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Bidirectional zigzag growth from clusters of active colloidal shakers

Gaspard Junot ,1 Andrés Javier Manzano González,1 and Pietro Tierno 1,2,3,*

1Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Spain
2Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, 08028 Spain

3Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona, 08028 Spain

(Received 30 October 2023; accepted 2 February 2024; published 15 March 2024)

Driven or self-propelling particles moving in viscoelastic fluids recently emerged as a novel class of active
systems showing a complex yet rich set of phenomena due to the non-Newtonian nature of the dispersing
medium. Here we investigate the one-dimensional growth of clusters made of active colloidal shakers, which
are realized by oscillating magnetic rotors dispersed within a viscoelastic fluid and at different concentrations
of the dissolved polymer. These magnetic particles when actuated by an oscillating field display a flow profile
similar to that of a shaker force dipole, i.e., without any net propulsion. We design a protocol to assemble clusters
of colloidal shakers and induce their controlled expansion into elongated zigzag structures. We observe a power
law growth of the mean chain length and use theoretical arguments to explain the measured 1/3 exponent. These
arguments agree well with both experiments and particle based numerical simulations.

DOI: 10.1103/PhysRevResearch.6.013287

I. INTRODUCTION

Investigating the formation of dynamic patterns from a col-
lection of active or self-propelling particles is a rich research
field that has led to the observation of fascinating phenomena
including swarming [1–4], clustering [5–10], crystallization
[11,12], dynamic vortices and swirls [13–15], or phase sepa-
ration induced by motility [16–19], among others. Moreover,
collective ensemble of active particles that can be controlled
by an external field may be used as “progammable matter” to
perform useful tasks at the microscale, with potential appli-
cations in robotics [20–22], microfluidics [23,24], or material
science [25].

While most of the prototypes realized so far have been
dispersed in Newtonian fluids, such as water, many new
interesting effects may arise when the fluid medium is non-
Newtonian, such as a viscoelastic one [26–32]. Indeed, in
biological systems microorganisms such as sperm cells nav-
igate in a non-Newtonian fluid. The nonlinearity of the
dispersing medium may affect the sperm transport [33] apart
from being important in several other processes including
biofilm formation [34,35] or fertilization [36]. As previously
reported, a viscoelastic medium may even induce propulsion
to a reciprocal swimmer which performs periodic, time-
reversible, body-shape deformations [37].

In a recent experimental work [38], we reported the for-
mation of large scale zigzag bands made of a population of
magnetic rotors which were reversibly actuated by an external,
oscillating magnetic field. When the magnetic rotors oscillate
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in water, the particles perform periodic back-forward rolling
being unable to organize in any significant structure, i.e., they
remain evenly distributed across the plane. In contrast, by
adding a small amount of polymer that makes the medium
viscoelastic, we observe that the particles self-organize into
zigzag structures which merge in time perpendicular to the
direction of the oscillating field. The progressive coarsening
of these bands would ultimately lead to the formation of a
single chain of particles with the size of the system. In our
previous work [38], it was not possible to investigate the elon-
gation dynamics and reach the steady state since thick bands,
as the one shown in Fig. 1(b), extend above the observation
area. Moreover, these bands reached the boundaries of the
experimental cell, thus interacting with the confining walls.

To study the evolution of the system toward its steady state,
we have developed a protocol to create isolated clusters from
which smaller bands grow, sufficiently far from neighboring
bands and from the confining walls. Under these conditions,
we report a growth process that could not be observed in
Ref. [38]. Indeed, when isolated, thin bands laterally extend
while reducing their thickness over time. We observe a power
law growth of these lines and analyze in detail the influence
of the polymer concentration on the velocity field generated
by a particle as well as on the growth process. Finally, using a
simple theoretical argument based on conservation law, we ex-
plain the growth and the observed 1/3 exponent. We confirm
these predictions by doing particle based numerical simula-
tions that agree both with the model and the experiments.

II. EXPERIMENTAL SYSTEM

Our colloidal shakers are realized by cyclically actuating
anisotropic hematite microparticles in a viscoelastic medium.
As shown in the top inset of Fig. 1(a), the hematite are
characterized by two connected spherical lobes of equal di-
ameters b = 1.2 µm with a total length of a = 2.6 µm. This
peanutlike shape of the particles is the result of their chemical
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FIG. 1. (a)–(d) Sequence of experimental images showing the protocol employed to generate growing clusters of colloidal shakers. We
start from a homogeneous dispersion of particles in a mixture of water and PAAM, as shown in (a). We first apply a rotating field polarized
in the (x̂, ẑ) plane, Eq. (1), which induces the growth of zigzag bands along the perpendicular one (y), as shown in (b). After that, an in-plane
(x̂, ŷ) rotating magnetic field is used to break the band into a sequence of circular clusters (c). Then the applied field is switched such that it
rotates in the (ŷ, ẑ) plane, and it induces the grow of parallel zigzag structures, as shown in (d). Details on the field parameters are given in the
text, the scale bar for all images is 100 µm. Top inset in (a) shows a scanning electron microscope image of a hematite particle with dimensions
(a = 2.6 µm, b = 1.2 µm) and the direction of the permanent moment m. The scale bar is 1 µm. The sequence of images (c), (d) is shown in
video S1 in [39].

synthesis, performed following the sol gel approach [40];
more detail can be found in a previous work [41]. The particles
are ferromagnetic and characterized by a permanent moment
directed perpendicular to their long axis, with magnitude
m � 9 · 10−16 Am2 [42]. We disperse these particles in a vis-
coelastic medium made of a water solution of polyacrylamide
(PAAM), a water soluble high-molecular weight polymer
(Mw = 5 − 6 · 106). In this work we change the polymer con-
centration within the range cp ∈ [0, 0.05]% in weight, relative
to water. For such concentration values, the PAAM solution
can be considered in the dilute regime, where the polymer
chains do not overlap. Previous works estimate the transition
between dilute and semidilute regime, e.g., when the polymer
chains overlap without entanglement, at c ∼ [0.06 − 0.1]%
[43,44]. This dilute regime was chosen for the relative low
viscosity, similar to that of water, which allow to easily ma-
nipulate the magnetic particles.

We mix the hematite particle and the PAAM solution;
the resulting suspension is then confined between a plastic
petridish and a cover slip that are later sealed. The exper-
imental cell, with a final thickness of ∼260 µm, is placed
on the stage of a custom made optical microscope. The lat-
ter is connected to a charge-coupled device camera (Scout
scA640-74f, Basler) that allows to record real-time videos of
the particle dynamics at 75 frames per seconds. Videos of the
growth process have been taken at a lower frame rate of 30 Hz.
Further, the microscope is equipped with a set of custom-made
magnetic coils having their axis aligned along the three or-
thogonal directions (x̂, ŷ, ẑ). We generate a rotating magnetic
field perpendicular to the substrate plane (x̂, ẑ) by connecting
four of the coils to a power amplifier (IMG STA-800, Stage
Line) that was controlled via an arbitrary waveform generator
(TGA1244, TTi).

III. REALIZATION OF PARALLEL ZIGZAG BANDS

Once dispersed in the polymer solution, the hematite par-
ticles sediment close to the bottom plane and display weak
thermal fluctuations. To realize the colloidal shakers, we drive

these particles back and forward along a fixed direction (here
the x̂ axis) using a time dependent rotating field,

B = B[sin (2πt� f−)x̂ + cos (2πt� f+)ẑ] . (1)

Here B is the field amplitude, which we fix to B = 5.5 mT,
f the driving frequency also fixed to f = 80 Hz, � f± =
f ± δ f /2 and δ f the frequency difference between the two
fields components along the x̂ and ẑ axis, δ f = 4 Hz. The
field in Eq. (1) periodically changes the direction of rotation
each δt = 1/(2δ f ), and this effect has two consequences. First
it aligns the permanent moments of the particles imposing
a fixed orientation with respect to their long axis. Second,
the particles are subjected to a magnetic torque τm = m × B
which set them in rotational motion along their short axis at
an angular speed � = 2π f and close to the bottom plane. Due
to the rotational-translation hydrodynamic coupling [45], the
spinning hematite performs periodic displacements back and
forward following synchronously the field rotations. Indeed,
we have independently checked that, for driving frequencies
f < 100 Hz, the particles are in the synchronous regime, i.e.,
their magnetic moment is locked to the field by a constant
phase-lag angle [46,47].

As shown in the sequence of images in Figs. 1(a) and
1(b), when the particles are homogeneously dispersed in a
PAAM solution at a concentration cp = 0.05%, the applied
modulation along the x̂ direction induces the growth of large
scale zigzag bands along the perpendicular, ŷ direction. As
time proceeds, the bands coarsen by acquiring neighboring
particles and merge with nearest bands, forming one large
structure that extends beyond the microscope observation
area. Depending on the initial particle concentration, this
structure can reach a length of a few mm and a thickness
of ∼50µm, Fig. 1(b). Our protocol to create localized bands,
such that the lateral growth (along x̂) process can be entirely
visualized, consists in transforming a large zigzag structure
into a series of small clusters via application of an in-plane
rotating magnetic field, B ≡ B[cos (2π f t )x̂ − sin (2π f t )ŷ],
Fig. 1(c). As previously reported for different magnetic col-
loids in water [48,49] or nonmagnetic particles in a ferrofluid

013287-2



BIDIRECTIONAL ZIGZAG GROWTH FROM CLUSTERS OF … PHYSICAL REVIEW RESEARCH 6, 013287 (2024)

FIG. 2. (a) Table illustrating the evolution of clusters with initial length L0 into bands of length L(t ) for different time t and concentration
of dispersed polymer (PAAM) given by cp. As shown in the first column, the used concentration cp ∈ [0, 0.05]%. The oscillating field [Eq. (1)]
is applied at t = 0, and is the same for all PAAM concentrations. See corresponding video S2 in [39] for the case in pure water, showing
the absence of zigzag structures. (b) Mean normalized length 〈LN 〉 = 〈L/N1/3〉 as a function of time t in log-log scale for different PAAM
concentrations. Disks are experimental data, the solid lines are linear regressions used to extract the exponent α. (c) Exponent α as a function
of the polymer concentration cp.

[50], the rotating field applies a torque to each particle and
also induces time-average dipolar attractions, which are not
affected by the presence of the PAAM. Thus, the large band
breaks into several rotating circular clusters composed of at-
tractive spinning colloids. The size of these clusters result
from the balance between the magnetic attraction and the
repulsive hydrodynamic flow induced by the particle spinning
motion [51]. After that, we apply again the oscillating field,
Eq. (1), but now along the ŷ direction, inducing the formation
of parallel lines of shakers growing along the x̂ axis, Fig. 1(d),
see also video S1 in [39].

The table in Fig. 2(a) illustrates how the PAAM concen-
tration affects the band growth at different times. For the
largest amount of polymer tested (cp = 0.05%), we find that a
circular cluster first collapses into a line in less than a second,
then the line lengthens and becomes thinner since the number
of particles is constant. After ∼5 s, the line deforms and it
acquires a zigzag shape where branches are arranged at a
constant angle of θl = ±31◦. This effect was explained in
Ref [38] by considering the shakerlike shape of the flow field
generated by the particle rotation. Decreasing the PAAM con-
centration reduces the angle of the zigzag structures. While
at high PAAM concentration the particles self-organize into
zigzags with sharp tips that merge branches at a constant
angle, at low PAAM concentration the stripes flatten, reducing
this angle. Note that this effect occurs for all initial particles
configurations, whether the particles are homogeneously dis-
tributed across the plane as shown in Fig. 1(a), or when they
form localized clusters, as shown in Fig. 2(c). In pure water
the cluster of oscillating particles does not form any band
but rather grow uniformly due to diffusion, bottom row in
Fig. 2(a), and also illustrated in video S2 in [39].

IV. BAND ELONGATION

To characterize the longitudinal growth of the clusters, we
measure the length L(t ) as a function of time t for different
polymer concentrations cp. In Fig. 2(b) we divide L by N1/3

with 〈LN 〉 = 〈L/N1/3〉 being N the number of particles within
a cluster. We use this rescaling since the initial condition,
i.e., the initial number of particles N , is difficult to control
experimentally. To compute N , we measure the initial cluster
diameter L0, defining N and N = (π (L0/2)2)/ap, ap being the

area covered by a single particle. All curves shown in Fig. 2(b)
display two distinct regimes: first 〈LN 〉 barely increases for
times shorter than 1 s, which corresponds to the initial collapse
of the cluster in a line. After that, the line grows as a power
law with an exponent α = 1/3 for all cp except for pure
water, where the dynamics are slower as governed by diffu-
sion and possible weak hydrodynamic interactions, here α =
0.210 ± 0.006, Fig. 2(c). We note that, the exponent observed
in our system is in general smaller than that measured when
magnetic colloids form chains in water and under a static
field, which was estimated to be α � 0.5 [52]. This indicates
a different growth mechanism which, in our case, is due to the
presence of other interactions than magnetic dipolar ones.

To get more insight on the elongation behavior, we use
particle tracking velocimetry to measure the flow field profile
generated by the rotation of a single shaker as a function of
cp, Fig. 3(a), we provide more details in Appendix A. Without
PAAM, the flow field is weakly attractive everywhere except
at short distances, i.e., close to the particle tip where the
streamlines converge to a stagnation point near the tip. Indeed,
in a previous work [53] it was shown that close propelling
hematite particles can create a hydrodynamic bound state
where they align tip to tip, i.e., in agreement with the pres-
ence of this stagnation point. By adding PAAM the situation
changes since elastic effects due to the polymer start to appear.
In this situation, the flow profile becomes similar to that of a
shakerlike force dipole [54], which is attractive at the particle
side and repulsive along the two tips. It was shown previously,
using a Oldroyd-B constitutive model [38], that this flow
field is the consequence of the first normal stress induced by
particles rotating in the viscoelastic fluid. By increasing the
PAAM concentration, we observe that a vortex starts forming
close to the particle tips (θ ≈ 0) and progressively moves to
finally reach a position at θ � 33 ◦. As shown in Fig. 3(b),
an attractive and repulsive zone are separated by an angle
θL ∈ [0, 33]◦ for cp ∈ [0, 0.05]%. As θL decreases, the zigzag
flatten into a line, Fig. 2(a), cp = 0.005%, and it disappears
for cp = 0%, Fig. 2(a), bottom row.

V. THEORY

We consider the zigzag band as a one dimensional (1D)
chain of particles characterized by a spatial density ρ(x, t )
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FIG. 3. (a) Panels showing the flow fields generated by a shaker
for different PAAM concentrations. The color code shows the radial
velocity vr in the (x̂, ŷ) plane of one shaker with the streamlines su-
perimposed for four different PAAM concentration. Without PAAM,
the flow field is mainly attractive and the fluid flows towards the
colloidal shaker. As one raises cp, a repulsive zone starts to appear
leading to the formation, a vortex. The attractive and repulsive zones
are separated by a line making an angle θL with the horizontal axis.
(b) Limit angle θL as function of cp.

and a local velocity v(x, t ). This velocity results from the
hydrodynamic flow fields generated by all nearest particles.
Moreover, since we reduce the problem to 1D, the interactions
between the particles are purely repulsive (θ = 0). Thus, the
local velocity at position x is the integral of all the particles
velocity:

v(x, t ) =
∫

D
vp(x − x′)ρ(x′, t )dx′, (2)

vp(x − x′) being the flow velocity that a particle at position
x exerts on a particle at position x′, and D is the domain of
integration. Further, to simplify the problem, we assume that
the flow velocity generated by a particle at a position x is equal
to a constant vp within the interval [x − rc ; x + rc] and zero

elsewhere, with rc being a cutoff length. Thus, we have

v(x, t ) = vp

∫ x+rc

x−rc

sgn(x − x′)ρ(x′, t )dx′, (3)

being sgn the signum function. Since the zigzag band can be
considered as isolated due to the relative large distance with
nearest bands, as shown in Fig. 1(d), the total mass within a
band is conserved

∂ρ

∂t
= −∂ (vρ)

∂x
(4)

and we search for a solution (ρ(x, t ), v(x, t )) that satisfies
both Eqs. (3) and (4). A solution of this problem is given by

ρ(x, t ) = −x2

6vpr2
c t

+
(

3N2

32rcvpt

)1/3

v(x, t ) = x

3t
; (5)

more details are given in Appendix B. Since there are no parti-
cles outside the chain, the density ρ(x, t ) is zero at x = ±L/2.
Imposing this boundary condition, we arrive at

L(t ) = (
36Nvpr2

c t
)1/3

, (6)

and LN ∝ t1/3. Equation (5) shows that the velocity scales
linearly with space with a slope 1/3t , and the density ρ is
a parabola which becomes flat and wider with time.

To confirm these results, we have set up a minimal sim-
ulation scheme that reproduces the band growth using the
velocity field from the experimental data. In particular, we ob-
tained the relative velocity vexp(r ji, θ ji ) between two particles
as a function of their relative distance r ji and angle θ ji. These
measurements were performed in a previous study [38]. Then,
we fit the experimental data with an empirical function (see
Appendix C for more details), and integrate the corresponding
equation of motion:

dri

dt
=

∑
j �=i

v(r ji, θ ji ) (7)

being v the velocity field around a particle. As an initial con-
dition, we consider N particles randomly distributed within
a ring of diameter L0 = 40 µm and at a packing fraction of
φ = 0.7, and we use as cutoff length rl = 20 µm, beyond
which the particles no longer interact, see Appendix C for
more detail about the simulations. Note that when we set
rl < L0/2, sometimes we observe in our simulations that the
cluster collapses into two distinct bands which merge at a later
stage. For rl � L0/2 instead, the cluster always collapses into
a single band.

The simulations reproduce quantitatively the experimental
results, as shown in Figs. 4(a) and 4(b). Indeed, the sequence
of images in Fig. 4(a) display the behavior of an ensemble
of shakers where the initial cluster collapses first into a line
within ∼1 second and later it lengthens with time similar to
the experimental observations. For cp = 0.05% the length LN

matches very well the experimental data showing the scaling
t1/3, as shown in Fig. 4(b). We further use the simulations
to test the predictions of the model for ρ(x, t ) and v(x, t ).
Indeed, compared to the experiments, the simulations allow to
resolve all particle positions and speeds, a task that is difficult
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FIG. 4. Snapshots of a simulation at different times t . (b) Nor-
malized mean length 〈LN 〉 as function of time, the experimental curve
for cp = 0.05% is in orange, the back curve is the results of the
simulation. (c) Normalized distribution of particle P(ξ ) at different
times t . The red curve is a parabolic fit of the curve at t = 40 s.
(d) Local velocity along the x̂ axis as a function of x and at different
times t . Points are results of the simulation, the solid lines are linear
fit used to extract the slope β as a function of time. Inset: slope β as
a function of time, dots are results of the simulation, the black line
represents the function y(t ) = 1/3t .

experimentally due to the large particle density. To confirm the
predicted behavior of ρ(x, t ), we have computed the distribu-
tion of the normalized position ξ = (x − 〈x〉)/σ at different
times t , σ being the standard deviation of the particle posi-
tions. After a short transient regime, all distributions tend to
collapse into a parabola, as predicted by the model, Fig. 4(c).
Also, we observe that the local velocity v(x, t ) scales linearly
with the position x displaying a slope equal to 1/3t , as shown
in the inset of Fig. 4(d).

VI. CONCLUSIONS

We have investigated the growth process of clusters made
of shaking magnetic rollers which elongate into a zigzag struc-
ture within a viscoelastic medium. We observe that circular
clusters first collapse into a line and later grow with time
following a power law with an exponent 1/3. The collapse
find its origin in the attractive part of the flow field, Fig. 3,
as revealed by particle tracking velocimetry. Thus, particles
located at a relative angle θ > 33 ◦ attract each others and end
up side by side while the interaction is repulsive for θ < 33 ◦.
We simplify the problem by considering a one dimensional
model and find that a constant repulsion between the shakers
with a cutoff length is sufficient to explain the power-law
growth and corresponding 1/3 exponent. These predictions
were tested numerically finding a good agreement. Moreover,
the growth scenario remain similar by changing the added
concentration of polymer, except for the case cp = 0%.

The possibility of controlling the linear growth of dense
clusters of active particles may find different technological
applications. For example, zigzag bands display a conveyor
belt current along their edges able to drag nonmagnetic

particles. Such localized hydrodynamic flow could be used to
transport chemicals or biological species along a desired loca-
tion in a microfluidid chip. The use of rotating or translating
magnetic inclusions to generate controlled flows within a mi-
crofluidic environment was demonstrated in previous works in
Newtonian media [55–60]. We here show that these effects
can be further extended to viscoelastic fluids, thus opening
the doors toward direct applications in biological systems.
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APPENDIX A: PARTICLE TRACKING VELOCIMETRY

We obtain the particle flow fields shown in the panels of
Fig. 3(a) by performing particle tracking of passive, tracer
spheres, dispersed with the peanut particles. The flow fields
were obtained from a dilute solution of peanut particles, so
that interactions between them are negligible, mixed with
silica colloids of 1 µm diameter that were used as tracers.
We then record 26 videos of 1 min duration at 75 fps using
an oil immersion 100× Nikon objective. For these videos we
tracked the position of both the peanut and the tracers. In
particular, we considered a square region of 10 µm around the
peanut. This region was divided in square cells of lateral size
d = 0.05 µm. Inside these cells, the local mean relative veloc-
ities (velocity along x̂ and ŷ and radial r̂ direction) between
the peanut and the tracers are computed by averaging over
all the particles inside the cell, over time and the different
experimental videos). We then performed a spatial moving
average with a square windows of size 21d = 1.05 µm. Since
the flow field is symmetric, we further averaged the fourth
quadrant of the image.

APPENDIX B: SOLUTION OF EQ. (4)

To find couples of solutions (v(x, t ), ρ(x, r)) that satisfy
both Eqs. (3) and (4), we numerically solve those two equa-
tions using as initial conditions

ρ(x, t = 0) = e− x2

2√
2π

v(x, t = 0) = vp

∫ x+rc

x−rc

sgn(x − x′)
e− x′2

2√
2π

dx′. (B1)

In practice, we use a recursion method and calculate nu-
merically the density ρ(x, t + dt ) using Eq. (3), and then
v(x, t + dt ) from ρ(x, t + dt ) using Eq. (4). As nondimen-
sional parameters, we use time step dt = 0.1, space step
dx = 0.01, cutoff length rc = 1, particle velocity vp = 0.1,
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FIG. 5. Numerical resolution of Eqs. (3) and (4). (a) Density as a
function of space at time t = 0 (blue) and t = 1000 (red). The black
line is a fit of equation y(x) = −ax2 + b with a = 0.00166 and b =
0.0974. (b) Velocity as a function of space at time t = 0 (bue) and
t = 1000 (red). The black line is a fit of equation y(x) = cx with
c = 1/3000. (c) Slope s(t ) of the velocity as function of time, s(t)
converges toward the line of equation y(t ) = 1/(3t ) (black line).

and total space length LM = 100. The numerical solutions
(v(x, t ), ρ(x, t )) have the form

v(x, t ) = cx

t
,

ρ(x, t ) = −x2 f (t ) + g(t ), (B2)

with c a constant and f (t ), g(t ) arbitrary functions of time, and
are shown in Fig. 5. Placing these solutions in Eq. (3) leads to

f (t ) = a

t3c
, g(t ) = b

tc
, (B3)

with a and b constants. The density ρ(x, t ) then reads

ρ(x, t ) = −ax2

t3c
+ b

tc
. (B4)

We further use the above expression of ρ in Eq. (4), which
gives

v(x, t ) = 2avpr2
c

x

t3c
. (B5)

As a result, we obtain the equation 2avpr2
c

x
t3c = cx

t , which
implies

c = 1/3, a = 1

6vpr2
c

. (B6)

To obtain the constant b we impose the following constraints,
namely the integral of the density over L is equal to the total
number of particles N, and the density is zero at x = ±L/2,

N =
∫ L/2

−L/2
ρ(x, t )dx ρ(±L/2, t ) = 0, (B7)

which gives

N = −aL3

12t
+ bL

t1/3
,

−aL2

4t2
+ b

t1/3
= 0. (B8)

Finally, one has

b =
(

3N2

32r2
c vp

)1/3

, L(t ) =
(

36Nvpr2
c t

)1/3

, (B9)

and:

ρ(x, t ) = −x2

6vpr2
c t

+
(

3N2

32rcvpt

)1/3

,

v(x, t ) = x

3t
. (B10)

APPENDIX C: NUMERICAL SIMULATION

In integrating Eq. (7), we consider two cases for the ve-
locity v, depending on a cut-off distance rc. For r ji > rc, we
assume that v = vexp/2 where vexp is an empirical function
that describes the relative velocity between a pair of inter-
acting particles measured experimentally at cp = 0.05% [38].
Note that to have the velocity field v, one has to divide vexp by
two since vexp is the result of the contribution of two particles.
Thus, vexp is given by

vexp(r ji, θ ji ) = (ar ji + b) exp
( − r2

i j/8
) + c,

a = (θ ji/1.22)2/3(3.12 + 4.4) − 3.12,

b = −(θ ji/1.22)2/3(45 + 24) + 45,

c = −(θ ji/1.22)2/3(0.3 + 0.4) + 0.3 . (C1)

Since the interaction between two particles is essentially
radial, we neglect the azimuthal contribution of the velocity
and vexp = vexper. At the end of a sequence of approach (θ ji >

θl ), two particles come in close contact (side by side). In this
situation, we observe that the pair exhibit a three-dimensional
leap-frog dynamics [61], sliding on each other and ending tip
to tip before repealing. To reduce the complexity of the sim-
ulation scheme, we did not consider this transitory leap-frog
state, but rather take it into account as a “scattering” event.
In simulations, two particles at a closer distance than rc are
placed at a relative position r ji = rc and θ ji = 0 in one time
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step:

vx = rc − �x

2dt
, vy = −�y

2dt
, (C2)

with �x = xi − x j , �y = yi − y j . We perform numerical sim-
ulations of a system of N pointlike particles in a 2D square box

of size L with periodic boundary conditions. We consider a
second cut-off distance rl = 20 µm beyond which the particles
no longer interact, and rc = 0.2µm. The particles follow the
above mentioned dynamics, and we solve the equation of
motion with an Euler scheme with a time step dt = 10−2 s.
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