ρ that maximize the 
evidence function ln P(s | ρ). The optimal values of the latent varia
bles also contribute important insight, determining the type of 
each neuron (excitatory/inhibitory—z) and the existence of links (ϕ 
taking the value {0, 1} for each link). Our approach involves a two- 
layered EM algorithm for the estimation of hyperparameters and (la
tent) variables as illustrated in Fig. 7 comprising a “macro” and a “mi
cro” EM algorithms, the latter is being used to perform the M-step of 
the macro EM algorithm. In the macro E step, the posterior of the ef
fective structure variables, J and H, is evaluated. To make the algo
rithm tractable we focus on the most likely values, determined 
using gradient descent and the derivatives ∂

∂Jij
ln P(s | ρ) and 

∂
∂Hi

ln P(s | ρ), given the hyperparameters ρ found in the macro M 
step. The macro M step maximizes the expected complete-data 
log-likelihood of the evidence function with respect to the hyper
parameters ρ, to determine the optimal values ρ∗ through the sec
ondary EM process; the micro EM process iterates between the 
expectation of the probability distributions of the latent variables 
ϕij and zj, and maximization of the hyperparameters ρ.

Parameters obtained by the macro E step are treated as fixed in 
the macro M step. In the micro E step, we use the current hyper
parameters ρold (the notation old refers to values obtained from 
the maximization step in the micro EM iteration part) and the cur
rent effective structure J∗ and H∗ to evaluate the posterior probabil

ities Pold(ϕij) and Pold(z j) of the latent variables ϕij and zj. Specifically, 
the probability distributions of the latent variables are given by

Pold z j

􏼐 􏼑
∝ p J∗lj

􏽮 􏽯

l
z j, ρ
􏼌
􏼌
􏼌

􏼐 􏼑
p z j ρ

􏼌
􏼌

􏼐 􏼑
, (8) 

Pold ϕij

􏼐 􏼑
=
􏽘

z j

Pold ϕij | z j

􏼐 􏼑
Pold z j

􏼐 􏼑
. (9) 

While in the micro M step, one uses Pold(ϕij) and Pold(z j) evaluated in 

Eqs. 8 and 9 to determine the optimal hyperparameters that maxi
mize the expected complete-data log-likelihood

Q = ln P s J, H|( ) + ln p H 􏿻ρ
􏼌
􏼌

( 􏼁

+
􏽘

j

􏽘

z j

􏽘

ϕij

􏼈 􏼉

i

p ϕij

􏽮 􏽯

i
, z j J∗ij

􏽮 􏽯

i
, ρ

􏼌
􏼌
􏼌

􏼐 􏼑
ln p J∗ij

􏽮 􏽯

i
, ϕij

􏽮 􏽯

i
, z j ρ

􏼌
􏼌

􏼐 􏼑
. (10) 

In particular, the hyperparameters γ, μ+
J , v+

J , μ−
J , v−

J , μH, vH are ob

tained by setting the corresponding derivatives of Q to zero, while 
the decay parameter a is estimated using gradient descent.

A B C

D E

Fig. 6. A) The in vitro primary cortical homogeneous neuronal network analyzed, grouped into 131 regions of interest (ROIs). The red and blue dots 
correspond to the regions of interest (ROIs) that are classified as excitatory or inhibitory, respectively, where each includes one neuron only. The scale bar 
of 25 μm is displayed in white in the figure. B) Example in vitro calcium imaging traces of five ROIs. C) The raster plot displays neuronal activity inferred 
from the calcium traces of each ROI. D and E) The predicted equal and delayed time covariance matrices generated by the inferred structure using Monte 
Carlo simulation, C and D, respectively, plotted against the true values evaluated from the data.

Po et al. | 9
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/advance-article/doi/10.1093/pnasnexus/pgae565/7928818 by guest on 09 January 2025

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae565#supplementary-data


In general, the inference and optimization framework consists 
of iteratively executing the macro E and M steps until conver
gence. Within each macro M-step, the hyperparameters are eval
uated by iteratively conducting the micro E step and M step until 
convergence. Finally, one decides on the structure parameters, 
neuronal type, and link existence by choosing the highest prob
ability states. Notably, for a more sensible starting point, the ini
tial conditions of the hyperparameters ρ can be evaluated using 
the inferred J and H by using MLE. Additionally, it is worth men
tioning that if rapid convergence is preferred over absolute accur
acy, the number of macro EM iterations can be limited to one, 
which effectively results in MAP estimation.

In silico data generation
Emulated neuronal data have been generated with a spiking neur
onal network model previously used to model the network growth 
and activity of biological neuronal cultures (2, 46). The existing 
network growth model has been adapted to incorporate the effect 
of inhomogeneous environments on the network connectivity, 
thus making the emulated data replicate experimental calcium- 
recorded results on biological neuronal cultures in inhomogen
eous environments (32).

Briefly, network growth is modeled by placing N neurons in a 
nonoverlapping manner on a surface and modeling axon growth 
from each neuron by concatenating line segments, in which seg
ment i is placed with a random angle φi = φi−1 + σφN (0, 1) with re
spect to the previous segment i − 1. Once an axon segment of 
neuron j is placed within a radius rsoma ≈ 7.5 μm of another neuron 
i, a connection Wij is made with a probability α. The strength of the 
connection is drawn from a Gaussian distribution with a mean and 
standard deviation depending on the neuron type. Inhibitory neu
rons make up 20% of the network, the remainders are excitatory.

Neuronal dynamics is modeled using the Izhikevich model 
neuron (37), with added synapse dynamics

dPi

dt
= −

Pi

τP
+ βRiδ(vi − vth) (11) 

dRi

dt
=

1 − Ri

τR
− γRiδ(vi − vth). (12) 

The quantity 
􏽐

j WjiPi represents the postsynaptic potential in

duced by the neuron i, and Ri is the corresponding synaptic neuro
transmitter reserve.

In vitro data generation—experimental methods
PDMS topographical reliefs
Topographical patterns were generated by pouring liquid polydi
methylsiloxane (PDMS) on specially designed printed circuit board 
molds shaped as parallel tracks 300 μm wide, 70 μm high and sep
arated by 200 μm (32). PDMS was cured at 100◦C for 2 h, separated 
from the mold, and perforated with sterile punchers to set 4 PDMS 
cylinders 2 mm in diameter and 0.5 mm high that contained the 
inverse topographical pattern of the mold. The 4 cylinders were 
then evenly distributed on a glass coverslip 13 mm in diameter, 
autoclaved, and coated with PLL. Flat PDMS substrates were also 
prepared to investigate the impact of topography.

Preparation of in vitro neuronal cultures
Rat primary cultures for patterned networks on PDMS substrates— 
Sprague–Dawley rat primary neurons (Charles River 
Laboratories, France) from embryonic cortices at days 18–19 of de
velopment were used in all experiments. Manipulation and dissec
tion of the embryonic cortices were carried out under ethical order 
B-RP-094/15–7125 of the Animal Experimentation Ethics 
Committee (CEEA) of the University of Barcelona and in accord
ance with the regulations of the Generalitat de Catalunya 
(Spain). Dissection was carried out identically as described in 
(32). Briefly, cortices were dissected in ice-cold L-15 medium 

Fig. 7. A sketch of the proposed GML-based approximation algorithm. The effective connectivity and the optimal hyperparameters are jointly evaluated 
by incorporating two applications of the EM algorithm. The posterior distributions of J and H are evaluated in the macro E step, while the 
hyperparameters values are evaluated in the macro M step, which has an internal nested EM algorithm of its own, representing the interplay between the 
latent variable values and their distributions. In the micro EM algorithm: the posterior distributions of ϕij and zj are evaluated in the micro E step, while 
the optimal hyperparameters are evaluated in the micro M step, constituting jointly the macro M step that feeds back into the macro E step.
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(Gibco), enriched with 0.6% glucose and 0.5% gentamicin 
(Sigma-Aldrich). Brain cortices were first isolated from the menin
ges and then mechanically dissociated by repeated pipetting. The 
resulting dissociated neural progenitors were plated on a set of 
precoated Poly-L-Lysine (PLL, 10 mg/mL, Sigma-Aldrich) PDMS 
topographical substrates in the presence of plating medium, 
which ensured both the development of neurons and glial cells. 
A density of a half cortex per 1.3 cm2 (glass coverslip area) was 
seeded. This step corresponded to day in vitro (DIV) 0. Two hours 
after plating, cells were transduced with adeno-associated viruses 
bearing the genetically encoded calcium fluorescence indicator 
GCaMP6s under the Synapsin-I promoter, so that only mature neu
rons expressed the indicator. At DIV 5 the proliferation of glial cells 
was restricted by incorporating 0.5% FUDR in the culture medium 
for two more days. From DIV 7 onwards, cells were maintained in a 
minimum essential medium supplemented with horse serum 
(Sigma). This medium was changed periodically every 3 days. 
Cultures were incubated at 37◦C, 5% CO2, and 95% humidity.

Mouse primary neuronal cultures for network inference—13 mm glass 
coverslips (VWR) were sterilized in 70% Ethanol for 30 min. 
Coverslips were then transferred to a biological safety cabinet and 
dried completely before coating for 2 h with 0.02% 
Poly-L-Ornithine (Sigma). This was washed once with sterile 
ddH2O, and then 20 μg/mL murine laminin was added overnight. 
P0-P2 C57BL/6 mice were used for the network inference study. All 
animal procedures were approved by Aston University Bioethics 
Committee and performed in accordance with the United 
Kingdom Animals Scientific Procedures act of 1986 and current EU 
legislation. The 3 Rs, replacement, refinement, and reduction were 
considered for planning all animal procedures. The experiment 
was carried out at Aston University. Cortices were dissected in ice- 
cold HBSS (Gibco) containing 1% Penicillin/streptomycin (P/S). 
Meninges were removed before dissection of both cortices, which 
were then each cut into eight pieces for enzymatic digestion. 
Cortices were transferred into 37◦C prewarmed HBSS containing 
25 U/mL papain (Sigma), 2 μg/mL DNAse (Sigma) and L-Cysteine 
(Sigma). These were incubated at 37◦C for 30 min, gently moving 
and rocking the tube every 7.5 min. Papain solution was removed, 
and washed twice for 5 min each, at 37◦C in MEM (Gibco) + 10% 
Horse serum (Sigma) + Glutamax (Gibco) + 1% P/S. Cortices were 
then mechanically dissociated with glass, fire-polished pipettes, to 
produce homogenous cell suspension. Cells were passed through a 
70 μm cell strainer (Appleton Woods) to remove any remaining men
inges or large clusters of cells or debris. Cells were counted, and 
seeded onto Poly-L-Ornithine/MuLAM coated glass coverslips at a 
density of 400,000 cells/cm2. After 2 h, media was replaced with 
Neurobasal (Gibco) + 1% B27 (Gibco) + 1% Glutamax (Gibco) + 1% 
P/S. Cells were fed every 4 days with a half media change.

Intracellular calcium fluorescence imaging
Rat neuronal cultures shaped as ∅ 2 mm PDMS discs allowed the 
monitoring of the whole network along development. 
Spontaneous neuronal network activity was recorded using wide- 
field fluorescence microscopy in combination with the GCaMP6s 
indicator. Although the networks contained both neurons and 
glia, only neurons were visualized. Recordings were carried out 
at DIV 17 for 15 min on a Zeiss Axiovert C25 inverted microscope 
equipped with a high-speed camera (Hamamatsu Orca Flash 
4.0) in combination with an optical zoom. Recordings were carried 
out at room temperature with the camera software Hokawo 2.10 
at 33 frames per second (fps), 8-bit grayscale format, and a size 
of 1,024 × 1,024 pixels.

For mouse neuronal cultures, cells were loaded with 10 μM 
Fluo4-AM in DMSO (Invitrogen) for 40 min at 37◦C. Coverslips 
were then transferred onto an upright Nikon FN1 microscope 
and images were acquired using a Crest Optics XLight V3 spinning 
disk confocal and a Teledyne Photometrics Kinetix high-speed 
camera, and in an area of 300 × 300 μm2. The setup was controlled 
through Micro-Manager (47). Cultures were perfused with 37◦C 
heated Artificial CSF (aCSF) as a control, and an increase of 2.5  
mM KCl to increase baseline activity. Cultures were settled for 5  
min before recording commenced at 10 Hz for 10 min. aCSF solu
tion containing the following (in mM): NaCl 120, NaHCO3 25, KCl 2, 
KH2PO4 1.25, MgSO4 1, and CaCl2 2. aCSF chemicals were obtained 
from Sigma-Aldrich (48).

Data analysis
Calcium fluorescence recordings were analyzed with the NETCAL 
software (49, 50) run in MATLAB in combination with custom- 
made packages. To analyze the data, and as described in (32), 
Regions of Interest (ROIs) were first laid on the area covered by 
each culture. For rat primary cultures, ROIs were shaped as a 20 × 
20 grid centered at the culture and extending its entire 2 mm cir
cular shape, while for mouse primary cultures ROIs corresponded 
to individual neurons. Next, the average fluorescence trace within 
each ROI was extracted as a function of time, corrected from 
drifts, and normalized. Sharp peaks in the fluorescence signals re
vealed neuronal activations, which were detected using the 
Schmitt trigger method, finally leading to a binarized time series 
of neuronal activity in which “1” indicated the presence of neuron
al activity and “0” its absence.

Immunocytochemistry
This technique was used to identify the position of neuronal cell 
bodies in culture and extract their fluorescence trace with preci
sion. Neuronal cultures were fixed for 20 min with 4% PFA 
(Sigma) at room temperature. After washing with PBS, the sam
ples were incubated with a blocking solution containing 0.03% 
Triton (Sigma) and 5% normal donkey serum (Jackson 
Immunoresearch) in PBS for 45 min at room temperature. To visu
alize the neuronal nuclei, the samples were incubated with pri
mary antibodies, against the neuronal marker NeuN (M1406, 
Sigma), diluted in blocking solution, and incubated overnight at 
4◦C. Cy3-conjugated secondary antibody against rabbit 
(711-165-152, Jackson Immunoresear) was diluted in blocking 
solution and incubated for 90 min at room temperature. Then, 
cultures were rinsed with PBS and mounted using DAPI-fluoro
mount–G (ShouternBiotech). Immunocytochemical images were 
acquired on a Zeiss confocal microscope.

Note
a This method is accurate only when coupling strengths are relative

ly small or when the activation function is smooth.
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Supplementary material is available at PNAS Nexus online.
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