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S U M M A RY

Over the past few decades, the use of complex networks to describe the properties
of systems of many interacting parts has become widespread in many fields of
science. Surprisingly, networks from disparate disciplines share a wide range of
basic properties, such as small worldness, high levels of clustering and broad
degree distributions. One of the most promising frameworks to explain this
observation is that of network geometry, where nodes are assumed to live in
some underlying metric space that conditions their connectivity. The fact that this
approach can reproduce all the basic network properties and symmetries as well
as produce strong results in practical tasks such as community detection and link
prediction has led many to wonder if there is a way to determine if real networks
are indeed geometric in nature. However, these studies do not contemplate the
fact that the transition between non-geometric and geometric networks might not
be sharp. In this thesis, we study the effect of the underlying metric space on
the complex network for different geometric coupling strengths. We show that
three different regimes can be identified: In the non-geometric regime, where the
coupling is extremely weak, results are similar to those of the configuration model,
which is explicitly non-geometric. Increasing the coupling slightly leads us to the
quasi-geometric regime, where the decrease of the clustering coefficient with the
system size is extremely slow, leading to significant levels of this quantity for finite
systems. Additionally, we show that, here, geometric information can be extracted
from the topology alone through network embedding, and that it is essential for
obtaining self-similar network replicas through geometric renormalization. A large
number of empirical networks are best described in the quasi-geometric regime.
Increasing the coupling further leads to a phase transition which we show to be
topological in nature. We enter the geometric region, which is the regime typically
studied in past works where the effects of the underlying metric space are strong
and where clustering remains finite in the thermodynamic limit. Motivated by
these results for single-layer graphs we also study geometric multiplexes. We
introduce the mutual network, which is made up of the edges that are shared by
all layers. This network allows us to obtain rigorous results on edge and triangle
overlap. We show that it is generally the more geometric links that lead to overlap,
increasing the effective geometric coupling in the mutual network. Finally, having
extensively investigated the structural properties at various coupling strengths,
we lastly turn to dynamical processes running of top of the network. Specifically,
we show that the underlying metric space reveals periodic Turing patterns, both
in the quasi- and strongly geometric regimes as well as in empirical networks. All
these results show that the underlying geometry is essential for understanding
complex networks, both from a structural as well as dynamical point of view.
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R E S U M

En les darreres dècades, l’ús de xarxes complexes per descriure les propietats de
sistemes amb moltes parts que interactuen ha esdevingut habitual en molts camps
de la ciència. Sorprenentment, xarxes de disciplines diverses comparteixen una
àmplia gamma de propietats bàsiques, com ara la propietat “small world”, alts
nivells d’agrupament i distribucions de grau àmplies. Un dels marcs teòrics més
prometedors per explicar aquesta observació és el de la geometria de xarxes, on
s’assumeix que els nodes es troben en un espai mètric subjacent que condiciona la
seva connectivitat. En aquesta tesi estudiem l’efecte de l’espai mètric subjacent en
xarxes complexes per diferents intensitats de l’acoblament geomètric. Identifiquem
tres règims diferents: en el règim no geomètric, on l’acoblament és extremadament
feble, els resultats són similars als de models explícitament no geomètrics. Un
augment lleuger de l’acoblament ens porta al règim quasi-geomètric, on l’escalat
del coeficient d’agrupació amb la mida del sistema és molt lent, cosa que genera
nivells significatius d’aquesta quantitat per a sistemes finits. A més, mostrem que,
aquí, es pot extreure informació geomètrica només de la topologia i i que aquesta
informació és essencial per obtenir rèpliques auto-similars de xarxes mitjançant la
renormalització geomètrica. Finalment, estudiem un gran nombre de xarxes empí-
riques i mostrem que es descriuen millor en el règim quasi-geomètric. Augmentar
l’acoblament encara més condueix a una transició de fase de naturalesa topològica.
Entrem en la regió geomètrica, que és el règim típicament estudiat en treballs
anteriors, on els efectes de l’espai mètric subjacent són forts i on l’agrupament es
manté finit en el límit termodinàmic. Motivats per aquests resultats en grafs de
capa única, també estudiem grafs geomètrics de múltiples capes, els multiplexos.
Introduïm la xarxa mútua, que està formada per les arestes compartides per totes
les capes. Aquesta xarxa ens permet obtenir resultats rigorosos sobre la superposi-
ció d’arestes i triangles. Mostrem que, en general, són els enllaços més geomètrics
els que es conserven a la xarxa mútua, augmentant l’acoblament geomètric efectiu.
Finalment, després d’haver investigat extensament les propietats estructurals a
diferents intensitats d’acoblament, ens centrem en processos dinàmics sobre la xar-
xa. Concretament, mostrem que l’espai mètric subjacent revela patrons periòdics
de Turing, tant en els règims quasi-geomètrics com en els fortament geomètrics,
així com en xarxes empíriques. Tots aquests resultats mostren que la geometria
subjacent és essencial per entendre les xarxes complexes, tant des d’un punt de
vista estructural com dinàmic.

iv



S A M E N VAT T I N G

In de afgelopen decennia is het gebruik van complexe netwerken om de ei-
genschappen van systemen met veel interagerende onderdelen te beschrijven,
gebruikelijk geworden in veel wetenschappelijke disciplines. Verrassend genoeg
delen netwerken uit verschillende vakgebieden een breed scala aan basiskenmer-
ken, zoals de "small world"-eigenschap, hoge niveaus van clustering en brede
graaddistributies. Een van de meest veelbelovende kaders om deze waarneming
te verklaren, is "network geometry", waarbij wordt aangenomen dat de knopen
zich in een onderliggende metrische ruimte bevinden die hun connectiviteit be-
paalt. In dit proefschrift bestuderen we het effect van de onderliggende metrische
ruimte op complexe netwerken bij verschillende geometrische koppelingsterktes
We identificeren drie verschillende regimes: in het niet-geometrische regime, waar
de koppeling extreem zwak is, zijn de resultaten vergelijkbaar met die van expliciet
niet-geometrische modellen. Een lichte toename van de koppeling leidt ons naar
het quasi-geometrische regime, waar de clustercoëfficiënt zeer langzaam schaalt
met de systeemgrootte, wat significante niveaus van deze grootheid genereert
voor eindige systemen. Bovendien laten we zien dat in dit regime geometrische
informatie kan worden afgeleid enkel uit de topologie door netwerkinbedding
toe te passen, en dat deze informatie essentieel is voor het verkrijgen van zelf-
gelijke netwerkstructuren via geometrische renormalisatie. Ook identificeren we
een groot aantal empirische netwerken die beter kunnen worden beschreven in
het quasi-geometrische regime. Een verdere verhoging van de koppeling leidt
tot een faseovergang, waarvan wij stellen dat deze van topologische aard is. We
betreden de geometrische regio, het regime dat typisch is bestudeerd in eerdere
werken. Hier zijn de effecten van de onderliggende metrische ruimte sterk en
blijft clustering eindig in de thermodynamische limiet. Gemotiveerd door deze
resultaten voor éénlaagse grafen bestuderen we ook geometrische multiplexen.
We introduceren het wederzijds netwerk, dat bestaat uit de randen die door alle
lagen worden gedeeld. Dit netwerk stelt ons in staat om rigoureuze resultaten
te verkrijgen over rand- en driehoeksoverlap. We betogen dat het over het alge-
meen de meer geometrische verbindingen zijn die leiden tot overlap, waardoor
de effectieve geometrische koppeling in het wederzijds netwerk toeneemt. Na
uitgebreid te hebben stilgestaand bij de structurele eigenschappen bij verschillende
koppelingssterkten, richten we ons op dynamische processen in het netwerk. We
tonen aan dat de onderliggende metrische ruimte periodieke Turing-patronen
onthult, zowel in de quasi- als sterk geometrische regimes, alsook in empirische
netwerken. Deze resultaten tonen aan dat de onderliggende geometrie essentieel
is voor het begrijpen van complexe netwerken, zowel structureel als dynamisch.
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1
I N T R O D U C T I O N

1.1 motivation

In his book on the prestigious Santa Fe institute, David Krakauer described the
study of complex systems as the study of “Worlds hidden in plain sight" [1].
Modern physics traditionally studies objects that are too small, too distant, too
slow, or too fast to be observed directly, and provides us with a plethora of tools
for investigating them. Complexity science, however, often focuses on phenomena
that we experience, directly or indirectly, in our day to day. Examples include cities,
ecosystems, the internet, economies and our own nervous system. Paradoxically,
these systems are often the ones we understand the least. Their functioning is,
as Krakauer puts it, “hidden [...] through non-linearity, randomness, collective
dynamics, hierarchy and emergence".

One of the most powerful ways of studying these disparate phenomena is
through the lens of complex networks [2, 3]. Here, the agents of a complex system
are represented by nodes, with the links connecting them encoding their interac-
tions. This field has increased our understanding of various domains, including
ecology [4, 5], neurology [6, 7], the social sciences [8, 9] and technology [10, 11].

Among the most surprising results about complex networks is the apparent
universality of their structural properties. Many networks representing completely
unrelated systems are, for example, small worlds [12], meaning that they can be
traversed in only a small amount of links, even if they are very large. This allows
them to be highly navigable, a feature that seems essential for many complex
systems [13, 14]. Another seemingly universal feature is the presence of a large
amount of triangles in networks representing transitive relations; if a node has
two neighbors, it is exceedingly likely those neighbors are also connected to each
other [15]. Other properties include sparsity [16], degree heterogeneity [2], the
presence of communities [17], etc. All these features have proven essential for
understanding the complex systems these networks represent.

The ubiquity of the aforementioned structural properties has led to the de-
velopment of many models that can reproduce and explain their origins. One
framework that has proven especially fruitful is that of network geometry [18–20].
Here, nodes are assumed to live in some underlying metric space, where distances
can be defined. Sometimes this space is explicit [20], as is the case for airport
networks [21, 22], power grids [23–25], or urban networks [26, 27], but oftentimes
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1.2 aim 3

it is hidden, or latent, such that the coordinates of the nodes in this space encode
their properties in some abstract way [28–31]. In both cases, the distances between
the nodes contribute to the connectivity pattern of the network.

Of special importance here is the clustering coefficient, which quantifies the
amount of triangles present in a network. Triangles are the shortest possible cycles,
thus introducing redundancy in the network connectivity; it is now possible to take
several different paths when traveling between two nodes. Furthermore, triangles
encode important transitive relationships between the nodes of the system. In the
geometric framework, the high value this quantity takes in many real networks is
a straightforward consequence of the triangle inequality of the underlying metric
space; if a node lies close to its neighbors, those neighbors must also lie close to
one another. If metric closeness implies a high probability of being connected, as
is assumed in this framework, this immediately leads to a triangle forming in the
network. This fact makes clustering the quintessential geometric network property.

One particularly successful class of geometric models are those that explain the
observed network structure through the interplay between the similarity and pop-
ularity dimensions, where it is assumed that more similar and more popular nodes
are more likely to be connected. This framework provides a simple explanation to
many of the observed topological properties of real networks, including heteroge-
neous degree distributions [29, 30, 32], clustering [29, 32–35], small-worldness [36–
38], as well as percolation [39, 40], spectral [41] and self-similarity properties [30,
42, 43]. These models have been extended to growing networks [44], weighted net-
works [45], directed networks [46], multilayer networks [47, 48] and networks with
community structure [49–51]. Finally, the framework has produced strong results
in practical tasks such as community detection [52, 53], information routing [54–56]
and link prediction [57, 58]

1.2 aim

From the works mentioned above, it becomes clear that geometry plays an essential
role in shaping the properties of complex networks. However, to what extend the
latent space influences the topology differs from network to network. In the past,
it has often been assumed that there are two classes of networks; those that are
well described in the geometric framework and those that are not. Generally, the
distinction between these two classes is made on the basis of some measure of
the amount of triangles in the networks [59, 60]. However, these studies do not
contemplate the fact that the transition between non-geometric and geometric
networks might not be sharp. In this thesis, we investigate how different levels
of coupling between the geometry and the topology of a networks affect its
properties.

We investigate this question using the S1/H2-model [29, 30]. This similar-
ity × popularity model is maximally random, in the sense that no unwarranted
assumptions about the networks it produces are made. They also contain a model
parameter β that can be used to tune the coupling strength between the network
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topology and its underlying metric space, making them the ideal lens with which
to study our central question.

We approach our main research question from various perspectives; we investi-
gate the effect of geometry on the structural properties of networks, specifically
the level of clustering. We ask how different geometric couplings influence the
the possibility of embedding and renormalizing both artificial as well as empirical
networks. We extend our structural investigations to multiplex networks, asking
what influence geometry has on edges that are simultaneously present in multiple
layers. Even though the main focus of this thesis is on the structural properties
of the network, we are also interested in how geometry shapes the dynamical
processes running on top of the network.

1.3 thesis structure

This thesis consists of three parts, which are then further divided into chapters.

Theoretical background: The first part gives an introduction to the fields of
complex networks and network geometry.

In Chapter 2 we introduce the complex network as a mathematical object and
give an overview of some of its most important properties. In Chapter 3 we provide
a selection of random graph models that explain these properties. We especially fo-
cus on maximal entropy models as these contain the geometric models we employ
in this thesis. Network geometry is then introduced in Chapter 4. We give a short
historic overview of this field after which we define the S1 and H2 models, which
form the basis of this thesis. We summarize some of the other models that exist
in this field and finally introduce the concept of network embedding, where the
hidden metric space of a network can be revealed through various computational
methods.

Structural properties: This part constitutes the bulk of the thesis and is based on
various publications [35, 61, 62] as well as some yet unpublished work [63].

In Chapter 5 we investigate the phase transition that exists in the S1/H2-model
between a region of finite clustering when the geometric coupling is strong to a
region where this quantity vanishes in the thermodynamic limit when the coupling
is weak [30]. We map the model to a gas of non-interacting fermions in order
to show that the transition exhibits novel thermodynamic properties, such as a
diverging entropy density. We argue that the transition is topological in nature,
driven by a reorganization of the chordless cycles. Finally, we study the finite size
scaling behavior of the clustering coefficient and show that it decreases extremely
slowly with the network size in the critical and sub-critical regions, otherwise
known as the weak coupling regime. We show that this region can be divided in
a non-geometric regime, where clustering decays in the same way as when no
geometry is present, and a quasi-geometric regime, where the clustering coefficient
decays so slowly that it remains significant for most realistic system sizes. These
results on the clustering coefficient lead us to wonder what role the latent space
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plays in the weakly geometric regime. In Chapter 6 we approach this question from
the perspective of network embeddings. We extend Mercator [64], a computational
tool that combines machine learning and model based techniques to recover the
hidden coordinates of a network from its topology alone, to the weakly geometric
regime. By studying artificial networks generated with the S1/H2-model, we show
that geometric information can oftentimes indeed be extracted, even though the
coupling is weak. Interestingly, we find that the region for which this is possible
coincides with the quasi-geometric regime identified above. Finally, we show that
even when geometry is absent, the coordinates provided by Mercator can still be
used for practical tasks such as greedy routing.

In Chapter 7 we show that geometric information is important when studying
networks across scales. By extending the geometric renormalization framework [42]
to the weakly geometric regime, we show that, in the quasi-geometric region, self-
similarity in several important structural network properties can only be achieved
when geometric information is taken into account.

The results in Chapters 5-7 are theoretical in nature, in the sense that they are
based on artificial networks generated with the model. In Chapter 8 we show
that the results carry over to emperical networks as well. We argue that many
real networks are best described in the weakly-geometric regime, and show that,
here, Mercator is able to provide faithful network embeddings. In this regime
self-similar network replicas can also be obtained using the extended geometric
renormalization technique.

In Chapter 9 we extend our investigation of weakly geometric graphs to mul-
tiplex networks. These are networks where different types of interactions exist
between the nodes. These interactions are then modeled as existing in different
layers of the multiplex. We define the mutual network, which is constructed from
the edges that exist in all layers simultaneously. Studying its properties we are able
to prove rigorous results on the effects of both heterogeneity as well as geometry
on the scaling behavior of edge and triangle overlap. Analyzing several empirical
multiplexes we find that they generally sport low levels of edge overlap and high
levels of mutual clustering, results that are in line with our theoretical predictions.

Dynamical processes: In this part of the thesis, which is based on Ref. [65], we
investigate how geometry influences dynamical processes on complex networks,
focusing on diffusion-driven Turing patterns.

In Chapter 10 we study spontaneous pattern formation within the Turing frame-
work, and show that the underlying metric space can reveal periodic patterns
in real and artificial networks that remain hidden when approaching the net-
work from a purely topologic point of view. We show that by approximating the
network by its annealed counterpart, where links are resampled at a high rate,
the frequencies of the observed patterns can be predicted from the structural
and dynamical parameters alone. Finally, we show that several real networks are
capable of sustaining patterns.
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1.4 notation

Unless otherwise stated, we use the following notational conventions:

• If f (N) ≃ g(N) then lim
N→0

f (N)
g(N)

= 1. In words, this means they are asymptoti-

cally equivalent.

• If f (N) ∼ g(N) then ∃k1 > 0, ∃k2 > 0 and ∃N0 > 0 such that ∀N >
N0, k1 f (N) ≤ g(N) ≤ k2 f (N). In words, this means the two functions
asymptotically have the same scaling behavior with respect to N.

• If f (N) ∝ g(N) then ∃k ̸= 0 such that f (N) = kg(N). In words, this means
they are proportional to one another.

• Matrices are denoted with capitalized, boldface roman letters, e.g., A.

• Vectors are denoted with lower-case, boldface roman letters, e.g., v.



Part I

T H E O R E T I C A L B A C K G R O U N D



2
N E T W O R K S

At the most basic level and in its simplest form, a network is a collection of nodes
connected by links. These nodes represent the constituents of a system: Individuals
in social networks, organisms in trophic networks, countries in trade networks, etc.
The links in turn represent the interactions between these constituents. Once again,
these interactions can take on a wide range of forms depending on the system
in question. For example, in social networks they might represent friendships,
whereas in trophic networks they may encode the predator-prey relations. In
this Chapter we will introduce the concepts necessary to describe these systems
and introduce some of the most important properties shared by many real world
networks, irrespective of what systems they represent.

2.1 the basics

Mathematically, networks are often denoted as G(V, E), where V is the set of nodes
(or vertices) and E the set of links (or edges). The nodes are generally labeled by
integers V = {1, 2, ..., N}, where N ≡ |V| is the amount of nodes. The links in
turn can be labeled by their endpoints such that l = {i, j} ∈ E, with i, j ∈ V. An
example of such a network can be seen in Fig. 2.1. We see that in this specific
example we have seven nodes, N = 7, and seven links, M ≡ |E| = 7.

Of course, there are many ways to organize seven links among seven nodes,
and we need a way to encode the specific structure of a network. Throughout
this thesis, this structure will be referred to as the topology or connectivity of the
network. An efficient way to encode the structure is through the adjacency matrix
A. This is an N × N matrix, where the row and column indices are both related to
a specific node. The entries therefore represent pairs of nodes, or potential links.
We then define the adjacency matrix as

Aij =





1 if {i, j} ∈ E

0 else.
(2.1)

Note that this matrix is symmetric, and that its diagonal elements are zero as
we do not allow for self-loops, i.e. links that connect a node to itself. We also do
not allow for multiple edges between the same pair of nodes. Such networks are
called simple. In the case of our example, the adjacency matrix is given in Fig. 2.1.

8
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A =




0 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 0 1 1 1 1

0 0 1 0 1 0 0

0 0 1 1 0 0 0

0 0 1 0 0 0 0

0 0 1 0 0 0 0




, k =




1

2

5

2

2

1

1




Figure 2.1: An example of a simple graph with 7 nodes and 7 edges. The associated
adjacency matrix and degree sequence are also shown.

An important property of a node i is its degree ki, which counts the amount of
neighbors it has. This quantity can be obtained by summing the rows (or columns)
of the adjacency matrix

ki =
N

∑
j=1

Aij. (2.2)

For our specific example, k is given in Fig. 2.1.
The above definitions are for the most definition of a network. However, many

generalizations exist. One could for example study systems where the interactions
between agents are not symmetric. In that case we obtain a directed network, where
it could happen that a link l1 = {i, j} ∈ E but where l2 = {j, i} /∈ E. An example of
such a network could be a citation network, where author i cites author j but not
the other way around. This then leads to a non-symmetric adjacency matrix and
two types of degrees: If one sums over the columns one obtains the in-degree kin,i
of a node i, whereas summing over the rows leads to the out-degree kout,i. In the
example of the citation network, the in degree would encode how many people
cite author i and the out degree how many others are cited by this author.

In a weighted network, the interaction strength between two constituents is taken
into account. For example, in a trade network one might also wish to encode the
trade volume between two states. In this case the entries of adjacency cease to be
binary, but are rather given by integer or real numbers, depending on whether the
interaction strength is measured in terms of countable or uncountable units. In
this case we also need to generalize the idea of the degree of a node to its strength
si, which is the sum over the weights of the links attached to node i.

There might also be different types of interactions between nodes. In this case
we can represent the system in terms of a multiplex. Here, the adjacency matrix
is promoted to tensor with entries A(l)

ij , where l encodes the type of interaction
between nodes i and j. One can visualize this as a network with multiple layers,
where each layer represents a type of interaction, but where nodes are shared
between the layers. Note that here we can generalize even further to where the
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Figure 2.2: Examples of an (a) directed network, (b) weighted network, (c) multiplex net-
work and (d) hypergraph.

constituents in the different layers are also different; this then leads to interconnected
networks.

The final type of generalization we will mention here takes into account that
interactions between agents might not be pairwise. When modeling a biomolecular
network, three or more proteins can interact together to produce a certain effect
in a cell. When one of these proteins is missing, the process will not occur. It
would therefore not be realistic to model this biomolecular network as a set of
pairwise interactions between the proteins. Two ways of modeling such higher-
order interactions is through simplicial complexes and hypergraphs.

Of course, these generalizations can be combined: Some hypergraphs might be
directed, or one could think of applications where a weighted multiplex might
be the proper representation of the system. In this thesis we will mostly focus on
simple networks, briefly expanding our scope to include multiplexes in Chapter 9.
In Fig. 2.2 we display the directed, weighted, multiplex and hypergraph versions
of the example studied in the previous section.

2.2 network properties

As we have seen in the introduction, networks are ubiquitous and can be used
to represents all kinds of real world systems. One might expect networks from
completely distinct fields of study to be vastly different. However, one of the most
fascinating results of network science tells us that this is not the case. There are
several properties that most real world networks share, independent of which real
world system they represent. These properties can also be used as a definition
of a complex network1: A network is complex if it exhibits one or several of the
properties described in the following.

1 This is of course not the only possible definition of this rather vague term.
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2.2.1 Graph density

The graph density encodes how strongly a network is connected. For simple graphs
it is defined as

ρ =
M
(N

2 )
=

2M
N(N − 1)

, (2.3)

i.e., the amount of links present in the graph divided by the total possible amount
of links. Networks can be divided into two types depending on how this quantity
scales with the system size ρ ∼ Nα. When α = −1, the network is called sparse. If
α > −1, the network is called dense2.

Another way of encoding how strongly a networks is connected is through the
average degree

⟨k⟩ = 1
N

N

∑
i=1

ki =
1
N

N

∑
i=1

N

∑
j=1

Aij =
2M
N

. (2.4)

Sparse networks, like the ones studied in this thesis, have average degrees that
do not depend on the system size: ⟨k⟩ ∼ N0. Of course, for many real networks
the scaling with respect to the system size is not an accessible quantity. Therefore,
when talking about sparsity in the context of real systems we mostly mean that
⟨k⟩ ≪ N. This is a feature many real networks exhibit.

An important question to answer when studying a network is how many
connected components it has. When the bulk of the network is contained in a single
connected entity, this component is called the giant connected component, or GCC.
Whether or not a GCC exists depends on the amount of links in the network, and
is studied in the field of network percolation. In this thesis we will only work with
networks where a GCC is present, unless otherwise specified.

2.2.2 Degree heterogeneity

The degree distribution P(k) gives the probability of a randomly chosen node i
having degree k, and can thus be estimated by the fraction of nodes that have
degree k

P(k) =
Nk
N

, (2.5)

where Nk = |{i ∈ V |ki = k}|. Another, related, quantity is the complementary
cumulative degree distribution, also knows as the tail distribution, given by

Pc(k) =
N−1

∑
q=k+1

P(q). (2.6)

How broad the degree distribution is captures the degree heterogeneity of a graph.
At one extreme we have the regular graphs, where every node has the same degree.
For a k-regular graph, the degree distribution is then P(q) = δkq. Adding a bit

2 Note that the definition of sparse and dense is different in the math literature. There, α = −1 is called
ultra-sparse, −1 < α < 0 are called sparse and only when α = 0 is a graph dense.
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more spread to the degrees might lead to a Poisson distribution P(k) = 1
k! ⟨k⟩ke−⟨k⟩.

The variance of such a distribution is ⟨k⟩, which, if we assume a sparse graph,
is small. This implies that such networks are still very homogeneous. It has been
shown, though, that a common property of a wide range of real networks is that
they are heterogeneous, i.e. that their degree distribution has a large variance. These
networks are also characterized by the presence of hubs, nodes with a degree much
larger than the average.

One way of modeling such heterogeneity is by assuming that the degree distri-
bution can be described well by a power law3

P(k) = ζk−γ, (2.7)

where ζ is some constant [16, 66–68]. The parameter γ governs how fast the distri-
bution falls as one increases k. Note that this distribution is the only normalizable
distribution that is invariant under rescaling. It does not matter at which scale we
observe the distribution, its shape is always the same. In mathematical notation
this can be summarized as P(bk) = b−γP(k). This distribution, and networks
whose degrees follow it, are therefore often called scale-free [69].

We can define three different regimes depending on the characteristic exponent
γ. First, when γ ≤ 2 the average degree ⟨k⟩ diverges as N goes to infinity, which is
not in line with our sparsity assumption. Second, when γ > 3 the distribution falls
off very fast. In real data it is therefore very difficult to distinguish such degree
distributions from more homogeneous distributions like the Poisson [68]. Finally,
we have the region 2 < γ ≤ 3. Here, the average degree remains finite as N → ∞,
but the second moment, and thus the variance of the distribution, does not. We
thus obtain a sparse graph where the fluctuations around the mean are large. This
is another, more imprecise definition of scale-free: If one picks a node at random
one has no way of knowing what the scale of its degree will be [68]. It might be
that the node is connected to only a handful of neighbors or to all other nodes in
the network.

It is good to take a moment and discuss some subtleties. Because, what does it
mean for a "distribution to be described well by a power law"? If we take a real
network and extract its degree distribution, how are we supposed to know if it
is actually scale-free? One might argue that Eq. (2.7) only has to hold for the tail
of the distribution k > kl for some kl > kmin [70]. Or maybe we can expect finite
size effects to introduce a cut-off in the distribution such that is should only hold
in some region kl < k < ku for some kl > kmin and ku < kmax [71, 72]. Even if we
clear up these concerns, it is still not always clear if the power law fits the data
well [73]. It might fit well in comparison to something like a Poisson, but maybe
there are other distribution that would fit equally well or even better [74].

The lack of precision in the definition of scale-free networks has led to contra-
dictory results on their ubiquity. In their highly cited work [74], Broido and Closet
show that the log-normal distribution fit a wide range of real networks better than
the power law, and therefore conclude that "scale-free networks are rare". However,

3 Such a distribution is also called a Pareto distribution.
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Voitalov et al. [75] argue that trying to fit an exact power law to data is unrealistic
due to the presence of noise and fluctuations. Even network models which are
designed to produce pure power laws fail to do so [76]. The authors therefore
argue that one should focus on the extreme behavior of the distribution, i.e. on the
behavior of the largest degrees, as these are solely responsible for a wide range of
structural and dynamical properties of the network. They extend the definition
of scale-freeness to include all networks whose degree distribution is regularly
varying, i.e. whose probability distribution function is given by P(k) = l(k)k−γ,
where l(k) is slowly varying4 such that the tail of the distribution is a power
law [78, 79]. They show that many real networks fall into this class and conclude
that scale-free networks are widespread.

They base this claim on extreme value theory [80]. Here, the idea is to draw N
random numbers i.i.d. from some distribution. The maximum value in this sample
is then again a random variable, and extreme value theory tries to characterize
its distribution, which is called the extreme value distribution. It can be shown that
all regularly varying distributions lead to extreme value distribution that fall into
the same family, characterized by the extreme value index ξ > 0 [81]. This index
is related to the exponent of the power law tail as ξ = 1/(γ − 1). The expected
largest value in a sample of size N is then given by

kc ∝ Nξ , (2.8)

which we will refer to as the natural cut-off [82]. Note that all this relies on several
assumptions about the degree distribution, most notably that the degrees are
drawn i.i.d. However, this is generally not the case as node degrees must also
comply with constraints set by the network structure. For example, a node of
course has a maximum degree of kmax = N − 1, i.e. it cannot be connected to more
nodes than exist in the network. We will see examples of other degree correlations
in the next section. All in all, the topic of scale-freeness in networks still has many
unanswered questions.

To avoid entering in this discussion, in this thesis we will refer to real networks
as either heterogeneous of homogeneous, depending on whether their degree
distribution is relatively broad or not. We will not claim anything about their
scale-freeness, nor try and fit their degree distribution.

2.2.3 Degree correlations

In the previous section we discussed the distribution of the degrees of individual
nodes. Of course, these nodes are connected through links, and it is interesting
to ask how the degrees of the nodes at the ends of these links are correlated. Are
hubs generally connected to each other? Or do they avoid one another and mostly
connect to low degree nodes?

4 Mathematically, a function l is slowly varying if, ∀a > 0 l(ak)
l(k) = 1. Examples include functions that

converge to a constant or to (an arbitrary power of) a logarithm. [77]
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We can answer these questions by studying the degree correlation function [83, 84],
defined as

knn(k) = ∑
k′

k′P(k′|k), (2.9)

where P(k′|k) gives the probability that a neighbor of a node with degree k has
degree k′. The degree correlation function therefore represents the average degree
of the neighbors of a node with degree k.

On the basis of the degree correlation function we can define three types of
networks [15, 69]: 1) In assortative networks, knn(k) is an increasing function of k;
low degree nodes generally have neighbors which also have small degrees and
hubs mostly have neighbors which are also hubs. 2) In neutral networks, the degree
correlation function is given by a constant; no degree correlations are present and
the average degree of the neighbors of a node is independent of its degree. In this
case P(k′|k) is just the probability that a randomly chosen node connects to a node
with degree k′. The probability of connecting to a specific node i with degree k′

is k′/(N⟨k⟩). To understand this, let us cut all edges in half so we end up with
2M = N⟨k⟩ ends of edges, which we call stubs. Then, k′ of these stubs belong to
node i, leading to our result. Now, there are Nk′ = NP(k′) such nodes with degree
k′, so the final result is

Pneutral(k′|k) =
k′P(k′)
⟨k⟩ , (2.10)

which leads to

knn,neutral(k) =
1
⟨k⟩ ∑

k′
k′2P(k′) =

⟨k2⟩
⟨k⟩ , (2.11)

which in independent of k [68]. 3) In disassortative networks, the degree correlation
function decreases with k. This implies that hubs prefer to connect to low degree
nodes and vice versa.

In scale-free networks, something surprising occurs when attempting to create
neutral networks [82, 85]. Let us study the expected number of connections
between two nodes i and j with degrees ki and k j respectively. If no degree
correlations are present, the expected amount of links between these two nodes
will be

ϵij =
kik j

N⟨k⟩ . (2.12)

This can be understood as follows. Draw two stubs at random; the probability that
one belongs to i and the other to j is 2kik j/(2M)2, where the factor two comes
from the fact that we are working with an undirected network; we now repeat this
M times to connect all stubs, leading to the expectation shown in Eq. (2.12). Of
course, we are working with simple graphs, so this quantity should never exceed
1. However, we saw in the previous section that for a scale-free network with
exponent γ, the expected maximum degree scales is N1/(γ−1). If we assume the
second largest degree to scale similarly, the expected amount of links between
these two nodes scales as ϵmax ∼ N(3−γ)/(γ−1), which is larger than 1 for γ ≤ 3.
Enforcing that ϵij ≤ 1 for all i and j means that hubs cannot be connected to
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other hubs, at least not as often as one would expect for a neutral network. This
introduces structural correlations into the network, particularly causing it to become
disassortative. One can avoid these correlations by introducing a structural cut-off
kmax ∼

√
N such that ϵmax ∼ N0.

2.2.4 Clustering

Real networks often contain a large amount of triangles. In a social networks, for
example, this can be understood with the conventional wisdom "the friend of my
friend is my friend". The friend of my friend is very likely to live in a similar social
milieu as me and we are thus very likely to also be friends, thus creating a triangle
in our social network. How strong this effect is is quantified by the clustering
coefficient, which can be defined both locally and globally. The local clustering
coefficient is given for each node separately. For node i, it can be defined as

ci =
(number of pairs of neighbors of i that are connected)

(number of pairs of neighbors of i)
(2.13)

Note that the numerator is equivalent to the amount of triangles attached to node
i, and that the denominator can be replaced by the maximum possible amount
of triangles attached to i, which is given by ki(ki − 1)/2. Of course, this latter
quantity is zero for nodes with degree zero or one. For this reason we generally
only take nodes with degree strictly larger than one into account when calculating
this quantity.

In the example in Fig. 2.1, we see that there is one triangle connected to the
central node, which has five neighbors in total. Thus, the local clustering coefficient
of that node is ci = 2/(5(5 − 1)) = 1/10.

An important (global) quantity that we will use throughout the thesis is the
average local clustering coefficient, which is given by

c =
1

Nk>1

Nk>1

∑
i=1

ci. (2.14)

Note that here we normalize by Nk>1 ≡ |i ∈ V|ki > 1| as we can only define the
local clustering coefficient for these nodes.

One could also define a global clustering coefficient directly using the concept
of triplets. A triplet is a set of three nodes connected by either two or three links.
This measure is also called the transitivity and can be defined as

C =
3 × (number of triangles)

(number of connected triplets)
. (2.15)

The fact that there are various measures describing the amount of triangles in a
networks sometimes leads to confusion in the literature. To avoid such confusion
in this thesis we will only work with Eq. (2.14), unless otherwise stated.
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2.2.5 Communities

We have already seen several examples of how to the structure of complex networks.
We now want to ask if structure can also be found in the relation between groups
of nodes. One way of answering this questions is through the concept of network
communities [86, 87]. A community can (loosely) be defined as follows:

A community is a set of nodes with many internal links and few
external ones.

This is of course a rather vague definition as it is not clear what exactly is meant
by "many" or "few". This is a problem because when finding communities in
networks, a process known as community detection, it helps to know what exactly
one is looking for. One of the ways of addressing this ambiguity is by considering
that the amount of internal and external links should be compared to the expected
amount of links if connections were made at random. This is the idea behind
community detection algorithms based on modularity [88].

Say we divide our network into NC communities {Vi}NC
i=1 such that ∪NC

i=1Vi = V
and Vi ∩ Vj = ∅ for i ̸= j. Put simply, all nodes should be contained in exactly

one of NC communities. For a given node i we define σ(i) ∈ {Vj}NC
j=1 as a classifier

which tells us in which community it is located. We can then define the modularity
as follows

Q =
1
M ∑

i<j

(
Aij −

kik j

2M

)
δ(σ(i), σ(j)), (2.16)

where δ(σ(i), σ(j)) = 1 if σ(i) = σ(j) and zero otherwise. How should we interpret
this? Say we take two nodes i and j that lie in the same community. The first
term in the summand checks whether or not a links is present between them. We
then want to compare this with the expected amount of links between node i
and j if edges are placed randomly conditioned on their degrees. We studied this
quantity in the previous section and found that it was given by Eq. (2.12), exactly
the second term in the summand in Eq. (2.16).

The modularity thus represents the difference between the actual and expected
number of links within communities in the network, normalized w.r.t. the total
number of links. If modularity is positive, there are more internal links than we
would expect and if it is negative there are less. Of course, there being more (less)
internal links than expected immediately implies that there are also less (more)
external ones. A high modularity therefore implies that the communities {Vi}NC

i=1
comply with our definition for them.

For community detection, a good strategy might then be to find the partition of
the network that maximizes the modularity. This is, however, not a trivial endeavor
as 1) one does not usually know how many communities are contained in the
network and 2) there are many different ways N nodes can be distributed over
NC communities [89]. Checking all possible distributions is, therefore, mostly not
feasible. Many other optimization methods exist that try and find the optimal
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partition without going through all the possibilities. Possibly the most widely
used of these methods is the Louvain algorithm [90].

Even though modularity methods can be very useful, there are some settings in
which they are less suitable [91]. It has been shown that these methods overfit, in
the sense that they find communities even in random data [92]. They also have a
resolution limit, meaning that they cannot observe communities below a certain
scale [93]. Therefore, it is important to not directly give explicative meaning to the
communities found when maximizing modularity. When looking at real data, the
communities found might not really ’exist’, in the sense that they are not repre-
sentative of any meaningful group. In a friendship network, for example, these
methods might not give you actual friend groups. Other methods, mostly based on
statistical inference and generative models, are more suitable for problems where
we want to explain real data [94]. Modularity maximization is descriptive, meaning
that it finds a partition with communities that comply with our initial definition:
They have many internal and few external links. For the purposes of this thesis,
this is sufficient; it tells us something about the structure of the observed network.
We do not claim that the communities found necessarily correspond to any real
groups in the data.

2.2.6 Small world

The small world property is best illustrated intuitively using Milgram’s small world
experiment, which originated the now famous idea of six degrees of separation [95,
96]. Milgram asked several people in Nebraska and Kansas to send a package to a
specific person who lived in Boston. The catch was, however, that they were not
allowed to send it directly to the recipient. Instead, they were asked to send the
package to someone in their direct social circle that they thought might have a
better chance of knowing the recipient personally. This friend would then do the
same, until finally the package arrived at someone who was on a first name basis
with the target and could thus forward it to them. Surprisingly, even though most
packages never reached their destination, those which did arrived in only a small
amount of steps. In the specific case of Milgram’s experiment, the average path
length was six, hence "six degrees of separation”.

Of course, this specific number needs to be taken with a grain of salt [97].
However, the general idea holds: Even though the system under study is vast (in
Milgram’s case it theoretically encompassed the entire US population), the typical
distance between agents is small [98, 99].

Let us now formalize this idea. First, we define a walk as a sequence of alternating
nodes and edges, starting and ending with a node, such that each node is connected
to the subsequent edge and each edge to the subsequent node. The length of a
walk is the amount of edges in the sequence and a path is a special type of walk
where each edge can only be used once. Finally, the geodesic topological distance
dij is the length of the shortest path between nodes i and j. A network is said to
exhibit the small world property when the average geodesic distance between any
pair of nodes ⟨d⟩ = 2

N(N−1) ∑i<j dij scales with the system size slower than any
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power law. When the scaling is extremely slow and ⟨d⟩ ∼ ln ln N, the network is
said to be ultra-small world. Note that, as in the case of sparsity, this definition is
not generally applicable to real networks. Once again for these kind of networks
small worldness generally implies that ⟨d⟩ ≪ N.

2.2.7 Other properties

The above list of network properties is in no way exhaustive. There are, for example,
many different centrality measures [100, 101], which quantify the importance of
the nodes within the network, in turn defining a hierarchical ordering. One can also
define a nested hierarchy of nodes, where higher level elements consist of and
contain lower level elements [102–104]. An example of such a hierarchy is achieved
through the k-core decomposition [105, 106], where nodes are removed according
to their degree until different nested sets of nodes are obtained. Another type of
hierarchy is based on flows. This type is mostly relevant for directed networks,
where lower level nodes are influenced by higher order ones [107, 108].

One can also study networks from the point of view of motifs [109, 110]. These
are small subgraphs, such as fully connected graphs of a few nodes. One can
then study their frequency within the larger graph, where it is often found they
occur far more often than in randomized networks. Different classes of networks
contain different types of motifs, indicating that they are important in defining the
network function.



3
R A N D O M G R A P H S

In the previous Chapter, we saw that many real networks share important features.
To understand why this happens, many generative network models have been
proposed. One class of such models is given by random graphs. Here, the connec-
tions between the nodes are made at random in such a way that specific network
properties are reproduced. Studying these network models has many advantages.
Firstly, random graphs allow us to tune all kinds of network properties. This flexi-
bility allows us to study the effect of these properties on the networks structure or
on dynamical processes on top of the network. Secondly, where for real networks
we generally only have a single instance, random graphs allow us to create large
ensembles of graphs with similar properties. One can then contrast real data with
these emsembles; how likely is it that our observed network was obtained with
this random process. The ease with which artificial data can be generated also
allows for better statistics than when working with finite, often incomplete, real
data. Finally, random graphs allow us to create networks of different sized and
therefore to study size dependent effects.

For these reasons, in this thesis we will mostly work with random graphs,
although we will make a point of always comparing our results with real data. We
will introduce the specific random graph model on which this thesis is based, the
geometric S1 model in Chapter 4. In this section we will give an overview of some
other models that we deem relevant, either because they are of historical impor-
tance or because they will be referenced in the thesis. However, it is important to
note that the list of models described here is in no way exhaustive. For a more
complete overview we refer the reader to Refs. [16, 111–114].

3.1 erdös renyi

Arguably the simplest, and best-known random graph model is the Erdös-Renyi
(ER) model, named after the two mathematicians who published a celebrated
series of papers on it [115]. It allows us to fix the graph density or, equivalently, the
average degree. There are two versions of this model: If we want to fix the density
exactly, we must turn to the G(N, M) model, where we sample uniformly from
the set of all graph with exactly N nodes and M links. The ensemble generated
by this procedure is, then, microcanonical [116]. We can sample networks from this

19
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ensemble by distributing M links uniformly over the (N
2 ) pairs of nodes in the

network.
We can also relax the constraint somewhat and only fix the expected density. In

this case we define the G(N, p) model [117], where we go through all (N
2 ) pairs of

nodes and create a link between them with probability p. The expected density
of such a network is then given by ⟨ρ⟩ER = p. As we are fixing only the expected
density, we are working in the canonical-ensemble1. Both models have very similar
properties, but the latter is easier to work with and we therefore refer to it when
discussing the ER model. Note that is was actually Gilbert who first introduced
the G(N, p) model [117]. However, for historical reasons, it is Erdös and Renyi
whose names are mostly linked to both models.

One of the real world features present in the ER model is the small world
property; it can be shown that ⟨d⟩ER ∼ log N [118, 119]. However, even though
the ER model is the quintessential random graph model, it also lacks several key
properties of real networks. First of all, is does in general not lead to a clustered
network as cER ∼ N−1 vanishes in the thermodynamic limit [16]. Furthermore,
the degree distribution is given by a binomial distribution, which in the large N,
sparse limit takes on a Poisson form. It is, thus, very homogeneous [112].

3.2 watts strogatz

Our next objective is a model which leads to a substantial amount of clustering,
i.e. where the density of triangles is high. A very simple candidate is the regular
ring lattice (RRL) shown in Fig. 3.1a. It can be shown that for this graph we have

cRRL =
3
4
(⟨k⟩ − 2)
(⟨k⟩ − 1)

, (3.1)

which is independent of the amount of nodes [120]. This fact can be understood by
noting that connections here are local; you can make the circle as large as you like,
the local neighborhood of a node stays the same. This locality is also a problem,
however, as it causes the graph to be large world. When moving from node i to j,
you necessarily have to follow the circle, and the largest steps you can take are of
size ⟨k⟩/2. Thus, if i and j are l lattice spacings apart, the shortest path will have
2l/⟨k⟩ hops. Averaging this over all pairs of nodes we obtain that

⟨d⟩RRL =
N

2⟨k⟩ , (3.2)

1 In this thesis, naming ensemble classes is not as straightforward as in standard statistical physics. There,
canonical ensembles have a fixed particle number but variable energy, while grand canonical ensembles
allow both to fluctuate. But in the case of the ER ensemble there is no energy, and only the number of
links is free to fluctuate. Is this then a canonical ensemble because there is only one constraint that is
fixed up to expectation? Or do we have a grand canonical ensemble because the amount of links is
reminiscent of the particle number? To avoid addressing these questions for each encountered model,
we refer to all ensembles where the constraints are fixed in expectation as "canonical", regardless of the
type and number of these constraints. The only exception is the S1-model introduced in Chapter 4.2,
where both an energy and particle number can be defined, making the mapping to the grand canonical
ensemble one-to-one.
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Figure 3.1: Realizations of the WS for three different values of the rewiring probability p.

which scales linearly with the system size, implying a large world network [16].
We now have two types of networks: The RRL with its high levels of clustering

and the ER model with its small worldness. A third model, the Watts-Strogatz (WS)
model, combines these two by interpolating between them [121]. We start with the
RRL, and rewire each of the M edges with probability p. The rewiring is done by
removing the original link and placing a new one between two uniformly chosen
nodes. Note that, when p is small, an alternative way to implement the model
is to add a set of random links to the RRL. This alternative is more analytically
tractable and therefore often preferable.

It is clear that the model produces the original RRL when p = 0 and leads to a
realization of the ER model when p = 1. The surprising result here is that for a
relatively large range of small nonzero p, the model produces networks that both
have high levels of clustering and short mean geodesic distances. This result is
visualized in Fig. 3.1. Even though exact analytical results for this model are hard
to obtain, it can be shown that, for small values of the rewiring probability, the
model leads to networks with ⟨d⟩WS ∼ log N and c ∼ N0, i.e., to networks that
are both small world as clustered [121, 122].

We can understand why this happens by thinking again about locality. When
p is zero, all connections are local. However, when the rewiring probability gets
tuned away from zero, a few short-cuts are created, linking distant parts of the
network. This allows one to cover large distances in a relatively small amount of
hops, leading to small world behavior. It can be shown that only a few shortcuts
are necessary to obtain this effect. The amount of rewirings is then also small,
such that locally the network still looks like the RRL, leading to high levels of
clustering. This way of thinking will come in handy when studying geometric
network models.
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3.3 the configuration model

We now introduce a set of related models which generalize the ER graph models
to allow for heterogeneous degree distributions. These models will turn out to be
a limiting case of the geometric S1-model on which this thesis is mainly based.

3.3.1 The classic configuration model

The first model we study is the configuration model (CM) [123, 124]. This model
focuses on the degree distribution and is defined in a similar way as the G(N, M).
Here, we sample from the set G of all networks those that have a certain degree
sequence k = {ki}i∈V . Thus, as was the case for the G(N, M), the CM defines a
microcanonical ensemble.

Where sampling uniformly from the G(N, M) ensemble was trivial, the same
cannot be said for the configuration model. The most common sampling method
is based on stubs. The basic idea is that we visualize our degree sequence as N
nodes i with each ki stubs attached to them. We then choose two stubs uniformly
at random, and connect them2. The final network is obtained by continuing this
process until all stubs are connected [125, 126].

There are, however, several problems with this method, all having to do with
the creation of multiple links between pairs of nodes as well as self-loops between
a node and itself. Both of these objects are at odds with the assumption that
we are working with simple graphs. The creation of these types of links also
violates the assumption that each network in the ensemble is created with equal
likelihood [16]. It can be shown that the expected amounts of multiedges and
self-loops are constants with respect to the system size, as long as ⟨k2⟩ is as well,
i.e., if the variance remains finite in the thermodynamic limit. In this case the
density of these types of edges vanishes in the thermodynamic limit, implying
that there the proposed method does properly sample from the ensemble [112,
127, 128]. For power law degree sequences with exponent γ ≤ 3, the second
moment ⟨k2⟩ diverges with N. This results in a macroscopic amount of self-loops
and multiedges, which implies that for these types of degree sequences the stub
matching method fails even in the thermodynamic limit [127]3. One might wonder
why we cannot just reject the stub matchings that lead to non-desirable edge types;
the problem is that this would lead to non-uniform sampling from the ensemble.

Other, uniform, sampling methods can be employed that do not lead to mul-
tiedges nor self-loops, the most notable being degree-preserving rewiring [15,
129, 130]. Here, we start with a single network realization with no self-loops nor
multiedges4. Then, two edges, l1 = {i, j} and l2 = {l, m}, are selected and rewired

2 The attentive reader recognizes in this process the implicit null-model in the definition of modularity.
3 We already observed this result in the section on degree correlations. There, the stub matching method

was used to create neutral networks, and also there we saw that for γ ≤ 3 the expected amount of
multiedges was too high.

4 Not all degree sequences permit such a realization. Sequences for which it is possible to generate a
simple graph are called graphical [131].
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such that l′1 = {i, m} and l′2 = {j, l}. The rewiring is rejected if it leads to a double
edge or self-loop. An important open problem is the mixing time [132] of such a
procedure, i.e., how many swaps should one perform before the new graph can be
seen as independent from the old? One popular method is to take some network
measure and compare its variance for a sequence of sampled graphs to its variance
across multiple sequences. One might also study the the autocorrelation of such
measures within a sequence to see when to stop rewiring.

3.3.2 The soft configuration model

Another way to circumvent the issues with sampling from the microcanonical
ensemble defined by the CM is by relaxing the constraint of having an exact degree
sequence and rather asking for an expected degree sequence5. This then leads us
to define the soft configuration model (SCM), where, as in the case of the G(N, p),
we work with a canonical ensemble [116, 134–137].

Let k∗ denote the desired degree sequence. We then want to find the probability
distribution P(G) over all simple graphs G ∈ G that 1) is normalized, 2) is
maximally random, i.e. that maximizes the Shannon entropy

S = − ∑
G∈G

P(G) log (P(G)) , (3.3)

and 3) leads to the expected degree sequence being the desired one:

∑
G∈G

k(G)P(G) = k∗, (3.4)

where k(G) denotes the degree sequence of the network G. We can obtain the
distribution that accomplishes these demands through the method of Lagrange
multipliers. We introduce the Lagrange multipliers α and {νi}i∈V and maximize
the entropy as

δ

δP(G)

(
S + α

(
1 − ∑

G∈G
P(G)

)
+ ∑

i∈V
νi

(
k∗i − ∑

G∈G
ki(G)P(G)

))
= 0. (3.5)

This then leads to
log P(G) + 1 + α + ∑

i∈V
νiki(G) = 0, (3.6)

which can be rewritten as

P(G) =
1
Z

e−HSCM(G), (3.7)

where HSCM(G) is the graph Hamiltonian

HSCM(G) = ∑
i∈V

νiki(G) (3.8)

5 This might also actually be a more realistic constraint as the degree sequence taken from a real network
cannot necessarily be taken to be exact, as measurement errors and noise might have affected it [133].
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and Z is the partition function

Z = e1+α = ∑
G∈G

e−HSCM(G). (3.9)

In the last step we set α such that the probability is indeed normalized6.
With this we have defined the ensemble, but how do we sample from it? First,

we note that by using ki = ∑j∈V Aij we can rewrite the Hamiltonian as

H(G) = ∑
i<j

(νi + νj)Aij(G), (3.10)

where the sum goes over all (N
2 ) pairs of nodes in the network and Aij(G) denotes

the adjacency matrix of network G. We then rewrite the partition function as

Z = ∑
{A}

∏
i<j

e−(νi+νj)Aij = ∏
i<j

1

∑
Aij=0

e−(νi+νj)Aij = ∏
i<j

(
1 + e−(νi+νj)

)
(3.11)

where we have used that Aij ∈ {0, 1} because we are working with simple graphs.
Plugging this expression into Eq. (3.7) we obtain

P(G) = ∏
i<j

e−(νi+νj)Aij(G)

1 + e−(νi+νj)
= ∏

i<j
p

Aij
ij (1 − pij)

1−Aij , (3.12)

where we have defined the connection probability

pij =
1

1 + eνi+νj
. (3.13)

The reader might have noticed that this connection probability has the same form
as the Fermi-Dirac distribution describing the occupation of energy states in a
gas of free fermions. This was to be expected, as the two systems are surprisingly
similar. In the case of the SCM, the available states are defined by the pairs of
nodes, and each state can either be filled or not, reminiscent of the Pauli exclusion
principle.

We have thus shown that the probability P(G) can be decomposed into (N
2 )

Bernoulli trials with success probability pij conditioned on the Lagrange multi-
pliers, which immediately gives us a way to sample from the ensemble: We just
need assign to each node i a value νi and then connect each pair of nodes i and j
with probability pij. We often choose to introduce the suggestively named hidden
degrees κi = ηe−νi with which we rewrite the connection probability as

pij =
1

1 + η2

κiκj

. (3.14)

6 This procedure can be generalized to include many different types of constraints on graph properties,
leading to the large class of exponential random graph models.
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The only remaining task is to figure out how to set the Lagrange multipliers
{νi}i∈V , or equivalently, the hidden degrees {κi}i∈V . We do this by noting that

k∗i = ki = ∑
j ̸=i

pij, (3.15)

where ki is the expected degree of node i and where k∗i again represents the desired
degree. This defines a system of N equations which fully fixes the values of the
Lagrange multipliers and hidden parameters.

3.3.3 The Chung-Lu model

If we now assume for a moment that κi ≪ η for all i ∈ V, we can approximate
Eq. (3.14) as pij ≃

κiκj
η2 ≡ p̃ij. Plugging this into Eq. (3.15) we obtain

ki ≃ ∑
j ̸=i

p̃ij = κi
1
η2 ∑

j ̸=i
κj = κi

N⟨κ⟩
η2 , (3.16)

which is proportional to κi. We can then choose η such that the hidden degree
κi is equal to the expected degree of node i, justifying its name. The connection
probability then becomes

p̃ij =
κiκj

N⟨k⟩ . (3.17)

This connection probability belongs to the Chung-Lu (CL) model [118, 134] and
is equivalent to the expected amount of edges in the configuration model (see
Eq. (2.12)). There, we noted that for power law distributions with exponent γ ≤ 3,
the expected amount of edges between hubs is larger than one. Then, p̃ij > 1 and,
therefore, not a proper probability. In this case also the assumption κi ≪ η =√

N⟨k⟩ fails for the largest hubs as κc ∼ N1/(γ−1). In the CL, this is solved by
redefining the connection probability as

pCL
ij = min

(
1,

κiκj

N⟨k⟩

)
. (3.18)

Note that neither Eq. (3.14) nor Eq. (3.18) can be factorized, i.e., they cannot
be written as pij ̸= f (κi)g(κj) [137]. This implies that, a priori, degrees will be
correlated. This is in line with our expectations for a power law network with γ ≤ 3.
Only when Eq. (3.17) is a good approximation of the connection probabilities do
we expect to obtain neutral networks.

It has been shown that Eq. (3.18) and (3.14) lead to asymptotically equivalent
graphs if ⟨κ⟩ and ⟨κ2⟩ are finite [138]. If the second moment diverges, the resulting
graphs might not be asymptotically equivalent, but many properties will still be
the same. For example, all results derived in Ref. [139] using a generalization of
Eq. (3.18) (resulting in the inhomogeneous random graph model) are shown to also
hold when using Eq. (3.14).



3.3 the configuration model 26

3.3.4 The hypersoft configuration model

In the SCM, the degree sequence k∗ sets the expected degree of each node in
the network. This might, however, still be too strong of a constraint. Many net-
works are constantly evolving, leading to changing node degrees. What often
not does change, however, is the degree distribution. The hypersoft configuration
model (HSCM) is based on this idea [133, 140–143]. Here, instead of the hard
constraint k = k∗ of the CM or the soft constraint k = k∗ of the SCM, we have the
hypersoft constraint that states that the degree distribution of the graphs in the
sample should converge to the desired one. In order to achieve this we promote
the hidden degrees κi to random variables drawn from some distribution ρ(κ).
This model then defines a hypercanonical ensemble.

Let us assume the distribution of hidden degrees is power law:

ρ(κ) =




(γ − 1)κγ−1

0 κ−γ if κ0 < κ

0 else,
(3.19)

i.e., let κ have a Pareto distribution with scale parameter κ0 and shape parameter γ− 1.
Note that the mean of such a distribution is ⟨κ⟩ = γ−1

γ−2 κ0. The HSCM equivalent
of Eq. (3.15) is7

k(κ) = N
∫

ρ(κ′)p(κ, κ′)dκ′, (3.22)

and plugging in Eq. (3.19) we obtain

k(κ) = N
∫ ∞

κ0

(κ′)−γ

1 + η2

κκ′
dκ′ = N2F1

(
1, γ − 1; γ;− η2

κ0κ

)
, (3.23)

where 2F1(a, b; c; z) is the ordinary hypergeometric function.
If we assume that η2 ≫ κκ0 this reduces to

k(κ) ≃ N⟨κ⟩
η2 κ. (3.24)

We can then choose η =
√

N⟨κ⟩ such that the hidden degrees and expected
degrees coincide. We then immediately see that ⟨k⟩ = ⟨κ⟩.

7 This can be seen as follows: Given a certain sequence of hidden degrees {κi}i∈V , we can find the
expected degree of node i using Eq. (3.15). Now, we want to marginalize over the hidden degrees as
they are random variables as well. In mathematical notation this can be written as

k(κi) = E
(

k(κi)|{κj}j ̸=i

)
= E

(
∑
j ̸=i

p(κi , κj)|{κj}j ̸=i

)
. (3.20)

We now use the fact that in the SCM, edges are drawn independently, which allows us to switch the
sum and the expectation value leading to

k(κi) = ∑
j ̸=i

∫
ρ(κ′)p(κi , κ′)dκ′ = (N − 1)

∫
ρ(κ′)p(κi , κ′)dκ′, (3.21)

where in the last step we have used that all κj are drawn from the same distribution. If we now relabel
κi → κ and assume N ≫ 1, we obtain Eq. (3.22).
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Let us return for a moment to the assumption that N⟨κ⟩ = η2 ≪ κκ0, which
can be rewritten as N ≪ κ (γ − 2)/(γ − 1). Intuitively, this should hold for all
κ, as the degree of a node can never exceed the system size. However, κ is not
the degree of the node, but rather a hidden parameter that we assign to each
node. In principle there is no reason why it should be impossible for it to be
larger than N. In practice, κ is drawn from a Pareto distribution, and we know
that κmax ∼ N1/(γ−1), which is much smaller than N for γ > 2. Yet, κmax gives
the expected maximal hidden degree. Fluctuations might cause some nodes to
have hidden degrees larger than this value, and even larger than N. In fact, it
can be shown8 that, for finite systems, P(κmax ≥ N) is rather large when γ ≳ 2.
In this region it might therefore be useful to introduce an artificial cut-off in the
distribution, enforcing κmax < N. In this case, we redefine the distribution of the
hidden degrees as

ρ̃(κ) =





(γ−1)κγ−1
0

1−
(

κc
κ0

) κ−γ if κ0 < κ < κc

0 else.
(3.25)

Different cut-offs can of course be chosen, but in this thesis we will tend to set
κc = κ0N1/(γ−1), the natural cut-off9.

We have shown that for the HSCM with power law hidden degree distribution,
k(κ) = κ. However, this result does not imply that the hidden degree distribution
ρ(κ) and actual degree distribution P(k) are equal. It can be shown that the actual
degree distribution will approach a mixed Poisson distribution

P(k) ≃ 1
k!

∫
κke−κρ(κ)dκ, (3.26)

which, in the case of the Pareto distribution Eq. (3.19), leads to

P(k) ≃ (γ − 1)κγ−1
0

Γ(k + 1 − γ, κ0)

k!
, (3.27)

where Γ(a, b) is the incomplete gamma function. This distribution has a power
law tail with exponent γ, implying the resulting network is scale-free in the sense
that its degree distribution is regularly varying.

3.3.5 The relation between the SCM and HSCM

So far, we have seen three related ways to generate networks with non-trivial
degree distributions. First, the configuration model allows us to fix the degree

8 Given ρ(κ) = (γ − 1)κγ−1
0 κ−γ, the probability of a single event being smaller than N is P(κ ≤ N) =∫ N

κ0
dκρ(κ) = 1 − (κ0/N)(γ−1). The probability of all events being smaller than N, which is equivalent

to the maximal value being smaller than N is equal to P(κmax ≤ N) = P(κ ≤ N)N . The probability of
the maximal value being larger than N is then P(κmax > N) = 1 − P(κ ≤ N)N . For a network with
N = 106, γ = 2.1 and κ0 = 2, this leads to P(κmax > N) ≈ 0.4. Note, however, that this is a finite size
effect as limN→∞ P(κmax > N) → 0 for γ > 2.

9 Note that one can also introduce a soft cut-off by setting ρ(κ) ∝ e−κN1/(1−γ)
κ−γ. In Ref. [75] it was

shown that this distribution converges to the Pareto distribution in the thermodynamic limit.
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sequence exactly. Second, relaxing this constraint we arrive at the soft configuration
model, where we fix the expected degree sequence. Finally, in the hypersoft
configuration model we are no longer interested in the degree sequence but rather
in the degree distribution.

It turns out that in many cases, the SCM and HSCM are equivalent for all
practical proposes. To justify this statement, let us draw a set of hidden degrees
{κi}i∈V from some distribution ρ(κ). As we have fixed the hidden degrees, the
ensemble we need to use to draw graphs is the SCM. Therefore, to obtain the
expected degree of a node we use

ki = ∑
j ̸=i

p(κi, κj). (3.28)

However, let us now define the following measure,

ρN(κ) ≡
1
N ∑

i∈V
δ(κ − κi). (3.29)

We can then rewrite Eq. (3.28) as

ki = N
∫

dκ′ρN(κ
′)p(κi, κ′). (3.30)

Now, if we assume that in the thermodynamic limit ρN(κ) → ρ(κ), we see that we
obtain the definition of the expected degrees in the HSCM as defined in Eq. (3.22).
In fact, it was shown in Ref. [139] that for many network properties it does not
really matter if we fix the set of hidden degrees and work in the SCM or keep
them as random variables and work in the HSCM10, as long as for every set A in
the support of ρ(κ), it can be shown that ρN(A) ≡ |{i ∈ V|κi ∈ A}|/N → ρ(A)
as N → ∞.

Even though many properties might be the same for both distributions, there are
also differences. For example, let us study the Shannon entropy of the HSCM [133].
This entropy, which we denote as S(GHSCM), can be lower bounded as

S(GHSCM) ≥ E (S(GSCM)|{κi}i∈V) . (3.31)

Let us now recall that for the SCM, P(GSCM) could be decomposed into (N
2 )

Bernouilli trials with different success probabilities pij, for which we know that
the entropy is

S(Be(p)) = −p log(p)− (1 − p) log(1 − p). (3.32)

This then implies that
S(GSCM) = ∑

i<j
S(Be(pij)), (3.33)

10 Borrowing from the field of disordered systems, we can call the SCM quenched in this setting and the
HSCM annealed. In the former case we assume the expected degree sequence to be fixed but unknown,
whereas in the latter they are continuously resampled [142].
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and finally that

S(GHSCM) ≥
(

N
2

) ∫∫
S(Be(p(κ′, κ′′)))ρ(κ′)ρ(κ′′)dκ′dκ′′. (3.34)

The right hand side is once again the entropy of the SCM if we do the same
large system approximation as before (see Eq. (3.29)). However, we see that the
two entropies are, a priori, not the same. The fact that the hidden degrees are
random variables in the HSCM adds some uncertainty, and therefore increases
the entropy11. Calculating how much entropy is added is not a trivial task. In
Ref. [133], the authors employ the theory of graphons to show that the missing
entropy is subleading to that of the SCM12.

Because of these similarities, we will not be very careful in distinguishing
between these two models in this thesis. The same holds true when discussing
their geometric counterparts, which we will introduce in the next Chapter. In
general, results will be assumed to hold for both ensembles. If not, we will assume
that it is clear from the context whether the hidden parameters are random
variables or not.

3.3.6 Clustering

So far, the discussion of these models has been limited to the properties related to
the node degrees. Let us now turn to another key property: the clustering coeffi-
cient. For the CM, it has been shown that the average local clustering coefficient,
as defined in Sec. 2.2.4 scales as

cCM =
1
N

(⟨k2⟩ − ⟨k⟩)2

⟨k⟩3 . (3.35)

For the derivation of this result it needs to be assumed that the probability of an
edge connecting nodes i and j is equal to kik j/(2M). However, as we have now
seen several times in this introduction, for scale-free networks this is only the case
when γ > 3, i.e. when the largest hubs have relatively few neighbors. In that case,
⟨k2⟩ ∼ N0, and we can conclude that c ∼ N−1. This is the same fast decay as in
the case of the ER model.

When γ ≤ 3, ⟨k2⟩ diverges. This can be fixed by including the natural cut-off
kc ∝ N1/(γ−1) such that ⟨k2⟩ ∼ N(3−γ)/(γ−1). Plugging this into Eq. (3.35) we
obtain that c ∼ N(7−3γ)/(γ−1), which diverges in the thermodynamic limit when
γ < 7/3. This is of course unphysical as the local clustering coefficient was defined
as the amount of triangles attached to a node divided by the total possible amount

11 Another way of thinking about this is as follows: Say we know there is a link between node i and node
j, i.e., Aij = 1. In the HSCM, we do not know the hidden degrees as they are sampled a new for each
realization. Now, the fact that Aij = 1 tells us something about the hidden degrees of node i and j; they
are likely to be high. This then implies that ρ(κi = κ|Aij = 1) ̸= ρ(κ), and so we cannot decompose the
entropy of the graph into the entropy of (N

2 ) Bernoulli trials.
12 The leading order term of the entropy of the microcanonical ensemble in the CM is also equal to that

of the the SCM and HSCM; all three scale as S ≃ ⟨k⟩
2 N ln N [133, 142].
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of triangles, and can thus never exceed 1. This result is related to the creation of
large amount of multilinks between hubs in the configuration model when γ ≤ 3.

In Ref. [144], the clustering of the HSCM with power law hidden degree distri-
bution was studied. The authors found that the scaling behavior for general κc
is

cHSCM ≃ 1

κ
2(γ−2)
s





ξ1(γ) if κmax = κs ≫ 1

ξ2(γ) ln
(

κmax
κs

)
if κmax ≫ κs ≫ 1,

(3.36)

where ξ1(γ) and ξ2(γ) are both functions of γ. In the first case, when κmax = κs ∼√
N, i.e. before structural correlation enter the picture, Eq. (3.35) holds. However,

if the cut-off is set to κmax = κc ≫ κs, Eq. (3.36) reduces to

cHSCM ∼ N2−γ ln N. (3.37)

These results were then generalized to other hidden parameter models such as the
CL where the same results were found [145].

The scaling in Eq. (3.37) is clearly very slow, especially close to γ = 2. In
Ref. [144] it was shown that γ = 2.1, clustering remains significant even for system
sizes as large as N = 108.



4
N E T W O R K G E O M E T RY

In the previous Chapters we saw that real networks share several important
properties. Many network models attempt to capture these features, but so far
we have not encountered any that is able to reproduce them all (see Tab. 4.1).
In this Chapter we will give an introduction to the field of network geometry,
which is based on the idea that nodes live in some underlying metric space that
conditions their connectivity. We will see that this can lead to networks that possess
the necessary properties, i.e., to networks that are simultaneously small world,
clustered, heterogeneous and sparse. This framework will form the basis of this
thesis.

4.1 similarity space

So far in this introduction, the only network model that has been able to produce
clustered networks is the Watts-Strogatz model. In Sec. 3.2, we noted that this is
due to the locality of the connections; nodes are distributed along the circle, and
for small p the connections are mainly between close neighbors. Let us now try
and understand why this leads to many triangles. We will do so by looking at the
very first geometric network model, the random geometric graph (RGG) introduced
by Gilbert in 1961 [23].

Gilbert assumed nodes to be placed following a Poisson point process on the
infinite real plane R2. The nodes are then connected if they lie closer together
than some critical distance r. In other words, two nodes i and j with associated

Table 4.1: Summary of the different model classes introduced in Chapter 3. For each model
we state whether or not its networks are small world, clustered and heteroge-
neous.

Small World Clustered Heterogeneous

Erdös-Renyi (ER) Yes No No

Watts-Strogatz (WS) Yes Yes No

Configuration Model (CM) Yes No Yes

31
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Figure 4.1: The construction of an RGG: (a) We start with a metric space (in this case [0, 1]2)
and distribute nodes uniformly over it. (b) We then show the disks with radius
r/2, where r is the critical distance, centered around the nodes. (c) If two of
these disks intersect, the nodes are connected, leading to the graph shown in
this panel.

coordinates x and y are connected if ∥x − y∥ ≤ r. We visualize this process in
Fig. 4.11.

We immediately see that this model results in a large amount of triangles2. How
can we understand this? First, we note that the underlying metric space must obey
the triangle inequality, which states that if we take three points x, y and z, then

∥x − y∥+ ∥x − z∥ ≥ ∥y − z∥. (4.1)

This has immediate implications for the connectivity of the network, as is intro-
duces correlations between the links. Say we have three points, i, j and k, located at
x, y and z respectively and assume we know that i and j and i and k are connected.
By definition, this mean that ∥x − y∥ ≤ r and ∥x − z∥ ≤ r. Plugging this into the
triangle inequality we obtain that ∥y − z∥ ≤ 2r. So, where originally P(Ajk = 1)
was very small, as both points could be arbitrarily far away from each other, the
fact that we know Aij = 1 and Aik = 1 increases this probability significantly. In
other words, if we know a node is connected to two neighbors, the probability
of these neighbors being close together and therefore connected is high. And, of
course, if the neighbors are also connected we create a triangle in the network.

We can now ask why it might be natural that nodes are embedded in some
metric space, and why it makes sense to connect close by points. Gilbert’s moti-
vation was straightforward; in many real world systems, nodes have an explicit
spatial locations that condition their connectivity. For example, in communications
networks, nodes might be radio towers that have a range of r. Another application
would be the spread of infectious diseases. People occupy some position in space,

1 The system depicted here is not exactly the same as the one introduced by Gilbert. Here, instead
of working with a Poisson point process on R2, we work on [0, 1]2 where N nodes are distributed
uniformly. It can, however, be shown that these two models are often interchangeable [146, 147].

2 It can be shown that the clustering coefficient of this model is given by c = 1 − 3
√

3
4π ≈ 0.6, independent

of r and N [148]
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and if the disease is airborne it might be assumed to be able to infect others only
within some range r.

Even though this interpretation is intuitive, it is also limiting. First of all, not
all systems are explicitly embedded in real space. And second, even if they are,
the connectivity is rarely only the result of the spatial distance between nodes. To
overcome these limitations, let us introduce the concept of a similarity space3. Here,
a node’s location encodes some information about it4. Then, these properties are
assumed to condition the connectivity. If nodes are close together, their properties
are similar and they are more likely to be connected.

The idea that more similar nodes are more likely to be connected comes from
the social sciences [149]. There, it is called homophily and a typical example is a
friendship network: People are more likely to befriend those with similar ethnic,
educational, socioeconomic, etc. profiles [150]. This same mechanism has been
found to affect many other fields of study, from citation networks [151] to the
internet [152] to international trade [53].

It is important to note that the similarity space is not equivalent to a feature
space where the dimensions directly encode different node properties. We do
not claim that in a social network, for example, one can assign one dimension
to income, one to ethnicity, one to geographic location, one to age, etc., and
then expect to create a realistic network based on the distances in this extremely
high dimensional space. In general, many intrinsic node properties can affect
the connectivity of a network, and at the same time, not all of these properties
will be equally important. Furthermore, here we exclusively consider properties
whose values can be compared to those of other nodes such that the similarity
framework is applicable5. Taking this into account, we define the similarity space
as an abstract low dimension space where the location of a node encodes its
relevant properties.

We can understand this as follows: say we start with some extremely high
dimensional feature space, where each dimension encodes some property of
a node. The idea is then that, through some unspecified dimension reduction
process, one can summarize all this information into a few dimensions. That such
a dimensional reduction is feasible is sustained by several observations. First, it
is a well known fact in data science that oftentimes one can extract meaningful
low-dimension information from high-dimensional data sets [155–157]. Second,
it has been shown that the clustering coefficient in the RGG goes to zero as the
dimension goes to infinity [148], which is not in line with observations. Finally, in
the context of the model we will introduce next, low dimensional similarity spaces
are best able to explain network structures [158, 159].

3 We will also refer to this space as a latent, hidden and underlying metric space.
4 Of course, geographical location can be one of these properties, meaning that explicitly geometric

systems can also be described in this framework.
5 Properties such as popularity, influence, rank, i.e., those that affect the connectivity on their own will

be discussed later. Note that there are also other properties that can be compared but where similarity
does not lead to higher connection probabilities. This is considered in the complementarity framework,
where it is noted that sometimes it is beneficial for agents to be different when making connections [153,
154].
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4.2 the S1 -model

The RGG is intuitive, easy to implement and leads to clustered networks. However,
it also has a couple of important problems. Just like in the case of regular ring
lattice, it is large world. All interactions are local, and there are thus no "short-cuts"
that might reduce the mean hop distance between nodes (see Fig. 4.1c). In addition,
the RGG does not lead to heterogeneous degree-distributions. In fact, it can be
shown that, as in the case of the ER graph, the degree distribution is given by
a Poisson distribution. While several models have been introduced that address
(some of) these issues [160–162], in this section we focus on the S1-model, first
introduced in 2008 by Serrano et al. [30], because of its unique properties. As we
will see, this model allows for the production of sparse graphs with arbitrary
degree distributions. They can be clustered or tree-like, small world or large world.
All this can be achieved with a single connectivity law that also makes its ensemble
maximally random. For the derivation of this model we follow Ref. [163].

4.2.1 The homogeneous case

The first challenge we tackle is that of the small world property. We approach this
in a similar way to the WS model; we want to introduce long range connections
into the network. To do so, we use the methods introduced in Sec. 3.3.2. We want
to find a P(G) over all the simple graphs G ∈ G that maximizes the entropy and
that satisfies some convenient constraints, in this case the total amount of edges
as well as the total energy of the system, which fixes the amount of long range
connections. The energy should therefore be related to the distance between nodes.
Let us say that we assign some quantity

ϵij = f (dij) (4.2)

to each pair of nodes, where f (dij) is some function of the distance between nodes.
For reasons that will become clear later on, we will refer to this quantity as the
energy of the potential link.

Now, in order for us to maintain the clustered nature of our network, we want
connections to mostly be local, implying that they should be easier to create,
and therefore be associated to lower energies. As was the case in the WS-model,
we only want a few long-range links, which should thus be difficult to create.
Hence, they will be assigned high energies. This implies that f (dij) should be an
increasing function of the distance. In fact, it was shown in Ref. [163] that the only
function that allows for both small-world and clustered networks is given by

f (dij) = ln(adij), (4.3)

where a is a constant. If the function grows faster, there are not enough long range
connections and the network ends up being large world. If it grows slower, too
many are created and we loose the clustered nature of the resulting graph.
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We can now use this energy per node pair to define a new constraint for the
entropy maximization procedure by fixing the expected total energy of the system

E∗ = ⟨E⟩ = ∑
G∈G

P(G)E(G) = ∑
G∈G

P(G)∑
i<j

ϵij Aij(G). (4.4)

At the same time, we also want to fix the expected average degree of the system,
which can be achieved with the following constraint:

M∗ = ⟨M⟩ = ∑
G∈G

P(G)M(G) = ∑
G∈G

P(G)∑
i<j

Aij(G). (4.5)

Following the same steps as in Sec. 3.3.2, one then obtains

P(G) =
1
Z

e−β(E(G)−µM(G)), (4.6)

reminiscent of the grand canonical Gibbs measure with inverse temperature β and
chemical potential µ. Using again the fact that we are working with simple graphs,
we can decompose this as in Eq. (3.12) where the connection probability is now
given by

pij =
1

1 + eβ(ϵij−µ)
. (4.7)

This is exactly the Fermi-Dirac occupation distribution for a state with energy
ϵij. There is thus a one to one mapping between this S1-model and a gas of free
fermions: Pairs of nodes {i, j} define the energy states and links represent the
fermionic particles that can occupy them. When the Lagrange multiplier β is
high, the temperature of the system is low and only low-energy fermions are
formed. Interactions are therefore short ranged. Conversely, when β is low and
the temperature is high we have fermions at all energy levels, and there will be
many long range links.

The parameter β can also be interpreted as quantifying the geometric coupling.
When β is high and connections are short ranged, the geometry plays a very
important role in the topology. Nodes connect to their spatial nearest neighbors.
Hence, the connectivity is strongly coupled to the geometry. Inversely, when links
are long ranged, the geometry does not influence the connectivity much. Nodes
can connect to any other in the network. Therefore, the geometric coupling is
weak.

As we are working in the (grand) canonical ensemble, we can fix the lagrange
multipliers β and µ by solving

E∗ = ⟨E⟩ = ∑
i<j

pijϵij (4.8)

and
M∗ = ⟨M⟩ = ∑

i<j
pij, (4.9)

respectively.
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Let us now assume our similarity space is given by the S1 circle with radius
R = N/(2π), such that each node i gets assigned an angular coordinate θi. Note
that this radius implies that the node density along the circle is always one,
irrespective of the amount of nodes in the system. The distance between two nodes
i and j is then given by dij = R∆θij, where ∆θij = π − |π − |θi − θj|| is the angular
separation between the nodes. If we now sample the angular coordinates i.i.d.
from a uniform distribution, i.e. θi ∼ U (0, 2π), we can rewrite6 Eq. (4.9) as

⟨M⟩ = N2

2

∫∫
ρ(θ′)ρ(θ′′)p(θ′, θ′′)dθ′dθ′. (4.10)

Plugging in the connection probability (4.7) together with ϵij = ln(R∆θij) and
using the rotational symmetry of the system leads to

⟨M⟩ = N2

2 2F1

(
1, 1/β; 1 + 1/β;−

(
aN
2µ̂

)β
)

, (4.11)

where we have introduced µ̂ = eµ, reminiscent of the fugacity from statistical
physics. Using ⟨M⟩ = N⟨k⟩/2 and assuming that aN/(2µ̂) ≫ 1, this can be
rewritten as

⟨k⟩ = 1
1 − β

(
2µ̂

a

)β

N1−β +
2πµ̂

aβ sin(π/β)
+O

(
N1−2β

)
. (4.12)

Depending on whether β is smaller or larger than one, either the first or second
term will dominate. When β > 1,

µ̂ ≃ β sin(π/β)⟨k⟩a
2π

. (4.13)

Conversely, when β < 1, we obtain

µ̂ ≃ a
2
(1 − β)1/β⟨k⟩1/βN1−1/β, (4.14)

which decreases with the system size.
How can we understand this change in behavior at β = 1? When β → ∞, the

connection probability approaches a step-function; pij = 1 when dij < µ̂/a ≡ dc,
and zero otherwise. As the density of points on the S1 circle with radius R is
constant, dc and therefore µ̂ must also be constant in order for us obtain a sparse
graph. On the other extreme, where β = 0, the connection probability does not
depend on the spatial coordinates. To obtain a sparse graph, pij needs to then
be proportional to 1/N, and this can only be true if µ̂ decreases with the system

6 This can be interpreted in two different ways, just like in the case of Eq. (3.22). First, we can assume
to be working in a large system where the sum in Eq. (4.9) can simply be approximated well by an
integral. In this case we are working in the quenched case as the angular coordinates are fixed but
unknown; we are working in the (grand) canonical ensemble. Second, the expected amount of edges
can be written as E(M∗|{θi}i∈V), in which case the ensemble is hyper grand canonical and we are
working with annealed disorder.
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size. Indeed, plugging Eq. (4.14) into the connection probability we observe that
pij = 1/(1 + N/⟨k⟩) ≃ ⟨k⟩/N, which is exactly the sparse G(N, p) connection
probability. It turns out the transition point between these two behaviors lies at
β = 1. This point also marks the transition between a regime where geometry
induces many triangles (β > 1) to a regime where the density of these triangles
vanishes in the thermodynamic limit (β ≤ 1) [30]. We will investigate this transition
in depth in Chapter 5. In the following we will refer to the regime β > 1 as strongly
geometric and the regime β ≤ 1 as weakly geometric.

4.2.2 The heterogeneous case

Now that we have found that assigning an energy to each pair of nodes lets us
tune the amount of long range connection in our network, and therefore allows us
to generate networks that are both clustered as well as small world, we can add
the heterogeneous component to our model. This is done in the same way as for
the SCM, by assigning to each node i an expected degree k∗i and constraining on
it during the entropy maximization process. Where similarity between nodes is
responsible for the clustering in our graphs, individual popularity, encoded by this
expected degree, leads to heterogeneity. Constraining on both the energy and the
expected degree7 gives us the following connection probability

pij =
1

1 + eβϵij+νi+νj
, (4.15)

where we can use Eq. (3.15) to fix the Lagrange multipliers {νi}i∈V and Eq. (4.8)
to fix β.

Upgrading both {θi}i∈V and {νi}i∈V to (quenched or annealed) random vari-
ables, we find the expected degree by

k(ν) =
N
π

∫∫
dν′dθ′ρ(ν′)p(0, θ′, ν, ν′)

= N
∫

dν′ρ(ν′)2F1

(
1, 1/β; 1 + 1/β;−

(
N
2

e
ν+ν′

β

)β
)

, (4.16)

where we have once again used the rotational invariance of the system. If we
assume the argument of the hypergeometric function to be large8, we can use the
same expansion as in Eq. (4.12) to obtain

k(ν) ≃
∫

dν′ρ(ν′)
(

2βN1−β

1 − β
e−ν−ν′ +

2π

β sin(π/β)
e−

ν+ν′
β

)
, (4.17)

where we once again notice the change of behavior at β = 1. For β > 1, the second
term dominates, and we obtain

k(ν) ≃ 2π

β sin(π/β)

〈
e−ν/β

〉
e−ν/β. (4.18)

7 We do not need the constraint on the total amount of links as this follows directly from the expected
degree sequence

8 We prove this more rigorously for the power law case in Appendix A.1.1
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Taking the expectation of this expression we find the relation between ⟨e−ν/β⟩ and
the average degree ⟨k⟩. In order for k(ν) = κ, some desired degree, one needs to
fix

ν = −β
(

ln κ +
µ

2

)
, (4.19)

where we have defined µ as

µ = ln
(

β sin(π/β)

2π⟨k⟩

)
. (4.20)

When β < 1, the first term in Eq. (4.17) dominates. Following the same steps as in
the strongly geometric case, one obtains

ν = −
(

ln κ +
µ

2

)
(4.21)

where

µ = ln
(

1 − β

2β⟨k⟩Nβ−1
)

. (4.22)

When β = 1, the approximation in Eq. (4.17) breaks down as both terms are of
equal size. Using the fact that 2F1(1, 1, 2,−x) = − ln(1 + x)/x we can rewrite
Eq. (4.16) as

k(ν) ≃ 2 ln (N)
∫

dν′ρ(ν′)e−ν−ν′ . (4.23)

Following the same steps as before, we then define

ν = −(ln κ +
µ

2
), (4.24)

where

µ = ln
(

1
2⟨k⟩ ln N

)
. (4.25)

All in all we can combine these results to obtain the final form of the connection
probability

pij =
1

1 + χij
, (4.26)

where

χij =
(R∆θij)

β

(µ̂κiκj)max(1,β)
. (4.27)

Here, we have once again introduced the fugacity-like parameter µ̂ = exp µ. Note
that these results reduce to the homogeneous case when κi = ⟨k⟩ ∀i ∈ V9. One
needs to set a = 1/⟨k⟩2.

In the β → 0 limit, this connection probability reduces to

pij =
1

1 + ⟨k⟩N
κiκj

, (4.28)

9 For β < 1 one needs to also redefine µ → µ/β, but this is a matter of convention.
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which is exactly the form derived for the (H)SCM. This also motivates the max(1, β)
in Eq. (4.27): Without it, the limiting connection probability would be pij =
1/(1 + N/⟨k⟩) ≃ ⟨k⟩/N, i.e., the limiting ensemble would be that of the ER
model. The inverse temperature β would then not only encode the coupling to the
similarity space, but also tune the importance of the popularity of the nodes.

Generating an S1-network

The following algorithm generates an instance of the S1-model:

1. Fix the number of nodes N, the inverse temperature β and the target
average degree ⟨k⟩.

2. Assign a hidden degree κi and an angular coordinate θi to each node
i ∈ V, drawn from ρ(κ) and ρ(θ) = 1/(2π), respectivelya.

3. We now have two options for fixing the fugacity µ̂:

• If N is large enough, one can set

µ̂ =





β sin(π/β)
2π⟨k⟩ if β > 1

1
2⟨k⟩ ln N if β = 1

1−β

2β⟨k⟩ Nβ−1 if β < 1

(4.29)

• If finite size effects are relevant, one needs to solve κ = k(κ)
numerically, where

k(κ) = N
∫

dκ′ρ(κ′)2F1

(
1,

1
β

, 1 +
1
β

,− (N/2)β

(µ̂κκ′)max(1,β)

)
. (4.30)

4. Connect every pair of nodes with probability

pij =

(
1 +

(R∆θij)
β

(µ̂κiκj)max(1,β)

)−1

. (4.31)

This algorithm leads to a network instance like the one shown in Fig.4.2a.

a If one resamples these variables for every network instance, we are drawing from the hyper
grand canonical ensemble. If one keeps them fixed, the ensemble is grand canonical. We will
comment on this in Sec. 4.2.3



4.2 the S1 -model 40

Figure 4.2: (a) An example of network generated by the S1-model. The angular separation
∆θ and the distance in similarity space dS1 are shown for two pairs of nodes.
The size of a node reflects the magnitude of its hidden degree. (b) The same
network mapped to the H2 model. Hidden degrees are now explicitly geometric
and represented by a radial coordinate. The geodesics of the pairs of the same
two pairs of nodes are shown, encoding their distance in hyperbolic space dH2 .

4.2.3 Statistical properties

The first question we would like to ask is what type of ensemble the S1-model
defines. Let us start by analyzing similarity and popularity separately.

When it comes to the degree distribution, the situation is a priori equivalent to
the configuration model. We can fix the degrees exactly, in expectation or by their
distribution. In Sec. 3.3.5 we noticed that the HSCM is a probabilistic mixture of
canonical ensembles, where the hyperparameters κ’s or ν’s are random variables.
Notice that the disorder here arises from the ensemble constraints k∗i , which then
translate to the Lagrance multipliers.

In the case of the energy, this would be equivalent to upgrading β to a random
variable, fixing the energy of the system only up to its distribution. In general, we
will not go this route, but rather always assume that energy is fixed at the level of
the expectation value, meaning that the constraint is canonical.

There are, however, other parameters related to the energy; namely, the angular
coordinates {θi}i∈V . These parameters do not play the same role as the hidden
degrees as they are not one-to-one related to any constraint. However, we can
still choose to upgrade them to random variables. If they are considered fixed but
drawn from some distribution, the disorder introduced by doing so is quenched.
If they are continuously redrawn from this distribution, it is annealed. As was the
case for the CM, we assume that for all practical purposes, these two situations are
equivalent. For example, when fixing the average degree in Eq. (4.10), both lead to
the same result. However, we do not claim these ensembles to be generally equiva-
lent. In fact, at the level of the entropy they are probably not: For reasons similar
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to the ones presented in Sec. 3.3.5, the random nature of the hyperparameters in
the annealed case will most likely add uncertainty to the system, increasing the
entropy. In general it can be assumed that we work with the quenched situation in
this thesis, especially when it comes to to analytic results.

One final consideration arises from observing that by plugging the expression
Eq. (4.19) for the Lagrange multiplier ν into Eq. (4.15) we can obtain the exact
Fermi-Dirac form pij = 1/(1 + eβ(ϵij−µ)) if we redefine

ϵij = ln

(
dij

κiκj

)
. (4.32)

Thus, for β ≥ 1, the heterogeneous case is exactly equivalent to a non interacting
gas of fermions with energy levels given by Eq. (4.32). Note that in this case
the {κi}i∈V are no longer Lagrange multipliers as we arrive at exactly the same
ensemble by only constraining on the energy and the total amount of links. The
hidden degrees are now parameters that fix the energy levels, in the same way as
the angular coordinates.

When β < 1, things are not as straightforward. In this case, ν = − ln(κ)− µ/2,
implying that we can only achieve the Fermi-Dirac form when

ϵij = ln

(
dij

(κiκj)1/β

)
. (4.33)

We note that the energy levels now depend on the (inverse) temperature. This is
non-standard, but also not unheard off. In fact, there is a large body of literature
studying temperature dependent energy levels [164–170]. These appear in many
physical systems [171, 172], and lead to generalized thermodynamic laws. This
generalized thermodynamics can be shown to be non-extensive, in the sense that
the extensive properties (energy, entropy, particle number) do not scale linearly
with one another. Both non extensivity and temperature dependent energy states
are related to systems with long range interactions [173, 174]. As we will see
in Chapter 5, our system loses extensivity at β < 1, where links become long
ranged. In this same region, the chemical potential depends on the system size
N, as already observed in Eq. (4.22). This is also at odds with standard extensive
thermodynamics as there the chemical potential is an intensive quantity. The
interpretation of these facts are left as open questions; in Chapter 5 we will report
on the non-standard thermodynamic properties of our system, but will not claim
to place them in a broader physical context.

4.2.4 Structural properties

Just like in the SCM, k(κ) = κ does not imply that the degree distribution is the
same as the hidden degree distribution. Indeed, it can once again be shown that
the actual degree distribution approaches a mixed Poisson distribution given by
Eq. (3.26). In the case of a Pareto hidden degree distribution, the degrees are
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distributed according to Eq. (3.27), which has a power law tail. Thus, for all β, the
S1-model is able to generate scale-free networks [29, 30, 32, 175, 176]. Of course,
the means of the hidden and real degree distributions are identical due to our
choice of µ. Therefore, if ⟨κ⟩ ∼ N0, so is ⟨k⟩, leading to sparse graphs.

One of the principle motivations for introducing the geometric framework was
the promise of highly clustered graphs. This will be the topic of Chapter 5, but
some results are already known [30, 32, 34, 163, 176, 177]. First of all, it can be
shown that in the region β > 1, the average local clustering coefficient is a constant
with respect to N. As the geometric coupling decreases, so does the clustering
coefficient, and when β ≤ 1, clustering vanishes entirely in the thermodynamic
limit. This is in line with our expectations; when β is large, geometry is important
and the triangle inequality will induce many triangles. When β is small, the
coupling to the geometry is weak and clustering vanishes.

Another essential feature of the S1 is its ability to produce small-world graphs.
In the homogeneous case, the mean shortest path scales as ⟨d⟩ ∼ (ln N)∆, for
some ∆ ≤ 1, when 1 < β < 2 [178, 179]. When β > 2, there are not enough long-
ranged links (short cuts) in the network to produce the small world effect; the mean
shortest path scales linearly with the system size and our system is large world [163,
177, 180]. When β < 1, the network is similar to the ER, and ⟨d⟩ ∼ ln N [177].
The results for scale-free networks with γ > 3 are comparable [163, 175, 181].
For heterogeneous networks with 2 < γ ≤ 3, it can be shown that for any β,
⟨d⟩ ∼ ln ln N, indicating ultrasmall world networks [175].

Networks sampled from the S1 ensemble can be shown to contain no degree
correlations, except for the structural ones inevitably generated in scale-free simple
graphs with γ ≤ 3. In fact, it can be shown that ϵij ∝ ln dij is the only functional
form that leads to this result [163].

Finally, we make some brief remarks on community structure. Here, the geo-
metric nature of our model has very profound implications. Any set of nodes
belonging to the same angular sector, regardless of how the sector has been de-
fined, satisfies the classical definition of community, namely, a group of nodes with
an internal average degree larger than the external. Any partition of the network
in angular sectors has high modularity, even if the partition is totally arbitrary [182,
183]10. Of course, these partitions are irrelevant from an explicative point of view.
The communities found do not reflect any meaningful group structure.

However, these results do not imply that the S1-model is incompatible with
community structure. Indeed, if one lets go of the homogeneous distribution of
nodes on the circle, soft communities can be generated [49–51]. These are regions of
high node density, which are separated by gaps that are larger than those expected
from randomly placing nodes. Due to the geometric connection probability, such a
non-uniform distribution of nodes will inevitably lead to topological communi-
ties [51, 184]. As we will see in Sec. 4.5, the angular coordinates of real network can
be inferred from their adjacency matrix. Interestingly, these coordinates will gener-

10 These results all assume β > 1. They should fail as β → 1, as there our model approaches the
HSCM/ER. The behavior of modularity for 0 < β ≤ 1 remains an open problem, although some
numerical results in Ref. [184] indicate it indeed decreases in this regime.
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Figure 4.3: The regular tiling of (a) the Euclidean and (b) the hyperbolic plane. Here,
"regular" refers to the fact that each triangle occupies the same area on the plane.
The fact that the triangles appear to get smaller in (b) is due to the embedding
into flat space: As one increases the radius of the disc, more and more triangles
"fit" in the hyperbolic space. In the projection this is represented by smaller and
smaller triangles.

ally not be homogeneously distributed, but rather show soft community structure,
which are compatible with metadata about group membership. For example, the
soft communities found for the World Trade Web [53] are highly congruent with
geopolitical aspects, placing nodes in the same continent in the same community.
In Ref. [54] it was found that the partitions identified in structural brain networks
were highly congruent with both neuroanatomical regions as well as functional
clusters. The partition based on the soft communities can therefore be considered
explicative.

4.3 the H2 -model

In the S1-model, similarity and popularity are treated differently. The similarity
dimension is explicitly geometric, whereas popularity is encoded in hidden degrees
linked to the nodes. In Ref. [29] it was shown that these hidden degrees can
be mapped to radial coordinates on the hyperbolic plane, leading to a fully
geometric model. Before we turn to the details of this mapping, let us shortly recap
some properties of the hyperbolic geometry. There are three homogeneous and
isotropic11 spaces; Euclidean (flat), spherical (positively curved) and hyperbolic
(negatively curved). Where the first two geometries are intuitive, hyperbolic spaces
are difficult to visualize as they cannot be embedded perfectly into flat space.
Several models exist, each focusing on different properties of hyperbolic space,
but none capturing them all. We choose to work with the native representation of

11 Meaning that the geometry is the same in all directions.
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the hyperbolic manifold. Here, points on the two dimensional hyperbolic plane
H2 with constant negative curvature K = −ζ2 < 0 are mapped to a disk with
radius R in such a way that radial coordinates in the original space are equal to the
radial coordinates on the disk. This allows one to observe an important feature of
hyperbolic spaces: They expand faster than their Euclidean counterparts. Consider
the expressions for the circumference L(r) and area A(r) of a circle of hyperbolic
radius r

L(r) = 2π sinh(ζr), (4.34)

A(r) = 2π (cos(ζr)− 1) . (4.35)

Both these quantities grow as eζr, much faster than the polynomial growth ob-
served in Euclidean geometry. This property is visualized in Fig. 4.3 and is crucial
for understanding why hyperbolic geometry is the natural choice for modeling
networks. Let us take a heterogeneous network, and create a strictly nested set of
nodes Ṽk = {i|ki ≥ k}. This division uncovers a hidden hierarchy in the network
based on the node degree12. If we now wanted to embed such a network in some
space, we could imagine the nodes lying in overlapping discs Dk related to the sets
Ṽk they belong to, all centered at the origin. It might be reasonable to assume that
the surface area of the discs are proportional to the amount of nodes contained in
the related set, such that A(Dk) ∝

∣∣Ṽk
∣∣. One can imagine that each node is located

at the center of one of the triangles in the regular tiling in Fig. 4.3b. The sizes of
these discs then grow very fast; there are many nodes with low degree and very
few with high degrees. In order for A(Dk) to grow sufficiently fast, we need to
assume that the space we are embedding our network into is hyperbolic.

In the hyperbolic plane, distances between points are defined by the hyperbolic
law of cosines:

cosh(ζdij) = cosh(ζri) cosh(ζrj)− sinh(ζri) sinh(ζrj) cos(∆θij). (4.36)

It can be shown that this equation reduces to the simpler form

dij ≃ ri + rj +
2
ζ

ln
(

sin
(∆θij

2

))
(4.37)

when ri, rj ≫ 1 and

sin
(∆θij

2

)
≫
√

e−2ζri + e−2ζrj . (4.38)

If one also assumes that ∆θij ≪ 1 this can further be approximated as

dij ≃ ri + rj +
2
ζ

ln
(∆θij

2

)
. (4.39)

We will comment on the validity of these assumptions later on.

12 Note that this is not the only hidden hierarchy a network can have. One might divide a social network
based on nested community membership [185], or a citation network based on the topics of papers [186].
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With this new distance function we can again define the energy of a link as
ϵ = ln(dij), following the same logic as in the S1-model. Maximizing the entropy
under the constraints of a specific expected total energy and amount of links, we
once again retrieve the Fermi-Dirac connection probability

pij =
1

1 + e
βζ
2 (dij−RH)

, (4.40)

where RH is the radius of the hyperbolic disk, which in this case plays the role of
the chemical potential. In order for both models to be equivalent, this probability
must be equal to Eq. (4.26). This is achieved by setting

κ(r) = κ0 exp
(

βζ

2 max(1, β)
(RH2 − r)

)
, (4.41)

where we have defined the radius such that κ(RH2) = κ0. In this case, the hyper-
bolic radius is given by

RH2 =
2
ζ

ln
(

N
π

)
− 2 max(1, β)

βζ
ln(µ̂κ2

0). (4.42)

Eq. (4.41) can be inverted to obtain

r(κ) = RH2 − 2 max(1, β)

βζ
ln
(

κ

κ0

)
. (4.43)

This relation is in line with the intuition we gained before: Low degree nodes are
numerous and must therefore lie at the periphery of the hyperbolic disc, where
there is a lot of "space" for them. This relationship also uncovers an intimate
relation between scale free networks and the hyperbolic latent geometry. Say
ρ(κ) is given by the Pareto distribution with exponent γ. By virtue of Eq. (4.41),
the distribution of radial coordinates is then given by ρ(r) = α exp(α(r − RH2)),
where α = βζ

2 max(1,β) . Interestingly, this is approximately the distribution of radial
coordinates of nodes when they are quasiuniform sprinkled on the hyperbolic
disc. When α = ζ, the sprinkling becomes exactly uniform. This is the case when
γ = 2 max(1, 1/β) + 1. The fact that this trivial, quasiuniform, node distribution
naturally leads to a power law degree distribution further motivates the use of
hyperbolic geometry to model heterogeneous networks.

So far we have not remarked on the role of the curvature K = −ζ2 on the model.
Interestingly, in the Fermi-Dirac connection probability, 2/ζ can be interpreted as
the Boltzmann constant. Similarly to how setting this constant to one in statistical
physics implies a change of units, a change in the curvature in hyperbolic space
can always be reabsorbed into a change of length scale. We are thus free to choose
ζ in any way that is convenient. For β > 1, we choose to set ζ = 1, as is typically
done when studying this regime [19]. In the case β < 1, we set ζ = β−1, leading
to an infinite negative curvature at β = 0 [29].

The latter choice has several advantages. First, it is the only definition that leads
to a finite hyperbolic radius at β = 0, which is important as the H2-model is mostly
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used for visualization purposes. Second, it allows for an intuitive interpretation
of the hyperbolic distance defined in Eq. 4.39. As β → 0, the dependence on
the angular distance ∆θij vanishes, which is in line with the fact that this limit
corresponds to the hyper-soft configuration model, where only the popularity
dimension plays a role. If the curvature were set to some other value, the typical
length scale in the popularity dimension would diverge whereas it would remain
constant in the similarity dimension, effectively leading to the same situation.

4.3.1 The equivalence of the S1 and H2 models

In order to derive Eq. (4.41), leading to the equivalence of the two models, one
must first show that Eq. (4.39) is a good approximation of Eq. (4.36). Hence, let us
now return to the assumptions that were necessary for this approximation to hold.

First, we know that the smallest radial coordinate is related to the node with
the largest expected degree. For homogeneous networks, κmax = ⟨k⟩ ∼ N0, and
so according to Eq. (4.41), rmin ≃ 2 ln N. For scale-free networks, κmax ∼ N1/(γ−1),
such that rmin ≃ 2 γ−2

γ−1 ln N. In both cases ri ≫ 1 ∀i ∈ V as N → ∞. This motivates
the first assumption needed for Eq. (4.37).

Turning now to Eq. (4.38), we note that if the assumption holds for ri = rj = rmin
it must necessarily hold for all ri, rj. Plugging in the scaling of the minimum
radius, the assumption reduces to sin

(
∆θij/2

)
≫

√
2N−ξζ , where ξ depends on

the specific degree distribution. In the domain of ∆θij, the sine is a monotonously
growing function, and so we can study the smallest angular separation, where the
inequality reduces to ∆θij ≫ 1

2

√
2N−ξζ . The expected minimal distance between

two consecutive nodes goes as N−1, and so the inequality holds for all nodes when
ξ > 1/ζ.

Now, for the homogeneous case, ξ = 2, and the inequality thus holds for all
ζ > 1/2. In the scale-free case, ξ = 2(γ − 2)/(γ − 1). This then leads to the
inequality γ > (4ζ − 1)/(2ζ − 1). For β ≥ 1, ζ = 1, and the inequality reduces
to γ > 3. In this range, our assumption holds for all pairs of nodes. When
γ ≤ 3, the amount of nodes that fall into the range ∆θij <

√
2N−ξζ scales as

∼ N−ξζ/N−1 = N
3−γ
γ−1 , which is vanishing fraction of the total amount of nodes.

Consequently, the number of pairs of nodes for which the approximation does not
hold is a vanishing fraction in the thermodynamic limit. When β < 1, we argued
that a convenient choice for the curvature was ζ = 1/β. When β = 0, we then
have γ > 2, i.e., our approximation is always valid. For intermediate β we then
expect the approximation to break down for a microscopic fraction of nodes for
some γ between two and three.

The final assumption ∆θij ≪ 1 clearly does not hold for all node pairs. However,
the angular distance between two nodes at most scales as a constant, whereas ri
and rj scale as ln N. For the pairs of nodes where the assumption does not hold,
the correction to dij coming from the angular separation is therefore irrelevant in
both Eq. (4.37) and Eq. (4.39). This implies that they can be used interchangeably
also when ∆θij is not small.
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4.4 other geometric models

In this Chapter, we have focused on the S1-model and its fully geometric counter-
part, the H2-model. However, many other geometric models exist [20, 113]. Here
we will mention two other important models that, together with the S1-model, can
be seen as specific examples of the subclass of geometric random graphs whose
connection probabilities are a general function of χij ∝ dij/(κiκj), first introduced
in Ref. [30].

The first model was introduced for lattices in Ref. [187] and generalized to
continuous (Euclidean) similarity space in Ref. [188] and is often referred to as the
Scale Free Percolation model. Here, the connection probability is modified to be

pij = 1 − exp


−

(
(µ̂κiκj)

dij

)β

 . (4.44)

This form is also a special case of the connection probability derived by Garuccio
et al. in Ref. [189]. In this reference the authors show that this functional form is
the only one that leads to networks that are exactly scale invariant under renor-
malization. This advantage comes at the cost of no longer generating maximally
random ensembles. We will come back to these points in Chapter 7.

The second model is that of the Geometric Inhomogenous Random Graph
(GIRG) [175, 176]. Here, the connection probability is once again modified and
reads

pij = Θ


min


1,

(µ̂κiκj)
max(1,β)

dβ
ij




 , (4.45)

where the big Θ(g(N)) notation implies that pij scales with the system size in the
same way as g(N). Sometimes GIRGs are defined without this generalization, and
are simply taken to be exactly g(N) [113, 190].

Intuitively, all three connection probabilities (Eqs. (4.26),(4.44) and (4.45)) are
related. For one, when µ̂κiκj ≪ dij, all three are approximately equivalent, at
least for β ≥ 113. Of course, this will not be the case for all node pairs. Other,
more rigorous, relations between the different models can be established as well.
For example, it has been shown that the H2 model is a special case of the GIRG
model defined with Eq. (4.45) [176]. In Refs. [191, 192] the GIRG and SFP models
are compared. It can be shown that they are comparable with respect to many
important properties such as clustering and the small world property [181, 193].

All in all, which connection probability is chosen depends on what feature is
deemed most important. For example, GIRGs are the most easy to work with
analytically. However, if one wants explicit self-similarity, using the SFP connection
probability is the way to go. Finally, if a maximally random ensemble is required,
one needs to turn to the S1/H2-models.

13 For β > 1, all three connection probabilities are a function of χij = (µ̂κiκj/dij)
β. When χij ≪ 1,

p(S
1)

ij = χij/(1 + χij) ≈ χij. The same goes for Eqs. (4.44) and (4.45).
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4.5 network embedding

The hypothesis that the connectivity of a network arises from the location of the
nodes in some underlying metric space has been able to explain many of the key
properties observed in real networks. The natural next step is then to ask whether
the node coordinates of real networks can be extracted from their connectivity.
Finding such network embeddings can shed new light on the relations between the
nodes and explain how the network was formed. They also allow for an appealing
way of visualizing the network, and can help us analyze its properties.

The task of finding a meaningful mapping between the network topology and
its latent space is not trivial. The most conceptually intuitive model-based methods
are based on maximum likelihood estimation (MLE) [28, 194, 195]. Here, we ask the
following question: Given a set of hidden coordinates {κi, θi}i∈V , how likely is it
that we produce the observed network with the model? One can then find the
set of hidden coordinates that maximizes this likelihood function. Unfortunately,
this optimization problem is, in general, NP-hard and one must therefore rely on
heuristics to obtain reasonable approximate solutions. Hence, MLE techniques are
often slow, and their accuracy depends strongly on the chosen estimation method.

Another option to embed networks is using dimension reduction techniques,
which are often much faster than MLE [196, 197]. Here, we assume nodes lie in
some high dimensional space, and the idea is to find a proper mapping to a low
dimensional space such that the distances between points are preserved. One
way of doing so is given by Laplacian Eigenmaps, a technique designed for data
embedded in high dimensional Euclidean space [198]. The problem here is that
our network is a priori not embedded in any high dimensional real space, and
that we therefore do not know anything about the distances between the nodes.
Network embedding techniques based on Laplacian Eigenmaps therefore require
the use of heuristics to estimate these distances. Another problem is that these
methods embed the network into Euclidean space, implying that they can only be
used for the similarity space. Other methods must therefore be employed if one
also wants to take into account the popularity dimension, or directly embed into
hyperbolic space.

Finally, there is a relatively large body of literature from the computer science
community which uses neural networks [199–201]. These methods are generally
fast, but difficult to interpret and their setup is more complicated in comparison
to the other techniques mentioned in this section. They have the added benefit
that node attributes14 can be included in the embedding procedure.

In this thesis we generally make use of a specific embedding tool which makes
use of both MLE and Laplacian Eigenmaps; Mercator is a ready to use C++ code to
embed real networks into the S1/H2-model [61, 64]. In the following we will give
a short overview of the most important steps. Note that this method was initially

14 This is additional information about the nodes that is not directly included in the network topology.
Think for example of the age of a person, the continent a country lies in or the academic position of a
researcher.
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only designed for β > 1, i.e. for networks with a strong geometric coupling. The
extension to the weakly geometric β ≤ 1 regime is developed in Chapter 6.

First, Mercator chooses a random geometric coupling β and sets µ̂ according
to Eq. (4.20). The next step is to infer the hidden degrees {κi}i∈V . A priori, all
nodes with the same degree are assumed to be equivalent. This allows us to
work only with degree classes, not individual nodes. The goal is then to set the
hidden degrees such that, for all degree classes, |k(κ(k))− k| < ϵ, where ϵ is some
arbitrary small value. To be able to estimate k(κ(k)) given the model, we assume
that nodes are distributed homogeneously.

In the previous step, the hidden degrees sequence of the network was inferred
for some arbitrary β. Next, this inverse temperature is refined. This is done by
calculating the expected mean local clustering of the network, given the hidden
degrees inferred in the previous step as well as the geometric coupling β. If
this clustering is lower than the observed clustering, β needs to be increased. If
is higher, β should decrease. After adjusting β we return to the previous step
and infer the hidden degrees. This process continues until the expected level of
clustering matches the real value.

Now that the popularity dimension has been sorted and the proper geometric
coupling has been inferred, we turn to the similarity dimension. This is where
Laplacian Eigenmaps come in. As mentioned earlier, this method was designed for
dimensional reduction of data. Here, each point i has a coordinate xi ∈ Rl , and the
goal is to find new coordinates yi ∈ Rm such that m < l. Normally, the first step in
this procedure is to constructs a graph, for example by connecting nodes that lie
closer than some distance r to one another. The links are then weighted through
some weighting function Wij = Aij f (||xi − xj||), where Aij is the adjacency matrix
of the constructed graph and f (||xi − xj||) is some decreasing function. The idea is
then to find the coordinates {yi}N

i=1 that minimize the weighted distance function

ϵ = ∑
i<j

||yi − yj||2 Wij, (4.46)

i.e., that ensure that connected points stay close together. We first solve the
generalized eigenvalue equation Lv = Dv, where Dij is the weighted degree
matrix Dij = δij ∑k Wik and L is the weighted Laplacian matrix Lij = Wij − Dij. It
can then be shown that the desired coordinates of node i are obtained by taking the
i’th component of the first m generalized eigenvector, ordered by their eigenvalues.
Note that the zeroth eigenvector is trivial, and therefore ignored.

In the setting of network embeddings, some adjustments need to be made to this
process. First, we do not need to construct a graph as we already have one. Second,
this dimensional reduction leads to coordinates in Rm, when our similarity space
is given by S1. In our case we will take m = 2 and define

θi = atan2(y1
i , y2

i ) (4.47)

and disregard the radial coordinate associated to the node. Finally, and most
problematically, we do not actually have access to the original coordinates {xi}i∈V ,
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which means Wij needs to be estimated. This is done by calculating the expected
angular distance ⟨∆θij⟩ between two nodes conditioned on their inferred degrees
and the fact that they are connected. We then estimate the distance between the
points as

||xi − xj|| = 2 sin
( ⟨∆θij⟩

2

)
, (4.48)

the expected chord length, and define the weighting function as f (||xi − xj||) =
exp

(
−||xi − xj||2

)
. Next, we find the generalized eigenvalues of the weighted

Laplacian as described above and obtain a set of hidden coordinates {θi}i∈V . We
can further improve this result by making order-preserving adjustments, where
we fix the ordering of the coordinates but make sure the gap between consecutive
nodes is in line with expected gap given the model. This then concludes the first
"fast" version of Mercator, which has time complexity O(N). This version can
already accurately reproduce the structural properties of the original network.

Mercator also provides the option of further refining the results given by the
fast mode. This refinement is based on maximizing the likelihood. The idea is to
perturb all node coordinates in an ordered way, and choose the coordinates that
maximize the likelihood that the observed network was generated by the model.
Where starting with this step was impossible due to the vast configuration space
of the problem, the coordinates in the previous step provide us with an initial
guess that lies very close to the optimal configuration. This step is still rather slow,
though, and increases the time complexity to O(N2).

The final step refines the set of hidden degrees {κi}i∈V found in the first step.
There, we did not use any information about the angular coordinates of the nodes.
Now that we have obtained a set of angular coordinates we can repeat the first
step, taking into account the inferred θi of each node.

The code of the Mercator embedding tool is publicly available at https://

github.com/networkgeometry/mercator

https://github.com/networkgeometry/mercator
https://github.com/networkgeometry/mercator
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5
T H E C L U S T E R I N G P H A S E T R A N S I T I O N

In Chapter 4, we saw that in geometric network models the triangle inequality
induces topological triangles in the associated graph. We also saw that including
long range connections weakens the coupling between the geometry and the topol-
ogy. In the S1-model, this coupling strength is encoded by the inverse temperature
β, and it has been shown that non-geometric and non-clustered SCM graphs are
obtained when β = 0. In fact, in the thermodynamic limit, clustering vanishes in
the entire region β ≤ 1, where the geometric coupling is so weak that long-ranged
connections dominate. In this Chapter, which is an adaptation of Ref. [35], we
study the phase transition between the strong and weak coupling regimes.

This Chapter is organized as follows: First, by mapping the network to a gas
of fermions, in Sec. 5.1 we are able to analytically derive the thermodynamic
properties of the system, revealing a diverging entropy density at the critical point.
In Sec. 5.2 we argue that the transition is topological in nature, driven by the
reorganization of chordless cycles. Finally, in Sec. 5.3, we uncover interesting,
atypical finite size scaling behavior as compared with standard continuous phase
transitions, where one observes a power law decay at the critical point and a
faster decay in the disordered phase. Instead, at the critical point, the average local
clustering coefficient decays logarithmically to zero for very large systems and,
in the weakly geometric phase, where the coefficient decays as a power law, we
discover a quasi-geometric region where the exponent that characterizes this decay
depends on the temperature.

5.1 statistical properties

5.1.1 The networks as a gas of fermions

The first question we want to ask is whether the transition in the local properties
(the presence of triangles attached to nodes) affects the global behavior of the
system (codified by the thermodynamic properties, specifically the entropy). To
this end, we dig deeper into the mapping between the S1-network ensemble and
that of a gas of non-interacting fermions [29, 116].

In the homogeneous case, we saw in Sec. 4.2.1 that the connection probability
could be written in the Fermi-Dirac form, where the energy of a state was given
ϵij = ln dij. The fact that our networks are simple, reflecting the Pauli exclusion

52
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principle, and that edges are unlabeled, leading to indistinguishable particles,
completes the mapping between the two systems.

For heterogeneous networks, the hidden degrees {κi}i∈V complicate the situa-
tion somewhat. While for β ≥ 1 the energy of a state still takes a standard form,
which is independent of the Lagrange multiplier β, for β < 1 the energy levels
become temperature dependent. This fact means we need to tread with care when
working in this regime.

As an example of how this picture can help us, let us study the amount of
edges/particles in the system. For the S1-model, this is given by

⟨M⟩ = ∑
i<j

pij = ∑
i<j

1

1 + eβ(ϵij−µ)
, (5.1)

a fact we have used various times in this work. Similar to what was done in
Sec. 3.3.5, we now introduce the following measure

ρN(ϵ) =
1

(N
2 )

∑
i<j

δ(ϵ − ϵij), (5.2)

which is normalized as there are (N
2 ) states in the system (all node pairs). This

allows us to rewrite Eq. (5.1) as

⟨M⟩ =
(

N
2

) ∫ dϵρN(ϵ)

1 + eβ(ϵ−µ)
. (5.3)

The goal is now to find a closed form expression for ρN(ϵ) → ρ(ϵ) that holds when
N ≫ 1, which we we will call the density of states. We know that ϵij = ϵ(θi, θj, κi, κj),
and that these hidden coordinates were all drawn from nice probability distribu-
tions1. That is to say, we know that ρN(θ) → 1

2π and that ρN(κ) → ρ(κ) when
N ≫ 1. Using this fact, we write the density of states as

ρ(ϵ) =
∫∫

dκ′dκ′′
ρ(κ′)ρ(κ′′)

(2π)2

∫∫
dθ′dθ′′δ

(
ϵ − ϵ(θ′, θ′′, κ′, κ′′)

)
(5.4)

Without loss of generality, the spherical symmetry of the system can be employed
to set θ′ = 0. Rewriting the Dirac delta function and integrating over θ′′, this leads
to

ρ(ϵ) =
2eϵ

N

∫∫
dκ′dκ′′ρ(κ′)ρ(κ′′)(κ′κ′′)

1
min(1,β) Θ

(
1 − 2eϵ

N
(κ′κ′′)

1
min(1,β)

)
, (5.5)

where Θ(.) denotes the Heaviside step function.
Without knowing the exact form of the hidden degree distribution, this is

as far as we can go. In the following, we will work with this form as it is the
most general. However, obtaining analytic results requires the assumption that

1 We are working here with quenched disorder; the same result for the density of states would be obtained
were we to assume that the hidden variables were constantly redrawn from the distribution. In that
case we would simply be able to marginalize Eq. (5.1) over ϵij.
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N
2(κ′κ′′)max(1,1/β) ≫ 1, which does not always hold. In particular, when the degree

distribution is power law and the network contains structural correlations (γ ≤
3) [82], this approximation will break down for the hubs. However, for these
degrees ρ(κ′), ρ(κ′′) ≪ 1, implying that we might assume the contribution of any
error arising from this procedure to vanish. In fact, the standard derivation of the
hidden variable µ̂ in the thermodynamic limit, leading to sparse networks, relies
on this assumption.

In this thesis we check the validity of any such results for the case of Pareto
distributed hidden degrees. Assuming this distribution allows us to work out
Eq. (5.5) further, leading to

ρ(ϵ) =
2a
N

eϵΘ (ϵmax − ϵ)
(

1 + eb(ϵmax−ϵ) (b(ϵmax − ϵ)− 1)
)

, (5.6)

where a = min(1, β)κ
2 max(1,1/β)
0 (γ − 1)2/(1 + min(1, β)(1 − γ))2 and b = 1 +

min(1, β)(1 − γ). Note that ϵmax = ln
(

N
2κ

2(max(1,1/β))
0

)
is given by the energy of a

pair of nodes exactly opposite one another on the S1-circle such that ∆θij = π.
This now allows us to solve Eq. (5.3) exactly for N ≫ 1. In Appendix A.1.1

it is shown that this leads to the same results for µ derived in Sec. 4.2.2 when
⟨M⟩ = N⟨k⟩

2 . In the same Appendix we also verify all the thermodynamic results
obtained in the following section.

5.1.2 The exponential density of states

An important observation is that the density of states is exponentially distributed,
i.e., ρ(ϵ) ∝ eϵ. This is a rather unusual form, as, in general, physical systems
exhibit a power law density of states. For example, in the case of a 3 dimensional
Fermi gas, the density of states goes as ρ(ϵ) ∝

√
ϵ − ϵ0. However, the exponential

density of states makes an appearance in various fields of physics such as string
theory [202, 203], nuclear physics [204], organic semi-conductors [205–207] and
finally high energy physics.

In this latter field, the exponential density of states arises in the theory of
hadrons. These subatomic particles, of which protons and neutrons are examples,
were once thought of as the fundamental building blocks of matter. Of course, now
we know they are comprised of quarks. However, in the first half of the twentieth
century, this was unknown. Hadrons were assumed to be point particles, and
it was observed that in high energy collision many different hadron resonances,
with ever higher masses, were formed [208]. The explanation of this phenomenon
came from Rolf Hagedorn in 1965 [209, 210], who proposed a thermodynamic
interpretation. He postulated that the fundamental feature of the dynamics was
new resonance formation, which allowed him to treat the hadrons, or "fireball"
as he called them, as a system of non-interacting particles. Hagedorn’s idea was
then that each hadron was actually composed of smaller ones, while also being a
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constituent of a larger hadron. This idea leads to a self-consistency relation for the
density of states

ρ(m) = δ(m − m0) +
∞

∑
N=2

1
N!

∫ N

∏
i=1

dmiρ(mi)δ

(
∑

i
mi − m

)
. (5.7)

This equation, here shown in in a simplified, toy-model form, is also known as
the bootstrap equation [211–213] and gives Hagedorn’s model for hadron formation,
the Statistical Bootstrap Model (SBM), its name. The idea here is that the amount of
resonances of mass m is a result of the amount of all masses that can be combined
to form a particle of mass m (of course, because we are working at very high
energies, mass and energy can be treated on the same footing). Solving this leads to
an exponential density of states ρ(m) ∝ em/TH , where the temperature TH is called
the Hagendorn temperature. A very intuitive explanation for this result was given
in Ref. [214], where a model for ordered partitions of integers was introduced.
The idea here is that each integer n can be written as the sum of smaller integers.
For example, n = 3 can be written as 3, 2 + 1, 1 + 2 and 1 + 1 + 1. Of course, the
amount of partitions gets larger with n, and it can be shown that this growth is
exponential, just like in the SBM; if I give you an energy of m and m is large, it
is clear that there are many ways one can construct a resonance with that energy,
leading to a high degeneracy and a high ρ(m).

We can use the result to give an expression for the partition function,

lnZ(T, V) ∼
∫ ∞

0
dmg(m, T, V)e−m

(
1
T − 1

TH

)
, (5.8)

where g(m, T, V) is some function arising from the specifics of the physical system
that are not important for this discussion. We note that the exponential density
of states renders this integral infinite when T > TH . Thus, TH is the ultimate
temperature for hadronic matter. This can be explained as follows: Normally,
when more energy is added to a system, the momentum of its constituents rise,
leading to a higher temperature. Here, there is a competing process where added
energy is used for producing ever heavier resonances. Eq. (5.8) tells us that as one
approaches TH , more and more energy is used for this second process, until finally
no more energy is converted into momentum and the system remains at a fixed
temperature. As more and more different particles are being formed, the entropy
of the system does keep rising. Therefore, the entropy diverges with the energy, in
this case at finite temperature.

Does this mean there exists an absolute maximum temperature in the universe?
No, because Hagedorn’s model assumes that hadrons are pointlike elemental
particles. Of course, we know that this is not the case, but that they are rather
made up of quarks and gluons. A subsequent model, the bag model [215, 216],
explored this further, leading to the interpretation that at TH , the system becomes
deconfined, i.e., it marks the onset of a free quark-gluon plasma phase. This
temperature is roughly 150MeV, approximately the mass of the lightest hadron,
the pion [210, 217].
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5.1.3 The divergence of the entropy

Clearly, an exponential density of states can lead to very interesting physical
behavior. In our case, despite the fact that links in the model are noninteracting
particles, the system undergoes a continuous phase transition at a critical tem-
perature Tc = β−1

c = 1. We can analyze the nature of the transition by studying
the entropy of the ensemble. Given the mapping of the S1-model to a system of
non-interacting fermions in the grand canonical ensemble, we start from the grand
canonical partition function

lnZ = ∑
i<j

ln
(

1 + e−β(µ−ϵ)
)

. (5.9)

Assuming that N is large, we can employ the density of states given in Eq. (5.5) to
obtain

lnZ =

(
N
2

) ∫ ∞

−∞
dϵρ(ϵ) ln

(
1 + e−β(µ−ϵ)

)
(5.10)

=

(
N
2

) ∫∫
dκ′dκ′′ ρ(κ′)ρ(κ′′)

[
β + ln

(
1 +

1
ξ

)

− ξβ

1 + β
2F1


 1, 1 + 1

β

2 + 1
β

;−ξ



]

, (5.11)

where ξ =
(

N
2µ̂

)β
(κ′κ′′)−max(1,β) and µ̂ = eµ. We now focus on the region of

β > βc = 1, and assume that ξ ≫ 12. The grand partition function then reduces to

lnZ = N
µ̂π⟨k⟩2

sin
(

π
β

) . (5.12)

We can then use the above expression to find the grand potential Ξ = −β−1 lnZ
and the entropy as S = β2( ∂Ξ

∂β )µ. From this, we can find the entropy per link of the
system as

S
⟨M⟩ = β − π cot

π

β

β→β+c∼ 1
β − 1

, (5.13)

where in the last step µ̂ was plugged in. Note that ⟨M⟩ = N⟨k⟩/2 is the number
of links –and so particles– in the network. Interestingly, the entropy density is only
a function of β, and so independent of the degree distribution.

From Eq. (5.13), we see that the entropy per link diverges at the critical tem-
perature β → β+

c = 1. This implies that there is a sudden change in the behavior
of the system at the critical point β = βc, which could indicate the presence
of a phase transition. This transition is, however, anomalous –at odds with the

2 As mentioned in the previous section, this assumption might break down for for heterogeneous
networks. In Appendix A.1 we redo this calculation for the specific case of Pareto distributed hidden
degrees and find the same results, implying that this assumption seems to hold quite generally.
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continuous entropy density usually observed in continuous phase transitions– and
thus cannot be described by Landau’s symmetry-breaking theory of continuous
phase transitions.

In the regime β < βc, one needs to be careful in applying the standard thermo-
dynamic laws because of the non-standard temperature-dependent energy levels
in this regime. In particular, we need to check the relation between S and β2 ∂Ξ

∂β .
Starting from Eq. (5.10), the latter can be written as

β2
(

∂Ξ
∂β

)

µ

=
∫ ∞

−∞
dϵρ(ϵ)

(
ln
(

1 + e−β(ϵ−µ)
)
+

β(ϵ − µ)

1 + eβ(ϵ−µ)

)
+ ∆, (5.14)

where

∆ = −β
∫ ∞

−∞
dϵ

∂ρ(ϵ)

∂β
ln
(

1 + e−β(ϵ−µ)
)

. (5.15)

The first line in Eq. (5.14) can be recognized as −β(Ξ + ⟨E⟩ − µ⟨M⟩), whereas ∆
is a direct consequence of the temperature dependence of the energy levels. It can
then be shown that we can rewrite Eq. (5.14) as

β2
(

∂Ξ
∂β

)

µ

=
∫ ∞

−∞
dϵρ(ϵ) (p(ϵ) ln p(ϵ) + (1 − p(ϵ)) ln(1 − p(ϵ))) + ∆, (5.16)

where we recognize the standard functional form of the Shannon entropy for a
graph3, leading to the final relation

S = β2
(

∂Ξ
∂β

)

µ

− ∆. (5.17)

This, a posteriori, justifies the use of the relation S = β2 ∂Ξ
∂β when β > 1, as ∆ is zero

in this regime. However, for β < 1, the energy levels are temperature dependent
and ∆ is non-vanishing. Starting once again from Eq. (5.11) and using ξ ≫ 1, we
obtain

S
⟨M⟩ = ln N +

2β − 1
1 − β

− ln(1 − β) + ln⟨k⟩ − 2
⟨κ ln κ⟩
⟨k⟩ . (5.18)

Note that for ρ(κ) = δ(κ − κ0) one finds ⟨κ ln κ⟩ = ⟨k⟩ ln⟨k⟩, whereas for ρ(κ) =

(γ − 1)κγ−1
0 κ−γ we obtain ⟨κ ln κ⟩/⟨k⟩ = (γ − 2)−1 + ln κ0 when γ > 2. In both

cases, the leading term of the entropy density is of order ∼ ln N, which diverges
as N → ∞. Also note that when β → 0 we retrieve the entropy density found for
the SCM derived in Ref. [142]. For β = 1, similar steps can be performed, leading
to

S
⟨M⟩ =

1
2

ln N + ln ln N + 1 + ln⟨k⟩ − 2
⟨κ ln κ⟩
⟨k⟩ , (5.19)

where we once again see that the divergence is logarithmic in N.

3 This is the entropy we are interested in this thesis. Note, however, that one could argue that ∆ should
actually be included into the definition of the entropy, as the temperature dependence of the energy
levels arises from an unknown interaction between the heat bath and the system. Including this
interaction energy leads to Hill’s generalized thermodynamic theory [166, 218]
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(a)

(b)

Figure 5.1: Behavior of the network model as one crosses the critical temperature, both
from an entropic as topological perspective. (a) Sketch illustrating the different
organization of cycles in the two phases, short-range at low temperatures and
long-range –of the order of the network diameter– in the high temperature
regime. (b) Entropy per link for S1 geometric networks of different sizes with
homogeneous degrees. Different curves are obtained by numerical integration.
The inset shows the same curves in the region β > βc in logarithmic scale.
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Figure 9.1 shows a numerical evaluation of the entropy for different system
sizes in homogeneous networks confirming the divergence of the entropy per
link at the critical temperature as predicted by our analysis. As expected, the
entropy diverges logarithmically with the system size at β = βc, implying that the
divergence can only be detected for very large systems.

5.2 the topological nature of the transition

For many years, Landau’s theory of symmetry breaking was believed to be the ul-
timate explanation of continuous phase transitions [219]. In the liquid-crystal tran-
sition, for instance, the continuous translational and rotational symmetry at high
temperatures break into a set of discrete symmetries in the low temperature phase.
This paradigm was challenged by Berezinskii, Kosterlitz, and Thouless (BKT) in
the two dimensional XY model [220–222]. For this model, the Mermin-Wanger
theorem [223] states that there is no ordered phase even at zero temperature, so
that a phase transition in Landau’s sense cannot exist. Yet, BKT showed that, in
fact, there is a finite temperature phase transition driven by topological defects:
vortices and antivortices. At low temperature, vortex-antivortex pairs are bound
together. Above the critical temperature, vortex-antivortex pairs unbind, moving
freely on the surface. No symmetry is broken in the transition since both phases
are rotationally invariant and so magnetization is zero in both phases. Topological
order and topological phase transitions are nowadays fundamental to understand
the properties of quantum matter [224].

In this section, we argue that similar observations can be made for the transition
discussed in this Chapter, thus making it topological in nature. Notice first that
the S1-model is also rotationally invariant both above and below the critical
temperature, which implies that there is no symmetry breaking at the critical point.
In fact, we argue that βc separates two distinct phases with different organization
of the cycles, or topological defects, in the network. Indeed, the cycle space of an
undirected network with N nodes, M links, and Ncom connected components is a
vector space of dimension M − N + Ncom [225]. This dimension is also the number
of independent chordless cycles in the network as they form a complete basis of the
cycle space. We are typically interested in connected or quasi-connected networks,
with a giant connected component extending almost to the entire network. In
the S1-model this is achieved in the percolated phase when the average degree is
sufficiently high, but still in the sparse regime, so that the vast majority of cycles are
contained in the giant component. In this case, by changing temperature without
changing the degree distribution, the number of nodes, links, and components
remain almost invariant and so does the number of chordless cycles. Thus, the
two different phases correspond to a different arrangement of the chordless cycles
of the network, as illustrated in the sketch in Fig. 9.1a. This is again similar to the
BKT transition since the number of vortices and antivortices is preserved in both
phases. We notice, however, that the exact preservation of the number of cycles is
not a necessary condition for the transition to take place.
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Figure 5.2: The number density per link M(ϵ)/⟨M⟩ as a function of the energy ϵ for (a)
a homogeneous network and (b) a heterogeneous network with γ = 2.5. The
purple line represents a weakly geometric network and the green a strongly
geometric one.

This difference in arrangement of the cycles is caused by the following process.
At low temperatures, the high energy associated to connecting spatially distant
points causes the majority of links attached to a given node to be local. This defines
the geometric phase at β > βc where the triangle inequality plays a critical role
in the formation of cycles of finite size. As temperature increases, the number of
energetically feasible links connecting very distant pairs of nodes grows, and at
β ≤ βc the number of available long range states becomes macroscopic due to the
logarithmic dependence of the energy on distance, which causes the entropy per
link to be infinite in this regime. This defines a non-geometric phase where links
are mainly long ranged and the fraction of finite size cycles vanishes because the
triangle inequality stops playing a role. This in turn implies that chordless cycles
are necessarily of the order of the network diameter.

We can further clarify this point by looking at the number density of the
system, which is given by the product of the density of states and the Fermi-Dirac
occupation probability

M(ϵ) =

(
N
2

)
ρ(ϵ)

1 + eβ(ϵ−µ)
(5.20)

This quantity gives the expected amount of particles/links with associated energy
ϵ. As can be seen in Fig. 5.2, there is an abrupt change in the system when the
critical point is crossed: While the vast majority of links has low energy when
β > 1, the distribution is peaked at high energies for β < 1. This is a direct
consequence of the exponential density of states of the system; in fact, we show in
Appendix A.1.5 that for a simple toy model of non-interacting classical particles,
an exponential density of states is sufficient to obtain the anomalous entropic
behavior observed previously.

In the geometric phase, there are finite cycles of any order, although, as we show
in Fig. 5.3, the density of triangles is much higher than the density of squares,
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Figure 5.3: The global clustering coefficient for different sized chordless cycles as a function
of the inverse temperature. The global clustering coefficient is defined as the
ratio between the amount of closed n-lets and the total amount of n-lets, where
n goes from three (triangles) to six (hexagons). This coefficient is a measure
for the amount of different sized chordless cycles, as a function of the inverse
temperature β. The results shown are for networks of size N = 5000 and ⟨k⟩ = 6.
Errorbars representing the standard error are smaller than the data points and
therefore not displayed.

pentagons, etc. In the non-geometric phase, the cycles are of the order of the
network diameter. However, due to the (ultra) small-world property and finite
size effects the diameter of the network can be quite small, so that the distinction
between finite cycles of order higher than three and long range cycles can be
difficult. Therefore, the average local clustering coefficient –measuring the density
of the shortest possible cycles, which are also the most numerous– is the perfect
order parameter to quantify this topological phase transition.

5.3 finite size scaling behavior

To quantify the behavior of clustering in this transition, we compute the average
local clustering coefficient, c̄, as the local clustering coefficient averaged over all
nodes in a network. The local clustering coefficient, as defined in Sec. 2.2.4, is given
by the actual amount of triangles connected to a node as a fraction of the total
amount of possible triangles connected to said node. In a hidden variable model,
the local clustering coefficient for a given node i with variables h = {θi, κi} is
defined as the probability that a pair of randomly chosen neighbors are neighbors
themselves and, using results from [141], can be computed as

ci =
∑j ̸=i ∑k ̸=i pij pjk pik
(

∑j ̸=i pij

)2 . (5.21)
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5.3.1 Analytic results

If we assume that N ≫ 1, the sums in Eq. (5.21) can be replaced by integrals,
leading to the expression

c(h) =
∫∫∫∫

dθ′dθ′′dκ′dκ′′ρ(κ′)ρ(κ′′)p(h, h′)p(h, h′′)p(h′, h′′)
(∫∫

dθ′dκ′p(h, h′)
)2 . (5.22)

Note that, due to the rotational symmetry of the system, the node in question
can be placed at the origin such that h = {0, κ}. In principle, it is still neces-
sary to marginalize this expression with respect to κ to obtain the true average
local clustering coefficient. However, as pointed out in Refs. [144, 145], c(κ) is
a monotonously decreasing function, which implies that the dominant scaling
behavior can be obtained by plugging in any arbitrary, small, value for κ.

In Appendix A.2 we derive analytic results for the behavior of the average
local clustering coefficient when hidden degrees follow a power law distribution
ρ(κ) ∼ κ−γ with 2 < γ < 3 and a cutoff κ < κc ∼ Nα/2. Notice that the arguments
above, presenting the average local clustering coefficient as an appropriate order
parameter, should be valid for all choices of the distribution of the hidden degrees,
as long as they lead to sparse graphs. Here, we choose this specific definition
because it is the most common in the literature and allows for analytically tractable
results. Notice also that it includes both the heterogeneous case with (α > 1) and
without (0 < α ≤ 1) degree-degree correlations [82], as well as the homogeneous
case (α = 0) where ρ(κ) = δ(κ − ⟨k⟩).

When β > 1, i.e. in the geometric region, the average local clustering coefficient
behaves as [30]

lim
N→∞

c(N, β) = Q(β), (5.23)

for some constant Q(β) that depends on β. Moreover, there exists a constant Q′

such that

lim
β→1+

Q(β)

(β − 1)2 = Q′. (5.24)

The analytic results for β ≤ 1 are derived by finding appropriate bounding
functions f (N, β) ≤ c(N, β) ≤ g(N, β) that are both asymptotically proportional
to N−σ(β)h(N, β), where h(N, β) represents some non-power law function of N,
implying that c ∼ N−σ(β)h(N, β) as well. When β′

c < β ≤ 1,

c(N, β) ∼





(ln N)−2 if β = 1

N−2(β−1−1) if β′
c < β < 1

(5.25)

where the value of β′
c depends on the parameter α. If α > 1, it is given by β′

c = 2/γ
and if κc grows with N slower than any power law (α = 0) then β′

c = 2
3 . The

fact that the decay in this regime is both temperature dependent and very slow,
leads us to coin it the quasi-geometric region, as the geometry still induces triangles
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Figure 5.4: The average local clustering coefficient as a function of the network size. The
networks were generated by applying the DPG technique to a configuration
model network with a regular degree sequence ki = 4, ∀i ∈ V. Dashed lines are
power law fits used to estimate the exponent σ(β) defined as c̄ ∼ N−σ(β).

in the network for very large finite systems. Notice that the behavior in a close
neighborhood of βc is independent of γ. The fact that the microscopic details of
the model, in particular the hidden degree distribution, do not affect this scaling
behavior points to the universality of our results.

Finally, when β < β′
c, the exact scaling behavior depends on α (see Appendix A.2

for the case 0 < α ≤ 1):

c(N, β) ∼





N−(γ−2) ln N if α > 1

N−1 if α = 0.

(5.26)

The fact that these results coincide with those derived for the SCM [144], where
there is no latent geometry, leads us to call this region non-geometric.

These results are remarkable in many respects. First, clustering undergoes a
continuous transition at βc = 1, attaining a finite value in the geometric phase β >
βc and becoming zero in the non-geometric phase β < βc in the thermodynamic
limit. The approach to zero when β → β+

c is very smooth since both clustering and
its first derivative are continuous at the critical point. Second, right at the critical
point, clustering decays logarithmically with the system size, and it decays as a
power of the system size when β < βc. This is at odds with traditional continuous
phase transitions, where one observes a power law decay at the critical point and
an even faster decay in the disordered phase. Third, there is a quasi-geometric
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Figure 5.5: Exponent of the average local clustering coefficient as a function of the inverse
temperature. The exponent σ(β), defined by c(N, β) ∼ N−σ(β)h(N, β), with
h(N, β) a non-power law function of N, evaluated from numerical simulations
(colored circles), numerical integration of Eq. (5.21) (dashed lines), and theo-
retical approach Eq. (5.25,5.26) (solid lines). Networks are generated with a
homogeneous distribution of hidden degrees (red lines and circles) and a power
law distribution with exponents γ = 2.3 and γ = 2.7, blue and green lines and
circles, respectively.

region β′
c < β < βc where clustering decays very slowly, with an exponent that

depends on the temperature. Finally, for β < β′
c, we recover the same result as

that of the SCM for scale-free degree distributions [144].
The results in Eqs. (5.25,5.26) around the critical point suggest that Neff = ln N

plays the role of the system size instead of N. Indeed, in terms of this effective size,
we observe a power law decay at the critical point and a faster decay in the weakly
geometric phase, as expected for a continuous phase transition. Consequently, we
expect the finite size scaling ansatz of standard continuous phase transitions to
hold with this effective size. We then propose that, in the neighborhood of the
critical point, clustering at finite size N can be written as

c̄(β, N) = (ln N)−
η
ν f
(
(β − βc) (ln N)

1
ν

)
, (5.27)

with η = 2, ν = 1, and where f (x) is a scaling function that behaves as f (x) ∼ xη

for x → ∞.

5.3.2 Numerical methods

We test these results with numerical simulations and by direct numerical integra-
tion of Eq. (5.22). Simulations are performed with the degree-preserving geometric
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Figure 5.6: Finite size scaling analysis. Data collapse of the average local clustering coef-
ficient at different sizes as defined in Eq. (5.27) for heterogeneous networks
with γ = 2.7 (panels (a) and (b)) and homogeneous networks (panels (c), and
(d)). The panels (a) and (c) correspond to numerical simulations with sizes in
the range N ∈ (5 × 102, 105), whereas the panels (b) and (d) are obtained from
numerical integration of Eq. (5.21) with sizes in the range N ∈ (5 × 105, 108).
Different colors correspond to the different system sizes used.

(DPG) Metropolis-Hastings algorithm introduced in Ref. [226], that allows us to
explore different values of β while preserving exactly the degree sequence. Given
a network, the algorithm selects at random a pair of links connecting nodes i, j
and l, m and swaps them (avoiding multiple links and self-connections) with a
probability given by

pswap = min


1,

(
∆θij∆θlm

∆θil∆θjm

)β

, (5.28)

where ∆θ is the angular separation between the corresponding pair of nodes.
This algorithm maximizes the likelihood that the network is S1 geometric while
preserving the degree sequence and the set of angular coordinates, and it does so
independently of whether the system is above or below the critical temperature.
Notice that the continuity of Eq. (5.28) as a function of β makes it evident that,
even if the connection probability takes a different functional form above and
below the critical point, the model is the same.

Figure 5.4 shows the behavior of the average local clustering coefficient as a
function of the number of nodes for homogeneous S1-networks with different
values of β, showing a clear power law dependence N−σ(β) in the non-geometric
phase β < βc, with an exponent that varies with β as predicted by our analysis.
These results are used to measure the exponent σ(β) as a function of the inverse
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temperature β, which in Fig. 5.5 are compared with the theoretical value given by
Eq. (5.25,5.26). The agreement is in general very good, although it gets worse for
values of β very close to βc and for very heterogeneous networks. This discrepancy
is expected due to the slow approach to the thermodynamic limit in the non-
geometric phase, which suggests that the range of our numerical simulations,
N ∈ [5 × 102, 105], is too limited. To test for this possibility, we solve numerically
Eq. (5.21) for sizes in the range N ∈ [5 × 105, 108] and measure numerically the
exponent σ(β). In this case, the agreement is also very good for heterogeneous
networks. The remaining discrepancy when β ≈ βc is again expected since, as
shown in Eq. (5.25), right at the critical point clustering decays logarithmically
rather than as a power law. Finally, Fig. 9.3 shows the finite size scaling Eq. (5.27)
both for the numerical simulations and numerical integration of Eq (5.21). In
both cases, we find a very good collapse with exponent η/ν ≈ 2 in all cases.
The exponent ν, however, departs from the theoretical value ν = 1 in numerical
simulations due to their small sizes but improves significantly with numerical
integration for bigger sizes. We then expect Eq. (5.27) to hold, albeit for very large
system sizes.

5.4 conclusion

In this Chapter we have seen that the S1-model shows different behavior of the
average local clustering coefficient on the left and right side of βc = 1. Studying
the system as a gas of non-interacting fermions reveals that the entropy diverges
at the critical point, implying a change in the structural organization of the system
as a whole. Because the model is rotational invariant in both regimes, one can
conclude that this transition is not due to symmetry breaking. The behavior of
clustering—non-zero on the right and vanishing on the left of the critical point—
indicates that the transition is of topological nature related to the organization of
chordless cycles. In particular, these cycles are short above βc and of the order ln N
below it. Taking the clustering coefficient, which measures the triangle density
in the network as an order parameter, we observe anomalous finite size behavior,
with ln N and not N playing the role of the system size. This slow approach to the
thermodynamic limit is relevant for real networks in the quasi-geometric phase
β′

c < β ≤ 1, for which high levels of clustering can still be observed. In Chapter 6,
we extend the network embedding tool Meractor, introduced in Sec. 4.5, and show
in Chapter 8 that, indeed, many real networks live in the weakly geometric regime.



6
N E T W O R K E M B E D D I N G

In the previous Chapter we saw that the decay of the average local clustering
coefficient in the weakly geometric regime β ≤ 1 is very slow, indicating that the
transition between geometric and non-geometric graphs might not be sharp. This
led us to divide the subcritical regime into two sub-regions: (1) the non-geometric
regime, where clustering decayed in the same manner as for the SCM, and (2)
the quasi-geometric regime, where clustering decayed extremely slowly and in a
temperature dependent manner.

In order to better understand what this implies for the "geometricity" [59, 60] of a
network, in the following two Chapters we attempt to discover how important the
underlying geometry is for determining the structural properties of the network
in these two regimes. In this Chapter, which is an adapted version of Ref. [61], we
do so using network embeddings. First, we extend the embedding tool Mercator
to the weakly geometric regime in Sec. 6.1. Then, in Sec. 6.2, we show that for a
range of weak couplings the original geometry can be recovered based solely on
the topology. We also show that this region coincides with the quasi-geometric
regime. We note that this is not a finite size effect and that geometric information
can be extracted for networks of any size in the quasi-geometric regime. Finally,
in Sec. 6.3, it is found that Mercator can also provide useful embeddings when
the network is explicitly non-geometric, even in the case of the configuration
model [133]. Similarly to how fluctuations can induce spurious communities [92,
227], finite size effects can lead to an effective geometry, which can be used, for
example, in greedy routing algorithms.

6.1 mercator in the weakly geometric regime

Network geometry has important practical implications for real systems. For
example, it can be used for routing information on the Internet [28], for community
detection [52, 53] or for the prediction of missing links [57, 58], as well as for
creating downscaled network replicas [42]. In order to do so, one needs to be able
to faithfully embed real-world networks into the hidden metric space using only
the information contained in their topology.

Even though there are many ways to obtain such an embedding [184, 194,
197, 228–233], here we focus on Mercator [64], which finds the hidden S1/H2-
coordinates such that realizations based on these coordinates best reproduce the
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Figure 6.1: Inferring beta for the Ecological network (details in Tab. 8.1). (a) The orange
points represent the inferred average local clustering coefficient given the fitted
hidden degree and different betas, and the blue horizontal line indicates the
original clustering coefficient of the network. (b) The histogram represents
the probability density of the local clustering coefficient produced by degree
preserving randomization of the connectivity of the original network. The black
dotted line is the fitted normal distribution and the continuous blue line indicates
the original clustering.

properties of the original network. As explained in Sec. 4.5, Mercator employs a
combination of machine learning and maximum likelihood methods to achieve
this goal, which allows it to be both precise as well as efficient.

In the original version, Mercator was only able to handle strongly geomet-
ric networks with β > 1. Extending it to the weakly geometric regime implies
implementing the change in connection probability when crossing the critical
temperature as found in Eq. (4.26). The same goes for the parameter µ̂. However,
here we cannot just take the other asymptotic equation for β < 1 because we
want Mercator to be applicable to small networks with β ≈ 1 as well. Hence, we
produced a new version of Mercator that is able to handle networks in the whole
range of β values and where µ̂ is determined numerically such that the observed
average degree of the real network matches exactly the expected average degree
of a S1-network with uniform node distribution and a hidden degree distribution
that matches the observed one.

One of the challenges of embedding networks below β = 1 comes from the
fact that the function c(β) flattens off as one approaches the infinite temperature
limit β → 0, as can be seen in Fig. 6.1a. Here, we take as an example an ecological
network [234], where nodes represent taxa and edges trophic relationships. As per
the initial steps of Mercator, we choose a certain β and set the hidden degrees such
that the degree distribution is reproduced and with this calculate the expected
average local clustering coefficient ⟨c⟩. Repeating this for a range of β’s, one
observes that the function approaches a constant as β approaches zero. The
horizontal line in the figure represents the actual level of clustering in the ecological
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network under study. We can say, with confidence, that βreal ≲ 0.5, but cannot
determine a lower bound. As the true value could be β = 0, i.e. the levels of
clustering in the network could be described by the configuration model, the
coupling between the geometry and topology of the network is extremely weak
and it is, thus, effectively non-geometric. We conjecture that these networks either
have no associated geometry to begin with, or are coupled so weakly to it that
it cannot be reproduced. Thus, Mercator must be able to detect these types of
networks, i.e., it must be able to filter out non-geometric networks. In order to do
so we want Mercator to answer the following question: "Can the observed levels
of clustering be plausibly explained by the configuration model?".

To answer this question, we need to add a step to the algorithm. Before the
embedding of a network starts, a large amount of random copies are created
using degree-preserving randomization [235]. This randomization step destroys
all information contained in the network, except for the degrees of the nodes and
structural correlations imposed by global constraints at finite sizes. Because the
angular coordinate in the S1/H2-model functions as a proxy for all attributes of a
node, except for its degree, it is clear that removing this information is equivalent
to decoupling the network from its similarity dimension, exactly what happens
at β = 0. Thus, these random copies are just realizations of the configuration
model preserving the original degree distribution. We then calculate the average
local clustering coefficient for all randomized copies, leading to the distribution
shown in Fig. 6.1b. The observed level of clustering is given by the vertical line,
and we can conclude that it is completely in line with the configuration model.
Had the observed clustering been much larger, we might conclude that it is
statistically unlikely that the network was generated with the configuration model
and that β > 0. We stress, however, that networks not being congruent with the
configuration model does not necessarily mean the S1-model is a good fit for
explaining the observed network structure. It merely implies that Mercator has
at least the potential to find a meaningful embedding. How well this embedding
reproduces the network’s structural properties must be studied separately. We do
precisely this in Chapter 8.2.

6.2 recovering geometric information

It is important to first study if it is possible to recover geometric information from
the topology of a weakly geometric network when the ground truth about its
geometry is known. We generate heterogeneous networks where the distribution
of hidden degrees is given by the Pareto distribution with exponent γ > 2.

We focus on Mercator’s ability to recover the angular coordinates of the original
network, as it is only the coupling to the similarity dimension that becomes weaker
as β → 0. The performance with respect to the popularity dimension should not
be much different than in the region β > 1, which has been already extensively
studied in Ref. [64].

In Fig. 6.2 we show the performance of Mercator for various inverse tempera-
tures β and γ = 2.5. We see that, as expected, the embedding gets progressively
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Figure 6.2: Examples of the inferred angular coordinate versus the original angular coor-
dinate for artificial networks generated with the S1-model at varying inverse
temperatures (a) β = 1.2, (b) β = 0.9, (c) β = 0.6, and (d) β = 0.3. All networks
were created with the following parameters: N = 5000, ⟨k⟩ = 12, γ = 2.5.

worse as the temperature increases. As β → 0, the coupling to the geometry
becomes weaker and there is thus less geometric information contained in the
topology. We do, however, observe that the embedding is still good even for β’s
relatively far below the transition point. For small values of β ≲ 0.6, Mercator is
not able to infer the correct β because the geometric coupling in these networks
is extremely weak. Even so, by feeding Mercator with the correct value of β, we
are able to obtain an embedding. However, as shown in Fig 6.2d, the obtained
coordinates are completely different from the original ones so that, even if the
nodes were originally placed on an underlying geometry, the resulting topology is
not congruent with it.

Now that we have an intuitive idea of the performance of Mercator in the weakly
geometric region 0 < β ≤ 1, the next step is to substantiate these results. To this
end, we generate network realizations, embed these and test the quality of the
embedding. As a quality measure we choose the concordance or C-score, which
quantifies the similarity of two different orderings.

In our case, the first ordering is given by the set of vertices in a network, ordered
by their original coordinates, and the second by ordering the indices according to
the inferred coordinates. First introduced in Ref. [236], the C-score was adjusted to
a system with periodic boundary conditions in Ref. [197], leading to the following
definition:

C-score =
2

N(N − 1)

N−1

∑
i=1

N

∑
j=i+1

δ(i, j), (6.1)

where N is the total amount of nodes, i and j indicate two nodes and δ(i, j) is 1
if the shortest distance between i and j along the circle has the same direction
(clockwise or counterclockwise) in both the original and inferred ordering, and 0 if
the direction is different. Note that it is possible that Mercator returns an inverted
ordering, which, for example, leads to an inverted diagonal in Fig. 6.2, as well as a
C-score < 0.5. Of course, the orientation of the ring does not influence the quality
of the embedding, as it is only the distance between points along the circle that
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Figure 6.3: (a-c) Dots represent the C-score as a function of the inverse temperature β for
individual realizations of the S1-model for N = 4000. (d-f) The scaling exponent
of the C-score, assuming (C-score − 0.5) ∝ NσC . For the fit, networks of size
N ∈ {1000, 2000, 4000, 8000, 16000} where used. For all panels ⟨k⟩ = 12 and for
(a,d) γ = 2.1 , (b,e) γ = 2.5 and (c,f) γ = 2.9. The vertical dashed lines indicate
the critical inverse temperature β′c = 2/γ separating the quasi-geometric and
non-geometric regimes. The shaded regions represent the 2σ confidence interval.

matters. Therefore, we are actually interested in using max (C-score, 1 − (C-score))
as a measure, such that 1 implies perfect ordering and 0.5 means the inferred
order is completely random.

In Fig. 6.3a-c we show the results for the C-score as a function of the geometric
coupling β for various γ. We observe a transition between almost perfect repro-
duction of the ordering by Mercator (C = 1) at high β, to a situation where the
ordering is completely random (C = 0.5) at low β. This confirms the results we
obtained in Fig. 6.2.

In Fig. 6.3d-f we investigate how the performance varies as a function of N.
To this end, we fit the function (C-score − 0.5)(N), assuming that it scales as
∝ NσC . We use networks of sizes N ∈ [1000, 16000] to perform this fit. We then
plot the exponent σC as a function of the inverse temperature β. We see that σC = 0
for a range of β, and then quickly decreases. This implies that the performance
remains constant for a wide range of weak couplings, meaning that here geometric
information can always be extracted irrespective of the system size. This is true
despite the fact that clustering vanishes in the thermodynamic limit in this region.
While the presence of non zero triangle densities in this region is a finite size effect,
the presence of geometric information is not.
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We note that the region where the performance is constant is larger for higher
γ, and that the transition point lies around β = 2/γ, indicated by the dotted lines
in Fig. 6.3d-f. The fact that σC < 0 below this point and σC = 0 above it implies
that, in the thermodynamic limit, we should observe a jump in the performance,
reminiscent of a first order phase transition. However, the observation that at
β = 2/γ the variance in the C-score explodes, as can be seen in Fig. 6.3a-c,
indicates a continuous phase transition. These somewhat contradictory results
might indicate that the transition is actually explosive in nature [237, 238].

The location of this transition is in agreement with the theoretical results found
in Chapter 5. There, β = β′

c = 2/γ marked the transition between slow, tempera-
ture dependent decay of the average local clustering coefficient for β > β′

c and a
faster decay for β < β′

c, equivalent to the one observed in the soft configuration
model [144]. The fact that we recover this transition here is a very profound result,
as it confirms that the division of the region β ≤ 1 into these two sub-regions is
not just theoretical in nature but has very real, observable consequences.

6.3 greedy routing

The second test we discuss here is more practical in nature and involves the
performance of the greedy routing protocol [29]. In this protocol, a pair of nodes is
selected at random, and the goal is to efficiently send a packet of information from
one to the other. This is done by looking at the neighbors of the node that contains
the packet, which is then forwarded to whichever neighbor is closer in hyperbolic
space to the destination. This is repeated until one of two scenarios occurs. In
scenario (1), the packet reaches the destination. In scenario (2), the neighbor closest
to the goal is the node from which the parcel just arrived. In this latter case the
packet is dropped as the destination cannot be reached using the greedy routing
method.

One of the measures to define how well this algorithm performs is the success
probability ps, defined as the fraction of nodes pairs for which a greedy routing
path exists. In Ref. [29] it was shown that information can be efficiently routed
through the network if one uses the coordinates in the latent space. Of course, this
works better when the connection to this underlying space is stronger, i.e. when β
is higher. This is confirmed in Fig. 6.4a: When using the original coordinates and
the hyperbolic distance

dij = ri + rj + 2 min(1, β) ln
∆θ

2
, (6.2)

as defined in Eq. (4.39), one observes that the success probability ps decays with β
until leveling out at β = 0. Here, the angular coordinates are no longer taken into
account and the greedy routing is purely based on the degrees of the network. If
we redefine the hyperbolic distance such that it reads

d̂ij = ri + rj + 2 ln
∆θ

2
, (6.3)
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Figure 6.4: Results for the greedy routing routine. (a) Success probability ps based on
the original coordinates, using both the definition of the hyperbolic distance
where the contribution vanishes at β = 0 (dij) as well as where it remains
constant (d̂ij). The shaded regions represent the 2σ confidence interval. Similar
results are shown in panel (b) where now the inferred coordinates are used.
Parameters used: {N, ⟨k⟩, γ} = {4000, 12, 2.5}. In panels (c) and (d) a schematic
representation of greedy routing paths based on the original and inferred
coordinates, respectively, are shown.

i.e. such that the effect of the angular coordinates does not diminish, we see
that the results are worse. This is because, for extremely low β, the connection
between the topology and the geometry is lost and the angular coordinates are thus
meaningless, impeding proper routing. Let us now turn to the inferred coordinates,
for which the results can be found in Fig. 6.4b. Returning to the original definition
of the hyperbolic distance, we see that for β ≤ 1, the results are better than in the
case of the original coordinates. This can be understood as follows: As lowering
β can be interpreted as increasing the temperature, more of the connectivity is
determined by noise (conditioned on the hidden degrees). However, Mercator will
always try and find as much geometry as possible, and place nodes in such a
way that the inputted network realization is most congruent with it. In practice,
this means that two nodes that were originally far away from each other, but are
connected due to the large fluctuations, will most likely be placed close together in
the embedding. In other words, the fact that for finite systems even non-geometric
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random graphs display clustering implies that an effective geometry can be found
such that the effect of the triangle inequality on the topology is strongest. This
is reminiscent of the fact that fluctuations in random graphs can lead to high
modularity [92], which can lead to the detection of spurious communities [91]. In
our case, Mercator is able to uncover an effective geometry, arising from the noise
in the system (which makes this a finite size effect). However, where detecting
spurious communities can be considered undesirable, the effective geometry can
be useful.

For example, it is beneficial to the greedy routing routine, as nodes that are close
together are now also connected. Of course, when using the original hyperbolic
distance, this effect will eventually disappear as the angular coordinates are no
longer taken into account, leading to a success probability that coincides with that
of the original coordinates at β = 0. However, if we again use Eq. 6.3, keeping the
influence of θ constant, we note that high success probabilities can be achieved,
even for low betas. Note that exactly at β = 0 this is no longer the case as Mercator
does not even try to find meaningful angular coordinates.

In Fig. 6.4c,d this effect is clarified graphically. Here, the goal is to send a
packet from the source node labeled S to the target node labeled T. There is only
one correct path, passing through node A. In the original metric space, due to
fluctuations, the source node is also connected to node B, even though it lies far
away from it. As B lies closer to the target, the packet will get forwarded there.
There is, however, no connection between B and T and so the packet gets dropped.
In the case of the inferred coordinates, node B gets placed closer to the source,
and further from the target, in accordance with its connectivity. Node A now lies
closer to the target than B does, and so a successful routing is achieved.

6.4 conclusions

The success of the framework of network geometry in describing real systems has
led many to wonder if there is a way to determine if real networks are indeed
geometric in nature [59, 60]. In general, (some function of) the amount of closed
triangles in the network, expressed, for example, by the average local clustering
coefficient, is taken to indicate the presence of geometry. In this Chapter we use the
network embedding tool Mercator to shed light on this important question. After
extending it to the weak coupling regime, we show that, in the quasi-geometric
region, the tool is able to recover a significant amount of geometric information
from the topology of the network alone. This implies that geometric information
is indeed relevant in this regime. Only when the coupling strength is very close to
zero does the geometricity completely vanish. Here, the properties of the network
can be explained by the soft configuration model. We show that the presence of
triangles in finite non-geometric random graphs allows for the definition of an
effective geometry by Mercator. This effective geometry does not reflect an original
underlying geometry, which is absent, but can still be useful for information
routing problems.
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N E T W O R K R E N O R M A L I Z AT I O N

In the last Chapter we observed that geometric information can be extracted from
the topology alone in the quasi-geometric regime through network embedding.
This can be taken to mean that this information is important for understanding
the connectivity of the network, even though the geometric coupling is weak in
this regime. In this Chapter, adapted from Ref. [62], we reach the same conclusion
by studying network renormalization.

The Renormalization Group remains an essential tool in statistical physics to
study systems at different length scales, and for revealing the scale invariance
and universal properties of critical phenomena near continuous phase transitions,
where fluctuations are strong [239]. The simplest technique for processes on
regular lattices is that of the block spin method proposed by Kadanoff [240],
where blocks of nearby nodes are grouped together into supernodes whose state is
determined by some averaging rule. Extending this method to complex networks
is complicated by their small world property, which makes the concept of closeness
fuzzy and hinders the definition of supernodes [121].

Different methods have been proposed for circumventing this problem. The
first renormalization scheme for complex networks was the box covering method,
where closeness is defined in a chemical sense: nodes are grouped if they lie
closer than a certain amount of hops away from one another in the topology
of the network [241]. Other methods are based on the graph Laplacian, where
closeness is based on diffusive distance [242, 243]. Finally, network geometry offers
a natural framework for renormalizing networks, with closeness being related to
the distance in similarity space.

In Ref. [43, 50], a renormalization procedure was defined in which adjacent
nodes are coarse-grained into supernodes on the basis of their coordinates in their
latent geometry. The geometric renormalization (GR) approach has revealed that
scale invariance is a pervasive symmetry in real networks [50]. From a practi-
cal perspective, GR has also enabled the generation of scaled-down self-similar
replicas—an essential tool for facilitating the computationally challenging analysis
of large networks. Additionally, when combined with scaled-up replicas produced
through a fine-graining reverse renormalization technique [43], it provides a means
to explore size-dependent phenomena.

This Chapter is organized as follows: First, we develop and assess the perfor-
mance of GR in the region of weak geometric coupling in Sec. 7.1. Then, in Sec. 7.2,
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we show that in the quasi-geometric regime, geometric information is essential for
obtaining self-similarity in important network measures across scales.

7.1 geometric renormalization in the weakly geometric regime

The first step in GR is to define non-overlapping sectors along the S1-circle con-
taining each r consecutive nodes. To determine the coordinates of the nodes in
the geometric space and, hence, which nodes are consecutive in the similarity
space, real networks must of course first be embedded using, for example, the
Mercator tool extended in the previous Chapter. The second step is to coarse grain
the nodes within a group to form a single supernode, whose angular coordinate
and hidden degree are functions of the coordinates and hidden degrees of its
constituents. It is essential that the supernode order along the circle preserves
the order of nodes in the original layer. The connectivity of the new network is
defined by connecting two supernodes if any pair of their respective constituents
are connected. This procedure can be repeated iteratively starting from the original
layer l = 0. Each layer l is then rl times smaller than the original network. This
defines the renormalization group flow.

In the original work, GR was only defined for β > 1, assuming that this is
the region where real networks live. However, in the previous Chapters we have
seen that weakly geometric networks, with β ≤ 1, can also exhibit high levels of
clustering. In the following, we extend this procedure to this regime. We use a
compact notation that includes the results in [50] for β > 1.

7.1.1 Self-similarity of the connection probability

In the renormalization procedure described above, supernodes in layer l + 1 are
formed by combining r adjacent nodes from layer l. If any constituent of supernode
σ, denoted by the set S(σ), is connected to any of the constituents of supernode τ
they are said to be connected. The probability of this being the case is given by

p(l+1)
στ = 1 − ∏

{i,j}∈P(σ,τ)
(1 − p(l)ij ), (7.1)

i.e., one minus the probability that none of the constituents are connected. Here
we have defined P(σ, τ) = S(σ)× S(τ). Using p(l)ij = 1/(1 − χ

(l)
ij ) we can rewrite

this expression as

p(l+1)
στ = 1 − 1

∏{i,j}∈P(σ,τ)(1 + (χ
(l)
ij )−1)

. (7.2)

The denominator of the second term can be expanded as

1 + ∑
{i,j}∈P(σ,τ)

(χ
(l)
ij )−1 + ∑

{i,j}∈P(σ,τ)
(χ

(l)
ij )−1 ∑

{s,t}∈P(σ,τ)\{i,j}
(χ

(l)
st )

−1 + ... (7.3)
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We now assume that χ
(l)
ij = (R(l)∆θ

(l)
ij )β(l)/(µ̂(l)κ

(l)
i κ

(l)
j )max(1,β(l)) ≫ 1. This is a

consequence of the sparsity of the graph and allows us to truncate the expansion
at first order. We then realize that ∆θ

(l)
ij ≈ ∆θ

(l+1)
στ , the distance between the two

supernodes. This is because the distances between the nodes within a single su-
pernode are generally much smaller than the distances between nodes in different
supernodes. This allows us to rewrite Eq. (7.2) as

p(l+1)
στ =


1 +

(
R(l)∆θ

(l+1)
στ

)β(l)

∑{i,j}∈P(σ,τ)

(
µ̂(l)κ

(l)
i κ

(l)
j

)max(1,β(l))




−1

. (7.4)

In order for this to be a proper connection probability in the renormalized layer,
taking into account that R(l+1) = R(l)/r and β(l+1) = β(l) ≡ β, we must demand
µ̂(l+1) = µ̂(l)/rmin(1,β). Furthermore, the evolution of the hidden degrees is as
follows

κ
(l+1)
σ =


 ∑

i∈S(σ)

(
κ
(l)
i

)max(1,β)



1/ max(1,β)

. (7.5)

Note that in the weak coupling regime max(1, β) = 1, reducing the definition
to a simple sum. This transformation respects the semi-group property of the
renormalization as

κ
(l+2)
σ =


 ∑

i∈S(σ)

(
κ
(l+1)
i

)max(1,β)



1
max(1,β)

=


 ∑

i∈S(σ)
∑

s∈S(i)

(
κ
(l)
s

)max(1,β)



1
max(1,β)

.

(7.6)

This final double sum is equivalent to a single sum over all r2 nodes in the
unrenormalized layer l that make up the supernode in the layer l + 2.

We have slightly more freedom for the similarity dimension, as we just need
to find a definition of ∆θ

(l+1)
σβ that (1) respects the semi-group property of the

renormalization procedure, (2) respects the spherical symmetry of the system and
(3) lies in the range defined by the angular coordinates of the constituent nodes
and therefore respects the original node order. To this end we define

θ
(l+1)
σ =

∑i∈S(σ)(κ
(l)
i )max(1,β)θ

(l)
i

∑i∈S(σ)(κ
(l)
i )max(1,β)

, (7.7)

which can been seen as a weighted average. Note that we do not choose the exact
equation as given in Ref. [50] because that definition introduces a bias for the
constituent node with the largest angular coordinate, which is not in line with the
rotational symmetry of the system.
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7.1.2 The average degree

The flow of the average hidden degree can be derived from Eq. (7.5). In the region
β ≤ 1 (the case β > 1 was already investigated in Ref. [50]), the hidden degree of
a supernode is simply given by the sum of the hidden degrees of its constituents,
which implies

⟨κ(l+1)
σ ⟩ =

〈
∑

i∈S(σ)
κ
(l)
i

〉
= ∑

i∈S(σ)
⟨κ(l)i ⟩ = r⟨κ(l)⟩. (7.8)

Thus, ⟨κ(l+1)⟩ = rξ⟨κ(l)⟩ where ξ = 1 for β ≤ 1. Following similar steps as in
Sec. 4.2.2, it can be shown that

k(l+1)(κ(l+1)) = rξ−1 ⟨k(l)⟩
⟨κ(l)⟩κ(l+1). (7.9)

We can then take the average over the hidden degree to get

⟨k(l+1)⟩ = rν⟨k(l)⟩, (7.10)

where we define ν = 2ξ − 1. The flow of the average degree in the weakly geometric
regime is, thus, inversely proportional to the flow of the system size, which means
that the amount of links M = N⟨k⟩/2 is a constant under renormalization, i.e.,
that no links are lost as one performs GR steps. This result implies that, on average,
there is only one connection between the constituents of a pair of supernodes.
This has to do with the fact that for β ≤ 1 connections are long ranged in the
thermodynamic limit. It is therefore exceedingly unlikely that a node is connected
to two nodes so close together in the latent space that when we perform a GR step
they end up in the same supernode.

Note that this result implies that the network will get denser along the renor-
malization flow. This can lead to problems when many renormalization steps are
performed on relatively small networks. In this case, χ

(l)
ij as defined in Eq. (4.27),

might cease to be large, resulting in Eq.(7.3) not being truncatable and the con-
nection probability, therefore, loosing self-similarity. This is in line with the ob-
servations made in Ref. [189], where it was shown that the connection probability
p(l)ij = 1 − exp(−1/χ

(l)
ij ) is the only one that is explicitly self similar under renor-

malization. In the sparse regime, i.e., when χ
(l)
ij is large, this connection probability

and the one in the S1-model are interchangeable, as discussed in Sec. 4.4. However,
when the network becomes too dense and χ

(l)
ij ceases to be large, this equivalence

breaks down, explaining the loss of self similarity in the S1-model. We still choose
to work with the S1 connection probability for two reasons: First, the densification
effect responsible for the loss of self-similarity can be mitigated through a geomet-
ric pruning procedure introduced in Ref. [42]. Second, in this Chapter we will see
that even without pruning, self-similarity is obtained for a significant amount of
renormalization steps. Only when the networks become truly small and dense
does it break down, implying that for all practical purposes the S1 is sufficient,
while having the added benefit of being explicitly maximally random.
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7.1.3 Quantifying the GR
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Figure 7.1: (a) The log-binned degree distribution P(l)(k(l)) as a function of the rescaled de-

grees k(l)res = k/⟨k(l)⟩. (b) The exponent ν in ⟨k(l+1)⟩ = rν⟨k(l)⟩, as a function of β.

(c) Rescaled average local clustering per degree class c(l)res(k(l)) = (c(l)(k(l)))/c(l)

as a function of the rescaled degrees. (d) Average local clustering coefficient
c(l) as a function of the layer (l). We display the flow under standard GR with
deterministic links (orange squares), GR where links are made probabilistically
(green stars), and new independent S1-realizations created in every layer (blue
triangles). In this latter case, the networks size and the average degree match
the GR in every layer. The original networks were generated with the S1-model
for N = 65536 and ⟨k⟩ = 6.

In Fig. 7.1, we show the behavior of several network properties in the flow of
synthetic scale-free networks generated with the S1-model. In Fig. 7.1a, the tail
of the degree distribution of rescaled degrees k(l)res = k(l)/⟨k(l)⟩ for β = 0.8 in the
quasi-geometric domain is self-similar under renormalization. This self-similarity
is also proven analytically in Appendix B.1. For large enough l, this self-similarity
will always be lost for finite systems like real networks. This is because the finite
size induces a cut-off in the degree distribution, rendering its variance finite and
therefore leading to the applicability of the central limit theorem, resulting in a
Gaussian distribution.

In Fig. 7.1b, we plot the dependence of the exponent ν characterizing the flow of
the average degree as a function of β. As discussed above, in the region β ≤ 1 no
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edges get destroyed in the renormalization flow as the long range nature of links
in this regime makes it extremely unlikely that two or more edges connect nodes
in the same two supernodes. However, such situations do arise for finite systems,
leading to the loss of links along the flow and, thus, to ν < 1, as can be observed
in Fig. 7.1b. This finite size effect is stronger the closer to β = 1, and can therefore
be seen as quasi-geometric behavior. When β > 1, the exponent ν decreases even
further and we enter in the geometric regime described in Ref. [50].

In Fig. 7.1c we display the average local clustering coefficients per degree class,
which is again self-similar when rescaled as c(l)res(k(l)) = (c(l)(k(l)))/c(l), where c(l)

is the average local clustering coefficient. Rescaling is necessary because c(l) is not
conserved under the RG flow for β ≤ 1. This is confirmed by Fig. 7.1d, where the
orange squares represent the evolution of c(l) as a function of the renormalization
step l for networks at β = 0.8. This behavior is in contrast to the situation for
β > 1, where c only depends on the inverse temperature β, which is unaffected by
the renormalization procedure. For β ≤ 1, clustering depends on the systems size
and the average degree [35], which do change under the RG flow.

This result on its own is not in tension with the notion of self-similarity as,
granted the network is well described by the S1-model, a smaller version of a
certain network should indeed have a higher clustering coefficient. However,
comparing networks obtained through GR (orange squares) and with the S1-
model (blue triangles) in Fig. 7.1d, we see that the flows of c(l) do not match.
This discrepancy is caused by the fact that the largest contribution to the average
local clustering coefficient comes from nodes with small degrees for which self-
similarity is not fulfilled, as can be seen in Fig. 7.1a. To prove that the discrepancy
does not stem from a lack of congruence with the S1 connection probability, we
repeat the same analysis for networks where the hidden degrees of the supernodes
were generated using Eqs. (7.5) and (7.7) but where the connections were made
randomly following Eq. (4.26). In Fig. 7.1d, this case is represented by green stars
and coincides with the GR flow. The discrepancy, thus, originates in the lack of
self-similarity of the hidden degree distribution at small κ.

7.2 the importance of geometry

In this section we will argue that geometry is still important for renormalizing
networks with weak geometric coupling. To this end we compare GR with a sec-
ond scheme that is explicitly non-geometric – supernodes are created by choosing
constituent nodes at random. In general, the random scheme will not lead to a
conserved connection probability as the proof in Sec. 7.1.1 breaks down because
∆θ

(l)
ij can no longer be assumed equivalent to ∆θ

(l+1)
στ as nodes within a single

super-node might lie very far apart. However, one might argue that the angular
coordinate is irrelevant as the regime β ≤ 1 is, a priori, non-geometric in the ther-
modynamic limit and self-similar network copies could, thus, still be obtainable.
As we show below, for finite networks this is only the case for extremely small
values of β ≲ 0.5, i.e., in the non-geometric regime.
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7.2.1 The circular mean

In the random scheme, the angular coordinate of the supernodes is meaningless by
construction. Nevertheless, for convenience, we redefine it such that it represents
a proper average even for constituent nodes that lie far away from each other:

θ
(l+1)
σ = arg


∑i∈S(σ)(κ

(l)
i )max(1,β)eiθ(l)i

∑i∈S(σ)(κ
(l)
i )max(1,β)


 . (7.11)

Note that when the spread of the constituent angular coordinates is small, as is the
case for GR, it does not matter which of the two definitions of θ

(l+1)
σ one takes: Let

{θ
(l)
1 , ..., θ

(l)
r } be the set of constituent nodes of a supernode σ in layer l + 1, sorted

in ascending order and where we assume that θ
(l)
r − θ

(l)
1 ≪ 1. Then we know that

∆θ
(l)
i1 ≪ 1 ∀i, which allows us to approximate Eq. (7.11) as

θ
(l+1)
σ ≈ arg




eiθ(l)1 ∑i∈S(σ) κ
max(1,β)
i

(
1 + i∆θ

(l)
i1

)

∑i∈S(σ) κ
max(1,β)
i




= arg
(

eiθ(l)1

(
1 + i∆θ(l)

))
≈ arg

(
eiθ(l)1 ei∆θ(l)

)
= θ

(l)
1 + ∆θ(l), (7.12)

where in the second step we have defined the weighted average of the angular
differences

∆θ(l) =
∑i∈S(σ) κ

max(1,β)
i

(
θ
(l)
i − θ

(l)
1

)

∑i∈S(σ) κ
max(1,β)
i

, (7.13)

which is assumed to be small. Eq. (7.12) can then be rewritten to obtain Eq. (7.7).

7.2.2 The clustering spectrum

We first study self-similarity of the clustering spectrum as clustering is the key
property of geometric graphs due to its relation to the triangle inequality. In Fig. 7.1,
it is shown that, for a scale-free synthetic network with β = 0.8, GR reveals self-
similar behavior in the renormalization flow. In Fig. 7.2, we show the results for
the randomized coarse-graining scheme. We see that self-similarity is obtained
for the smallest β’s, implying that geometric information is not important here.
However, the overlap between the different curves gets progressively worse as β
increases, reflecting the growing importance of the geometry. The self-similarity is
lost at β ≈ 0.7, very close to the theoretical transition point β′

c = 2/γ between the
non- and quasi-geometric regimes [35]. The curves flatten out with l, implying that
more and more of the clustering in the network is due to high degree nodes. This is
to be expected, as the random coarse-graining scheme destroys the coupling of the
network to the geometry. This leads to networks that are similar to those generated
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with the configuration model, where we know that most of the clustering is due
to high degree nodes [144].

10−1

100

c(l
) (

k(l
)

re
s)

/
c(l

)

β = 0.5
(a)

l = 0
l = 1

l = 2
l = 3

β = 0.7
(b)

100 101 102

k(l)
res

10−1

100

c(l
) (

k(l
)

re
s)

/
c(l

)

β = 0.9
(c)

100 101 102

k(l)
res

β = 1.1
(d)

Figure 7.2: The flow of the rescaled average local clustering coefficient per rescaled degree
class under the randomized coarse-graining scheme for different β′s: (a) β = 0.5,
(b) β = 0.7, (c) β = 0.9, (d) β = 1.1. Here, l = 0 represents the original network
and we perform three consecutive renormalization steps with r = 2, leading to
the cases l = 1, 2 and 3. The network parameters used to generate the original
networks are {N, γ, ⟨k⟩} = {65536, 2.9, 6}.

7.2.3 The empirical connection probability

To quantify further how much poorer the results of the randomized coarse-graining
scheme are in comparison to GR, we measure how well the empirical connection
probability of the renormalized network fits the theoretical one in the S1-model.
After obtaining the hidden coordinates, the quantity χij = (R∆θij)

β/(µ̂κiκj)
max(1,β)

is determined for each pair of nodes. These values are binned logarithmically, and
for each bin the proportion of links versus non-links is calculated to produce the
inferred connection probability p(χ). The results of this analysis are shown in
Fig. 7.3 where we have used networks in the quasi-geometric regime with β = 0.8.
Fig. 7.3a shows the inferred connection probability of the different renormalized
layers for the standard GR, where geometric information is used to define the
supernodes. In Fig. 7.3b, we see the same results but for the case where the nodes
are chosen at random. Clearly, while GR produces self-similar copies congruent
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Figure 7.3: (a,b) The flow of the connection probability as a function of χ =
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(c) The mean difference between the two previous cases for l = 1 and for three
different γ’s. In all cases the networks were generated with the S1-model with
N = 65536 and ⟨k⟩ = 6.
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with the S1 connection probability, the random procedure does not. This confirms
that in the quasi-geometric regime geometric information is important even though
the geometric coupling is weak.

We plot the average difference between the connection probabilities of the two
schemes at layer l = 1 as a function of the inverse temperature β in Fig. 7.3c. To
compute this difference, one first samples parameters χ

(l=1)
ij logarithmically. For

each of these values, one finds the observed connection probability for the two
schemes. One then takes the difference between these cases and averages it over the
sampled distances. Once again, three different behaviors can be observed. In the
geometric regime (β > 1), the difference between the two methods is large. For β’s
in the quasi-geometric regime, the difference decreases, and it goes to zero in the
non-geometric regime. The transition point between the non- and quasi-geometric
regimes shifts to higher betas when the heterogeneity of the network is increased,
in line with the theoretical prediction that this transition occurs at β′

c = 2/γ [35].
The discrepancy between the curves at β > 1 comes from the fact that not only
similarity but also popularity plays a role in the connection probability. As this
second type of information is used equivalently in the renormalization procedure
regardless of how the angular coordinates are chosen, the difference between these
two methods can thus be expected to be smaller when popularity dimensions
plays a more important role, which is the case when the degree distribution is
more heterogeneous, i.e. when γ is smaller.

7.3 conclusions

In summary, we have extended the geometric renormalization scheme to networks
in the weakly geometric regime. We have shown that also in this regime, self-
similar scaled-down network replicas can be obtained, where self-similarity refers
to important network properties such as the degree distribution and the clustering
spectrum. In the quasi-geometric domain 0.5 ≲ β ≤ 1, one must define supernodes
by grouping consecutive nodes along the S1-circle in order to obtain self-similarity
in the clustering spectrum and in the connection probability. This underlines the
importance of geometric information for understanding the network topology
even when the geometric coupling is weak. In constrast, for β ≲ 0.5 it does not
matter how nodes are grouped. This implies that here the connectivity is solely
determined by the degree-distribution, making them effectively non-geometric.
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E M P I R I C A L N E T W O R K S I N T H E W E A K LY G E O M E T R I C
R E G I M E

In the previous Chapters, we have seen various confirmations that geometric
information is relevant to understanding a network’s topology, even when the
geometric coupling is relatively weak. For one, clustering decays extremely slowly
in the quasi-geometric β′

c < β ≤ 1 regime, indicating that high levels of clustering
might be a finite size effect. Secondly, the underlying coordinates of artificial
S1-networks can be recovered faithfully by network embedding, even when β is
low. Finally, for a large range of β ≤ 1, information about the location of nodes
in their underlying similarity space is essential for obtaining self-similarity in
important network measures when performing graph renormalization.

Even though these results are of clear theoretical interest, it still needs to be
shown that they are of importance to real world networks. In this Chapter, which
combines results from Refs. [61] and [62] we analyze several empirical data sets
from various fields of study. In Sec. 8.1 we show that many of these networks are
indeed best described as living in the weakly geometric regime. Then, in Sec. 8.2,
we demonstrate that in this regime, faithful network embeddings can be obtained
using Mercator. Finally, in Sec. 8.3 these networks are shown to be self-similar
under the geometric renormalization group flow.

8.1 classifying real networks

We first want to understand if the three regions identified in the previous chapters
– strongly geometric, quasi-geometric and non-geometric– are also relevant for em-
pirical data. In the case of real networks, the theoretical transition point β′

c = 2/γ
between the non- and quasi-geometric regions is less useful as it is mostly not
possible to accurately extract the exponent γ. We therefore define a new classifica-
tion of three distinct types of networks. Type I networks are classified by Mercator
as being effectively non-geometric, i.e. their clustering can be explained by the
configuration model. Type II networks live in the region β ≤ 1, but Mercator is
still able to determine their temperature as they have significantly more clustering
than one would expect from a network generated by the configuration model.
These networks can be considered quasi-geometric. Finally, type III networks are
those network that have β > 1 and, thus, they are strongly geometric.

85
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In Tab. 8.1 we show a selection of real networks and their properties, as well
as their classification into the categories described above. There are several real
networks for both categories I and II, where β ≤ 1. Note also that the absolute
value of the average local clustering is, on its own, not a good indicator for
geometric coupling strength. For example, the value of c for the WordAdjacency–
English network is relatively high, but it is still a type I network. This is because
the triangles in the network can also be formed due to the presence of high degree
nodes, meaning that this level of average local clustering can also be obtained in
the configuration model. Another interesting observation is the presence of several
gene regulatory and protein-protein interaction networks in the region β ≤ 1, as
well as the fact that several ecological networks are deemed to have extremely
weak geometry.

Real networks of type III have been extensively studied in the literature [35,
42, 64, 244]. Living in the region β > 1, their coupling to the geometry is strong.
In general, this leads to relatively high levels of clustering. However, once again
exceptions arise. An example is the offline friendship network studied in Ref. [245].
It can be shown that for this network β = 1.3, squarely in the geometric regime.
However, the average clustering c = 0.15 is lower than that of many type I or II
networks.

8.2 qualifying the embedding

Clearly, the levels of clustering in many real networks from a wide range of
scientific field can be best explained by placing them in the weakly geometric
regime. However, we still need to examine if the embeddings of these networks
in this regime are meaningful; can the inferred hidden variables reproduce the
structural properties of the network well? In order to answer this question we
study four networks from Tab. 8.1. First, in Fig. 8.1 we study the Word Adjacency
network of the English language, which is Type I. Here, nodes represent words
which are connected if one directly follows the other in texts. In Fig. 8.2 we the turn
to the Genetic Multiplex of S.cerevisiae, otherwise known as baker’s yeast, where
nodes are genes and the links represent different types of interaction, which are
also treated equivalently. Then, in Fig. 8.3 we study the protein protein interaction
network of H.sapiens –humans–, with nodes representing genes and the edges
physical interactions between then. Finally, we study the MathOverflow network
in Fig. 8.4. This is a network of users of the online Q&A site MathOverflow where
an edge is created if the users interacted. The final three example networks are all
of Type II.

For all four networks we reproduce the complimentary cumulative degree
distribution (panel (d)), the clustering spectrum (panel (e)) and the degree-degree
correlation spectrum (panel (f)) from the inferred coordinates (panel (a)). We also
show the inferred connection probability (panel (c)), which is obtained as follows:
After inferring the hidden coordinates, for each pair of nodes the parameter
χ = xβ

ij/(µ̂κiκj)
max(1,β) is calculated. These values are then binned logarithmically,
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Figure 8.1: Summary of the results of Mercator for the WA–English network. (a) Represen-
tation of the embedding in the hyperbolic plane as defined by the H2-model.
The top 20% most geometric edges are shown. (b) Comparison between the
expected and inferred densities of nodes along the circle. (c) Comparison be-
tween the probability distribution as expected based on the model (expected) as
well as the actual distribution based on the inferred coordinates (inferred). The
reproduction of the topological properties is also given: (d) the complementary
cumulative degree distribution, (e) the average local clustering coefficient per
degree class and (f) the degree-degree correlations per degree class. The inferred
results are obtained by generating 100 realizations of the S1-model based on the
inferred coordinates. The orange shaded regions represent the 2σ confidence
interval.
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Figure 8.2: Summary of the results of Mercator for the GMP–S.cerevisiae network. (a)
Representation of the embedding in the hyperbolic plane as defined by the H2-
model. The top 10% most geometric edges are shown. (b) Comparison between
the expected and inferred densities of nodes along the circle. (c) Comparison
between the probability distribution as expected based on the model (expected)
as well as the actual distribution based on the inferred coordinates (inferred). The
reproduction of the topological properties is also given: (d) the complementary
cumulative degree distribution, (e) the average local clustering coefficient per
degree class and (f) the degree-degree correlations per degree class. The inferred
results are obtained by generating 100 realizations of the S1-model based on the
inferred coordinates. The orange shaded regions represent the 2σ confidence
interval.



8.2 qualifying the embedding 89

Figure 8.3: Summary of the results of Mercator for the PPI–H.sapiens network. (a) Repre-
sentation of the embedding in the hyperbolic plane as defined by the H2-model.
The top 4% most geometric edges are shown. (b) Comparison between the
expected and inferred densities of nodes along the circle. (c) Comparison be-
tween the probability distribution as expected based on the model (expected) as
well as the actual distribution based on the inferred coordinates (inferred). The
reproduction of the topological properties is also given: (d) the complementary
cumulative degree distribution, (e) the average local clustering coefficient per
degree class and (f) the degree-degree correlations per degree class. The inferred
results are obtained by generating 100 realizations of the S1-model based on the
inferred coordinates. The orange shaded regions represent the 2σ confidence
interval.
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Figure 8.4: Summary of the results of Mercator for the MathOverflow network. (a) Repre-
sentation of the embedding in the hyperbolic plane as defined by the H2-model.
The top 5% most geometric edges are shown. (b) Comparison between the
expected and inferred densities of nodes along the circle. (c) Comparison be-
tween the probability distribution as expected based on the model (expected) as
well as the actual distribution based on the inferred coordinates (inferred). The
reproduction of the topological properties is also given: (d) the complementary
cumulative degree distribution, (e) the average local clustering coefficient per
degree class and (f) the degree-degree correlations per degree class. The inferred
results are obtained by generating 100 realizations of the S1-model based on the
inferred coordinates. The orange shaded regions represent the 2σ confidence
interval.
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Table 8.1: Set of real networks classified by type: (I) non-geometric, (II) quasi-geometric.
Network properties are also shown. The following abbreviations are used: (WA)
WordAdjacency (MB) Metabolic, (GI) Genetic Interactions, (GMP) Genetic Multi-
plex, (PPI) Protein Protein Interactions, (PoP) Point of Presence. Detailed descrip-
tions of the networks can be found in App. C.1.

Network Area N ⟨k⟩ kmax c β Type

Foodweb–Eocene Ecological 700 18.3 192 0.10 ≈ 0 I

Foodweb–Wetland Ecological 128 32.4 110 0.33 ≈ 0 I

WA–English Language 7377 12.0 2568 0.47 ≈ 0 I

WA–Japanese Language 2698 5.9 725 0.30 ≈ 0 I

MB–R.norvegicus Cell 1590 5.9 498 0.19 ≈ 0 I

WikiTalk–Catalan Social 79209 4.6 53234 0.83 ≈ 0 I

GI–S.cerevisiae Cell 5933 149 2244 0.17 0.63 II

GMP–C.elegans Cell 3692 4.1 526 0.11 0.69 II

Gnutella Tech 10876 7.4 103 0.01 0.73 II

PPI–S.cerevisiae Cell 7271 45.0 3613 0.37 0.75 II

PPI–D.melanogaster Cell 11319 23.7 889 0.10 0.84 II

Transport–London Transport 369 2.3 7 0.03 0.86 II

GMP–S.cerevisiae Cell 6567 68.1 3254 0.22 0.88 II

Internet-PoP Tech 754 2.4 7 0.03 0.90 II

PPI–H.sapiens Cell 27578 37.9 2883 0.15 0.91 II

WikiVote Social 7066 28.5 1065 0.21 0.91 II

MathOverflow Social 13599 10.5 949 0.32 0.99 II

and for each bin the proportion of links versus non-links is determined. This
then gives the inferred connection probability p(χ), which we compare with the
theoretical form p(χ) = 1/(1 + χ). Finally, we plot the distribution of nodes
along the S1-circle in panel (panel (b)). This latter result allows us uncover the
presence of soft-communities in the network, encoded in the non-uniformity of
the distribution.

We observe in all four examples that the structural properties are reproduced
well, and that the empirical connection probability matches the theoretical one.
Interestingly, the fact that this is also the case for the Word Adjacency network,
which is type I, indicates that Mercator can still be used, even though the networks
is not geometric. This is a result of the fact that the β → 0 limit of the S1-model is
the SCM, where the topology of the networks is entirely determined by the hidden
degrees. Mercator is still doing a good job at extracting these, even though the
inferred hidden coordinates θ are meaningless. This latter fact is also the reason
we observe a spiral structure in the node placement on the hyperbolic disk in
Ref. 8.1a.
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Figure 8.5: The degree distribution and rescaled average local clustering coefficient as
functions of the rescaled degree for (a,b) the genetic multiplex of the yeast
S.cerevisiae, (c,d) the Human protein-protein interaction network and (e,f) the
interaction network of users on the online Q&A site MathOverflow. The details
of these networks are given in Appendix C.1.

8.3 renormalizing real networks

We now apply the geometric renormalization procedure introduced in Chapter 7 to
the type II networks studied above. In Fig. 8.5 the flows of the degree distributions
and clustering spectra are shown. The original networks correspond to layer l = 0,
on which we perform three geometric renormalization steps with r = 2 leading to
the layers l = 1, 2 and 3. In all cases, the curves remain invariant under repeated
application of GR. Only for large l does the degree distribution tend to a more
homogeneous distribution. Indeed, in Appendix B.1 we showed that there is a
maximum amount of renormalization steps one can perform after which the
self-similarity of the degree distirbution breaks down due to finite size effects
arising from the cutoff κc.

In Fig. 8.6 the networks embeddings on the hyperbolic disk are shown, both
for the original network l = 0 and the thrice renormalized network l = 3. Note
that these renormalized networks are 23 = 8 times smaller than the original. We
observe that the networks are self-similar, with important features being preserved
along the flow. For example, the placement of hubs remains the same, as do the the
presence and location of denser areas along the circle, indicating the preservation
of soft communities [50]. One can also see that the networks become denser, with
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Figure 8.6: The hyperbolic embedding of the original (l = 0) and thrice renormalized
(l = 3) versions of (a,b) the genetic multiplex of the yeast S.cerevisiae, (c,d) the
Human protein-protein interaction network and (e,f) the interaction network of
users on the online Q&A site MathOverflow. The details of these networks are
given in Appendix C.1.
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all nodes moving towards the center of the hyperbolic disk. This is an effect of
evolution fo the hidden degrees derived in Sec. 7.1.2, and can be mitigated through
geometric pruning [42].

8.4 conclusions

All in all we have shown that the weakly geometric region is important from the
point of view of real data, as well. The clustering coefficient of many real networks
is best explained by this regime, where they can be faithfully embedded into the
S1-model. This also allows us to renormalize them using the GR procedure, where
self similarity is once again observed. The results for the other real networks
mentioned in Tab. 8.1 can be found in the Supplementary Informations of Ref. [61]
and Ref. [62].



9
L I N K O V E R L A P A N D M U T UA L C L U S T E R I N G I N M U LT I P L E X
N E T W O R K S

Previously, we studied the transition from random graphs purely defined by their
degree sequence to their geometric counterparts, where the underlying metric
space induces clustering through the triangle inequality. We saw that this transition
is not sharp, with clustering decaying very slowly in the weakly geometric regime.
We also saw that one can define a quasi-geometric regime where geometric
information is still relevant, even though the coupling is weak.

All these results were for simple, single layer networks. However, in the de-
velopment of the science of complex networks it was observed fairly quickly
that in many real systems nodes are connected through many different types of
interactions [246, 247] – e.g., the same two neighborhoods might be connected by
roads, the underground and tram connections. These different interactions lead
to different network topologies, and it is often reductive to combine them into a
single network. This observation led to the study of multiplex networks, multilayer
objects where nodes are shared between layers, but where the connectivity profiles
might be very different [248–256].

Even though the individual networks which make up the multiplex are, a
priory, different, they will share many properties. For example, two important
neighborhoods in a city will most likely be connected by all possible means of
transportation. In the multiplex of online social networks, two users that are
friends on one platform have a high probability of also being connected on another.
These correlations lead to the relatively high levels of link overlap observed in
real networks [257–264]. These observation has been explained in various different
ways; generally the overlap can be thought of as resulting from correlations at the
level of the links [265, 266] or at the level of the nodes [47]. Combinations of both
these approaches are also possible [267].

In this Chapter we focus on the node-based approach: We assume that the
correlations observed in real multiplexes can be understood through the lens of
network geometry. In Ref. [47] the geometric framework was extended to multiplex
networks, where the correlations between the different layers are encoded at the
level of the hidden coordinates of the nodes; the hidden coordinates of one layer
are correlated with that of another, leading to similar connectivity patterns. It was
shown that these hidden correlations are indeed present in many real systems.

95
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We employ the Geometric Multiplex Model (GMM), introduced in the aforemen-
tioned reference, to study the overlap of the different network layers by introducing
the mutual network. This network is constructed by placing a link between two
nodes i and j if and only if they are connected in all layers of the multiplex.
Note that this subnetwork is but a tool for studying the overlap properties of the
multiplex as a whole.

By studying the popularity and similarity dimensions separately, we show that
only a strong coupling to the geometric similarity space in all layers leads to
macroscopic levels of edge overlap; hubs do provide some additional common
edges but their reduced number implies an ever sparser mutual network when
the geometric coupling is weak. We supplement these results with an analysis of
the triangle overlap in the multiplex, quantified by the clustering coefficient in the
mutual layer. In contrast to the results on edge overlap, both degree heterogeneity
and strong geometric couplings are sufficient to achieve high levels of mutual
clustering. We note that in geometric multiplexes, it is generally the links most
congruent with the underlying metric space that are preserved in the mutual
network, increasing its effective geometric coupling. These results are corroborated
in real networks where clustering coefficients generally remain high.

This Chapter is structured as follows: First, in Sec. 9.1 we introduce the geometric
multiplex model. We continue by defining the mutual network in Sec. 9.2. Having
introduced the tools required for the study of the edge and triangle overlap,
in Sec. 9.3 we present analytic results on these quantities for multiplexes with
homogeneous degree distributions and perfect correlations in the hidden variables.
In Sec. 9.4 we generalize these results to heterogeneous multiplexes. Next, in
Sec. 9.5 we study the effect of general coordinate correlations between the various
layers. Finally, in Sec. 9.6 we investigate several empirical multiplexes, confirming
the observations derived for artificial networks.

9.1 the geometric multiplex model

In Ref. [47] it was noted that the geometric framework employed in this thesis
can be extended to multiplexes. When embedding the layers of a real multiplex
into the S1-model, i.e., when inferring the set of hidden variables {θ

(l)
i , κ

(l)
i }i∈V

for each layer l, correlations between the hidden variables in the different layers
were found. Take a node i and consider its angular coordinates θ

(1)
i in layer

one and θ
(2)
i in layer two. Both these coordinates encode properties of the node

that are important for establishing the connectivity of the respective network
layers. Of course, as the layers represent distinct types of interactions, different
properties might be relevant, and so the coordinates will most likely not be the
same. However, the node is shared by both layers, and represents the same agent
in the system. Therefore, it is intuitive for the two coordinates to be correlated.
The same line of arguments might be followed to establish correlations between
the hidden degrees of a node in the multiplex.
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These correlations can be modeled by the GMM. This multiplex variant of the
S1-model starts by drawing angular coordinates from the uniform distribution
U (0, 2π) and hidden degrees from the Pareto distribution ρ(κ) ∝ κ−γ, where γ
encodes the heterogeneity of the distribution. These are then the assigned hidden
variables of the first layer in the multiplex.

The similarity coordinates of the second layer are then drawn with respect to
the first such that the correlation between them can be tuned. Take a node i in
layer l = 1 with angular coordinate θi. We then want to draw a new coordinate
from a Gaussian centered around this coordinate. Of course, we are working with
a spherically symmetric system which implies that the support of this Gaussian
cannot be infinite, but is rather 2π. In order for this probability distribution to be
normalized we must therefore use instead the truncated Gaussian. In formulas,
this can be written as follows: The angular coordinate of node i in layer l = 2 can
be obtained using

θ
(2)
i = mod

(
θ
(l)
i +

2πli
N

, 2π

)
, (9.1)

where li ∈ [−N/2, N/2] is the arc-distance from the original coordinate along the
circle with radius R = N/(2π). It is drawn from the truncated Gaussian with
probability density function

fσ(l) =
1
σ

ϕ
(

l
σ

)

Φ
(

N
2σ

)
− Φ

(
− N

2σ

) , (9.2)

where ϕ(x) = 1√
2π

e−
1
2 x2

is the probability density function of a standard nor-

mal distribution and Φ(x) is its cumulative distribution function Φ(x) = 1
2 (1 +

erf(x/
√

2)). The scaling factor σ, which is related to the variance of the truncated
Gaussian, is defined as

σ = σ0

(
1
g
− 1
)

, (9.3)

where σ0 = min(100, N/(4π)). It is clear that g ∈ [0, 1] is the parameter that tunes
the correlation between the two layers. When g → 0, σ → ∞ and the Gaussian
becomes flat. The coordinate of node i in layer l = 2 is uniformly sampled,
irrespective of its location in the first layer. The correlation between the two layers
is therefore zero. On the other extreme, when g = 1, σ vanishes, which implies that
the Gaussian becomes a Dirac delta, leading to θ

(2)
i = θ

(1)
i for all i, and therefore

perfectly correlated coordinates between the layers.
In the popularity dimension things are slightly more complicated as we have the

added constraint that the marginal distribution of hidden degrees in the second
layer should still be Pareto with some average degree ⟨k(2)⟩ and exponent γ2, both
of which might or might not be different to the ones in the first layer.
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In the original publication Ref. [47], it was shown that this is achieved if the
hidden degrees in layer l = 2 are drawn from the following cumulative distribution
function:

Fν

(
κ
(2)
i |κ(1)i

)
= exp

(
−
(

φ
1/(1−ν)
1 + φ

1/(1−ν)
2

)1−ν
)

×
(

φ
1/(1−ν)
1 + φ

1/(1−ν)
2

)−ν φ
ν/(1−ν)
1 κ

(1)
0

(
κ
(1)
i

)γ

1

κ
(1)
0

(
κ
(1)
i

)γ

1
− κ

(1)
0 κ

(1)
i

, (9.4)

where

φl = − ln


1 −

(
κ
(l)
0

κ
(l)
i

)γl−1
 . (9.5)

It is now the parameter ν ∈ [0, 1] that sets the strength of the correlation between
the two layers. When ν = 0 it can be shown that Eq. (9.4) reduces to F0(κ

(2)
i ) =

1 − κ
(2)
i

(
κ
(2)
0

)γ2−1
, which is just the Pareto cumulative density function, and does

not depend on κ
(1)
i . The two layers are thus independent. When ν = 1, we see that

Eq. (9.4) becomes a step function, leading to κ
(2)
i = κ

(2)
0

(
κ
(1)
i /κ

(1)
0

)(1−γ1)/(1−γ2)
.

Here, the correlation between the two layers is perfect; the largest hidden degree
in layer l = 1 is related to the largest hidden degree in layer l = 2 etc.

If more layers are present this process is continued, generating the hidden
variables in layer l on the basis of those in layer l − 1. In principle one could
choose to vary g and ν parameters, leading to some pairs of layers that are more
strongly correlated than others. In this Chapter we choose them identical between
all layers.

When all hidden variables are assigned, the nodes in the different layers are
connected using connection probability (4.26), where each layer can have a distinct
µ̂l and βl . The process of connecting the nodes introduces no new correlation
into the system; each edge is placed independently. This is in contrast to other
multiplex models [266, 267] where correlations between the layers are a result
of link persistence, where the placement of a link in layer l is conditioned on its
presence in layer m.

An example of a two layer multiplex generated using the GMM can be seen in
Fig. 9.1, where G1 and G2 represent the two layers. We see that the locations of the
nodes on the hyperbolic disk are highly correlated, only shifting slightly between
layers. The third layer G̃ represents the mutual network, which is constructed with
the links that are present in both layers of the multiplex, and which will be the
object of study in this Chapter.
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Figure 9.1: An example of a geometric multiplex with two layer G1 and G2. The mutual
network G̃ is also shown.

9.2 the mutual network

9.2.1 The ensemble

Say our multiplex is made up of L layers, which we denote as G1, G2, ..., GL. These
networks Gl are all single layer networks generated with the S1-model, each with
an associated inverse temperature βl , chemical potential µ̂l and adjacency matrix
A(l). We now define the mutual network G̃ through the element-wise product of
these adjacency matrices

Ãij =

[
L⊙

l=1

A(l)

]

ij

=
L

∏
l=1

A(l)
ij , (9.6)

where
⊙

represents the element-wise Hadamard product. This means that a link is
only placed between two nodes i and j in the mutual network G̃ if these two nodes
are connected in all L single layer networks {Gl}L

l=1 that make up the multiplex.
Note that different individual network realizations can lead to the same mutual

network. This happens because it does not matter whether a link is absent in a
single layer or in all layers, the effect is the same: No link will be present between
these nodes in the mutual graph. The probability of a certain mutual adjacency
matrix will then be given by

P(Ã) = ∑
Ã=

⊙L
l=1 A(l)

P(A(1), A(2), ..., A(l)) (9.7)

The single layer networks are independent at the level of the edges; all possible
correlations are mitigated at the level of the hidden variables. Therefore, the
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probability of a certain mutual network, given a certain distribution of hidden
variables, can be factorized

P(Ã) = ∑
Ã=

⊙L
l=1 A(l)

L

∏
l=1

(
∏
i<j

(
p(l)ij

)A(l)
ij
(

q(l)ij

)1−A(l)
ij

)
, (9.8)

where we assume that the connection probability is pairwise, as in the case of
the S1-model, and have introduced q(l)ij , the probability that a link is not present
between nodes i and j in layer l. Finally, this equation can be rewritten as

P(Ã) = ∏
i<j

(
p̃ij
)Ãij

(
q̃ij
)1−Ãij , (9.9)

where the mutual link probability is given by p̃ij = ∏L
l=1(p(l)ij ). The probability

that a link is not present can trivially be given by q̃ij = 1 − p̃ij. This probability
has many contributions: there are 2L possible situations for a single node pair as
in each layer a link can be either present or absent. Of these possibilities, 2L − 1
contribute to the probability of the link being absent in the resulting mutual graph.

9.2.2 Multiplex hidden variable models

Now that we have defined the mutual graph ensemble in very general terms, we
turn to the structural properties of these graphs, in particular the amount of links
and the average local clustering coefficient. To this end we view the system as
a hidden variable model, such that the results from Ref. [141] can be adapted.
Each node has a L-dimensional vector h associated to it, where the entries of the
vector represent the different layers. For the two-layer, homogeneous GMM this
means that h = {θ(1), θ(2)}. In the following, we assume the entries to be scalars
for notational simplicity. However, the results are trivially extendable to higher
dimensional entries, required for example in the case of the heterogeneous GMM,
where also hidden degrees are present.

9.2.2.1 The average mutual degree

Take two nodes with associated hidden variable vectors h and h′. The probability
that they are connected, here denoted by h ∼ h′, is given by the mutual connection
probability

p̃(h, h′) ≡ P(h ∼ h′) =
L

∏
l=1

pl(h(l), h′(l)), (9.10)

where we have used the fact that the edge placement is uncorrelated.
To obtain the total amount of edges, we just need to marginalize over the

hidden variables h, h′ and multiply by (N
2 ) as all nodes are, a priori, identical.

To perform this marginalization we need the probability density function of the
hidden variable vector ρ(h). In line with the GMM, we assume that the assignment
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of hidden variables in the different layers is Markovian; the hidden variables of
layer l + 1 only depend on layer l. This allows us to write the desired probability
density function as

ρ(h) = ρ(h(1))
L

∏
l=2

ρ
(

h(l)|h(l−1)
)

(9.11)

Finally, we obtain for the expected amount of links the following expression

⟨M̃⟩ =
(

N
2

) ∫∫
dLhdLh′ρ(h)ρ(h′) p̃(h, h′), (9.12)

where we have introduced the L dimension integral measure dLh = ∏L
l=1 dh(l).

When we have perfect correlations and ρ(h(l)|h(l−1)) = δ(h(l)− h(l−1)) this reduces
to

⟨M̃⟩ =
(

N
2

) ∫∫
dhdh′ρ(h)ρ(h′)

L

∏
l=1

pl(h, h′). (9.13)

On the other extreme, when no correlations are present and ρ(h(l)|h(l−1)) = ρ(h(l)),
Eq. (9.12) can be rewritten as

⟨M̃⟩ =
(

N
2

)1−L L

∏
l=1

⟨M(l)⟩. (9.14)

9.2.2.2 The average local clustering coefficient

The average local clustering coefficient is defined as the probability that two
neighbors of a node are also connected to each other. Say we have a node with
hidden variable vector h connected to two nodes with h′ and h′′, respectively.
Given this situation, the probability of the triangle being closed is given by
Eq. (9.10), the mutual connection probability.

The first step in deriving the average local clustering coefficient is finding the
expected clustering coefficient of a node with hidden variable vector h. To this end
we need to marginalize the mutual connection probability over h′ and h′′, which
requires the probability that a node with hidden variable h is connected to a node
with h′ (and equivalently to a node with h′′). In Ref. [141] this was derived to be

P(h ∼ h′|h) = ρ(h′) p̃(h, h′)∫
dMh′′ρ(h′′) p̃(h, h′′)

, (9.15)

the probability that a randomly chosen node has hidden variables h′ times the
probability that the node h is connected to it, where normalization has been taking
into account. This can be rewritten as

P(h ∼ h′|h) = ρ(h′) p̃(h, h′)

N−1E(k|h) , (9.16)

where E(k|h) is the expected degree of a node with hidden variables h. Marginal-
izing over the hidden variables of the neighbors we obtain

E(c|h) =
∫∫

dLh′dLh′′ρ(h′)ρ(h′′) p̃(h, h′) p̃(h, h′′) p̃(h′, h′′)

N−2E(k|h)2 . (9.17)
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Finally, marginalizing over h we obtain the average local clustering coefficient

c =
∫

dLh E(c|h). (9.18)

9.3 homogeneous layers with correlations

Let us first set the correlations between the hidden variables of the constituent
networks to be perfect. All nodes lie in a common similarity space and have a
single set of hidden degrees, which we assume to be constant for all nodes; the
networks are homogeneous. Different networks are generated that represent the
different layers of the multiplex. Note that these networks need not share the
same β and µ̂ parameters. Different layers can therefore have different levels of
clustering and average degrees. Finally, as explained in Sec. 9.2, we remove all
links that are not shared by all layers to obtain the mutual network.

We focus on this setting for several reasons. The first is practical; it is where
analytical calculations are generally possible. However, studying the homogeneous
case also allows us to isolate the effect of similarity, so that it is not distorted by
effects from the popularity dimension. Finally, focusing on strong correlations
gives the clearest view on its effect on the mutual network.

Following the structure of Chapter 5, we first investigate the statistical properties
of mutual graph ensemble, focusing on the entropy density. We then turn to the
link overlap, obtaining analytic results on its scaling behavior with the system size.
Finally, we study the triangle overlap and find an extended region of constant
clustering.

9.3.1 Statistical properties of the ensemble

First, we want to understand if the mutual network is maximally random, i.e. if
the entropy of the ensemble is maximal under the proper constraints. We then
need to study the properties of this entropy for different combinations of β. As in
the case of the single layer network [35], one might expect it to diverge for low β
where the accessible phase space grows very fast, indicating a phase transition in
the mutual clustering coefficient.

In the mutual network, a link is present if and only if it exists in all layers simul-
taneously. Using the Fermi-Dirac form of the single layer connection probabilities
introduced in Sec. 4.2.1, this leads to

p̃ij =
L

∏
l=1

(
1

1 + eβl(ϵij−µl)

)
. (9.19)

This connection probability does, a priori, not define an ensemble with Gibbs
measure P(G̃) = exp(−λ · H̃)/Z̃ for some meaningful Hamiltonian H̃, Lagrange
multipliers λ and partition function Z̃. For example, we could have expected
the total energy Ẽ = ∑i<j ϵij Ãij and total amount of links M̃ = ∑i<j Ãij to be
constraints of the system, such that H̃ = {Ẽ, M̃} and λ = {β,−βµ}. Eq. (9.9)
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cannot be written in this form, implying that the ensemble is not maximally
random with respect to these constraints; networks with the same total energy
and amount of links might not be equally likely. This was to be expected, as the
probability of a certain G̃ is still conditioned on the non-mutual links, which do
not affect the total energy of the mutual network.

Even though the entropy might not necessarily be maximized, we can still find
its scaling behavior. To this end, let us note that for a single layer network we have
the following relation

pij ∼ p′ij ≡ min
(

1, e−β(ϵij−µ)
)

, (9.20)

i.e., that the S1 and GIRG (see Sec. 4.4) connection probabilities asymptotically
scale in the same way, a fact that was proven in Ref. [176]. This means that when
studying scaling relations we can always work with pij and p′ij interchangeably.
We assume that the same holds true for the "hole" probability: The probability

of a connection not being present scales as qij ∼ q′ij ≡ min
(

1, eβ(ϵij−µ)
)

. For the
mutual connection probability this implies

p̃ij ∼ p̃′ij ≡
L

∏
l=1

min
(

1, e−βl(ϵij−µl)
)

. (9.21)

Interestingly, for the two layer network, when µ1 ≃ µ2 ≃ µ, this reduces to

p̃′ij = min
(

1, e−(β1+β2)(ϵij−µ)
)

for all node pairs, which is the form obtained when

studying a single layer network with β′ ≡ β1 + β2 and µ′ ≡ µ. Thus, in this case,
the mutual connection probability approximately defines a maximally random
ensemble with effective temperature β′.

Returning to the general case, in order to find an expression for the scaling of
the entropy, one needs to find an approximate expression for a link being absent
in the mutual network. Previously we argued that this probability has 2L − 1
contributions; any non-zero amount of links being absent between two nodes in
the multiplex leads these nodes to be disconnected in the mutual network. All
these contributions can be written as products of p′ij and q′ij, just like in Eq. (9.21).

The probability q̃ij will then scale as the sum of 2L − 1 distinct products. As we
are only interested in the scaling behavior we only keep that term that has the
largest scaling exponent.

In the (grand) canonical ensemble, the entropy of the network can be seen as
that of (N

2 ) independent Bernouilli trials with success probability p̃ij. When N is
large and energies are known to be drawn from some distribution ρ(ϵ), the total
amount of entropy can then be written as

S̃ =

(
N
2

) ∫ ϵmax

−∞
dϵρ(ϵ)

[
p̃(ϵ) ln ( p̃(ϵ)) + (1 − p̃(ϵ)) ln (1 − p̃(ϵ))

]
, (9.22)

just like in Chapters 3.3.5 and 5.1. In general, we are interested in the entropy per
link, or energy density of the system s̃ ≡ S̃/⟨M̃⟩.
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Let us now take L = 2, and assume, without loss of generality, that β1 ≤ β2. If
we then also take µ1 ≤ µ2 (the results are qualitatively the same in the opposite
case), we show in Appendix D.1.2 that

s̃ ≃





ξ1 if 1 ≤ β1 ≤ β2

β1(µ2 − µ1) + ξ2 if 1 − β2 ≤ β1 ≤ 1

β′ϵmax − β1µ1 − β2µ2 + ξ3 if β′ ≤ 1,

(9.23)

where β′ ≡ β1 + β2 and {ξi}3
i=1 are constants that only depend on β1 and β2. We

see that the entropy density is finite, independently of the chemical potentials,
when both layers are strongly geometric. When G1 becomes weakly geometric,
the scaling behavior depends on the choice of µ1 and µ2. If both are constant, the
entropy only diverges when β′ ≤ 1. However, when βl ≤ 1, a constant µl leads
to a dense single layer graph ⟨Ml⟩ ∼ N2, which is not realistic. If µl ≃ αl ln N for
some real constants αl ≤ 1, necessary for a constant single layer average degree,
the entropy density will in principle diverge in this regime. Only when α1 = α2
does the first term in the expression of s̃ for 1 ≤ β1 + β2 ≡ β′ vanish, leading
to a finite entropy density also there. This is in line with our observation that in
this case the multiplex can be mapped to a single layer network with effective
temperature β′ and chemical potential µ′ ≃ µ1 ≃ µ2. As ϵmax ∼ ln N, the only
way s̃ can remain finite in the final regime is for β1α1 + β2α2 = β1 + β2. This is
only possible when α1 = α2 = 1, leading to two dense single layer networks with
⟨Ml⟩ ∼ N2.

In the rest of this paper we shall assume to be working with sparse single layer
graphs, such that µl ≃ min(0, 1 − 1/βl) ln N + N0. In this case, a finite entropy
density can be achieved for 1 − β2 ≤ β1 ≤ 1 only when β1 = β2 = β. Here,
αl = 1 − 1/β for l = 1, 2, and the transition point where s̃ diverges will lie at
β′ = 2β.

Plugging this scaling behavior of µ1 and µ2 into Eq. (9.23), we note that for all
choices of parameters the entropy density can be written as s̃ ≃ σ ln N + τ, where
σ and τ are constants. In Fig. 9.2a, the scaling behavior of the entropy encoded
by the constant σ is given. We also solve Eq. (9.22) numerically for N ∈ [106, 109]
using the full expression of p̃(ϵ) as given by Eq. (9.19). There is a clear match
between the two approaches, with only minor deviations due to finite size effects,
justifying the use of the approximation.

In Fig. 9.2a, several observations can be made: First, we note that the entropy
density is indeed only finite (σ = 0) when β1, β2 > 1 or when β1 = β2 > 1/2.
Second, we see that there is an abrupt change in behavior at β1 + β2 = 1: Above
this threshold, 0 ≤ σ < 1, whereas below it there is a sudden, discontinuous
increase to σ = 2. Interestingly, in this region the entropy density of the mutual
network becomes exactly the sum of that of the individual layers as found in
Chapter 5.1. This is reminiscent of the fact that the joint entropy of two independent
random variables is given by the sum of the individual entropies when the
random variables are independent. In our case something similar happens: The
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correlations in our system are due to the shared hidden variables, but these no
longer matter when β1 + β2 ≤ 1 as both networks are coupled extremely weakly
to their respective underlying metric space.

9.3.2 Link overlap and the average degree

The average degree of the mutual network created from a multiplex with L layers
can be found using Eq. (9.12). In Appendix D.2.1 we find the scaling behavior for
general L; here, we focus on the specific case L = 2, derived in Appendix D.1.1.
As was the case for the entropy density, the scaling behavior can be divided into
three cases:

⟨k̃⟩ ≃





ξ1eµ1 if 1 ≤ β1 ≤ β2

ξ2e(1−β1)µ2+β1µ1 if 1 − β2 ≤ β1 ≤ 1

ξ3e(1−β′)ϵmax+β1µ1+β2µ2 if β′ ≤ 1,

(9.24)

where we have, once again, assumed β1 ≤ β2 and µ1 ≤ µ2. Plugging in the
expressions for µ1 and µ2 that lead to sparse single layer graphs, we obtain the
scaling behavior in Fig. 9.2b, where σ is defined through ⟨k̃⟩ ∼ Nσ. It can be
seen that a sparse mutual graph (σ = 0) is only possible when both constituent
networks are strongly geometric. In this case, links in both layers are mostly
connected to their neighbors in similarity space, leading to high link overlap and
a high average mutual degree. When either of the constituent graphs becomes
weakly geometric, the situation changes: σ ≤ 0 and the mutual network sparsifies,
eventually leading to a disconnected graph when the average mutual degree drops
below the percolation threshold. Finally, when β1 + β2 ≤ 1 and the geometric
coupling of both networks is extremely weak, we reach the plateau σ = −1. Here,
in the thermodynamic limit, the amount of links is constant. This is in line with
the results found in Ref. [266], where the link overlap of two Erdös-Renyi graphs
are studied; the effect of geometry is effectively lost in this region and the two
networks are no longer correlated through their hidden coordinates.

An interesting question to ask is whether a constant average mutual degree is
possible if we let go of the requirement that the constituent networks G1 and G2
are sparse, i.e. if we revert back to the general case of µi ≃ αl ln N for l ∈ {1, 2}.
For β′ ≤ 1, this would require 1 + β1(α1 − 1) + β2(α2 − 1) = 0. Say we take G1 to
be sparse such that α1 = 1 − 1/β1. This then requires us to set α2 = 1, leading
to ⟨k2⟩ ∼ N, i.e. G2 being dense. This can easily be understood by noting that
combining any graph G with the complete graph implies that G̃ = G. In the
intermediate regime 1 − β2 ≤ β1 ≤ 1, the two chemical potentials need to be set
such that α2 − α1 = 1/β1. Taking G1 to be sparse once more leads to α2 = 1, which
again implies a dense G2. Note that the results for the intermediate region assume
that µ1 ≤ µ2; it can be shown that in the opposite case, and assuming that G2
is sparse, intermediate results can be obtained where 0 < α1 ≤ 1. This then still
leads to a dense graph G1 when this is understood to mean a ⟨k1⟩ ∼ Nσk1 with
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Figure 9.2: The scaling factors σ as defined by (a) s̃ = σ ln N + τ, (b) ⟨k̃⟩ ∼ Nσ and (c)
c̃ ∼ Nσ as a function of the two single layer geometric couplings β1 and β2. In
panel (c) we also define five different regions of parameter space based on how
the mutual clustering coefficient relates to its single layer counterparts.

0 < σk1 ≤ 1. Sparsity in one graph thus always needs to be compensated with
density in the other in order to increase link overlap sufficiently to end up with a
constant average mutual degree.

9.3.3 The clustering coefficient

In Chapter 5 we found that in the single layer case, the divergence of the entropy
at βc = 1 indicates a phase transition in the clustering behavior of the network. In
order to find out if this is also the case in the multiplex setting, we investigate the
finite size scaling behavior of the clustering coefficient.

For L sparse, homogeneous, perfectly correlated layers with general {βl}L
l=1 and

{⟨k⟩l}L
l=1, Eq. (9.18) reduces to

c̃ =

(
N

⟨k̃⟩π

)2 ∫ π

0
dθ′

∫ θ′

0
dθ′′

L

∏
l=1

fl(θ
′, θ′′), (9.25)

where
fl(θ

′, θ′′) ≡ 1
1 + (ζlθ′)βl

1
1 + (ζlθ′′)βl

1
1 + (ζl(θ′ − θ′′))βl

, (9.26)

which implies that in all layers all three constituent links of a triangle should be
present. In Appendix D.2.2 we find that the scaling exponents for c̃.

The results of L = 2 are shown in Fig. 9.2c. We can distinguish five regions:
In region I, β1, β2 > 1 and so both layers are highly clustered. This behavior is
carried over to the mutual network, where clustering remains finite. In region
II, clustering is weaker than in layer G1, where the geometry coupling is strong,
but stronger than in layer G2, where geometry is weak. This can be understood
as follows: G1 has many short range links, and few long ones, whereas in G2, all
possible length links are present. This means that in the mutual network only the
short range links will be present, leading to higher levels of clustering than in G2.
However, clustering still decreases with N as the mutual network is becoming
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ever sparser. Hence, it is relatively unlikely that there exist groups of connected
nodes for which at least three have a degree k ≥ 2, a necessary requirement for a
triangle to be formed. The same goes for region III. In region V, both networks are
very weakly geometric, and there is very little link overlap. Therefore, the mutual
clustering is very small.

Finally, in region IV something interesting happens: The mutual clustering is
larger than in both the constituent networks G1 and G2. Here, both networks are
in the weakly geometric regime with β ≲ 1. Therefore, even though many long
range links are present, the connection to the underlying geometry is still strong
enough to cause a relatively large amount of short range ones. These are the ones
that get translated to the mutual network: The relative phase space for short range
links is much smaller than for long range ones, meaning that the probability of
a short range link being present in both networks is much larger. This leads to a
relatively "geometric" mutual network and high levels of clustering.

This effect is strongest when β1 = β2 ≥ 1/2 where the average local clustering
coefficient remains finite for all N. This is in line with our observation that for these
values the network can be mapped to a single layer network with β′ = 2β1 = 2β2.
Therefore, this region can be seen to lie above the single layer critical point at
β′ = 1, implying a constant c̃. The fact that the entropy density also does not
diverge in this region could also have predicted this result.

In the case of L layers, we show in Appendix D.2.2 that the region of parameter
space where clustering is constant is extended even further. Ordering the βl’s in
increasing order, it can be shown that several manifolds of constant c̃ can be found.
These are described by the following set of equations

1/2 ≤ β1 = β2 < β3 ≤ ... ≤ βL,

1/3 ≤ β1 = β2 = β3 < β4 ≤ ... ≤ βL,
...

1/L ≤ β1 = β2 = ... = βL. (9.27)

We observe that when a larger amount of the smallest inverse temperatures are
equal, the stable region grows. In the most extreme case, when all βl’s are equal,
this region extends to βc = 1/L, implying that in the large L limit one will always
have a constant clustering coefficient and the phase transition will vanish.

One might wonder how it is possible for us to obtain finite levels of mutual
clustering in the thermodynamic limit, even in the regime where the average
mutual degree vanishes. In these cases, even though the network sparsifies, the
overlapping edges that remain are the ones most congruent with the underlying
metric space. The effect of the triangle inequality will therefore be strong, implying
that these remaining mutual edges have a high probability of forming triangles.
This effectively increases the geometric coupling in the mutual network, explaining
for example the result that for a two layer multiplex with µ1 ≃ µ2 ≃ µ the mutual
network can be mapped to a single layer network with β′ = β1 + β2.
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9.4 heterogeneous degree distributions

In this section we generalize the above results on link overlap and mutual clustering
to the case of heterogeneous networks. For the sake of simplicity, we focus on the
two layer case with β1 = β2 ≡ β, which was shown previously to be the most
interesting region.

9.4.1 The soft configuration model

Where in the previous section we completely ignored the popularity dimension
and focused solely on similarity, here we begin with the opposite situation. We
set β = 0 such that the connection to the similarity space is completely lost. The
generative model of the individual layers is now the SCM, where the expected
degrees can be fixed in expectation. We assume both layers share the same κ’s
and that they are power law distributed ρ(κ) ∝ κ−γ with the natural cut-off
κc ∼ N1/(γ−1).

In this setting, let us first investigate the scaling of the average mutual degree. To
this end we apply Eq. (9.13) to the SCM, which gives a result that can be resolved
analytically using Mathematica. This leads to many different terms, which can be
shown to scale as

⟨k̃⟩ ∼





N2−γ ln N if 2 < γ < 3

N−1 if γ > 3
(9.28)

Note that in the homogeneous γ → ∞ limit, ⟨k̃⟩ ∼ N−1, which is in line with our
results from Sec. 9.3.2. We observe that a more heterogeneous network leads to
more edge overlap. This was to be expected, as the hidden degrees reintroduce
correlations between the layers. A hub in one layer will also be one in the other, and
there will be many shared connections. Note that even though these hubs increase
the edge overlap, popularity alone is not able to provide us with a macroscopic
amount of mutual edge. It is only similarity that can do so when both layers are
sufficiently geometric.

When it comes to the average local mutual clustering coefficient, we use

c(κ) =
∫

dκ′dκ′′ρ(κ′)ρ(κ′′)p(κ′, κ′′)2 p(κ, κ′′)2 p(κ′, κ)2

N−2k(κ)2
, (9.29)

which is the SCM implementation of Eq. (9.17). In order to obtain the average local
clustering coefficient, one would need to marginalize once more over κ. However,
as argued in Ref. [144], c(κ) is a monotonously decreasing function, implying that
one only needs to study c(κ) for some constant small κ in order to obtain the
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dominant scaling. Following similar steps to the one taken in the aforementioned
reference, it can be proven that

c ∼





N0 if 2 < γ < 3

N−4 γ−3
γ−1 if 3 < γ < 5

N−2 if 5 < γ.

(9.30)

Surprisingly, the clustering coefficient is constant for scale-free networks where
the second moment of the degree sequence diverges. In this region, it is the hubs
that are responsible for link overlap. Indeed, it can be shown that the degree
distribution of the mutual network becomes ever more heterogeneous, leading to
a network with a few hubs and many degree 1 nodes. As these latter nodes do not
contribute to the clustering coefficient, the effective network is just a set of hubs
all connected to one another, leading to a maximal amount of triangles. In fact,
numerical integration of Eq. (9.29) shows that the clustering coefficient stabilizes,
after a long transient, on a value close to one.

After a transition region of fairly homogeneous power law degree distributions
(3 < γ < 5) the clustering coefficient settles on its γ → ∞ behavior already
observed in Fig. 9.2.

9.4.2 General β

Moving away from the β = 0 limit we turn to numerical integration to study the
mutual behavior. In Fig. 9.3a we plot the average degree scaling exponent σk as
a function of β for γ = 2.5, γ = 3.5 and γ = 6. In the strongly geometric regime
β > 1, a constant mutual degree is obtained for all γ. The networks become ever
sparser as β decreases, finally stabilizing around the non-geometric β = 0 results
of Eq. (9.30). Note that the discrepancy for γ = 2.5 is due to the influence of the
ln N prefactor in this equation. Dividing ⟨k̃⟩ by this term leads to the black dotted
line at σk = −0.5, perfectly in line with the analytic prediction.

We study the behavior of the mutual clustering in Fig. 9.3b, where σc is plotted
against β. Here, we observe that the constant clustering for β1 = β2 = β > 1/2
observed in the homogeneous case is also present for heterogeneous networks.
In fact, for 2 < γ < 3 this region is extended all the way to β = 0; the phase
transition is completely absent. For less strongly heterogeneous networks γ > 3,
the clustering does start to decrease for β < 1/2, finally reaching the non-geometric
results from Eq. (9.30).

9.5 general coordinate correlation

We now turn away from the assumption of perfect correlations between hidden
variable in the different layers. As mentioned in the introduction, these correlations
are parameterized by the variables g and ν for the similarity and popularity
dimensions, respectively.
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Figure 9.3: (a) The scaling exponents σk assuming that ⟨k̃⟩ ∼ Nσk as a function of β for
various γ. The dashed black line was obtained by fitting ⟨k̃⟩ ∼ Nσk ln N for
γ = 2.5. All results were obtained by numerically integrating Eq. (9.13) for
N ∈ [106, 109]. (b) Similar to the previous but now for the scaling exponent σc,
obtained by numerically integrating Eq. (9.17). In all cases ⟨k⟩ = 15.

In Fig. 9.4, we study the effect of the correlation strengths on the behavior of the
average mutual degree and average mutual clustering coefficient in two extreme
cases. For panels (a) and (b), we generate homogeneous networks at various β’s,
varying the correlation strength from g = 1 to g = 0. For g > 0, we see relatively
high values of ⟨k̃⟩ and c̃ when the geometric coupling is strong and low values of
these quantities when it is weak. When g = 0, the two sets of angular coordinates
in the individual layers are sampled independently. This allows us to factorize the
integrals in Eq. (9.12), leading to ⟨k̃⟩ = ⟨k⟩2/N as shown in Eq. (9.14). Evidently,
the average mutual degree no longer depends on β. The same line of reasoning
can be applied to the mutual clustering coefficient, where it can be shown that
c̃ = ⟨c⟩2/N2. This quantity does depend on β as the average local clustering
coefficient of the individual layers is temperature dependent. In particular, for
β < 2/3, i.e. in the non-geometric phase, c̃ ∼ N−3, decreasing rapidly with the
system size.

For panels (c) and (d) similar results can be found, where we study the SCM
(β = 0) for different values of γ and varying ν ∈ [0, 1]. Here we see high values of
overlap and mutual clustering for heterogeneous network. Both of these values
decrease as the network gets more homogeneous. The same effect is observed
when ν is decreased, i.e. when the correlations are diminished. When ν = 0, the
same arguments described in the previous paragraph hold, leading to the same
scaling behavior.

9.6 real networks

Testing the above findings on real data is no trivial task as most results presented in
this paper relate to the scaling of the relevant quantities. Different sized multiplexes
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Figure 9.4: In (a) and (b) we study the average degree and the average local clustering
coefficient of the mutual network, respectively, as a function of the geometric
coupling β for various correlation strengths g ∈ [0, 1]. In all cases the individual
layers were generated with N = 32000, γ = 50, ⟨k⟩ = 20 and ν = 1. In (c) and (d)
the same quantities are studied, now as a function of the degree exponent γ used
to generate the hidden degrees in the individual layers. Various correlations
strengths ν ∈ [0, 1] are shown. The individual layers use N = 32000, β = 0,
⟨k⟩ = 20 and g = 1.

representing the same real system are generally not available, and we are therefore
restricted to studying the properties of a single realization. That being said, the
scaling behavior should give us some intuition on the size of the node link overlap
and mutual clustering, given the properties of the individual layers.

In contrast to the artificial networks studied above, real multiplexes, in general,
do not overlap perfectly at the level of the nodes. Many nodes only participate
in a couple of the layers. We therefore choose the two layers with the largest
amount of shared nodes. We then select the giant mutually connected component,
which has been shown to be the relevant object for many applications [268–270].
This pre-processing procedure leaves us with two single-component networks of
equal size Nl . These two networks are then fed into Mercator [61, 64] in order to
extract their geometric coupling strengths βl . The networks layers are then used to
construct the mutual network via Eq. (9.6). Finally, we calculate the average degree,
maximum degree and average local clustering coefficient for each individual layers
as well as for the mutual network. In Tab. 9.1 we show the results for the individual
layers and in Tab. 9.2 the results for the corresponding mutual networks.
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Table 9.1: The properties of two individual layers of various real multiplexes, where N
is the amount of nodes in both layers after extracting the mutually connected
component. We also show βi, the inverse temperatures of both layers as well

as ⟨k(i)⟩, k(i)max and c(i), the single layer average degree, maximum degree and
average local clustering coefficients, respectively. We also show which percentage
of nodes the largest hub of the network is connected to. Detailed descriptions of
the networks can be found in Appendix D.3. Note that GMP stands for genetic
multiplex.

Network N β1 β2 ⟨k(1)⟩ ⟨k(2)⟩ k(1)max k(2)max c(1) c(2)

GMP - Yeast 2292 ≈ 0 ≈ 0 25.8 0.18 347 (15%) 312 (14%) 0.13 0.07

arXiv 2252 > 30 9.73 6.47 7.07 60 (3%) 80 (4%) 0.79 0.76

Trade 193 1.31 ≈ 0 46.5 49.2 154 (80%) 146 (76%) 0.78 0.73

Twitter 24764 1.37 1.12 4.3 3.9 3698 (15%) 2679 (11%) 0.46 0.30

GMP - Human 9312 1.02 0.91 14.7 9.27 6717 (72%) 1511 (16%) 0.40 0.11

Table 9.2: The average degree, degree of the largest hub and clustering coefficient of the
mutual networks constructed as described in Sec. D.3. We also show which
percentage of nodes the largest hub of the network is connected to.

Network ⟨k̃⟩ k̃max c̃

GMP - Yeast 0.18 10 (0.4%) 0.06

arXiv 6.34 60 (3%) 0.80

Trade 34.9 134 (69%) 0.77

Twitter 0.67 683 (3%) 0.26

GMP - Human 2.63 603 (5%) 0.15

We notice that while the average mutual degree is oftentimes much lower than
the average degrees of the individual layers, the average local clustering coefficient
is more robust. This is in line with our theoretical observations: Where both strong
geometry and network heterogeneity can produce high levels of clustering, only
the former leads to constant average mutual degrees.

In the arXiv network, layers represent different subfields where two scientists are
connected if they coauthered a paper in that field. In particular, layer 1 represents
papers published in "Social and Information Networks" and layer 2 in "Data
Analysis, Statistics and Probability". We see that both layers have a very large
geometric coupling and that they are rather homogeneous. As predicted in Sec. 9.4,
both edge overlap and mutual clustering are high for this network.

The opposite situation occurs for the genetic multiplex of Saccharomyces pombe,
or fission yeast. Here, layers 1 and 2 represent additive and direct genetic interac-
tions. We see that these network layers are rather heterogeneous but non geometric
as β1 = β2 ≈ 0. This latter results implies that the SCM is able to produce the ob-
served levels of clustering, given the degree distribution. We see that node-overlap
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is very small, with only a small fraction of the links being present in the mutual
network. The mutual clustering, on the other hand, is of similar magnitude as the
single layer clustering. These results are also in line with the theoretical predictions
obtained in Sec. 9.4, where it was shown that heterogeneity alone leads to high
mutual clustering but not necessarily to a macroscopic amount of overlapping
edges.

Similar results are observed for the trade network, where nodes are countries
and edges represent different traded products, the twitter network of the Moscow
world cup in Athletics, where nodes are users and layers represent retweets and
mentions, as well as for the human genetic multiplex, where edges represent direct
interactions or physical associations. The individual layers of these multiplexes
are rather heterogeneous, with the node with largest degree being connected to a
large portion of the network. On the other hand, their couplings to the underlying
metric space vary from extremely weak to relatively strong. This combination of
heterogeneity and metricity leads to significant clustering and non-vanishing edge
overlap.

9.7 conclusions

In this Chapter we studied the overlap between different layers in multiplex
networks, specifically the amount of edge and triangle overlap. To this end we
introduced the mutual network, which is constructed from the edges of the network
that are present in all layers. We studied this object in the context of the geometric
multiplex model, where correlations between the layers are mediated through their
underlying metric spaces. This framework allowed us to obtain analytic results
for the scaling behavior of the mutual average degree and clustering coefficients
in various limits. We showed that while both heterogeneous degree distributions
alone as well as a strong geometric coupling can lead to large mutual clustering,
only the latter can lead to non-vanishing edge overlap. Finally, we showed that
many real networks seem to fit these predictions, although more research in this
direction remains necessary.
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T H E E M E R G E N C E O F G E O M E T R I C T U R I N G PAT T E R N S

Throughout the earlier Chapters, we observed the importance of geometry for
understanding the structure of complex networks, even when the coupling of
these networks to their underlying metric space is weak. In this Chapter, which
is an adaptation of Ref [65], we study the effects of geometry on the dynamics
on top of the network. In particular, we look at spontaneous pattern formation.
We find that the underlying geometry reveals order that cannot be observed
from topology alone. We also find hints of the quasi- and non-geometric regimes
when the dynamic process runs on weakly geometric networks, underlying the
importance of these regions.

Spontaneous pattern formation was first described in 1952 by Alan Turing [271],
who noted that competing species of diffusive particles can cause a wide variety
of patterns, starting from a spatially homogeneous state. Ever since, reaction-
diffusion processes have been shown to host a wide variety of self-organizational
behavior [272–279]. Historically, these behaviors have mostly been studied on
regular lattices or in continuous media, but there has long been evidence for their
existence also in systems of interconnected elements with complex structures.
For instance, in the framework of embryonic morphogenesis, which was Turing’s
original motivation, it has been argued that embryos should be thought of as a
multicellular network rather than a continuous medium [280]. However, complex
network architecture makes the investigation of dynamical processes difficult, and
studies have often been restricted to small networks [281, 282].

In the context of network science, Nakao and Mikhailov took a step forward
and demonstrated the existence of the Turing instability in systems of activator-
inhibitor species diffusing in large random graphs [283]. In that work, the instabil-
ity and the corresponding emerging patterns are intimately related to the degree
heterogeneity usually present in real networks and are, thus, purely topological in
nature.

Similar results have since been found for directed [284], non-normal [285]
and temporal networks [286, 287], as well as for networks with higher order
interactions such as hypergraphs [288] and simplicial complexes [289]. Another
example of non-geometric pattern formation in networks can be found in the
context of multilayered networks, where particles diffuse not only within network
layers but also between them [290–293]. Here, the dynamical parameters can be
chosen such that the particle concentration within a layer is homogeneous whereas
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the distribution between layers is heterogeneous. Similar patterns can be found
in networks displaying community structure [294], where concentrations can
be chosen to be homogeneous within a community and heterogeneous between
communities. It has been shown that these types of patterns can also be reproduced
in empirical networks, provided their community structure is sufficiently strong.

While hints of explicitly geometric patterns in simple network models were
found in several works [284, 295–297], no comprehensive study of this phenomenon
has been undertaken. Most importantly, the network models described in these
studies are not suitable to describe real systems. In fact, until the publication of th
article on which this Chapter is based [65], geometric domains in a classical sense,
typical of Turing patterns in lattices and continuous media, had not been observed
in real complex networks. This is a consequence of the apparent lack of geometric
structure in small-world networks, causing topological distances between nodes
–measured by the shortest path lengths on the graph– to collapse around their
average value, scaling logarithmically (or slower) with the system size.

However, as we have seen in previous Chapters, many networks do in fact have
an associated underlying geometry with strong implications for the topology, even
when the coupling is weak. In this Chapter, we show that the Turing instability
triggers the emergence of purely geometric patterns that become evident in the
latent space of real complex networks.

This Chapter is organized as follows: First, in Sec. 10.1 we introduce the Turing
instability on complex networks, showing that a linear stability analysis can be
performed when we expand the perturbations in terms of the eigenvectors of
the graph Laplacian. Then, in Sec. 10.2, we use the annealed approximation to
predict the periodicity of the resulting patterns based solely on the structural
properties of the underlying graph. We then turn to weakly geometric graphs in
Sec. 10.3, showing that pattering is also observed in the weakly geometric regime
0.5 ≲ β ≤ 1. Finally, in Sec. 10.4 we analyze several real networks, showing that
these can also support periodic patterns.

10.1 the turing instability on complex networks

The Turing instability arises as a consequence of the different diffusivity rates
between activator and inhibitor species. Starting from a homogeneous concentra-
tion of particles, upon small perturbations, the system evolves towards a stable
state with regions of high concentration of particles, coexisting with regions
of low concentration. When the dynamics takes place on a metric space, these
inhomogeneities give rise to geometric patterns.

10.1.1 Diffusion on complex networks

It is important to note that the first assumption of this framework is that diffusion
alone, without the activation-inhibition mechanism, should lead to a homogeneous
distribution of particles.



10.1 the turing instability on complex networks 117

In continuous media, diffusion is modeled by Brownian particles and, in degree
regular lattices by standard random walks. Diffusion in complex networks is,
however, different. Indeed, a simple random walk process on a heterogeneous
network leads to a steady state where the concentration of particles is proportional
to the degree of each node and, so, highly heterogeneous. Thus, before adding the
activation-inhibition dynamics, we have to carefully define diffusion on networks
to ensure that a homogeneous concentration of species is a fixed point of the
dynamics.

Let us focus on the diffusion of a single species on a simple undirected and
globally connected network with adjacency matrix A, and let ni(t) be the number
of particles at node i at time t. We assume particles do not interact with each
other and that nodes can accumulate an arbitrary number of particles on them.
Once at node i, a particle jumps away from it at constant rate ζi. That is, each
particle defines a continuous-time random walk (CTRW) [298, 299] with dwell
time probability density ψi(τ) = ζie−ζiτ . When a particle jumps from node i, it
chooses one of i’s neighbors at random. We can write the following equation for
the stochastic evolution of ni(t) from t to t + dt,

ni(t + dt) = ni(t) +
N

∑
j=1

Aij

k j

nj(t)

∑
l=1

ηl
j(t, dt)−

ni(t)

∑
l=1

ηl
i (t, dt) (10.1)

where ηl
j(t, dt) is a random variable controlling the event that one of the nj(t)

particles sitting at node j jumps to a different node in the interval (t, t + dt). That
is, ηl

j(t, dt) = 1 with probability ζ jdt and ηl
j(t, dt) = 0 otherwise. By first taking

averages over the random variables η and then over n(t), we obtain the equation
for the average number of particles at node i, ⟨ni(t)⟩ ≡ ui(t)

dui(t)
dt

=
N

∑
j=1

ζ j

(
Aij

k j
− δij

)
uj(t) = −

N

∑
j=1

ζ j

k j
Lijuj(t), (10.2)

where Lij is the Laplacian matrix [300]

Lij = k jδij − Aij. (10.3)

The steady state solution of Eq. (10.2) is given by the eigenvector of zero eigenvalue
of the Laplacian matrix. This implies that

ζiust
i

ki
= cst. (10.4)

Therefore, if particles diffuse at the same rate in all nodes –so with ζi = ζ , ∀i–
then the average concentration at node i is proportional to ki and the average
concentration of particles is the same everywhere only when ζi ∝ ki. We then
make the choice ζi = ϵki such that the diffusion equation finally reads

dui(t)
dt

= −ϵ
N

∑
j=1

Lijuj(t). (10.5)
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Similarly to the case of diffusion in continuous media, we call ϵ the diffusion
coefficient of the species in the network, even though, unlike diffusion in the
continuum, it has dimensions of inverse of time.

10.1.2 Local activation-inhibition dynamics

In the diffusion process described by Eq. (10.5), particles do not interact when they
meet in the same node. However, in realistic settings, particles may undergo all
sorts of reaction processes. In particular, the Turing instability arises when two
different species, U and V, interact upon meeting at the same node, under an
activation-inhibition process. Within each node, species U undergoes an autocat-
alytic process and, simultaneously, favors the increase of the population of species
V. At the same time, species V inhibits the growth of species U even though it
cannot survive without it. When the average number of particles per node is large,
we can neglect fluctuations in the number of particles and work under the mean
field approximation.

Let us turn off diffusion for a moment, and study the local dynamics sepa-
rately. Say u(t) and v(t) are the average numbers of particles of species U and V,
respectively. Their evolution equations are given by

du(t)
dt

= f (u(t), v(t)) (10.6)

dv(t)
dt

= g (u(t), v(t)) , (10.7)

where functions f (u, v) and g(u, v) represent the local activation-inhibition dy-
namics.

In the absence of diffusion, we assume that each node has a stable stationary
state, that is, that there exist ust = ū and vst = v̄ for which f (ū, v̄) = 0 and
g(ū, v̄) = 0 such that {ū, v̄} is a fixed point of the dynamics.

We now introduce some constraints on the functions f (u, v) and g(u, v) and their
first derivatives fu ≡ ∂u f (ū, v̄), fv ≡ ∂v f (ū, v̄), gu ≡ ∂ug(ū, v̄), and gv ≡ ∂vg(ū, v̄).
The fact that U catalyzes both its own growth as that of V implies that fu, gu > 0.
Conversely, the inhibitive nature of V implies that fv < 0. In order to ensure
the stability of the fixed point, several extra constraints are necessary. Perturbing
around the fixed point as {u(t), v(t)} = {ū, v̄}+ {δu(t), δv(t)} and linearizing the
equations we obtain

d
dt

(
δu(t)

δv(t)

)
=

(
fu fv

gu gv

)(
δu(t)

δv(t)

)
≡ J

(
δu(t)

δv(t)

)
, (10.8)

which leads to an exponential solution whose decay or growth is determined by
the sign of the eigenvalues of the Jacobian J shown above. The largest of these
eigenvalues is given by λ+ = 1

2 (TrJ +
√
(TrJ)2 − 4∆), where TrJ is the trace of

the matrix and ∆ its determinant. In order for this eigenvalue to have a negative
real part, and therefore lead to exponentially suppressed perturbations, we need
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to impose TrJ = fu + gv < 0 (which directly implies gv < 0 as we previously set
fv > 0) as well as ∆ = fugv − fvgu > 0.

10.1.3 The Laplacian expansion

Now that we have fully understood both the local and the diffusive dynamics of
the system we are ready to combine the two, leading to the evolution equations

dui(t)
dt

= f (ui(t), vi(t))− ϵ
N

∑
j=1

Lijuj(t) (10.9)

dvi(t)
dt

= g (ui(t), vi(t))− σϵ
N

∑
j=1

Lijvj(t), (10.10)

where ϵ and σϵ are the activator and inhibitor diffusion coefficients, respectively.
The Turing instability arises when, due to the differences in the diffusion

coefficients of the two species, the fixed point becomes unstable so that any small
perturbation drives the system away from it. Interestingly, the conditions for
this to happen only depend on fu, fv, gu, gv and the ratio between the diffusion
coefficients of the two species σ. Similarly to the case of continuous media, where
the perturbation around the fixed point can be expanded in Fourier modes –the
eigenfunctions of the Laplacian ∇2– and where the eigenvalues are related to the
wavenumbers, here the perturbation can be expanded in terms of the eigenvectors
of the graph Laplacian Lij [280, 283]

δui(t) = ui(t)− ū ≈
N

∑
α=1

cαeλαtϕα
i , (10.11)

where cα and λα are some constants that depend on the parameters of the model
Eqs. (10.9)-(10.10) and on the eigenvalue Λα (similarly for species V). It is this
expansion that couples the dynamics (δui(t)) and the structure of the network (ϕα

i )
through the Laplacian. This expansion is possible because the eigenvectors of the
Laplacian matrix {ϕα = {ϕα

1 , ϕα
2 , · · · , ϕα

N}}N
α=1 form a complete orthonormal basis

of RN . If λα < 0 ; ∀Λα, then perturbations around the fixed point are absorbed
exponentially fast, so that the fixed point is stable. However, if there exists at least
one Λα such that λα > 0, then the fixed point becomes unstable. In this case, those
nodes with cαϕα

i > 0 will increase the concentration of species U whereas those
with negative value will decrease it. Note that for all eigenvectors associated to
non-vanishing eigenvalues we have

N

∑
i=1

ϕα
i = 0, (10.12)

which is a result of the fact that ∑ij Lij = 0. If we combine this with each component
being associated to a given node of the network, we find that the dynamics will
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necessarily evolve towards a state with some of the nodes containing a high
concentration of species U and others a low concentration.

Linearizing the system of equations given in Eq. (10.10) around the equilibrium
values, and plugging in Eq. (10.11) it can be shown that there exist unstable
eigenvalues (i.e λα > 0) whenever

σ ≥ σc =
fvgu

f 2
u

[
fugv

fvgu
− 2 − 2

√
1 − fugv

fvgu

]
. (10.13)

In this regime, all eigenvalues that lay within the interval Λ ∈ [Λ−, Λ+] with

Λ± =
1

2σϵ
[σ fu + gv ±

√
(σ fu − gv)2 + 4σ fvgu] (10.14)

become unstable, with the most unstable one being

Λmax =
1

(1 − σ)ϵ

(
fu − gv − (1 + σ)

√
− fvgu

σ

)
. (10.15)

The functional dependence of Eqs. (10.13) and (10.14) implies that, for a given
set of parameters fu, fv, gu, gv and for one particular eigenvalue Λα, it is always
possible to select parameters ϵ and σ such that Λα ∈ [Λ−, Λ+]. In the case that
Λ+ ≈ Λ− ≈ Λα one can assume that the differences in the concentration of species
in the nodes are encoded in the eigenvector ϕα.

10.1.4 The Mimura-Murray dynamics

Interestingly, the results described in Sec. 10.1.3 only depend on the first derivatives
of functions f (u, v) and g(u, v) coupled to the diffusion coefficients. Therefore,
there exists a whole class of systems where such instability may emerge, from
chemical reactions [301–303] or biological morphogenesis [273, 304] to ecosys-
tems [305–308] and game theory applied to ecological systems [309, 310]. In
ecology, one such model is the Mimura-Murray model [306]. Here, u and v repre-
sent prey and predator densities, respectively, and the local dynamics are governed
by the functions

f (u, v) =

(
a + bu − u2

c
− v
)

u, (10.16)

g(u, v) = (u − (1 + dv)) v. (10.17)

From Eqs. (10.9), (10.10), (10.16), and (10.17), we see that in the absence of preys,
predators go extinct and in the absence of predators, preys attain a constant
population. In general, there is a fixed point with positive densities of preys and
predators.

In this Chapter we choose the parameters as a = 35, b = 16, c = 9 and d = 2/5,
which gives the fixed point {ū, v̄} = {5, 10}. In this case, the critical value of σ
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above which the Turing instability arises is σc = 15.5071. We then set the value to
σ = 15.6, slightly above the critical point. Using Eqs. (10.14) and (10.15), we find
that unstable eigenvalues lie within the interval [Λ−, Λ+] with

Λ− =
1.41026

ϵ
and Λ+ =

1.66667
ϵ

, (10.18)

and the most unstable one given by

Λmax =
1.53325

ϵ
. (10.19)

To select a given eigenvalue of interest Λ∗, we set it to Λ∗ = Λmax and use
Eq. (10.19) to fix the value of ϵ. The functional form of this relation implies that
very large values of Λ∗ imply very small values of ϵ. In these cases, the interval of
unstable eigenvalues |Λ+ − Λ−| might get very large, resulting in difficulties in
selecting a single unstable eigenvalues. Here, it could be necessary to lower the
value of σ > σc in order to shrink the unstable range.

With all the parameters of the dynamics fixed, we set every node’s initial
condition to be the stationary one, that is, {ui(0), vi(0)} = {ū, v̄} for all i except
for a randomly chosen one, j, for which {uj(0), vj(0)} = {ū + δ, v̄ + δ}, where
δ = 10−5 is a small perturbation. We then leave the system evolve towards its
steady state.

10.1.5 Spectral properties of the Laplacian matrix

Before applying these findings on some actual networks, let us first note some
important properties of the Laplacian matrix [300]. Most importantly, we want to
understand which values it can take, i.e., which values for Λ∗ are reasonable.

The Laplacian is a real symmetric matrix with real eigenvalues Λ1 = 0 ≤ Λ2 ≤
· · · ≤ ΛN ≤ 2kc, where kc is the maximum degree of the network. The average of
all eigenvalues is equal to the network average degree, that is,

⟨Λ⟩ = ⟨k⟩ (10.20)

and the second moment is
⟨Λ2⟩ = ⟨k2⟩+ ⟨k⟩. (10.21)

These results suggest that eigenvalues are strongly correlated to the sequence of
degrees in the network [311].

It is worth mentioning an interesting property of the S1/H2-model concerning
its spectral gap, defined as the smallest non-null eigenvalue of the Laplacian Λ2.
Given a graph generated by the S1-model, GS1 , the Cheeger’s inequalities state
that

[h(GS1)]
2

2kc
≤ Λ2 < 2h(GS1), (10.22)

where h(GS1) is the isoperimetric (or Cheeger) constant of the graph [312, 313].
This constant defines the optimal cut of the graph in two disjoint sets of nodes.



10.1 the turing instability on complex networks 122

For any partition A and B in two disjoint sets of sizes NA and NB, the Chegger
constant is defined as the ratio between the number of edges connecting the two
sets MAB and the size of the smallest set, minimized over all possible bipartitions
of the graph, that is,

h(GS1) = min
A

{
MAB

min(NA, NB)

}
. (10.23)

While computing the Cheeger constant is, in general, not possible, in the S1/H2-
model we can calculate its scaling behavior with the system size as follows:
Assuming that the optimal cut minimizing the Cheeger constant is made by
splitting the unit circle in two continuous regions, in the case of the homogeneous
S1-model, Eq. 10.23 can be written as

h(GS1) = min
x

(
2π

xN

∫ x

0

∫ 2π

x

(
N
2π

)2 dθ2dθ1

1 +
(

N∆θ12
2πµ̂⟨k⟩2

)β

)
, (10.24)

where ∆θ12 = π − |π − |θ1 − θ2||. Here we defined the two disjoint regions as
A = {i | 0 < θi < x} and B = {i | x < θi < 2π} = VG

S1 \A. As we have chosen 0 <

x < π, in the model the least amount of nodes reside in A and thus min(NA, NB) =
NA = xN/(2π), as seen in Eq. 10.24. The second part of this equation represents
the amount of links between regions A and B, i.e. MAB. It can be shown that
Eq. 10.24 can be written as

h(GS1) = min
x


 1

x
N
π

∫ x

0

∫ π

θ

dθd∆

1 +
(

N∆
2πµ̂⟨k⟩2

)β


 , (10.25)

which in turn can be solved exactly, giving

h(GS1) = min
x

(
N
2π

f (N, x)
)

, (10.26)

where

f (N, x) = 2π 2F1


 1, 1

β

1 + 1
β

;−
(

N
2µ̂⟨k⟩

)β



+x

(
− 22F1


 1, 1

β

1 + 1
β

;−
(

Nx
2πµ̂⟨k⟩

)β



+ 2F1


 1, 2

β

1 + 2
β

;−
(

Nx
2πµ̂⟨k⟩

)β


)

. (10.27)

It can be shown that this scales as h(GS1) ≃ c1Nmax(0,1−β) + c2N−1, irrespective
of the choice of x. For β > 1, the region on which we generally focus on in



10.1 the turing instability on complex networks 123

this Chapter, this scaling relation implies that h(GS1) approaches zero in the
thermodynamic limit and that the spectral gap, therefore, does so too.

This implies that for very large networks we expect to find eigenvalues arbitrarily
close to zero. This is important because small eigenvalues are the ones with
more visible and clear patterns. This derivation is valid only in the case of a
homogeneous hidden degree distribution. However, numerical analysis indicate
that the Cheeger constant decays to zero in the case of a heterogeneous distribution
as well.

These results imply that the smallest non-null eigenvalue of the Laplacian
approaches zero in the thermodynamic limit. We assume that, in this limit, the
spectrum is continuous on the positive real line as long as the node density
along the circle and the connection probability are continuous functions and the
degree distribution is unbounded. This implies that any Λα can be chosen in the
procedure described above as any real positive number should lie arbitrarily close
to an eigenvalue of the graph Laplacian for sufficiently large networks.

10.1.6 Turing patterns on geometric networks

To illustrate the role of geometry on the Turing instability, we run the Mimura-
Murray dynamics on a real network, namely that of the connectome of a mouse
described in Appendix E.1. Figure 10.1a shows the results on the concentration
of species U in the hyperbolic representation of the network. As can be seen,
there is a clear pattern associated to the geometric organization of the network,
with low concentrations of particles localized in the same angular position and
high concentrations in the rest of the network. In panels 10.1b and 10.1c, we also
represent the concentration as a function of the angular coordinate θ and the node
index i, respectively. In the latter case the nodes are ordered in decreasing order of
degree. It is important to notice that the Mimura-Murray dynamics does not use
any information from the underlying metric space, so that the observed geometric
pattern is a highly non-trivial result.

To shed light on this problem, we also run the dynamics on networks generated
by the S1/H2-model with a heterogeneous degree distribution with exponent
γ. Fig. 10.1d-i shows results of the dynamics on two different networks: one
highly heterogeneous (γ = 2.1) and weakly clustered and a second one less
heterogeneous (γ = 2.84) and highly clustered. In the strongly heterogeneous
network shown in the figure, there are no patterns associated to the geometric
character of the network. We do observe, however, topological patterns induced
by degree, roughly resulting in high degree nodes holding a low concentration of
species U. These are the type of patterns documented in [283]. Instead, in the case
of the less heterogeneous network, we find a clear geometric pattern associated to
the angular coordinates of nodes and very weak degree-related patterns, similar to
the results found in the real network. These patterns emerge despite the fact that
networks have the small-world property, so that diffusion induces flows of species
between nodes that are far apart in the underlying metric space. These results
suggest that some eigenvectors of the Laplacian of the S1/H2-model have a well
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defined periodic structure in the similarity space. Next, we develop a theoretical
framework allowing us to calculate an approximation for the frequency associated
with such eigenvectors.

10.2 the annealed approximation

The results in the previous section were obtained through trial and error: several
diffusion constants ϵ were tested, leading to different eigenvectors becoming
unstable, in turn resulting in different types of patterns. However, this method is
highly inefficient, and it would be very useful to find a general relation between
the eigenvalue and the periodicity of the resulting pattern. The goal of this section
is therefore to determine the dispersion relation ω(Λ) between the eigenvalue Λ
and the frequency of its associated eigenvector. It needs to be stressed that this is
a structural property of the network, and is not conditioned by the dynamics on
top of the network. We focus here on the region β > 1, as this is where we expect
our technique to work best due to the strong coupling with the underlying metric
space. In Sec. 10.3 we also look into the weak coupling regime, albeit only from a
numerical point of view.

Species whose dynamics are governed by the Mimura-Murray model diffuse
within a network with a disordered but quenched structure; a single realization of
the network ensemble defined by the S1/H2-model for a given sequence of hidden
variables {κi, θi}N

i=1. Unfortunately, for quenched networks it is not possible to
get any analytical insight on the structure of the eigenvectors of the Laplacian
matrix. To overcome this problem, we use the annealed approximation, which has
been extensively used in the literature to tackle a wide variety of problems, from
neural networks and opinion dynamics to epidemic spreading [56, 314–321]. In this
approach, the network structure is resampled from the ensemble at a rate faster
than the diffusion dynamics. This allows us to replace the adjacency matrix Aij
by its ensemble average, the connection probability pij, and consider the network
not as a quenched system but as a dynamic one. With this approximation, the
eigenvalue problem of the annealed Laplacian matrix can be written as

∑
j ̸=i

ϕ(κj, θj)

1 +
[ xij

µ̂κiκj

]β
=


∑

j ̸=i

1

1 +
[ xij

µ̂κiκj

]β
− Λ


 ϕ(κi, θi), (10.28)

where Λ is the eigenvalue and ϕ(κi, θi) the component of the corresponding
eigenvector of a node i with hidden variables {κi, θi}. Notice that, as in the case of
the quenched Laplacian matrix, Λ = 0 is an eigenvalue with constant eigenvector.

In the thermodynamic limit, the curvature of the circle goes to zero and, thus,
nodes become distributed in R1 according to a Poisson point process of density one.
In this limit, the distance between two nodes can be evaluated as xij = |xi − xj|,
where xi and xj are the positions of nodes i and j in R1. Finally, we take the
continuum limit in Eq. (10.28) by replacing the sum over index j by a double
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Figure 10.1: Examples of Turing patterns in networks. The first, panels (a-c), is a real
network representing the connectome of a mouse, the second, panels (d-f),
a strongly heterogeneous S1/H2 network with parameters {N, ⟨k⟩, β, γ} =
{1000, 50, 1.1, 2.1} and the third, panels (g-i) a weakly heterogeneous S1/H2

network with parameters {N, ⟨k⟩, β, γ} = {1000, 50, 2.4, 2.86}. In all panels the
colors correspond to the density of the activators in the final stationary state.
In panels (a,d,g), nodes are located according to their coordinates in hyperbolic
space. Panels (b,e,h) show the density of activators as a function of nodes’
angular coordinates and in panels (c,f,i) the activators densities are plotted
against nodes’ degree ranking.
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integral over nodes coordinates {κ, x}. In this way, Eq. (10.28) can be written as
the following integral equation

∫ ∞

κ0

ρ(κ′)dκ′
∫ ∞

−∞
dx′

ϕ(κ′, x′)

1 +
[ |x−x′ |

µ̂κκ′

]β
= (κ − Λ)ϕ(κ, x). (10.29)

The spatial part of Eq. (10.29) has the form of a convolution integral. Thus, we can
take advantage of the convolution theorem for Fourier transforms. By defining the
Fourier transform of the eigenvector as

ϕ̂(κ, ω) ≡
∫ ∞

−∞
e−iωxϕ(κ, x)dx (10.30)

Eq. (10.29) can be written in Fourier space as

∫ ∞

κ0

κ′ρ(κ′)
⟨k⟩

Ψ̂(µ̂κκ′ω)

Ψ̂(0)
ϕ̂(κ′, ω)dκ′ =

κ − Λ
κ

ϕ̂(κ, ω), (10.31)

where we have defined Ψ̂ as

Ψ̂(z) ≡ F
[

1
1 + |x|β

]
(z), (10.32)

where F stands for Fourier transform. Notice that µ̂−1 = ⟨k⟩Ψ̂(0). From Eq. (10.31),
it is easy to see that the integral over the spatial coordinate of non-trivial eigen-
vectors must vanish, that is, ϕ̂(κ, 0) = 0, similarly to the case of the quenched
Laplacian matrix Eq. (10.12). Indeed, by setting ω = 0 in Eq. (10.31), we conclude
that ϕ̂(κ, 0) = 0 is the only solution when Λ ̸= 0. Thus, the annealed approxima-
tion preserves the basic property of the Laplacian matrix given in Eq. (10.12).

10.2.1 Homogeneous ensemble

The analytic solution of Eq. (10.31) can be found in particular cases. One such case
is a homogeneous ensemble where all nodes have the same hidden degree, that
is ρ(κ) = δ(κ − ⟨k⟩), leading to a Poisson degree distribution of average ⟨k⟩. In
this situation, the eigenvector is just a function of the frequency ω and Eq. (10.31)
becomes [

Ψ̂(µ̂⟨k⟩2ω)

Ψ̂(0)
− ⟨k⟩ − Λ

⟨k⟩

]
ϕ̂(ω) = 0. (10.33)

Assuming that ϕ̂(ω) ̸= 0, this equation defines a dispersion relation between the
eigenvalue Λ and its characteristic frequency ωc as a solution of the transcendent
equation

Λ(ωc)

⟨k⟩ =

(
1 − Ψ̂(µ̂⟨k⟩2ωc)

Ψ̂(0)

)
. (10.34)

The characteristic frequency ωc in Eq. (10.34) is constrained by the boundary
conditions and the discretization of nodes in the space. Indeed, since nodes are
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Figure 10.2: Dispersion relation for the annealed approximation and a degree-regular 1-
dimensional lattice. Solid orange lines show exact results from Eq. (10.37)
and black dashed lines for the annealed approximation in Eq. (10.36) for
homogeneous networks with β = ∞. Results are shown for average degrees
k = ⟨k⟩ = 4, 8, and 12.

distributed on the line at density 1, frequencies above π (and so wavelengths of
the order 1) cannot be detected. Besides, if the system is finite of length L = N,
frequencies below 2π/N will have associated wavelengths comparable to the
system size and, so, will not be detected either. Therefore, we will look for solutions
of Eq. (10.34) in the domain ωc ∈ [2π/N, π].

It is illustrative to analyze in detail the homogeneous case with β = ∞, which
corresponds to a connection probability being a step function. In this case, function
Ψ̂(z) takes the form

Ψ̂(z) = 2
sin z

z
. (10.35)

and µ̂ = 1/(2⟨k⟩). Combining these results, the dispersion relation defining ωc
becomes

Λ(ωc)

⟨k⟩ =

(
1 − 2 sin ⟨k⟩ωc

2
⟨k⟩ωc

)
. (10.36)

In the case of β = ∞, nodes connect to nearest neighbors in the line that are
below a certain critical distance, so that the average number of such neighbors
is ⟨k⟩. Therefore, apart from the fluctuations in the number of neighbors, the
dispersion relation in Eq. (10.36) should be equivalent to the dispersion relation
of a one dimensional lattice with ⟨k⟩ symmetric nearest neighbors, introduced in
Sec. 3.2 as the RRL, which reads

Λ
⟨k⟩ = 1 − 2

⟨k⟩
⟨k⟩/2

∑
n=1

cos nωc. (10.37)

Figure 10.2 shows the comparison between Eqs. (10.36) and (10.37) for ⟨k⟩ = 4, 8,
and 12. Both expressions are very similar and become identical as the connectivity
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Figure 10.3: (a-c) Examples of three eigenvectors of the quenched Laplacian matrix with
low, medium, and high associated frequencies for a single network generated
by the homogeneous ensemble with N = 1000 and ⟨k⟩ = 20 and β = ∞. (d-f)
Concentration of species U in the Mimura-Murray dynamics.

increases, in agreement with the fact that the continuum approximation becomes
exact at infinite average degree.

Despite the good agreement shown in Fig. 10.2, the comparison with quenched
networks generated by the S1/H2-model has to be made with care. Indeed,
for homogeneous networks, the annealed approximation completely neglects
fluctuations of nodes’ degrees. In a quenched network this is far from true, as
the degree distribution follows a Poisson distribution of average ⟨k⟩. However,
the dispersion relations Eqs. (10.36) and (10.37) are strongly dependent on the
network connectivity, especially in the high frequency domain. Therefore, due to
the randomness of nodes’ degrees, it is not possible to characterize each eigenvector
of the quenched Laplacian by a unique frequency but by a collection of frequencies
around a given average.

We cannot talk then of a deterministic dispersion relation but a fuzzy one where
different frequencies may coexist in the same eigenvector. This will destroy any
possible high frequency periodic pattern, leaving only low frequency eigenvectors
(with Λ ≪ ⟨k⟩) visible. The reason is that low frequency modes correspond to
long wavelengths, so that local fluctuations of degrees become irrelevant. This is
clearly visible in Fig. 10.3a-c, showing three different eigenvectors of the quenched
Laplacian matrix corresponding to low, medium, and high frequencies of a graph
generated by the homogeneous ensemble. The periodic pattern is very clear in
the case of low eigenvalue with very low frequency. In the medium frequency
case, we can still identify a periodic behavior, although distorted by noise. In
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Figure 10.4: Characteristic frequency for the model for ⟨k⟩ = 10 and β = ∞, 2, 1.5, and 1.25.

the case of high frequency, periodic behavior is totally absent. We also run the
Mimura-Murray dynamics on the same network selecting parameters’ values such
that the same eigenvalues used in Fig. 10.3a-c become unstable. Fig. 10.3d-f show
the concentration of species U in the three cases. We observe that the patterns in
the concentration of species U closely follow the patterns of the corresponding
eigenvectors, justifying the relevance of the structure of eigenvectors for dynamical
processes on networks.

Based on these observations, we conclude that the annealed approximation
provides good results in quenched networks for small eigenvalues such that
Λ ≪ ⟨k⟩, which corresponds to low frequencies, that is, µ̂⟨k⟩2ωc ≪ 1. For arbitrary
values of β > 1, we can then take the low frequency limit in Eq. (10.34) to derive
the relation between ωc and Λ. Using the definition of the Fourier transform, it is
easy to see that for small z

1 − Ψ̂(z)
Ψ̂(0)

∼
{

zβ−1 1 < β ≤ 3

z2 β > 3
. (10.38)

Figure 10.4a shows the low frequency limit of the dispersion relation computed
numerically for different values of β, which corroborates this scaling behavior.

Using this result, the characteristic frequency scales as

ωc ∼





1
⟨k⟩
[

Λ
⟨k⟩
] 1

β−1
β ≤ 3

1
⟨k⟩
√

Λ
⟨k⟩ β > 3.

(10.39)

The fact that (β − 1)−1 < 1/2 implies that, in this regime, a certain eigenvalue
leads to a much lower frequency in the case of small β’s than it does for high β’s,
an observation that is corroborated by Fig 10.4b.

Fig. 10.5 show the same analysis as in Fig. 10.3 but for the case β = 1.5, so that
networks are deep into the small-world regime, with many long-range connections
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Figure 10.5: (a-c) Examples of three eigenvectors of the quenched Laplacian matrix with
low, medium, and high associated frequencies for a single network generated
by the homogeneous ensemble with N = 1000 and ⟨k⟩ = 20 and β = 1.5. (d-f)
Concentration of species U in the Mimura-Murray dynamics.

among distant nodes in the metric space. We observe the same qualitative behavior
as in the case β = ∞, except that, as expected, results have more noise. Yet, we
can clearly identify geometric patterns both in the eigenvectors and in the steady
state of the Mimura-Murray dynamics when the dynamic parameters are properly
tuned. However, we notice that, in agreement with our theoretical prediction in
Eq. (10.39), eigenvalues with similar associated eigenvector frequencies as those in
Fig. 10.3 are significantly larger.

10.2.2 Heterogeneous ensemble

In real networks, the degree distribution is typically heterogeneous. Therefore, we
have to solve the eigenvalue problem in Eq. (10.31) for a heterogeneous distribution
of hidden degrees ρ(κ). In particular, we choose a scale-free distribution ρ(κ) ∝
κ−γ. For this distribution of hidden degrees, Eq. (10.31) can be rewritten as

(γ − 2)
∫ 1

0

z′γ−3

1 − Λ̃z′
Ω̂
(

ω̃

zz′

)
Θ̂(z′, ω̃)dz′ = Θ̂(z, ω̃), (10.40)

where we have redefined variables (κ, Λ, ω) as

z ≡ κ0

κ
, Λ̃ ≡ Λ

κ0
, ω̃ ≡ µ̂κ2

0ω (10.41)
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Figure 10.6: (a) Dispersion relation obtained with Gaussian quadrature for β = 2 for various
γ’s and (b) the dispersion relation for γ = 2.5 and varying β. The average
degree is ⟨k⟩ = 12 in both panels.

and functions as

Ω̂(x) ≡ Ψ̂(x)
Ψ̂(0)

, Θ̂(z, ω̃) ≡ (1 − Λ̃z)ϕ̂

(
κ0

z
,

ω̃

µ̂κ2
0

)
. (10.42)

When Λ̃ < 1, the singularity of the kernel in the integral of Eq. (10.40) falls outside
the domain of integration. In this case, Eq. (10.40) can be solved numerically by
Gaussian quadrature as the solution of the system of equations

n

∑
j=1

(γ − 2)
wjz

γ−3
j

1 − Λ̃zj
Ω̂

(
ω̃

zizj

)
Θ̂(zj, ω̃) = Θ̂(zi, ω̃), (10.43)

where zi, with i = 1, · · · , n, are the zeros of the orthogonal polynomials used
in the quadrature, wi their associated weights, and n ≫ 1 the number of points
within the domain of integration used to evaluate the integral.

Equation (10.43) defines a homogeneous system of linear equations with kernel
matrix K(Λ, ω) given by

Kij ≡ (γ − 2)
wjz

γ−3
j

1 − Λ̃zj
Ω̂

(
ω̃

zizj

)
− δij. (10.44)

A non-zero solution is found when det(K(Λ, ω)) = 0, defining thus the dispersion
relation Λ(ωc). We use this condition to compute numerically the dispersion
relation for different values of β and γ. Figure 10.6a shows the results for β = 2
and different values of γ and Fig. 10.6b shows the results for γ = 2.5 and different
values of β. The dispersion relations are qualitatively similar to the homogeneous
case with β ≤ 2. The main difference appears in the asymptotic behavior of Λ(ωc),
which approaches κ0 at high frequencies. Given the relation between the average
degree and κ0, this result implies that the ratio Λ/⟨k⟩ approaches (γ − 2)/(γ − 1),
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Figure 10.7: a-c) Examples of three eigenvectors with low, medium, and high associated
frequencies for a single network generated by the heterogeneous ensemble
with N = 1000, β = 2.5, γ = 2.5, and ⟨k⟩ = 20. d-f) Concentration of species U
in the Mimura-Murray dynamics for the eigenvalues of the left column.

a value that is below 1. Therefore, the condition ⟨Λ⟩ = ⟨k⟩ implies that the number
of eigenvalues with periodic behavior can only account for a small fraction of
all eigenvalues, and this fraction vanishes when γ ≈ 2. We conjecture that the
remaining eigenvalues, with Λ > κ0, are those which cannot be characterized by a
single frequency.

Figure 10.7 shows the same analysis performed in Figs. 10.3 and 10.5 but for
heterogeneous networks with γ = 2.5 and β = 2.5. The low frequency eigenvector
is clearly periodic, although we observe some deviations corresponding to low
degree nodes. By increasing the eigenvalue, the periodicity is still preserved
although the sinusoidal behavior is strongly modified. Finally, periodicity is
destroyed at high eigenvalues. This behavior is, again, translated into the steady
state of the Mimura-Murray dynamics so that, even in the presence of strong
heterogeneity in the degree distribution, we are able to find geometric Turing
patterns in the dynamics.

10.2.3 Numerical results on synthetic S1/H2-networks

To confirm numerically our theoretical predictions for the dispersion relations of
quenched networks, we first generate a large number of them from the S1-model
for a given set of parameters β, γ, and ⟨k⟩. For each such network, we compute
its eigenvectors and eigenvalues sorted in increasing order. We then compute the
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Figure 10.8: (a,c) Spectrum of an ensemble of networks generated by the homogeneous
ensemble with β = ∞ (panel (a)) and β = 1.5 (panel (c)). In all cases the
average degree is given by ⟨k⟩ = 12. (b,d) Dispersion relation obtained by
applying the Fast Fourier Transform to the eigenvectors and detecting the
frequency with highest contribution. The opacity of the points is proportional
to total amount of eigenvectors with the frequency corresponding to the point.
The more transparent a point is the fewer eigenvectors have that frequency.
The black dashed lines are the theoretical predictions given by the annealed
approximation. The parameter r̂ gives the percentage of eigenvectors classified
as periodic. The notation ∗∗ implies that the results are significant with p = 0.01.
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Figure 10.9: (a,c) Spectrum of an ensemble of networks generated by the heterogeneous
ensemble with β = ∞ (panel (a)) and β = 1.5 (panel (c)). In all cases the
average degree is given by ⟨k⟩ = 12 and γ = 2.5. (b,d) Dispersion relation
obtained by applying the Fast Fourier Transform to the eigenvectors and
detecting the frequency with highest contribution. The opacity of the points is
proportional to total amount of eigenvectors with the frequency corresponding
to the point. The more transparent a point is the fewer eigenvectors have that
frequency. The black dashed lines are the theoretical predictions given by the
annealed approximation. The parameter r̂ gives the percentage of eigenvectors
classified as periodic. The notation ∗∗ implies that the results are significant
with p = 0.01.
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discrete Fourier transform1 of the eigenvectors and measure the characteristic
frequency as the one corresponding to the highest peak in the Fourier spectrum.
To asses whether a peak in the spectrum is statistically significant, we define a null
model where the entries of the components of the eigenvector are independently
drawn from a normal distribution N (µ, σ2) with µ = 0 and σ2 = N−1. The first
condition comes from Eq. (10.12) and the second from the fact that eigenvectors
are normalized. Denoting ϕ̂rand

i as one of the N entries of the DFT of a random
eigenvector from our null model, it can be shown that it satisfies the following
distribution function

Prob
(
|ϕ̂rand

i |2 < q
)
= 1 − e−q. (10.45)

With this in hand, we can find the value q for which there is a probability p that
at least one peak in the white noise Fourier spectrum lies above q. We choose a
probability p = 10−2 and take the corresponding value of q to be the minimal
value a peak in the Fourier spectrum of one of the eigenvectors of a network
generated by the model needs to cross to be considered periodic. Thus,

p = 1 −
N

∏
i=1

Prob
(
|ϕ̂i|2 < q

)
, (10.46)

so that
q = − ln

[
1 − (1 − p)

1
N

]
. (10.47)

For each network, we repeat this procedure for all its eigenvectors, leaving us with
a set of pairs (Λ, ωc) of statistically significant characteristic frequencies, from
where we can derive the dispersion relation as an average over many network
realizations.

The results of this program are shown in Fig. 10.8 for the homogeneous ensemble
with β = ∞ and β = 1.5, and in Fig. 10.9 for the heterogeneous ensemble with
γ = 2.5 and β = ∞ and β = 1.5. As can be seen, the agreement with the annealed
approximation is very good in all cases, with small deviations in the case of β = 1.5.
As mentioned in our previous discussion, it is not possible to find periodic behavior
at high frequencies as the fluctuations of nodes’ degrees induce incoherent signals
in the eigenvectors’ structures. In the examples shown in Figs. 10.8 and 10.9, the
null model combined with the DFT –using a confidence level of two sigmas– is
only able to detect between 8% and 12% of periodic eigenvalues.

10.3 weakly geometric graphs

The results above have all been for the strongly geometric regime of the S1/H2-
model. However, as argued in previous Chapters, geometry still plays a role in

1 We take a regular DFT, even though in principle the nodes are not regularly spaced along the circle.
However, non-uniform discrete Fourier transforms (NUDFTs) are generally very slow to implement
and therefore not suitable for large networks. Some preliminary testing has shown that the different
between the approaches is negligible, most likely due to the fact that θ ∼ U (0, 2π)
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Figure 10.10: The fraction of network realizations that lead to a periodic ϕ(2) as a function of
β for various N ∈ [2000, 128000]. For each β and N we generate 100 network
realizations with ⟨k⟩ = 20. The black dotted line marks βc = 1 whereas the
gray dotted line indicates β′c = 2/3.

weakly geometric networks with β ≲ 1. Therefore, in this section, we briefly
explore this region through numerical means.

We focus on the periodic behavior of the eigenvector associated to the first
non-zero eigenvalue, ϕ(2), because its large wavelength leads to the least amount
of noise. Therefore, if no periodicity can be detected for this eigenvector, it is
very unlikely that periodicity is present in any of the other N − 2 non-trivial
eigenvectors. We generate 100 homogeneous artificial networks with ⟨k⟩ = 20
for N ∈ [2000, 128000] and β ∈ [0.4, 1.2]. Finally we compute the fraction of
realizations that lead to a periodic ϕ(2) where we take the probability of the
periodicity being a result of white noise to be p = 0.001.

The results of this procedure are shown in Fig. 10.10. We first notice that we
can once again distinguish three regions. For β > 1, practically all realization lead
to a periodic eigenvector whereas for β ≲ 0.5, no periodicity is detected. In the
intermediate region, a finite fraction of networks lead to a patterned eigenvector,
even though this effect diminishes with the system size.

In Fig. 10.11 we plot ϕ(2)’s for two different realizations with ⟨k⟩ = 20, N = 8000
and β = 0.85. For these parameters, about 80% of realization lead to a periodic
eigenvector. Even though the parameters are the same, the results in panels (a)
and (b) are very different. While (a) shows a very clean periodic signal, (b) is, at
first glance, completely dominated by a single entry, which corresponds to the
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Figure 10.11: The eigenvector corresponding to the first non-trivial eigenvalue for two
distinct homogeneous realizations with ⟨k⟩ = 20, N = 8000 and β = 0.85. The
realization in panel (a) shows a clean signal, whereas the result in panel (b)
shows a signal dominated by an outlier. In both panels the color follows ϕ(θ),
rescaled such that the values lie between the 5th and 95th percentile of their
original range. In panel (b), the inset shows an enhancement such that only
the bulk nodes are shown.

node with the lowest degree. However, if one ignores this outlier and zooms into
the bulk of the nodes as done in the inset of this panel, we see that a periodic
signal is still present, even though its amplitude is very small. So small, in fact,
that our DFT is not able to pick up the signal. Preliminary investigations indicate
that it is the presence of these outliers, leading to very localized eigenvectors [311],
which causes the finite size decay observed in Fig. 10.10.

These results can, surprisingly, be linked to those found in Sec. 6.2. There, we
saw that for β ≲ 1, the original nodes coordinates could be recovered with the
embedding tool Mercator. Interestingly, this might be due to periodicity of the
Laplacian eigenvectors in this range. As explained in the introduction of this
thesis, the first step of Mercator uses Laplacian Eigenmaps (see Sec. 4.5 for details).
Here, the angular coordinates are obtained by taking the points {ϕ̃

(2)
i , ϕ̃

(3)
i }N

i=1,

where ϕ̃
(2)
i , ϕ̃

(3)
i are the second and third generalized eigenvectors of a Laplacian,

weighted according to the expectation of links being present in the S1-model.
Of course, if these eigenvectors form a perfect sine and cosine in the original
underlying space, these points lie on a circle and the original coordinates are
recovered. Noise like the one observed for example in Fig. 10.10a is taken care
of by only keeping the angular coordinate of the aforementioned points. If the
eigenvectors do not form a periodic pattern in the original space, it is impossible for
the Laplacian Eigenmaps method to work. This is most likely why no geometric
information can be extracted from the adjacency matrix in the non-geometric
regime.
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Of course, there are several differences between the results found by Mercator
and the ones shown above. First of all, in Mercator one solves the generalized
eigenvector equation, which diminishes the effect of the node degrees, leading
to less outliers. Secondly, Mercator uses a weighted Laplacian matrix where
information from the model is added to improve the embedding. And finally,
Mercator performs many tuning steps after initializing using Laplacian Eigenmaps.
All these differences might, for example, explain why Fig. 10.10 indicates that
periodicity in the weakly geometric regime is a finite size effect, whereas the ability
of Mercator to recover the original coordinates was not (see Fig. 6.3).

10.4 real networks

To analyze the emergence of Turing patterns in real networks, we first need to
find an embedding of the network under study in the hyperbolic plane. This
amounts to finding, for each node of the network, its hidden degree κ and angular
coordinate θ. For this task, we use Mercator [64]. We run the Mimura-Murray
dynamics on the network and look for geometric patterns in the angular similarity
space inferred by Mercator.

Of course, in the case of real networks, we expect less clean results as compared
to synthetic graphs generated by the S1/H2-model. Indeed, there are four main
factors affecting the emergence of Turing patterns in real networks. First, the em-
bedding method is noisy, so that periodic patterns will also be noisy. Second, even
if the embedding was perfect, the degree distribution is generally heterogeneous
so that, as in the S1/H2-model, the range of observable frequencies is small. Third,
as shown in [158, 159], some real networks may be better represented in similarity
spaces with dimension higher than D = 1. Thus, a geometric pattern in a high
dimensional space can be distorted in a lower dimensional projection, making its
detection difficult. Finally, the angular distribution in real networks is not perfectly
uniform, with significant fluctuations defining geometric communities. As shown
in Ref. [294], these communities have an impact on the eigenvector structure of the
Laplacian matrix, so that in this case we should expect patterns with mixed effects
from both the geometry of the network and its community structure. Despite all
these limitations, we expect to find patterns in real networks associated to small
non-vanishing eigenvalues.

Figure 10.12 shows results for four different real networks from different do-
mains. Detailed definitions of these networks can be found in Appendix E.1.
Other examples can be found in the Supplementary Information of Ref. [65].
Fig. 10.12a,d,g,j show the structure of the eigenvector corresponding to a small
eigenvalue (and low frequency) for the four studied networks. The geometric pat-
terns in the similarity space found by Mercator are very clear, with a wave-length
of the order of the system size. The same structure is translated into the dynamics,
as shown in Fig. 10.12b,e,h,k, where the same pattern can be recognized. We also
plot a trendline, obtained by applying the Savitzky-Golay filter to the original
signal. Finally, Fig. 10.12c,f,i,l show the concentration of species U in the hyperbolic
representation of the different networks inferred by Mercator. It is worth stress-
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Figure 10.12: (a,d,g,j) Eigenvectors ϕ(θ) corresponding to the eigenvalue Λ as denoted in
the figure for the real networks analyzed in this study, namely FriendsOFF, an
off-line friendship network, WTW 2013, the World-Trade-Web, CElegans-G,
a network of genetic interaction of the nematode C. Elegans and Malaria-G,
a network of highly variable genes of the human Malaria parasite,. (b,e,h,k)
Concentration of species U for the Mimura-Murray dynamics setting the
parameters to make these eigenvalues unstable. The red dotted line represents
the trend obtained using the Savitzky-Golay filter with windowsize π. Panels
(c,f,i,l) show the same as (b,e,h,k) but in the hyperbolic representation of the
four networks.
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Figure 10.13: Analysis of a Human Connectome network [322]. a) Dispersion relation be-
tween the wavenumbers of the dominant mode of the Laplacian eigenvectors
and their rescaled eigenvalues. The size of the points is proportional to the
height of the largest peak in the Fourier spectrum. b) Hyperbolic representa-
tion of the network, where the node size is proportional to the hidden degree
κ. The colored outer ring shows the partition in communities according to
the Louvain algorithm [90]. c,d) The eigenvector with wavenumber one (c)
and two (d) for which the pattern is most significant. The color follows ϕ(θ)
but rescaled such that the values lie between the 5th and 95th percentile of
their original range. The background colors again represent the communities.
The red dotted line represents the trend using the Savitzky-Golay filter with
windowsize π.
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ing how highly non-trivial this result is. Indeed, the Mimura-Murray dynamics
generates steady states with correlation lengths of the order of the system size
N in small-world networks where any pair of nodes is separated by a very small
number of intermediate steps, scaling as ln N. Besides, this is achieved despite
the fact that neither Mercator nor the Mimura-Murray dynamics use geometric
information from the latent space as they only take the bare network topology as
input.

Finally, we analyze in detail a human connectome network from [322] (see
App. E.1 for details). This is an interesting example for which a significant number
of patterns of different wavelengths can be detected. Figure 10.13a shows the
dispersion relation between eigenvalues showing significant periodic signals versus
their wavenumber. Despite the caveats discussed earlier, the dispersion relation
agrees qualitatively well with the ones from the S1-model. In Fig. 10.13c-f we
show two of these patterns, corresponding to wavenumbers one and two, where
the patterns are clearly visible. Although the network displays a modular or
community organization, as revealed by a Louvain algorithm analysis, this alone
cannot account for the observed patterns. Rather, geometry is responsible for this
phenomenon.

10.5 conclusions

The small-world property present in complex networks, suggests, a priori, that net-
works in the real world are infinite dimensional structures, so that geometry plays
a marginal role. Yet, network geometry stands today as the most parsimonious and
comprehensive description of this class of systems. However, beyond providing
an explanation to the observed topological structure of real networks, it is not
clear how network geometry influences the dynamics taking place on them. In this
Chapter, we have shown that geometric patterns may emerge in complex networks
in a wide class of reaction-diffusion dynamics, as observed also in other types
of dynamical processes such as opinion dynamics [323] and games [324]. Such
patterns are already encoded in the structure of the Laplacian matrix as a result
of the (hidden) metric structure of real networks. Interestingly, reaction-diffusion
processes taking place on such networks are able to sense their geometric nature
even when they show extreme disorder induced by heterogeneous degree distri-
butions and a large fraction of long-range links making them small-worlds. This is
especially surprising in the case of the quasi-geometric regime, where long-range
links dominate.

We have provided a theoretical framework to understand this phenomenon and
to quantify the role that the different topological properties of networks have on
the emerging patterns. In addition to developing the theoretical tools for studying
geometric patterns formation, significant insight is gained from the fact that Turing
patterns can also be detected in real complex networks when the hidden similarity
space is properly highlighted. This strongly suggests that there must exists a deep
connection between networks’ functions and the underlying geometry.
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Many ubiquitous network properties can be explained by the presence of a latent
geometric space. In this thesis we have explored how the coupling strength between
the geometry and the topology of a network affects its structural properties as
well as the dynamical processes that it supports. We have found that geometry
plays an important role, even when the coupling is weak.

Using the S1/H2-model, we first studied the clustering phase transition in
Chapter 5. By mapping the model to a gas of fermions, we showed that the entropy
diverges at the critical point, driven by the sudden presence of a macroscopic
amount of long-range links. This in turn leads to the reorganization of chordless
cycles, causing the topological phase transition of the clustering coefficient. This
sudden change in behavior at a finite temperature is due to the exponential density
of energy states. If such a density of states could be engineered in a physical system,
the predicted results might be confirmed experimentally.

The extremely slow decay of the clustering coefficient in the weakly geometric
regime raises the question as to what the role of geometry is in this regime. In
Chapters 6 and 7 we investigated this from various perspectives.

We started by studying the embeddibility of the network for β ≤ 1. We show
that geometric information can be extracted from the topology in this region only
in the quasi-geometric regime β′

c < β ≤ βc, which coincides with the theoretical
predictions based on the scaling of the clustering coefficient. Because Mercator,
the embedding tool used in this thesis, uses the Laplacian Eigenmaps method
as an initial step, we have argued that these results might have to do with the
periodicity of the eigenvectors of the graph Laplacian, but further research in this
direction is necessary.

We then turned to graph renormalization, and showed that geometric informa-
tion is necessary to obtain self-similar network replicas in the quasi-geometric
regime. Future work might compare these results to those found using other
renormalization methods [189, 241–243].

In Chapter 8 we showed that many real networks are indeed best described in the
weakly geometric regime, where we distinguish non- and quasi-geometric graphs.
Even though a significant number of networks (metabolic, internet, foodwebs, etc.)
were surveyed, more research is needed to be able to make statements about what
types of networks tend to fall into which category. We also showed that these
networks can be faithfully embedded and renormalized.

143
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We extended our inquiry into the weakly geometric regime to the realm of
multiplexes in Chapter 9. We showed that while degree heterogeneity is sufficient
to obtain finite levels of mutual clustering, geometry is necessary in order to
have a macroscopic amount of overlapping links. We presented some initial
results showing that these tendencies can also be observed in empirical networks.
However, more real networks need to be investigated. Future work might also focus
on the interplay between geometry, degree heterogeneity and hidden coordinate
correlations, as in this thesis their effects on the edge and triangle overlap were
mostly studied separately.

Finally, in Chapter 10, we turned to dynamical processes on top of networks.
Specifically, we studied the Turing instability and showed that the underlying
geometry reveals patterns that are hidden when approaching the network from a
purely topological perspective. We showed that patterns can also be observed in
the weakly geometric regime, even though noise becomes ever more dominant
as β is decreased. We presented a method to predict the nature of the observed
patterns based on the structural properties of the network and the parameters of
the process alone. While we have shown that these predictions generally hold,
future works needs to investigate their quality as a function of the structural
properties. For example, it is as of yet unclear at what β the approximations made
break down. We also observed that while real networks also support geometric
patterns, these are often distorted. It was hypothesized that this might be due
to real networks living in higher dimension similarity spaces, meaning that their
embedding onto the S1-circle might destroy geometric information, crucial for
observing clean patterns. Studying Turing patterns on the higher dimensional
SD-model [163, 325] is therefore a promising next step. This might also lead to
new ways of inferring the proper dimension for real networks, complementing
other works in this direction [158, 159].

Throughout the thesis, the S1/H2-model was used for both analytic calculations
as well as numerical simulations. However, as we saw in the introduction, this
model being maximum entropy implies that it can be defined in different ways. In
particular, depending on whether quantities like energy, degrees, and amount of
links are taken as hard, soft of hypersoft constraints, different ensembles emerge.
As argued in the introduction, under some circumstances these might be inter-
changeable for some purposes, especially when the networks under study are
large. We used this conjecture to choose the ensemble in which calculations/sim-
ulations where easiest. For example, in Chapter 5 numerical simulations were
performed with the degree preserving geometric randomization procedure. Here,
the degree sequence is fixed exactly, making it a hard constraint. At the same time,
energy is preserved only in expectation. This thus leads to a hybrid between a
microcanonical and canonical ensemble. At the same time, analytic calculations
assumed the (hyper)canonical ensemble, where one could interpret the integra-
tion over the hidden coordinates as either being a result of their resampling or
as a large N approximations of the sums over the fixed quantities, drawn from
some distribution. In other words, they could be interpreted as being the result of
annealed or quenched disorder, respectively. In general we have always compared
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our numerical and analytic results and have found that they coincide, motivating
the interchangeable use of the different ensembles. However, more research needs
to be done to prove these equivalences rigorously. While some results are known
for the non-geometric β → 0 limit of the model [133, 139, 142, 326–328], they are
mostly lacking for the geometric case.

In general in this thesis we have worked with unweighted and undirected
graphs. Extending these results to the weighted [45] and directed [46] versions of
the S1/H2-models should, therefore, be a priority. Especially in the case of the
Turing patterns, directed networks are relevant as they allow for more realistic
instability conditions [284].

Zooming out, the field of network geometry provides us with many avenues
of future work. The combinatorial nature of the topological picture of complex
networks makes analytic treatment of many processes unfeasible. The fact that
network geometry endows the study of complex networks with the ability to work
with continuous spaces makes it possible to apply many tools from physics and
mathematics to these intricate structures, once again making analytical results
available. For example, once the mapping from a small-world network to its
underlying metric space has been established, real space renormalization becomes
available. This mapping might also allow for novel insights into the multi-scale
behavior of dynamic processes on top of networks. Reversely, complex networks
and their geometric treatment might lead to new insights into traditional subfields
of physics. For example, recent progress [329] has been made in applying the
network geometric framework to the quantum gravity, explaining the very fabric
of space and time. In all these cases, it is essential to understand the effect of
the geometric coupling strength on the associated network. In order to apply the
geometric framework, one needs to know in which coupling regime a network is
located. This is the topic that this thesis has studied.

All in all, this thesis shows that the geometric framework is able to explain
many important properties of complex networks. We showed that only a weak
geometric coupling is necessary for the underlying metric space to have an effect,
extending the set of empirical networks for which geometric information needs to
be taken into account.
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a.1 statistical properties of the S1

In Sec. 5.1 it was shown that the density of states of the S1 for a power law hidden
degree distribution is given by

ρ(ϵ) =
2a
N

eϵΘ (ϵmax − ϵ)
(

1 + eb(ϵmax−ϵ) (b(ϵmax − ϵ)− 1)
)

, (A.1)

where a = min(1, β)κ
2 max(1,1/β)
0 (γ − 1)2/(1 + min(1, β)(1 − γ))2 and b = 1 +

min(1, β)(1 − γ). Note that ϵmax = ln
(

N
2κ

2(max(1,1/β))
0

)
corresponds to the energy of

a pair of nodes with minimal hidden degree κ0, exactly opposite one another on
the S1-circle such that ∆θij = π.

We now use this functional form to confirm several results from the thesis
rigorously for the specific hidden degree distribution ρ(κ) = (γ − 1)κγ−1

0 κ−γ. In
particular, we study the thermodynamic quantities of the system, including the
average amount of particles or links ⟨M⟩.

a.1.1 Average amount of particles

We first turn to the expected amount of particles in the system:

⟨M⟩ =
(

N
2

) ∫ ϵmax

−∞
dϵ

ρ(ϵ)

1 + eβ(ϵ−µ)

= aeϵmax N
(

b2

(b − 1)2 + eβ(ϵmax−µ)

(
−

bΦ
[
− eβ(ϵmax−µ) , 2, 1−b+β

β

]

β2 −
2 F1


 1, 1 + 1

β

2 + 1
β

;−eβ(ϵmax−µ)




1 + β

+

2 F1


 1, 1 + 1−b

β

2 + 1−b
β

;−eβ(ϵmax−µ)




1 + β − b

))
. (A.2)

Here, Φ[z, a, b] is the Lerch zeta function. If we now assume eβ(ϵmax−µ) ≫ 1, we
can approximate this as

⟨M⟩ ≃ ae(1+β)ϵmax−βµ N
(

1
β

π csc
(

π

β

)
e−(1+β)(ϵmax−µ) +

b2

(1 − β)(b + β − 1)2 e−2β(ϵmax−µ)

)
. (A.3)
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We know that ϵmax ∼ ln N. If we now also assume that µ ≃ c ln N where c < 1, it
can be shown that for all c the dominant contributions are

⟨M⟩ ≃





aπ
β Neµ csc

(
π
β

)
if β > 1

aϵmaxNeµ if β = 1

ab2 N
(1−β)(b+β−1)2 e(1−β)ϵmax+µβ if β < 1

(A.4)

If we take ⟨M⟩ = N⟨k⟩/2 (sparse network) we obtain

µ ≃





ln

(
β sin

(
π
β

)

2π⟨k⟩

)
if β > 1

1
2⟨k⟩ ln N if β = 1

1
β ln

(
Nβ−1(1−β)

2β⟨k⟩

)
if β < 1

(A.5)

Note that in all these cases eβ(ϵmax−µ) ≫ 1 and that these are exactly the same
results as found in Sec. 4.2.2.

a.1.2 Grand potential

With this we can now study the grand potential as defined in Sec. 5.1.

Ξ = − 1
β

(
N
2

) ∫ ϵmax

−∞
dϵρ(ϵ) ln

(
1 + e−β(ϵ−µ)

)

= − aN
β

eϵmax

{
b

β(1 − b)
Φ
[
− eβ(ϵmax−µ) , 2,

1 − b
β

]
+ (−1)−1/βe−(ϵmax−µ)B−eβ(ϵmax−µ)

[
1 + 1/β, 0

]

1 − 2b + (b − 1)bϵmax

1 − b + β

β

(1 − b)2 2 F1


 1, 1 + 1−b

β

2 + 1−b
β

;−eβ(ϵmax−µ)


 eβ(ϵmax−µ)

+
βb

(b − 1)3 (1 − ϵmax + b(−3 + b + ϵmax)) +
b2

(1 − b)2 ln
(

1 + e−β(ϵmax−µ)
)

− bβ

(1 − b)2 ϵmax2 F1


 1, 1−b

β

1 + 1−b
β

;−eβ(ϵmax−µ)


 eβ(ϵmax−µ)

}
, (A.6)

where Bz[a, b] is the incomplete beta function. Again assuming that eβ(ϵmax−µ) ≫ 1
and b < 1 we get the following dominant terms, after having divided out ⟨M⟩

Ξ
⟨M⟩ ≃





−1 if β > 1

−1 if β = 1

− 1
β if β < 1

(A.7)
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a.1.3 Energy

Normally with this we have enough to calculate the entropy. However, in Chapter
5.1 we showed that S = β2( ∂Ξ

∂β )µ − ∆, where the correction ∆ is due to the
temperature dependence of the energy levels. We also showed that S = −β(Ξ −
⟨E⟩+ µ⟨M⟩) still holds, and here is it is easier to work with that formula. Thus,
the final thing we need to do is find an expression for the average energy.

⟨E⟩ =
(

N
2

) ∫ ϵmax

−∞
dϵ

ϵρ(ϵ)

1 + eβ(ϵ−µ)

= aNeϵmax

{
2 F1


 1, 1−b

β

1 + 1−b
β

;−eβ(ϵmax−µ)


 ϵmax +

1
b − 1 2 F1


 1, 1−b

β

1 + 1−b
β

;−eβ(ϵmax−µ)


 ϵmax

+
1 + bϵmax

(b − 1)2 3 F2


 1, 1−b

β , 1−b
β

1 + 1−b
β , 1 + 1−b

β

;−eβ(ϵmax−µ)


− 3 F2


 1, 1

β , 1
β

1 + 1
β , 1 + 1

β

;−eβ(ϵmax−µ)




+
2b

(b − 1)2 4 F3


 1, 1−b

β , 1−b
β , 1−b

β

1 + 1−b
β , 1 + 1−b

β , 1 + 1−b
β

;−eβ(ϵmax−µ)



}

(A.8)

We can again take the limit eβ(ϵmax−µ) ≫ 1, dividing out ⟨M⟩, to obtain

⟨E⟩
⟨M⟩ ≃





µ − π
β cot

(
π
β

)
if β > 1

1
b +

1
2 ϵmax +

1
2 µ if β = 1

ϵmax − b+3β−3
(1−β)(b+β−1) if β < 1.

(A.9)

a.1.4 Entropy

Finally, this leads us to the entropy:

S
⟨M⟩ ≃





β
(

1 − π
β cot

(
π
β

))
if β > 1

1
b +

1
2 ϵmax − 1

2 µ + 1 if β = 1

β
(

ϵmax − b+3β−3
(1−β)(b+β−1) +

1
β − µ

)
if β < 1

(A.10)

Now we plug in the remaining variables to obtain

S
⟨M⟩ ≃





β − π cot
(

π
β

)
if β > 1

1
2 ln N + ln ln N + 1 − ln⟨k⟩+ 2 ln

(
γ−1
γ−2

)
+ 2

2−γ if β = 1

ln N + 2β
1−β − ln(1 − β)− ln⟨k⟩+ 2 ln

(
γ−1
γ−2

)
+ 2

2−γ if β < 1

(A.11)
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The final entropy is, as expected, equal to that of the an Erdös-Renyi graph with
connection probability ⟨k⟩/N when β → 0 and γ → ∞ and gives the entropy of
the soft configuration model when only the first limit is taken [142].

a.1.5 Toy model

Above we have seen some interesting bahavior, most notably the non-extensivity
of the entropy above the critical temperature. We want to now investigate where
this feature comes from, by looking at a simplified version of our model, where
we assume classical indistinguishable particles with Maxwell-Boltzmann statistics.
Suppose we have a system made of exactly M non-interacting particles, each of
which can attain states of energy ϵ ∈ (0, ϵmax). Suppose also that the density of
states of energy ϵ grows as

ρ(ϵ) = eβcϵ (A.12)

with βc a fixed parameter. In the canonical ensemble, the probability that a
certain particle i is in state ϵ is then given by pi(ϵ) = Vρ(ϵ)

Zi
e−βϵ, where Zi =∫

Vg(ϵ)e−βϵdϵ. Performing this integral we obtain

pi(ϵ) =
β − βc

1 − e−(β−βc)ϵmax
e−(β−βc)ϵ. (A.13)

We notice that here we find the same sudden change of behavior at the critical
point β = βc as we found in the S1 model. Using Maxwell-Boltzmann statistics for
identical particles in the canonical ensemble, the total partition function is then
given by

Z =
1

M!
(Zi)

M =
V
M!

(
1 − e(βc−β)ϵmax

β − βc

)M

(A.14)

With this expression we calculate the entropy per particle using S = β2 ∂
∂β (−

ln(Z)
β )

to obtain

S
M

=
β

β − βc
− βϵmax

e(β−βc)ϵmax − 1
− ln

[
M
V

β − βc

1 − e−(β−βc)ϵmax

]
+ 1, (A.15)

where we have employed Stirling’s approximation for M ≫ 1.
The first two terms in this last equation are just the average energy per particle of

the system. If the density of particles is kept fixed, so that limM→∞
M
V = cst, then

entropy is an extensive quantity as it is proportional to the number of particles.
However, there is a clear change of behavior as one goes from β > βc to β < βc
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due to the change of behavior of the probability density Eq. (A.13). If besides
βϵmax ≫ 1, then the entropy behaves as

S
M

≃





β
β−βc

− ln
[

M
V (β − βc)

]
+ 1 β > βc

1
2 βcϵmax − ln

[
M

Vϵmax

]
+ 1 β = βc

βcϵmax +
β

β−βc
− ln

[
M
V (βc − β)

]
+ 1 β < βc

(A.16)

Thus, in the limit of ϵmax → ∞ the entropy per particle diverges at β → β+
c and

scales as ϵmax for β ≤ βc, just as in our model.
In the S1-model, the effective system size is given by the proportionality constant

Veff = (N
2 )

2a
N ≃ aN and the amount of particles is given by ⟨M⟩ = N⟨k⟩/2 as we

are working with a sparse graph. In this case we indeed satisfy lim⟨M⟩→∞
⟨M⟩
Veff

= cst
and the entropy is thus in principle extensive. However, as in the full model there is
the extra constraint ⟨M⟩ ≤ N(N − 1)/2 and ϵmax = ln(N/(2κ2

0)), we are obliged
to also send ϵmax to infinity when going to the thermodynamic limit, thus resulting
in a non-extensive entropy for β < βc. We thus show that the essential feature of
the S1 model that leads to a non-extensive entropy is the exponential dependence
on the energy of the density of states.

a.2 finite size scaling of the clustering coefficient in the S1

In this section we find the dominant finite size scaling of the clustering coefficient
for β ≤ 1. As was explained in Chapter 5, in this region clustering vanishes in the
thermodynamic limit. We therefore study what happens when N ≫ 1 but finite
for any β (we thus do not take any limit with respect to the temperature). As for
β ≲ 1 higher order finite size correction become important, we study the case
β = 1 separately .

We start by manipulating the angular integrals of Eq. (5.21) as to simplify the
task at hand later on. We then turn to the scaling when β < 1 and conclude with
an analysis of the scaling when β = 1.

The basis of these calculations is the fact that we are looking for the scaling
behaviour of the c with respect to the system size N. This allows us to always
ignore terms that we know are smaller than than the main term, which simplifies
the integrals that we study substantially. Once we have a term, say A, we want
to know the scaling behaviour of, we use the fact that if the functions f (N) and
g(N) in equation

f (N) ≤ A ≤ g(N) (A.17)

have the same dominant scaling, one can immediately conclude that A also has
that exact dominant scaling. Therefore, by finding upper and lower bounds to the
integrals in question we can extract there scaling behavior with respect to A. It is
important to keep in mind that, even when the integrals representing the bounds
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become very tedious, the strategy we employ remains the same throughout this
section.

a.2.1 Angular manipulation

We start by manipulating the angular integrals of Eq. (5.21) to make it easier
to work with, i.e. get rid of the absolute values in the expressions for ∆θ. The
equation has the following form:

c(κ) =
∫∫∫∫

dκ′dκ′′dθ′dθ′′ρ(κ′)ρ(κ′′)p(κ, κ′ , π − |π − |θ′ ||)p(κ, κ′′ , π − |π − |θ′′ ||)p(κ′ , κ′′ , π − |π − |θ′ − θ′′ ||))∫∫
dκ′dθ′ρ(κ′)p(κ, κ′ , π − |π − |θ′ ||) .

(A.18)

Here, without loss of generality, we have used θ = 0. Let us first investigate the
trivial case of the denominator, where we only focus on the angular integral

∫ 2π

0
dθ′p(κ, κ′ , π − |π − |θ′ ||) =

∫ π

0
dθ′p(κ, κ′ , π − |π − |θ′ ||) +

∫ 2π

π
dθ′p(κ, κ′ , π − |π − |θ′ ||)

=
∫ π

0
dθ′p(κ, κ′ , θ′) +

∫ 2π

π
dθ′p(κ, κ′ , 2π − θ′) = 2

∫ π

0
dθ′p(κ, κ′ , θ′), (A.19)

where in the last step we have performed the transformation t = 2π − θ′ and
t → θ′ on the second integral.

The numerator can be rewritten in a similar way to obtain four terms
∫ 2π

0
dθ′

∫ 2π

0
dθ′′p(κ, κ′, π − |π − |θ′||)p(κ, κ′′, π − |π − |θ′′||)p(κ′, κ′′, π − |π − |θ′ − θ′′||)

=2
∫ π

0
dθ′
( ∫ θ′

0
dθ′′p(κ, κ′, θ′)p(κ, κ′′, θ′′)p(κ′, κ′′, θ′ − θ′′)

+
∫ θ′

0
dθ′′p(κ, κ′, θ′′)p(κ, κ′′, θ′)p(κ′, κ′′, θ′ − θ′′)

+
∫ π−θ′

0
dθ′′p(κ, κ′, θ′)p(κ, κ′′, θ′′)p(κ′, κ′′, θ′ + θ′′)

+
∫ π

π−θ′
dθ′′p(κ, κ′, θ′)p(κ, κ′′, θ′′)p(κ′, κ′′, 2π − θ′ − θ′′)

)
. (A.20)

The first two terms are not exactly the same. However, as the full expression of
the clustering coefficient also contains integrals over the hidden degrees, one can
interchange κ′ ↔ κ′′. This shows that the first two terms contribute equally to the
clustering coefficient. All in all, we will thus be working with the following three
terms

4
∫ π

0
dθ′

∫ θ′

0
dθ′′p(κ, κ′, θ′)p(κ, κ′′, θ′′)p(κ′, κ′′, θ′ − θ′′)

+2
∫ π

0
dθ′

∫ π−θ′

0
dθ′′p(κ, κ′, θ′)p(κ, κ′′, θ′′)p(κ′, κ′′, θ′ + θ′′)

+2
∫ π

0
dθ′

∫ π

π−θ′
dθ′′p(κ, κ′, θ′)p(κ, κ′′, θ′′)p(κ′, κ′′, 2π − θ′ − θ′′). (A.21)

Now, before we get started on finding the scaling with respect to the system size
of each term individually, it might be that we can avoid doing so by some simple
arguments. Indeed, we will show that the first term will always dominate the
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others in the large N limit, and so we only have to find its scaling. Let us start
with the second term

2
∫∫

dκ′dκ′′ρ(κ′)ρ(κ′′)
∫ π

0
dθ′

∫ π−θ′

0
dθ′′p(κ, κ′, θ′)p(κ, κ′′, θ′′)p(κ′, κ′′, θ′ + θ′′)

≤2
∫∫

dκ′dκ′′ρ(κ′)ρ(κ′′)
∫ π

0
dθ′

∫ π

0
dθ′′p(κ, κ′, θ′)p(κ, κ′′, θ′′)p(κ′, κ′′, θ′ + θ′′). (A.22)

The above statement is true as the integrand is strictly positive and so extending
the integration domain will only make the integral larger. Now, we can split the
θ′′ integral and perform θ′ ↔ θ′′ and κ′ ↔ κ′′ on the second term to obtain

2
∫∫

dκ′dκ′′ρ(κ′)ρ(κ′′)
∫ π

0
dθ′

∫ π

0
dθ′′p(κ, κ′ , θ′)p(κ, κ′′ , θ′′)p(κ′ , κ′′ , θ′ + θ′′)

= 4
∫∫

dκ′dκ′′ρ(κ′)ρ(κ′′)
∫ π

0
dθ′

∫ θ′

0
dθ′′p(κ, κ′ , θ′)p(κ, κ′′ , θ′′)p(κ′ , κ′′ , θ′ + θ′′)

≤ 4
∫∫

dκ′dκ′′ρ(κ′)ρ(κ′′)
∫ π

0
dθ′

∫ θ′

0
dθ′′p(κ, κ′ , θ′)p(κ, κ′′ , θ′′)p(κ′ , κ′′ , θ′ − θ′′). (A.23)

In the final step we use the functional form of p with respect to the angular
coordinate is

p(s) =
1

1 + sβ
. (A.24)

As sβ is monotonously increasing, and 1/(1 + s) is monotonously decreasing,
p(s) is monotonously decreasing. Thus, it is largest when s is smallest. Obviously,
θ′ + θ′′ > θ′ − θ′′ for all (θ′, θ′′) ∈ [0, π]× [0, θ′]. We have thus proven that the first
term in Eq. (A.21) dominates the second term. We can follow similar steps for the
third term. We we will now only clarify steps if they are new.

2
∫∫

κ′ ,κ′′

dκ′dκ′′ρ(κ′)ρ(κ′′)
π∫

0

dθ′
π∫

π−θ′

dθ′′p(κ, κ′, θ′)p(κ, κ′′, θ′′)p(κ′, κ′′, 2π − θ′ − θ′′)

≤4
∫∫

κ′ ,κ′′

dκ′dκ′′ρ(κ′)ρ(κ′′)
π∫

0

dθ′
θ′∫

0

dθ′′p(κ, κ′, θ′)p(κ, κ′′, θ′′)p(κ′, κ′′, 2π − θ′ − θ′′). (A.25)

Now, one knows that 2π − θ′ − θ′′ ≥ θ′ − θ′′ ∀(θ′, θ′′) ∈ [0, π]× [0, θ′]. For the
same reasons as before, this then implies

4
∫∫

κ′ ,κ′′

dκ′dκ′′ρ(κ′)ρ(κ′′)
π∫

0

dθ′
θ′∫

0

dθ′′p(κ, κ′, θ′)p(κ, κ′′, θ′′)p(κ′, κ′′, 2π − θ′ − θ′′)

≤4
∫∫

κ′ ,κ′′

dκ′dκ′′ρ(κ′)ρ(κ′′)
π∫

0

dθ′
θ′∫

0

dθ′′p(κ, κ′, θ′)p(κ, κ′′, θ′′)p(κ′, κ′′, θ′ − θ′′), (A.26)

so this term is also dominated by the first term in Eq. (A.21).
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a.2.2 Case 0 < β < 1

The first step is to perform the transformation x = κ′
κs

and y = κ′′
κs

, where we define
κ2

s ≡ Nβ/((2π)βµ̂). Note that we use assume the functional form of µ̂ defined in
Eq. (4.14), such that κs ∼

√
N. This leads to

c(κ) ∼ 2

κc/κs∫
κ0/κs

dx
κc/κs∫

κ0/κs

dy
π∫
0

dθ′
θ′∫
0

dθ′′(xy)−γ p(κ, κsx, θ′)p(κ, κsy, θ′′)p(κsx, κsy, θ′ − θ′′)

(
κc/κs∫

κ0/κs

dx
π∫
0

dθ′x−γ p(κ, κsx, θ′)

)2 . (A.27)

We investigate the numerator and denominator separately and define

A− =

κc/κs∫

κ0/κs

dx
κc/κs∫

κ0/κs

dy
π∫

0

dθ′
θ′∫

0

dθ′′(xy)−γ p(κ, κsx, θ′)p(κ, κsy, θ′′)p(κsx, κsy, θ′ − θ′′). (A.28)

B =

κc/κs∫

κ0/κs

dx
π∫

0

dθ′x−γ p(κ, κsx, θ′). (A.29)

It is also useful to define

A+ =

κc/κs∫

κ0/κs

dx
κc/κs∫

κ0/κs

dy
π∫

0

dθ′
θ′∫

0

dθ′′(xy)−γ p(κ, κsx, θ′)p(κ, κsy, θ′′)p(κsx, κsy, θ′ + θ′′). (A.30)

Our investigation will focus on finding upper and lower bounds for these integrals.
Note that from here on out we will drop the domains of the x and y integrals and
assume them to be [κ0/κs, κc/κs] unless otherwise indicated. Using the fact that

1

1 +
(θ′ + θ′′)β

xy

<
1

1 +
(θ′ − θ′′)β

xy

, ∀θ′, θ′′, x, y, (A.31)

we can conclude that A+ < A−. As numerical investigation leads us to expect that
both have the same scaling, this implies that we do not need to worry about an
upper bound for A+ nor the lower bound for A−. If the functions f (N) and g(N)
in equation

f (N) < A+ < A− < g(N) (A.32)

have the same dominant scaling, one can immediately conclude that A− also has
that exact dominant scaling. One might ask why we introduce A+ in the first
place, when in the end we are only interested in the scaling of A−. The answer to
this is that A+ in general has nicer properties due to the lack of (θ′ − θ′′), as it is
thus easier to find a lower bound for it than for A−.

We start with the simplest integral, the B-term, which can be solved exactly. To
this end we first need to rewrite it a bit. By performing two substitutions

x′ =
κs

κc
x x′ → x, t =

θ′

π
t → θ′, (A.33)
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one obtains

B = π

(
κc

κs

)1−γ 1∫

0

dθ′
1∫

κ0/κc

dx
x−γ

1 +
(πθ′)βκ2

s
κcκx

. (A.34)

This then gives the following expression

B =
π

(β(γ − 1)− 1)(γ − 1)

{
(γ − 1)β

(
κ0

κs

)1−γ

2F1

[
1, 1/β

1 + 1/β
;−πβκ2

s
κκ0

]

−(γ − 1)β

(
κc

κs

)1−γ

2F1

[
1, 1/β

1 + 1/β
;−πβκ2

s
κκ0

]

− κ0

(
κ0

κs

)1−γ

2F1

[
1, γ − 1

γ
;−πβκ2

s
κκ0

]

+ κ0

(
κc

κs

)1−γ

2F1

[
1, γ − 1

γ
;−πβκ2

s
κκ0

]}
. (A.35)

This expression can be expanded with respect to N, using that κs ∼
√

N. To lowest
order, one finds that B then scales as

B ∼ N
γ−3

2 (A.36)

Next we turn to the A+ term. Here we use the following fact to bound this
integral. If F =

∫
V f (x⃗), where V is the volume over which to integrate the function,

and f (x⃗) ≥ f0 for all x⃗, where f0 some constant, then F ≥ f0V . From the form
of the standard connection probability given in Eq. (A.24), we see that A+ is
smallest when the argument is largest, which is the case when θ′, θ′′ are largest, so
when they are both π. Thus we can bound the angular integrals by replacing the
integrand with its minimum, the same function where both angular coordinates
are π. The integrand is then a constant so the bound is given by the value of that
constant times the area of the integral. Plugging this in we obtain

A+ ≥ 1
2

π2
∫

dxdy(xy)−γ 1

1 +
πβκs

κx

1

1 +
πβκs

κy

1

1 +
(2π)β

xy

=
1
2

π2−3β

(
κ

κs

)2 ∫
dxdy(xy)2−γ 1

1 +
κx

πβκs

1

1 +
κy

πβκs

1

1 +
xy

(2π)β

. (A.37)

Now, this is exactly the same integral (with the exception of the π’s, but they will
obviously not change scaling) as the one evaluated in Ref. [144]. As was found
in the reference (Eq. (6)), the scaling depends on how we set κc relative to κs. We
distinguish two regimes. First, there is the regime where κ0 ≪ κs ≪ κc. In this
case, the scaling is

A+ ≥ c+,1κ−2
s ln(κc/κs). (A.38)

Then, there is the region where κ0 ≤ κc ≤ κs (κ0 ≪ κs must be required to hold)
where one obtains

A+ ≥ c+,2κ
2γ−8
s κ

6−2γ
c . (A.39)
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This, however, does not give the full scaling behaviour, as numerical results show
us that for large β the scaling with respect to N is different. To find where this
different scaling comes from we take a step back and look at the full integral A+
as given in Eq. (A.30). One might be tempted to, as in Ref. [144], expand the first
two connection probabilities to first order. However, the presence of the angular
coordinate makes this impossible. The argument of these connection probabilities

has the form s = θβκ2
s

κκ′ . It becomes clear that for small enough θ, s is no longer
large and the approximation thus breaks down. We thus expect different scaling
behaviour to arise as a result of small angular coordinates. To investigate this
further, we split the angular integration domain [0, π]× [0, t] in a convenient way
and investigate the domain D1 = [0, (xy)1/β]× [0, t]. Note that we do not have
to look at the other half of the original domain as we are only interested in the
lower bound and our integrand is positive for all angles, which means that the
integral over the full domain must be larger or equal to the integral over D1.
The domain D1 can only be defined in the case that κc ≤ κs, as only then the
angular coordinates remain smaller than the maximal possible value of π for
all x and y. For the case that κc ≫ κs we define the more restrictive domain
D2 = [0, (κ0/κs)2/β]× [0, t]. Starting with the case κc ≤ κs, bounding the integral
as before (by replacing the integrand by its minimum), one finds

A+ ≥ 1
1 + 2β

∫
dxdy(xy)2/β−γ 1

1 +
κsy
κ

1

1 +
κsx
κ

=
(κs/κ)−4/β+2γ−2

1 + 2β

(
B κ

κ0+κ

[
γ − 2

β
, 1 − γ +

2
β

]
− B κ

κc+κ

[
γ − 2

β
, 1 − γ +

2
β

])2

≃ c+,s,1κ
−4/β+2γ−2
s + c+,s,2κ

−4/β+2γ−2
s κ

4/β−2γ
c , (A.40)

For the case κc ≫ κs one obtains

A+ ≥
(

κ0

κs

)4/β ∫
dxdy(xy)−γ 1

1 +
κs

κx
κ2

0
κ2

s

1

1 +
κs

κy
κ2

0
κ2

s

1

1 +
2β

xy
κ2

0
κ2

s

≃
(

κ0

κs

)4/β ∫
dxdy(xy)−γ ≃ c+,s,3κ

−4/β+2γ−2
s , (A.41)

where in the first step it was noted that irrespective of the value of x and y, the
argument of the connection probabilities is small.

We now have five different scaling behaviours. Which terms dominate will
depend on the value of β as well on κc. To quantify how the scaling varies with
κc we introduce the exponent α such that κc ∼ Nα/2. As κs ∼ N1/2, the different
regimes of κc described above correspond to α ∈ [0, 1] for κc ≤ κs and α ∈ (1, 2

γ−1 ]

for κc ≫ κs. Using these definitions and adding up the different scaling we found
above, we conclude that

A+ ≥





C+,1 N−2/β+γ−1 + C+,2 N−1 ln N if κc ≫ κs

N−1
(

C+,3 Nγ−2/β + C+,4 N(1−α)(γ−2/β) + C+,5 N(1−α)(γ−3)
)

if κc ≤ κs
, (A.42)

where C+,i are constants. Note that, for example, the scaling of Eqs. (A.38) and
(A.41) can indeed be combined to the first of these two inequalities as both now
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hold for all β. When β > 2/γ the C+,2-term vanished with respect to the C+,1-term
and we are left with inequality (A.41) and when β < 2/γ the other term dominates
and we are left with inequality (A.38).

Now obviously this is just a lower bound. To show that the clustering indeed
scales like this we must also find an upper bound, which we do by turning to the
A− term. We divide the integration domain in two: Ds = [0, (κ0/κs)2/β]× [0, θ′]
and Dl = [(κ0/κs)2/β, π]× [0, θ′]. We first turn to region Dl .

A−,l =
∫∫

Dl

dθ′dθ′′
∫∫

dxdy(xy)−γ 1

1 +
θ′βκs

κx

1

1 +
θ′′βκs

κy

1

1 +
(θ′ − θ′′)β

xy

≤
(

κ

κs

)2 ∫∫

Dl

dθ′dθ′′
∫∫

dxdy (xy)2−γ(θ′θ′′(θ′ − θ′′))−β 1
1 + xy

(θ′−θ′′)β

=

(
κ

κs

)2 ∫∫

Dl

dθ′dθ′′

(θ′θ′′(θ′ − θ′′))β

(
κc

κs

)2(3−γ)

Φ

[
−(θ′ − θ′′)−β

(
κc

κs

)2

, 2, 3 − γ

]

+

(
κ

κs

)2 ∫∫

Dl

dθ′dθ′′

(θ′θ′′(θ′ − θ′′))β

(
κ0

κs

)2(3−γ)

Φ

[
−(θ′ − θ′′)−β

(
κ0

κs

)2

, 2, 3 − γ

]

− 2
(

κ

κs

)2 ∫∫

Dl

dθ′dθ′′

(θ′θ′′(θ′ − θ′′))β

(
κ0κc

κ2
s

)3−γ

Φ
[
−(θ′ − θ′′)−β κ0κc

κ2
s

, 2, 3 − γ

]
. (A.43)

One sees that these three terms are similar, and so we treat the general integral

Iζ =
∫∫

Dl

dθ′dθ′′
Φ
[
−(θ′ − θ′′)−βζ, 2, 3 − γ

]

(θ′θ′′(θ′ − θ′′))β
ζ3−γ =

∫∫

Dl

dθ′dθ′′
Φ
[
−θ′′−βζ, 2, 3 − γ

]

(θ′θ′′(θ′ − θ′′))β
ζ3−γ, (A.44)

where the transformation θ′′′ = θ′ − θ′′, θ′′′ → θ′′ was performed. Now, the
argument of the Lerch zeta function can in principle be smaller and larger than
one. If it is smaller, it can be shown that Φ[−(θ′ − θ′′)−βζ, 2, 3 − γ] < 2γ−3. If it is
bigger than one can use the identity described in Ref. [144]

Φ[−z2, 2, 3 − γ] = z−2(3−γ)

(
2ψ(γ) ln z + ϑ(γ)

)
+

1
z2 Φ

[
1
z2 , 2, γ − 2

]
, (A.45)

where

ψ(γ) = Φ[−1, 1, 3 − γ] + Φ[−1, 1, γ − 2] (A.46)

ϑ(γ) = −π2 cot(πγ) csc(πγ). (A.47)

The argument of the Lerch zeta function is exactly one, which is the inflection
point between the behaviours, when

a = ζ1/β (A.48)

We must thus split the integration domain Dl in three regions (where b =
(κ0/κs)2/β): DX = [a, π] × [a, θ′], DY = [a, π] × [0, a] and DZ = [b, a] × [0, θ′]
as depicted in Supplementary Figure A.1. Now, the grey region is the one where
the Lerch zeta function argument is bigger than one, in the hatched region we
can bound the Lerch zeta function away and the black region is Ds and we thus
do not care about it for the moment. Before going any further, let us note that
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θ′′

θ′
b a

a

DX

DYDZ

Figure A.1: Integration regions. In the grey region (DY +DZ) the argument of the Lerch
zeta function is bigger than one, in the hatched region (DX) it is not and the
black region is Ds.

Supplementary Figure A.1 looks slightly different for different κc and ζ. If κc ≫ κs
and ζ = (κc/κs)2, then ζ ≫ 1 and thus so is a. However, a as an integration limit
must be smaller than π and thus in this case the DX and DY regions disappear.
When κc ≤ κs this is not the case as for all ζ, a < π. Finally, irrespective of the
value of κc, for ζ = (κ0/κs)2, a = b and thus region DZ vanishes. Implementing
the transformation given by Eq. (A.45) in the grey region one obtains

Iζ ≤
∫∫

dθ′dθ′′(θ′(θ′ − θ′′))−β

{
θ′′β(2−γ)

[
ψ(γ) ln

(
ζ

θ′′β

)
+ ϑ(γ)

]
+ ζ2−γ(γ − 2)−2

}
. (A.49)

As this leads to three different angular integrals, in the end we have seven different
integrals to solve.
∫∫

DX
dθ′dθ′′

(
1

θ′θ′′(θ′ − θ′′)

)β

=
a2−3β

3β − 2

{
B1[2β − 1, 1 − β]− B1[1 − β, 1 − β]

+ B a
π
[2β − 1, 1 − β] + (a/π)3β−2B a

π
[1 − β, 1 − β]

}

+
4β−1/2π5/2−3βΓ[1 − β]

Γ[3/2 − β](3β − 2)

(
(a/π)2−3β − 1

)
(A.50)

= cX11 a2−3β + cX12 (A.51)

∫∫

DY
dθ′dθ′′

(
1

θ′(θ′ − θ′′)

)β

=
a2−2β

2(β − 1)2

{
2(β − 1)B a

π
[2β − 1, 1 − β]

− π−1/2(β − 1)Γ[1 − β]Γ[β − 1/2]− 1

+ (1 − 2F1

[
2(β − 1), β

2β − 1
; a/β

]
)(a/π)2β−2

}
(A.52)



A.2 finite size scaling of the clustering coefficient in the S1
159

≃ cY11 a2−2β + cY12 (A.53)

∫∫

DY
dθ′dθ′′

(
θ′′2−γ

θ′(θ′ − θ′′)

)β

=
a2−γβ

γβ − 2

{
B1[1 + 2β − γβ, 1 − β]

− B1[2β − 1, 1 − β] + B a
π
[2β − 1, 1 − β]

− (a/π)γβ−2B a
π
[1 + 2β − γβ, 1 − β]

}
(A.54)

≃ cY21 a2−γβ + cY22 a1+2β−γβ (A.55)

∫∫

DY
dθ′dθ′′

(
θ′′2−γ

θ′(θ′ − θ′′)

)β

ln
(

ζ

θ′′β

)
=

βa2−βγπ1−2β

(β(γ − 2)− 1)(βγ − 2)2

×
{

4β−1

π
3
2 −2β

(β(γ − 2)− 1)Γ[1 − β]Γ
[

β − 1
2

]

+
π2β−1Γ[1 − β]Γ[−γβ + 2β + 2]

Γ[−γβ + β + 2]

×
(

1 + (γβ − 2)(Hβ(2−γ) − H1+β−γβ)

β(γ − 2)− 1

)

− a2β−1

(
(β(γ − 2)− 1)

2β − 1 2F1

[
β, 2β − 1

2β
;

a
π

]

+
(βγ − 2)

β(γ − 2)− 1 3F2

[
β,−γβ + 2β + 1,−γβ + 2

β + 1 − γβ + 2β + 2,−γβ + 2β + 2
;

a
π

]

+ 2F1

[
β, β(−γ) + 2β + 1

β(−γ) + 2β + 2
;

a
π

])}
(A.56)

≃ cY31 a2−γβ + cY32 a1+2β−γβ (A.57)

∫∫

DZ
dθ′dθ′′

(
1

θ′(θ′ − θ′′)

)β

=
a2−2β − b2−2β

2(β − 1)2 = cZ11 a2−2β + cZ12 b2−2β (A.58)

∫∫

DZ
dθ′dθ′′

(
θ′′2−γ

θ′(θ′ − θ′′)

)β

=
Γ[1 − β]Γ[−γβ + 2β + 1]

(
b2−βγ − a2−βγ

)

(βγ − 2)Γ[−γβ + β + 2]
(A.59)

= cZ21 a2−γβ + cZ22 b2−γβ (A.60)

∫∫

DZ
dθ′dθ′′

(
θ′′2−γ

θ′(θ′ − θ′′)

)β

ln
(

ζ

θ′′β

)
=

Γ[1 + 2β − γβ]Γ[1 − β]β

(βγ − 2)Γ[2 + β − γβ]

(
a2−γβ − b2−γβ

)
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×
{

Hβ(2−γ) − H1+β−γβ +
1

γβ − 2
− 1

β
ln(ζ)

+
a2−γβ ln a − b2−γβ ln b

a2−γβ − b2−γβ

}
(A.61)

=
a2−γβ

(
cZ31 + cZ32

(
ln(a)− 1

β ln(ζ)
) )

−b2−γβ
(

cZ31 + cZ32

(
ln(b)− 1

β ln(ζ)
) ) (A.62)

The next step is to organise the different scalings (see Tab. (A.1), where we have
defined cYi = cY1i + cY2i + cY3i and similarly for Z) that were found and find which
is dominant.

Let us note that the terms containing ln(κc/κ0) cancel as the final results (Eq.
(A.43)) contains Iκ2

c /κ2
s
− 2Iκ0κc/κ2

s
. We now have many different scaling behaviors,

and the question of which one dominates again depends on the value of β as
well as κc. As a matter of fact, if one includes the κ−2

s prefactor in Eq. (A.43), one
recovers the same behavior as was found for the lower bound

I− ≤





C−,1 N−2/β+γ−1 + C−,2 N−1 ln N if κc ≫ κs

N−1
(

C−,3 Nγ−2/β + C−,4 N(1−α)(γ−2/β) + C−,5 N(1−α)(γ−3)
)

if κc ≤ κs
, (A.63)

where C−,i are constants.
This seems to go in the right direction. However, we have not explored the full

integration domain yet. It turns out though that the integration domain Ds does
not lead to any new scaling:

I−,s =
∫∫

dxdy(xy)−γ
∫∫

Ds

1

1 +
θ′βκs

κx

1

1 +
θ′′βκs

κy

1

1 +
(θ′ − θ′′)β

xy

≤
∫∫

dxdy(xy)−γ
∫∫

Ds

1

=

(
κ0
κs

)4/β ∫∫
dxdy(xy)−γ

=

(
κ0
κs

)4/β 1
(1 − γ)2

((
κc

κs

)1−γ

−
(

κ0
κs

)1−γ
)2

≃ 1
(1 − γ)2

(
κ0
κs

)2(1−γ+2/β)

∼ N−1+γ−2/β. (A.64)

The contribution of Ds is thus subleading for small β and equally dominant as
the other contributions for large β. We have thus shown that for the the upper and
lower bound the dominant scaling is the same. We now have the scaling of all
distinct parts, B, A+, A−, so we can now combine them all.

c ≃





C1N2−2/β + C2N2−γ ln N if κc ≫ κs

C3N2−2/β + C4N2−2/β−α(γ−2/β) + C5N−1−α(γ−3) if κc ≤ κs

(A.65)
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Table A.1: A summary of all terms contributing to (A.43). This table should be read as
follows: We know that A−,l ≤ (κ/κs)2(I(κc/κs)2 + I(κ0/κs)2 − 2I(κ0κc/κs)2 ). Each
column gives the contributions of the different integration regions X, Y and Z to
one of the three Iζ in this equation. Note that for ζ = (κc/κs)2 the result depends
on which of the two cut-offs is larger.

ζ X Y Z

(
κ0
κs

)2 cX11

(
κ0
κs

) 4
β −2γ

+

cX12

(
κ0
κs

)2(3−γ)

cY1

(
κ0
κs

) 4
β −2γ

+

cY2

(
κ0
κs

)4+ 2
β −2γ

(
κ0κc
κ2

s

) cX11

(
κ0κc
κ2

s

) 2
β −γ

+

cX12

(
κ0κc
κ2

s

)3−γ

cY1

(
κ0κc
κ2

s

) 2
β −γ

+

cY2

(
κ0κc
κ2

s

)2+1/β−γ

cZ1

(
κ0κc
κ2

s

) 2
β −γ

+

(cZ22 − cZ31 )
(

κ0
κs

) 4
β −2γ

+

cZ32
β

(
κ0
κs

) 4
β −2γ

ln
(

κc
κ0

)
+

cZ12

(
κ0κc
κ2

s

)2−γ (
κ0
κs

) 4
β −4

(
κc
κs

)2
≫ 1

cZ11 π2−2β
(

κc
κs

)2(2−γ)
+

(cZ21 + cZ31 )π2−γβ+

(cZ22 − cZ32 )
(

κ0
κs

) 4
β −2γ

−

2
β cZ32 π2−γβ ln

(
κc
κs

)
+

2
β cZ32

(
κ0
κs

) 4
β −2γ

ln
(

κc
κ0

)
+

cZ23 π2−γβ ln(π)+

cZ12

(
κc
κs

)2(2−γ) (
κ0
κs

) 4
β −4

(
κc
κs

)2
≪ 1

cX11

(
κc
κs

) 4
β −2γ

+

cX12

(
κc
κs

)2(3−γ)

cY1

(
κc
κs

) 4
β −2γ

+

cY2

(
κc
κs

)4+2/β−2γ

cZ1

(
κc
κs

) 4
β −2γ

+

(cZ22 − cZ31 )
(

κ0
κs

) 4
β −2γ

+

2cZ32
β

(
κ0
κs

) 4
β −2γ

ln
(

κc
κ0

)
+

cZ12

(
κc
κs

)4−2γ (
κ0
κs

) 4
β −4
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Let us discuss the limiting cases of α. When α = 0, κ0 ∼ κc, and the network thus
has a homogeneous degree distribution. Then, C ≃ (C3 + C4)N2−2/β + C5N−1. If
α = 1, i.e. κc ∼ κs, the scaling becomes C ≃ C3N2−2/β + (C4 + C5)N2−γ.

a.2.3 Case β = 1

We now turn to the limit β = 1. The general practice of finding upper and lower
bounds for the various relevant integrals will be again pursued here, and in many
cases the integrals examined will be similar to the ones studied above. However,
there are some important differences that force us to treat this case separately.
For one, we know that in the case of β = 1, µ scales as µ̂ ∼ (ln N)−1 instead
of µ̂ ∼ N1−β, and thus κs ∼

√
N ln N, which of course alters scaling. We will

represent all integrals evaluated at β = 1 by a tilde (Ã−, Ã+, B̃). We start with B̃:

B̃ = π

(
κc

κs

)1−γ 1∫

0

dθ

1∫

κ0/κc

dx
x−γ

1 +
πθκ2

s
κcκx

= π

(
κc

κs

)1−γ { κκc

πκ2
s

ln
(

1 + πκ2
s

κcκ

)

2 − γ
+

1
γ − 2
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(
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s
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(
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s
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. (A.66)

The second term is dominant and thus B̃ scales as

B̃ ∼ κ
γ−3
s ln(κs) ∼ N

γ−3
2 (ln N)

γ−1
2 . (A.67)

For the lower bound of the numerator of the clustering coefficient we can use the
result found in Eq. (A.42) as nowhere was it assumed that β < 1. Irrespective of
κc this gives us

Ã+ ≤ c̃+Nγ−3 (ln N)γ−3 . (A.68)

For the upper bound of Ã− we cannot follow the same path as was done in the
case of general β. This is because the upper bound employed, given by Eq. (A.43),
diverges in the β = 1 limit. Thus, we must find a stricter bound. This is done by
once again dividing the angular integration domain, this time in four pieces: Ds =
[0, (κ0/κs)2]× [0, θ′], D2 = [(κ0/κs)2, π]× [0, (κ0/κs)2], D3 = [(κ0/κs)2, π]× [θ′ −
(κ0/κs)2, θ′] and D3 = [2(κ0/κs)2, π]× [(κ0/κs)2, θ′ − (κ0/κs)2], as represented in
Supplementary Figure A.2. Note that regions D2 and D3 overlap, but that is not a
problem as our integrand is positive and counting a region double just increases
the value of the integral, which in turn work for our purposes as we are only
looking for an upper bound. For the region Ds we can use the result (A.64):

Ã−,s ≤ c̃−,sNγ−3 (ln N)γ−3 . (A.69)
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θ′′

θ′
b

π − b

b

Figure A.2: Integration regions where b =
κ2

0
κ2

s
The black region is region Ds. The horizontally

striped region is region D2. The vertically striped region is region D3. The grey
region is region D4.

Turning to D2 we obtain

Ã−,2 =
∫∫

dxdy(xy)−γ
∫∫

D2

dθ′dθ′′

1 +
θ′κs

κx

1

1 +
θ′′κs

κy

1

1 +
θ′ − θ′′

xy

≤ κ

κs

∫∫

D2

dθ′dθ′′

θ′

κs/κ0∫

κs/κc

dx
κs/κ0∫

κs/κc

dy
xγ−3yγ−2

1 + xy(θ′ − θ′′)
(A.70)

where we have bounded the integral by decreasing the size of the denominators
of the first and second terms. We also performed a change of variables of x and
y. We now extend the lower bounds of the x and y integrals to zero, which can
be done as our integral is positive, and so the resulting integral will be larger or
equal to the original one.

Ã−,2 ≤ κ

κs

∫∫

D2

dθ′dθ′′

θ′

κs/κ0∫

0

dx
κs/κ0∫

0

dy
xγ−3yγ−2

1 + xy(θ′ − θ′′)

=
κ

κs
(κs/κ0)

2γ−3
∫∫

D2

dθ′dθ′′

θ′

(
Φ

[
− κ2

s

κ2
0
(θ′ − θ′′), 1, γ − 2

]
− Φ

[
− κ2

s

κ2
0
(θ′ − θ′′), 1, γ − 1

])

(A.71)

We know again have the situation that depending on the values of the angular
coordinates, the arguments of the Φ’s diverge or go to zero. For the region
D2s = [b, 2b]× [0, b], θ′ − θ′′ ∈ [0, b], so the argument lies between zero and one.
For the region D2l = [2b, π]× [0, b], θ′ − θ′′ ∈ [b, π], so the argument is larger than
one. We first turn to the second region. Here the argument can diverge and we
should thus perform a similar transformation as Eq. (A.45). It is not exactly the
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same as the second argument of the Φ’s is now 1 and not two 2, but the derivation
is equivalent. This leads us to

κ

κs
(κs/κ0)
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∫∫
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∫∫
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−
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+
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For D2s we can immediately bound away the Φ to find

κ
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(κs/κ0)
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2γ−5 ln 2 ∼ Nγ−3 (ln N)γ−3 . (A.73)

Combining the two results we find that Ã−,2 ≤ c̃−,2Nγ−3 (ln N)γ−3 as expected.
Then we investigate to D3:

Ã−,3 =
∫∫

dxdy(xy)−γ
∫∫
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dθ′dθ′′
1
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1
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s π
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Here Li2(z) is the dilogarithm. The final region to be studied is D4:
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∫∫
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. (A.75)

Let us investigate the term with the logarithm first.
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. (A.76)

This can then be evaluated. The θ′′ integral leads to a variety of different terms,
which need to be treated separately. Some variable transformations need to be
performed, and some special functions need to be expanded to their series rep-
resentation. It can be shown that the integral to leading order is constant in N,
implying that the logarithm term of Ã−,4 scales as κ

2(γ−3)
s . The other two terms in

expression (A.75) are easier to evaluate:
∫∫
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dθ′dθ′′
1

θ′θ′′
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{
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2
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γ − 2
∼
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(A.77)

∫∫

D4

dθ′dθ′′
1
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2 ln
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b
− 2 ln

(
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π
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s
κ2

0
. (A.78)
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Plugging this back in we find that also the integral over the region D4 scales as
Nγ−3(ln N)γ−3.

Thus, we can finally conclude that for β = 1, the clustering coefficient must
scale as

c ∼ Nγ−3(ln N)γ−3

Nγ−3(ln N)γ−1 = (ln N)−2. (A.79)

With this we have found the critical exponent η/ν = 2.

a.2.4 Exponent η

In this section we show that the scaling exponent η that encodes how the clustering
approaches zero when β → β+

c = 1. As this only requires working on the low
temperature side of the transition, we can directly work in the thermodynamic
limit (we thus take first the limit N → ∞ and then β → 1). To this end, we
denote the general definition of the clustering coefficient with hidden degree κ
and (without loss of generality) spacial coordinate r = 0

c(κ) =

∞∫
κ0

dκ′
∞∫

κ0

dκ′′
∞∫

−∞
dr′

∞∫
−∞

dr′′ρ(κ′)ρ(κ′′)p(κ, κ′, |r′|)p(κ, κ′′, |r′′|)p(κ′, κ′′, |r′ − r′′|)
(

∞∫
κ0

dκ′
∞∫

−∞
dr′ρ(κ′)p(κ, κ′, |r′|)

)2 .

(A.80)

where we can use connection probability (4.26) and µ̂ (4.20).
Let us first turn to the denominator:

∫
dκ′ρ(κ′)

∞∫

−∞

dr′

1 +
(

r′
κκ′ µ̂

)β
= κ, (A.81)

where we have plugged in the definition of µ̂ and used that ⟨k⟩ = γ−1
γ−2 κ0.

The next step is the numerator. We first perform the transformation t = r′/(κκ′µ̂)
and τ = r′′/(κκ′′µ̂) to obtain

c(κ) =
µ̂2

4
(γ − 1)2κ

2γ−2
0

∫∫∫∫ dκ′dκ′′dtdτ

1 + |t|β
(κ′κ′′)1−γ

1 + |τ|β
1

1 +
∣∣ κt

κ′′ − κτ
κ′
∣∣β

. (A.82)

We know that µ̂2 ∼ (β − 1)2. This is exactly the scaling that we expect from
numerical investigation for the clustering coefficient. Thus, all we need to prove
is that at β = 1, the numerator is finite. If so, its (β − 1) dependence must be
order O(1). If the full expression contained (β − 1)−n terms with n > 0 it would
diverge at the critical point and if the dominant term was O((β − 1)n) with n > 0
the numerator would go to zero at the critical point. And indeed, numerical
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integration shows that at β = 1 the numerator is finite, leading to the conclusion
that

c(κ) ∼ (β − 1)2 (A.83)

such that η = 2, which in turn implies that ν = 1.
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A P P E N D I X T O C H A P T E R 7

b.1 self similarity of the degree distribution in the S1

b.1.1 The hidden degree distribution

The goal of this section is to find the degree distribution at the r’th level of
renormalization. We start by studying the hidden degree distribution, assuming
that in the original network the distribution is given by

ρ(κ) = N κ−γ, κ0 ≤ κ ≤ κc, (B.1)

where N is the normalization constant. To obtain the distribution after renor-
malization we use Eq. (7.5). Note that we change our method slightly from this
point onward. Instead of looking at the l’th layer of the iterative normalization
procedure where each supernode is constructed with r nodes, we now study only
a single normalization step. Note however that, due to the semi-group property,
these two approaches are equivalent as l steps of size r can always be replaced by
a single step of size rl . We first find the distribution ρ̃(κ̃), where κ̃ = κmax(1,β):

ρ̃(κ̃) = Ñ κ̃−η , κ̃0 ≤ κ̃ ≤ κ̃c, (B.2)

where we have defined Ñ = N/ max(1, β), κ̃0 = κ
max(1,β)
0 , κ̃c = κ

max(1,β)
c and

η = 1 + (γ − 1)/ max(1, β). The next step is to find the distribution ρ̃r(z̃) where
z̃ = ∑r

i=1 κ̃i. We first state the result and follow with the proof:

ρ̃r(z̃) =
r

∑
n=1

∞

∑
q=1

cn,q z̃n(1−η)−q1[rκ̃0,κ̃c+(r−1)κ̃0]
(z̃), (B.3)

where cn,l are constants and 1[a,b](z) denotes the indicator function, which evalu-
ates to 1 when z ∈ [a, b] and 0 otherwise. To obtain the distribution of the hidden
degrees z in the renormalized layer, we use the fact that z = z̃1/ max(1,β), which
leads to

ρr(z) = max(1, β)ρ̃r(zmax(1,β))zmax(1,β)−1. (B.4)

Note that for z̃ ≫ 1, the dominant scaling in Eq.(B.3) is z̃−η (n = 1, q = 1). Plugging
this into Eq.(B.4) proves that the distribution ρr(z) scales as z−γ, which in turn
demonstrates the self-similarity of the scaling behavior of the hidden degree
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distribution under renormalization. Note that the cut-off in the renormalized layer
is given by (κ̃c + (r − 1)κ̃0)

1/ max(1,β), which is approximately κc if κ̃c ≫ (r − 1)κ̃0.
We now prove Eq. (B.3) using induction. First, for r = 2, we know that the

distribution ρ̃2(z̃), where z̃ = κ̃1 + κ̃2, is given by the convolution

ρ̃2(z̃) =
∫ ∞

−∞
dκ̃ρ̃(z̃ − κ̃)ρ̃(κ̃). (B.5)

Taking into account the support of ρ̃(κ̃) we can conclude that κ̃0 ≤ z̃ − κ̃ ≤ κ̃c and
κ̃0 ≤ κ̃ ≤ κ̃c. We then rewrite Eq. B.5 as

ρ̃2(z̃) =
Ñ 2

z̃2γ−1

[(
B

1− κ̃0
z̃

[
1 − η

1 − η

]
− B κ̃0

z̃

[
1 − η

1 − η

])
1[2κ̃0,κ̃c+κ̃0]

(z̃)

+

(
B κ̃c

z̃

[
1 − η

1 − η

]
− B1− κ̃c

z̃

[
1 − η

1 − η

])
1[κ̃0+κ̃c ,2κ̃c ](z̃)

]
. (B.6)

Here, Ba

[
b

c

]
represents the incomplete beta function. We then note that this

function can be expanded as

B1−x

[
a

b

]
=

π csc (bπ)

a

(
∞

∑
n=0

a(n)
n!

(−x)n

)
×
(

Γ(1 + a)
Γ(a + b)

∞

∑
q=0

[
(b − 1)(q)(−a)(q)

q!Γ(1 − b + q)
xl

]

− axb

Γ(1 − b)

∞

∑
q=0

[
(−a − b)(q)

q!Γ(1 + b + q)
(−x)q

])
(B.7)

Bx

[
a

b

]
= xa

∞

∑
n=0

(1 − b)(n)
n!(a + n)

xn (B.8)

when x → 0, where the y(n) represent the falling factorials: y(n) = y(y − 1)(y −
2)...(y − n + 1). In the case that z̃ ∈ [2κ̃0, κ̃c + κ̃0], z̃/κ̃0 ≪ 1 in the tail of the
distribution. Thus, we can apply the expansions given above and show that the
dominant scaling in this regime is ρ̃2(z̃) ∼ z̃−η and that the full behavior is given
by Eq. (B.3). Crossing over to the regime z̃ ∈ [κ̃0 + κ̃c, 2κ̃c], we get that 1− κ̃c/z̃ ≪ 1,
as least close to the transition. Using once again the series expansions of the beta
functions we obtain that ρ̃2(z) ∼ (1 − κ̃c/z̃)1−η . This falls of hyperbolically and so
we can take the probability density to be zero here. Therefore, we prove Eq. (B.3)
for r = 2.

Now, assuming that Eq. (B.3) is true for some general r, let us investigate the
case for r + 1. In this case, we start with the convolution

ρ̃r+1(z̃) =
∫ z̃−κ̃0

rκ̃0

dκ̃ρ1(z̃ − κ̃)ρr(κ̃)1[(r+1)κ̃0,κ̃c+rκ̃0]
(z̃)

+
∫ κ̃c+(r−1)κ̃0

z̃−κ̃c
dκ̃ρ̃1(z̃ − κ̃)ρ̃r(κ̃)1[κ̃c+rκ̃0,2κ̃c+(r−1)κ̃0]

(z̃), (B.9)
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where have taken into account the respective domains of the two functions ρ̃1
and ρ̃r. The fact that ρ̃r(z̃) can be expanded into a sum of terms g̃r(z̃; α) ∼ z̃−α,
where α ≥ η, implies that ρ̃r+1(z̃) can be expanded into a sum of integrals Ĩ(z̃; α)
evaluating to

Ĩ(z̃; α)= Ñ r z̃1−η−α

[(
B1− κ̃0

z̃

[
1 − α

1 − η

]
− B rκ̃0

z̃

[
1 − α

1 − η

])
1[(r+1)κ̃0,κ̃c+rκ̃0]

+

(
B κ̃c+(r−1)κ̃0

z̃

[
1 − α

1 − η

]
−B1− κ̃c

z̃

[
1 − α

1 − η

])
1[κ̃c+rκ̃0,2κ̃c+(r−1)κ̃0]

]
. (B.10)

Using the same arguments as before, we can show that ∀α the integral falls off
hyperbolically in the second region. When z̃ ∈ [(r + 1)κ̃0, κ̃c + rκ̃0], it can be shown
that the expression can be rewritten in the form of Eq. (B.3), where the dominant
scaling for large z̃ is once again ∼ z̃−η . With this we conclude the proof.

Note that this proof is contingent on some assumptions, most notably that
rκ̃0 ≪ κ̃c. Of course, for finite κ̃c, there is always an r for which this assumption
breaks down. This has to do with the central limit theorem: For a finite cut-off
κ̃c, the variance of the distribution ρ̃(κ̃) is also finite, and thus the distribution
ρ̃r(z̃) necessarily approaches a Gaussian as r → ∞. In the case of the model we in
general assume that κ̃c = κ̃0Nmax(1,β)/(γ−1), which is very large for the network
sizes we typically work with, and so one can perform several renormalization
steps before one ‘feels’ the effect of the cut-off.

b.1.2 The degree distribution

In Sec. 3.3.4 it was noted that the degree distribution is related to the distribution
of hidden degrees by

Pr(k) =
1
k!

∫
dzρ(z)k(z)ke−k(z), (B.11)

where k(κ) is the expected degree of a node with hidden degree κ [141]. In the
unrenormalized layer one can show that k(κ) = κ when µ̂ is chosen correctly.
For this to be true for in the renormalized layer, however, one would need that
⟨κr⟩ = ⟨kr⟩, which is not generally the case as the scaling exponents determining
the flow of these two quantities, ξ and ν, are not always equal. Using Eq. (7.9) and
ξ = (ν + 1)/2, one obtains that

kr(κr) = r(ν−1)/2κr (B.12)

We now note that we do not know the exact functional form of ρr(κ), at least not
for β > 1. To be able to plug in Eq. (B.3), we first need to transform (B.11). It can
be shown that this integral is equivalent to

Pr(k) =
1
k!

∫ κ̃c+(r−1)κ̃0

rκ̃0

dz̃
rk(ν−1)/2ρ̃r(z̃)z̃

k
max(1,β)

exp
(
r(ν−1)/2z̃

1
max(1,β)

) . (B.13)
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Then, combining the previous result with Eq. (B.3) and Eq. (B.11) one obtains

Pr(k) =
r

∑
n=1

∞

∑
q=1

cn,qrk ν−1
2

k!

∫ κ̃c+(r−1)κ̃0

rκ̃0

dz̃
z̃n(1−η)−q+k/ max(1,β)

exp
(

r
ν−1

2 z̃1/ max(1,β)
)

=
r

∑
n=1

∞

∑
q=1

cn,l max(1, β)r
α(ν−1)

2

k!

[
Γ
(

α + k, r
ν−1

2 +1/ max(1,β)κ0

)

+ Γ
(

α + k, r
ν−1

2 (κ̃c + (r − 1)κ̃0)
1/ max(1,β)

) ]
, (B.14)

where α = max(1, β)(1 − q) + n(1 − γ). When k ≫ (κ̃c + (r − 1)κ̃0)
1/ max(1,β), the

two gamma functions cancel, meaning that the probability density vanishes. When
r1/ max(1,β)κ0 ≪ k ≤ (κ̃c + (r − 1)κ̃0)

1/ max(1,β), the first term scales as k−γ, whereas
the second term falls off exponentially. This implies that the scaling behavior of
the tail of the distribution is preserved under renormalization. Note that once
again for large κc the cut-off does not evolve under renormalization.
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c.1 empirical network description

In this section we give an overview of the networks studied in Chapter 8 (Tab. 8.1).

• Foodweb–Eocene [234]: A reconstructed food web of an ecosystem from
the early Eocene (48 million years ago). Nodes represent taxa and edges
represent consumer-resource relations. The original network was directed.

• Foodweb–Wetland [330]: A network of carbon exchanges among species
in the cypress wetlands of South Florida. Nodes represent taxa and edges
represent consumer-resource relations. The original network was directed.

• WordAdjacency–English [331]: A network of word adjacency in English
texts. Nodes represent words and two words are connected if one directly
follows the other in texts. The original network was directed.

• WordAdjacency–Japanese [331]: A network of word adjacency in Japanese
texts. Nodes represent words and two words are connected if one directly
follows the other in texts. The original network was directed.

• MB–R.norvegicus [332]: A metabolic network of the rat (Ratus norvegicus),
extracted from the Kyoto Encyclopedia of Genes and Genomes (KEGG).
Nodes represent substances involved in enzymatic reactions and edges
represent reactant-product pairs.

• WikiTalk–Catalan [333]: A network where nodes represents Wikipedia edi-
tors for a certain language (in this case Catalan), and where user i and j are
connected if i leaves a message on the talk page of j. The original network
was directed.

• GI–S.cerevisiae [334]: A network based on the Molecular Interaction Search
Tool (MIST) for baker’s yeast (Saccharomyces cerevisiae). Here node repre-
sent genes and the edges indicate that the effects of mutations in one gene
can be modified by mutations of another gene.

• GMP–C.elegans [335]: A multiplex network representing different types of
genetic interactions for the nematode worm Caenorhabditis elegans. The
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layers represent physical, association, co-localization, direct, suppressive
and additive interactions. In this chapter we create a monolayer network by
treating the different interaction types equally and removing repeated links.
The original network was directed.

• Gnutella [336]: A snapshot of the Gnutella peer-to-peer file sharing network
on August 4th 2002. Nodes are hosts and edges are connections between
them. The original network was directed.

• PPI–S.cerevisiae [334]: A network based on the Molecular Interaction Search
Tool (MIST) for baker’s yeast (Saccharomyces cerevisiae). Here node repre-
sent genes and the edges indicate that there are physical interactions between
their associated proteins.

• PPI–D.melanogaster [334]: A network based on the Molecular Interaction
Search Tool (MIST) for the fruit fly (Drosophila melanogaster). Here node
represent genes and the edges indicate that there are physical interactions
between their associated proteins.

• Transport–London [337]: An multiplex network of the public transporta-
tion system in London. Nodes are London train stations and the links can
represent either the underground, overground and DLR connections. There
connections are treated equally as to create a mono-layer network.

• GMP–S.cerevisiae [335]: A multiplex network representing different types
of genetic interactions for baker’s yeast (Saccharomyces cerevisiae). The
layers represent physical, association, co-localization, direct, suppressive
and additive interactions. In this chapter we create a monolayer network by
treating the different interaction types equally and removing repeated links.
The original network was directed.

• Internet-PoP [338]: The Kentucky Datalink network, an internet graph at the
Point of Presence (PoP) level. Nodes are physical network interface points
and links physical connections between them.

• PPI–H.sapiens [334]: A network based on the Molecular Interaction Search
Tool (MIST) for humans (Homo sapiens). Here node represent genes and the
edges indicate that there are physical interactions between their associated
proteins.

• WikiVote [339]: The network represents the voting process used to select
Wikipedia administrators, which are contributors with access to additional
technical features. Nodes represents Wikipedia users and an edge is created
if user i votes on the selections of user j. The original network was directed.

• MathOverflow [340]: An interaction network of users (nodes) on the online
Q&A site MathOverflow. An edge from node i to node j indicates that i
responded to an answer by j. The original network was directed.
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d.1 statistical properties of the mutual network ensemble

In this section we derive the scaling behavior of the results presented in Sec. 9.3.
We start by noting that, because we are working with perfect correlations between
the layers, we can work with the density of states derived in Sec. 5.1. Conveniently,
as we are working in the homogeneous regime, this quantity takes the form

ρ(ϵ) =
2
N

eϵΘ(ϵmax − ϵ), (D.1)

where ϵmax = ln (N/2) and where we have used the definition ϵ = ln(dij) as
presented in Sec. 4.2.1. Note that this also requires us to use the definitions Eq. 4.14

and 4.13 for µ.
In the following, we assume that β1 ≤ β2 and that µ1 ≤ µ2. The opposite case,

where β1 ≤ β2 but µ1 > µ2 leads to qualitatively similar results.

d.1.1 The amount of particles

Starting from Eq. (9.13) and plugging in p̃′ij as defined in Eq. (9.21) for L = 2 we
obtain

⟨M̃⟩ ≃ N
∫ µ1

−∞
dϵeϵ + N

∫ µ2

µ1

dϵeϵe−β1(ϵ−µ1) + N
∫ ϵmax

µ2

dϵeϵe−β1(ϵ−µ1)e−β2(ϵ−µ2)

= N
(

β1
β1 − 1

eµ1 +
β2

(1 − β1)(β̃ − 1)
e(1−β2)µ2+β1µ1 +

1
1 − β̃

e(1−β̃)ϵmax+β1µ1+β2µ2

)
.

(D.2)
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d.1.2 Entropy

We now start from Eq. (9.22) and plug in p̃′ij and q̃′ij for L = 2. This leads to

S̃ ≃ −N
∫ µ1

−∞
dϵeϵeβ1(ϵ−µ1)β1(ϵ − µ1) + N

∫ µ2

µ1

dϵeϵe−β1(ϵ−µ1)β1(ϵ − µ1)

+ N
∫ ϵmax

µ2

dϵeϵe−β1(ϵ−µ1)e−β2(ϵ−µ2) (β1(ϵ − µ1) + β2(ϵ − µ2))

= N
(

ξ1eµ1 + ξ2eµ2(1−β1)+β1µ1 + ξ3e(1−β1−β2)ϵmax+β1µ1+β2µ2

)
, (D.3)

where ξ1, ξ2 and ξ3 depend at most linearly on µ1, µ2 and ϵmax, which in turn all
scale at most logarithmically with N. Any power law scaling must therefore result
from the exponential contributions to the three terms. However, we see that these
are all the same as in Eq. (D.2), which means that they divide out when looking at
the entropy per link s̃ = S̃/⟨M̃⟩. Indeed, we obtain

s̃ ≃





2(1+β2
1)

(1+β1)2
1

β1−1 if 1 ≤ β1 ≤ β2

β1(µ2 − µ1) +
β1 β̃−1

(1−β1)(1−β̃)
if 1 − β2 ≤ β1 ≤ 1

β̃ϵmax + β1µ1 + β2µ2 +
β̃

β̃−1
if β1 + β2 ≤ 1

(D.4)

In β1 = β2 ≡ β and µ1 = µ2 ≡ µ this reduces to

s̃ ≃





3(1+2β2)
2(1+β)2

1
2β−1 if 1/2 < β

2β
(

ϵmax +
1

2β−1 + µ
)

if β < 1/2
(D.5)

d.2 homogeneous multiplexes with perfect coordinate correla-
tions

In this section we study the scaling behaviors of the average mutual degree and
clustering coefficients for L sparse, homogeneous, perfectly correlated layers with
general {βl}L

l=1 and {⟨k⟩(l)}L
l=1.

d.2.1 The average amount of particles

In the setting detailed above, Eq. (9.13) reduces to

⟨M̃⟩ = N2

2π

∫ π

0
dθ

L

∏
i=1

1
1 + (ζiθ)βi

. (D.6)

Without loss of generality, we now assume that ζ1 ≥ ζ2 ≥ ... ≥ ζL. Note that
we want to have sparse individual layers such that ζi = N/(2πµ(i)⟨k(i)⟩2) ∼
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Nmax(1,1/βi). This implies that β1 ≤ β2 ≤ ... ≤ βL when N ≫ 1. This allows us to
split the integral in L + 1 intervals

⟨M̃⟩ = N2

2π

L+1

∑
j=1

Ij, (D.7)

where

Ij =
∫ ζ−1

j

ζ−1
j−1

dθ
L

∏
i=1

1
1 + (ζiθ)βi

(D.8)

and where we have defined ζ−1
0 = 0 and ζ−1

L+1 = π. We can now find the upper
and lower bound of each Ij separately. We start with the lower bound:

Ij ≥
∫ ζ−1

j

ζ−1
j−1

dθ min
θ

(
L

∏
i=1

1
1 + (ζiθ)

βi

)
=
(

ζ−1
j − ζ−1

j−1

) L

∏
i=1

1
1 + (ζi/ζ j)

βi

≃ ζ−1
j

j−1

∏
i=1

(
ζi
ζ j

)−βi

. (D.9)

Here we make use of the fact that ζ j−1 ≥ ζ j so ζ−1
j−1 ≤ ζ−1

j . Furthermore, the
fraction ζi/ζ j is large only for i < j, and will thus only then show up in the Taylor
expansion. Otherwise the fraction can just be approximated as 1. For the upper
bound we will use the fact that 1 ≥ 1/(1+ x) and 1 ≥ 1/x. Now, we want to make
as tight a bound as possible, so when 1 ≥ 1/x we take 1/x and when 1 ≤ 1/x we
take 1. We thus only have a contribution to the integrand when x ≥ 1. In our case
this implies ζiθ ≥ 1. This is the case for the entire integration range only when
i ≤ j − 1. Thus, we can write the upper bound as

Ij ≤
∫ ζ−1

j

ζ−1
j−1

dθ
j−1

∏
i=1

(ζiθ)
−βi =

ζ−1
j ∏

j−1
i=1

(
ζi
ζ j

)−βi − ζ−1
j−1 ∏

j−1
i=1

(
ζi

ζ j−1

)−βi

1 − ∑
j−1
i=1 βi

. (D.10)

The product in the second term in the numerator can be taken instead to j − 2
because the j − 1 term just evaluates to one. Then, one sees that both terms are
equivalent (ignoring prefactors) if for the second term one perform j − 1 → j.
Thus, when summing over Ij, the second contribution will already come from the
Ij−1 integral. We are left with

∑
j


ζ−1

j

j−1

∏
i=1

(
ζi
ζ j

)−βi

 ≤ ∑

j
Ij ≤ ∑

j


ζ−1

j

j−1

∏
i=1

(
ζi
ζ j

)−βi

 . (D.11)

We have then proven that

⟨M̃⟩ ∼ N2

2π

L+1

∑
j=1


ζ−1

j

j−1

∏
i=1

(
ζi
ζ j

)−βi

 ∼ Nmaxj(σj). (D.12)
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Now, the question is to find out for which σj dominates. Let us ask study σj and
σj−1. The difference between these two exponents is given by

σj − σj−1 =

(
max

(
1,

1
β j

)
− max

(
1,

1
β j−1

))(
j−1

∑
i=1

βi − 1

)
. (D.13)

Now, we know that ζ j−1 ≥ ζ j, which implies that β j−1 ≤ β j. This means that(
max

(
1, 1

β j

)
− max

(
1, 1

β j−1

))
≤ 0 and so

σj ≥ σj−1 if
j−1

∑
i=1

βi ≤ 1. (D.14)

Thus, the largest exponent is given by the j that satisfies

1 − β j ≤
j−1

∑
i=1

βi ≤ 1, (D.15)

in which case

σj = 2 +
j−1

∑
i=1

βi

(
max

(
1,

1
β j

)
− max

(
1,

1
βi

))
− max

(
1,

1
β j

)
. (D.16)

Of course, this is the scaling exponent for the average amount of links. If we want
to see how the average mutual degree scales we need to subtract this quantity by
1. When L = 2 this leads to

σ =





0 if 1 < β1 < β2,

β1 − 1 if 1 − β2 < β1 < 1, β2 > 1,

(β1 − 1)/β2 if 1 − β2 < β1 < 1, β2 < 1,

−1 if β1 + β2 < 1,

(D.17)

exactly what was found in Fig. 9.2b and equivalent to the results obtained in
Sec. D.1.1.

d.2.2 Clustering coefficient

We start from Eq. (9.25), where we define

t̃ ≡
∫ π

0
dθ′

∫ θ′

0
dθ′′

L

∏
i=1

f (θ′, θ′′), (D.18)

with
f (θ′, θ′′) =

1
1 + (ζiθ′)βi

1
1 + (ζiθ′′)βi

1
1 + (ζi(θ′ − θ′′))βi

(D.19)
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such that c̃ =
(

N
π

)2
t̃/⟨k̃⟩2. We then once again assume that ζ1 ≥ ζ2 ≥ ... ≥ ζm,

and split the θ′ prime integral accordingly:

t(m)
=

L+1

∑
j=1

Ij, (D.20)

where

Ij =
∫ ζ−1

j

ζ−1
j−1

dθ′
∫ θ′

0
dθ′′

L

∏
i=1

f (θ′, θ′′). (D.21)

We can then find the upper and lower bound for each integral using the same
logic as before. For the lower bound we have

Ij ≥
∫ ζ−1

j

ζ−1
j−1

dθ′
∫ θ′

0
dθ′′ min

θ′ ,θ′′

(
L

∏
i=1

f (θ′, θ′′)

)

=
1
2

(
ζ−2

j − ζ−2
j−1

) L

∏
i=1

f (ζ−1
j , ζ−1

j /2) ∼ ζ−2
j

j−1

∏
i=1

(
ζi
ζ j

)−3βi

, (D.22)

where we again use that ζi/ζ j > 1 if i < j − 1. For the upper bound we need to
take some care. Naively, one starts as follows

Ij ≤
∫ ζ−1

j

ζ−1
j−1

dθ′
∫ θ′

0
dθ′′

j−1

∏
i=1

(ζ3
i θ′θ′′(θ′ − θ′′))−βi

=
Γ(1 − aj)

2

(2 − 3aj)Γ(2 − 2aj)


ζ−2

j

j−1

∏
i=1

(
ζi
ζ j

)−3βi

− ζ−2
j−1

j−1

∏
i=1

(
ζi

ζ j−1

)−3βi

 , (D.23)

where we have defined aj = ∑
j−1
i=1 βi and where we again see that the second term

is just the first for j → j − 1. However, this integral is only defined for aj < 1. We

can thus only use this upper bound for j such that ∑
j−1
i=1 βi < 1. For higher j we

make a looser upper bound

Ij ≤
∫ ζ−1

j

ζ−1
j−1

dθ′
∫ θ′

0
dθ′′

ξ−1

∏
i=1

(ζ3
i θ′θ′′(θ′ − θ′′))−βi , (D.24)

where ξ is chosen such that ∑ξ−1
i=1 βi < 1 and ∑ξ

i=1 βi ≥ 1. This integral can then be
evaluated as before. However, the upper and lower bound do no longer match for
j > ξ. This is not a problem as we will later show that other terms in the series will
dominate even this upper bound, which means that the terms j > ξ will always be
sub-leading. Summarizing, we have found that

ξ

∑
j=1

Ij ∼
ξ

∑
j=1

ζ−2
j

j−1

∏
i=1

(
ζi
ζ j

)−3βi

=
ξ

∑
j=1

Nσj , (D.25)
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and

Ij ≤
Γ(1 − aξ)

2

(2 − 3aξ)Γ(2 − 2aξ)


ζ−2

j

ξ−1

∏
i=1

(
ζi
ζ j

)−3βi

− ζ−2
j−1

ξ−1

∏
i=1

(
ζi

ζ j−1

)−3βi



∼ Nmax(σ̃j ,σ̃j−1) if j > ξ. (D.26)

First we find which of the σj with j ≤ ξ dominates. We again look at two consecu-
tive exponents:

σj − σj−1 =

(
max

(
1,

1
β j

)
− max

(
1,

1
β j−1

))(
3

j−1

∑
i=1

βi − 2

)
. (D.27)

Because ζ j−1 ≥ ζ j we have that σj ≥ σj−1 when ∑
j−1
i=1 βi ≤ 2

3 . The dominant σj is
given by the j that satisfies

2
3
− β j ≤

j−1

∑
i=1

βi ≤
2
3

, (D.28)

in which case the scaling is given by

σj = 3
j−1

∑
i=1

βi

(
max

(
1,

1
β j

)
− max

(
1,

1
βi

))
− 2 max

(
1,

1
β j

)
. (D.29)

For j > ξ we have

σ̃j − σ̃j−1 =

(
max

(
1,

1
β j

)
− max

(
1,

1
β j−1

))(
3

ξ−1

∑
i=1

βi − 2

)
. (D.30)

Again, σ̃j ≥ σ̃j−1 when ∑ξ−1
i=1 βi ≤ 2

3 . By definition of ξ we also know that ∑ξ
i=1 βi ≥

1. This can only be true if j = ξ, which does not satisfy j > ξ. Thus, we know that
σ̃j−1 > σ̃j for all j > ξ. The largest exponent is then given by the term Iξ+1 ∼ Nσ̃ξ .
However, σ̃ξ = σξ which is the scaling of Iξ for which we know the exact scaling,
not just an upper bound. The upper bounds on Ij for j > ξ, and therefore also the
integrals themselves, are therefore all sub-leading to Iξ .

We can thus conclude that Eq. (D.29) is the scaling of t̃. To obtain the scaling of
the average local clustering coefficient c̃ = (N/π)2 t̃/⟨k̃⟩2 we use that the scaling
exponents are related as follows

σ
(c)
i,j = 2 + σ

(t)
i − 2σ

(k)
j . (D.31)
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Now, i and j are not necessarily the same. However, we can assume that i ≤ j. This
is because the condition given in Eq. (D.15) is weaker than that given in Eq. (D.28).
This then allows us to write σ

(c)
i,j as

σ
(c)
i,j =

i−1

∑
l=1

βl

(
3 max

(
1,

1
βi

)
− 2 max

(
1,

1
β j

)
− max

(
1,

1
βl

))

+ 2
j−1

∑
l=i

βl

(
max

(
1,

1
βl

)
− max

(
1,

1
β j

))

− 2

(
max

(
1,

1
βi

)
− max

(
1,

1
β j

))
. (D.32)

Note that the second sum starts at l = i, not l = 1. A certain σ
(c)
i,j dominates when

2
3
− βi ≤

i−1

∑
l=1

βl ≤
2
3

and 1 − β j ≤
j−1

∑
l=1

βl ≤ 1. (D.33)

In words this is equivalent to saying: The dominant scaling σ
(c)
i,j is given when the

sum of the smallest i − 1 β’s is smaller than 2/3 but where adding one more β
makes the sum larger than 2/3. Simultaneously, the sum of the smallest j − 1 β’s
is smaller than 1 but adding the j’th β to the sum will make it larger than 1.

One notices that if β1 = β2 = ... = βi = ... = β j all β′s that appear in Eq. (D.32)

are equal, which leads to σ
(c)
i,j being zero. Thus, for a multiplex with L layers, we

have several manifolds in parameter space where the clustering is constant. These
are given by

1/2 ≤ β1 = β2 < β3 ≤ ... ≤ βL,

1/3 ≤ β1 = β2 = β3 < β4 ≤ ... ≤ βL,
...

1/L ≤ β1 = β2 = ... = βL. (D.34)

d.3 empirical multiplex descriptions

In this section we give a brief description of the real multiplexes used in Chapter 9.6

• GMP–Yeast [335]: A multiplex network representing different types of ge-
netic interactions for Schizosaccharomyces pombe, also known as fission
yeast. The layers represent (i) physical, (ii) association, (iii) co-localization,
(iv) direct, (v) suppressive and (vi) additive interactions. Here the mutual
network is created from the additive (layer 1) and direct (layer 2) interactions.
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• arXiv [341]: A multiplex coauthership network of all researchers who pub-
lished preprints on arXiv.org before May 2014. Differt layers represent dif-
ferent categories of publication. In this chapter the mutual network is cre-
ated from the tags “Computer Science - Social and Information Networks
(cs:SI)" for layer 1 and “Physics - Data Analysis, Statistics and Probability
(physics.data-an)" for layer 2.

• Trade [342]: In this multiplex, nodes represent countries and edges different
types of trade relations, where the data is obtained from the FAO (Food and
Agriculture Organization of the United Nations). Here we focus on crude
materials (layer 1) and food preparation necessities (layer 2).

• Twitter [343]: A twitter data set from the 2013 World Championships in
Athletics held in Moscow. Here, nodes are users and edges represent retweets,
mentions and replies. Here we focus on mentions (layer 1) and retweets (layer
2).

• GMP–Human [335]: A multiplex network representing different types of
genetic interactions for humans. The layers represent (i) physical, (ii) as-
sociation, (iii) co-localization, (iv) direct, (v) suppressive and (vi) additive
interactions. Here the mutual network is created from the association (layer
1) and physical (layer 2) interactions.
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e.1 empirical network descriptions and properties

In the following section we elaborate on the properties of the real networks
considered in Chapter 10.

• CElegans-G [344]: A genetic interaction network for the nematode Caenorhab-
ditis elegans where the nodes represent genes and the links interactions on
the genetic level.

• FriendsOFF [245]: An off-line friendship network among students, created
from a survey where each student was asked to list five male and five female
friends. The nodes are in this case the students and the edges represent these
friendship relations. The original network was directed.

• Human-C [322]: A connectome of the Human brain where nodes repre-
sent small brain regions and the edges represent fibers connecting these
regions based on white matter tractography, which is a method used to
estimate axonal bundle trajectories. In this network both hemispheres are
incorporated.

• Malaria-G [345]: The network of recombinant antigen genes from the human
Malaria parasite Plasmodium falciparum, where nodes are var genes encod-
ing for an antigen protein expressed on the surface of the infected red blood
cell. These var genes are capable of interchanging bits of genetic information,
thus creating a vast amount of slightly different genes that in turn create
highly varying antigens that are hard for the human immune system to
detect. Two nodes are connected if they share a substring of nucleotides of
significant length, indicating that an interchange of genetic material between
the two nodes has taken place.

• Mouse-C [346]: A connectome of the mouse brain where nodes represent
anatomical subregions of the brain and the edges the physical connections
between them. The original network was directed.

• WTW-2013 [53, 347, 348]: The world trade web as of 2013, where nodes
represent countries and edges trade relations.

Tab. E.1 shows the network properties of these networks.
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Table E.1: Properties of the six real networks studied in Figs. 10.1, 10.12 and 10.13. The
parameter r̂ gives the percentage of eigenvectors classified as periodic by the
procedure described in Sec.. The notation ∗∗ implies that the results are significant
with p = 0.01.

Network N ⟨k⟩ β kmax r̂

CElegans-G 878 7.2 2.6 151 5.9%∗∗

FriendsOFF 2539 8.2 1.3 27 4.4%∗∗

Human-C 989 36.1 2.3 97 7.5%∗∗

Malaria-G 307 18.3 2.9 49 3.9%∗∗

Mouse-C 213 27.9 2.0 85 2.3%∗∗

WTW 2013 189 5.8 1.9 110 5.8%∗∗
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[131] P. Erdős and L. B. Richmond, On graphical partitions, Combinatorica 13,
57–63 (1993).

[132] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B.
Rubin, Bayesian data analysis, 3rd ed. (Chapman & Hall, 2013).

[133] P. van der Hoorn, G. Lippner, and D. Krioukov, Sparse maximum-entropy
random graphs with a given power-law degree distribution, Journal of
Statistical Physics 173, 806–844 (2018).

[134] F. Chung and L. Lu, Connected components in random graphs with given
expected degree sequences, Annals of Combinatorics 6, 125–145 (2002).

[135] D. Garlaschelli and M. I. Loffredo, Maximum likelihood: extracting unbi-
ased information from complex networks, Physical Review E 78, 015101

(2008).



bibliography 192

[136] T. Squartini and D. Garlaschelli, Analytical maximum-likelihood method to
detect patterns in real networks, New Journal of Physics 13, 083001 (2011).

[137] G. Bianconi, The entropy of randomized network ensembles, Europhysics
Letters 81, 28005 (2008).

[138] S. Janson, Asymptotic equivalence and contiguity of some random graphs,
Random Structures & Algorithms 36, 26–45 (2010).

[139] B. Bollobás, S. Janson, and O. Riordan, The phase transition in inhomoge-
neous random graphs, Random Structures & Algorithms 31, 3–122 (2007).

[140] G. Caldarelli, A. Capocci, P. D. L. Rios, and M. A. Muñoz, Scale-free
networks from varying vertex intrinsic fitness, Physical Review Letters 89,
258702 (2002).

[141] M. Boguñá and R. Pastor-Satorras, Class of correlated random networks
with hidden variables, Physical Review E 68, 036112 (2003).

[142] K. Anand, D. Krioukov, and G. Bianconi, Entropy distribution and con-
densation in random networks with a given degree distribution, Physical
Review E 89, 062807 (2014).

[143] I. Voitalov, P. van der Hoorn, M. Kitsak, F. Papadopoulos, and D. Krioukov,
Weighted hypersoft configuration model, Physical Review Research 2,
043157 (2020).

[144] P. Colomer-de-Simon and M. Boguñá, Clustering of random scale-free
networks, Physical Review E 86, 026120 (2012).

[145] R. van der Hofstad, A. J. E. M. Janssen, J. S. H. van Leeuwaarden, and
C. Stegehuis, Local clustering in scale-free networks with hidden variables,
Physical Review E 95, 022307 (2017).

[146] M. Penrose, Random geometric graphs (Oxford University Press, 2003).

[147] Q. Duchemin and Y. D. Castro, Random geometric graph: Some recent
developments and perspectives, in High dimensional probability IX, edited by
R. Adamczak, N. Gozlan, K. Lounici, and M. Madiman (2023), pp. 347–392.

[148] J. Dall and M. Christensen, Random geometric graphs, Physical Review E
66, 016121 (2002).

[149] P. Lazarsfeld and R. Merton, Friendship as a social process: a substantive
and methodological analysis, in Freedom and control in modern society, edited
by M. Berger (Van Nostrand, 1954), pp. 18–66.

[150] M. McPherson, L. Smith-Lovin, and J. M. Cook, Birds of a feather: ho-
mophily in social networks, Annual Review of Sociology 27, 415–444 (2001).

[151] K. Börner, J. T. Maru, and R. L. Goldstone, The simultaneous evolution
of author and paper networks, Proceedings of the National Academy of
Sciences 101, 5266–5273 (2004).

[152] F. Menczer, Growing and navigating the small world web by local content,
Proceedings of the National Academy of Sciences 99, 14014–14019 (2002).



bibliography 193

[153] S. Talaga and A. Nowak, Structural measures of similarity and complemen-
tarity in complex networks, Scientific Reports 12, 16580 (2022).

[154] G. Budel and M. Kitsak, Complementarity in complex networks, arXiv:2003.06665,
2023.

[155] J. B. Tenenbaum, V. de Silva, and J. C. Langford, A global geometric
framework for nonlinear dimensionality reduction, Science 290, 2319–2323

(2000).

[156] A. Sarveniazi, An actual survey of dimensionality reduction, American
Journal of Computational Mathematics 04, 55–72 (2014).

[157] W. Jia, M. Sun, J. Lian, and S. Hou, Feature dimensionality reduction: a
review, Complex & Intelligent Systems 8, 2663–2693 (2022).

[158] R. Jankowski, A. Allard, M. Boguñá, and M. Á. Serrano, The D-mercator
method for the multidimensional hyperbolic embedding of real networks,
Nature Communications 14, 7585 (2023).

[159] P. Almagro, M. Boguñá, and M. Á. Serrano, Detecting the ultra low dimen-
sionality of real networks, Nature Communications 13, 6096 (2022).

[160] B. Waxman, Routing of multipoint connections, IEEE Journal on Selected
Areas in Communications 6, 1617–1622 (1988).

[161] D. ben-Avraham, A. F. Rozenfeld, R. Cohen, and S. Havlin, Geographical
embedding of scale-free networks, Physica A: Statistical Mechanics and its
Applications 330, 107–116 (2003).

[162] A. F. Rozenfeld, R. Cohen, D. ben-Avraham, and S. Havlin, Scale-free
networks on lattices, Physical Review Letters 89, 218701 (2002).

[163] M. Boguñá, D. Krioukov, P. Almagro, and M. Á. Serrano, Small worlds and
clustering in spatial networks, Physical Review Research 2, 023040 (2020).

[164] R. de Miguel and J. M. Rubí, Strong coupling and nonextensive thermody-
namics, Entropy 22, 975 (2020).

[165] R. de Miguel and J. M. Rubí, Statistical mechanics at strong coupling: a
bridge between Landsberg’s energy levels and Hill’s nanothermodynamics,
Nanomaterials 10, 2471 (2020).

[166] R. de Miguel, Rayleigh–Schrödinger perturbation theory and nonadditive
thermodynamics, The Journal of Physical Chemistry B 127, 5089–5093

(2023).

[167] O. Shental and I. Kanter, Shannon meets Carnot: Generalized second
thermodynamic law, Europhysics Letters 85, 10006 (2009).

[168] E. W. Elcock and P. T. Landsberg, Temperature dependent energy levels
in statistical mechanics, Proceedings of the Physical Society. Section B 70,
161–168 (1957).

[169] C. B. Cuden, “Temperature dependence of the energy gaps in semi-conductors,”
PhD thesis (University of British Columbia, 1969).



bibliography 194

[170] G. S. Rushbrooke, On the statistical mechanics of assemblies whose energy-
levels depend on the temperature, Transactions of the Faraday Society 36,
1055 (1940).

[171] Y. Varshni, Temperature dependence of the energy gap in semiconductors,
Physica 34, 149–154 (1967).

[172] C. E. P. Villegas, A. R. Rocha, and A. Marini, Anomalous temperature
dependence of the band gap in black phosphorus, Nano Letters 16, 5095–
5101 (2016).

[173] I. Latella, A. Pérez-Madrid, A. Campa, L. Casetti, and S. Ruffo, Thermo-
dynamics of nonadditive systems, Physical Review Letters 114, 230601

(2015).

[174] A. Campa, T. Dauxois, D. Fanelli, and S. Ruffo, Physics of long-range interact-
ing systems (Oxford University Press, 2014).

[175] K. Bringmann, R. Keusch, and J. Lengler, Average distance in a general
class of scale-free networks with underlying geometry, (2016).

[176] K. Bringmann, R. Keusch, and J. Lengler, Geometric inhomogeneous ran-
dom graphs, Theoretical Computer Science 760, 35–54 (2019).

[177] K. Kosmidis, S. Havlin, and A. Bunde, Structural properties of spatially
embedded networks, Europhysics Letters 82, 48005 (2008).

[178] M. Biskup, On the scaling of the chemical distance in long-range percolation
models, The Annals of Probability 32 (2004).

[179] M. Biskup, Graph diameter in long-range percolation, Random Structures
& Algorithms 39, 210–227 (2011).

[180] I. Benjamini and N. Berger, The diameter of long-range percolation clusters
on finite cycles, Random Structures & Algorithms 19, 102–111 (2001).

[181] P. Deprez, R. Hazra, and M. Wüthrich, Inhomogeneous long-range percola-
tion for real-life network modeling, Risks 3, 1–23 (2015).

[182] S. G. Balogh, B. Kovács, and G. Palla, Maximally modular structure of
growing hyperbolic networks, Communications Physics 6, 76 (2023).

[183] J. Chellig, N. Fountoulakis, and F. Skerman, The modularity of random
graphs on the hyperbolic plane, Journal of Complex Networks 10 (2021).

[184] B. Kovács and G. Palla, The inherent community structure of hyperbolic
networks, Scientific Reports 11, 16050 (2021).

[185] D. J. Watts, P. S. Dodds, and M. E. J. Newman, Identity and search in social
networks, Science 296, 1302–1305 (2002).

[186] S. Redner, How popular is your paper? An empirical study of the citation
distribution, The European Physical Journal B - Condensed Matter and
Complex Systems 4, 131–134 (1998).

[187] M. Deijfen, R. van der Hofstad, and G. Hooghiemstra, Scale-free percolation,
Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 49 (2013).



bibliography 195

[188] P. Deprez and M. V. Wüthrich, Scale-free percolation in continuum space,
Communications in Mathematics and Statistics 7, 269–308 (2019).

[189] E. Garuccio, M. Lalli, and D. Garlaschelli, Multiscale network renormal-
ization: Scale-invariance without geometry, Physical Review Research 5,
043101 (2023).

[190] R. Michielan and C. Stegehuis, Cliques in geometric inhomogeneous ran-
dom graphs, Journal of Complex Networks 10 (2021).

[191] J. Komjáthy and B. Lodewijks, Explosion in weighted hyperbolic random
graphs and geometric inhomogeneous random graphs, Stochastic Processes
and their Applications 130, 1309–1367 (2020).

[192] R. van der Hofstad and J. Komjathy, Explosion and distances in scale-free
percolation, (2017).

[193] M. Heydenreich, T. Hulshof, and J. Jorritsma, Structures in supercritical
scale-free percolation, The Annals of Applied Probability 27 (2017).

[194] F. Papadopoulos, R. Aldecoa, and D. Krioukov, Network geometry infer-
ence using common neighbors, Physical Review E 92, 22807 (2015).

[195] Z. Wu, Z. Di, and Y. Fan, An asymmetric popularity-similarity optimization
method for embedding directed networks into hyperbolic space, Complex-
ity 2020, 1–16 (2020).

[196] G. Alanis-Lobato, P. Mier, and M. A. Andrade-Navarro, Efficient embedding
of complex networks to hyperbolic space via their laplacian, Scientific
Reports 6, 30108 (2016).

[197] A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, and C. V. Cannistraci,
Machine learning meets complex networks via coalescent embedding in
the hyperbolic space, Nature Communications 8, 1615 (2017).

[198] M. Belkin and P. Niyogi, Laplacian eigenmaps and spectral techniques
for embedding and clustering, in Advances in neural information processing
systems, Vol. 14, edited by T. Dietterich, S. Becker, and Z. Ghahramani
(2001).

[199] M. D. Ben Chamberlain and J. Clough, Neural embeddings of graphs in
hyperbolic space, in Proceedings of the 13th international workshop on mining
and learning with graphs (mlg) (2017).

[200] D. McDonald and S. He, Heat: Hyperbolic Embedding of Attributed Net-
works, in Intelligent data engineering and automated learning – ideal 2020: 21st
international conference (2020), pp. 28–40.

[201] I. Chami, Z. Ying, C. Ré, and J. Leskovec, Hyperbolic graph convolutional
neural networks, in Advances in neural information processing systems, Vol. 32,
edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,
and R. Garnett (2019).

[202] P. Salomonson and B.-S. Skagerstam, On superdense superstring gases: a
heretic string model approach, Nuclear Physics 268, 349–361 (1986).



bibliography 196

[203] B. Sundborg, Thermodynamics of superstrings at high energy densities,
Nuclear Physics B 254, 583–592 (1985).

[204] H. A. Bethe, An attempt to calculate the number of energy levels of a heavy
nucleus, Physical Review 50, 332–341 (1936).

[205] M. C. J. M. Vissenberg and M. Matters, Theory of the field-effect mobility in
amorphous organic transistors, Physical Review B 57, 12964–12967 (1998).

[206] K. Hart, S. Hart, and J. P. Selvaggi, Modified charge carrier density for or-
ganic semiconductors modeled by an exponential density of states, Journal
of Computational Electronics 20, 259–266 (2021).

[207] F. R. Shapiro and D. Adler, Equilibrium transport in amorphous semicon-
ductors, Journal of Non-Crystalline Solids 74, 189–194 (1985).

[208] W. Broniowski, W. Florkowski, and L. Y. Glozman, Update of the Hagedorn
mass spectrum, Physical Review D 70, 117503 (2004).

[209] R. Hagedorn, Statistical thermodynamics of strong interactions at high
energies, Nuovo Cimento, Suppl. 3, 147–186 (1965).

[210] J. Rafelski, ed., Melting hadrons, boiling quarks - from Hagedorn temperature to
ultra-relativistic heavy-ion collisions at CERN (Springer International Publish-
ing, 2016).

[211] S. Frautschi, Statistical bootstrap model of hadrons, Physical Review D 3,
2821–2834 (1971).

[212] J. Yellin, An explicit solution of the statistical bootstrap, Nuclear Physics B
52, 583–594 (1973).

[213] R. Hagedorn, The long way to the Statistical Bootstrap Model: 1994, in Melt-
ing hadrons, boiling quarks - from Hagedorn temperature to ultra-relativistic heavy-
ion collisions at CERN (Springer International Publishing, 2016), pp. 139–
178.

[214] P. Blanchard, S. Fortunato, and H. Satz, The Hagedorn temperature and
partition thermodynamics, The European Physical Journal C 34, 361–366

(2004).

[215] R. Hagedorn and J. Rafelski, From hadron gas to quark matter 1, in Pro-
ceedings of statistical mechanics of quarks and hadrons (1980), pp. 237–251.

[216] M. Gorenstein, V. Petrov, and G. Zinovjev, Phase transition in the hadron
gas model, Physics Letters B 106, 327–330 (1981).

[217] R. Hagedorn, On the hadronic mass spectrum, in Melting hadrons, boiling
quarks - from Hagedorn temperature to ultra-relativistic heavy-ion collisions at
CERN (Springer International Publishing, 2016), pp. 223–228.

[218] T. L. Hill, Thermodynamics of small systems, parts I & II (Dover, 1994).

[219] P. Hohenberg and A. Krekhov, An introduction to the Ginzburg–Landau
theory of phase transitions and nonequilibrium patterns, Physics Reports
572, 1–42 (2015).



bibliography 197

[220] V. L. Berezinskii, Destruction of long-range order in one-dimensional and
two-dimensional systems having a continuous symmetry group I. classical
systems. Soviet physics, JETP 32, 493–500 (1971).

[221] V. L. Berezinskii, Destruction of long-range order in one-dimensional and
two-dimensional systems possessing a continuous symmetry group. II.
quantum systems. Soviet Physics, JETP 34, 610–616 (1972).

[222] J. M. Kosterlitz, The critical properties of the two-dimensional XY model,
Journal of Physics C: Solid State Physics 7, 1046–1060 (1974).

[223] N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromag-
netism in one- or two-dimensional isotropic heisenberg models, Physical
Review Letters 17, 1133–1136 (1966).

[224] C.-K. Chiu, J. C. Teo, A. P. Schnyder, and S. Ryu, Classification of topological
quantum matter with symmetries, Reviews of Modern Physics 88, 035005

(2016).

[225] J. L. Gross, J. Yellen, and M. Anderson, Graph theory and its applications
(Chapman and Hall/CRC, 2018).

[226] M. Starnini, E. Ortiz, and M. Á. Serrano, Geometric randomization of real
networks with prescribed degree sequence, New Journal of Physics 21,
053039 (2019).

[227] T. P. Peixoto, Disentangling homophily, community structure, and triadic
closure in networks, Physical Review X 12, 011004 (2022).

[228] F. Papadopoulos, C. Psomas, and D. Krioukov, Network mapping by
replaying hyperbolic growth, IEEE/ACM Transactions on Networking
23, 198–211 (2015).

[229] T. Blasius, T. Friedrich, A. Krohmer, and S. Laue, Efficient embedding
of scale-free graphs in the hyperbolic plane, IEEE/ACM Transactions on
Networking 26, 920–933 (2018).

[230] P. Goyal and E. Ferrara, Graph embedding techniques, applications, and
performance: A survey, Knowledge-Based Systems 151, 78–94 (2018).

[231] T. Bläsius, T. Friedrich, M. Katzmann, and A. Krohmer, Hyperbolic em-
beddings for near-optimal greedy routing, ACM Journal of Experimental
Algorithmics 25, 1–18 (2020).

[232] G. Alanis-Lobato, P. Mier, and M. A. Andrade-Navarro, Efficient embedding
of complex networks to hyperbolic space via their Laplacian, Scientific
Reports 6, 30108 (2016).

[233] M. Keller-Ressel and S. Nargang, Hydra: a method for strain-minimizing
hyperbolic embedding of network- and distance-based data, Journal of
Complex Networks 8 (2020).

[234] J. A. Dunne, C. C. Labandeira, and R. J. Williams, Highly resolved early
eocene food webs show development of modern trophic structure after the
end-cretaceous extinction, Proceedings of the Royal Society B: Biological
Sciences 281, 20133280 (2014).



bibliography 198

[235] G. W. Cobb and Y.-P. Chen, An application of markov chain monte carlo to
community ecology, The American Mathematical Monthly 110, 265 (2003).

[236] L. Zagar, F. Mulas, S. Garagna, M. Zuccotti, R. Bellazzi, and B. Zupan,
Stage prediction of embryonic stem cell differentiation from genome-wide
expression data, Bioinformatics 27, 2546–2553 (2011).

[237] R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes,
Explosive percolation transition is actually continuous, Physical Review
Letters 105, 255701 (2010).

[238] R. M. D’Souza and J. Nagler, Anomalous critical and supercritical phenom-
ena in explosive percolation, Nature Physics 11, 531–538 (2015).

[239] U. C. Täuber, Renormalization group: applications in statistical physics,
Nuclear Physics B - Proceedings Supplements 228, 7–34 (2012).

[240] L. P. Kadanoff, Scaling laws for ising models near Tc, Physics Physique
Fizika 2, 263–272 (1966).

[241] C. Song, S. Havlin, and H. A. Makse, Self-similarity of complex networks,
Nature 433, 392–395 (2005).

[242] P. Villegas, A. Gabrielli, F. Santucci, G. Caldarelli, and T. Gili, Laplacian
paths in complex networks: information core emerges from entropic transi-
tions, Physical Review Research 4, 033196 (2022).

[243] P. Villegas, T. Gili, G. Caldarelli, and A. Gabrielli, Laplacian renormalization
group for heterogeneous networks, Nature Physics 19, 445–450 (2023).

[244] M. Zheng, A. Allard, P. Hagmann, Y. Alemán-Gómez, and M. Á. Serrano,
Geometric renormalization unravels self-similarity of the multiscale human
connectome, Proceedings of the National Academy of Sciences 117, 20244–
20253 (2020).

[245] J. Moody, Peer influence groups: identifying dense clusters in large net-
works, Social Networks 23, 261–283 (2001).

[246] R. G. Little, Controlling cascading failure: understanding the vulnerabilities
of interconnected infrastructures, Journal of Urban Technology 9, 109–123

(2002).

[247] L. M. Verbrugge, Multiplexity in adult friendships, Social Forces 57, 1286

(1979).

[248] K. Lewis, J. Kaufman, M. Gonzalez, A. Wimmer, and N. Christakis, Tastes,
ties, and time: A new social network dataset using Facebook.com, Social
Networks 30, 330–342 (2008).

[249] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela, Com-
munity structure in time-dependent, multiscale, and multiplex networks,
Science 328, 876–878 (2010).

[250] S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, C. J. Pérez-Vicente, Y.
Moreno, and A. Arenas, Diffusion dynamics on multiplex networks, Physi-
cal Review Letters 110, 028701 (2013).



bibliography 199

[251] M. Szell, R. Lambiotte, and S. Thurner, Multirelational organization of
large-scale social networks in an online world, Proceedings of the National
Academy of Sciences 107, 13636–13641 (2010).

[252] R. G. Morris and M. Barthelemy, Transport on coupled spatial networks,
Physical Review Letters 109, 128703 (2012).

[253] A. Cardillo, J. Gómez-Gardeñes, M. Zanin, M. Romance, D. Papo, F. del
Pozo, and S. Boccaletti, Emergence of network features from multiplexity,
Scientific Reports 3, 1344 (2013).

[254] A. Solé-Ribalta, M. D. Domenico, N. E. Kouvaris, A. Díaz-Guilera, S. Gómez,
and A. Arenas, Spectral properties of the Laplacian of multiplex networks,
Physical Review E 88, 032807 (2013).

[255] G. Bianconi, Multilayer networks (Oxford University PressOxford, 2018).

[256] O. Artime, B. Benigni, G. Bertagnolli, V. d’Andrea, R. Gallotti, A. Ghavasieh,
S. Raimondo, and M. D. Domenico, Multilayer network science (Cambridge
University Press, 2022).

[257] F. Battiston, V. Nicosia, and V. Latora, Structural measures for multiplex
networks, Physical Review E 89, 032804 (2014).

[258] F. Battiston, V. Nicosia, M. Chavez, and V. Latora, Multilayer motif analysis
of brain networks, Chaos: An Interdisciplinary Journal of Nonlinear Science
27 (2017).

[259] S. Boccaletti, G. Bianconi, R. Criado, C. del Genio, J. Gómez-Gardeñes, M.
Romance, I. Sendiña-Nadal, Z. Wang, and M. Zanin, The structure and
dynamics of multilayer networks, Physics Reports 544, 1–122 (2014).

[260] A. M. Abdolhosseini-Qomi, N. Yazdani, and M. Asadpour, Overlapping
communities and the prediction of missing links in multiplex networks,
Physica A: Statistical Mechanics and its Applications 554, 124650 (2020).

[261] C. H. Kim, M. Jo, J. S. Lee, G. Bianconi, and B. Kahng, Link overlap
influences opinion dynamics on multiplex networks of ashkin-teller spins,
Physical Review E 104, 064304 (2021).

[262] D. T. Luu and T. Lux, Multilayer overlaps and correlations in the bank-firm
credit network of spain, Quantitative Finance 19, 1953–1974 (2019).

[263] T. Dimitrova, K. Petrovski, and L. Kocarev, Graphlets in multiplex networks,
Scientific Reports 10, 1928 (2020).

[264] H. Wang, C. Ma, H. Chen, and H. Zhang, Effect of overlap on spreading
dynamics on multiplex networks, Journal of Statistical Mechanics: Theory
and Experiment 2020, 043402 (2020).

[265] G. J. Baxter, G. Bianconi, R. A. da Costa, S. N. Dorogovtsev, and J. F. F.
Mendes, Correlated edge overlaps in multiplex networks, Physical Review
E 94, 012303 (2016).

[266] G. Bianconi, Statistical mechanics of multiplex networks: Entropy and
overlap, Physical Review E 87, 062806 (2013).



bibliography 200

[267] F. Papadopoulos and K.-K. Kleineberg, Link persistence and conditional
distances in multiplex networks, Physical Review E 99, 012322 (2019).

[268] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, Catas-
trophic cascade of failures in interdependent networks, Nature 464, 1025–
1028 (2010).

[269] M. Á. Serrano, L. Buzna, and M. Boguñá, Escaping the avalanche collapse
in self-similar multiplexes, New Journal of Physics 17, 053033 (2015).

[270] S.-W. Son, G. Bizhani, C. Christensen, P. Grassberger, and M. Paczuski, Per-
colation theory on interdependent networks based on epidemic spreading,
Europhysics Letters 97, 16006 (2012).

[271] A. M. Turing, The chemical basis of morphogenesis, Philosophical Trans-
actions of the Royal Society of London. Series B, Biological Sciences 237,
37–72 (1952).

[272] A. Gierer and H. Meinhardt, A theory of biological pattern formation,
Kybernetik 12, 30–39 (1972).

[273] H. Meinhardt, Models of biological pattern formation (Academic Press, 1982).

[274] M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium,
Reviews of Modern Physics 65, 851–1112 (1993).

[275] A. J. Koch and H. Meinhardt, Biological pattern formation: from basic
mechanisms to complex structures, Reviews of Modern Physics 66, 1481–
1507 (1994).

[276] A. M. Zhabotinsky, M. Dolnik, and I. R. Epstein, Pattern formation arising
from wave instability in a simple reaction-diffusion system, The Journal of
Chemical Physics 103, 10306–10314 (1995).

[277] M. Cross and H. Greenside, Pattern formation and dynamics in nonequilibrium
systems (Cambridge University Press, 2009).

[278] S. Kondo and T. Miura, Reaction-diffusion model as a framework for
understanding biological pattern formation, Science 329, 1616–1620 (2010).

[279] D. Walgraef, Spatio-temporal pattern formation (Springer New York, 1997).

[280] H. Othmer and L. Scriven, Instability and dynamic pattern in cellular
networks, Journal of Theoretical Biology 32, 507–537 (1971).

[281] W. Horsthemke, K. Lam, and P. K. Moore, Network topology and Turing
instabilities in small arrays of diffusively coupled reactors, Physics Letters
A 328, 444–451 (2004).

[282] P. K. Moore and W. Horsthemke, Localized patterns in homogeneous
networks of diffusively coupled reactors, Physica D: Nonlinear Phenomena
206, 121–144 (2005).

[283] H. Nakao and A. S. Mikhailov, Turing patterns in network-organized
activator–inhibitor systems, Nature Physics 6, 544–550 (2010).



bibliography 201

[284] M. Asllani, J. D. Challenger, F. S. Pavone, L. Sacconi, and D. Fanelli, The
theory of pattern formation on directed networks, Nature Communications
5, 4517 (2014).

[285] R. Muolo, M. Asllani, D. Fanelli, P. K. Maini, and T. Carletti, Patterns of
non-normality in networked systems, Journal of Theoretical Biology 480,
81–91 (2019).

[286] J. Petit, B. Lauwens, D. Fanelli, and T. Carletti, Theory of Turing patterns
on time varying networks, Physical Review Letters 119, 148301 (2017).

[287] R. A. V. Gorder, A theory of pattern formation for reaction–diffusion
systems on temporal networks, Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences 477, 20200753 (2021).

[288] R. Muolo, L. Gallo, V. Latora, M. Frasca, and T. Carletti, Turing patterns
in systems with high-order interactions, Chaos, Solitons & Fractals 166,
112912 (2023).

[289] S. Gao, L. Chang, M. Perc, and Z. Wang, Turing patterns in simplicial
complexes, Physical Review E 107, 014216 (2023).

[290] M. Asllani, D. M. Busiello, T. Carletti, D. Fanelli, and G. Planchon, Turing
patterns in multiplex networks, Physical Review E 90, 042814 (2014).

[291] M. Asllani, D. M. Busiello, T. Carletti, D. Fanelli, and G. Planchon, Turing
instabilities on Cartesian product networks, Scientific Reports 5, 12927

(2015).

[292] N. E. Kouvaris, S. Hata, and A. D. Guilera, Pattern formation in multiplex
networks, Scientific Reports 5, 10840 (2015).

[293] D. M. Busiello, T. Carletti, and D. Fanelli, Homogeneous-per-layer patterns
in multiplex networks, Europhysics Letters 121, 48006 (2018).

[294] B. A. Siebert, C. L. Hall, J. P. Gleeson, and M. Asllani, Role of modularity
in self-organization dynamics in biological networks, Physical Review E
102, 052306 (2020).

[295] M. Asllani, T. Carletti, and D. Fanelli, Tune the topology to create or destroy
patterns, The European Physical Journal B 89, 260 (2016).

[296] G. Cencetti, F. Battiston, T. Carletti, and D. Fanelli, Generalized patterns
from local and non local reactions, Chaos, Solitons & Fractals 134, 109707

(2020).

[297] M.-T. Hütt, D. Armbruster, and A. Lesne, Predictable topological sensitivity
of Turing patterns on graphs, Physical Review E 105, 014304 (2022).

[298] E. W. Montroll and G. H. Weiss, Random walks on lattices. II, Journal of
Mathematical Physics 6, 167–181 (1965).

[299] G. H. Weiss, Aspects and applications of the random walk (North-Holland,
Amsterdam, 1994).

[300] P. van Mieghem, Graph spectra for complex networks (Cambridge University
Press, 2010).



bibliography 202

[301] I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative
systems. II, The Journal of Chemical Physics 48, 1695–1700 (1968).

[302] V. Castets, E. Dulos, J. Boissonade, and P. D. Kepper, Experimental evidence
of a sustained standing Turing-type nonequilibrium chemical pattern,
Physical Review Letters 64, 2953–2956 (1990).

[303] Q. Ouyang and H. L. Swinney, Transition from a uniform state to hexagonal
and striped Turing patterns, Nature 352, 610–612 (1991).

[304] M. P. Harris, S. Williamson, J. F. Fallon, H. Meinhardt, and R. O. Prum,
Molecular evidence for an activator–inhibitor mechanism in development
of embryonic feather branching, Proceedings of the National Academy of
Sciences 102, 11734–11739 (2005).

[305] L. A. Segel and S. A. Levin, Application of nonlinear stability theory to
the study of the effects of diffusion on predator-prey interactions, in Aip
conference proceedings (1976), pp. 123–152.

[306] M. Mimura and J. Murray, On a diffusive prey-predator model which
exhibits patchiness, Journal of Theoretical Biology 75, 249–262 (1978).

[307] J. L. Maron and S. Harrison, Spatial pattern formation in an insect host-
parasitoid system, Science 278, 1619–1621 (1997).

[308] J. P. Gibert and J. D. Yeakel, Laplacian matrices and Turing bifurcations: re-
visiting Levin 1974 and the consequences of spatial structure and movement
for ecological dynamics, Theoretical Ecology 12, 265–281 (2019).

[309] A. K. Fahimipour, F. Zeng, M. Homer, A. Traulsen, S. A. Levin, and T. Gross,
Sharp thresholds limit the benefit of defector avoidance in cooperation on
networks, Proceedings of the National Academy of Sciences 119 (2022).

[310] A. Brechtel, P. Gramlich, D. Ritterskamp, B. Drossel, and T. Gross, Master
stability functions reveal diffusion-driven pattern formation in networks,
Physical Review E 97, 032307 (2018).

[311] S. Hata and H. Nakao, Localization of laplacian eigenvectors on random
networks, Scientific Reports 7, 1121 (2017).

[312] G. Pólya and G. Szegö, Isoperimetric inequalities in mathematical physics
(Princeton University Press, 1951).

[313] J. Cheeger, A lower bound for the smallest eigenvalue of the laplacian, in
Problems in analysis, edited by R. C. Gunning (1969), pp. 195–199.

[314] B. Derrida and Y. Pomeau, Random networks of automata: a simple an-
nealed approximation, Europhysics Letters 1, 45–49 (1986).

[315] S.-i. Amari, N. Fujita, and S. Shinomoto, Four types of learning curves,
Neural Computation 4, 605–618 (1992).

[316] U. Bastolla and G. Parisi, Closing probabilities in the Kauffman model: An
annealed computation, Physica D: Nonlinear Phenomena 98, 1–25 (1996).



bibliography 203

[317] B. Luque and R. V. Solé, Phase transitions in random networks: simple
analytic determination of critical points, Physical Review E 55, 257–260

(1997).

[318] T. Rohlf and S. Bornholdt, Criticality in random threshold networks: an-
nealed approximation and beyond, Physica A: Statistical Mechanics and its
Applications 310, 245–259 (2002).

[319] D. Vilone and C. Castellano, Solution of voter model dynamics on annealed
small-world networks, Physical Review E 69, 016109 (2004).

[320] B. Guerra and J. Gómez-Gardeñes, Annealed and mean-field formulations
of disease dynamics on static and adaptive networks, Physical Review E
82, 035101 (2010).

[321] S. C. Ferreira, R. S. Ferreira, and R. Pastor-Satorras, Quasistationary analysis
of the contact process on annealed scale-free networks, Physical Review E
83, 066113 (2011).

[322] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen,
and O. Sporns, Mapping the structural core of human cerebral cortex, PLoS
Biology 6, e159 (2008).

[323] E. Ortiz and M. Á. Serrano, Multiscale voter model on real networks, Chaos,
Solitons & Fractals 165, 112847 (2022).

[324] K.-K. Kleineberg, Metric clusters in evolutionary games on scale-free net-
works, Nature Communications 8, 1888 (2017).

[325] G. Budel, M. Kitsak, R. Aldecoa, K. Zuev, and D. Krioukov, Random
hyperbolic graphs in d + 1 dimensions, Physical Review E 109, 054131

(2024).

[326] T. Squartini, J. de Mol, F. den Hollander, and D. Garlaschelli, Breaking of
ensemble equivalence in networks, Physical Review Letters 115, 268701

(2015).

[327] K. Anand and G. Bianconi, Entropy measures for networks: Toward an
information theory of complex topologies, Physical Review E 80, 045102

(2009).

[328] Q. Zhang and D. Garlaschelli, Strong ensemble nonequivalence in systems
with local constraints, New Journal of Physics 24, 043011 (2022).

[329] M. Boguñá and D. Krioukov, Measuring spatial distances in causal sets via
causal overlaps, Physical Review D 110, 024008 (2024).

[330] R. E. Ulanowicz and D. L. DeAngelis, Network analysis of trophic dynamics in
south florida ecosystems, 2005.

[331] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M.
Sheffer, and U. Alon, Superfamilies of evolved and designed networks.
Science 303, 1538–1542 (2004).



bibliography 204

[332] M. Huss and P. Holme, Currency and commodity metabolites: their identi-
fication and relation to the modularity of metabolic networks, IET Systems
Biology 1, 280–285 (2007).

[333] J. Kunegis, Konect, in Proceedings of the 22nd international conference on world
wide web (2013), pp. 1343–1350.

[334] Y. Hu, A. Vinayagam, A. Nand, A. Comjean, V. Chung, T. Hao, S. E. Mohr,
and N. Perrimon, Molecular Interaction Search Tool (MIST): An integrated
resource for mining gene and protein interaction data, Nucleic Acids
Research 46, D567–D574 (2018).

[335] M. D. Domenico, M. A. Porter, and A. Arenas, Muxviz: A tool for multilayer
analysis and visualization of networks, Journal of Complex Networks 3,
159–176 (2015).

[336] M. Ripeanu and I. Foster, Mapping the Gnutella network: Macroscopic
properties of large-scale peer-to-peer systems, in (2002), pp. 85–93.

[337] M. D. Domenico, A. Solé-Ribalta, S. Gómez, and A. Arenas, Navigability
of interconnected networks under random failures, Proceedings of the
National Academy of Sciences 111, 8351–8356 (2014).

[338] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, The
internet topology zoo, IEEE Journal on Selected Areas in Communications
29, 1765–1775 (2011).

[339] J. Leskovec, D. Huttenlocher, and J. Kleinberg, Signed networks in social
media, in Proceedings of the sigchi conference on human factors in computing
systems (2010), pp. 1361–1370.

[340] A. Paranjape, A. R. Benson, and J. Leskovec, Motifs in temporal networks,
in Proceedings of the tenth acm international conference on web search and data
mining (2017), pp. 601–610.

[341] M. D. Domenico, A. Lancichinetti, A. Arenas, and M. Rosvall, Identifying
modular flows on multilayer networks reveals highly overlapping organi-
zation in interconnected systems, Physical Review X 5, 011027 (2015).

[342] M. D. Domenico, V. Nicosia, A. Arenas, and V. Latora, Structural reducibil-
ity of multilayer networks, Nature Communications 6, 6864 (2015).

[343] E. Omodei, M. D. Domenico, and A. Arenas, Characterizing interactions
in online social networks during exceptional events, Frontiers in Physics 3
(2015).

[344] A. Cho, J. Shin, S. Hwang, C. Kim, H. Shim, H. Kim, H. Kim, and I.
Lee, WormNet v3: a network-assisted hypothesis-generating server for
Caenorhabditis elegans, Nucleic Acids Res. 42, W76–W82 (2014).

[345] D. B. Larremore, A. Clauset, and C. O. Buckee, A network approach to
analyzing highly recombinant malaria parasite genes, PLoS Computational
Biology 9, e1003268 (2013).



bibliography 205

[346] S. W. Oh et al., A mesoscale connectome of the mouse brain, Nature 508,
207–214 (2014).

[347] M. Á. Serrano and M. Boguñá, Topology of the world trade web, Physical
Review E 68, 015101 (2003).

[348] M. Á. Serrano, M. Boguñá, and A. Vespignani, Patterns of dominant flows
in the world trade web, Journal of Economic Interaction and Coordination
2, 111–124 (2007).


	JEvdK_COVER
	Páginas desde9. Tesi OPT
	9. Tesi
	Abstract
	Resum
	Samenvatting
	Publications
	Acknowledgments
	Contents
	Preface
	1 Introduction
	1.1 Motivation
	1.2 Aim
	1.3 Thesis Structure
	1.4 Notation


	 Theoretical background
	2 Networks
	2.1 The basics
	2.2 Network properties

	3 Random graphs
	3.1 Erdös Renyi
	3.2 Watts Strogatz
	3.3 The configuration model

	4 Network geometry
	4.1 Similarity space
	4.2 The S1-model
	4.3 The H2-model
	4.4 Other geometric models
	4.5 Network embedding


	 Structural properties
	5 The clustering phase transition
	5.1 Statistical properties
	5.2 The topological nature of the transition
	5.3 Finite size scaling behavior
	5.4 Conclusion

	6 Network embedding
	6.1 Mercator in the weakly geometric regime
	6.2 Recovering geometric information
	6.3 Greedy routing
	6.4 Conclusions

	7 Network renormalization
	7.1 Geometric renormalization in the weakly geometric regime
	7.2 The importance of geometry
	7.3 Conclusions

	8 Empirical networks in the weakly geometric regime
	8.1 Classifying real networks
	8.2 Qualifying the embedding
	8.3 Renormalizing real networks
	8.4 Conclusions

	9 Link overlap and mutual clustering in multiplex networks
	9.1 The geometric multiplex model
	9.2 The mutual network
	9.3 Homogeneous layers with correlations
	9.4 Heterogeneous degree distributions
	9.5 General coordinate correlation
	9.6 Real networks
	9.7 Conclusions


	 Dynamical processes
	10 The emergence of geometric Turing patterns
	10.1 The Turing instability on complex networks
	10.2 The annealed approximation
	10.3 Weakly geometric graphs
	10.4 Real Networks
	10.5 Conclusions


	Conclusions
	11 Conclusions

	 Appendix
	A Appendix to Chapter 5
	A.1 Statistical properties of the S1
	A.2 Finite size scaling of the clustering coefficient in the S1

	B Appendix to Chapter 7
	B.1 Self similarity of the degree distribution in the S1

	C Appendix to Chapter 8
	C.1 Empirical network description

	D Appendix to Chapter 9
	D.1 Statistical properties of the mutual network ensemble
	D.2 Homogeneous multiplexes with perfect coordinate correlations
	D.3 Empirical multiplex descriptions

	E Appendix to Chapter 10
	E.1 Empirical network descriptions and properties

	 Bibliography





