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A B S T R A C T

In this paper, we investigate Astronomical Observations Scheduling which is a type of Multi-Objective
Combinatorial Optimization Problem, and detail its specific challenges and requirements and propose the
Hybrid Accumulative Planner (HAP), a hybrid multi-start metaheuristic scheduler able to adapt to the different
variations and demands of the problem. To illustrate the capabilities of the proposal in a real-world scenario,
HAP is tested on the Atmospheric Remote-sensing Infrared Exoplanet Large-survey (Ariel) mission of the
European Space Agency (ESA), and compared with other studies on this subject including an Evolutionary
Algorithm (EA) approach. The results show that the proposal outperforms the other methods in the evaluation
and achieves better scientific goals than its peers. The consistency of HAP in obtaining better results on the
available datasets for Ariel, with various sizes and constraints, demonstrates its competence in scalability and
adaptability to different conditions of the problem.
1. Introduction

The scheduling of astronomical observations is a complex problem
that can be described from two perspectives: computer science and
astronomy. From the computer science perspective, it is a form of
combinatorial optimization (Pardalos et al., 2013) with multiple types
of tasks, objectives and constraints, bound to different computational
cost limits. From the astronomy perspective, scientists are looking
for a tool to schedule their requests, which are of varying nature,
over different time periods, while giving them sufficient flexibility and
adaptability to easily simulate different scenarios, and add or remove
conditions from the problem and its dependencies. This paper is aimed
at researchers in both the computer science and astrophysics fields,
and will hopefully facilitate further studies and collaborations on this
interdisciplinary problem.

In complex multi-objective instances of the problem, in order to
obtain the most satisfying results, the algorithm should be able to give
control to the user over various aspects of the scheduling process down
to the individual task level on demand, without needing a structural
change. As in any scientific endeavor, researchers in the field of as-
tronomy always look for new ideas and possibilities to explore, and, in
order to test them efficiently, a scheduling algorithm is required that
can easily take onboard new conditions. For ongoing problems, it is
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also important to adapt changes without drastically altering plans in
the long term or their expected scientific returns.

Scheduling astronomical observations in telescopes is also referred
to as the telescope scheduling problem, and, in general, can be defined
with the following terminology:

• The scheduler receives a list of proposals with different priorities.
Each proposal consists of a set of scientific tasks (sci. task) which are
usually observations of different astronomical targets, and have a
scientific value only if all of them are scheduled.

• Each sci. task comes with certain constraints and dependencies.
According to these conditions, and considering their target coordi-
nation and telescope location, the time periods in which the tasks
can be done are calculated. Individual tasks do not have priorities
and are evaluated on their proposal.

• These time periods are referred to as the windows for each task.
Depending on the constraints, while the windows for most of the
tasks can be calculated before scheduling, for others windows are
determined during the process.

The main objective for sci. tasks is to maximize the scientific return
of the schedule. That means scheduling as many proposals as possible
within the designated survey time prioritizing higher valued ones. The
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secondary objective is to maximize the percentage of the time that the
telescope is dedicated to do the sci. tasks. This requires considering the
uration of available tasks.

In addition to scientific tasks, other types need to be scheduled.
ngineering tasks (eng. tasks) are usually related to the maintenance
f the telescope and the other involved systems, or to ensuring their
recision and quality of operation. These tasks have to be repeated
ithin a certain interval range throughout the schedule. Unlike sci.
asks, the main objective for eng. tasks is to minimize their number
hile not violating the interval range. Eng. tasks are essential parts of
schedule. However, in planning priority should be given to the sci.
asks. In addition to the above-mentioned main objectives related to sci.
nd eng. tasks, there are more project specific ones, such as minimizing
elescope rotation and device switching between tasks. The high variety
n tasks constraint, types and specific objectives leads to the majority
f the developments being project specific.

In this paper, we propose a Hybrid Accumulative Planner (HAP),
hich is a multi-start metaheuristic algorithm to address the main ob-

ectives of the telescope scheduling problem, and to fulfill the following
esign goals:

• Define an expandable, generic task capable of taking on different
types of sci. tasks and eng. tasks. This was necessary to ensure that
optimization is coherent along the whole schedule rather than
planning different types of tasks in separate routines.

• Flexible and customizable data structure to ease the adaptation
of the process of the proposal to new conditions and demands.
Abstract constraint definition and the way of handling one task at
a time free the user to define a specific setup up to the smallest
scale.

• Search the most interesting sections of the solution space for
results. This way, even with limited time, a satisfying result is
output, and if more time is available, the search expands to other
parts of the solution space.

• Achieve a balance between the quality of the constructed solu-
tions and the time required to build and assess them. In algo-
rithms like Multi-Objective Evolutionary Algorithm (MOEA) (Deb,
2015) and Genetic algorithm (GA) (Katoch et al., 2021), the bal-
ance is tipped heavily toward faster construction and evaluation,
which, in return, produce a large number of less refined solutions.
On the other hand, heuristics commonly relies on building one
or a few competent solutions but at a higher computational cost.
This proposal aims to strike a balance between the quality and
computational cost of the building solutions.

The customizability of a HAP is reinforced by the control points
n the task and the proposal levels that the user can manipulate to
reate an optimal schedule. The HAP is a multi-start algorithm (Martí
t al., 2018), which runs on a core metaheuristic (Glover and Sörensen,
015). By utilizing a metaheuristic algorithm as the core approach it
as possible to define a generic scheduling task and process that can

ake numerous forms depending on the requirements and definitions.
he metaheuristic of the HAP follows the methodology of a Tabu-
earch (Laguna, 2018) which has a low computational cost, good
xploitation, and offers competent skills to search in the solution space.
he multi-start layer of the HAP is used to boost the exploration of
he algorithm and to provide a selection of viable solutions based on
ultiple objectives.

In order to have a scheduling algorithm that is flexible and open
nough to allow the user to more easily define specific constraints and
ntroduce new conditions at any time, the HAP schedules are based on
repair strategy (Lange and Werner, 2019). This allows HAP to focus
n the scheduling of individual tasks and their demands, if necessary.
hereas fully global optimizations without auxiliary functions do not.

he repair strategy of HAP with a multi-start layer has a scalable
ptimization that starts with the neighborhoods around a current so-
ution, and based on available computational time expands, its search
2

o additional areas. t
HAP was tested on Ariel mission scheduling (Puig et al., 2018;
dwards et al., 2019) to demonstrate its adaptation to details on a
eal-world example of the problem. This also created an opportunity
o compare its performance with the other existing developments for
riel specifics. HAP was compared against a Multi-layer Evolutionary
lgorithm (EA) method proposed in Garcia-Piquer et al. (2017a) that
onsists of a GA and a MOEA, representing the highest level of global
ptimization but with high computational cost, and against a Hill
limbing (HC) algorithm which has a small computational cost but does
ot offer high optimization. Evaluating against two extreme cases of
he solutions to a problem provided us with a good perspective on the
erformance of the proposed method.

The main contributions of this work can be summarized as follows:

• We propose a reusable scheduling algorithm, called HAP, for
different forms of the telescope scheduling problem, capable of
tolerating new demands and constraints.

• We adapted the proposal to a real-world problem to demonstrate
the process for handling different types of constraints and tasks.

• We conducted experiments on a real-world problem and its cur-
rent solutions and evaluated the proposal’s effectiveness in com-
parison to well-known state-of-the-art approaches.

The structure of the rest of this paper is as follows. Section 2
escribes some of the proposed solutions and implemented systems
or astronomical observation scheduling. The proposed algorithm is
etailed in Section 3, followed by its evaluation in Section 4. Finally,
ection 5, offers a conclusion to the proposal and directions for future
ork.

. State-of-the-art

The problem of scheduling for astronomical observations (Yáñez,
003) has expanded in terms of both the definition of the problem and
he variety of studies around the subject. There has been a noticeable
rowth in the volume of data and the complexity of facilities and the
evices involved. This translates to higher dimensions of solution space
nd more diversified constraints, which makes it impossible to search
he entire space for the best solution. On the other hand, changes that
ome at any stage of the problem require flexibility in the scheduling
ethod in two aspects: the ability to reschedule or repair the current

chedule to react to changes related to its input (input change), and the
easibility of adaptation to changes regarding the problem definition
nd its constraints (problem change).

There are similarities between the telescope scheduling problem
nd some variations of well-known CO problems, such as the Vehicle
outing Problem (VRP) (Braekers et al., 2016), the Elevator Dispatch-

ng Problem (EDP) (Tartan et al., 2014), and Dial-A-Ride Problem
DARP) (Masmoudi et al., 2017). For example, although telescope
cheduling and vehicle routing are different jobs, they share some
onstraints and generalized objectives. The studies on the variations
f routing problem, like, VRP with time windows (VRPTW) (Schneider
t al., 2014), multi-objective (Kumar et al., 2014), with precedence
onstraint (Razali, 2015), and consistency condition (Kovacs et al.,
015), offer a range of solutions to manage their problem efficiently.
he existence of all these conditions, besides the details in the proposal-
ased constraints and evaluation, adds extra difficulty to the telescope
cheduling problem.

From heuristic methods to various fields of Artificial Intelligence
AI), different algorithms have been used to create methods that solve
he problem of scheduling for astronomical observations with all its
omplexities. These methods can be categorized as AI and non-AI
pproach, and examples of both categories are reviewed in this section.
urthermore, their common strategies for handling input change, and
roblem change are summarized here. Finally, the algorithms related to

he proposal are discussed.
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Many telescopes and facilities use non-AI methods. We can men-
tion the scheduling of the Juan Oro Telescope (TJO) (Colomé et al.,
2010), which uses a heuristic method to plan the next task at each
moment. The small size of the TJO facility, justifies using a fast re-
sponding, locally optimized scheduler. Although small facilities are
scheduled manually or use non-AI based methods, the feasibility of
these approaches is reduced when the number of telescopes or the
period to schedule is increased. Different fields of AI offer solutions for
these complex problems. For example, the scheduler for the Atacama
Large Millimeter/submillimeter Array (ALMA), within its framework
of ALMA Common Software (ACS) (Raffi et al., 2002), provides a
constraint propagating method to communicate between its telescopes
and to plan a schedule for each one. In ACS, emphasize is more on
satisfying the variety of constraints arising from the different telescopes
and proposals. These approaches have more flexibility in terms of
problem changes.

One of the main tools, which is still in use in many large projects
and was initially developed for the Hubble telescope, is Spike (Johnston,
1990). Spike uses a heuristic constraint satisfaction approach to build
and update the plans and utilizes artificial neural networks to anticipate
changes and keep run-time schedule manipulation to a minimum. The
spike scheduling approach has been adapted to other major projects,
such as the Very Large Telescope (VLT) operated by European Southern
Observatory (ESO), which is one of the world’s largest optical tele-
scopes and is run on the adaptation of Spike described in Johnston
(1988). Spike is also partially adapted by the Subaru telescope, which
expands the VLT variation of Spike, according to its requirements
as explained in Sasaki et al. (2000). Mora and Solar in Mora and
Solar (2010), have gathered a survey of scheduling tools for operating
projects in the field. With constraint satisfaction models like the one
implemented in Spike, the main focus is on the availability of valid
schedules to execute, and schedule optimization is a second priority.

On the other hand, emphasizing schedule efficiency has led many
studies to focus on optimization algorithms. One of the more popular
categories of algorithms to solve this problem is Evolutionary Computa-
tion (EC), especially Evolutionary Algorithms (EA). EA are competent
approaches to large problems, but have high computational costs. In
order to handle small input changes in a limited time, the system which
runs mainly on an EA, and usually also includes a fast heuristic. This
strategy has been the subject of several studies (Moisana et al., 2002;
van Rooyen et al., 2018), and relies on its heuristic to give flexibility
for input changes. Garcia et al. in Garcia-Piquer et al. (2017b) add a sec-
ond EA for scheduling CARMENES (Calar Alto high-Resolution search
for M dwarfs with Exo-earths with Near-infrared and optical Échelle
Spectrographs). Specifically, his proposal consists of three layers using
a Genetic Algorithm (GA), a Multi-Objective Evolutionary Algorithm
(MOEA), and a greedy heuristic algorithm In this way, some of the input
changes are also handled by the MOEA, and not all the responsibility is
on its heuristics layer.

The need for a fast response to input changes has greater importance
for ground-based telescopes. For telescopes based in space, where
conditions are more stable, there is no need for a fast heuristic. For
example, we can mention the James Webb Space Telescope (JWST) and
the Ariel mission. The JWST scheduling tool (Giuliano and Johnston,
2008) uses Spike as its core and adds an EA layer on top of it to provide
better optimization. The Ariel scheduler (Garcia-Piquer et al., 2017a)
has similarities with the methods used for CARMENES and uses a two
layer structure consisting of a GA and a MOEA.

HAP, the method proposed in this paper, follows a Multi-Start (Martí
et al., 2019) hybrid metaheuristics for scheduling and optimization.
This trend in algorithms has increasingly become a focus of recent
studies of complex multi-objective combinatorial optimization (Blum
and Li, 2008). Studies like (Blum et al., 2008; Parpinelli and Lopes,
2011), which illustrate the popularity of these approaches, argue that
the new inspirations in hybrid metaheuristic algorithms are a result
of their more efficient behavior and greater flexibility. Examples of
3

Fig. 1. General overview of HAP components.

metaheuristics for multi-objective optimization are Tabu Search (La-
guna, 2018), Simulated Annealing (Delahaye et al., 2019), and Variable
Neighborhood Search (Hansen et al., 2019). Tabu search has been the
subject of numerous studies of the problem. We can mention (Chou
et al., 2014; Jemai et al., 2017; Saidi-Mehrabad and Fattahi, 2007),
where the authors utilize a Tabu search for its flexibility in design
and its relatively low computational cost. These characteristics suit our
objectives as defined in Section 1.

SI and multi-start methods both operate by generating a number
of stochastic solutions. However SI examples like, the base models
of Particle Swarm Optimization (Wang et al., 2018) and Ant Colony
Optimization (Dorigo and Socha, 2018) as global optimization algo-
rithms, depend heavily on large populations and extensive numbers of
iterations. This reduces their performance on limited available time. To
address this issue several variations of these algorithms have been pro-
posed in the literature, including combinations with local optimization
algorithms (Han et al., 2017), and constructive approaches (Song et al.,
2019). On the other hand, multi-start algorithms are commonly built on
local optimizations (György and Kocsis, 2011; Li et al., 2019; Kessaci
et al., 2014) to improve their exploration. In this way, the algorithm
operates even with limited time and available resources (Martí et al.,
2018). Because of this flexibility, HAP uses a multi-start layer to explore
additional neighborhoods and comply with various time restrictions.

3. Hybrid accumulative planner

This section details the components and the algorithmic process of
HAP. The tasks to schedule, and the constraints which define their
dependencies and boundaries, are represented as a set of proposals
in the telescope scheduling problem. The HAP strategy to approach
this problem is described as follows: First we give an overview of the
components that make up the algorithm and summarize the required
terminology in Section 3.1. Then, in Section 3.2, the heuristic core and
the main component of HAP, called the Conflict Resolution Unit (CRU),
is described. Finally, the HAP process is detailed in Section 3.3.

3.1. Overview and components

As a multi-start algorithm, HAP utilizes a number of core meta-
heuristic task schedulers in its process, which are referred to as CRU.
CRU handles the tasks and their constraints at the individual level,
while HAP, as the higher layer, controls CRU inputs and evaluates their
results at the proposal level. Fig. 1, illustrates a high level scheme of
the input and the different parts of HAP.

As can be seen in Fig. 1, HAP takes sets of proposals and schedules
as input and updates them based on its process. There are several com-
ponents in HAP that can be categorized as different control modules
(e.g. Selection, Evaluation, and Update) and a unit pool. Control mod-
ules consist of selection, evaluation and update. By applying different
strategies for these components, HAP handles tasks of different types.
The unit pool (𝑃𝑜𝑜𝑙) contains several instances of its task scheduler,
CRU, that HAP can access in order to schedule the tasks of the pro-
posals. We finish this section with Table 1, detailing the terms and
denotations that are used in the algorithm descriptions.
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Table 1
Description of the HAP denotations.
Denote Name Description

𝐶𝑤 Cost Sum of priority for members of 𝐶𝐺𝑤 which lose completeness.

𝐶𝐺𝑤 Conflict Set of tasks from a schedule, which
group overlap in time with window 𝑤

𝐹𝐶 Completion HAP fitness function.
fitness On proposal completeness and priority.

𝐹𝑇 Time HAP fitness function.
fitness On the time dedicated to sci. tasks.

𝑘 Number HAP configuration, integer.
of CRUs The value is set based on available resources.

𝐿 Lobby Set of tasks, waiting to be scheduled by CRU.

𝑚𝑎𝑥𝑖𝑡𝑒𝑟 Maximum CRU configuration, integer.
iteration Maximum number of iteration for a CRU main cycle.

𝑝 Proposal Set of dependent tasks.
𝑃𝑖 Set of proposals at step 𝑖 of HAP.
𝑃𝑟𝑖𝑝 Priority Priority value of proposal 𝑝.
𝑠 Schedule Sequenced list of non-overlapping tasks with specific window.
𝑆𝑖 Set of schedules at step 𝑖 of HAP.

𝑠𝑅 Stochastic CRU configuration, integer ≥ 1. The number of options
range consider for CRU to for stochastic replacement.

𝑡 Task A user request for a time on schedule.
𝑇 Set of tasks.
𝑡𝑎𝑟𝑔𝑒𝑡 A celestial object which a task is defined on its observation.
𝑤 Window Possible period of time to schedule a task.
𝑊 𝑡 Set of windows for task 𝑡.
1
1
1
1
1

1
1
1
1
1
2
2
2
2
2
2
2
2
2

3.2. Conflict Resolution Unit (CRU)

The responsibility of the CRU is to add new tasks into a given sched-
ule regardless of their added values and by minimize the damage to the
already existing proposals in that schedule. HAP calls a CRU with a non-
empty set of tasks 𝑇 , a schedule 𝑠, and its configuration, and it always
eturns a schedule which includes a window for each member of 𝑇 and
he tasks in 𝑠 which do not overlap in time with the newly scheduled
indows. This process is explained in more detail in algorithm 1.

Algorithm 1, shows the process of a CRU. Beside a set of tasks 𝑇
and a schedule 𝑠, CRU receives its configuration values as input. The
default configuration of stochastic range (𝑠𝑅), and maximum iteration
(𝑚𝑎𝑥𝑖𝑡𝑒𝑟) are specified in algorithm 1 and are explained on their use in
the pseudo-code. The first step is to initialize the required variables,
including a waiting list called Lobby (𝐿). Lobby always contains the
tasks that a CRU tries to put into its schedule 𝑠. In line 2, we fill the
lobby 𝐿 with the members of 𝑇 . The other initialization steps are to
assume an empty schedule for 𝑏𝑒𝑠𝑡_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 and set 𝑚𝑖𝑛_𝑠𝑐𝑜𝑟𝑒 and 𝑖 to
zero. 𝑖 in line 5 is the iteration counter. The main cycle of CRU spans
from line 6 to 26 and its goal, represented as a while loop, is to empty
the lobby before it reaches its limitations. The limitation for a CRU is
the maximum number of iterations for its main cycle (𝑚𝑎𝑥𝑖𝑡𝑒𝑟). After
increasing the iteration in line 7, CRU selects a task 𝑡 from its lobby as
indicated in line 8. The default selection strategy is to first select the
members of 𝑇 and then treat the lobby as a stack (last-in first-out). The
selected task 𝑡 is removed from 𝐿 (line 9) and CRU starts a search to
find the best position to put 𝑡 into 𝑠, by going through the windows
of 𝑡 (𝑊 𝑡) one by one in the 𝐹𝑜𝑟 loop between lines 10 to 17. For a
window of 𝑡, (𝑤 ∶ 𝑤 ∈ 𝑊 𝑡), CRU calculates two values. The first is the
Conflict Group of 𝑤 (𝐶𝐺𝑤) and the second is its cost (𝐶𝑤). 𝐶𝐺𝑤 is a set
of tasks from 𝑠 whose scheduled window overlaps in time with 𝑤 (line
11), so in scheduling we can only choose one or the other to be in the
solution. After gathering 𝐶𝐺𝑤, we calculate its cost 𝐶𝑤 by calling 𝐶𝑜𝑠𝑡()
function (line 12). The default variation of the 𝐶𝑜𝑠𝑡() function adds up
the priority of the members of 𝐶𝐺𝑤 whose removal from 𝑠 damages
the completeness of their proposal, multiplied by a value which act as
4

a preference measure between the tasks with the same priority, called
Algorithm 1 CRU algorithm
1: procedure CRU(𝑇 , 𝑠, 𝑠𝑅,𝑚𝑎𝑥𝑖𝑡𝑒𝑟) ⊳ Input.
2: 𝐿 ← 𝑇 ⊳ Lobby initialization.
3: 𝑏𝑒𝑠𝑡_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ← ∅
4: 𝑚𝑖𝑛_𝑐𝑜𝑠𝑡 ← 0
5: 𝑖 ← 0 ⊳ Iteration.
6: while 𝐿! = ∅ & 𝑖 < 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 do
7: 𝑖 ← 𝑖 + 1
8: 𝑡 ∶ 𝑡 ∈ 𝐿 ⊳ Selects a task from 𝐿.
9: remove 𝑡 from 𝐿
0: for all 𝑤 ∶ 𝑤 ∈ 𝑊 𝑡 do
1: 𝐶𝐺𝑤 = {𝑡𝑠 ∶ 𝑡𝑠 ∈ 𝑠 & 𝑡𝑠 overlaps 𝑤}
2: 𝐶𝑤 = 𝐶𝑜𝑠𝑡(𝐶𝐺𝑤)
3: if 𝐶𝐺𝑤 = ∅ then
4: add 𝑤 to 𝑠 ⊳ Assigns 𝑤 as the window to perform

task 𝑡.
5: goto line 6
6: end if
7: end for
8: 𝑤𝑠𝑡 ← 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐶𝑤 ∶ ∀𝑤 ∈ 𝑊 𝑡, 𝑠𝑅)
9: add 𝑤𝑠𝑡 to 𝑠 ⊳ Assigns 𝑤𝑠𝑡 as the window to perform task 𝑡.
0: remove 𝐶𝐺𝑤𝑠𝑡 from 𝑠
1: add 𝐶𝐺𝑤𝑠𝑡 to 𝐿
2: if 𝐶𝑜𝑠𝑡(𝐿 − 𝑇 ) < 𝑚𝑖𝑛_𝑐𝑜𝑠𝑡 then
3: 𝑚𝑖𝑛_𝑐𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡(𝐿 − 𝑇 )
4: 𝑏𝑒𝑠𝑡_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 = 𝑠
5: end if
6: end while
7: return 𝑏𝑒𝑠𝑡_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ⊳ Input of the next cycle.
8: end procedure

Impatience (𝜚𝑡). Eq. (1) describes 𝐶𝑤 for task 𝑡, calculated by the 𝐶𝑜𝑠𝑡()
function:

𝐶𝑤 =
∑

(𝑃𝑟𝑖𝜏 +
𝜚𝜏 ∗ 𝑃𝑟𝑖𝑚𝑖𝑛

𝛼 ) (1)

𝜏∈𝐶𝐺𝑤 10
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In Eq. (1), 𝑃𝑟𝑖𝑚𝑖𝑛 represents the minimum priority value in the survey,
while 𝛼 determines the weight of impatience in 𝐶𝑤 calculations, with
a default value of 1. Impatience is a normalized value (0 < 𝜚𝑡 ≤ 1) and

ultiplying it by 𝑃𝑟𝑖𝑚𝑖𝑛 results in limiting the effect of it to less than
riority, thus becoming a secondary attribute to distinguish between
he tasks. The default variation of the Impatience of a task 𝑡 (𝜚𝑡), from
proposal 𝑝, is calculated as shown in Eq. (2):

𝑡 ∈ 𝑝, 𝜚𝑡 =
|𝑝|

|

⋃

𝜏∈𝑝 𝑊 𝜏
|

(2)

According to Eq. (2), 𝜚 is equal for all the tasks in a proposal, and it
depends on two values. The first is the number of tasks in proposal 𝑝
|𝑝|), while the second is the total number of available unique windows
or tasks of a proposal. In this way, if a proposal consists of a repetition
f a single task, |⋃𝜏∈𝑝 𝑊

𝜏
| is equal to the size of 𝑊 𝑡, because there is

nly one set of unique windows.
As indicated in algorithm 1, if there is a 𝑤 whose 𝐶𝐺𝑤 is empty

or 𝐶𝑤 = 0), then CRU adds the task 𝑡 on 𝑤 into 𝑠 (line 12) and
oes back to the while loop to pick another task from 𝐿 (line 13). If
here is no window with an empty 𝐶𝐺, CRU picks a window 𝑤𝑠𝑡 with a
tochastic selection from 𝑊 𝑡 based on their cost. 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛()
orts the costs in ascending order, and makes a weighted decision on
he first 𝑠𝑅 number of elements to select one. 𝑠𝑅 or stochastic range
s a configuration integer value of CRU which indicates the number of
lements that 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛() considers in making the weighted
election. Having a lower cost increases the chances of being selected.
efinition (3), shows the probability of a window (𝑝𝑟𝑜𝑏𝑤) in the range
f 𝑠𝑅, to be picked as 𝑤𝑠𝑡 in 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(), as shown in line 18
n Algorithm 1:

𝑟𝑜𝑏𝑤 = 𝐶𝑤
∑𝑠𝑅

𝑖=1 𝐶
𝑤𝑖

(3)

After the stochastic selection of 𝑤𝑠𝑡, CRU adds the task 𝑡 on 𝑤𝑠𝑡 into
, removes its conflict group 𝐶𝐺𝑤𝑠𝑡 , and adds them into 𝐿 (lines 19,
0, and 21 respectively). The final check in CRU is to keep track of the
est schedule found so far. According to the cost of lobby 𝐿 without
embers of 𝑇 (𝐶𝑜𝑠𝑡(𝐿− 𝑇 )), if it is lower than the previously recorded
inimum cost (𝑚𝑖𝑛𝑐𝑜𝑠𝑡), update the 𝑏𝑒𝑠𝑡_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒. 𝑏𝑒𝑠𝑡_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 is initi-

ated in line 3 as an empty schedule, and CRU returns it as its solution in
line 27. This decision to keep track of the best solution is based on the
way CRU explores the solution space. In its methodology, CRU follows a
Tabu-search metaheuristic. While it tries to minimize the cost of adding
𝑇 into 𝑠, it allows for increases in the cost in its cycles in order to get
out of local minimums and explore surrounding neighborhoods, so the
best-assembled solution can be in the intermediate cycles.

3.3. HAP algorithm

HAP has the responsibility of handling tasks at the proposal level,
nd decides which proposals are added or removed from a schedule. It
oes so by managing available CRU input and output. In HAP, several
RUs work concurrently in order to explore more of the solution space
epending on the availability of the resources in terms of time and
omputational power. Based on resources, HAP can be configured in
ifferent aspects. In addition to the configuration of CRU, including
𝑅 and 𝑚𝑎𝑥𝑖𝑡𝑒𝑟, HAP is set with the number of CRUs (𝑘) that it has

access. Although increasing both 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 and 𝑘 improves search quality,
increasing 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 contributes more to the exploitation of the algorithm.
On the other hand, a higher number of CRUs or increased 𝑘 results in a
reater exploration of HAP in the solution space. The stochastic range
r 𝑠𝑅, also contributes more to the exploration and affects the diversity
f the solutions from different CRUs. The solutions from higher 𝑠𝑅
over a larger range of solutions, and while this can lead to finding
etter solutions, it is best to increase it when there are enough CRUs
vailable to explore the available range.

HAP as a repair algorithm, processes a subset of all the proposals
5

𝑝 ⊆ 𝑃 ) at one time, and at its initial iteration (𝑖 = 0) starts with
n empty set of schedules (𝑆0 ← ∅) and the set of all the proposals
(𝑃0 ← 𝑃 ). Depending on the Selection strategy on 𝑝 ⊆ 𝑃 , and through
a certain number of iterations, HAP processes all the proposals in 𝑃
at least once, and returns when complete. Algorithm 2, describes the
algorithm of HAP at iteration 𝑖 of its process in detail.

Algorithm 2 HAP’s algorithm.
1: procedure HAP(𝑝 ⊆ 𝑃𝑖, 𝑆𝑖, 𝐾, 𝑠𝑅,𝑚𝑎𝑥𝑖𝑡𝑒𝑟) ⊳ Input of the ith cycle.
2: 𝑅 ← ∅ ⊳ A set of schedules to hold intermediate results.
3: for all 𝐶𝑅𝑈𝑘 ∶ 1 ≤ 𝑘 ≤ 𝐾 do
4: 𝑠′𝑘 ← 𝑠𝑘 ∈ 𝑆𝑖 ⊳ Selects a schedule for the 𝐶𝑅𝑈𝑘.
5: for all 𝑡 ∈ 𝑝 do
6: 𝑠′𝑘 ← 𝐶𝑅𝑈𝑘(𝑡, 𝑠′𝑘, 𝑠𝑅, 𝑚𝑎𝑥𝑖𝑡𝑒𝑟) ⊳ Calling the CRU

procedure.
7: add 𝑠′𝑘 to 𝑅
8: end for
9: end for
0: 𝑆𝑖+1 = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝑅 ∪ 𝑆𝑖)
1: 𝑃𝑖+1 = 𝑈𝑝𝑑𝑎𝑡𝑒(𝑆𝑖+1, 𝑃𝑖)
2: return (𝑃𝑖+1, 𝑆𝑖+1) ⊳ Input of the next cycle.
3: end procedure

According to algorithm 2, the input of HAP for its 𝑖th iteration is
detailed in line 1 and consists of a subset of remaining proposals at
this point (𝑝 ⊆ 𝑃𝑖), the set of the best schedules found in the previous
iteration (𝑆𝑖), and its configurations. Line 2 initializes 𝑅 as an empty
et of schedules to be filled in later with the results coming from CRUs.

The main loop of HAP is on all the 𝑘 available CRUs in the system
nd spans from lines 3 to 9 of the pseudo-code. This loop first selects
schedule for the 𝑘th CRU from the available options (line 4). The

ecision on how to distribute the schedules in 𝑆𝑖 between the CRUs
epends on the Selection strategy. Assuming 𝑠𝑘 as the selected base
chedule for 𝐶𝑅𝑈𝑘, HAP goes through all the tasks in 𝑝 and adds them
ccumulatively to 𝑠𝑘 with 𝐶𝑅𝑈𝑘. This is shown in line 6 of algorithm
, where 𝑠𝑘 is continually updated with the results from 𝐶𝑅𝑈𝑘. It then
roceeds to add 𝑠𝑘 to the results set of 𝑅 (line 7). This is done to
ave the option to handle the entry of proposals that have several
ompletion levels. At the end of the main loop in line 9, every task has
een processed by all the available CRU. After the CRUs finish their
rocess and all their results are added to 𝑅 in line 10, HAP proceeds
o evaluate all the schedules from the set 𝑅 and from the current
teration (𝑆𝑖) with 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(). The result of the 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛() makes

up the set of schedules for the next iteration (𝑆𝑖+1), and it contains
the most competent schedules that are selected based on the evaluation
strategy, and their fitness values on the different objectives of the
problem. Different evaluation strategies can be applied when selecting
the schedules for 𝑆𝑖+1. The default approach of HAP is to select not
more than the number of available CRUs (|𝑆𝑖+1| ≤ 𝐾), based on an
elitist selection. Another strategy is to choose only the best schedule
and call all the CRUs on it for the next iteration. By pruning the input
diversity of CRUs in the second strategy, we decrease the exploration
and increase the exploitation of HAP for a given proposal. The default
strategy ranks the schedules in an evaluation based on a single value
made up of a combination of the objective fitness with the weights
determined by an analytic hierarchy process (AHP) (William and Xin,
2018).

On the other hand, the objectives of the problem require specific
fitness functions to assign values on the competence of a schedule.
These functions are added to the 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(). To satisfy the main
common objectives of the problem, two fitness functions are defined
in the base setup of HAP. Eq. (4) describes the fitness functions 𝐹𝐶 ,
which reflects the completeness of the proposals with regard to their
priority, and 𝐹𝑇 , which is based on the time dedicated to sci. tasks.
These functions are defined on a schedule 𝑠, which contains different
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tasks (𝑡) of different proposals (𝑡 ∈ 𝑝, 𝑝 ∈ 𝑃 ) with specific windows
(𝑤 ∈ 𝑊 𝑡).

𝐹𝐶 (𝑠) =
∑

𝑝∈(𝑠∩𝑃 )
𝜗𝑝 ∗ 𝑝𝑟𝑖𝑝 𝐹𝑇 (𝑠) =

∑

𝑤∈𝑠
|𝑤| (4)

Eq. (4) reviews the default fitness functions of HAP. A schedule as
defined in the algorithm, can be iterated based on 𝑝, 𝑡, or 𝑤. In 𝐹𝐶 ,
or a proposal 𝑝, 𝑝 ∈ (𝑠 ∩ 𝑃 ) is true when it belongs to the set of all
roposals (𝑃 ), and has at least one of its tasks with a specific window,
cheduled in 𝑠. The priority of the proposals is denoted with 𝑝𝑟𝑖𝑝, and
≤ 𝜗𝑡 ≤ 1 is the completion level multiplier. This value is calculated

ased on the constraints and the number of tasks from a proposal which
re scheduled. The value of 𝜗 for the proposals that only have a value if
ll their tasks are scheduled can only switch between the two options: 0
f the number of tasks is less than all and 1 if all the tasks are planned.
n the other hand, proposals which have different acceptable levels in

heir completeness can choose in the range of [0, 1].
𝐹𝑇 iterates over 𝑠 on the windows (𝑤 ∈ 𝑠). These windows (𝑤) in 𝑠

are from the tasks (𝑡) that belong to a proposal (𝑡 ∈ 𝑝) from the set of
proposals (𝑝 ∈ 𝑃 ). In Eq. (4) |𝑤| represents the size or time duration of
the window.

4. Evaluation

In order to evaluate the performance of HAP, the algorithm is
adapted to the Ariel space mission. Utilizing a real-world example of
the problem in evaluation, provides a complete insight into HAP’s
algorithm behavior and its adaptation capability. In addition, it allows
us to compare HAP with other existing solutions that are designed
specifically for this problem and its complexities. In this section first a
description of the Ariel mission is provided in Section 4.1. After that we
etail the available methodological approaches to the Ariel problem in
ection 4.3 and make a comparison of their test results in 4.4. Finally,
summary of HAP’s performance, according to the analysis of the test

esults is provided in Section 4.5.

.1. Ariel mission

The Atmospheric Remote-sensing Infrared Exoplanet Large-survey,
riel, is an European Space Agency (ESA) space mission under design
tudy that consists of a 1-m class telescope with a low-resolution spec-
rograph as the main instrument. Its goal is to study of a large sample
f exoplanets to understand the structure of their atmosphere (Tinetti
t al., 2018) and to provide information about the planet formation
nd evolution. Ariel is expected to be launched in 2029 and during
ts 3.5 years of nominal operation phase it will characterize the atmo-
phere of about 1000 exoplanet (Edwards et al., 2019) targets. To do
o, it will observe two types of planetary events: transits, i.e. when
he planet passes in front of the star; and occultations, i.e. when it
asses behind. Such observations can only be performed in specific
imes according to the ephemerides and orbital properties of each
lanetary system. This inflicts strict constraints to the scheduling of
he observations. In addition, to ensure the overall quality of the data
eceived from each target, observations are repeated for certain number
f times. With the definitions detailed in this paper, a proposal 𝑝 of
riel, consists of several tasks with the same set of windows (𝑊 𝜏 =
𝜎 ,∀𝜏, 𝜎 ∈ 𝑝). Ariel may also be useful to study the planet spectrum

ariability during its orbit around the host star (hereafter, phase curve)
or several systems in order to study atmospheric circulation. Phase
urve (𝑃𝐶) observations have much longer windows, compared to the
est of the sci. tasks, and require specific handling strategies to prevent
iolating constraints of the other tasks.

Beside scheduling the sci. tasks of the targets from the proposals,
he scheduler for Ariel mission should also consider eng. tasks, which
onsist of calibrations and station keeping operations. Calibrations are
6

eriodical tasks to observe a stable star in order to check for the c
recision of the telescope. There are short calibrations which are 1 h
ng. tasks every 36 ± 12 h, and long calibrations defined as 6 h eng.
asks every 30 ± 1 days that monitor the instrumental stability at
ifferent scale. As for the station keeping operations, which are regular
aintenance tasks, frequency is set to 4 h every 28 ± 3 days. The main
ifference between the eng. and the sci. tasks of Ariel, is the prior
nowledge of the number of required tasks to satisfy the constraints.
hile this number is predefined as repetition for the sci. tasks of the

urvey, the final number of eng. tasks in the schedule depends on
ow close we plan them together. The objective here is to minimize
he number of these tasks and comply with their respective frequency
equest where possible. All the methods in the evaluation, prioritize
cheduling of sci. tasks over the eng. ones. This causes some violation
f boundaries for the eng. tasks which has to be mitigated as much as
ossible. Finally, in the scheduling, the time to re-position the telescope
etween two consecutive tasks (from hereafter, Slew) should also be
aken into account. Slew time depends on the coordination of the tasks
nd speed of the telescope movement.

.2. Datasets

Table 2, describes the datasets in the evaluation. There are four
atasets currently available for Ariel mission planning. These datasets
re used to simulate different scheduling scenarios to evaluate a final
lan for the mission. The main goal of Ariel is to complete the survey
f 1000 proposals to observe exoplanets. These proposals are provided
n the Mission Reference Sample (𝑀𝑅𝑆) dataset. The required tasks
or the 𝑀𝑅𝑆 targets observations cover ∼70% of the mission time, and
n order to increase the dedicated time to science, back-up targets are
dded in 𝑀𝑅𝑆𝐵 . 𝑀𝑅𝑆𝐵 , includes an additional ∼1100 Tier 1 proposals
n top of 𝑀𝑅𝑆. Fulfilling all the 𝑀𝑅𝑆𝐵 proposals tasks requires ∼200%
f the mission time. Phase curves, noted as Tier 4, are included in
he datasets 𝑀𝑅𝑆𝑃𝐶 and 𝑀𝑅𝑆𝑃𝐶

𝐵 to investigate the cost of adding
hese very long tasks to the schedule compare to 𝑀𝑅𝑆 and 𝑀𝑅𝑆𝐵
espectively.

According to Table 2, proposals in the datasets are categorized
n different tiers. The total number of proposals in the dataset is
entioned in the second column while the number of existing ones

rom each tier, are represented in columns 3 to 6. Each tier comes
ith a priority value. The third column in the table, Tier 4, represents

he number of phase curve proposals in the dataset. Tier 3 are the
enchmark proposals which have the highest priority value, and should
e all included in any acceptable schedule. Tier 2 or deep survey
roposals valued less than Tier 3, however, the goal is to complete the
asks of these proposals too if they do not disrupt any higher tier tasks.
inally, Tier 1 consists of the survey and back-up targets, which their
ain purpose of addition is to use the rest of the time unused by the

ther tiers to investigate less important proposals. The priorities values
ssigned to different tiers are as follows: 100 to Tier 4, 100 to Tier 3,
0 to Tier 2, and 3 to Tier 1.

The number of repetition for a task of a proposal in Ariel problem
as a direct link to its tier. To complete a proposal to a higher tier, we
ave to schedule more tasks for it. Beside Tier 4, for the rest of the tiers,
f a proposal cannot be scheduled with the initially request number of
asks, it will get another chance to be scheduled with a downgraded
ier and a lower number of repetition.

Coverage time or 𝐶𝑣𝑔.𝑡𝑖𝑚𝑒 column in Table 2, shows the percentage
f mission duration that is required to complete all the tasks required
y the targets of a dataset. Columns 8 and 9 count total number of
indows and required tasks in the dataset. Finally, the last column in
able 2, indicates the average conflicts between windows. For example,
verage conflict of dataset 𝑀𝑅𝑆𝑃𝐶

𝐵 , shows that at any moment during
he mission, on average ∼177 targets are observable and the scheduler
an only plan maximum one of them.

Fig. 2, visualizes the distribution of targets windows in the MRS
ataset throughout the mission duration. Each row in Fig. 2, represents
target and each bar shows a time window when the observation task
an be done.
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Fig. 2. Targets windows distribution of 𝑀𝑅𝑆 for the mission duration.
Table 2
Datasets characterization. Considering the following features: The number of proposals containing sci. tasks, a
count of the proposals of different tiers from Tier 4 to Tier 1, the coverage time of the proposals, the number of
windows, the number sci. tasks, and finally, the average conflict or overlap between the window.
Dataset Total # Tier Tier Tier Tier Cvg. Total # Total Avg.
name proposals 4 3 2 1 time windows #tasks conf.

𝑀𝑅𝑆 999 0 50 550 399 69.96% 186,236 3020 78.9
𝑀𝑅𝑆𝑃𝐶 1042 43 50 550 399 81.61% 197,410 3063 112.0
𝑀𝑅𝑆𝐵 2091 0 50 550 1491 199.37% 304,885 6667 143.9
𝑀𝑅𝑆𝑃𝐶

𝐵 2134 43 50 550 1491 211.02% 316,059 6710 176.9
4.3. Methods in evaluation

There are two developments available for Ariel mission scheduling.
The first one is based on the examples of Evolutionary Computa-
tion algorithms, described in Garcia-Piquer et al. (2017a), and utilizes
variations of Evolutionary Algorithms (EA) global optimizations in its
process. The second approach uses a greedy hill-climbing (HC) algo-
rithm, a local optimization, to schedule the mission. Greedy algorithms
are common solutions for small facilities and projects where there is not
much congestion in the schedule. Although greedy and EA approaches
are too different, the competence of their final output on Ariel datasets
are comparable considering all aspects. There are two main reasons
to explain this outcome. First is that the solution space has numerous
neighborhoods which their local minimums are not far apart. Second,
the limitations of the EA design to handle different types of tasks
negatively affects its performance. In the rest of this section, the setups
for the methods in evaluation are described. Section 4.3.1 reviews the
EA method, and Section 4.3.2 details the HC. Finally, Section 4.3.3 sets
out the adaptation of HAP to the Ariel problem, and its setting.

4.3.1. EA method
In an EA, the key is to generate and evaluate a large number of

solutions. In a problem with a variety of constraints, dependencies,
and special cases, some compromises should be taken into account
to maintain the pace. For the EA used in the Ariel example, sci. and
eng. tasks are scheduled in separate processes. Calibrations and station
keeping are scheduled at first by a Genetic Algorithm (GA), with the
objective to minimize potential conflicts with the sci. tasks. In the
implementation, in order to match the properties of the algorithm, a
fixed number of tasks is assumed and scheduled. This fixed number is
estimated from the average cadence of these tasks, to make sure this
cadence is fulfilled. The resulting schedule is then passed to a Multi-
7

Objective Evolutionary Algorithm (MOEA), with similar objectives as
Table 3
Algorithm parameters for the EA method.

Parameter Value

Max generations 5000
Initial population 500
Max population 1500
Crossover probability 0.9
Mutation probability 1∕|𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙|

HAP, to plan the sci. tasks without touching the eng. tasks. The issue
with this adaptation is that by separating the scheduling of different
types of tasks, and also by assuming a fixed number of eng. tasks
instead of dynamically reaching the necessary number, we lose many
optimization opportunities. This design decision is enforced by the
characteristics of the incorporated EA, and the specification of the
problem.

The genes of the individuals in the utilized MOEA, represent the
requested observations of every target, and their allele shows the
scheduled window. The algorithm parameters, applied to both GA and
MOEA, for the tests are detailed in Table 3, where |𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙| means
the size of an individual.

4.3.2. HC method
The second method used in the evaluations, is a hill-climbing (HC)

greedy algorithm, offering a local optimization to solve the problem.
The main advantage of local optimizations is the low computational
cost. Also, due to the simplicity of its design compared to EA, it is much
more accessible and easier to implement and adapt to new problems
and special cases. On the other hand, the main downside of the hill-
climbing algorithm is its limitation in optimizing complex problems.
Greedy algorithms work on less congested problems but come short in
problems where the ratio of available time to the proposal requests
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is low. The hill-climbing method in evaluation is directed by four
normalized decision variables ({𝑑1, 𝑑2, 𝑑3, 𝑑4}) defined on every window
of the tasks.

A combination of hierarchical evaluation and weighted aggregation
of these values determines the overall competence of a window when
building a schedule. At a scheduling moment 𝑚, for a target 𝑡 and a
schedule 𝑝, decision variables are calculated as described in definition
(5).

𝑑1 =

{

1 if has tasks scheduled
0 otherwise

𝑑2 =
|𝑡| − |𝑝 ∩ 𝑡|

|𝑊 ′
𝑡 |

, 𝑤 ∈ 𝑊 ′
𝑡 ∶

{

𝑤 ∈ 𝑊𝑡

𝑤.𝑏𝑒𝑔𝑖𝑛 > 𝑚

𝑑3 =
𝑝𝑟𝑖

𝑝𝑟𝑖𝑚𝑎𝑥

𝑑4 =
𝑑𝑚𝑎𝑥 − 𝑑
𝑑𝑚𝑎𝑥

(5)

The first decision variable, 𝑑1, promotes finishing the tasks that al-
ready exist in the schedule. 𝑑2, rates the number of tasks left to schedule
to the remaining windows of a target. This is calculated by reducing the
number of planned tasks of a target 𝑡 in the schedule 𝑝 (|𝑝 ∩ 𝑡|) from
he number of requested tasks from 𝑡 (|𝑡|), divided by the number of
he target’s windows that start after 𝑚 (𝑑 = 𝑤.𝑏𝑒𝑔𝑖𝑛 > 𝑚). Finally, 𝑑3
nd 𝑑4 represent the normalized priority and delay respectively. 𝑝𝑟𝑖𝑚𝑎𝑥
ontains the maximum priority value of the proposals. 𝑑 is the delay of
window relative to the scheduler time (𝑤.𝑏𝑒𝑔𝑖𝑛 − 𝑚), and 𝑑𝑚𝑎𝑥 holds

he maximum allowed delay in the execution.

.3.3. HAP method
The adapted HAP for Ariel problem uses the framework defined in

ection 3. Different setups are defined to handle different types of tasks
ithin the same process. For the sci. tasks of the problem, the Selection

trategy is selected to make a full constructive method. This translates
o having one schedule for each CRU (‖𝑆𝑖‖ = 𝐾), and HAP, passing the
est results of CRUs to themselves from their previous iteration. This
istribution of resources allows us to explore a wider range of solutions,
s their diversity is not reduced in the intermediate iterations. The input
chedule for the 𝐶𝑅𝑈𝑘 at iteration 𝑖+1, and is either 𝑠𝑘, or 𝑠′𝑘 from the
ast call of 𝐶𝑅𝑈𝑘 in iteration 𝑖.

In Ariel, proposals have scientific value when all their tasks are
cheduled, so in the Evaluation strategy of the adapted HAP, and calcu-
ation of the fitness 𝐹𝐶 , the value of 𝜗 is either 0, indicating a proposal is
ot finished, or 1, representing a fully scheduled one. In the calculation
f 𝐹𝐶 , the given priorities of different tiers are {100, 100, 10, 3} for Tier
to Tier 1 respectively. In order to give a more clear perspective,

he 𝐹𝐶 values that are represented in the evaluation are normalized
etween [0, 100]. In this case, the value of 100 shows all the proposals
n the dataset are scheduled. It is worth mentioning that for 𝑀𝑅𝑆𝐵
nd 𝑀𝑅𝑆𝑃𝐶

𝐵 datasets, reaching the maximum value is impossible, as
cheduling all the proposals require twice the available time for Ariel.

In the Ariel problem, 𝐹𝐶 is the main objective. Growing number of
roposals as the survey progresses, lowers the emphasis on the other
itness value, 𝐹𝑇 . 𝐹𝑇 does not need any modification and is used as
he default format, with a quarter weight of the 𝐹𝐶 . Finally the Update
trategy for the sci. tasks of Ariel is the default approach, where the
roposals which are already completed in 𝑆𝑖+1 will be removed from
he set of proposals in 𝑃𝑖, to create 𝑃𝑖+1.

The fundamental difference between the sci. and the eng. tasks of
he problem is that the first ones are subjected to maximizing with
rior knowledge of required number of tasks, and the later is subject to
inimization without the prior knowledge of the place or the required
umber of tasks. Eng. tasks of Ariel in HAP, are defined as single task
roposals (𝑝𝑒), and are placed in the schedule after the sci. tasks are
rocessed. The initial window of 𝑝𝑒 is set at the beginning of the survey.
nce the exact place of the task within that window is determined by

he CRUs, HAP in its Update module calculates the next appropriate
indow and creates a new proposal based on it. This cycles continues
ntil the next window of a eng. tasks is after the end of the mission.
his strategy solves the problem with unknown number of such tasks.
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Table 4
Algorithm parameters for the HAP method.

Parameter Notation Value

Number of CRUs 𝑘 10
CRU maximum iterations 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 200
Stochastic range 𝑠𝑅 3

To handle their required minimization, CRU works in the opposite
direction compared to sci. tasks. In contrary to the default approach,
a CRU starts its search to put a eng. task in its window from the
end of it. This prioritization allows us to emphasize on scheduling
two consecutive eng. tasks as far as possible without violating their
oundaries.

After all the different types of tasks are scheduled in this setup, HAP
ilters out the incompetence results by using a Pareto Optimal Front
PF) selection on 𝐹𝑇 , 𝐹𝐶 , and two other secondary fitness values that
epresent the quality of eng. tasks scheduling. First, is to minimize the
umber of eng. tasks of each type in the final schedule (𝐹𝐸). Second to
ave the minimum number of violations from their boundaries (𝐹𝑉 ).
his detailed setup to handle the specific demands of Ariel, also gives
n example of how HAP manages different types of tasks in one process,
ith a few small additions to its default modules. We finish this section
ith Table 4 that shows HAP algorithm parameters that are used in the

ests.
.4. Analysis of results

To have a better insight into the performance, while HC as a deter-
inistic method requires one simulation per setup, tests on HAP and EA
ith stochastic mechanisms demand repetition. The results presented in

his section for these approaches are aggregated from 25 simulations
n each test. In the rest of this section, we first take a closer look at
he effect of stochastic selection on the proposed HAP by comparing it
ith a single CRU and a deterministic version of itself in Section 4.4.1.
fter that, the comparison results between the different methods on the
vailable datasets are presented. Section 4.4.2 details performance on
he 𝑀𝑅𝑆 dataset, followed by Section 4.4.3, which describes the results
f 𝑀𝑅𝑆𝐵 . In Section 4.4.4, the outcome of the tests on the datasets
hat include 𝑃𝐶 are represented, and finally, Section 4.4.5 contains a
omputational cost analysis.

.4.1. HAP stochastic improvement
The stochastic selection in CRU allows HAP to obtain different

esults by running the same process, thereby exploring more areas of
he solution space and providing a variety of solutions to the user. The
tochastic selection is weighted toward the options with the lower Cost
alues as defined in Definition (3), and it is not restricted to the lowest
ne. This strategy helps CRU to not get stuck in a local minimum during
ts search, however, if only the lowest cost option is to be selected by
hoosing 𝑠𝑅 = 1, HAP still provides a single competent result. This
pecific deterministic setup of HAP, which does not use multi-start, and
equires only one CRU is referred to as Accumulative Planner (𝐴𝑃 ), and
n this section, we compare it with the 𝐻𝐴𝑃 as described in Section 4.3.
able 5 displays the performance of AP and HAP on the available
atasets.

Table 5, shows that HAP obtains a schedule with better 𝐹𝐶 fitness in
ll the datasets. The value of 𝐹𝐶 as the main objective of the problem,
epresents the scientific return of Ariel and it, therefore, receives the
ost attention in evaluating a schedule, and the selected solutions of
AP for different datasets presented in Table 5 are the best schedule
ased on it. The solution with the highest 𝐹𝐶 does not necessarily
rovide the best values for the other objectives of the problem. For
xample, AP on the 𝑀𝑅𝑆𝐵 and 𝑀𝑅𝑆𝑃𝐶

𝐵 datasets completes more
roposals and spends more time on sci. tasks than HAP, as indicated in
olumns 3 and 5 in Table 5, respectively. Among all the solutions pro-

ided by HAP, they achieve a higher value than AP in all the objectives
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Table 5
Comparison of HAP with AP (deterministic single iteration version).

Dataset Method Comp. Obs. Sci.time (%) T4 T3 T2 T1 F𝐶 (%)

𝑀𝑅𝑆 AP 998 3016 69.59 0 50 550 398 99.97
HAP 999 3020 69.97 0 50 550 399 100

𝑀𝑅𝑆𝐵 AP 1507 3035 78.38 0 50 290 1167 76.14
HAP 1495 3082 78.43 0 50 316 1129 77.12

𝑀𝑅𝑆𝑃𝐶 AP 980 2794 75.09 43 50 484 403 95.95
HAP 994 2762 74.70 43 50 497 404 96.77

𝑀𝑅𝑆𝑃𝐶
𝐵 AP 1379 2657 78.32 43 50 289 997 78.77

HAP 1367 2713 78.50 43 50 315 959 79.53

Table 6
Comparison of algorithms performance for the MRS dataset.

Method # sci. Tiers Times (%) 𝐹𝐶

proposals 3 2 1 𝑠𝑐𝑖. 𝑒𝑛𝑔. (%)

𝐻𝐴𝑃 998 ± 1 50 550 398 ± 1 69.66 ± 0.31 3.51 ± 0.3 𝟗𝟗.𝟗𝟕 ± 𝟎.𝟎𝟑
𝐸𝐴 972 ± 3 50 532 ± 3 390 ± 4 65.9 ± 0.4 4.1 98.23 ± 0.35
𝐻𝐶 992 50 534 408 67.79 5.25 98.86

similar to what is shown in the table for 𝐹𝐶 . However, the difference,
especially in small datasets, is small. AP as a deterministic approach,
with a reduced computational cost, provides good reproducible results.

In order to put the results shown in Table 5 into perspective, the
𝐹𝑐 values are used in the statistical analysis. Considering the number
of available methods and datasets, Student’s t-test (De Winter, 2013),
was selected for the analysis. T-test comparison between HAP and AP,
reveals a 𝑝-value of 0.054, which is significant with 90% confidence,
however, note that it is very close to the 95% threshold. It is worth
mentioning that for 𝑀𝑅𝑆 and 𝑀𝑅𝑆𝑃𝐶 , where the 𝐹𝑐 values are close
to the maximum, the stochastic improvement of 𝐻𝐴𝑃 is small, yet
effective.

Observation 1. AP as a deterministic approach provides a reliable
and competent solution. While the stochastic process of HAP allows
it to search more areas of the solution space and find better results,
if the computational cost is limited, in order to improve the reliability
of HAP, one of the CRUs can be configured as AP.

4.4.2. 𝑀𝑅𝑆 Dataset
The 𝑀𝑅𝑆 dataset, represents the main goal of the Ariel mission.

Assessing the performance of each method on it has the highest impor-
tance. Although scheduling all the requested tasks from 𝑀𝑅𝑆 takes
only 69.96% of the mission duration, strict constraints and a high
number of overlaps in the windows makes it challenging to complete
all the proposals. Table 6 shows the performance of the methods, on
this dataset.

As appears in the second column of Table 6, out of 999 proposals,
HAP is the only approach that is able to complete all the tasks in its
solutions. This compares to 972±3 by EA, and 991 by HC. According to
this objective HAP has the best performance, followed by HC, and with
EA in last place. The same ranking is true when comparing 𝐹𝐶 fitness
values, as shown in column 8. Although EA completes about the same
number of Tier 2 proposals as HC (column 4), the greedy approach
completes more Tier 1 proposals (column 5). The number of completed
Tier 1 proposals for HC is higher than the initial number presented in
the dataset. That is because some of the Tier 2 proposals which could
not be completed are reintroduced as Tier 1 proposals with a lower
number of required tasks and HC manages to put them in the schedule.
This strategy is in effect for all the methods under evaluation.

According to Table 6, regarding the time spent on sci. tasks as
indicated in column 6, HAP still obtains the best result, while HC holds
second place, and EA follows the other methods. However, EA assigns
9

less time to calibrations compared to HC. There are several reasons
explaining these results. The main cause is the way of handling both
sci., and eng. tasks in one schedule. In 𝐻𝐶, eng. tasks are introduced
as normal ones with a medium to high priority and one window. The
scheduler forces an eng. task into the schedule if it is reaching the end
of its allowed interval. This strategy ensures these tasks are scheduled
with a certain degree of flexibility. HC does not try to minimize the
number of eng. tasks, resulting in the highest time spent on them
(5.25%) in comparison. However in this way 𝐻𝐶 still manages to
outperform 𝐸𝐴 in all the other categories, due to the fact that 𝐸𝐴’s
strategy is to separate the scheduling of sci. and eng. tasks. While this
means lesser time spent on operations (4.1%) compared to 𝐻𝐶, their
scheduling prevents the method from completing more targets as they
would be scheduled on top of the operation tasks. The other reason
for this performance is the low complexity of the dataset. Minimum
assumptions and directions on the solutions in EA, on a non-congested
schedule with strict constraints, decreases the performance of this
approach. On the other hand, smaller problems are more suitable for
HC and the results in Table 6 back this up. HAP manages to outperform
the other methods in all the fields described in the table. This includes
the shortest time spent on operation tasks (3.62%). Table 7, takes a
closer look at the details of the scheduled eng. tasks, among the results.

According to Table 7, 𝐻𝐶 and 𝐸𝐴 schedule more operation tasks
than 𝐻𝐴𝑃 , as shown in columns 2, 6, and 10. Columns 3, 7, and 11
reflect the main reason for this difference by presenting the average
distance between two operation tasks of different types. The average
distance in HC and EA is less than in HAP in all the tasks.

In the case of violations of boundaries which are indicated in the
table in columns 5, 9, and 13, the weakest performance belongs to 𝐸𝐴
with 135 violations in short calibration (SC) scheduling, and seven in
long calibration (LC). While EA is the only approach with LC violation,
concretely for SC, HC, and HAP also break the boundaries on a few
occasions. In the tests of HAP, there is a small margin assumed for
calibrations to be changed after they are planned when there are no
better options. As HAP puts eng. tasks as far away as possible, there is
a minor chance that moving one later within the previously assigned
window takes it out of range. This can easily be avoided within the
process, although it was allowed under certain scenarios to increase the
optimization opportunities of the sci. tasks. The violation of boundary
for 𝐻𝐴𝑃 max out is on average at 2.09 (column 4) which is less than
ten percent of the maximum allowed of two days for short calibrations.
𝐻𝐶 exceeds more and has a maximum distance of 2.52. Finally, in EA,
the maximum short calibration distance is about twice what is allowed
at 3.93. However, the average distance between them is kept close to
the SC cadence due to the larger number of tasks that are added to the
schedule.

On the stochastic methods applied to 𝑀𝑅𝑆, namely HAP and
EA, a paired sample t-test is performed for analyzing the statistical
significance. The test uses the data produced by the 25 repetitions of
scheduling by each method. The result shows that HAP is significantly
better than EA on the MRS dataset with over 99% confidence, as in
every instance it outperforms EA. The distribution of 𝐹𝑐 values in the
repeated tests on MRS, by HAP and EA, is demonstrated in a box plot
in Fig. 3.

According to Fig. 3, the standard deviation of HAP results is smaller
than EA, and its box indicates that there are more instances above the
median result.

Observation 2. For the 𝑀𝑅𝑆 dataset, 𝐻𝐴𝑃 consistently achieves
the best results in all aspects and objectives. For the relatively small
dataset of 𝑀𝑅𝑆 where ideally all the proposals can be fitted into
a schedule, the greedy approach of HC works better than the heavy
global optimization that EA provides.
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Table 7
Detailed results for eng. tasks on 𝑀𝑅𝑆.
Method Short calibration Long calibration Station keeping

Plan. Dist. (day) Vio. Plan. Dist. (day) Vio. Plan. Dist. (day) Vio.

tasks avg. max tasks avg. max tasks avg. max

𝐻𝐶 997 1.24 2.52 5 58 21.81 28.25 0 67 18.92 29.83 0
𝐸𝐴 834 1.48 3.93 135 42 29.36 43.10 7 45 27.21 27.99 0
𝐻𝐴𝑃 723.80 1.73 2.09 0.68 36.20 34.75 39.75 0 42.60 29.50 30.83 0
Table 8
Comparison of algorithms performance for the 𝑀𝑅𝑆𝐵 dataset.

Method Comp. Tiers Times (%) 𝐹𝐶

proposals 3 2 1 𝑠𝑐𝑖. 𝑒𝑛𝑔. (%)

𝐻𝐴𝑃 1488 ± 15 50 310 ± 6 1128 ± 16 77.9 ± 0.6 3.6 ± 0.1 𝟕𝟔.𝟖𝟔 ± 𝟎.𝟑𝟐
𝐸𝐴 1110 ± 18 50 399 ± 7 660 ± 11 68.9 ± 0.2 4.1 73.16 ± 0.57
𝐻𝐶 972 47 264 661 67.65 4.47 62.27

Fig. 3. A box plot of HAP compared to EA on 𝑀𝑅𝑆, for 25 repetitions of the test.

4.4.3. 𝑀𝑅𝑆𝐵 Dataset
The second dataset that the performance of the methods in evalua-

tion are tested on is 𝑀𝑅𝑆𝐵 , which includes the main and the backup
proposals. Backup proposals are added to the Tier 1 list, and their
priority value is derived from fitness calculations. Unlike 𝑀𝑅𝑆, in
order to complete all the proposals, 𝑀𝑅𝑆𝐵 requires about twice as
much time that it is available for Ariel (199.37%). This means that a
scheduler must leave some proposals out of its solutions. This tips the
favor toward EA, since it is more challenging for HC to handle. The
results for these two methods along with HAP on 𝑀𝑅𝑆𝐵 , are presented
in Table 8 in order to give a perspective on their performance.

The most notable performance in Table 8 is for HAP which achieves
better results than its rivals. With the same consistency as it had for
𝑀𝑅𝑆, HAP obtains better solutions in almost all the fields, except for
completed Tier 2 proposals as indicated in column 4. EA completes
more Tier 2 proposals than HAP, however, the number of completed
Tier 1 shown in column 5 is significantly higher. Fitness value 𝐹𝐶 in
column 8, gives an overall value to the completed proposals of different
tiers. A comparison on 𝐹𝐶 shows that the competence of the schedules
HAP constantly achieves higher values than EA and HC. Unlike with
the 𝑀𝑅𝑆 dataset, the results on 𝑀𝑅𝑆𝐵 from EA are better than those
by HC. The difference in competence in their results is notable as can
be seen in Table 8.

The results from EA are competent, and there is a small difference
between 𝐹𝐶 values in EA and HAP. HC on the other hand struggles to
keep up with the more sophisticated approaches. As HC cannot decide
to remove any tasks that it has already scheduled, selecting proposals to
leave out is problematic, and depends mainly on which one comes first.
This leads to it finishing only 972 proposals which is not only lower than
10
Fig. 4. A box plot of HAP compared to EA on 𝑀𝑅𝑆𝑏, for 25 repetitions of the test.

the other two methods but also lower than the number of completed
targets for 𝑀𝑅𝑆. All the proposals in 𝑀𝑅𝑆 also exist in 𝑀𝑅𝑆𝐵 , and
so this means that an over-populated list of proposals damages the
performance of HC in completing proposals, and it is better to prune
the dataset and select the more important proposals before passing it
to the method. Another observation from Table 8 is on the time on sci.
tasks in column 6. There is a significant difference between HAP and
the two other methods.

The scheduling results of eng. tasks for 𝑀𝑅𝑆𝐵 are similar situation
to those of 𝑀𝑅𝑆. Column 7 in Table 8 shows the time assigned to these
tasks, and Table 9 details the quality of their scheduling.

Although EA has less time assigned to eng. tasks than HC, it has
a higher number of violations in their boundaries as seen in Table 9.
HC still exceeds the maximum allowed time in 101 situations for
Short Calibrations (column 5), in two situations for Long Calibrations
(column 9), and in one situation for Station Keeping (column 13). The
most competent results are achieved by HAP, which has the lowest
number of scheduled eng. tasks and no violations of boundaries.

Similar to 𝑀𝑅𝑆, a statistical analysis of paired sample t-test is
performed to analyze the results obtained by HAP, compared to EA.
The test on 25 repetitions indicates that HAP achieves significantly
better results on 𝑀𝑅𝑆𝑏 with over 99% confidence. This is because HAP
consistently outperforms EA, as it is illustrated in Fig. 4.

Fig. 4 shows the results from HAP have a lower standard deviation
than EA. This is similar to the plot for 𝑀𝑅𝑆 (see Fig. 3), however,
unlike that, the majority of the results are equally around the median.
The figure also indicates that the maximum 𝐹𝑐 of HAP is further away
from the median than the minimum. This aspect improves by increasing
the number of CRUs, which is the population of HAP, in each test.

Observation 3. For the dataset 𝑀𝑅𝑆𝐵 , like 𝑀𝑅𝑆, HAP provides
the best results, but unlike that, EA takes over HC as the second
competent method. HAP and EA both provide good results, however,
HC falls behind the other two, on a larger dataset.
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Table 9
Detailed results for operation tasks on 𝑀𝑅𝑆𝐵 .
Method Short calibration Long calibration Station keeping

Plan. Dist. (day) Vio. Plan. Dist. (day) Vio. Plan. Dist. (day) Vio.

tasks avg. max tasks avg. max tasks avg. max

𝐻𝐶 890 1.39 3.39 101 50 25.21 33.25 2 46 27.11 31.05 4
𝐸𝐴 832 1.49 3.72 137 42 29.26 49.55 4 45 27.21 28.03 0
𝐻𝐴𝑃 747.50 1.67 1.96 0 34.80 35.97 39.75 0 43.20 29.19 30.83 0
Table 10
Comparison of HAP and HC performance in 𝑀𝑅𝑆𝑃𝐶 and 𝑀𝑅𝑆𝑃𝐶

𝐵 .

Method Comp. Tiers Times (%) F𝐶

proposals 4 3 2 1 sci. eng. (%)

𝑀𝑅𝑆𝑃𝐶

𝐻𝐴𝑃 986 ± 8 42.5 ± 0.5 50 493 ± 4 401.50 ± 10.5 74.42 ± 0.34 3.46 ± 0.04 96.57 ± 0.2
𝐻𝐶 964 43 50 504 367 75.02 4.61 96.52

𝑀𝑅𝑆𝑃𝐶
𝐵

𝐻𝐴𝑃 1378 ± 14 42.5 ± 0.5 50 305 ± 10 982 ± 23 78.02 ± 0.9 3.52 ± 0.06 𝟕𝟗.𝟎𝟗 ± 𝟎.𝟒𝟔
𝐻𝐶 921 40 48 231 603 68.93 4.48 67.03
p
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4.4.4. 𝑀𝑅𝑆𝑃𝐶 And 𝑀𝑅𝑆𝑃𝐶
𝐵 datasets

The addition of abnormally long Phase Curve (PC) proposals to
he 𝑀𝑅𝑆 and 𝑀𝑅𝑆𝐵 datasets brings extra challenges and some con-
traint relaxation. PC proposals were not initially considered in the
roblem definition and so after their introduction, the methods have
o be adapted to the new conditions. The main difficulty of PC is the
onflict with SC. Unlike other tasks, which usually have windows with a
uration of a few hours, a PC requires a window duration in the order
f days. As mentioned in Section 4.1, the SC task has to be repeated
very 1.5 ± 0.5 day and therefore has to be an exception in the case of
andling PCs, which have a longer duration than SC interval.

Both HAP and HC approaches can handle PC proposals without a
tructural change. This is due to their strategy of scheduling eng. tasks

one at a time and within the same process as the other tasks. This gives
them enough flexibility to delay SCs if a PC is scheduled. On the other
hand, in EA, eng. tasks are scheduled separately from the sci. ones and
before them. Thus, it is not possible to make an exception for the PC
proposals in eng. task scheduling, when their place in the schedule has
not been decided. The necessity to make a fundamental change to EA
in order to be able to schedule PC tasks and the high development
cost prevented us from testing EA on the datasets that included PC
proposals. In Ariel, PC proposals have the same priority as Tier 3, and
the goal is to schedule all 43 of them. So, HAP and HC, are the only
methods that are tested with 𝑀𝑅𝑆𝑃𝐶 and 𝑀𝑅𝑆𝑃𝐶

𝐵 datasets.
The selection strategy of HAP is set to pass PC proposals to CRUs

after the rest of the sci. tasks and the eng. tasks. As PC has high priority
and cost, if they are passed to CRUs early, they will occupy empty
windows whose cost is unknown. For a cost-heavy PC proposal, it is
better to delay their scheduling until the last, when most of the new
windows have overlapped with the tasks in the schedule, and that
determines their true cost. The amount of time that is required to
complete all the proposals in 𝑀𝑅𝑆𝑃𝐶 is equivalent to 81.61% of the
Ariel survey duration. This value for the 𝑀𝑅𝑆𝑃𝐶

𝐵 dataset increases to
211.02%. The outcome of the tests on these datasets is presented in
Table 10.

Table 10 shows that for dataset 𝑀𝑅𝑆𝑃𝐶 , HC creates a good so-
lution. The 𝐹𝐶 of this solution is slightly below a median schedule
produced by HAP, yet it has completed more Tier 2 proposals (column
2) and assigned more time to sci. tasks (column 7). HAP still outper-
forms HC in the rest of the attributes and provides several solutions at
a time. A good solution obtained by HAP achieves a distinctively better
𝐹𝐶 than HC. This is mainly due to the fact that HAP completes a higher
number of Tier 1 proposals.

On the other hand, for 𝑀𝑅𝑆𝑃𝐶
𝐵 , HC performance drops signifi-

cantly. If we compare this decrease with the one discussed in Sec-
tions 4.4.2 and 4.4.3, from 𝑀𝑅𝑆 to 𝑀𝑅𝑆 , it is much more noticeable.
11

𝐵 H
On the expanded dataset of 𝑀𝑅𝑆𝑃𝐶
𝐵 , HC completes 5% fewer proposals

than 𝑀𝑅𝑆𝑃𝐶 and spends 6.09% less time on the sci. tasks. In relative
terms, HAP completes about 33% more proposals and covers 9.09%
more of time with sci. tasks. The competence difference between the
solutions provided by HAP and HC in, 𝐻𝐴𝑃 𝑃𝐶

𝐵 , in the most complex
dataset, is severe. This significance is reflected in their corresponding
𝐹𝐶 from the last column of Table 10, where the HC schedule obtains a
12.87% lower 𝐹𝐶 value than a median schedule by HAP.

Table 11 details the results of operation tasks scheduling on 𝑀𝑅𝑆𝑃𝐶

data. The first thing to note is the number of short calibration (SC) vio-
lations in both methods. As expected, the methods violated SC intervals
when, a PC is scheduled. According to column 5 of the table, while
HC for 𝑀𝑅𝑆𝑃𝐶 has violated the boundaries of SC the same number of
times as it has scheduled PC (43 times), HAP still manages to schedule
the shortest PC proposals without violating SC tasks (37.9 times on
average). Other than that, like on the rest of the tests, HAP schedules
fewer eng. tasks with more distance and with lower violations.

Observation 4. HAP is able to adapt to dynamic environments while
maintaining its good solution competence. This is more significant on
the most complex dataset, where EA could not be adapted, and HC
obtains significantly worse results.

4.4.5. Computational cost
So far, we have evaluated HAP and the other methods by their

solution competence. However, one major factor in the performance
comparison is the computational cost or the execution time, which in
most cases determines the limits of the search in the solution space by
different approaches. Currently, there is no maximum execution time
for Ariel, however, a limit will be defined in the later development
hases of the problem. Table 12 demonstrates the computational cost
f HAP and its special case, AP, along with HC, and EA, on the different
atasets under evaluation. The configuration of each method is the
ame as that described in Section 4.3. The computer that the tests were
erformed on is equipped with a 3.2 GHz, 8-core CPU, and 16 GB of
AM.

The results for AP are obtained using a single CPU core. While the
omputational cost of AP can be reduced by multiprocessing, as in
AP implementation, this setup also shows the minimum execution

ime of HAP. Based on the available processing cores and desired
omputational cost we can calculate the number of necessary CRUs in

AP.
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Table 11
Detailed results for operation tasks on 𝑀𝑅𝑆𝑃𝐶 and 𝑀𝑅𝑆𝑃𝐶

𝐵 .

Method Short calibration Long calibration Station keeping

Plan. Dist. (day) Vio. Plan. Dist. (day) Vio. Plan. Dist. (day) Vio.

tasks avg. max tasks avg. max tasks avg. max

𝑀𝑅𝑆𝑃𝐶

𝐻𝐶 887 1.40 9.12 43 56 22.61 30.00 0 48 26.38 30.17 0
𝐻𝐴𝑃 676.90 1.85 9.53 37.90 36.30 34.65 39.75 0 42.70 29.50 30.83 0

𝑀𝑅𝑆𝑃𝐶
𝐵

𝐻𝐶 824 1.51 9.53 62 50 25.21 37.25 0 63 20.14 32.02 2
𝐻𝐴𝑃 699.80 1.79 9.56 35.40 35.00 35.62 39.75 0 43.00 29.25 30.83 0
As can be seen in Table 12, HAP significantly outperforms EA in the
xecution time for the two comparable datasets. While it is expected
hat an EA should have a higher computational cost than the other
wo methods under evaluation, these results place this difference into
certain perspective. According to the design of the EA, its execution

ime can be divided into two separate parts: eng. task and sci. task
cheduling. For 𝑀𝑅𝑆 dataset, EA spends 1800 s on scheduling the
ng. tasks and only 240 s for sci. tasks. In 𝑀𝑅𝑆𝐵 datasets with twice
he number of proposals compared to 𝑀𝑅𝑆, eng. tasks take 3636 s
o schedule, while sci. tasks require 600 s. These values show that
n the EA under evaluation, most of the execution time is spent on
rocessing eng. tasks. The scheduling of sci. tasks are relatively fast.
he reason for this difference, despite the fact that there are more
ci. tasks, is that while the scheduling of sci. tasks is handled as a
ermutation of different tasks, for eng. tasks, EA assumes every minute
or the possible start of calibration for the whole duration of the Ariel
ission (3.5 years).

Compared to HC however, while HAP is faster in the smallest
ataset (MRS), for the rest of the datasets it has a higher computational
ost. The lower cost of HC has a huge impact on its performance on
ore complex datasets, as indicated in Sections 4.4.3 and 4.4.4.

On average, the computational cost of HAP stands between HC and
A. It is more sensitive to the number of input proposals than the other
ethods, however even on the largest dataset, it has a significantly

ower computational cost than EA. The main reason for the great leap
n execution time for HAP is that the average time spent on processing a
roposal by CRUs depends on the available empty spots in the schedule.
n a sparse schedule, it takes fewer CRU cycles to empty its Lobby
nd finish the process, rather than when the schedule is almost full
hen it usually takes the maximum number of cycles. For the 𝑀𝑅𝑆
nd 𝑀𝑅𝑆𝑃𝐶 datasets, the coverage time of all the proposals is less than
he available time, so the schedule will never be full and HAP works
ith a low computational cost. On the other hand, for the 𝑀𝑅𝑆𝐵 and
𝑅𝑆𝑃𝐶

𝐵 datasets, with a coverage time twice as much as the available
ime, HAP works on a full schedule.

AP, as the smallest HAP, has the better timing overall, with only
.02 s for 𝑀𝑅𝑆, and 233.49 s for 𝑀𝑅𝑆𝑃𝐶

𝐵 . However, it should be taken
nto account that the tested HAP has 10 CRU, thus exploring ten times
ore than AP in the solution space.

Observation 5. Compared to the other methods in evaluation, the
computational cost of HAP is more input dependent. As the schedule
becomes more congested, HAP takes longer time to process a proposal.
With that in mind, HAP has less computational cost than HC for the
smallest dataset, and it is significantly faster than EA, even on the
largest dataset.

4.5. Performance summary

The Ariel mission, as a developing project, has seen several expan-
sions to its initial definitions. This is noticeable first in the difference
12
Table 12
Comparison of the computational cost (in seconds) of the methods.

Method 𝑀𝑅𝑆 𝑀𝑅𝑆𝐵 𝑀𝑅𝑆𝑃𝐶 𝑀𝑅𝑆𝑃𝐶
𝐵

𝐻𝐴𝑃 12.09 561.42 69.78 602.76
𝐴𝑃 3.02 230.82 13.34 233.49
𝐻𝐶 20.31 31.97 18.90 30.94
𝐸𝐴 2040 4236 – –

between the 𝑀𝑅𝑆 and the 𝑀𝑅𝑆𝐵 in the number of proposals and
second in the differences between the normal and 𝑃𝐶 tasks. 𝑃𝐶 tasks
are added later to the problem, so the existing methods had to be
adapted in line with the changes. While the 𝐸𝐴 method fails to handle
them without major changes to its structure, 𝐻𝐴𝑃 and 𝐻𝐶 are able
to adapt to the new conditions. On the other hand, 𝐻𝐶 performance
dropped significantly when the number of proposals doubled in 𝑀𝑅𝑆𝐵 ,
compared to the initial proposal set in 𝑀𝑅𝑆, whereas both 𝐻𝐴𝑃 and
𝐸𝐴 managed that situation well.

𝐻𝐴𝑃 was able to adapt to the new demands with minimum changes
in all situations and consistently outputs the best results. This reliability
was not present in the other approaches in the evaluation. These
characteristics of HAP satisfy the main objectives of the proposal.
The architecture of HAP allows for the definition of different types
of tasks and proposals, independently, and while performing schedul-
ing optimization, processes all of them together. On the other hand,
regarding the computational cost of HAP, although it is more input
dependent than the other methods in comparison, it still takes less time
than EA for all the datasets, and it is even faster than HC in smaller
datasets. The input-dependent computational cost of HAP is beneficial
for a simulation tool, where the user is able to apply and test many
small changes without spending too much time. It also facilitates the
adaptation of HAP to more extreme time constraints.

5. Conclusion

The inter-disciplinary scheduling problem that is investigated in this
paper, requires a flexible and adaptive solution. We demonstrated the
capabilities of the HAP proposal, by adapting the algorithm to the Ariel
mission scheduling problem and its various setups. The quality of a
solution is determined by the fitness values defined in the objectives
of the problem. The evaluation on the performance of HAP and other
available methods for Ariel shows that, while it has a much smaller
computational cost than an EA, even on the largest dataset, it produces
better solutions with higher quality and it offers wider customizability
to adapt to different setups. Although HAP computational cost on more
complex tests is larger than a greedy HC, the quality of the results
from HC is significantly lower, which justifies the extra time needed
for HAP. The HAP algorithm is defined based on the general definitions
of the problem and provides a good balance between strict solution
creation in local optimizations like greedy approaches, and the more
free generation of solutions in global optimization algorithms like EA.
This is done by introducing parts of the problem knowledge to guide

its metaheuristics in its search in the solution space. In many cases, the
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complexity of the problem is not enough to justify the use of a fully
global optimization approach, especially when there are a high number
of hard and soft constraints, which makes avoiding searching in invalid
sections of the solution space more costly.

The consistency of HAP results in outperforming the other ap-
proaches and its flexibility makes it a suitable choice for users to
test and simulate different scenarios and to adapt to new conditions
presented by the problem. This paper has been written for researchers
in both the fields of computer science and astrophysics. Ariel is a good
example that demonstrates the steps required to adapt an algorithm to
a real-world problem. We propose a reliable approach to the telescope
scheduling problem and provide an in-depth analysis of the specifics
of the problem and the performance of different methods on it. We
consider that HAP is defined generally enough to be easily adapted to
scheduling problems.

The are several directions to continue further with this study. The
main path is to adapt HAP to other variations of the telescope schedul-
ing problem to get more insight into its performance, adaptation,
limitations, and into the problem itself. Between a simple metaheuristic
and a Swarm Intelligence (SI) algorithm, HAP stands as a multi-start
algorithm. There are different ways to investigate improving HAP by
using the strategies from the SI field, especially from the Ant Colony
Optimization (ACO), without losing the customizability of the current
design. For instance, experimenting with incorporating a value like a
pheromone, defined in ACO, to increase the exploitation of HAP would
be beneficial.

Another path for future work is to further study the effects of the
order in which the proposals are processed by CRUs. HAP configures
each of its CRUs independently and this can be used to diversify its
solutions by re-ordering the input for each CRU.
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